
Need for Speed: Latency-Hiding
Work-Stealing

Neil Weidinger

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2022

Abstract
This skeleton demonstrates how to use the infthesis style for undergraduate disserta-
tions in the School of Informatics. It also emphasises the page limit, and that you must
not deviate from the required style. The file skeleton.tex generates this document
and can be used as a starting point for your thesis. The abstract should summarise your
report and fit in the space on the first page.

i

Acknowledgements
Acknowledgements go here.

ii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 3
1.3 Report Outline . 4

2 Background: What Andy Giveth, Bill Taketh 5
2.1 Modern Computer Architecture . 5

2.1.1 Rise of the Multicore Era . 6
2.1.2 Parallel Computing and its Difficulties 7

2.2 Classic Work-Stealing . 7
2.2.1 Why Steal Work? . 8
2.2.2 DAG model of Parallel Computations 8
2.2.3 Analysis of Parallel Computations 9
2.2.4 Work-Stealing Schedulers 10
2.2.5 Latency and DAGs . 10

2.3 Great Scott: Futures! . 11
2.4 Survey of Related Work . 12

3 Conceptual Latency-Hiding: To Wait Or Not to Wait? 13
3.1 The ProWS-R Algorithm . 13

3.1.1 Parsimonious vs Proactive Work-Stealing 13
3.1.2 Algorithm Overview . 14
3.1.3 Data Structures . 15
3.1.4 Scheduling Loop . 16
3.1.5 Performance Bounds . 19

3.2 Required Runtime Support for Latency-Hiding 20
3.2.1 The I/O Thread . 20
3.2.2 Event Queues . 21

4 Implementation: Time is an Illusion 22
4.1 Rayon-LH Architecture Overview 22
4.2 Jobs: Representing Work . 26
4.3 Differences between Rayon and Rayon-LH 30
4.4 Pitfalls . 30

5 Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear) 32

iii

5.1 Experimental Setup . 32
5.2 Latency-Hiding Efficiency . 32
5.3 Compute vs I/O Bound Workloads 35
5.4 Rayon-LH Scheduler Overhead . 36
5.5 Limitations . 37
5.6 Evaluation Summary . 38

6 Conclusion: Patience Is Not a Virtue 39
6.1 Lessons Learned: Concurrent Programming is Hard 39
6.2 Future Work . 40

Bibliography 41

A The Steal Procedure 45

B The Set to Active Deque Procedure 46

iv

Chapter 1

Introduction

This chapter provides a brief introduction and motivation to the problem of latency-
hiding work stealing, as well as the aims of this project. An outline of the report is
provided.

1.1 Motivation
Exploiting the parallel nature of modern processors is critical to achieving high per-
formance. In an era where even entry-level consumer tier hardware features multicore
processors, the need for software to be written that makes efficient use of these re-
sources is key to unlocking efficiency gains. Unfortunately, the difficulty involved with
the writing of parallel programs by explicitly specifying which computations should
map to which processor is non-trivial and prone to introducing errors. Programmers
need to manually schedule computations and enforce synchronization using low-level
primitives such as locks and atomic operations, that are highly vulnerable to subtle and
non-deterministic errors like race conditions and deadlocking.

An example of an operation that is amenable to parallelization is sorting: the divide-
and-conquer nature of various sorting algorithms lend themselves very well to splitting
workloads across multiple processor cores to reduce execution time. Manually, how-
ever, splitting and delegating recursive sub-arrays to sort on multiple processor cores
and synchronizing the results is not ideal, and a higher-level abstraction is desirable.

This backdrop of the need to embrace parallelism has spurred the advancement of
significant research and development in programming languages and paradigms to help
assist writing such programs [37, 51]. One such paradigm is fork-join parallelism
[23, 39], where programs can begin parallel execution at “fork” points and “join” to
merge back and resume sequential execution again. This alleviates the programmer
from having to manually managing parallel computation: one needs to only express
the logical opportunities for possible parallelism, decoupling the programmer from
the underlying runtime that takes care of handling scheduling and execution.

Such an underlying runtime to manage parallelism while the program executes must
feature a scheduler to determine an efficient parallel execution. Runtime implementa-

1

Chapter 1. Introduction 2

tions such as Cilk [27], the Java Fork/Join framework [33], and TBB [1], commonly
employ work-stealing [16]: a class of schedulers designed to deal with the problem
of dynamically multithreaded computations on statically multithreaded hardware. In
brief, work-stealing schedulers take care of scheduling and the accompanying issue of
load balancing available work by using a fixed pool of worker threads that are each
responsible for maintaining a local deque to keep track of this work. Worker threads
execute work from the bottom of their local deque, and when they run out of work they
become thieves and steal from the top of the deques of other randomly selected worker
threads.

Work-stealing has shown itself to be a very efficient approach to implementing fork-
join parallelism. Such schedulers have strong theoretical performance guarantees [17]
as well as proving themselves in practice [15]. Research on work-stealing has proven
fruitful in the domain of traditional fine-grained parallelism, such as in high-performance
and scientific computing where workloads are dominated by computational tasks: op-
erations rarely incur latency and nearly all of the time a processor spends executing
an operation is useful work. General modern workloads running on parallel architec-
tures, however, frequently involve large degrees of operations that do incur latency,
commonly in the form of I/O: waiting for user input, communicating to a remote client
or server, dealing with hardware peripherals, etc. In such environments, classic work-
stealing schedulers can suffer from large performance implications, depending on how
much latency is incurred while executing the workload [37, 45, 51].

Classic work-stealing schedulers have no notion of latency-incurring operations nor
incorporate them into the design of the scheduling algorithm. A worker thread that
encounters a latency-incurring operation is blocked: it is performing no useful work,
and is simply wasting time waiting for the blocking operation to complete. Latency-
incurring operations cause underutilization of the available hardware resources, poten-
tially significantly impacting performance. An alternative to blocking operations are
to use asynchronous (i.e. non-blocking) I/O operations, but those come with their own
set of challenges of managing concurrent control flow [38, 47].

Under such workloads, large performance gains can be made from having either the
latency-incurring operation cooperatively yield or the scheduler forcibly preempting
the operation, and allowing another task that could be performing useful work to run
instead. This allows the latency-incurring operation to wait out its latency in the back-
ground even while all hardware resources are being fully utilized on other tasks, thus
hiding the latency. Singer et al. [46], introduce a latency-hiding work-stealing schedul-
ing algorithm, ProWS, that utilizes futures (a parallel language construct used to rep-
resent computations that will resolve at some point in the future [28, 29]) to represent
and schedule latency-incurring operations. Futures can be spawned to begin paral-
lel execution, and return a handle future handle that can be touched (also commonly
called await or get) at a later point to retrieve the value of the operation. ProWS, by
proactively stealing whenever the scheduling algorithm encounters a blocked future,
can provide better bounds on execution time and other performance metrics than pre-
vious work [37, 48].

Scheduling futures is only one part of the equation to fully support latency-hiding

Chapter 1. Introduction 3

work-stealing: a runtime system to efficiently dispatch and process latency-incurring
operations is also necessary. The use of futures to hide latency is not much help
if worker threads themselves must incur the cost of awaiting futures; dedicated I/O
threads and integration with operating system event notification facilities is required.
Singer et al. [45] present an extension of Cilk, called Cilk-L, that incorporates such
runtime support with encouraging results.

Rayon [13, 2, 49] is a widely-used library level implementation for Rust programs
(Cilk and its derivatives consist of a both Cilk to C level compiler and a runtime library)
of work-stealing that supports task-level fork-join parallelism, but without latency-
hiding. Rust [36] is a relatively new systems level programming language aimed at
delivering the low-level abilities and performance characteristics of languages like C
and C++, while ensuring far greater levels of memory and thread safety. It achieves
this by using a rich static type system to allow the compiler to infer when and how
values are safe to use, termed the “borrow checker”. It also has first class support
for asynchronous programming through the use of futures (futures in Rust have some
idiosyncrasies described in section 2.3) and a quickly growing ecosystem surrounding
asynchronous programming in Rust.

Futures in Rust, unlike the hand-written futures used in Cilk-L, are easily composable:
the compiler automatically generates a state machine that represents the current state
of an asynchronous operation. This allows for ergonomic user-defined asynchronous
operations that highly resemble regular sequential code, and powerful future combi-
nators [5]. Supporting this behavior requires a few additional capabilities than what
ProWS provides directly.

1.2 Goals and Contributions
The goal of this project is to provide an implementation, building upon the work of
Singer et al., of a latency-hiding work-stealing scheduler that seamlessly integrates
with the Rust language and ecosystem. The implementation must take into considera-
tion the stringent safety guarantees of the Rust language, while also ensuring compet-
itive performance with existing work-stealing implementations.

The primary contributions of this project are ProWS-R and Rayon-LH. This report
describes ProWS-R, a variant of ProWS that is adapted for the particular futures found
in Rust, and the accompanying runtime system Rayon-LH, a fork of the Rayon library.
A detailed explanation of the necessary runtime facilities to support ProWS-R is given.

A key contribution of Rayon-LH is the FutureJob construct: this component merges
the theoretical concepts in ProWS-R with the real-world asynchronous programming
machinery found in the Rust language. It also takes care to take advantage of exist-
ing operating system event queue functionalities to efficiently hide latency. Another
important contribution are the steps taken to ensure thread safety in the highly concur-
rent scheduler implementation: the ProWS-R algorithm on its own provides no such
guidance, and the Stealables construct is key to ensuring correct operation amidst
complex concurrent interactions.

Chapter 1. Introduction 4

1.3 Report Outline
The report begins with chapter 2, with an introduction to the current backdrop of mod-
ern parallel computing. It also provides overviews of important background knowl-
edge, like analysis of multithreaded computations and representing asynchronous com-
putations using futures.

Chapter 3 provides a description of ProWS-R, the latency-hiding work-stealing algo-
rithm adapted for use with Rust. Chapter 4 builds on the theoretical knowledge pre-
sented in the previous chapter to illustrate the concrete implementation of Rayon-LH,
a latency-hiding work-stealing scheduler.

Chapter 5 delivers an in-depth evaluation of the performance of ProWS-R and Rayon-
LH. Multiple benchmarks to evaluate the implementation from various angles are dis-
cussed.

Chapter 6 rounds out the report with a summary of the findings and experience. Ideas
for future work are also put forward.

Chapter 2

Background: What Andy Giveth, Bill
Taketh

This chapter provides an overview of the circumstances that birth the motivation for
this project in sections 2.1, 2.1.1, and 2.1.2. An introduction to classic work-stealing
and the supporting theory is provided in section 2.2. Futures are briefly described in
section 2.3, and a survey of related work in section 2.4.

2.1 Modern Computer Architecture
Ever since the advent of general-purpose microprocessor based computer systems,
transistor density has been and continues to double roughly every two years. Famously
known as Moore’s law, for the first 30 years of the existence of the microprocessor the
consequences of this graced the computing world with effortless biennial performance
increases. Bestowed with this exponential growth of transistor density, chip design-
ers could drastically increase core frequencies with each generation, and with ever
increasing transistor budgets afford to design more complex architectural features like
instruction pipelining, superscalar execution, and branch prediction. Without touching
a line of code, software developers could expect programs to automatically double in
performance every two years [30].

Accompanying Moore’s law was another, related, effect: Dennard scaling. While
Moore’s law provides increased transistor counts, Dennard scaling allowed for this
transistor doubling while ensuring power density was constant. The scaling law states
roughly that as transistors get smaller, power density stays constant, meaning that
power consumption with double the transistors stays the same. Additionally, as transis-
tor sizes scale downward, the reduced physical distances enable reduced circuit delays,
meaning an increase in clock frequency, boosting chip performance. When combined,
with every technology generation transistor densities double, clock speeds increase by
roughly 40%, and power consumption remains the same [19]. This remarkable scaling
is what historically allowed for incredible performance gains year over year, all while
keeping a reasonable energy envelope.

5

Chapter 2. Background: What Andy Giveth, Bill Taketh 6

But starting around 2005, Dennard scaling has broken down: processors have reached
the physical limits of power consumption in order to avoid thermal runaway effects that
would require prohibitive cooling solutions (CPU chips that would melt would likely
be difficult to sell to customers). This is known as the power wall, and chip designers
could no longer regularly rely on increasing clock frequencies to deliver performance
gains [40]. The multicore era was born.

