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Abstract
In this work, we explore the classical simulation of a process called Boson Sampling.
Here, we have an interferometer acting on m modes of a photon. We send n individual
photons into it and measure where they come out. Boson Sampling is a model suggested
by Aaronson and Arkhipov [2] as a method for experimental demonstration of quantum
supremacy on near-term devices. Being able to simulate it classically raises the bar
for quantum supremacy. The current best algorithm to generate samples for arbitrary
interferometers is by Clifford & Clifford[11]. It creates the sample progressively, photon
by photon, by sampling from the marginal distributions. Their algorithm has running
time O(n2n +poly(m,n)), where poly(m,n) = O(mn2).

The most significant part of the complexity of Boson Sampling comes from the need to
compute permanents of matrices; performing this computation for an arbitrary matrix
is #P-hard.[1] However, the situation is different if we can identify some additional
structure. In this work, we focus on sampling from a shallow interferometer, i.e. one
that has depth D = O(logm). We give a construction of such a device and prove that
this induces a band on the matrix. We use the bipartite tree decomposition method
of Cifuentes & Parrilo from [9], which allows us to compute the required permanents
efficiently.

We use this to adapt the algorithms by Clifford & Clifford, replacing all permanent
computations with this tree-decomposition-based method. We give an algorithm that
generates a sample from the collision-less shallow Boson Sampling experiment in
time O

(
mn32ω′(n)ω′(n)2) where ω′(n) := O(min(c logm,2n)); or for m = n2 in time

O
(
n5+cc2 log2 n

)
. The constant c is a parameter that we can choose: we introduce it

into the depth: D := O(c logm). Our algorithm first constructs a tree decomposition
of the randomly permuted first n columns of the interferometer matrix and then uses
restrictions of the decomposition (a concept we introduce) to compute permanents of
the required submatrices.
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guidance were indispensable. Our discussions were always fruitful and moved me
forward with feedback and motivation. Thank you.

I want to thank my family, in particular my parents. They were an unending source
of support on my university journey, including this project, and none of it would be
possible without them.

Last but definitely not least, I would like to thank all my friends for always supporting
and listening to me, be it remotely or in person. Some of you probably dreamt about
graphs and permanents at some point.

iii



Table of Contents

1 Introduction 1
1.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 General Preliminaries 4
2.1 Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Matrices and Their Graphs . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Extending Dirac Notation to Graphs of Matrices . . . . . . . . . . . . 6
2.4 Permanent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Permanents Sum Perfect Matchings . . . . . . . . . . . . . . 8
2.4.2 Complexity of Computing the Permanent . . . . . . . . . . . 9

2.5 Short Introduction of Quantum Optics . . . . . . . . . . . . . . . . . 10
2.5.1 Qudit Representation . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Transformation of Multiple Photons . . . . . . . . . . . . . . 11
2.5.3 Basic Optical Devices . . . . . . . . . . . . . . . . . . . . . 11

3 Boson Sampling 13
3.1 Derivation of Outcome Probabilities . . . . . . . . . . . . . . . . . . 13
3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Classical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Permuting Input Modes . . . . . . . . . . . . . . . . . . . . 20

4 Tree Decompositions 21
4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Permanent From a Tree Decomposition . . . . . . . . . . . . . . . . 23

4.3.1 Simple Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Recursive Steps . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 New Algorithm 28
5.1 Shallow Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Beamsplitter Arrays . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Decomposing a Banded Matrix . . . . . . . . . . . . . . . . 31

5.2 Restriction of a Tree Decomposition . . . . . . . . . . . . . . . . . . 32
5.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



5.3.1 Comments on the Steps . . . . . . . . . . . . . . . . . . . . . 36
5.3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 39
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.1 Reuse of Partial Results . . . . . . . . . . . . . . . . . . . . 40
6.1.2 Allowing Collisions . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

A Supplementary Material 43
A.1 Beamsplitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 By Decycling of the Line Graph . . . . . . . . . . . . . . . . . . . . 44

v



Chapter 1

Introduction

Quantum Computing is a promising field at the intersection of Computer Science and
Physics. It exploits properties of quantum mechanical systems that do not have non-
quantum (usually called classical) analogue to speed up computation. Some of these
properties are superposition, interference and entanglement.[21]

