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Abstract
We implement and evaluate an algorithm that computes solutions for a competitive
allocation of chores, intending to cover every distinct disutility profile. Competitive
allocations are appealing due to many reasons, including the celebrated envy-freeness
and Pareto-efficiency. However, computing competitive allocation for chores is difficult
as the solutions can be wildly multi-valued and discontinuous, corresponding to all
critical points of Nash Social Welfare on the Pareto frontier.

In this thesis, we adopt an agent-based approach and show that the algorithm proposed
by [10] works in practice. We also explore our implementation’s feasibility, surround-
ing four different themes, namely integrity and privacy, time complexity, incentive
compatibility, and the problem of having no solution or multiple solutions. We find
that our algorithm becomes very hard to compute after both the numbers of agents and
chores reach five, but the time complexity also depends on the value function. This
influence was not considered by the original paper at all, hence it is a discovery of our
own and we are able to give a detailed explanation for the result. We also find that
integrity and privacy can be maintained during the process, and the incentives for lying
can be partially restrained. We hope for more follow-up work on all these topics, and
especially on dealing with the no-solution and multi-solution problem, validating the
optimism appeared in our experiments.
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Chapter 1

Introduction: from competitive
equilibrium to fair allocation

“The lion bade the fox to make a division. Gathering the whole into one
great heap, the fox reserved but the smallest mite for himself. ‘Ah, friend,’
said the lion, ‘who taught you to make so equitable a division?’ ‘I wanted
no other lesson,’ replied the fox, ‘than the ass’ fate.’ ” (Aesop’s fables)

1.1 Motivation to implement a chore division algorithm

An equilibrium can be roughly described as a stable state where some balance of
variables is achieved and will remain still, unless an external force takes its presence.
Considering that when an allocation is fair, no agents will have incentives to dispute and
change their behaviour, we gain an intuition that fairness and equilibrium are inherently
linked concepts as depicted in [21].

Imagine a number of agents debating about how to distribute a set of divisible goods. If
every agent has already earned a certain income, it will be natural for them to wonder if
a price for each good can be found, together with a partition of goods, so that everyone
can afford their favourite bundle from that partition. If the answer is positive, we claim
that a competitive equilibrium exists and the prices are found as market-cleaning prices.

Those agents have good reasons to pursue such an allocation: a) no one will envy
others due to that they have bought their most preferred bundle (Envy-freeness); b)
it has been proven that no another allocation exists that can bring one agent strictly
more happiness and others at least the same amount of happiness (Pareto-efficiency or
Pareto-Optimality); c) since each agent’s income/budget can be settled through mutual
agreement beforehand and prices are shared by the public, this allocation can be argued
fair in its own right. It is also possible to embody a notion of egalitarianism further by
prescribing a equal budget to every agent, in which case the allocation rule is named
Competitive Equilibrium with Equal Income (CEEI), or the competitive rule, proposed
by Varian in 1974 [48], a pioneer in economic design using general equilibrium theory.

As early as in 1874, the economist Léon Walras [49] has set off to solve problems
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Chapter 1. Introduction: from competitive equilibrium to fair allocation 2

around the balance between supply and demand using a clearing price. Hence a
competitive equilibrium is known as Walrasian too. And the model we set up in the
second paragraph is often referred to as the Fisher market in literature, attributing to
the economist Irving Fisher. In 1954, its generalised model Arrow-Debreu created by
Kenneth Arrow and Gérard Debreu [1] marked a further step in the field with additional
mathematical maturity. Around the same time, political thinkers’ discussions about
fairness and equality inspired economists to incorporate various ideas into their models,
which we will discuss more about in the next chapter.

By Moulin’s description [38], the last few decades have witnessed a “renaissance” in
studying fair allocation’s rules. We can give its credit to the birth of Internet, as the
prevalent interactions between users online when they are divvying computing resources
and data have demanded computer scientists to pay attention to the methodology of fair
allocation as well as its normative properties. An example of the former is evaluating
different division rules’ computational complexities and an example of the latter is
the systematic quest for numerical evaluations of the trade-offs between normative
requirements. Thus the field expanded quickly in the last few decades and shifted much
attention to more specific structures.

However, the problem of chore allocation was largely ignored. Only in 1978, three
decades after Hugo Steinhaus became the first to formalise the divisible good allo-
cation or the cake-cutting problem [45], Gardner [26] introduced the frame of chore
division. Nevertheless, in real life, not only resources, commodities and wealth but also
duties, chores, and costs have to be allocated. The situation emerges from a myriad of
backgrounds ranging from housework division, divorce dissolution to greenhouse gas
emissions reduction [47], border settlement.

Motivated by the pervasive needs to allocate bads in reality, the desirable qualities of
competitive equilibria, and the great advancement in fair allocation made by algorithmic
game theorists but having not focused too much on chores, we carried out our project
to implement and evaluate the algorithm proposed by Branzei et al.[10] that computes
all competitive allocation of chores (all in the sense of covering all disutility profiles).
We believe in our work’s importance as the algorithm has a special status of being
the first and only known solution to the hard question of computing competitive chore
allocations. Amazingly, it achieves a polynomial running time when either the number
of items or agents is fixed.

We had three major objectives in mind:

1. to validate [10]’s algorithm design through our independent implementation and
benchmarking;

2. to analyse the algorithm’s feasibility not only regarding its time complexity but
also all kinds of practicality from a mechanism design’s perspective;

3. to contribute insight to competitive allocation of chores’ conceptual problems
such as different normative concepts’ understandings using the results of our
experiments.
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1.2 Summary of our contribution

By the end of this thesis, readers can see that we have met all our objectives. A summary
of our contribution is given here:

• We have implemented the algorithm with our own consideration by

– opting for an agent-based method and creating the class Agent;

– designing the class Graph as well as its two conversions to achieve goals of
different phases efficiently;

– reducing the number of graphs to use after phase I by removing two split
graphs in the two-agent sub-problem and many more in the general case;

– computing the candidate utility profile based on Dijkstra’s algorithm instead
of the suggested Bellman-ford algorithm;

– solving the maxflow problem in phase III with Dinic’s algorithm instead of
the suggested Edmond-Karp’s algorithm.

• Regarding the algorithm’s efficiency,

– we gave a new complexity analysis of our algorithm, and gave bounds for
the number of operations in each phase, which all differed from ones shown
in the original paper although the overall complexity remained unchanged;

– we deduced that improvement could mostly be made in phase I as in later
phases we had already used state-of-art algorithms from others;

– we showed that both the duality trick and graph removal were very helpful;

– we conducted systematic experiments exploring how different value func-
tions influence the time complexity and provided an explanation for the
phenomena;

– we found out that the problem size was the major factor to decide scalability,
with m and n both reaching five an upper bound for fast solutions.

• And when investigating the algorithm’s feasibility, we added our findings to the
understanding of the competitive rule for chores:

– values and budgets are treated very differently in the allocation but they
have a relation when two agents’ value vector differ by a scalar;

– in order to guarantee the algorithm’s integrity, publishing budgets and
allocation results is essential and sufficient;

– the secrecy of personal values can be maintained;

– the ILB property does not help much with incentive compatibility;lying to
reduce one’s own disutility is hard due to uncertainties and values’ privacy
whereas lying to manipulate the allocation is more achievable but could be
limited;
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– the probability of having no solutions seem quite low and it is probable to
get a solution among more than one allocations that minimises the total
disutility, the worst-off agent’s disutility and the Nash product.

1.3 Road map of the thesis

In Chapter 2, we take a glimpse over the vast landscape of fair allocation and discuss
the closely related work on competitive allocation with goods and chores. We end by
stressing the importance of building applications with previous work shown.

In Chapter 3, we give formalised definitions for our problem and introduce few theorems
that motivated the original design of the algorithm. The reader will learn the main
computational result as polynomial with some restraints, and how the algorithm achieves
the final goal after three phases.

We discuss the implementation details in Chapter 4. The description of every phase’s
procedures will be given, followed by a complete complexity analysis in the end. We
also include other choices from defining new classes to using Python.

In Chapter 5, we give a comprehensive evaluation about our algorithm’s feasibility
regarding its integrity and secrecy, time complexity and scalability, incentive compati-
bility and problem of having no solution or multiple solutions through a combination of
mixed approaches.

We end our thesis in Chapter 6. We summarise the lesson we have learned first, then
highlight our originality as well as the difficulties we faced. We finish by suggesting
various work that can be done in the future.



Chapter 2

Prior work in literature and practice

Our project targets a specific kind of allocation problems, namely the allocation of
divisible bads, with additive disutilities and no money transfer. To help readers grasp
the scope of fair allocation, as well as to locate where our problems fit inside the vast
landscape, we start by characterising the problem with its elements. Next, we present
previous state-of-art research in competitive allocation of goods, some of which has
motivated similar approaches for chores. Then we shows that our problem is harder
than its that of allocation of goods, and relate it to previous work in allocating bads
and the mixed. We will finish this chapter by highlighting the significance of algorithm
implementation, through a discussion over the limited applications existing.

2.1 Defining an allocation problem with its elements

Fair allocation is about dividing a set of objects among a set of agents. The dimension
of the problem expands rapidly as agents can be modeled in different ways, objects have
disparate intrinsic properties, and the criteria for reconciling the conflicts of people’s
wishes or “fairness” diverge. Therefore, we need to characterise a problem first with its
three elements: agents, objects, and criteria.

2.1.1 Agents

An agent may feel a desire, a distaste, or indifference towards an single item, which
can be captured as either a positive or negative number, or zero. But a cardinal utility
function is not necessary. In the cases where every agent holds the same attitude towards
all items, or in other words, the items are all goods or bads (chores), ordinal utility
functions can also be used. Certainly, goods and bads can be both involved, and one
item can be regarded positive by some but negative by others. Research on this kind of
allocation, i.e. allocating a mixed manna was initialised by Bogomolnaia et al. [8, 6]
few years ago and has been followed up quickly ever since [2, 13].

The simplest additive utility function is used in this project, indicating that an agent’s
total utility is equal to the sum of how much they feel for each part. Although it
may appear that the additive domain has already reflected the whole story that we

5
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accumulate happiness and unhappiness, the reality is always more sophisticated. Due
to the limitation of space, we will only mention other kinds of utility functions in the
Conclusion. Notice that we used the wording value functions to indicate how agents
express their felt disutility about every single item. This has to be separated from utility
functions.

Computing equilibria is in general hard [24]. This is why restricting a problem with
a simpler class of utility functions is usually necessary. Competitive allocations on
classic Arrow-Debreu domain has been proven losing many appealing properties that
only problems on degree-1 homogeneous utilities blissfully possess.