2.1.1 Rise of the Multicore Era
While the doubling of transistor count observation of Moore’s law is still going strong,
the historic predictable free performance lunch it became associated with is no longer
what it once was. Instead of being dedicated to more complex architectural features,
in order to extract serial performance on single core processors, the extra transistors
are largely used to build more cores on a single processor. With diminishing returns
on effort spent increasing single core performance, chip designers look to add multiple
cores to be able to execute more instructions in parallel [41].

CPU performance can be described using the following equation [42], where perfor-
mance is measured in terms of absolute execution time:

CPU execution time for a program =
Program instruction count ·CPI

Clock rate (frequency)

where CPI is average clock cycles per instruction. No longer able to increase the clock
frequency due to the power wall and increasing difficulty reducing CPI, efforts of hard-
ware architects focused on simply reducing program instruction count per processor:
by distributing instructions across multiple CPU cores to be executed in parallel [26].

Multicore processors are microprocessors containing multiple processors in a single
integrated circuit, where each of these processors is known as a core. Armed with mul-
tiple cores, different programs or different parts of the same program can be run at the
same time in parallel, reducing the time required to perform the same amount of work
on a single processor, boosting performance. No longer limited to a single processor
core executing work, programs stand to drastically benefit in execution throughput by
being run on multiple cores simultaneously.

As of 2021, it is difficult to find a processor that is not a multicore processor. The
performance gains provided by having multiple cores have shown to be so profound
that even the lowest end chips feature multiple cores. The Raspberry Pi Zero 2, a
£13.50 board in the Raspberry Pi family of low cost single-board computers, features
a 64-bit quad-core Arm Cortex-A53 CPU [35].

Initially, multicore processors may seem like a silver bullet to the question of what to
do when faced with the power wall: for more performance, simply scale the number of
cores! In reality, as is typical, the situation is more nuanced. Many workloads cannot
be trivially diced up and processed on multiple cores 1, and even if so, support for

1This is due to Amdahl’s law, that provides an upper bound to the potential speedup a program can
benefit from running on more cores [20].

Chapter 2. Background: What Andy Giveth, Bill Taketh 7

splitting up work and then computing this work in parallel must be explicitly supported
and designed for.

2.1.2 Parallel Computing and its Difficulties
Although multiple cores on a single chip running in parallel offer tantalizing perfor-
mance benefits, there is one catch: programmers must write explicitly parallel pro-
grams. Software must be carefully designed such that it actually takes advantage of
multiple processing units: a single-threaded application running on an 8 core CPU can
only take advantage of 1/8 of such a chips potential throughput. Once CPU hardware
started featuring multiple cores, programs did not magically rewrite themselves to take
advantage of this increased firepower. Instead, developers had to manually identify the
existing parallelism in their programs and refactor them to run as multiple computa-
tional threads [41].

Threads are the unit of scheduling and execution: the same program can have multiple
threads of execution running concurrently. A thread scheduler manages these threads
and chooses when they should run on the CPU. Multicore processors allow threads
to truly run in parallel, instead of just concurrently as would happen on a single core
processor, since multiple cores can each be executing a thread simultaneously 2.

Unfortunately, after about nearly two decades since the introduction of the first mul-
ticore processors, experience has shown that compared to traditional sequential pro-
gramming, parallel programming is simply very difficult [25, 34, 41]. There are many
things a programmer must be aware of when writing parallel programs: synchroniza-
tion of memory accesses and control flow, race conditions, deadlocks and livelocks,
lock-free programming and atomic operations, memory models, workload partition-
ing, balancing, and scheduling, and many more. These are all issues that stem from
the intrinsic difficulty of coordinating multiple independent entities that access shared
resources.

2.2 Classic Work-Stealing
To combat the previously mentioned issues, work-stealing schedulers are frequently
used, as they allow programmers to express the logical parallelism of their programs,
letting the underlying work-stealing scheduler deal with the complexities of workload
balancing and thread scheduling. This section provides a brief introduction to the
theoretical tools used to analyze multithreaded computations as well as classic work-
stealing.

2Sequential means operations must happen in a defined sequence, while concurrent means there is
no sequence and operations can occur in any order. Serial execution means one-at-a-time, while parallel
execution means multiple operations happening at the same time. Sequential vs concurrent and serial vs
parallel are two orthogonal axes. Concurrency does not imply parallelism, although it is a prerequisite
for it.

Chapter 2. Background: What Andy Giveth, Bill Taketh 8

2.2.1 Why Steal Work?
To first illustrate why work-stealing is beneficial, it’s useful to consider an example
even the beginner programmer will be familiar with: sorting. Sorting algorithms com-
monly come in the form of divide-and-conquer algorithms: recursively breaking down
a problem into non-overlapping sub-problems, until these become simple enough to
solve directly, at which point these intermediate solutions to sub-problems are com-
bined to give a solution to the original problem.

Take the quicksort algorithm, for example. It works by partitioning a given array into
two sub-arrays, and the sub-arrays are then solved recursively. For each level in the
recursive call graph, the two sub-problems are solved completely independently of
each other (they have no knowledge of the other).

After partitioning the original array, why continue solving two independent sub-problems
on the same processor core? Instead, one sub-problem could be solved by one core,
with the other being handed to another core to solve. Since the sub-problems are com-
pletely independent, execution time can instantly be slashed in half. In fact, why stop
there? For the remaining recursive sub-problems, keep handing them out to other cores
to solve, and bask in the sweet exponentially increasing speedup.

Unfortunately, this obviously reaches its limits quite quickly: CPUs only have a fixed
number of cores, and at some point multiple independent sub-problems must indeed
be solved on the same core. Multiple independent sub-problems on the same core,
however, is not an inherently bad issue: if all cores have sub-problems they are working
on, then progress is being made on the original problem with all hardware resources in
full use.

This only becomes an issue when one core finishes all of its sub-problems, but other
cores are still working on theirs. An entire core is sitting around waiting and doing
nothing, even though it could be helping its fellow core compatriots out with the work-
load instead. Ideally, it would be nice if this core could steal work from another core,
so that all cores are being fully utilized to making progress on the original problem.
How to best implement such a scheme is the raison d’être of work-stealing schedulers.

2.2.2 DAG model of Parallel Computations
Before diving into the guts of how a work-stealing scheduler functions, a framework
for modeling and analyzing parallel computations is necessary. Presented in this sec-
tion and the next is a cursory exposition, largely based off of [24, 31, 18].

With typical sequential computing, all instructions can be defined as a totally ordered
set of instructions, where the ordering specifies the execution order. With multi-
threaded computing, a computation can be defined as a partially ordered set of in-
structions, which may be executed in any order that complies with the partial ordering.
This partial ordering in a multithreaded computation can be represented as a directed
acyclic graph 3 G = (V,E).

3From this point on in the report shortened to DAG.

Chapter 2. Background: What Andy Giveth, Bill Taketh 9

Each node in V represents an instruction to be executed and each directed edge in E
represents dependencies between instructions. An edge (u,v) ∈ E means that instruc-
tion u must execute before instruction v. If a directed path exists between u and v, they
are (logically) in series, and execute serially just like in typical sequential programs.
Otherwise if such a path does not exist, they are (logically) in parallel, meaning they
may execute in parallel (does not specify that they will execute in parallel, only that at
runtime a scheduler is allowed to choose to run them in parallel by assigning them to
available processors). A node is ready when all of its predecessor nodes have executed.

2.2.3 Analysis of Parallel Computations
To analyze the theoretical performance of multithreaded computations, a more formal
way of describing the efficiency of such programs is needed.

Let TP be the running time of a multithreaded program run on P processors. The work
of a computation is the total time required to execute each computation node in the
DAG. In other words, work is the time required to execute the computation on a single
processor: T1. The span (also called critical path) of a computation is the length of the
longest sequence of computations that need to be executed serially, due to sequential
dependencies represented as edges in the DAG. In other words, the span is the running
time if the computation could be run on an infinite number of processors, denoted by
T∞.

Using the above two definitions, two very useful results emerge:

• Work law: Since P processors can perform at most P operations in one time
step, the total amount of work performed in TP time is PTP. Since the total
amount of work to be done is T1, we see that

PTP ≥ T1

This can also be interpreted as the fact that the time TP to run the computation
on P processors is at least the time taken to run on one processor T1 divided by
the number of processors P:

TP ≥ T1/P

• Span law: Since the time taken to run a computation on a finite number of
processors P cannot be faster than the time taken on an infinite number of pro-
cessors, consequently

TP ≥ T∞

Now we can define a few useful performance metrics:

• Speedup: Defined by the ratio SP = T1/TP, expressing how much faster the com-
putation is on P processors than on 1 processor. Rearranging the work law, we
see that T1/TP ≤ P, meaning that the speedup gained by running on P processors
is at most P. When the speedup scales linearly with the number of processors
T1/TP = Θ(P), this is known as linear speedup, and when T1/TP = P perfect
linear speedup is observed.

Chapter 2. Background: What Andy Giveth, Bill Taketh 10

• Parallelism: The amount of parallelism in a computation is expressed by the
ratio T1/T∞. This represents the average number of computations that can be
performed in parallel at each step along the critical path. This is also the maxi-
mum possible speedup that can be achieved on any number of processors (using
the span law: T1/TP ≤ T1/T∞). We see that there is not much point in using P
processors when P> T1/T∞, as the extra processors will just be idle not perform-
ing work.

2.2.4 Work-Stealing Schedulers
This model of multithreaded computation does not specify which instructions to run on
which processors at what point in time: this is the job of the scheduler. A scheduler
constructs an execution schedule that maps instruction nodes in the multithreaded
computation DAG to processors at each step in time. A typical goal for a scheduler
is to reduce absolute execution time, and consequently minimize the amount of time
a processor sits idle. An execution schedule must satisfy all constraints given by the
edges present in the DAG, such that the partial ordering of instructions is satisfied.

As mentioned in section 2.1.2, programmers can themselves schedule when threads
in their programs should be run. This low-level manual thread orchestration, how-
ever, becomes increasingly difficult with the number of threads involved. An easier
approach is to raise the level of abstraction by allowing programmers to express the
logical opportunities for parallelism in their programs, and let a runtime system take
care of thread creation and building an execution schedule.

Work-stealing schedulers provide such a runtime. Classic work-stealing 4 schedulers
assign a single thread, called worker threads, to each processor. Each worker thread
has a double-ended queue (deque) of nodes found in the computational DAG. During
program execution, worker threads pop nodes off the bottom of their deques and ex-
ecutes them, and if the executed node spawns any child nodes they are pushed to the
bottom. A worker thread will keep doing this until it rounds out of nodes in its deque.
At this point, the worker thread becomes a thief and steals from the deque of another
worker thread, by randomly selecting a victim worker thread and popping a node off
the top of its deque. This continues until all nodes in the DAG have been executed, and
the program can terminate. Such a work-stealing scheduler can be proven to execute
in expected time O(T1/P+T∞) [15].

2.2.5 Latency and DAGs
Classic work-stealing schedulers do not account for operations that incur latency. This
means when they encounter a blocking operation, worker threads are effectively out-
of-service until the operation completes. This is clearly a less than ideal situation,
as hardware resources that could be utilized to make further progress on computation

4In this report we refer to the work-stealing algorithm in [15] as classic work-stealing. This algorithm
has strong theoretical and empirical performance bounds, and is the basis for many real-world work-
stealing implementations [27].

Chapter 2. Background: What Andy Giveth, Bill Taketh 11

are sitting idle. The DAG model of computations can be extended to model latency-
incurring operations, by using a weighted DAG where edge weights represent latency
costs [37].

As an example of where classic work-stealing schedulers greatly suffer in performance,
imagine a map and reduce program that retrieves each of its initial elements over a
network connection. A partial DAG for such a program is shown in figure 2.1. The
bolded red lines represent edges in the DAG that incur latency of the network request.
Without latency-hiding, each of the latency-incurring edges must be incurred by the
worker threads. Clearly any latency that lies on the critical path cannot be avoided, but
all other latency can be hidden by executing other available work while the latency-
incurring operation waits to complete. An ideal latency-hiding scheduler would suffer
just the cost of the single heaviest latency-incurring edge (on the critical path).

Figure 2.1: A partial DAG for map and reduce

2.3 Great Scott: Futures!
Futures can be thought of operations/values that can be completed/returned at some
point in the future. They are a popular abstraction to represent asynchronous com-
putations, as they provide convenient representations of values that will eventually be
available [28, 29].