A few examples of problems where quantum computation is better than classical in-
clude: simulation of quantum systems, optimization, and unstructured search (Grover’s
algorithm[17]). A major example is Shor’s algorithm for integer factorization[24],
which can use quantum properties to perform, in polynomial time, computation widely
believed infeasible on classical computers. The hardness of integer factorization is the
basis of many current cryptosystems (e.g. RSA), and Shor’s algorithm would make
quantum computers extremely efficient tools for cryptanalysis. Other use cases are
being researched, such as quantum machine learning.[23]

In terms of theory, it is clear that quantum computers should be able to solve certain
problems much more efficiently than classical. This is what we call quantum advantage
or supremacy. However, this is difficult to demonstrate experimentally: current quantum
devices are limited in size, that is, the number of quantum bits (qubits) on which we
can operate, and they are extremely delicate. Near-term quantum devices are not fault-
tolerant, which means that it is difficult to use them for any elaborate computation that
could demonstrate quantum advantage in an experiment.

More and more experiments with bigger or more complex systems are successfully
being done to show the advantage. However, the bar for quantum supremacy will rise if
we can show a classical algorithm that efficiently can perform the same computation, or
simulate the quantum algorithm. This is the central motivation for this project.

We focus on the problem called Boson Sampling, defined by Aaronson & Arkhipov in [2].
Imagine we have an optical device called an interferometer, into which we are sending
individual photons, particles of light. The incoming photons are in pre-defined modes,
which could mean, for example, their locations in space. The interferometer scatters
them: it sends photons to some output modes, which may be the same or different as
input modes. We measure where the photons end up. This is a quantum mechanical
process which is interesting because it can be used as a non-universal quantum computer
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Chapter 1. Introduction 2

for certain specialised computations. Boson Sampling is the problem of simulating this
process of photons scattering in a given interferometer, i.e. creating samples that obey
the required probability distribution.

Generating these samples is a difficult problem because the probability distribution
governing into which output modes the photons should go depends on an object called
the permanent of a matrix. This is similar to a determinant, but does not alternate signs.
However, while determinants are easy to compute, the computation of a permanent of
an arbitrary matrix is #P-hard.[1] The best-known algorithms to compute a permanent
take time O(n2n).[16]

In [20], Moylett & Turner showed how we can use a quantum computer to generate
samples from Boson Sampling. In [11], Cliffords & Clifford gave two classical algo-
rithms and proved that samples of the Boson Sampling experiment can be generated in
O(n2n +poly(m,n)) time (up to a constant factor as fast as computing two permanents)
and O(m) additional space; with m being the number of modes, and n the number of
photons.

We focus on the case where the circuit (the interferometer) is shallow, meaning that
its depth scales as O(logm), where m is the number of modes. There are some results
about shallow circuits: in particular, in [18], Jozsa proved that they should be classically
simulatable in polynomial time. In [15], Garcı́a-Patrón, Renema & Shchesnovich
showed that in a shallow regime, samples can be generates in quasi-polynomial time.

The matrix representing a shallow interferometer is sparse, which allows us to use an
algorithm by Cifuentes & Parrilo[9] that can compute the permanent of an n×n sparse
matrix using a technique called bipartite tree decomposition in time Õ(n2ω), where ω

is the treewidth of the decomposition, and Õ hides polynomial factors of ω.

In this work, we merge the methods by Clifford & Clifford for classical simulation
of Boson Sampling, and Cifuentes & Parrilo for efficient computation of permanents
of sparse matrices. We derive a polynomial-time algorithm to generate samples of
the Boson Sampling experiment for shallow interferometers. We explore the underly-
ing concepts of Boson Sampling, quantum optics as well as the mathematics of tree
decompositions.

The problem we are solving seems to be of broader research interest. During the
work on this project, Oh et al. published a pre-print[22] that described a similar idea.
However, they focused on other problems (especially Gaussian Boson Sampling), and it
seems they do not give much detail about a solution to our problem. To the best of our
understanding, our approach is different in that we generate a large tree decomposition
of the interferometer matrix and then use its restrictions (see sec. 5.2) to compute
permanents.