2.1.2 Objects

What to be allocated can be categorised as either indivisible (like room allocation, you
have to allocate a room as a whole) or divisible (either physically, if it can be divided
infinitely like money or land, or probabilistically, or by time-sharing); a good, bad
or mixed (if some agents desire it whereas others do not); homogeneous (if only the
amount of such object matters to an agent) or heterogeneous (if sub-parts of it matter
differently to an agent, like a cake with distinctive fruits on top); disposable (if it need
not be allocated) or non-disposable (if it has to be allocated to someone, which is often
the case for chores).

In our problem, a chore is deemed divisible, bad, homogeneous and non-disposable.

2.1.3 Fairness and other properties

An equal division of objects may be simple but inefficient. This is why contested notions
of fairness are created so as to justify the unequal allocation outcomes.

One of the most direct ideas Envy-Freeness proposed by Foley [25] has already been
mentioned in the introduction chapter. Propotionality is another, proposed by Steinhaus
[45], indicating that each agent should get a share at least as valuable as the average of
all things. We can also prioritise improving the worst’s condition through equalising
the value of the bundle each receives. This rule is called egalitarian equivalent (EE)
[41], often compared with the utilitarian approach which advocates enhancing the total
sum. We will come back to them at the final section of Chapter 5.

Besides the above ideas that focus on the ex post effect (hence sometimes known
as welfarist), we may also consider ex ante “fairness”. The competitive rule gives
individuals an equal right to trade, entailing fairness of access to resources [22]. Another
straightforward example is the lottery. When agents have the same probability to win the
final prize, even if the outcome is highly unequal, they can still consider the mechanism
fair.

All these notions are still not enough. Firstly, there are times the criteria cannot be
satisfied (particularly with indivisible items), in which cases relaxations and approxima-
tions by some coefficients are proposed. For example, proportionality can be relaxed
to maximin share fairness (MMS) [11]. Envy-freeness is extended to Envy-freeness
up to one good [35], Envy-freeness up to any good [12] and more. Secondly, there are
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other properties rather than “fairness” per se that we want to include. Pareto-Optimality
mentioned in Introduction ensures us a sense of efficiency. However, it often con-
flicts with fairnses [3, 46]. Solidarity between agents also sounds appealing. Moulin
and Thomson [39] used Resource Monotonicity (RM) and Population Monotonicity
(PM) to frame it. Finally, incentive compatibility is also a ubiquitous concept in litera-
ture, proposed by Hurwicz in 1972 [31] to describe a mechanism where every agent
will end up the best by being truthful. If one can remain the best by being honest
regardless of other’s behaviour, the mechanism is well-known as dominant-strategy
incentive-compatible (DSIC) or strategyproof [50]. Another mechanism is Bayesian-
Nash incentive-compatibility (BNIC) if everyone remains the best by staying truthful
when everyone else is also truthful. We will elaborate on incentives of lying in Chapter
5. Closely related to them is a fresh concept called Independence of Lost Bids (ILB)
created by [7, 5], analogous to Maskin Monotonicity in voting theories. If agent i was
not allocated to an object j at all, their marginal utility vi j can be perceived as a “lost
bid”. ILB states that changing i’s lost bid vi j will not impact the result, as long as the
bid remains lost. It might be a good news as an agent should not benefit from a small
misreport. [5] suggested that competitive allocation of chores satisfies ILB.

2.2 Competitive allocation of all goods

The competitive rule dominates the world of divisible goods allocation because of the
celebrated Eisenberg-Gale’s convex programming algorithm [23]. Their result, together
with [17, 44, 9], demonstrates that competitive allocations can be computed easily (as in
polynomial time) by maximising Nash social welfare, Nb(u) = ∏

n
i=1 |ui||bi| a weighted

product of utilities, if it is in the Fisher model with the domain being 1-homogeneous or
concave and continuous utilities. Other efficient algorithms were created for the Fisher
market later, adopting different techniques like primal-dual [15], network flow [40], and
auction-based [28]. The competitive rule’s answer is therefore single-valued, envy-free
and efficient. Moreover, maximising Nash social welfare is a good idea by itself since it
balances the utilitarian and egalitarian’s ideas. Separate studies have been conducted on
it [42, 12, 36], and particularly in indivisible cases.

However, computing competitive allocation in general is not guaranteed. With indi-
visible resources, a CEEI may not even exist [48]. For divisible goods, economists
originally dwelt in the large domain of Arrow-Debreu preferences, where the relation
between the Nash product of utilities and the Competitive rule is lost, and several
impossibility results were found [32, 29, 33]. In 1991, the complexity class PPAD (poly-
nomial parity arguments on directed graphs) was defined by [18], motivated largely by
the classification problem for Nash equilibria. Ingenuous construction and enumeration
were needed for those hard questions , and they partly inspired our algorithm’s design
[16, 43].
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2.3 Fair allocation with chores

2.3.1 Allocating only chores

Is a chore division problem analogous to its dual of allocating goods? For the egalitarian
rule, it turns out to be true. However, for the competitive rule, we should not expect
so as the two conditions expressed in inequalities have changed directions: one is that
the disutilities expressed by positive numbers need to be minimised rather than be
maximised; the other is that the budgets viewed as liabilities should be fulfilled and
potentially exceeded rather than work as a upper limit.

As a matter of fact, now the competitive rule selects all the critical points of the
Nash product among the efficient and feasible disutility profiles as opposed to only
the maximum for goods [8, 5]. The solution set is therefore wildly multi-valued,
disconnected and non-convex, making itself hard to compute and impossible for us
to select based on some continuous parameters such as agents’ disutilities. Properties
such as RM and PM vanish in the global scale. And determining whether an instance
of chore division with fixed earnings admits a competitive equilibrium is strongly NP-
hard even under the additive domain [14]. The paper also derived a simple sufficient
condition for the existence, and for them, it is shown that finding a competitive division
is still PPAD-hard. Similar result has been found in the exchange model setting, that
computing a CE is PPAD-hard [13]. Despite all these, we still do not want to abandon
the competitive rule as it is envy-free, Pareto-efficient and retains ILB discussed in the
previous section.

2.3.2 Competitive allocation of a mixed manna

The study of competitive allocations of both disposable goods and non-disposable
chores was started only five years ago but good results have been achieved. The paper
[8] finds that a mixed manna problem eventually becomes one of the two types we
have seen before: either goods overwhelm bads then the rule behaves just as if it
were allocating goods; or bads overwhelm goods, then the rule behaves just like it is
a chore-allocation problem. We may regard it as good news since solving a mixed
manna division problem will not be much harder than solving a chore division problem.
Continued from this finding, [27] has successfully extended the chore division algorithm
we implemented to this mixed case.

2.4 Existent applications for fair allocation

While it is true that more and more fruitful results have been achieved when considering
agents reporting in a low-dimensional domain, just as we indicated in the introduction,
a wide gap between research and practice still remains. We find much work still
highly theoretical, focusing only on the relations between different properties or the
hierarchy of computing hardness on the highest level. And among the few constructive
solutions proposed, usually only an abstract description is given. Without any concrete
implementation at hand, it is impossible for further evaluation and experimentation.
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Nevertheless, we have found few online applications:

• SPLIDDIT [30] http://www.spliddit.org

• Adjusted Winner https://pages.nyu.edu/adjustedwinner

• The Fair Division Calculator1 https://math.hmc.edu/su/fairdivision.

Among them, SPLIDDIT is the most versatile one, providing tools for situations from
rent split, indivisible goods division to egalitarian allocation of tasks. In their good
division settings, the users are asked to give values summing up to a thousand. This
unnatural requirement (as it is usually hard to express someone’s values in such an
accuracy level) also motivated us to explore how agents’ expressivity impacts on the
allocation. Readers shall see more discussion in Chapter five.

A couple of real-world problems have been confronted: allocating courses for students
in Wharton Business school [11], allocating unused classrooms in public schools to
charter schools in California [34], scheduling and communicating over a network [19],
allocation of public housing units [4].

However, not all of them are successfully tackled. Let us share Budish [11]’s remark
here: “something is funny in these mechanisms is that they all use exactly equal
incomes, even though we know that a CEEI need not exist. Each of these mechanisms
is making a variant of the following conceptual error: they treat fake money as real
money that directly enters the utility function. (Currency is fake if it has no value
outside the allocation problem at hand). This causes the mechanism to allocate incorrect
bundles i.e., not the bundle the student actually demands at the realized prices and
creates incentives to misreport [...] All other known mechanisms are either unfair ex
post or manipulable even in large markets, and most are both manipulable and unfair.”

This should serve as a good lesson that theory and practice is never antithetical to
each other. Without mistakes made in practice, we may not be able to realise the
flaws in our understanding. And with only practice, we are able to give more thorough
considerations thanks to a more constrained environment and gather empirical data, such
as a program’s actual running time, which tends to differ from a theoretical analysis.

To our best knowledge, no application of competitive allocation of chores is available
yet. Hence, we are highly motivated to carry out the work discussed in the following
chapters.

http://www.spliddit.org
https://pages.nyu.edu/adjustedwinner
https://math.hmc.edu/su/fairdivision


Chapter 3

Understanding the algorithm that
computes all competitive allocations of

chores

Hopefully our readers have been convinced of the value of our work after seeing a
lack of constructed solutions in the fair allocation field, and especially in allocation of
chores.

We are entering the main part of the thesis now. In this chapter, we give an overview of
the algorithm [10] that we implemented. For the sake of consistency and convenience,
we will mostly borrow their terminologies. Therefore, unless stated otherwise, the
definitions, theorems and lemmas in this chapter can be found in their paper.

We start by formalising the problem, so as to create a specific environment in which all
other definitions and theories can live. After that, we unveil quickly the main complexity
result. Then we take a closer look at the algorithm which can be divided into three
phases. We shall describe their separate goals and procedures as well as the motivations.

3.1 Preliminaries

Suppose that we have [n] = {1, · · · ,n}, a set of agents, and [m] = {1, · · · ,m}, a set of
chores to distribute.

Each agent’s additive values can be specified through a vector, where vi, j > 0 represents
the disutility agent i will get if she takes up one unit of that chore j. In the original
paper, all values are set to be negative, underlining the fact that chores are unwanted.
Without seeing the necessity of the over-emphasis, we switch every value’s sign as we
find more ease with manipulating positive numbers and believe that calculation can
become less mistake-prone. It is trivial for us to consider cases where some values are
zero. Since it means some agent is indifferent with respect to a specific chore, we can
simply allocate the entire chore to that agent. We will mostly use the word “value” in
the thesis to represent agent’s potential disutility generated by each chore, separating it
from “disutility”, interpreted as the actualised disutility about the allocation result.