The Rust programming language supports futures and provides ergonomic language
level features to create and interact with them [4]. Very briefly, futures in Rust can be
thought of as state machines that represent the state of an asynchronous computation.
These state machines can be manually defined, or more commonly, generated by the
compiler. A future is no use on its own though - it requires an executor to poll it to
completion. A future, when polled, either indicates that it is ready (completed) or is
pending (blocked). If blocked, the executor will go find another future to poll in the
meantime, and when the blocked future is ready to make progress again notifies the
executor through the use of a waker. The waker can essentially be thought of as a
callback function that lets the executor know the future can be polled again. Addition-
ally, since a future may hold references to fields within it self, a future may not move
in memory once it has first been polled (otherwise these references would become in-
validated, leading to dangling pointers). Rust statically confirms at compile-time that
futures do not move in memory through the use of its type system.

Chapter 2. Background: What Andy Giveth, Bill Taketh 12

2.4 Survey of Related Work
Many variants of work-stealing have been researched in the literature, particularly by
building on top of the quintessential incantation of modern work-stealing in [15]. Al-
though there are many classic work-stealing implementations like Cilk [27] and Intel
TBB [1], of particular interest are those that provide alternative work-stealing algo-
rithms or different takes on handling blocking operations.

An interesting approach to blocking operations in a work-stealing implementation is
Concurrent Cilk [51]: it allows worker threads to suspend the current execution context
when encountering a blocking I/O operation, and try to find something else to do, in
essence trying to hide latency. Tasks start out being scheduled by work-stealing but can
be promoted to a lightweight thread when encountering a blocking operation. Multiple
suspended execution contexts are stored with the worker thread that suspended them,
meaning it is unfortunately possible for the deques that are stored among workers to
possibly become extremely unbalanced. Also, their system does not have a provable
time bound.

X10 [22] and Habenero [21] support blocking operations by providing synchroniza-
tion primitives. These primitives, however, can cause worker threads to truly simply
block, and the runtime compensates for this by simply creating a new worker thread to
replace the blocked one. These implementations also do not provide provably efficient
performance bounds when dealing with blocking operations.

Research into specifically latency-hiding work-stealing is a (surprisingly) relatively
unexplored topic, and this report rides on the coattails of the state of the art work done
in [37, 46]. Muller and Acar in [37] present a latency-hiding work-stealing schedul-
ing algorithm that generalizes classic work-stealing to use multiple deques per worker.
Singer et al. in [46] put forward a similar algorithm, but with the difference that the al-
gorithm proactively steals - as soon as a worker thread encounters a blocked operation
it steals, as opposed to looking into its local deque. It also features a better bound on
execution time.

Chapter 3

Conceptual Latency-Hiding: To Wait
Or Not to Wait?

This chapter describes the ProWS-R latency-hiding work stealing algorithm. Section
3.1 provides an overview of the core scheduling algorithm, and the considerations that
allow for repeatedly awoken futures found in Rust. Section 3.2 describes the additional
runtime support necessary to provide the latency-hiding capabilities of the scheduler.

3.1 The ProWS-R Algorithm
This section is heavily based on the work done in [46], where the authors introduce
the ProWS scheduling algorithm. ProWS is a provably efficient algorithm that in-
troduces support for the generalized concept of futures, that deviates from traditional
work-stealing algorithms by being proactive, detailed in section 3.1.1. Presented here
is an exposition of the ProWS-R algorithm, a variant of ProWS, with details on the
considerations taken to support the Rust implementation of futures.

3.1.1 Parsimonious vs Proactive Work-Stealing
Before jumping into the core algorithm, it’s insightful to touch upon the differences
between parsimonious and proactive work-stealing. The consequences of this mainly
affect the theoretical execution bound (section 3.1.5) and on the number of deviations
[48], a metric used to analyze the theoretical performance of parallel executions. In-
formally, the difference between a parsimonious and proactive work-stealing scheduler
boil down to what actions are taken upon encountering a blocked future: a parsimo-
nious scheduler continues execution by popping nodes off its worker deque, while a
proactive scheduler opts to immediately become a thief and attempts to steal work from
elsewhere.

The classic work-stealing scheduler, as described in section 2.2.4, is parsimonious.
Given the online scheduling problem where the computational DAG unfolds as ex-
ecution proceeds, it is the responsibility of the scheduler to map work to available

13

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 14

processing resources in a way that is efficient and still preserves the sequential depen-
dencies of nodes in the DAG. Parsimonious scheduling achieves this by having each
worker thread maintain its own deque of nodes that represent work to be executed, and
having workers continuously pops nodes off and executing them. Upon completion of
a node execution, the node may enable zero, one, or two child nodes. If zero nodes
are enabled, it attempts to pop off its deque. If one node is enabled, it immediately
executes the enabled node. If two nodes are enabled, it pushes one of the nodes to its
end of the deque and executes the other.

Only when a worker runs out of work, signified by its deque being empty, does it at-
tempt to steal work from another worker. It becomes a thief and randomly selects a
victim deque, attempting to pop off a node from the top. Crucially, in the context of
dealing with futures, a blocked future simply falls under the case of zero nodes, mean-
ing a worker continues looking for work in its local deque. The scheduler presented by
Muller and Acar [37] is such an algorithm: upon encountering a blocked future, it sets
the suspended future to the side but continues executing nodes from its deque.

In contrast, the defining characteristic of proactive work-stealing is what occurs instead
upon encountering a blocked future: the deque is suspended and the worker immedi-
ately attempts to find work elsewhere, by becoming a thief. In ProWS-R, a worker
marks its current deque (that it popped the future off of) as suspended, randomly se-
lects another worker to assign this suspended deque to, and then tries to steal work
from other workers. Importantly, this means that although there are P workers, there
can be more than P deques at a given time. Although it may initially appear counterin-
tuitive to proactively steal, as it may seem to increase the amount of steal attempts and
corresponding scheduler overhead, but doing so provides a better bound on execution
time given latency-incurring operations (section 3.1.5).

3.1.2 Algorithm Overview
Presented here is a description of the ProWS-R algorithm, the conceptual data struc-
tures used, and the adjustments made to accommodate the futures found in Rust.
Again, this is largely based upon the work of Singer et al., and their work should
be consulted as reference.

The principle idea behind ProWS-R is that there can be multiple deques in the system
at any given time, and each worker thread owns an active deque that they work off
of. Whenever a worker thread encounters a blocked future, its current active deque is
marked as suspended, the worker relinquishes ownership of the deque, and it attempts
to find work elsewhere. The act of suspending deques allows for the latency of such
blocked futures to be hidden while worker threads can fully utilize the available hard-
ware resources to make progress on remaining available work. This differs from classic
work-stealing, where such a scheduler without even the concept of latency-incurring
operations would simply treat the operation as a regular computation, and be forced
to block until the latency is incurred. When a worker thread is executing a node and
does not encounter a blocked future, the algorithm proceeds the same as classic work
stealing.

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 15

When a blocked future reaches completion, a callback is executed that marks the deque
as Resumable, indicating that the previously suspended deque now has work available
and is free to have its work stolen by worker threads. Worker threads have the ability
to either steal just the top node off of other deques (including the active deques of other
workers), or mug entire deques that are marked as Resumable (but are not the active
deques of other workers), and claim ownership of such deques. Mugging allows for
the entire deque to be stolen in one go, as opposed to workers having to repeatedly
steal nodes one-by-one off of such deques (since they’re not the active deques of any
other workers).

3.1.3 Data Structures
Deques

Like in classic work-stealing, nodes that represent work in the computational DAG
are stored in deques. Deques are assumed to have support for concurrent operations.
Each worker thread owns an active deque that they pop nodes off the bottom of and
execute, like in classic work-stealing. If nodes spawn child nodes, these are pushed
to the bottom of the deque. Worker threads, when stealing, pop nodes off the top
of these deques. Worker threads also have the ability to steal entire deques at once
(called mugging) that then become the new designated active deque for the respective
worker thread. Each worker thread, in addition to having an active deque, manages a
set of stealable deques, called a stealable set, that are not being actively worked on but
contain ready nodes that can be stolen and executed. Deque operations are assumed to
take constant amortized time.

Deques support the following operations:

• popTop: pop top node off of deque

• popBottom: pop bottom node off of deque

• pushBottom: push node to bottom of deque

• isEmpty: return true if there are no nodes in deque

• inStealableSet: return true if this deque is to be found in a worker thread’s
stealable set

During execution of the algorithm, deques are in one of the following states:

• Active: It is the designated active deque of a given worker thread (the worker
thread treats this as its local deque).

• Suspended: The bottom-most node that was last executed by a worker thread
encountered a blocking operation, and is now waiting out the latency of the oper-
ation. This node is not in the deque; it will later be pushed onto the deque again
by a callback when the operation completes. The deque may still contain other
ready nodes that are available for worker threads to steal.

• Resumable: All nodes in the deque are ready, but is not being actively worked
on by a worker thread. These nodes can be stolen off the top of the deque by

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 16

worker threads and then executed.

• Muggable: The entire deque can be mugged by a worker thread, to become the
threads new active deque.

Active Suspended

Muggable Resumable

Encounter blocked future

Completion of blocked future

Stolen by thief once before

Mugged by thief

Figure 3.1: Deque state transitions

Deque transitions are displayed in figure 3.1. Deques begin their lives in the Active
state, when they are first created by a worker thread. A worker thread then works off
the bottom of this deque, until it encounters a blocked future node, at which point the
deque becomes Suspended. Upon completion of the previously blocked future node, a
callback is executed that transitions the deque into the Resumable state. At this point,
any worker thread is able to steal a single node off the top of the deque. After a worker
thread has stolen a node off the top, the deque transitions into the Muggable state. In
this state a worker thread can steal the entire deque at once (a mugging), and become
the worker thread’s new active deque.

Stealable Sets

In order to keep track of stealable deques, each worker thread owns a stealable set. This
set contains deques that have ready nodes that are ready to be executed (i.e. available
work for worker threads to perform). Like deques, stealable sets are assumed to support
concurrent operation and take constant amortized time. During scheduler execution,
thieves select a victim worker thread uniformly at random to steal from, and from
within that victim’s stealable set, uniformly at random select a victim deque.

Stealable sets support the following operations:

• add: add a deque to the set

• remove: remove a deque from the set

• chooseRandom: return a random deque from the set (without removing it)

3.1.4 Scheduling Loop
The main scheduling loop is shown in algorithm 1. Execution starts by setting the
active deque of all worker threads to an empty deque, and pushing the root of the
computation to one of the deques, after which the scheduling loop begins (line 2).
Without the extra logic to deal with futures (lines 11 - 16), ProWS-R behaves the same
as classic work-stealing.

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 17

Algorithm 1 Main Scheduling Loop (w is the currently executing worker thread)
1: function SCHEDULINGLOOP

2: while computation is not done do
3: node← findNode()
4: le f t,right← execute(node)
5: if le f t 6= null then
6: w.active.pushBottom(le f t)
7: end if
8: if right 6= null then
9: w.active.pushBottom(right)

10: end if
11: if node encountered blocked future f then
12: deq← w.active
13: w.active← null
14: suspendDeque(deq)
15: f .installCallBack(deq)
16: end if
17: end while
18: end function

Worker threads work off the bottom of their active deques. When a node is popped
from the bottom, it is first executed and then its children (if any) are pushed to the
bottom of the deque. Special care is taken for when a node that was just executed is
found to have encountered a blocked future (line 11): the worker thread’s active deque
is immediately suspended and a callback is installed on the future that will reschedule it
for execution again once it’s latency-incurring operation completes. Deque suspension
for the active deque (line 29) involves changing its state to Suspended, removing it
from the worker thread’s stealable set, and if it is not empty, adding it to the stealable
set of another randomly selected worker thread. If the deque is empty, it will not be
found in any stealable set, so that worker threads can not try to fruitlessly steal from it.

Algorithm 2 Find Node (w is the currently executing worker thread)
19: function FINDNODE

20: node← null
21: if w.active 6= null then
22: node← w.active.popBottom()
23: end if
24: if node = null then
25: node← steal()
26: end if
27: return node
28: end function

The callback (line 36) that is installed on the blocked future (line 15) is the critical
aspect for enabling latency-hiding. In order to try and keep worker threads busy with
work as much as possible so that progress is being made on the computation with full

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 18

hardware resource utilization, it’s undesirable for worker threads to perform any op-
erations that are not directly related to executing work nodes (contributes to scheduler
overhead). As such, the callback is responsible for executing when completion of a
blocked future is detected, and rescheduling the future node for execution by a worker
thread. A more concrete explanation of how this occurs is given in section 3.2.