1.1 Aims

1. Understand Boson Sampling and the algorithms of Clifford & Clifford[11] for
generating samples from arbitrary interferometers,
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2. understand tree decompositions and the algorithm due to Cifuentes & Parrilo[9]
that can compute permanents of sparse matrices efficiently,

3. exploit the previous two points to obtain a polynomial-time classical algorithm
that can simulate Boson Sampling on shallow interferometers.

1.2 Structure

In chapter 2, we present the basic mathematics and quantum physics needed to under-
stand the work. Then chapters 3 and 4 go on to explain the two main ideas: Boson
Sampling and the Clifford & Clifford paper; and the algorithm of Cifuentes & Parrilo.
These are highly non-trivial and took a lot of work to understand; hence we give them
their own chapters. In chapter 5, we bring the knowledge gained from them, as well
as original ideas, together and give our own algorithm to simulate Boson Sampling.
Finally, in chapter 6, we conclude, reflect on the results, and leave two conjectures for
the future.

Additionally, for the interested reader, some further ideas are sketched in the appendices:
these are not central to the project and not necessary to understand it. The topics shown
include alternative tree decomposition methods that we did not use.

1.3 Contributions

Here, we summarise the main contributions from this work:

• We define a concept of restrictions of tree decompositions (see definition 5.2.1),
which removes unwanted vertices from an existing decomposition. If the original
matrix has structure that gives its graph an easy decomposition (such as a banded
matrix), an arbitrary submatrix may be harder to decompose. Our method helps
by leveraging the decomposition of the original matrix. We also prove a result
relating this to the permanent (see lemma 5.2.3).

• We propose a new algorithm to simulate Boson Sampling on shallow circuits in
time O

(
mn32ω′(n)ω′(n)2) where ω′(n) := O(min(c logm,2n)); or for m = n2 in

time O
(
n5+cc2 log2 n

)
. We can choose the constant c depending on the desired

depth D := O(c logm).

Our algorithm works by progressively sampling photons, using the algorithm of
Clifford & Clifford. The innovation here is that before sampling, we generate a
tree decomposition of the interferometer matrix, and then replace the permanent
computation with the algorithm of Cifuentes & Parrilo. We can use the overall
decomposition and, at each step, restrict it to only the relevant parts. This enables
us to compute permanents of submatrices efficiently. See section 5.3.

• We extend the bra-ket notation to graphs of matrices; this is our own spin on some
usual notations, which we think is useful (see notation 2.3.1).



Chapter 2

General Preliminaries

Firstly, we present a basic table of symbols. These are standard ideas, but we also take
this opportunity to fix their notation. We will add more along the way.

symbol meaning definition
Z integers = {...,−2,−1,0,1,2, ...}
Z+ positive integers = {1,2, ...}
[n] positive integers up to n ∈ Z+ = {1,2, ...,n}
N natural numbers = {0}∪Z+

C complex numbers
z∗ complex conjugate of z ∈ C
O† conjugate transpose of operator O =

(
O⊤
)∗

U(m) unitary operators of dimension m
|X | cardinality of set X
P[ϕ] probability of ϕ

pmf probability mass function
Bij(X ,Y ) all bijections from X to Y = { f : X → Y | f is a bijection}

SX symmetric group on X = Bij(X ,X)
Sn symmetric group on n ∈ Z+ elements = S[n]

X ⊔Y disjoint union of sets X ,Y
P (X) power set of X = {Y | Y ⊆ X}

2.1 Dirac Notation

The Dirac notation[13], also called bra-ket notation, is used ubiquitously in Quantum
Theory, and we will be using it in this work as well. We will largely assume this is
known, but we recapitulate the relevant basics.