10



Chapter 3. Understanding the algorithm that computes all competitive allocations of chores11

In the previous chapter we have seen that the competitive rule is defined as the competi-
tive equilibrium from equal incomes. Although this most egalitarian situation is highly
likeable, it is even more useful for us to implement the algorithm in a more general
setting: competitive equilibrium with fixed income shares (CEFI). Remark 2 of Theorem
1 in [8] has guaranteed us that our algorithm works. The potentially unequal budgets,
represented by the vector b ∈ Rn, can be viewed as agents’ dissimilar liabilities. For
example, if an agent works full time while another agent works half of the time, they
can be modeled with budgets 1 and 0.5 respectively. For the same reasons as for values,
we switched the sign of budgets from the original paper.

Definition 3.1 A chore division problem (v,b) is a pair of a matrix of values v ∈ Rn×m

and budgets b ∈ Rn.

We denote a bundle of chores as a vector x = (x1, · · · ,xm) ∈ Rm , where x j represents
the amount of chore j within. Since every chore is divisible, without loss of generality,
we assume that there is one unit of each chore. An allocation z = (zi)i∈[n] is a set of
bundles where agent i receives bundle zi and all the chores are distributed: ∑

n
i=1 zi, j = 1

for each j ∈ [m]. The disutility of agent i in an allocation z is ui(zi) = ∑
m
j=1 vi, j · zi, j.

The entire disutility profile at an allocation z is u(z) = (u1(z1), · · · ,un(zn)). Given a
vector p = (p1, · · · , pm) ∈ Rm, where p j represents the price of a chore j, the price of a
bundle x = (x1, · · · ,xm) of chores is given by p(x) = ∑

m
j=1 p j · x j.

Definition 3.2 (Competitive Allocation of Chores) An allocation z = (z1, · · · ,zm) for
a chore division problem (v,b) with strictly positive matrix of values and budgets is
competitive if and only if there exists a vector of prices p = (p1, · · · , pm) ∈ Rm such that:
for each i∈ [n]: Agent i’s bundle minimises its disutility among all bundles ui(zi)≤ ui(x)
while finishing its budget (fulfilled its duty): for each bundle x with p(x)≥ bi.

Beyond the above definition, economists have come up multiple ways to characterise
competitive allocations. We list the most useful ones below as they motivate the design
of different stages of the algorithm.

Theorem 3.1 (Proposition 46,[10]) Fix a matrix v and a vector of budgets b, consider
an allocation z of chores . The following statements are equivalent:

1. the allocation z is competitive

2. (Characterisation by inequalities) u(z) has strictly positive components and
zi, j > 0 implies

vi, jbi

ui(zi)
≥

vi′, jbi′

ui′(zi′)

for all i′ ∈ [n]

3. (Variational characterisation) y = z maximizes the weighted utilitarian welfare
W

τ(u,b)(y) = ∑i∈[n] τi(u,b) ·ui(yi) where τ(u,b) = (bi
ui
)i∈[n] over all feasible allo-

cations y.

4. (Analog of the Eisenberg-Gale characterisation) The utility profile u(z)

• belongs to the set on the Pareto frontier, and
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• is a critical point of the Nash product Nb on the feasible set of utilities U(v).

Pareto frontier is just the set of all utility profiles of the Pareto optimal allocations,
whose definition has been mentioned in the introduction. More formally speaking,

Definition 3.3 (Pareto optimality of chore allocations). An allocation z is Pareto
optimal if there is no other allocation z′ in which ui(zi′)≤ ui(zi) for every agent i ∈ [n]
and the inequality is strict for at least one agent.

3.2 Main result: polynomial time with fixed number of
agents or chores

For a given matrix of values v and a vector of budgets b, we denote the set of all
competitive allocations by CA(v,b), and the set of all competitive utility profiles by
CU(v,b), where we have CU(v,b) = {u(z) |z ∈CA(v,b)}.

In the following theorem we claim that polynomial running time can be achieved if n or
m is fixed.

Theorem 3.2 Suppose one of the parameters, the number of agents n or the number of
chores m, is fixed. Then for any tuple (v,b), where v ∈ Rn×m is a matrix of values and
b ∈ Rn a vector of budgets,

• the set CU(v,b) of all competitive utility profiles

• a set of pairs (z,p) such that the allocation z is competitive with the price vector
p and for any u ∈ CU(v,b) there is a pair such that u(z) = u

can be computed using O(m
n(n−1)

2 +3) operations if n is fixed, or O(n
m(m−1)

2 +3) , for fixed
m. This shows that the algorithm runs in strongly polynomial time.

3.3 Dividing the algorithm into three phases

Definition 3.4 ([10]) (Consumption graph) For a feasible allocation z, we associate
the consumption graph Gz with a non-oriented bipartite graph with parts [n] and [m],
where an agent i ∈ [n] and a chore j ∈ [m] are connected through an edge if and only if
the agent is allocated to some part of the chore: zi, j > 0.

These consumption graphs will play a huge part in our implementation as the inspirations
for this algorithm’s design are that a competitive utility profiles can be recovered if one
of its corresponding consumption graph is provided, and that a utility profile can be
checked for its competitiveness efficiently, plus the allocation can also be obtained as
a byproduct during the checking procedure. Let us now expand these ideas into more
details.
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3.3.1 Encoding the Pareto frontiers

In order to retrieve every utility profile, our generated consumption graph family has
to large enough. Naturally, the first candidate coming to mind will just be all bipartite
graphs consisting of [n] agents and [m] chores. It serves the purpose evidently but an
exponential running time is also unavoidable (there will be 2mn graphs in total). The
goal of this phase is to find a smaller set of graphs to save the computational cost.

Definition 3.5 (Rich family of graphs). Consider a chore division instance (v, b). A
family of bipartite graphs G is rich if for any competitive utility profile u ∈ CU(v,b)
there is a competitive allocation z with u(z) = u such that the consumption graph Gz
belongs to the family G .

Recall the fourth item of Theorem 3.1: being on the Pareto frontier is one necessary
condition for a utility profile to be competitive. In other words, if we can encode the
Pareto frontier in some way, we have a chance to succeed in finding a smaller but rich
family of graphs.

Luckily enough, there is a bijection between faces of the Pareto frontier and the family
of Maximal Weighted Welfare graphs, stated as Lemma 17 in [10]. Moreover, they can
be computed in polynomial time with the regard to the number of agents. For those
details, readers have to wait til the next chapter.

Definition 3.6 (Maximal Weighted Welfare Graph). Let τ ∈ Rn
>0 be a vector of weights.

Consider the ([n], [m])-bipartite graph such that agent i ∈ [n] and chore j ∈ [m] are
linked if τi · |vi, j| ≤ τi′ · |vi′, j| for each agent i′ ∈ [n]. It is defined as a Maximal Weighted
Welfare (MWW) graph and we will denote it by Gτ = Gτ(v)

After noticing that the canonical bijection between bipartite graphs on ([n], [m]) and
([m], [n]) and that we have no need to distinguish them, the authors of [10] have proposed
an ingenuous trick: we can choose between computing the super set G(vT ) and the
super set G(v) depends on which runs faster. This is very important as now we are able
to extend the algorithm to dual cases where the number of chores are small. We will
come back to this “duality trick” later.

3.3.2 Calculating the utility profile for candidate graphs

Let us now recall the second item of Theorem 3.1. As it suggests that whenever an
agent i is allocated the chore j, the inequality

vi, jbi

ui
≥

vi′, jbi′

ui′

holds for all i′ ∈ [n], we can derive a relation between agents (i, i′) who share the same
chore:

vi, jbi

ui
=

vi′, jbi′

ui′

by simply applying the inequalities twice.

Since we are equipped with consumption graphs now, it is a very good news to us as
the equation can be extended along a path of all connected agents. In addition, inside
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the connected component of i, consider a path

P = (i1, j1, i2, j2, ..., iL, jL, iL+1 = i′),

where L≥ 1. We define the influence of the agent i′ on the agent i as a product of values’
ratios along the path:

πi,i′ =
L

∏
k=1

|vik, jk |
|vik+1, jk |

Proposition 32 of the original paper [10] proved that utility profiles can be recovered
using the mentioned relation and influences:

Theorem 3.3 Fix a division problem (v,b) and a graph G. We use Ni to represent all
the agents inside the connected component of the agent i in the graph G. And ui is the
utility profile for the equal allocation where each agent gets allocated to 1/n j share of
the chore j where n j is just the total number of agents it is connected to, or its degree in
the graph theory’s sense. If there exists a competitive allocation z with the consumption
graph Gz = G, the following formula holds for u = u(z)

ui = (
bi

∑i′∈Ni bi′
) · ∑

i′∈Ni

πi,i′ ·ui′

We can stop worrying now as finding connected components in a bipartite graph is not
hard. A depth-first search algorithm suffices and its details will be shown in the next
chapter. The influences between agents can also be found during the process, hence this
formula can be computed efficiently.

3.3.3 Recovering the competitive allocation and prices using its
variational characterisation

The third item of Theorem 3.2 tells us that whether a given allocation is competitive or
not can be determined by its utility profile. It is another remarkably valuable suggestion
because it provides both a way to check an allocation’s competitiveness and a way
to find the competitive allocation via solving an optimisation problem depending on
the freshly produced u and b. What is more ideal is that we are able to transform the
optimisation problem to a graph problem by the following theorem:

Theorem 3.4 (Corollary 35, [10]) The following statements are equivalent:

• An allocation z maximizes the weighted utilitarian welfare W
τ(u,b)

• Gz is a subgraph of G
τ(u,b)

And the problem can be transformed again into our familiar maximal flow problem,
inspired by the construction in [20]:

Construct a network N(v,u,b) by adding a source node s and a terminal node t to a
complete bipartite graph with parts ([n], [m]): the source s is connected to all the agents
[n] and the terminal node t is connected to all the chores [m].
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Figure 3.1: An example of a constructed network from [10]

Let q j = mini∈[n] |
bi·vi, j

ui
| denote the minimal weighted disutility.

The capacity of each edge w(s, i), i ∈ [n] is the budget bi; for all edges (i, j), we set
w(i, j) = ∞ if this edge exists in Gτ(u,b), and w(i, j) = 0 otherwise; we set w( j, t) = q j
for all edges ( j, t), j ∈ [m]. Note that no flow F in this network can exceed the amount
∑i∈[n] bi, which is the total capacity of all edges (s, i).

And the recipe of checking a utility profile’s competitiveness as well as to compute a
allocation emerges.

Theorem 3.5 (Proposition 36, [10]) A utility profile u is competitive if and only if the
two following conditions are satisfied:

• ∑i∈[n] bi = ∑ j∈[m] q j

• a maximal flow F in N(v, u, b) has magnitude ∑i∈[n] bi.

Any such flow defines a competitive allocation z = z(F) by zi, j = Fi, j/q j, prices p j = q j
with u = u(z) and vice versa.