Algorithm 3 Deque Suspension (w is the currently executing worker thread)
29: function SUSPENDDEQUE(deq)
30: deq.state← SUSPENDED
31: w.stealableSet.remove(deq)
32: if !deq.isEmpty() then
33: chooseRandomVictim().stealableSet.add(deq)
34: end if
35: end function

Due to the way Rust futures implement their completion signaling mechanism using
wakers (introduced in section 2.3), it is possible for multiple wakers to wake up the
same future. This is unlike the futures supported by ProWS, and it is vital that ProWS-
R take specific care to handle repeatedly awoken futures. This can happen, for ex-
ample, when two futures are manually polled immediately after one another using the
same waker, like when using the join function 1. Fortunately, supporting this is trivial
2: all that is required is a check (line 37) to see if the deque the future was suspended
with is already unsuspended, and if so, the callback does not perform any actions. If,
however, the deque is still suspended, the callback pushes the future back to the bot-
tom of the deque, transitions it to Resumable, and adds it to a random worker thread’s
stealable set if the deque is not already in one. By doing this the callback makes the
now-resumable future ready to be executed by a worker thread again.

When a worker thread cannot find work to execute in its active deque (line 24), it must
become a thief and steal from elsewhere. The steal procedure is outlined in algorithm
6. First, a random victim deque from a random worker thread’s stealable set is chosen
(line 49). Recall that stealable deques can either have nodes stolen off the top of
them, or be mugged in their entirety. Given the victim deque, if it’s in the Muggable
state, the thieving thread mugs the entire deque and sets it to be its new active deque.
Otherwise, the thieving thread attempts to pop a node from the top of the victim deque.
If after popping a node the victim deque is empty, it is removed from the victim worker
thread’s stealable set so that other worker threads cannot futilely attempt to steal from
it, and possibly even freed if not in the Suspended state (a Suspended deque can be
empty but still be awaiting a callback to push a resumable future back on to it, so

1The join function in the Rust futures crate [6] (crates are essentially synonymous to packages or
libraries in other languages) can be used to create a future that concurrently executes two or more futures
(note: not in parallel). It does this by polling the two or more futures passed to it in sequential order,
passing and cloning its waker every time. This means as soon as at least one of the futures is ready to
make progress the join future is awoken and can be rescheduled for execution. These multiple futures
can all trigger the waker clones that wake up the same future, hence the need for ProWS-R to support
repeatedly awoken futures.

2While trivial, section 4.4 describes the vital importance of being able to support repeatedly awoken
futures.

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 19

Algorithm 4 Callback Procedure (called upon completion of the blocked future f)
36: function CALLBACK(suspendedDeq)
37: if suspendedDeq.state 6= SUSPENDED then
38: return
39: end if
40: suspendedDeq.pushBottom(f) . f is a node that can be executed
41: suspendedDeq.state← RESUMABLE
42: if !suspendedDeq.inStealableSet() then
43: chooseRandomVictim().stealableSet.add(suspendedDeq)
44: end if
45: end function

should not be freed). If the victim deque is Resumable it is then marked as Muggable,
and a new deque is created for the thieving worker thread if it has none (which is the
case when a blocked future is encountered on line 11). If a node could not be stolen,
the steal procedure is repeated.

The calls to rebalanceStealables on lines 56 and 75 are to balance the load of
stealable deques among the worker thread stealable sets. This is done so that the chance
of selecting a stealable deque given a victim worker thread stays uniform. This is
performed when a deque has been removed from a worker thread v’s stealable set - it
randomly chooses another victim v′ and if v = v′ nothing is done, otherwise a stealable
deque is moved from v′ to v if v′ has one.

3.1.5 Performance Bounds
As ProWS-R is effectively equivalent to ProWS in terms of complexity (ProWS-R is
actually a slightly stripped down version of ProWS, with additional simple constant
time operations to support Rust futures), it inherits the performance bounds of ProWS
[46, 45]. Singer et. al show the execution time bound of ProWS is O(T1/P+T∞ lgP).
This means the bound is independent of the number of latency-incurring operations
in the computation, thus hiding latency. Compared to the classic work stealing bound
of O(T1/P+T∞) which provides linear speedup when T1/T∞ = Ω(P), ProWS, and by
extension ProWS-R, provide linear speedup when T1/T∞ = Ω(P lgP).

Briefly, the analysis of ProWS achieves a bound independent of the number of latency-
incurring operations by exploiting the fact that stealable deques must be stolen from
once while in the Resumable state before transitioning to the Muggable state. By
stealing once before mugging the entire deque, this ensures that for each mugging
there is a corresponding steal to amortize against, allowing the number of steals to
be bounded. Since a work-stealing scheduler is either working or stealing, the total
running time is (T1 +X)/P, where X bounds the number of steal attempts. Armed
with a bound on the number of steals, the final bound on execution time can be found.

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 20

3.2 Required Runtime Support for Latency-Hiding
The ProWS-R algorithm on its own is not enough to enable latency-hiding 3. To truly
support latency-hiding, additional runtime special considerations must be accounted
for to support the core scheduling algorithm. Scheduling futures is one thing, but ac-
tually hiding the latency in an efficient manner is another. Essentially, the runtime
support needs to answer the question: how can latency-incurring operations be per-
formed asynchronously, while worker threads can still make progress on the primary
computation?

3.2.1 The I/O Thread
The crux of the problem is that given a fixed number of P worker threads, it is un-
desirable for any of the P worker threads to be doing anything except for executing
nodes. Anything that a worker thread does outside of this only contributes to scheduler
overhead. To avoid placing the burden of processing latency-incurring operations on a
worker thread, the ProWS-R runtime uses an additional thread, named the I/O thread,
dedicated solely to this task. This relieves the worker threads of having to sacrifice
time that could otherwise have been spent executing work.

Naturally, at first glance this may seem to bring little benefit, as introducing an addi-
tional thread simply means that now hardware resource usage needs to be split among
P+ 1 threads 4. Although this is true, the runtime can take advantage of the fact that
the I/O thread can simply be put to sleep whenever its services are not required (i.e.
if there are no latency incurring operations to process). When the I/O thread is put to
sleep, the underlying operating system thread scheduler can dedicate the entirety of the
available hardware resources to the P worker threads 5, with the I/O thread not taking
up any processor cycles.

What remains is to see how the worker threads and I/O thread interact to process
latency-incurring operations. The following functionality is required:

1. When a worker thread encounters a blocked future, it must somehow register
this with the I/O thread and delegate responsibility of dealing with the blocked
future, so that the worker thread can return to executing work as soon as possible.

2. The I/O thread, upon registration of a blocked future by a worker thread, must
monitor the blocked future to detect when it completes. Once complete, the I/O
thread must perform the callback in algorithm 4 to make the future available for

3This section is based off the work by Singer et al. on Cilk-L [45], a latency-hiding extension of Cilk
that uses the ProWS algorithm, with considerations on how to integrate with the mechanisms involved
with Rust futures (primarily described in chapter 4).

4Classic work-stealing runtimes create P worker threads for P physical processor cores, to maximize
hardware usage efficiency [15].

5This is a slight oversimplification: in principle the operating system thread scheduler can dedicate
all hardware resources to the P threads, but of course in reality on a modern computing platform, other
programs may be running on the same machine and/or the underlying thread scheduler may not be
aware of the nature of the work-stealing worker threads. Fortunately, it can be shown that work-stealing
is optimal to a constant factor even in the face of such an adversarial thread scheduler [15].

Chapter 3. Conceptual Latency-Hiding: To Wait Or Not to Wait? 21

a worker thread to resume again.

One strategy would be for the I/O thread to repeatedly poll to see if the file descrip-
tors that futures are blocked on have become ready. This, however, is not ideal as it
would necessitate the I/O thread to take up processor resources performing this repet-
itive polling, even when nothing is ready. An additional concern would be how often
to perform the polling: too often and processor usage would be excessive; not often
enough and resumable futures might not be made available quickly enough.

3.2.2 Event Queues
To avoid these issues, this functionality is instead achieved by relying on the underlying
operating system event queue: epoll on Linux, kqueue on BSD systems, and IOCP on
Windows. The I/O thread has an instance of such an event queue. When a worker
thread encounters a blocked future, it registers the desired file descriptor that the future
is blocked on with the event queue of the I/O thread (note that this is done by the
worker thread, not the I/O thread itself). Once it has done this, the worker thread can
proceed with executing other work. Since registration of the file descriptor is done by
the worker thread, this means the I/O thread need not wake up. This achieves part 1.

The I/O thread waits on events provided to it by the event queue: if there are no events
to process, the I/O thread goes to sleep. When any events are ready, the event queue
wakes the I/O thread, at which point the I/O thread can then execute the callback
(algorithm 4) to make the previously blocked future (registered by a worker thread
in part 1) available for a worker thread to resume again. More concretely, when the
underlying resource a future was blocked on becomes ready, the I/O thread triggers the
corresponding waker 6 which then executes the callback. This achieves part 2.

By relying on the underlying operating system event queue, the I/O thread only ever
uses processor cycles whenever a blocked future becomes resumable, and needs its
corresponding callback executed. At all other times it is asleep, and the available pro-
cessing resources can instead be fully utilized by the worker threads to execute work.
In between the time a worker thread encounters a blocked future and the future be-
comes resumable, it performs useful work, thus hiding the latency-incurring operation
of the blocked future.

6As described in section 2.3, the waker mechanism is used for signaling if futures are ready to make
progress. When the I/O thread, awoken by the event queue, detects that a future is ready to make
progress, its waker will be triggered (the waker will then execute the callback in algorithm 4). Typically,
Rust futures simply wrap other futures (that are then compiled into one large future, represented by a
state machine), so the responsibility of triggering a waker to signal that a given future is ready to make
progress can simply be delegated to the nested future (the outer future will block on the inner future, so
if the inner future can make progress then so can the outer future). A leaf future (a future that contains
no nested futures), however, has no nested future to pass this responsibility down to: instead, it registers
the resource it is blocked on with the I/O thread event queue (part 1).

Chapter 4

Implementation: Time is an Illusion

This chapter describes the technical details and experience of the prototype implemen-
tation of ProWS-R and its corresponding runtime. While the conceptual concepts of
ProWS-R described in chapter 3 suffice for a theoretical latency-hiding work-stealing
scheduler, naturally in practice additional considerations need to be taken. Presented
only with the high-level scheduler algorithms (algorithms 1, 4, and 6), questions re-
garding an efficient and idiomatic real-world implementation still remain. Concretely:

• How are work nodes represented, in a library-level work-stealing implementa-
tion (as opposed to a compiler based implementation such as in Cilk)?

• How are work nodes that represent latency-incurring operations represented, par-
ticularly in regards to facilitating the use of the Rust futures language feature?

• How is shared scheduler state managed and updated concurrently (thread safety),
without detrimental performance impacts?

• Where are work nodes and deques stored in memory? How is memory safety
ensured (e.g. blocked futures must not have their state and data freed before
resumption)?

• How does the scheduler implementation hook into the underlying operating sys-
tem event queue?

Presented in this chapter is a detailed description of how the proof of concept im-
plementation done as part of this project answers the above questions. Section 4.1
provides an architectural overview and section 4.2 explains how work nodes are repre-
sented. Section 4.3 outlines the specific contributions of the implementation. Specific
examples of implementation challenges are described in section 4.4.

4.1 Rayon-LH Architecture Overview
As the focus of this project is to present a proof of concept implementation of latency-
hiding work-stealing that integrates with the Rust language and its support for asyn-
chronous programming, the implementation is a fork (henceforth referred to as Rayon-

22

Chapter 4. Implementation: Time is an Illusion 23

LH) [50] of the widely used Rayon library [13, 2, 49]. Rayon is a library-level imple-
mentation of classic work-stealing for Rust programs. Since Rayon is a classic work-
stealing implementation, it does not account for latency-incurring operations: users are
explicitly warned not to schedule I/O or other latency incurring operations for risk of
causing worker threads to block and performance suffering [8]. The desire to mix both
compute heavy and I/O operations in a more general purpose Rayon style interface is
a common refrain by users [3, 44]. The goal of the Rayon-LH implementation is to
provide the ability for users to easily parallelize their programs that involve not just
compute bound operations, but operations that incur latency as well.

Building on top of Rayon allows Rayon-LH to take advantage of the existing infras-
tructure for classic work-stealing, and focus on extending the library with latency-
hiding capabilities. Here a brief overview of the entire architecture of the implementa-
tion is presented, with details on the differences with Rayon.