Notation 2.1.1 (bra-ket). A quantum state is a vector in an abstract Hilbert space,
denoted by a ket |ϕ⟩, where ϕ is just the label. Its adjoint is called a bra ⟨ϕ|. An inner
product (a scalar) is denoted ⟨ψ|ϕ⟩, and an outer product (an operator) is denoted |ψ⟩⟨ϕ|.
A nice property of this notation is how these objects compose: the bras connect to kets

4



Chapter 2. General Preliminaries 5

that are written to the right of them, e.g.:

|a⟩⟨b| ·
(

1√
2
|c⟩+ 1√

2
|d⟩
)
=

1√
2
|a⟩
(
⟨b|c⟩+ ⟨b|d⟩

)
We can write any linear transformation Ô as a linear superposition of ket-bra outer
products, provided we sum over an appropriate (orthonormal) basis:

Ô =

(
∑

i
|i⟩⟨i|

)
Ô

(
∑

j
| j⟩⟨ j|

)
= ∑

i
∑

j
Oi, j |i⟩⟨ j| (2.1)

where Oi, j := ⟨i| Ô | j⟩ are matrix elements of Ô in this basis. We clarify this term in the
next section.

2.2 Matrices and Their Graphs

We will be working with matrices and their parts throughout the entire work, and we
will use a formally slightly more general definition than usual. This corresponds to
definitions that Cifuentes and Parrilo use in [9].

Definition 2.2.1 (matrix). Let F be a field. Let R be a set of row labels, and let C be the
set of column labels. The sets R and C are usually required to be finite, and this will
always be the case for us. A matrix associates values in F to pairs of row and column
labels:

M : R ×C → F
(i, j) 7→Mi, j ∀i ∈ R , j ∈ C

where Mi, j are the entries or matrix elements. This is also denoted as M ∈ FR×C .

We used the same notation and name matrix element for an entry of a matrix, and in
section 2.1 for ⟨i| Ô | j⟩. This is no coincidence: for a fixed basis, an operator can be
identified with a matrix of its matrix elements.

Notation 2.2.2. If R = [m] and C = [n] for some m,n ∈ Z+, then we denote the matrix
as M ∈ Fm×n := F[m]×[n]. This is a standard simplification.

Definition 2.2.3 (submatrix). Let M ∈ FR×C be a matrix. Let R ′ ⊆ R , C ′ ⊆ C be sub-
sets of row and column labels. Then the submatrix M

∣∣
R ′,C ′ is just a domain restriction

of M:
M
∣∣
R ′,C ′ : R ′×C ′→ F

(i, j) 7→Mi, j

This is exactly what you would expect a submatrix to be: take a matrix and delete some
rows and columns. Note that it is important that we do not relabel rows and columns to
fill in the gaps:
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( 1 2
1 M1,1 M1,2
222 M333,1 M333,1

)
̸=


1 2 3

1 M1,1 M1,2 M1,3
2 M2,1 M2,2 M2,3
3 M3,1 M3,2 M3,3


∣∣∣∣∣∣∣∣∣∣R ′={1,333}

C ′={1,2}

=

( 1 2
1 M1,1 M1,2
333 M333,1 M333,2

)

An equivalent way to look at a matrix, which will become indispensable in chapter 4, is
by representing it as a graph:

Definition 2.2.4 (graph of a matrix). Let M ∈ FR×C be a matrix. Then we define a
weighted bipartite1 graph G(M) := (V,E, ℓ) with:

• vertex set V = R ⊔C (disjoint union),

• edge set E ⊆ R ×C ,

• labels, or weights, on edges ℓ : E→ F,

such that there exists an edge (r,c) ∈ E iff the matrix element that the endpoints label is
nonzero: Mr,c ̸= 0. The function ℓ gives us the value of that matrix element, i.e. for all
(r,c) ∈ E, we have ℓ(r,c) := Mr,c.

A matrix and its graph uniquely determine each other, so we may view them as inter-
changeable. In fact, in chapter 4, we will use these graphs to compute permanents;
and in chapter 5, we will use the graphs to reason about constructing matrices with
properties we like.

2.3 Extending Dirac Notation to Graphs of Matrices

Here, we present our original notation for matrix graphs. It is similar to some other
standard notations,2 with a few key differences that arose naturally from our concrete
needs. We look back at equation 2.1, but rebracket as follows

Ô = ∑
i
|i⟩⟨i| Ô∑

j
| j⟩⟨ j|= ∑

i
∑

j

(
|i⟩
)(
⟨i| Ô | j⟩

)(
⟨ j|
)

(2.2)

It is useful to think of the expression on the right-hand side in 2.2 as an outer product of
|i⟩ and ⟨ j|, that are connected by the scalar ⟨i| Ô | j⟩. We use this to represent the matrix
as a graph:

Notation 2.3.1 (bra-ket notation for the graph of a matrix). In the graph representation
of definition 2.2.4, the row labels in R are denoted using kets |i⟩, and the column labels
in C by bras ⟨ j|. An edge represents a nonzero ⟨i| Ô | j⟩= Oi, j.