We have finally reached our goal of getting all the competitive utility profiles and their
corresponding allocations.



Chapter 4

Implementation details

In this chapter, we demonstrate our implementation details of the algorithm introduced
previously. We have chosen Python as our working language because of its simple syntax
leading to legibility, its support for both object-oriented and procedural paradigms that
we have used, and its comprehensive libraries facilitating our programming, especially
in phase I.

4.1 Architecture choices

4.1.1 Adopting an agent-based approach

Recall Definition 3.1, a chore division problem is determined by a matrix of values
and a vector of budgets. While processing matrices and vectors directly is fast, the
obscurity and inflexibility arising from hard-coding makes this representation far from
ideal. Since both values and budget are generated agent by agent, it does not cost much
more space to store them separately in our created class Agent, with which it suffices to
define the problem.

Such an agent-based approach provides many merits: 1) it models real-world scenarios
faithfully and offers us an individual perspective that is highly useful for us to evaluate
the algorithm’s feasibility in terms of agents’ personal experiences like privacy or
incentives; 2) we are given a more intuitive and more secure way to look up and change
an agent’s values and budget by calling the agent directly, without the need to get access
to the total information set and risk mixing up different elements; 3) we can define
frequently used methods such as evaluate to avoid repetitive statements in our code.

class Agent
name: string

values: int[m]
budget: int

evaluate: return the total dis-utility generated by the received bundle

16
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4.1.2 Connecting the three phases

As we have seen in Chapter 3, the workflow of the algorithm is rather straightforward:
we generate a rich family of graphs first, then we can simply use a “for” loop to
compute a candidate utility profile for each graph and check its competitiveness.We
defined four major functions GRAPHGENERATOR, DUALGRAPHGENERATOR,
PROFILE, and IFCOMPET IT IV E to serve these purposes.

Suppose we have N agents and M chores in the problem. Running the following
algorithm shall give us an answer:

Algorithm 1 Compute all the utility profiles and one corresponding allocation
1: n← N
2: m←M
3: chores← range(m) ▷ We need give each chore a distinct label, w.l.o.g. they are

tagged by integers here.
4: agents← [Agent1, ...AgentN] ▷ We have omitted the procedure of constructing

those agents.
5: if m > n then
6: graph f amily← GRAPHGENERATOR(agents)
7: else
8: graph f amily← DUALGRAPHGENERATOR(agents)
9: end if

10: for graph in graph f amily do
11: pro f ile← PROFILE(graph,agents)
12: result← IFCOMPET IT IV E(pro f ile,graph)
13: end for

4.1.3 Different graph representations

Since our algorithm is centred around graphs, it is important to for us to pick the right
representations of them in order to achieve each of our goals most efficiently. As our
consumption graphs are both undirected and bipartite, storing them as either chores’ or
agents’ adjacency lists will take up the least space.

Based on this idea, we defined the following class Graph and used a dictionary to
represent every chore’s adjacency list. The choice of using dictionaries instead arrays
is due to the former’s flexibility. Hard coding numbers is always very confusing as
it requires agents be remembered by an order, therefore dealing with arrays directly
should be avoided. And the reason for using chores’ adjacency lists instead of agents’
adjacency lists is that it makes calculating a chore node’s degree easier as it will just
be the length of its list. The corresponding method is defined mainly for Phase II,
getting one of the ingredients to compute the candidate utility profiles. The other two
methods update,i f Linked will also be widely used. In order to save up more space,
the adjacency list remembers only the name of each agent rather than its entire inner
structure. Hence, we have also defined a separate function to call the actual agent by its
name, if the list of real agents like agents appeared in Algorithm 1 is given.
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class Graph
edges: dict{chore: linked agents’ names as a list}

update(chore j, a list of Agents): update a chore’s adjacency list
i f Linked(Agent i, chore j): return whether i and j is linked

degree (chore j): return the number of agents connected to j

Because the three phases of the algorithm work fundamentally differently, we have
to opt for a different data structure in each phase to accomplish a different goal. In
Phase II, we need to generate a new representation containing both agents’ and chores’
neighbours with agents’ values as edge’s weights. Even though part of the information
is repeated, in order to find all the connected agents fast enough, it is crucial to make
agents’ neighbours ready to fetch. In Phase III, we need to convert a graph to a
network in order to calculate the max-flow. Fortunately, both conversions are very
easy, especially with the help of methods in our Graph class. Thus their procedures
graphToList and graphToNet are omitted.

4.2 Phase I: Generate a rich family of “Maximal Weighted
Welfare (MWW)” graphs

4.2.1 Generating graphs for two agents

[10] proposed to begin the problem with the simplest two-agent case. Their MWW
graph structure have been found by [5]. We ask readers to read the paper if they are
interested in the proof and we shall proceed directly to the graph-constructing procedure
defined as BASICGRAPHGENERATOR.

Reorder all the chores, from those that are relatively harmless to agent 1 to those that
are harmless to agent 2: the ratios v1, j/v2, j must be weakly increasing for j ∈ [m]. Then
immediately we are given two types of graphs in MWW(v):

• k/(k+ 1)-split, for k ∈ [m]: agent 1 is linked to all chores 1, ...,k (if any) and
agent 2 is linked to all remaining k+1, ...,m. No other edges exist.

• k-cuts, for k ∈ [m]: agent 1 is linked to chores 1, ...,k− 1, agent 2 to chores
k+1, ...,m, and all chores j for which v1, j

v2, j
=

v1,k
v2,k

are connected to both agents. No
other edges exist.

Figure 4.1: Examples for a split and a cut taken from [10]
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Lemma 4.1 ([10]) For two agents, any graph G ∈MWW (v) is either a k/(k+1)-split
or a k-cut. Any k-cut is contained in MWW(v). A k/(k+1)-split is contained in MWW(v)
if and only if one of the following holds: k = 0, or k = m, or v1,k/v2,k < v1,k+1/v2,k+1.

Therefore, there should be maximally 2m+ 1 graphs (m+ 1 split graphs and m cut
graphs) generated according to the paper. We discarded the 0-split and m-split graphs
too because of our implicit no-idle-agent requirement. Using the hindsight from the
next section that an agent and a chore are linked in the general setting if only they are
linked in graphs generated for every agent pair, any graph based on a 0-split or m-split
will lead to some agent assuming nothing. We have now reduced the number of graphs
to 2m−1 in the basic case. Our algorithm’s running time is going to be shorter than
what the paper suggested.

According to the paper’s suggestion, since m cut graphs are all contained in the set,
the graph number is also in Θ(m). However, we have found out that there could be
duplicates among those cuts. Those scenarios depend largely on value functions so we
are afraid that no fixed new bounds can be given here. More details are waiting in the
fifth chapter.

Algorithm 2 Generating MWW(v) graphs for two agents
1: procedure BASICGRAPHGENERATOR(Agent a, Agent b)
2: ratios← a.values/b.values
3: sort chores according to the ascending order of ratios
4: graphs← []
5: for k in range(m) do
6: cut← Graph(chores, [[a.name] if i≤ k else [b.name] for i in chores])
7: for i in range(m) do
8: if ratios[i] = ratios[k] then
9: cut.update(chores[i], [a.name,b.name])

10: end if
11: end for
12: graphs.append(cut)
13: if k > 0 and ratios[k−1]< ratios[k] then
14: split← Graph(chores, [[a.name] if i < k else [b.name] for i in chores])
15: graphs.append(split)
16: end if
17: end for
18: return graphs
19: end procedure

4.2.2 Reducing the problem to two-agent sub-problems

A small spoiler in the last section has revealed the recipe to generate graphs when n≥ 3.
We will have to work on n(n−1)/2 auxiliary two-agent problems first, where a pair
of agents i, i′ divides the whole set of chores [m] between themselves. Then we pick
an MWW graph G{i,i

′} ∈MWW (v{i,i
′}) for each pair of agents and construct a graph G

for the original problem by the rule mentioned before: there is an edge between agent i
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and a chore j if and only if this edge is presented in G{i,i
′} for all agents i′ ̸= i. After

enumerating over all combinations of graphs G{i,i
′} we obtain a set G = G(v).

We can visualise the process with a large table, where each row represents the MWW
graphs generated by one pair. Numeration is done through choosing a graph from each
row. For preparation, we also need to remember which pair each row corresponds to,
and the number of graphs each row contains. The number of enumeration times goes
exponential to (2m−1)n(n−1)/2 as there can be O(2m−1) choices for each pair, and
n(n−1)/2 pairs in total. Only when we fix the number of agents n and treat it as an
exponential can the algorithm be declared polynomial.

Figure 4.2: An illustration: Bill, Jack and Amy are dividing four chores. One of the final
graph is being generated when enumerating on the indices (1,3,2)

We used Python’s Itertools library to facilitate the procedure: combinations(agents,2)
gives us all the pairs of agents; product gives us all the Cartesian product of the arrays
which is needed to go over all pairs.
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Algorithm 3 Generating MWW(v) graphs for over two agents
1: procedure GRAPHGENERATOR(agents)
2: for every pair (a,b) in combinations(agents,2) do
3: pairgraphs← BASICGRAPHGENERATOR(a,b)
4: superset.append(pairgraphs)
5: labels.append((a.name,b.name))
6: indices.append (range(len(pairgraphs)))
7: end for
8: graphs← []
9: for every combination in product(∗indices) do ▷ pick one graph for each pair

10: f inalgraph←new Graph()
11: for every pair of agent and chore (i, j) do
12: hasEdge← True
13: for every graph whose label contains i.name do
14: if not graph.ifLinked(i, j) then
15: hasEdge←False
16: break
17: end if
18: end for
19: if hasEdge then
20: add an edge between (i, j) to f inalgraph
21: end if
22: end for
23: graphs.append( f inalgraph)
24: end for
25: return graphs
26: end procedure

4.2.3 Swapping agents and chores when necessary

Following the discussion in 3.3.2 about Agent-Chore duality, we automatically get
another algorithm to compute a rich graph family by swapping chores and agents. Our
DUALGRAPHGENERATOR procedure starts with creating a dual problem and then
simply feeds it into GRAPHGENERATOR. Note graphs defined by the Graph class
are dictionaries with chores being keys and their connected agents the values. We need
to swap the agents and chores back so as to keep the same format.

Now we have two choices at hand and we can pick the method that produces fewer
graphs to save time.

Theorem 4.1 The number of competitive utility profiles is at most

min{(2m−1)n(n−1)/2;(2n−1)m(m−1)/2}.
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4.3 Phase II: Compute the candidate utility profile for
each graph

After obtaining all the consumption graphs, we enter the second phase to generate a
candidate disutility profile for each graph. Recall Subsection 3.33, the major challenge
is to find the connected components of each graph and to calculate one agent’s influence
over another. It is enough to find πi0,i for a fixed i0 in each connected component of
G and then define πi,i′ as

πi0,i
′

πi0,i
. The original paper proposed to imitate a shortest path

algorithm like Bellman-Ford, which can deal with negative weights. Since we have
changed the sign of all the values, we believe that basing on Dijkstra’s solution is better
due to its smaller time complexity.