It perhaps is best to first take a step back and understand the concrete data structures
involved in Rayon-LH. Doing so will provide a general understanding of the layout of
the implementation, and the following sections can then describe the specific interac-
tions involved between the various components as they execute the ProWS-R schedul-
ing algorithm. The core components of Rayon-LH are broken down into the follow-
ing: the Registry (central thread pool), Deques (concurrent work-stealing deques),
StealableSets (stealable sets containing stealable deques), the Stealables construct
(abstracts over StealableSets and manages scheduler shared state), WorkerThreads
(worker threads in thread pool), and Jobs (represent work nodes). Additional minor
implementation details deemed not critical to understanding the implementation are
omitted. A diagram of the architecture can be found in figure 4.1.

Figure 4.1: Architecture overview (example with four WorkerThreads)

Chapter 4. Implementation: Time is an Illusion 24

The Registry

The life of the scheduler begins with the Registry struct 1: a single global Registry
instance 2 is created for a given program. The Registry can essentially be thought of
as a thread pool consisting of WorkerThread structs. It is responsible for creating the
WorkerThreads that will then execute the primary scheduling loop in algorithm 1.

Importantly, it also stores the deque bench and injector . The deque bench is a
concurrent sharded hash map (provided by the DashMap crate [32]) that stores Deques
that are not currently the active deque of a WorkerThread (the reasoning for this will
be explained in subsequent sections). The injector is a concurrent FIFO queue used
to inject Jobs from outside of the threadpool (the primary purpose of this queue is to
inject the root work node of a computation into the thread pool from the main thread
of the program).

After initializing P WorkerThreads for P logical cores (this will further be discussed in
the evaluation in chapter 5) that execute the main scheduling loop, the Registry waits
for WorkerThreads to indicate computation is fully complete (no more Jobs can be
found). The Registry is created on the program main thread, and will block and go to
sleep waiting for this completion indication from the WorkerThreads 3.

Deques

Deques are work-stealing double-ended queues that support the concurrent operations
described in section 3.1.3. A Deque contains nodes in the computational DAG repre-
senting work to be executed; in Rayon-LH nodes are implemented as Jobs (discussed
in section 4.2). Each Deque is assigned a unique index, so that it may be uniquely
referenced throughout the scheduler. The primary purpose of this index is to provide
quick constant time retrieval (as keys in a hash map) of deques from the Registry
deque bench and the Stealables mapping (discussed shortly). References (essentially
pointers in Rust) cannot be used, since this would lead to pointer invalidation (dan-
gling pointers) as the deque bench or Stealables mapping is updated (not to mention
likely incredible pain dealing with lifetimes from the Rust borrow checker, that tries to
prevent such programming practices). Apart from the unique index, the Deque struct
is just a simple wrapper around the work-stealing deque implementation provided by
the Crossbeam crate [12].

A key thing to note though, is that the Crossbeam deque implementation actually pro-
vides two handles to the underlying deque: a Worker and a Stealer. A Worker handle
allows pushing and popping to the bottom of the deque, and only one such handle may
be created (since it is not thread-safe). A Stealer handle allows only stealing from

1Structs in Rust are similar to structures in C (a struct consists of only data fields). Rust adds the
ability to define functions that accept a given struct as a special parameter and use them with traditional
OOP-like method syntax, making them, at least on the surface, appear similar to traditional objects
found in languages with OOP features.

2Rayon and Rayon-LH actually support creating multiple Registry instances to represent multiple
thread pools, but this feature does not affect the implementation design much so will not be discussed.

3Rayon uses a thread sleep/notification mechanism based on atomic latches and counters, an
overview can be found in [14].

Chapter 4. Implementation: Time is an Illusion 25

the top of the deque, but multiple may be created (and is thread-safe). This has im-
plications for Rayon-LH, as this means multiple Stealers to the same deque can be
created and used by different worker threads in a thread-safe manner throughout the
program, but only a single Worker (giving access to the bottom of a deque) may be in
use by a single thread at a time (note that it can still be sent to other threads, just may
not be used concurrently).

As such, a Deque struct is more specifically a wrapper around a Worker: only a single
thread may access and use a Deque struct at a time 4. Rayon-LH takes very special
care to achieve this: by relying on Rust’s ownership system (destructive moves) and
never creating references to a Deque or anything within it.

StealableSets

StealableSets, as the name suggests, are used to represent stealable sets in ProWS-
R, and support the operations described in section 3.1.3. Instead of storing Deques,
however, StealableSets only store the unique IDs of Deques (Deques are stored in the
Registry deque bench; StealableSets only need to keep track of which deques can be
found in a given deque set). Although it may seem trivial to implement a set of stealable
deques by simply storing them in a set, the chooseRandom operation unfortunately
precludes such a simple approach: sets typically do not support constant time retrieval
of a random item 5. To solve this, Rayon-LH uses a resizable array containing Deque
IDs and a hash map of Deque IDs to their index in the array. When a random deque
ID is requested, a random Deque ID in the array is selected and returned (constant
time operation). The hash map is required for a constant time remove operation: the
index of the desired deque ID to be removed from the set is looked up in the hash map,
the Deque ID in the array at that index overwritten with the Deque ID at the end of
the array, the array truncated by one, and the hash map indices updated/removed. All
operations are guarded by a lock to support concurrent operation.

The Stealables Struct

The Stealables struct is used to abstract over the P stealable sets, one for each Work-
erThread struct. A single Stealables struct is created during Registry creation, and is
kept alive in the system by having each WorkerThread hold an atomically reference-
counted smart-pointer to it. The primary purpose of the Stealables struct is the Steal-
ables mapping (the deque stealers field): this is a concurrent sharded hash map of
Deque IDs to the Deque state, the worker thread whose stealable set they can be found

4Those more experienced with Rust may point out that the Send and Sync traits should address these
issues: unfortunately since Workers are Send but not Sync, there are many places that the compiler will
not allow Deque structs to be used, as it falsely presumes Deques will want to be used concurrently.
Since Rayon-LH takes care to only ever use Deques in a non-concurrent manner (by only passing around
ownership, and never creating references), an unsafe impl Sync is provided for Deques to resolve this.

5Many implementations indeed support iteration over the items in a set, and the reader may wonder
why Rayon-LH can not simply iterate a random number of times to retrieve a randomly selected item.
Unfortunately, since stealable sets may potentially contain a large number of deques (every time a
suspended future is countered its deque is added to a stealable set), this would require a O(n) iteration
to get a random item from the set.

Chapter 4. Implementation: Time is an Illusion 26

in (if any), and the Stealer of the corresponding Deque. This information cannot
simply be stored in the Registry deque bench as it does not include Deques in the Ac-
tive state (why not is explained shortly). This Stealables mapping contains absolutely
crucial shared scheduler state, and is used by WorkerThreads to coordinate and execute
the ProWS-R algorithm 6. Abstracting over the stealable sets is necessary, since mod-
ifications to stealable sets naturally modify scheduler state, so the Stealables mapping
must always be updated to reflect these changes.

WorkerThreads

WorkerThreads are perhaps the life and soul of Rayon-LH: they are the components
that execute the main ProWS-R scheduling loop and drive scheduler progress. Each
of the P WorkerThreads contains its respective active Deque, an atomically reference-
counted pointer to the Registry struct, and an atomically reference-counted pointer to
the Stealables struct. The P WorkerThreads run the scheduling loop, performing the
steal operation (algorithm 6) when necessary (with the addition of checking the global
Registry injector queue if cannot find work in both its local deque or by stealing),
interacting with the various components described above.

A key thing to note is that WorkerThreads take ownership of their active Deques, and
as such Deques in the Active state are not found in the Registry deque bench. Recall
that Deques wrap a Worker instance that must not be used concurrently: as mentioned,
this is achieved by relying on Rust’s ownership system and never creating references
to Deques. By not creating references and only passing around ownership of Deques,
the Rust compiler can ensure that only a single thread has access to a given Deque at
a time 7. Deques are either owned by a single WorkerThread (if they are in the Active
state), where they can only be accessed by that WorkerThread, or are stored in the
deque bench. Although all threads in the system have access to the deque bench, the
only time a Deque in the deque bench is used in a manner that would not be thread-
safe is when the I/O thread pushes a resumable future Job back on the bottom of its
suspended Deque when executing the callback in algorithm 4. However, this is only
performed by the single I/O thread, and hence does not pose a danger.

4.2 Jobs: Representing Work
While conceptually a work node in the computational DAG is simple to understand,
how is this actually implemented in practice? Very briefly, Cilk and its derivatives

6The Stealables mapping was a massive source of headaches stemming from concurrency bugs that
eventually corrupted scheduler state. This is because although the concurrent hash map itself is thread-
safe, a sequence of multiple operations is not guaranteed to be completed as an atomic unit. An atomic
sequence of operations can only be performed while a reference into the hash map is held. This means if
multiple operations to the Stealables mapping in one atomic unit is required (which ProWS-R frequently
does), very special care must be taken to not drop the reference into the mapping while the operations
are being performed. Figuring out which sequence of operations must be performed as an atomic unit
was also not trivial.

7An unsafe impl Sync is still required since Deques are used in situations where it would be
possible for them to be used concurrently, and the compiler is not aware of the intentions of the Rayon-
LH implementation. Consequently this manual opting-out of the compiler protections must be used.

Chapter 4. Implementation: Time is an Illusion 27

take an approach of using a combination of a compiler and runtime library to essen-
tially manually create closures 8 (since the C language itself provides no such feature)
that represent work nodes in the computational DAG stored on the respective stacks
of worker threads where they were created, and pointers to these closures are stored
in the deques that are subsequently popped and stolen to be dereferenced and the cor-
responding closure executed (using calls to setjmp and longjmp inserted by the Cilk
compiler) [27].

Rust has the fortunate advantage of supporting closures as a built-in language feature.
This means in Rayon-LH, the role that the Cilk compiler plays in creating closures
can more or less be performed by the Rust compiler itself, lending the language to
a library-level work-stealing implementation. While in Cilk closures represent work
nodes in the DAG, in Rayon-LH work nodes are represented by the Job trait 9 (shown
in figure 4.2): anything that implements the Job trait (i.e. a “Job”) can be used as a
node in a Deque.

trait Job {
unsafe fn execute(this: *const Self);

}

Figure 4.2: Job trait (simplified)

Similar to how in Cilk deques store pointers to closures, in Rayon Deques do not di-
rectly store types that implement the Job trait, but instead “fat pointers”: dynamically
dispatched Job types. This allows arbitrary concrete types that implement the Job trait
(note the this parameter in execute is a pointer type, rather than a concrete type) to
be stored in Deques as a single homogeneous fat pointer Job. This fat pointer type is the
JobRef struct (basically two pointers), shown in figure 4.3, and is what is stored in De-
ques. The pointer field is a pointer to the captured environment and other metadata,
and the execute fn pointer field is a function pointer to the concrete implementation
of the execute function of the concrete type that implements Job 10. WorkerThreads,
when executing the scheduling loop, push, pop, and steal these JobRef objects, and
execute the work node they represent by calling execute fn pointer and passing in
the pointer field.

StackJobs

The primary Job in Rayon is represented by the generic StackJob type, shown in figure
4.4: a thin wrapper around a Rust closure, a location in memory (the stack of the Work-
erThread) to deposit the final return value of the closure, and a corresponding latch (a
synchronization primitive). StackJobs, as the name implies, are stored on the stack

8In this context: functions with captured references to their enclosing stack frames. In Cilk this is
done by creating Cilk “activation frame” structures. In Rust, closures are basically compiler generated
structs that contain references or copies to the closure’s environment, and a method that executes the
closure’s function using this captured environment.

9Traits in Rust are similar to interfaces or type classes in other languages.
10Readers experienced with Rust may recognize this as a hand-rolled trait object. A hand-rolled

version using raw pointers is used to avoid lifetime quarrels with the Rust borrow checker (care is taken
to ensure safety).

Chapter 4. Implementation: Time is an Illusion 28

#[derive(Copy, Clone)]
pub struct JobRef {

pointer: *const (),
execute_fn_pointer: unsafe fn(*const ()),

}

Figure 4.3: JobRef type (simplified)

of the WorkerThread that created them. WorkerThreads create StackJobs and push
the corresponding JobRefs to their active Deques (unless the StackJob was created
on the program main thread, for example the root computation node, in which case the
JobRef is pushed on the global Registry injector queue). The execute fn pointer
for StackJobs basically just executes the wrapped closure and trips the latch.

pub struct StackJob<L, F, R>
where

L: Latch + Sync,
F: FnOnce(bool) -> R + Send,
R: Send,

{
latch: L,
func: F,
result: JobResult<R>,

}

Figure 4.4: StackJob type (simplified)

Care must be taken by the WorkerThread to not clobber the stack (since the stack
stores the closures environment) while a StackJob has not yet been executed: this
is achieved by the WorkerThread performing the scheduling loop looking for Jobs
to execute for as long as the StackJob latch has not yet been tripped, and whatever
WorkerThread that finally executes the StackJob tripping the latch to indicate to the
original WorkerThread that it is now safe to pop the stack frame the StackJob lives
on.