1all our graphs will be bipartite, so we will sometimes omit this word
2especially for relations
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Example 2.3.2. Let M ∈ C3×4 and N ∈ C4×2 be

M =

1 2 0 0
0 3 0 0
0 0 4 5

 N =


1 5
0 7
0 2
−1 0

 (2.3)

Then the graphs G(M) and G(N) are:

G(M) =



|1⟩

|2⟩

|3⟩

⟨1|

⟨2|

⟨3|

⟨4|

⟨1|M|1⟩= 1

2
3

4

⟨3|M |4⟩= 5


G(N) =



|1⟩

|2⟩

|3⟩

|4⟩

⟨1|

⟨2|

1
5

7

2

⟨4|N |1⟩=−1


(2.4)

Notice how this notation is purposefully internal: we look at the matrix from the inside.
We use this to construct matrices in section 5.1, so composition has to be immediate:
clip together the bras and kets, sum over possible composite edges from |i⟩ to ⟨ j|,
multiply the weights of their parts. This is to mimic the usual composition of matrices.

Example 2.3.3. We use the same matrices M,N from example 2.3.2. Note especially
how the edge with weight 1 ·5+2 ·7 arises from the edges drawn bold.

G(MN) =


|1⟩

|2⟩

|3⟩

⟨1|

⟨2|

⟨3|

⟨4|

1

2
3

4

5

 ·

|1⟩

|2⟩

|3⟩

|4⟩

⟨1|

⟨2|

1
5

7

2

−1

 (2.5)

=



|1⟩

|2⟩

|3⟩

⟨1|1⟩

⟨2|2⟩

⟨3|3⟩

⟨4|4⟩

⟨1|

⟨2|

1
2

3

4

5

1
5

7

2

−1


=


|1⟩

|2⟩

|3⟩

⟨1|

⟨2|

1 ·1
1 ·5+2 ·7

3 ·1

4 ·2

5 · (−1)


(2.6)

The multiplication is linear, but we only show those parts that do not vanish, i.e. ⟨i|i⟩.
We emphasize that this is meant to faithfully represent composition, so data is seen
as flowing from right to left: any vector |v⟩ to which MN is applied comes from right,
same as in the usual notation MN |v⟩. Likewise, bras are applied from left; for example:

⟨i|MN | j⟩= ⟨i|

 |1⟩|2⟩
|3⟩

⟨1|

⟨2|

1 ·1
1 ·5+2 ·73 ·1

4 ·2

5 · (−1)

 | j⟩ (2.7)
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2.4 Permanent

The essential, main aim of this work is to be able to compute the permanents of
interesting matrices. Let us define what a permanent is first then.

Definition 2.4.1 (permanent of a matrix; c.f. [16]). Let M ∈ Fn×n be a square matrix.
Then the permanent of this matrix is

perM := ∑
σ∈Sn

n

∏
i=1

Mi,σ(i)

where Sn is the symmetric group of n elements.

The above is the standard definition. However, for our needs it is better to redefine this
to correspond with our definition of a matrix (def. 2.2.1):

Definition 2.4.2. For a matrix M ∈ FR×C , its permanent is

perM := ∑
π∈Bij(R ,C )

∏
r∈R

Mr,π(r).

Recall that Bij(R ,C ) is the set of bijections R → C .

We do not require a square matrix anymore. When examining Cifuentes and Parrilo’s
[9], we will need permanents of submatrices that are not square; their permanents are
defined to be zero. In addition, we will need the permanent of a matrix without any
rows or columns, which they implicitly assumed to be one.3 In fact, definition 2.4.2 is
flexible enough to handle both of these cases:

Lemma 2.4.3 (arbitrary permanents). Let M ∈ FR×C be a matrix. If |R | ≠ |C |, then
perM = 0; and if R = C =∅, then perM = 1.