In fact, our algorithm is even easier than Dijkstra’s algorithm since we are not pursing
an optimised solution like a shortest path. The corollary below guarantees us that
if our current graph has a feasible competitive allocation,the influences will be path-
independent as two different paths will form a cycle with product being one. And if the
graph does not have a feasible competitive allocation, it will be eliminated anyway.

Corollary 4.1 If an allocation z is Pareto optimal and its corresponding consumption
graph Gz contains a cycle C, then π(C) = 1.

Although we want only the connected agents, we have to treat chores and agents equally
during the whole searching and updating process since two agents are only connected
via a chore in the bipartite graph. The connected chore nodes will be cut down in the
last step.
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Algorithm 4 Tracing all the connected agents of agent i
1: procedure CONNECTEDAGENTS(Graph G, agents, (source node) agent i)
2: weights← GRAPHTOLIST (G,agents)
3: unvisited←{node :None for node in chores+agents}
4: visited←{}
5: current← i
6: currentPi← 1
7: unvisited[current]← currentPi
8: while True do
9: for neighbour, weight in weights[current].items() do

10: ▷ Iterating through the connected nodes of the current node
11: if neighbour not in visited then
12: if neighbour is an agent then
13: unvisited[neighbour]← currentPi/weight
14: else
15: unvisited[neighbour]← currentPi ·weight
16: end if
17: end if
18: end for
19: visited[current]← currentPi
20: delete unvisited[current]
21: if unvisited is empty then
22: break
23: end if
24: newcurrent← [node for node in unvisited.items() if node[1] != None]
25: if newcurrent !=[] then
26: current,currentPi← newcurrent[0]
27: else
28: break
29: end if
30: end while
31: for node in visited do
32: if node is not an agent then
33: visited.pop(node)
34: end if
35: end for
36: return visited
37: end procedure

Now we are ready to calculate the disutility profile. Recall the formula:

ui = (
bi

∑i′∈Ni bi′
) · ∑

i′∈Ni

πi,i′ ·ui′

It is easier to calculate it by parts as ui = ( bi
sumb) · rightsum, where the rightsumrequires
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us to calculate the utility profile for agents by diving chores equally. We name this
special utility profile as eutilities.

Algorithm 5 Recovering the utility profile
1: procedure PROFILE(Graph G, agents)
2: calculate eutilities
3: utilitypro f ile←{}
4: unvisited← agents.copy()
5: while unvisited is not empty do
6: current← unvisited[0]
7: connected←CONNECT EDAGENT S(graph,current)
8: sumb←sum([agent.budget for agent in connected])
9: for agent in connected do

10: rightsum← sum([(connected[i]/connected[agent]) ·eutilities[i] for i in
connected])

11: utilitypro f ile.update({agent : (agent.budget/sumb)∗ rightsum})
12: unvisited.remove(agent)
13: end for
14: end while
15: return utilitypro f ile
16: end procedure

4.4 Phase III:Check each candidate profile for competi-
tiveness

As indicated by Theorem 3.5, the goal of this phase is to check two conditions. Since
∑i∈[n] bi = ∑ j∈[m] q j is easier to check, after finishing computing q, we run a loop first
to test this condition. If it is satisfied, we move forward to solve the maximal flow
problem. The paper suggests the Edmonds-Karp algorithm which has linear running
time in the number of vertices, and quadratic in the number of edges. We decided
to implement Dinic’s algorithm instead as it includes some additional techniques that
reduce the running time from O(|V ||E|2) to O(|V |2|E|) i.e.,O(mn(n+m)2) here. Since
Dinic’s algorithm is very well-known, and there is no hardness in checking the two
conditions, we have placed the pseudocode for this part in Appendix A.

4.5 The complexity is determined by the combinatorial
enumeration

4.5.1 A running time analysis for the entire workflow

Recall the workflow presented in 4.1.2, the algorithm’s running time is the sum of time
spent on or DUALGRAPHGENERATOR in Phase I and the time spent on PROFILE
and IFCOMPET IT IV E for each graph times the number of graphs in the loop.
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In Phase I, we begin by calling BASICGRAPHGENERATOR to generate graphs for
every pair of agents. This method will do O(m · logm) operations to sort the chores
depending on the ratios of two agents’ values and then it can generate the rich family of
O(m) graphs each with constant operations. Therefore, the total time of running it is
O(m · logm+m) = O(m · logm).

Hence the number of operations needed to generate the super-set of graphs is O((m ·
logm) · (n(n−1)

2 )) Then to create graphs G by numerating on the super-set, we exhaus-

tively look over O(m
n(n−1)

2 ) combinations. And for every pair of agent and chore (mn
pair in total), we need to check n−1 graphs that belong to the agent. The total number
of operations is O(m

n(n−1)
2 ·mn · (n−1)). Hence, if n is fixed, we view it as a constant

and the complexity reduces to O(m
n(n−1)

2 +1).

DUALGRAPHGENERATOR works in the very similar manner, differing from the
GRAPHGENERATOR by an extra step of swapping agents and chores first, which
can be finished in O(mn) time by simply transposing the value matrix. Hence the

complexity of DUALGRAPHGENERATOR is O(n
m(m−1)

2 +1 +mn) = O(n
m(m−1)

2 ).

In Phase II, we will run GRAPHTOLIST first to convert the graph defined in our Graph
class to a weighted adjacency list, which can accomplished by O(nm) operations. Then
we want to compute the disutility profile for every agent, which only takes constant
steps after we have found all the connected components and calculated the influences
between them (hence O(n)), the latter requires O((n+m)2) operations since there are
possibly n+m nodes to loop through and for every node it is possible to check n+m
nodes in the depth-first search algorithm we have defined. Thereby, the total running
time is bound by O(nm+(n+m)2 +n) = O((n+m)2).

In Phase III, it takes O(mn) operations to convert the graph to a network using our
method net. Then we run the dinic algorithm whose complexity is O(nm(n+m)2).
Hence, the complexity of this step is bound by O(mn+nm(n+m)2) = O(nm(n+m)2).

In this way, we can see clearly the time complexity of the last two phases of the
algorithm is bounded by |G | · (O((n+m)2)+O(nm(n+m)2)) = |G | ·O(nm(n+m)2),

where |G | is bounded both by (2m−1)
n(n−1)

2 and (2n−1)
m(m−1)

2 . Hence, the complexity

can be converted into O(m
n(n−1)

2 +3) for fixed n or O(n
m(m−1)

2 +3) for fixed m, which
indeed agrees with the result shown in the paper (see Theorem 3.2 ) even though we
have amended part of the procedure in each phase.

4.5.2 Limited improvement can be done in Phase I

We would like to convince the readers that the space for improving the algorithm is very
limited. In first phase, we cannot avoid the combinatorial checking and for every pair
we will have minimally m graphs due to the inclusion of all k-cuts. For phase II and
III, we have already adopted the most state-of-art algorithms for finding the connected
components and computing the max-flow.Hence it is very unlikely to improve these
procedures too. The only place we can do a trick is to somehow reduce the number of
graphs in the loop.
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Therefore, we decided to

1. remove graphs if some chore remains unallocated;

2. remove graphs if some agent is not allocated to any chore, therefore being idle;

3. remove duplicated graphs

after running the GRAPHGENERATOR. These three checks are very easy to imple-
ment. Although they seem trivial, the experiment result showed that after these three
checking, we successfully got rid of a great number of graphs, a very good news for
real life. We are entering Chapter 5 now to see more details.



Chapter 5

Exploring the algorithm’s feasibility

How feasible is it to use our algorithm for computing competitive chore allocations?
And how feasible is it to employ the algorithm as a “fair” allocation mechanism? After
running benchmark tests on all types of problems that appeared in our experiments
(these tests are in alignment with the competitive allocation’s definition: we check if
all partitions of chores sum up to one, if it satisfies Envy-Freeness, and if everyone
fulfills her liability (i.e. spends all her budget)), we were ensured the correctness of our
implementation and turning to these big questions eagerly.

Centring around different aspects of feasibility, we organised this chapter into four parts.
In the Integrity and secrecy section, we ask: can we always make sure no attacker has
changed anything? And can we protect the agents’ privacy at the same time? Then we
wonder, how fast can we get the solutions? How big our problem is allowed to be?
Following the time complexity discussion, we investigate if agents have incentives to
lie in the process. In the end, we recognise that competitive allocation of chores has the
problem of potentially yielding no solutions or multiple very discontinuous solutions
and start to explore how bad the situation can be.

Because no similar approach has been taken before to evaluate competitive allocation
of chores with such concreteness, we prioritised the diversity of our research directions
to see if our problems were worth investigating instead of trying to give a very thorough
and systematic analysis on one aspect.

5.1 Integrity and secrecy

5.1.1 Publishing budgets and allocation results is necessary and
sufficient for ensuring the computation’s integrity

As mentioned at the beginning of this chapter, three conditions need be checked to
guarantee the computation’s correctness. Because some attacker may have changed
some agent’s values or budget in the system, we need to ask agents themselves to
validate the allocation’s integrity. Each agent’s values are probably her most sensitive
information and fortunately, they do not need to be exposed as we can simply ask every

27



Chapter 5. Exploring the algorithm’s feasibility 28

agent for her envy-freeness. The resulted allocation bundles, prices and each agent’s
budget have to be public in contrast as one agent can only decide if she envies others’
bundles based on the ratio of their budgets. There is no point for an agent with double
responsibility to say she is envious of someone with single unit of responsibility. The
other two conditions also take partitions, budgets and prices into account.

Publishing these statistics also brings about other benefits. As we discussed before, one
part of what makes competitive rule fair is that the budgets are agreed beforehand. A
lack of transparency certainly provokes unfairness at the first place. Broadcasting every
agent’s allocation is also often trivial since not everyone does her chores secretly. And
it helps agents supervise each other finishing their duties so that the allocation will not
become meaningless.

5.1.2 Values can remain private

We have not yet made sure that individual’s values will not be revealed from the unveiled
information. Now we would like to guarantee readers that it is true as we have found
infinite (v,b) pairs corresponding to the same allocation.