As StackJobs are generic (parametric polymorphism resolved at compile-time), a
unique StackJob type is created for every unique function pointer or compiler-generated
closure it wraps. This is where the dynamically dispatched nature of the JobRef struct
truly shines: an infinite number of concrete StackJob or any other Job type that can
provide an execute function through the Job trait can be represented using a single
uniform JobRef type.

FutureJobs

The StackJob type is intended for regular closures: functions that can not be sus-
pended/resumed and do not incur latency. To support asynchronous operations that
represent future nodes in the computational DAG, Rayon-LH uses the generic FutureJob
type shown in figure 4.5. A FutureJob is similar to a StackJob, but wraps a Rust Fu-

Chapter 4. Implementation: Time is an Illusion 29

ture (described in section 2.3) instead of a regular Rust closure. Note that a FutureJob
is not a Rust future itself, it merely wraps such a future.

pub struct FutureJob<L, F>
where

L: Latch + Sync,
F: Future,

{
latch: L,
future: F,
result: JobResult<F::Output>,
waker: FutureJobWaker,

}

Figure 4.5: FutureJob type (simplified)

In order to provide the guarantee that a Rust future stay pinned in memory once it has
first been polled, the API (figure 4.6) to create, spawn, and await a FutureJob relies on
the Rust Pin type, as described in section 2.3. In short, the Rust type system statically
guarantees that once a FutureJob is spawned, it is not moved from its original memory
location.

let future_job = rayon::FutureJob::new(network_request());
pin_mut!(future_job); // pin future_job on stack
let future_job_handle = future_job.spawn();
// ... execute some code in parallel while
// ... future_job hides its latency
let result = future_job_handle.await_future_job();
// future_job guaranteed to not have moved in memory
// by the time future_job is awaited

Figure 4.6: FutureJob API, demonstrating pinning on the stack

The primary difference to a StackJob is the addition of a FutureJobWaker, and
what happens in execute fn pointer. When executing execute fn pointer, a
FutureJob creates a FutureJobWaker and polls its wrapped future with it. If the fu-
ture returns Poll::Ready indicating that the future is complete, the final return value
is simply deposited and the latch is tripped, just like a StackJob. Otherwise, if the
future returns Poll::Pending indicating the future is blocked, lines 11 - 16 of the
scheduling loop are performed: the active Deque of the executing WorkerThread is
suspended, and the resource the future is blocked on is registered with the I/O thread
event queue (section 3.2.2). The I/O thread functionality is provided by the async-io
crate [11], which abstracts over varying operating system event queues. The previously
active Deque is put back in the Registry deque bench so that it may have somewhere
to live in memory.

At some point in the future when the I/O thread event queue detects the resource is
ready to be used, the I/O thread is awoken and triggers the FutureJobWaker. The

Chapter 4. Implementation: Time is an Illusion 30

FutureJobWaker executes 11 the callback procedure of algorithm 4: the JobRef rep-
resenting the previously blocked FutureJob is pushed back on the bottom of the
suspended Deque, the Deque is transitioned to the Resumable state, and potentially
added to a StealableSet for a WorkerThread to execute again. This harmonization of
FutureJobs, the I/O thread, and the FutureJobWaker are what provide the latency-
hiding capabilities of ProWS-R.

4.3 Differences between Rayon and Rayon-LH
Although Rayon-LH builds upon much of the existing Rayon infrastructure, much
of it needed to be heavily modified and new infrastructure added to support ProWS-
R. While the overarching approach of representing work nodes as JobRefs stored in
Deques that are worked on by WorkerThreads is the same, every single component
outlined in section 4.1 had to be overhauled or added (the Stealables and StealableSets
components are new additions).

A key contribution of Rayon-LH is also the FutureJob: this component is what pro-
vides the ability to integrate Rust futures with ProWS-R in a seamless manner. The
FutureJob neatly takes advantage of the Rust waker machinery to efficiently provide
latency-hiding work-stealing capabilities. The original Rayon scheduling algorithm
and steal procedures were completely gutted and replaced by the respective ProWS-R
procedures. At the same time, ProWS-R provides almost a sort of “backwards com-
patibility” with the tried and true classic work-stealing algorithm, in the sense that if
latency-incurring operations (i.e. FutureJobs) are not used, the scheduling algorithm
is the exact same (described in section 3.1.4) and also provides the exact same perfor-
mance (discussed in chapter 5).

Arguably, a weakness of Rayon-LH is that it requires far more shared state to perform
its scheduling capabilities than does Rayon. All WorkerThreads make frequent use
of the Stealables mapping (section 4.1), which means extreme care needs to be taken
to ensure concurrency correctness. Rayon, while it does also have its share of hair-
raising concurrency traps for things like thread sleeping and notification (that Rayon-
LH also inherits), has no need for WorkerThreads to interact with a shared Stealables-
like component.

4.4 Pitfalls
A complete memoir of the migraine-inducing false assumptions and traps encountered
during the implementation of Rayon-LH could likely fill an entire tome. Here is a short
non-exhaustive list:

• While supporting repeatedly awoken futures (as described in section 3.1.4) in
ProWS-R is trivial, not recognizing this requirement can lead to dire outcomes:

11Note it is the single I/O thread that is executing the callback procedure, not a worker thread. This
takes care of the issue that the Worker handle to a deque is not safe for concurrent use, discussed in
section 4.1.

Chapter 4. Implementation: Time is an Illusion 31

early versions of the implementation incorrectly assumed that when a callback
is executed, the suspended deque associated with that callback will always be
Suspended. This led to all sorts of extremely subtle and difficult to diagnose
issues where scheduler state eventually became corrupted, since nodes would
be wrongly pushed to deques more than once, possibly leading to the program
never terminating or other consequent problems.

• The FutureJobWaker must ensure that it begins execution of the callback pro-
cedure in algorithm 4 only after the deque suspension process on line 29 is fully
complete. Without a synchronization primitive like a latch, it could be the case
that the callback executes too soon and insidiously corrupts state.

• The FutureJobWaker must explicitly notify a WorkerThread that work is avail-
able again after executing the callback procedure where it pushes the previously
suspended FutureJob back on the Deque. Otherwise it is possible all Work-
erThreads are asleep, yet there is work to be executed, and the program never
terminates.

• Unlike in the pseudocode of algorithm 6, in practice the steal procedure retries
only a fixed number of times before the WorkerThread goes to sleep (to avoid
futilely attempting to steal if there is no work available). Consequently, partic-
ularly if running on a machine with a large number of processors, it could be
the case that all awake WorkerThreads fail to randomly select the one victim
StealableSet (line 48) that has work available. Since no WorkerThread selects
this StealableSet, no WorkerThread finds any work, and all WorkerThreads go to
sleep. Again, there is work to be executed but no WorkerThreads awake to exe-
cute it, and the program never terminates. Rayon-LH deals with this by adding
a final brute-force linear scan of StealableSets, to search for a stealable Deque if
all previous random steal attempts failed.

• The general concept of fallible operations that must be retried. Due to the nature
of WorkerThreads running in parallel, it’s clearly possible that a WorkerThread
beats another WorkerThread to performing an operation. What is less clear is
how to deal with this in ProWS-R: a common approach taken in Rayon-LH is to
allow for operations to fail, but retry a fixed number 12 of times.

– An example of this is in the steal procedure: two WorkerThreads may ran-
domly select the same victim Deque in the Muggable state, but only one
will succeed in mugging it. The other WorkerThread must realize its de-
sired deque has disappeared before it got to it, take care not to mistakenly
corrupt state, and finally retry the steal procedure.

12In the current implementation these limits are arbitrarily set, likely a more rigorous analysis can be
performed to find a more suitable number.

Chapter 5

Evaluation: To Superlinear and
Beyond (Not Really... Just

Superlinear)

This chapter evaluates ProWS-R and Rayon-LH on the following: how effective the
latency-hiding capabilities are when latency is injected in section 5.2, the impact of
varying the level of compute vs I/O bound workloads in section 5.3, and the scheduler
overhead compared to classical work-stealing 5.4. The experimental setup is described
in section 5.1 and the limitations of the implementation are discussed in section 5.5. A
summary can be found in section 5.6, and all benchmark results and programs can be
found in [9].

5.1 Experimental Setup
Benchmarks were run on a Ubuntu 18.04.6 machine with 540 GB RAM and two Intel
Xeon Gold 6154 processors, each with 18 physical 3-GHz cores, for a total of 36 phys-
ical cores. Hyperthreading is enabled. Benchmarks are compiled using rustc 1.57.0 in
the bench profile (full optimizations). Each data point is the average of ten runs.

5.2 Latency-Hiding Efficiency
The biggest question the evaluation seeks to answer is, how efficient are the latency-
hiding capabilities? In other words, given a computational DAG, what is the impact
on program execution time when nodes in the DAG incur latency. To answer this, the
implementation is evaluated on a benchmark that runs a distributed map and reduce
example with varying simulated network latencies, and the speedups measured. The
same benchmark is used in [37] and [45], and is used here with the same parameters
as both to allow for comparison.

What we want to see in a benchmark that evaluates latency-hiding efficiency for ProWS-
R and Rayon-LH, is how close the speedups given by the scheduler are to an “ideal”

32

Chapter 5. Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)33

latency-hiding scheduler. Like in [45], the Ideal scheduler is defined as the scheduler
that never incurs latency on an operation. This is a bit of an unfair comparison for the
Rayon-LH implementation, as this Ideal scheduler is no longer latency-hiding as much
as it is latency-eliminating (all latency, even on the critical path, is removed), while in
reality a truly Ideal latency-hiding scheduler still suffers from the latency on the critical
path, but manages to hide all other latency perfectly. But as work-stealing is intended
for workloads that are work (T1) dominated as opposed to span (T∞) dominated, this
detail does not have much of an impact on the benchmark results.

The distributed map and reduce program is a classic divide-and-conquer operation that
maps a function f (x) over a large set of n values, and reduces the resulting values with
an associative binary operation g(x,y). An identity function id is used for cases where
a reduction with only one operand must be performed. To simulate a real-world use
case, each of the n values is assumed to be stored on a remote server and must be
requested, which incurs latency.

In the benchmark implementation (called MapReduceFib), f (x) is simply the naive
recursive parallel (with a serial base case) Fibonacci algorithm and g(x,y) sums the
results modulo a constant. The following parameters were used: there are n = 5000
“remote” connections, the n values “retrieved” over the network is the number 30 (to
compute the 30th Fibonacci number), the serial base case is 25, and the modulo divi-
sor is 1,000,000,000. In the MapReduceFib benchmark, the ProWS-R latency-hiding
scheduler uses futures that suspend for a given duration to hide latencies whereas the
classic scheduler simply uses a blocking sleep call (baseline is the classic scheduler
with a single worker thread). The Ideal scheduler simply skips any simulated latency
and immediately begins computation, completely eliminating all latency in the DAG.

Figure 5.1: MapReduceFib benchmark results with latency value of 1 milliseconds

The MapReduceFib benchmark speedup results of ProWS-R and the classic scheduler,
compared to the baseline, are shown in figures 5.1, 5.2, and 5.2. Simulated latencies of
1, 50, and 100 milliseconds were used. As can be seen, ProWS-R indeed manages to
hide latency and achieve speedups very close to Ideal. Naturally, the benefit of latency-

Chapter 5. Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)34

hiding when the latency is very short (1 millisecond) is minimal compared to when the
latency is significant (50, 100 milliseconds). With a latency of 1 millisecond, the total
amount of latency in the computation is not considerable when compared to the total
amount of computational work T1. Consequently the difference in speedups are not as
drastic. When the latencies are increased to 50 and 100 milliseconds, the benefits of
latency-hiding truly start to show. ProWS-R exhibits superlinear 1 speedups: reaching
up to 297× and 517× for 50 and 100 milliseconds, respectively. This is compared to
35× for both latencies using the classic scheduler.

Figure 5.2: MapReduceFib benchmark results with latency value of 50 milliseconds

Figure 5.3: MapReduceFib benchmark results with latency value of 100 milliseconds

1Superlinear speedup is defined as a speedup greater than P when running on P processors [43]. This
appears to contradict the work law defined in section 2.2.3, but is explained by the fact that the classic
scheduler incurs all latency costs in T1, while the latency-hiding scheduler incurs only the latency cost
in the critical path T∞.