Let us consider a simple scenario: four people are dividing two chores and they all have
the same opinions towards the chores and the same amount of responsibility. We may
define the problem by v = [[1,1], [1,1], [1,1], [1,1]] and b = [1,1,1,1]. Our algorithm
gives us a partition [0.5,0], [0.5,0], [0,0.5], [0,0.5] and together with two prices [2,2]. If
we double everyone’s budget, i.e. b = [2,2,2,2], we get the same partition with prices
being [4,4]. This is expected as the budgets are viewed as a virtual currency with no
intrinsic value in the competitive rule. As long as the ratios of budgets remain the same,
nothing changes except the prices’ absolute values. The sum of budgets always equals
to the sum of prices as we set the unit of every chore to be one.

What may seem more surprising is that if now v = [[1,1], [2,2], [3,3], [4,4]] and b =
[1,1,1,1], the resulted allocation is still the same. Similar to what Moulin [38] believed,
“but the intensity of preferences is immaterial; the intensity cannot be measured objec-
tively and thus must be ignored.”, the rule does not distinguish two agents if their values
only differ by a scalar and their budgets are equal. When their bundles are swapped, the
new allocation is still competitive. Furthermore, if two agents’ values differ by a scalar,
their disutilities are determined by that scalar times the ratio of their budgets: Ui

U j
= Vi

V j

Bi
B j
.

In this case, the agent’s subjective measurement of pain is disregarded during allocation.
Even when the chores really cause the second agent twice the trouble than the first one
due to the fact that their budgets are equal, the second agent still has to face the doubled
disutility. We have illustrated a slightly more complicated instance C.1 in the appendix.
Readers are invited to check the correctness of our proposed equation.

Note that this property also discourage a specific kind of strategic manipulation since
reporting the values as v1 or 2v1 does not matter to the final share (see exercise 2.8 in
[37]). But we need to stress that the ratio has to be the same for every chore. Otherwise,
other chores will step in and change everything.
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5.2 Time complexity

Due to the time limit, the discussion from now on is restricted to the equal income case
with all agents’ budgets set to one. We hypothesised that three factors could influence
the algorithm’s running time: the number of chores m, the number of agents n, and the
value functions of v. In the sections below, we have labelled cardinal value functions
as [a,b], meaning every agent was free to express its disutility towards one chore
using a natural number inside [a,b]. Hence, our input values vectors were generated
using numpy.random.randint(a,b+1,m) for each agent. For ordinal value function
labelled simply as ordinal, we meant that every agent had to order their preferences
from 1 to m. The lower the value indicates the less disutility the chore can bring about
to the agent. So the agent prefers it more. The inputs in this scenario are generated by
setting agents’ values: numpy.random.permutation(range(1,m+1)).

Knowing an algorithm’s running time depends on a machine’s central processing unit
(CPU)’s power, we have run all the experiments over the same machine — model name:
Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz CPU(s): 48.

5.2.1 Using the duality trick and removing bad graphs are critical

Before diving into two main results, we would like to use this subsection as a starter
to show readers that both the duality trick and graph removals are very important for
speeding up the algorithm.

In Figure 5.1, we illustrate that due to the power of (2m− 1)
n(n−1)

2 or (2n− 1)
m(m−1)

2

grows fast, the duality trick is very effective even for small size of problems. The right
graph plotted the actual running time of the algorithm when n = 5 with values in [1,5].
We notice that even when m was as small as four, the running time was over one hour
(212 = 4096 seconds ≈ 68.3 minutes) without using the duality trick. But it could be
finished within seconds otherwise. This is indeed predicted by the difference between
the number of graphs generated by different algorithms. The left graph presents the
maximal numbers of graphs generated by two different graph-generators theoretically
and the lines look very similar to what are on the right.

Figure 5.2 breaks down the MWW graphs produced by GRAPHGENERATOR (left)
and DUALGRAPHGENERATOR (right). As only the red part of the pie represents
the graphs useful for our computation, it highlights the efficiency of graph removal.
Moreover, it tells us how the duality trick works. In the first row, as n = m = 3, the
numbers of generated graphs are the same. Graphs with idle agents correspond to
graphs with unallocated chores after using duality, and the reverse is the same. Things
change a bit when n,m become unequal as it means the numbers of graphs generated
are determined to be different. The total graph numbers differ in scale in the second row
although the number of “distinct answers” are similar (32 versus 23), This is because in
either case the generated graph family is rich. Hence their difference is in proportion:
only 0.1% graphs generated are needed on the left, compared to 9.0% on the right,
which is still quite small.
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Figure 5.1: Duality is essential. The left and right graph’s similarity reflects that time
complexity is dominated by the combinatorial enumeration.(average of ten trials)

Figure 5.2: A breakdown of generated graphs. Value function [1,4],n,m = 3,3;4,3.
(average of ten trials)

From now on all the experiments would be run by the improved algorithm. As we have
seen, the two tricks are extremely powerful, without which very limited problems can
be solved. Therefore we should only consider this version in practice.
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5.2.2 Value function influences the complexity by its expressivity

Motivated by the fact that agents’ freedom of expressing their values have to be limited,
we carried out experiments by controlling the size of the problems and observed how
different value functions impacted on the allocation. The results are obtained by
averaging twenty trials. Due to the limit of space, experiment results when n or m = 4
are put in the appendix B.4. The graphs here should be enough to tell the story.

Figure 5.3: Fixing the number of agent, different value functions result in the running
time and the number of distinct graphs generated in phase I increasing at very different
rates.
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Figure 5.4: Fixing the number of chores, the effect of value functions on running time
and the number of distinctly generated graphs is very similar to the previous case.

The first conclusion is that the number of distinct graphs is a determinant of the algorithm
running time. Apart from the big difference brought by the value functions, as shown
by 5.3, the number of distinct graphs remaining constant while the number of chores
are increasing also seems quite counter-intuitive. However, after a little bit analysis,
we managed to convince ourselves that this is expected. Recall that the graphs are
generated according to the ratios. However, if the value for every chore is either one or
two, the ratio of the agents values about one single chore only has three possibilities:1/2,
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1 and 2. Therefore, we will only obtain two k-splits at where the ratio is changing from
1/2 to 1 and 1 to 2, and only three k-cuts as the chore with the same ratio will all be
connected to the two agents. Similarly, for the cardinal function [1,5], there are 19
different ratios in total and lead us to 18 k-splits plus 19 k-cuts. For [1,10], 55 different
ratios result in 109 different graphs...Since our values are generated randomly, only with
large enough number of chores all ratios show up and the number of distinct graphs
reaches what we calculated. Notice that for ordinal functions, the number of possible
ratios is the same as with cardinal [1,m], which increases quadratically as m increases.
Hence the blue line corresponding to the ordinal function behaves much like our upper
bound estimation: 2m−1.

Having understood the basic case, we are now able to reason why the algorithm runs
in less time when the values are in the smaller range. Since fewer distinct graphs are
generated for each pair, fewer distinct graphs are obtained in general. Fixing m and
running the algorithm with an increasing number of agents n should give us a similar
result since it is only the values who are doing the trick. We should not be surprised to
see the ordinal function gives us the fewest graphs as m is now very small.

5.2.3 Scalability is bounded by five, the smaller number of agents
and chores

We have found out that both the value function and the problem size play a huge role in
deciding the time complexity. Is one factor more dominant than the other? To explore
this, we ran the algorithm on problems of different sizes as well as with different value
functions. In the graphs below, we plotted what size of the problem could be run
within thirty seconds. As we saw previously, with fixed n, the algorithm behaves most
differently between the ordinal value function and the small-range cardinal function
[1,2]. Comparing their difference shown vertically to the differences between different
number of agents or chores, we learn that the problem size is more influential when it
comes to deciding the running time.

Figure 5.5: The problem size is a more dominant factor on time complexity than the
value function’s type.
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Therefore, to investigate the scalability, we can now control our inputs under the same
value function type and focus only on the problem size. Knowing that the number of
MWW graphs is bounded by the smaller number of n and m , we can further limit our
experiments to the n = m case. We ran one hundred trials for different numbers and
plotted the best, average and worst cases. Recall that total complexity is O(m

m(m−1)
2 ).

Taking the log, we get the quasi-polynomial function m(m−1)
2 O(logm), which looks

indeed like the graphs below. Using the dual graph generator gave us a similar effect
as expected. We attempted to run the case when n = m = 5 but stopped after eight
hours without an answer. So we conclude that as soon as both the number of chores and
agents reach five, the computation becomes very costly.

Figure 5.6: Running time when n=m, value function [1,5].

5.3 Incentives for lying

Will people favour a mechanism that encourages dishonest or manipulative behaviour?
Back in Chapter 2, we have discussed two kinds of incentive compatibility, namely
Dominant-strategy incentive-compatible (DSIC) and Bayesian-Nash incentive-compatibility
(BNIC). We can sense that DSIC is a stronger condition than BNIC since it requires
every agent staying honest regardless of others’ behaviour.

In this section, we consider two situations where an agent may wish to lie. First, we
presumes that an agent only cares to decrease her own disutility. We will start by
testing BNIC because it is a weaker condition. By showing that even achieving BNIC
is impossible, we argue that DSIC is not satisfied by this algorithm. However, we will
still argue that lying in this case is hard.

Next, we study the case where an agent becomes more manipulative and wishes to
influence the entire allocation. We focus on how reporting a high value can increase a
chore’s price and thereby affect the whole allocation. Based on the findings, we propose
that decreasing the value function’s range or increasing the number of participants can
limit manipulative behaviour’s influence.



Chapter 5. Exploring the algorithm’s feasibility 35

5.3.1 Lying to decrease one’s own disutility

It is enough to prove BNIC is not satisfiable with one counterexample. Suppose three
agents are dividing two chores. They are only allowed to express the values either by
one or two. Agent A and B express their true values [1,1] and [2,1] respectively. And
C’s true values are [1,2].However, if C has known the other two’s values and the access
to running the algorithm, C can complete a table of different outcomes resulted from
her suggesting different values:

values resulted allocation C’s actual disutility
[1,1] A:[0.5, 0] B:[0,1] C:[0.5,0] 0.5
[1,2] A:[0.5, 0] B:[0,1] C:[0.5,0] 0.5

A:[0, 0.5] B:[1,0] C:[0,0.5] 1
A:[1/3, 1/3] B:[0,2/3] C:[2/3,0] 0.67

[2,1] No result
[2,2] A:[0.5, 0] B:[0,1] C:[0.5,0] 0.5

Table 5.1: C is trying out which values will bring her the lowest disutility.

C may find the experiment results a bit surprising — among all the values that do give
rise to a competitive allocation, the truthful values actually give C the worst outcome: if
C chooses to lie about either the second chore, or the first, C will be allocated a half of
the first chore for sure, and end up with disutility 0.5. However, if C stays truthful, since
there will be three different allocations to choose from, C will face the risk of increasing
its disutility to 0.67 or 1. Therefore, unless C is certain that among the three allocations
agents will agree on the one that gives C disutility 0.5 (they won’t, for instance, if they
stick to the Egalitarian Equivalent rule), it is better for C to lie. To put it another way, C
actually suffers the most by being honest probabilistically. We have obtained a complete
opposite example against incentive compatibility.

Back in Chapter 2, we mentioned that the competitive rule enjoys Independence of lost
bids (ILB). We can see that this property does take place here: the same allocation A:[0.5,
0] B:[0,1] C:[0.5,0] appears when C’s stated values being [1,1] and [1,2] respectively.
ILB was favoured by [6] because they thought, since misreporting (on the lost bid
at least) would not help much, agents would stop doing so. However, they failed to
consider the fact that results are multi-valued. The agent still has an incentive to lie if
lying increases the probability of getting a lower disutility.

Although we have seen that lying might decrease one’s disutility, we still do not think
that the mechanism performs badly on this matter. First of all, lying is not necessarily
harmful. As shown in the second table of C.3, everyone except Jack’s disutility is
lowered if Sarah misreports her value about the second chore as three instead of two.
And the sum of disutilities also drops from 3.6 to 3.43. Furthermore, an agent won’t
know how to lie strategically without having any information about others’ values. As
C.3 illustrates, the agent gets very different results while mending her values. The
uncertainty rising from both the allocation’s dependence on the entire value matrix and
the solution being multi-valued is the best deterrent preventing agents from lying. This
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is also why we should keep every agent’s values hidden. Finally, we may enforce lying
ourselves. When the rule gives us no allocation, what shall we do? Maybe we have to
ask someone to distort their values so that we can try again.

5.3.2 Lying to disrupt the allocation

Is there really no strategy for an agent to manipulate the allocation? What if its purpose
is to disrupt the allocation rather than to focus on its own interest? For example, by
enhancing a chore’s price significantly, the adversary might help those who don’t mind
the chore as now they can fulfill their liabilities (use up its budget) with doing only a
little amount of this chore.

We notice that the gap between two chore’s prices are in general increasing as Sarah
raises her value about the second chore from one to four in C.3. To elaborate on this
direct link between a chore’s price and the values it has been attached to, we conducted
an experiment by retaining almost the whole matrix v and continually increasing Sarah’s
value on chore 2. Note that due to ILB, we will keep seeing some allocations such as the
ones appeared when Sarah lied [1,4]. Focusing only on the newly emerged allocations
at each time (this is why there are only few dots left and the line is not very smooth),
we get the following pictures:

Figure 5.7: The dots represent all the results we get. Since we are getting multi-valued
solutions, we draw the line connecting only the lowest price of chore 2 among different
allocations on the left, and we draw lines connecting only the lowest amount of chores
Sarah needs to do among all allocations on the right.

The first thing we notice is that as chore 2 is being viewed as more and more painful by
Sarah, its price soars up until it approximates the entire budget. However, increasing
her value for chore 2 does not always help Sarah avoid the chore. Conversely, Sarah is
allocated to an increasingly larger partition of it after certain stage (but never reaches
1/5) because as long as the partition is slightly smaller than other’s share, her high
disutility value on chore 2 guarantees that Sarah won’t envy others as she does slightly
less, and even together with doing the entire chore 1. This special allocation emerges
like [1,0.16],[1,0.17],[1,0.18],[1,0.19] as shown in the right graph of Figure 5.7. And
everyone else is allocated an equally small partition of chore 2.
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Since a manipulation is so easy to realise, we are motivated to search for solutions to
limiting an agent’s influence. Our experiment is designed to see how the problem size
and the value function play a role. The setting is that the adversary wishes to increase
the price of the second chore. So when the value function is cardinal, her strategy is to
give chore 2 the highest value she is allowed to put down and set other chores’ values
the lowest. If only the ordinal value function is allowed, the adversary will tag the chore
as the last choice, and randomise her preferences for other chores. We fixed the number
of chores m during the experiments.

In the graphs below, lines of different colours match problems with different value
functions. Our experiment results were averaged over two hundred cases.

Figure 5.8: An agent’s influence diminishes as the problem becomes large.

As we can see, the influence may be contained by us adding more participants in the
allocation and choosing a value function with a smaller range. The similar effect was
not perceived when we fixing n and increasing m. More experiments should be done to
explore that side.

5.4 No solution and multiple solutions

A major problem that arises when chores are allocated competitively is that neither
a result is guaranteed nor is it always single-valued. To illustrate the latter case, we
listed three allocations with agents’ disutilites in the brackets in C.2. Both Amy and
Sarah’s disutilities vary greatly, from 0.25 to 1 (and one’s best is the other’s worst) even
though Bill won’t be affected much. Now let us try to pick a result. To our surprise,
no matter whether we reason as a utilitarian (check the total disutilities are 3.5, 3.47,
2.5), or as an egalitarian (check the highest disutility in each case is 1, 1.07,1) or we
decided to minimise the Nash product (0.094, 0.097, 0.016), the third allocation actually
dominates. Due to this observance, we started to be curious about not only how likely
a problem gets no solutions or multiple solutions, but also how likely a multi-valued
solution can get a “good” answer.

Our experiment was designed as follows: we fixed the number of agents to three and
generated two hundred tests for different number of chores between two and twenty and
for different value functions; then we repeated our experiments again with fixed m and
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Figure 5.9: We counted the frequencies of different scenarios happened when m or n
was fixed as 3 and n or m varied between 2 and 20. The three labels “multiple solutions”,
“multiple solutions* ” , and “zero solution” correspond to three different situations: we got
more than one allocation result; we got more than one allocation result and there was a
solution satisfying the three conditions among them; we got no allocations.

a increasing number of agents. We were increasing either m or n with the hope that we
could perceive any relationship between the problem size and the likelihood of having
none or multiple results. We did find that when n = 2, increasing the number of chores
will lower the likelihood of having solutions (see B.2). However, partly due to much
fewer number of chores we were allowed to run for n = 3 in the same amount of time
as when n = 2, we did not see the expected decrease, at least when m was increasing
between 2 and 20 (check the original data in the Table B.1). Therefore, we had to add
up the answers got with n or m being different numbers between 2 and 20 and present
the diagrams below. There are some nice findings, at least for the case when m or n
equals to 3 but we are afraid that they cannot be generalised much yet:

• Judging from both graphs, the chance that we can pick out a “nice” solution out
of multiple allocations is not low at all, surpassing fifty percent in all cases. And
the chance of having no solution is much lower than having multiple solutions
for both fixed m and n.

• Since the ordinal function has the smallest range when m = 3, the left graph
shows that with fixed m, having a value function with a larger range leads to a
higher chance with no solution and a lower chance to get a nice answer inside
multiple solutions ( the gap between the red and green bar is increasing).

• We may need to consider problems with fixed m and n separately as on the right,
with fixed n, the likelihood of getting no solution is always higher than what
is on the left under the same type of value function. And what happened with
ordinal function on the right is also different from the left side— the chance
of getting a nice solution out of multiple results seems quite high although the
chance of getting no results is also high. As m is always changing, we cannot
simply analyse the right graph by different value functions’ ranges.
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Conclusion

We have successfully implemented the algorithm and started a comprehensive evaluation
about its feasibility. Is this a good application in real life? Our final answer is, like
always, “it depends”. We warn against attempts on problems with no less than five
agents and chores at the same time. But we are clear that if obtaining a result is really
important, let patience be the virtue. When asked to put down values as a ranking,
agents may complain about the setting being too restrictive, if they are viewing two
chores equally or the distinction within one pair of chores is significant larger than one
within another pair. Similar complains may be received if the cardinal value function
has a small range. However, increasing expressivity may be at cost of an increased
running time, a lower chance of getting a solution, and less incentive compatibility. The
mechanism designer will have to consider all-roundly.

6.1 Originality and difficulty

Throughout the work, we kept fine-tuning our own understandings. We decided on
the implementation details independently so that the algorithm can perform better. We
combined a variety of methods to analyse, both idiosyncratically and systematically, the
algorithm’s performance as well as the solutions’ patterns. When exploring the relation
between budgets and values, we came up with a formula that links the two together. We
initiated the discussion over the incentive for lying out of different motivations, and
associated it with normative properties like DSIC or ILB. Our original attention on
comparing different value functions is partly due to that we have a concrete program.
We discovered how the value function could influence the algorithm’s running time.

Partly due to the fact that no similar theoretical discussion or experimental framework
on the practical feasibility of competitive allocation of chores is known to us, we found
that asking the right questions and designing the right experiments could be challenging.
During experiments, finding real patterns was also not easy, for which the limited
scalability of the algorithm is to be blamed. While some problems seem fast to solve,
repeating them a large number of times is costly. See Figure B.1 for example, after
100000 trials we were still not able to capture the worst case’s behaviour because a
bad instance happens extremely rarely. Some of our questions’ answers might only
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be attained with a deeper understanding of the algorithm, which we may not be fully
equipped with as our effort was tending towards the practical side instead to trying to
understand all the theorems.

6.2 Limitations and further work

We believe there is much more space to continue investigating our algorithm’s feasibility.
Regarding integrity and secrecy, we argued that each agent’s values could be held private
and publishing the allocation results and budgets would not reveal the information.
However, we did not prove that those values would not be recovered if the conditions
were more restricted (e.g. we know more about what kind of values each agent is
allowed to put down). This may be treated as a separate mathematical question beyond
competitive allocation itself. But the problem is crucial if we really want to use the
mechanism and protect agents’ personal values at the same time. Regarding time
complexity, we have found out a relation between the expressivity of the value function
and the running time due to the changed number of distinct MWW graphs. While
the graphs generated in phase I can be removed greatly, we have found out the yield
of truly competitive solutions from these graphs is again really small. Therefore,
there might be more space to improve the algorithm. We perceived that the yield
may depend on the value function as well, whose plots are included in the appendix
B.3. Further work can link it with the multi-solution and no solution problem. As for
incentive compatibility, we did not find any strategy of lying that guarantees agents
to decrease their disutility. But we should not exclude its possibility especially when
more information about the population is provided. We have also not discussed more
about the collusive behaviour.And we would like to see if there is a way to resolve the
no-solution problem. So far, all our values and budgets are integers. However, perhaps
we can use approximations to secure a result, rather than plead some agent to change
their values or even budgets. Just as we mentioned in the last section of the background
chapter, money is really virtual and should be seen as a tool to give us an ideal solution.
We should not hesitate too much to change the initial requirements a little bit.

Beyond all these, problems with unequal budgets have not been tackled. And since all
our experiments had an implicit assumption that population is homogeneous, i.e. their
values were generated uniformly random, it is also worthwhile to explore the outcomes
when population have more traits. For example, the population may be quite grumpy,
tending to give high disutility values to chores or they are generally indifferent about
which chores to do. Using values under different Gaussian distributions may be a good
start point.