Chapter 5. Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)35

ProWS-R displaying larger speedups as latency values increase confirms that the sched-
uler is indeed effective at hiding latency: while the classic scheduler must incur the
latency penalty on each latency-incurring edge, ProWS-R needs only incur such a cost
once, for the longest latency-incurring on the critical path. Thus, the more latency in a
DAG, the more the classic scheduler suffers, while ProWS-R is unaffected (except for
the cost of the critical path of course).

Another interesting thing to note is the effect of hyperthreading 2. When the number of
worker threads starts to exceed the number of physical cores, two worker threads may
be running on the same physical core, but in separate hyperthreads. Once this bound-
ary is crossed, speedups of the latency-hiding schedulers (both ProWS-R and Ideal)
begin to degrade. This is presumably due to worker threads on the same physical core
contending for the same physical processor execution units, as by hiding latency they
can focus instead on computational work in the DAG 3. The classic scheduler with a
latency of 1 millisecond suffers the same fate. With longer latency values, the classic
scheduler sees a perfect linear speedup regardless of using more worker threads than
physical cores, since when incurring latency the worker threads become I/O bound
(primarily waiting around doing nothing), and the hyperthreads are no longer in con-
tention. When using latency-hiding schedulers, or for that matter any work-stealing
implementation running primarily compute-bound workloads, setting the number of
worker threads P to be the number of physical processors appears to be the best choice
to maximize performance.

5.3 Compute vs I/O Bound Workloads
This section seeks to answer the question of varying the ratio of compute vs I/O bound
operations in the workload. Whereas section 5.2 is concerned about the effects of
injecting latency by keeping T1 constant and only varying the amount of latency l, this
section is interested in what happens when the sum of total work and latency l is held
constant but the individual parameters adjusted. In other words, how does ProWS-R
perform under workloads of varying natures?

This parameter sweep benchmark runs the naive recursive parallel Fibonacci computa-
tion with a serial base case of zero, with the number of worker threads set to the number
of physical cores. When the computation hits the Fibonacci base case (the leaf nodes
in the computation DAG), it incurs latency by either performing a blocking sleep to
simulate a compute bound operation (a compute bound operation must take up proces-
sor cycles, there is no hiding possible) or uses a future that suspends for the equivalent
duration (but this latency can be hidden). The percentage of I/O bound nodes in the
workload dictate whether the blocking sleep call or future will be used.

A plot showing the parameter sweep benchmark results is shown in figure 5.4 4. As
expected, the greatest speedups come from when the workload consists of a high per-

2Hyperthreading is Intel’s proprietary implementation of hardware-level threading.
3An alternative hypothesis is that the latencies allow for the threads to be rescheduled onto other

physical cores, potentially having to suffer costs like cross socket communications.
4Please note matplotlib has limited capabilities for 3D plots, hence the awkward rendering.

Chapter 5. Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)36

Figure 5.4: Parameter sweep benchmark results

centage of I/O bound nodes. Speedup is also increased when longer latency values
are used, but not to the extent that the I/O bound node percentage does. Essentially,
when there is an abundance of latency-hiding operations, the classic scheduler suf-
fers tremendously as it must bears the cost of each individual latency penalty, while
ProWS-R can efficiently hide this.

From this it is clear that the workloads that will benefit most from latency-hiding are
ones with a high percentage of latency-incurring operations, and compute-bound work-
loads benefit less. Fortunately, in all cases, even when the workload is purely compute-
bound, ProWS-R performs better or equal to classic work-stealing (a benchmark dedi-
cated to compute-bound comparison is discussed in section 5.4).

5.4 Rayon-LH Scheduler Overhead
While latency-hiding capabilities are great, it would be less than ideal if this came at the
cost of sacrificing performance on regular compute-bound workloads. In this section
we are concerned with looking at whether Rayon-LH, using the ProWS-R schedul-
ing algorithm, introduces any performance regressions compared to Rayon, using the
classic scheduling algorithm. This benchmark runs the same example map and reduce
program as in section 5.2, but just with n = 200 and a latency duration of 0 (since we
are only comparing performance on compute-bound work). A value of 200 was chosen
for n simply to make benchmarking take less time. The results are still relevant, as a
value of 200 is still sufficient to provide enough work to the scheduler implementations
(the fastest run with 35 physical cores still took 0.438 seconds, with the slowest run on
1 core taking 16.179 seconds).

The results are shown in figure 5.5: both Rayon-LH and Rayon have the exact same
performance on pure compute-bound workloads. Perfect linear speedup is achieved all
the way until the number of physical cores is reached, until performance completely
flatlines. Performance flatlining is to be expected, as with a pure compute-bound work-
load each worker thread is making full use of the processor execution units, and hyper-

Chapter 5. Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)37

Figure 5.5: Scheduler overhead plot

threading provides no benefit.

As shown in the plot, ProWS-R suffers no performance regression: this is by design,
as ProWS-R executes the exact same work-stealing algorithm as classic work-stealing
when no latency-incurring operations are encountered (as described in section 3.1.4).
Rayon-LH, using ProWS-R, providing this “backwards compatibility” in terms of ex-
ecution time, means that it can be used in any situation that Rayon using classic work-
stealing is used. There is no need to decide between which scheduler to use depending
on what kind of workload one may be running, Rayon-LH always provides greater
than or equal speedups.

5.5 Limitations
One major limitation of Rayon-LH must be acknowledged, which is how it deals with
encountering suspended futures and re-entering the scheduling loop. In the current
implementation, every time a blocked future is encountered and the scheduling loop re-
entered, a new stack frame is allocated when calling the scheduling loop function. This
is not ideal, since when a large number of suspended futures are quickly encountered,
a new stack frame is allocated for each one of them, easily leading to a stack overflow.
At the moment this is dealt with by just increasing the thread stack size, but a more
robust solution like finding a way to inline the call to the scheduling loop would be
preferable.

Another limitation is that in its current form, the only futures that can be used with
Rayon-LH must come from the async-io crate [11]. This is because Rust does not pro-
vide a way to abstract asynchronous runtimes, meaning future libraries and runtimes
must be tightly coupled. As such this is not as much of a limitation of Rayon-LH as
it is of the Rust language itself. Unfortunately, this is a more fundamental shortcom-

Chapter 5. Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)38

ing of the Rust language that without major ecosystem changes will likely not see a
solution [10].

Additionally, worker threads in the current implementation are not pinned to physical
cores, and there could potentially be some performance improvements if that were
instead the case. By pinning, worker threads could enjoy reassurance that they would
always run on the same processor, benefiting from increased memory locality. Pinning
to cores was attempted during an earlier implementation of Rayon-LH, but a robust
method of pinning worker threads to physical cores was not achieved in the scope of
the project (the implementation tried pinning worker threads to separate logical cores
but potentially used the same physical core, to appalling effect on performance).

5.6 Evaluation Summary
The results are encouraging: ProWS-R and Rayon-LH always provide greater than
or equal execution time speedups. Whether one’s workload is primarily I/O or com-
pute bound, it does not matter, as ProWS-R and Rayon-LH can be used regardless of
workload type (section 5.3). Rayon-LH can essentially be used as a sort of drop-in
replacement for Rayon, significantly improving performance of workloads containing
latency-incurring operations (section 5.2) without penalizing regular compute-bound
workloads (section 5.4).

Although not without its limitations, ProWS-R and Rayon-LH offer a very attractive
improvement on the current status quo of work-stealing implementations. Programs
that were previously limited to using Rayon or other such classic work-stealing imple-
mentations, and necessitated workarounds like spawning additional operating system
threads to implement interacting with latency-incurring operations, can now be em-
powered to make much greater use of such operations without fear of performance
hits.

Chapter 6

Conclusion: Patience Is Not a Virtue

This project has shown that the prototype latency-hiding work-stealing implementation
has a lot of promise, and warrants further research into the area. Overall, the project
was a success - ProWS-R provided the theoretical foundations to build a latency-hiding
work-stealing scheduler, realized by the Rayon-LH runtime library.

The scheduling algorithm provided by ProWS-R neatly adapts to Rust futures while
keeping the performance characteristics of classic work-stealing when executing reg-
ular jobs. The Rayon-LH implementation demonstrates a significant practical perfor-
mance improvement over the classic work-stealing implementation in Rayon. The
evaluations demonstrate that Rayon-LH provides greater than or equal performance to
classic work-stealing, meaning the scheduler provides essentially a superset of func-
tionality.

6.1 Lessons Learned: Concurrent Programming is Hard
Undoubtedly, the experience of implementing Rayon-LH was quite challenging. The
difficulties faced in this project largely stem from the inherent issue that concurrent
programming is simply hard to wrap one’s mind around. The intractable number of
thread interleavings and possible flows of execution make for a rather miserable pro-
gramming experience, if one does not take proactive caution and combative measures.
Even trickier phenomena like atomic operations and memory orderings only add to the
pain.

A stark consequence of the non-determinism of concurrent programming is that de-
bugging becomes even more complicated. Many heisengbugs 1 were encountered in
the process of the implementation, and other bugs only showed their face after many
thousands of program executions or when running into pathological input cases. To aid
buggy-implementation diagnosis, heavy use of the logging system that Rayon-LH in-
herits from Rayon and stress tests in the form of repeatedly running the benchmarks in
chapter 5 was made. While far from a panacea to the undying wish of the hardware to
spite the implementation running on it, the logger output was instrumental to piecing

1A bug that disappears after trying to study it, particularly by running it in a debugger.

39

Chapter 6. Conclusion: Patience Is Not a Virtue 40

together a narrative of why or why not the scheduler was performing certain opera-
tions and not others. Much like a detective investigating forensic evidence at a crime
scene, the interleaved lines of thread logger output provided many clues when debug-
ging Rayon-LH. Unfortunately, concurrent programming is far from “elementary, my
dear Watson”.

6.2 Future Work
This project has laid the groundwork for further research into latency-hiding work-
stealing schedulers. Throughout the design of ProWS-R and implementation of Rayon-
LH, many areas of further exploration were revealed. Specifically:

• A latency-hiding work-stealing algorithm even more tailored to Rust could be
considered. ProWS-R is largely based off of ProWS, which cannot make the
same assumptions as an algorithm specific to Rust can. For example, the entire
reason ProWS must store multiple deques in the system, is that nodes when sus-
pended are eagerly stored in deques. ProWS-R already breaks from this in that
suspended nodes are only lazily pushed back to their respective deques when
they are resumable again. A new algorithm could take this even further, and
perhaps a design where multiple deques are not even necessary due to the lazy
nature of dealing with suspended deques could be possible (such an approach
could greatly reduce shared state that is currently found in the Stealables con-
struct).

• A higher level abstraction over spawning FutureJobs. The FutureJob con-
struct is a rather low level primitive, that while makes it trivial to inject latency-
incurring operations, is not the most flexible or user-friendly interface. Just like
how Rayon provides a parallel iterator library over the standard work-stealing
join primitive, a similar higher level interface for latency-incurring operations
can be imagined. Perhaps an interface to deal with streams (asynchronous itera-
tors) can be investigated.

• More interesting uses of parallelism using futures could be demonstrated. Fu-
tures provide a greater range of parallelism possibilities than classic work-stealing
with nested parallelism can [48], and with the latency-hiding capabilities that
this project provides perhaps novel use cases can be experimented with. Parallel
pipelines, for example, are one such idea [7].

Bibliography

[1] Advanced HPC Threading: Intel® oneAPI Threading Building Blocks.
https://www.intel.com/content/www/us/en/developer/tools/oneapi/
onetbb.html.

[2] Baby Steps. https://smallcultfollowing.com/babysteps/blog/2015/
12/18/rayon-data-parallelism-in-rust/.

[3] Does ‘rayon::spawn‘ block until a thread is available? · Issue #522 · rayon-
rs/rayon. https://github.com/rayon-rs/rayon/issues/522.

[4] Future in std::future - Rust. https://doc.rust-lang.org/std/future/
trait.Future.html.

[5] futures::future - Rust. https://docs.rs/futures/latest/futures/future/
index.html.

[6] join in futures::future - Rust. https://docs.rs/futures/latest/futures/
future/fn.join.html.

[7] Pipelining with futures | Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures.

[8] Rayon I/O operations warning. https://docs.rs/rayon/latest/rayon/fn.
join.html#warning-about-blocking-io.