Jumping outside of our box, we encourage more implementations of fair allocation al-
gorithms to be accomplished and evaluation centring around more concrete questions to
be carried out. The most immediate extension can be the similar algorithms constructed
for competitive allocation of the mixed [27]. Additionally, it will be interesting to see
this algorithm modified for allocating indivisible chores (see section 7 of [10]). Also,
competitive allocation of chores under other utility functions such as the sometimes
more realistic separable, piecewise-linear concave (SPLC) function is starting to receive
solutions, like the simplex-like algorithm proposed in [13].
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[39] Hervé Moulin and William Thomson. Can everyone benefit from growth?: Two
difficulties. Journal of Mathematical Economics, 17(4):339–345, 1988.

[40] James B. Orlin. Improved algorithms for computing fisher’s market clearing prices.
Proceedings of the 42nd ACM symposium on Theory of computing, 2010.

[41] Elisha A. Pazner and David Schmeidler. Egalitarian Equivalent Allocations:
A New Concept of Economic Equity. The Quarterly Journal of Economics,
92(4):671–687, 11 1978.

[42] Sara Ramezani and Ulle Endriss. Nash social welfare in multi-agent resource
allocation. In Agent-Mediated Electronic Commerce. Designing Trading Strate-
gies and Mechanisms for Electronic Markets, pages 117–131. Springer Berlin
Heidelberg, 2010.

[43] Aviad Rubinstein. Inapproximability of nash equilibrium. 2014.

[44] Wayne Shafer and Hugo Sonnenschein. Chapter 14 market demand and excess
demand functions. volume 2 of Handbook of Mathematical Economics, pages
671–693. Elsevier, 1982.

[45] Hugo Steinhaus. The problem of fair division. Econometrica, January 1948.



Bibliography 44

[46] Ankang Sun, Bo Chen, and Xuan Vinh Doan. Connections between fairness
criteria and efficiency for allocating indivisible chores. AAMAS ’21: Proceedings
of the 20th International Conference on Autonomous Agents and Multi-Agent
Systems.

[47] Martino Traxler. Fair chore division for climate change. Social Theory and
Practice, 28(1):101–134, 2002.

[48] Hal R Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):63–
91, 1974.
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Appendix A

Some other pseudocode used in
implementation

Algorithm 6 Generating another rich family using duality
1: procedure DUALGRAPHGENERATOR(agents)
2: newvalues← []
3: newAgents← []
4: for agent in agents do
5: newvalues.append(agent.values)
6: end for
7: for chore in chores do
8: values← [row[chore] for row in newvalues]
9: newAgents.append(Agent(chore j,values,0))

10: ▷ We do not need to use budgets here, so they can be 0.
11: end for
12: graphs← GRAPHGENERATOR(newAgents)
13: return graphs
14: end procedure

45
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Algorithm 7 Helper function 1 for MaxFlow
1: procedure BFS(C, F, s, t) ▷ C is the capacity matrix
2: n← len(C)
3: queue← []
4: queue.append(s)
5: level← n∗ [0] ▷ initialisation
6: level[s]← 1
7: while queue do
8: k← queue.pop(0)
9: for i in range(n) do

10: if F [k][i]<C[k][i] and level[i] == 0 then
11: level[i]← level[k]+1
12: queue.append(i)
13: end if
14: end for
15: end while
16: return level[t]> 0
17: end procedure

Algorithm 8 Helper function 2 for MaxFlow
1: procedure DFS(C, F, k, cp)
2: tmp← cp
3: if k == len(C)-1 then
4: return cp
5: end if
6: for i in range(len(C)) do
7: if level[i] == level[k]+1 and F [k][i]<C[k][i] then
8: f ← D f s(C,F, i,min(tmp,C[k][i]−F [k][i]))
9: F [k][i]← F [k][i]+ f

10: F [i][k]← F [i][k]− f
11: tmp← tmp− f
12: end if
13: end for
14: return cp− tmp
15: end procedure
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Algorithm 9 maxflow
1: procedure MAXFLOW(C,s,t)
2: n← len(C)
3: F ← [n∗ [0]for i in range(n)] ▷ F is the flow matrix
4: f low← 0
5: while Bfs(C,F,s,t) do
6: f low← f low+D f s(C,F,s, in f inity)
7: end while
8: return f low,F
9: end procedure

Algorithm 10 Checking competitiveness
1: procedure IFCOMPETITIVE(profile, graph, agents)
2: q←{} ▷ should equal the price vector
3: for chore in chores do
4: q.update({chore:min([i.budget.disutilities[chore]/pro f ile[i.name] for i in

agents])})
5: end for
6: condition1←sum([i.budget for i in agents]) == sum(q.values())
7: if condition1=True then
8: max f low,network← MAXFLOW (GRAPHTONET (graph,q),0,m+ n+

1)
9: if sum(q.values()) == max f low then

10: bundle←[[] for i in range(n)]
11: for i in range(n) do:
12: for j in chores do:
13: bundle[i].append (network[i+1][1+n+ j]/q[ j])
14: end for
15: end for
16: end if
17: end if
18: return bundle,q
19: end procedure



Appendix B

Other experiment results

Figure B.1: Worst case are extremely rare.

Figure B.2: The likelihood of having a solution is decreasing as m increases. It also
depends of the value function.
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Figure B.3: The yield of distinct utility profiles out of distinct MWW graphs is very low.
And the order between different value function is the reverse of how different percentages
of times the algorithm gives an solution are ranked.
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Figure B.4: The order of number of distinct graphs according to different value function
is not the same as the order of running time although the bigger range, running time is
still longer.
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m = 3 n = 3
n/m value f unction mu′ mu z s mu′ mu z s

2 48 48 3 49 0 0 0 100
3 55 67 0 33 59 72 0 28
4 89 90 1 9 51 54 17 29
5 ordinal 75 89 0 11 54 64 12 24

10 80 96 0 4 35 48 16 36
15 62 89 1 10 22 45 25 30
20 51 90 3 7 30 43 30 27
2 37 42 7 51 36 42 9 49
3 61 75 6 19 47 66 12 22
4 [1,5] 63 89 2 9 67 89 3 8
5 78 92 0 8 65 87 5 8

10 57 97 0 3 61 95 1 4
15 74 97 1 2 64 93 4 3
20 74 95 0 5 64 92 2 6
2 42 53 7 40 34 46 10 44
3 48 71 7 22 53 76 3 21
4 63 80 5 15 59 85 1 14
5 [1,10] 58 86 2 12 58 86 7 7

10 58 95 2 3 54 95 1 4
15 59 94 5 1 64 94 4 2
20 65 88 8 4 60 87 8 5
2 37 65 7 28 42 56 7 37
3 39 73 10 17 47 75 7 18
4 49 79 8 13 48 81 4 15
5 [1,100] 37 68 9 23 36 72 15 13

10 34 57 17 26 50 86 11 3
15 20 46 21 33 49 87 8 5
20 13 39 34 27 55 83 12 5

Table B.1: The original data used to plot the bar charts in section 5.4. Experiments were
done in two hundred trial for each pair of (m,n) and a different value function. There are
many small patterns in the table worth exploring.

• mu′ — percentage of solutions have a singled out answer selected from multiple
solutions achieving minimal total sum disutility, minimal disutility of the most
suffering agent, minimal nash product;

• mu — percentage of solutions that are multi-valued;

• z— percentage of solutions that have zero solution;

• s—percentage of solution that have single solution.
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Allocation examples used for
discussion

Agent Values Budget Allocation Disutility
Bill [1,1] 4 [1, 1

7 ] 8
7

Jack [2,2] 1 [0, 2
7 ] 4

7
Amy [3,3] 1 [0, 2

7 ] 6
7

Lucy [4,4] 1 [0, 2
7 ] 8

7

Table C.1: Another illustration of how the budget is treated differently from the values.
Bill’s disutility (8/7) is four thirds times of Amy’s (6/7), in alignment with our equation.

Agent Values Budget Allocation1 Allocation2 Allocation3
Bill [2,2] 2 [0,0.25] (0.5) [0,4/15] (0.54) [0.25,0] (0.5)
Jack [1,3] 2 [0,0.25] (0,75) [0.2,0.2] (0.8) [0.25,0] (0.25)
Amy [5,1] 2 [0,0.25] (0.25) [0,4/15] (0.27) [0,1] (1)
Lucy [2,4] 2 [0,0.25] (1) [0,4/15] (1.07) [0.25,0] (0.5)
Sarah [1,5] 2 [1,0] (1) [0.8,0] (0.8) [0.25,0] (0.25)

final price: [2,8] [2.5,7.5] [8,2]

Table C.2: The problem of being multi-valued. The resulted three allocations are very
different from each other.
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Agent Values Allocation Disutility
Bill [2,2] [0, 0.3] 0.6
Jack [1,3] [0.6, 0] 0.6
Amy [3,2] [0, 0.3] 0.6
Lucy [2,4] [0.4, 0.1] 1.2
Sarah [1,2] [0, 0.3] 0.6

price: [3.3,6.7]
Agent Values Allocation Disutility
Bill [2, 2] [0, 4/15] 0.53
Jack [1, 3] [0.8, 0] 0.8
Amy [3, 2] [0, 4/15] 0.53
Lucy [2, 4] [0, 4/15] 1.07
Sarah [1,3] [0.2, 0.2] 0.5

price: [2.5,7.5]
Agent Values Allocation1 Disutility1 Allocation2 Disutility2
Bill [2,2] [0, 0.25] 0.5 [0, 0.27] 0.53
Jack [1,3] [0, 0.25] 0.75 [0.2, 0.2] 0.8
Amy [3,2] [0, 0.25] 0.5 [0, 0.27] 0.53
Lucy [2,4] [0, 0.25] 1 [0, 0.27] 1.07
Sarah [1,4] [1,0] 1 [0.8, 0] 0.8

price: [2,8] [2.5,7.5]
Agent Values Allocation1 Allocation2 Allocation3
Bill [2,2] [0, 0.4] [0, 1/3] [0,0.3]
Jack [1,3] [0.4, 0] [0.5, 0] [0.6, 0]
Amy [3,2] [0, 0.4] [0, 1/3] [0, 0.3]
Lucy [2,4] [0.4, 0] [0.5, 0] [0.4, 0.1]
Sarah [1,1] [0.2, 0.2](0.5) [0, 1/3](2/3) [0, 0.3](0.6)

price:[5,5] [4,6] [3.3, 6.7]

Table C.3: The outcomes after Sarah lying about her value of the second chore. Her real
values are [1,2]. If she reports them as [1,3], she will be strictly better off. If she reports
[1,1] instead, she may face three different results with her disutility being increased,
reduced or unaffected. If she reports [1,4], she will be strictly worse off.
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