[9] Rayon-LH Benchmarks. https://github.com/neilweidinger/
latency-hiding-rayon-benchmarks.

[10] Abstracting Runtimes. www.reddit.com/r/rust/comments/sjcf6r/sqlx_
proposal_remove_runtime_features_and/hve7pdp/, February 2022.

[11] async-io. https://github.com/smol-rs/async-io, April 2022. original-
date: 2020-06-28T20:16:29Z.

[12] Crossbeam. https://github.com/crossbeam-rs/crossbeam, April 2022.
original-date: 2015-05-13T18:10:54Z.

[13] Rayon. https://github.com/rayon-rs/rayon, April 2022. original-date:
2014-10-02T15:38:05Z.

[14] Rayon Thread Sleep/Notification Mechanism. https://github.com/
rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/

41

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
https://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
https://github.com/rayon-rs/rayon/issues/522
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://docs.rs/futures/latest/futures/future/index.html
https://docs.rs/futures/latest/futures/future/index.html
https://docs.rs/futures/latest/futures/future/fn.join.html
https://docs.rs/futures/latest/futures/future/fn.join.html
https://docs.rs/rayon/latest/rayon/fn.join.html#warning-about-blocking-io
https://docs.rs/rayon/latest/rayon/fn.join.html#warning-about-blocking-io
https://github.com/neilweidinger/latency-hiding-rayon-benchmarks
https://github.com/neilweidinger/latency-hiding-rayon-benchmarks
www.reddit.com/r/rust/comments/sjcf6r/sqlx_proposal_remove_runtime_features_and/hve7pdp/
www.reddit.com/r/rust/comments/sjcf6r/sqlx_proposal_remove_runtime_features_and/hve7pdp/
https://github.com/smol-rs/async-io
https://github.com/crossbeam-rs/crossbeam
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/rayon-core/src/sleep/README.md
https://github.com/rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/rayon-core/src/sleep/README.md
https://github.com/rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/rayon-core/src/sleep/README.md

Bibliography 42

rayon-core/src/sleep/README.md, April 2022. original-date: 2014-10-
02T15:38:05Z.

[15] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the tenth annual ACM
symposium on Parallel algorithms and architectures, SPAA ’98, pages 119–129,
New York, NY, USA, June 1998. Association for Computing Machinery.

[16] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime
system. In Proceedings of the fifth ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPOPP ’95, pages 207–216, New York, NY,
USA, August 1995. Association for Computing Machinery.

[17] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM, 46(5):720–748, September 1999.

[18] Robert D. (Robert David) Blumofe. Executing multithreaded programs effi-
ciently. Thesis, Massachusetts Institute of Technology, 1995. Accepted: 2005-
08-17T23:21:41Z.

[19] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commu-
nications of the ACM, 54(5):67–77, May 2011.

[20] Randal E. Bryant and David R. O’Hallaron. Computer systems: a programmer’s
perspective. Pearson, Boston, third edition edition, 2016.

[21] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-Java: the
new adventures of old X10. In Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java, PPPJ ’11, pages 51–61, New
York, NY, USA, August 2011. Association for Computing Machinery.

[22] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. ACM SIGPLAN No-
tices, 40(10):519–538, October 2005.

[23] Melvin E. Conway. A multiprocessor system design. In Proceedings of the
November 12-14, 1963, fall joint computer conference, AFIPS ’63 (Fall), pages
139–146, New York, NY, USA, November 1963. Association for Computing Ma-
chinery.

[24] Thomas H. Cormen, editor. Introduction to algorithms. MIT Press, Cambridge,
Mass, 3rd ed edition, 2009. OCLC: ocn311310321.

[25] Mache Creeger. Multicore CPUs for the Masses: Will increased CPU bandwidth
translate into usable desktop performance? Queue, 3(7):64–ff, September 2005.

[26] Daniel Etiemble. 45-year CPU evolution: one law and two equations.
arXiv:1803.00254 [cs], March 2018. arXiv: 1803.00254.

[27] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN

https://github.com/rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/rayon-core/src/sleep/README.md
https://github.com/rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/rayon-core/src/sleep/README.md
https://github.com/rayon-rs/rayon/blob/1c5277f2b68a79a6746969ce0b1a7a211f340d54/rayon-core/src/sleep/README.md

Bibliography 43

1998 conference on Programming language design and implementation, PLDI
’98, pages 212–223, New York, NY, USA, May 1998. Association for Computing
Machinery.

[28] Robert H. Halstead. Implementation of multilisp: Lisp on a multiprocessor. In
Proceedings of the 1984 ACM Symposium on LISP and functional programming,
LFP ’84, pages 9–17, New York, NY, USA, August 1984. Association for Com-
puting Machinery.

[29] Robert H. Halstead. MULTILISP: a language for concurrent symbolic computa-
tion. ACM Transactions on Programming Languages and Systems, 7(4):501–538,
October 1985.

[30] John L. Hennessy and David A. Patterson. A new golden age for computer archi-
tecture. Communications of the ACM, 62(2):48–60, January 2019.

[31] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan
Kaufmann, Amsterdam, revised first edition edition, 2012.

[32] Joel. DashMap. https://github.com/xacrimon/dashmap, April 2022.
original-date: 2019-12-06T21:48:39Z.

[33] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 confer-
ence on Java Grande, JAVA ’00, pages 36–43, New York, NY, USA, June 2000.
Association for Computing Machinery.

[34] E.A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006. Con-
ference Name: Computer.

[35] Raspberry Pi Ltd. Raspberry Pi Zero 2 W. https://www.raspberrypi.com/
products/raspberry-pi-zero-2-w/.

[36] Nicholas D. Matsakis and Felix S. Klock. The rust language. ACM SIGAda Ada
Letters, 34(3):103–104, October 2014.

[37] Stefan K. Muller and Umut A. Acar. Latency-Hiding Work Stealing: Scheduling
Interacting Parallel Computations with Work Stealing. In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’16, pages 71–82, New York, NY, USA, July 2016. Association for Computing
Machinery.

[38] Eric Niebler. Structured Concurrency. https://ericniebler.com/2020/11/
08/structured-concurrency/, November 2020.

[39] Linus Nyman and Mikael Laakso. Notes on the History of Fork and Join. IEEE
Annals of the History of Computing, 38(3):84–87, July 2016. Conference Name:
IEEE Annals of the History of Computing.

[40] Jeff Parkhurst, John Darringer, and Bill Grundmann. From Single Core to Multi-
Core: Preparing for a new exponential. In 2006 IEEE/ACM International Con-
ference on Computer Aided Design, pages 67–72, November 2006. ISSN: 1558-
2434.

https://github.com/xacrimon/dashmap
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://ericniebler.com/2020/11/08/structured-concurrency/
https://ericniebler.com/2020/11/08/structured-concurrency/

Bibliography 44

[41] David Patterson. The trouble with multi-core. IEEE Spectrum, 47(7):28–32, 53,
July 2010.

[42] David A. Patterson and John L. Hennessy. Computer Organization and Design:
The Hardware Software Interface. RISC-V edition. Elsevier, Cambridge, MA,
second edition edition, 2021.

[43] S. Ristov, R. Prodan, M. Gusev, and K. Skala. Superlinear speedup in HPC
systems: Why and when? 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS), 2016.

[44] rodyamirov. How can I mix rayon and tokio properly? www.reddit.com/
r/rust/comments/gwm84y/how_can_i_mix_rayon_and_tokio_properly/,
June 2020.

[45] Kyle Singer, Kunal Agrawal, and I-Ting Angelina Lee. Scheduling I/O Latency-
Hiding Futures in Task-Parallel Platforms. In Symposium on Algorithmic Prin-
ciples of Computer Systems (APOCS), Proceedings, pages 147–161. Society for
Industrial and Applied Mathematics, December 2019.

[46] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. Proactive work stealing for
futures. In Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming, PPoPP ’19, pages 257–271, New York, NY, USA, Febru-
ary 2019. Association for Computing Machinery.

[47] Nathaniel J. Smith. Notes on structured concurrency, or: Go state-
ment considered harmful — njs blog. https://vorpus.org/blog/
notes-on-structured-concurrency-or-go-statement-considered-harmful/
#what-is-a-go-statement-anyway.

[48] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper.
Beyond nested parallelism: tight bounds on work-stealing overheads for parallel
futures. In Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures - SPAA ’09, page 91, Calgary, AB, Canada, 2009.
ACM Press.

[49] Josh Stone. How Rust makes Rayon’s data parallelism mag-
ical. https://developers.redhat.com/blog/2021/04/30/
how-rust-makes-rayons-data-parallelism-magical, April 2021.

[50] Neil Weidinger. Rayon-LH. https://github.com/neilweidinger/rayon,
December 2021. original-date: 2021-12-22T16:30:00Z.

[51] Christopher S. Zakian, Timothy A. K. Zakian, Abhishek Kulkarni, Buddhika
Chamith, and Ryan R. Newton. Concurrent Cilk: Lazy Promotion from Tasks
to Threads in C/C++. In Xipeng Shen, Frank Mueller, and James Tuck, editors,
Languages and Compilers for Parallel Computing, pages 73–90, Cham, 2016.
Springer International Publishing.

www.reddit.com/r/rust/comments/gwm84y/how_can_i_mix_rayon_and_tokio_properly/
www.reddit.com/r/rust/comments/gwm84y/how_can_i_mix_rayon_and_tokio_properly/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/#what-is-a-go-statement-anyway
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/#what-is-a-go-statement-anyway
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/#what-is-a-go-statement-anyway
https://developers.redhat.com/blog/2021/04/30/how-rust-makes-rayons-data-parallelism-magical
https://developers.redhat.com/blog/2021/04/30/how-rust-makes-rayons-data-parallelism-magical
https://github.com/neilweidinger/rayon

Appendix A

The Steal Procedure

Algorithm 5 Steal Procedure (w is the currently executing worker thread)
46: function STEAL

47: while true do
48: victim← chooseRandomVictim()
49: victimDeque← victim.stealableSet.chooseRandom()
50: if victimDeque.state = MUGGABLE then
51: return setToActive(victim,victimDeque)
52: end if
53: node← victimDeque.popTop()
54: if victimDeque.isEmpty() then
55: victim.stealableSet.remove(victimDeque)
56: rebalanceStealables(victim)
57: if victimDeque.state 6= SUSPENDED then
58: freeDeque(victimDeque)
59: end if
60: else if victimDeque.state = RESUMABLE then
61: victimDeque.state←MUGGABLE
62: end if
63: if node! = null then
64: if w.active = null then
65: w.active← createNewDeque()
66: end if
67: return node
68: end if
69: end while
70: end function

45

Appendix B

The Set to Active Deque Procedure

Algorithm 6 Set to Active Deque Procedure (w is the currently executing worker
thread)
71: function SETTOACTIVE(victim,victimDeque)
72: victim.stealableSet.remove(victimDeque)
73: w.stealableSet.add(victimDeque)
74: victimDeque.state = ACTIVE
75: rebalanceStealables(victim)
76: if w.active.isEmpty() then
77: freeDeque(w.active)
78: end if
79: w.active← victimDeque
80: return w.active.popBottom()
81: end function

46

	Introduction
	Motivation
	Goals and Contributions
	Report Outline

	Background: What Andy Giveth, Bill Taketh
	Modern Computer Architecture
	Rise of the Multicore Era
	Parallel Computing and its Difficulties

	Classic Work-Stealing
	Why Steal Work?
	DAG model of Parallel Computations
	Analysis of Parallel Computations
	Work-Stealing Schedulers
	Latency and DAGs

	Great Scott: Futures!
	Survey of Related Work

	Conceptual Latency-Hiding: To Wait Or Not to Wait?
	The ProWS-R Algorithm
	Parsimonious vs Proactive Work-Stealing
	Algorithm Overview
	Data Structures
	Scheduling Loop
	Performance Bounds

	Required Runtime Support for Latency-Hiding
	The I/O Thread
	Event Queues

	Implementation: Time is an Illusion
	Rayon-LH Architecture Overview
	Jobs: Representing Work
	Differences between Rayon and Rayon-LH
	Pitfalls

	Evaluation: To Superlinear and Beyond (Not Really... Just Superlinear)
	Experimental Setup
	Latency-Hiding Efficiency
	Compute vs I/O Bound Workloads
	Rayon-LH Scheduler Overhead
	Limitations
	Evaluation Summary

	Conclusion: Patience Is Not a Virtue
	Lessons Learned: Concurrent Programming is Hard
	Future Work

	Bibliography
	The Steal Procedure
	The Set to Active Deque Procedure