Proof. We work with definition 2.4.2. In the case |R | ≠ |C |, the set of bijections
Bij(R ,C ) is empty – no bijections are possible between sets of different cardinality.
We sum over an empty set, which gives us ∑π∈∅ (···) = 0, the additive unit. Hence
perM = 0.

In the case R = C =∅, there is a single bijection, the empty function ε : ∅→∅. The
sum is over the singleton set Bij(R ,C ) = {ε}, and inside we take a product over an
empty set R :

∑
π∈{ε}

∏
r∈∅

Mr,π(r) = ∏
r∈∅

Mr,ε(r) = 1.

Note that a product of zero elements is one. This is the same idea as factorial 0! = 1.
Hence perM = 1. ■

2.4.1 Permanents Sum Perfect Matchings

The graph representation of a matrix connects naturally to permanents.[19, 9] So far,
we had a matrix and we used a graph to represent it. Now we go the other way, from a
graph to the matrix. and we introduce the intuition using figure 2.1.

3this case caused much confusion when trying to understand the paper, so we clarify it beforehand
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 |1⟩|2⟩
|3⟩

⟨1|
⟨2|
⟨3|

= G

M︷ ︸︸ ︷1 1 1
1 1 0
0 1 1

 perM =

1

+

1

+

1

= 3

Figure 2.1: Connection between permanents and graphs of matrices

The matrix M is exactly the adjacency matrix of a directed bipartite graph G(M)
containing weights of the edges. The permanent counts all the perfect matchings, i.e.
bijections R → C in this graph. If the edges have weights, then this is a weighted
summation, where terms are products of weights of the edges in a matching.

Lemma 2.4.4. Let M ∈ FR×C be a matrix. Define MM(R ,C ) := {π ∈ Bij(R ,C ) | ∀r ∈
R . Mr,π(r) ̸= 0} as the set of bijections that do not allow any zero matrix elements, or
equivalently any zero edges in G(M). Then

perM = ∑
π∈MM(R ,C )

∏
r∈R

Mr,π(r)

Proof. We start with a sum over all bijections. However, any π ∈ Bij(R ,C ) that allows
a matrix element Mr,π(r) = 0 will make the whole product vanish. Then only those
summands remain that do not allow any Mr,π(r) to be zero; i.e. exactly MM(R ,C ). ■

The definition of MM(R ,C ) captures exactly the perfect matchings in the graph G(M).
Some properties of permanents are immediate if we reason about graphs and matchings.
The one we will care about most is the following result:

Lemma 2.4.5. The permanent is invariant under permutations of rows or columns.

Proof. (cf. Theorem 1.1 (b) in [19]) Let M ∈ FR×C be a matrix, and let σ ∈ SR
and τ ∈ SC be permutations of rows and columns respectively. We can express σ =

∑r∈R |σ(r)⟩⟨r| and τ = ∑c∈C |c⟩⟨τ(c)|. When composed with M from left (σM) or right
(Mτ), these just rename vertices, but do not change their connectivity or edge weights.
Hence, the permanent, a sum over matchings, must be the same. ■

2.4.2 Complexity of Computing the Permanent

The currently best known algorithms to compute a permanent of some arbitrary matrix
M ∈ Fn×n require O(n2n) operations. We give here two such examples: Ryser’s formula
and Glynn’s formula[16]; we will not use them, but we are interested in the comparisons.

Ryser: perM = ∑
S⊆[n]

(−1)|S|
n

∏
j=1

∑
i∈[n]\S

Mi, j (2.8)

Glynn: perM =
1

2n−1

 ∑
δ∈{±1}n

δ1=+1

(
n

∏
a=1

δa

)
n

∏
c=1

n

∑
b=1

δbMb,c

 (2.9)
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In Ryser’s formula (2.8), we iterate over S⊆ [n] in Gray code order. Glynn’s formula
(2.9) requires that the characteristis of F is not two.[16]

2.5 Short Introduction of Quantum Optics

In quantum optics, we are dealing with photons, particles of light, existing in modes.
These could just be locations, but also for example polarisations. We have two represen-
tations used to talk about these systems: first the number states, also called Fock states.
For some mode, these count how many photons exist in that mode, and we denote them
as |n⟩, where we have n ∈ N photons. Canonically, such a state is written as an action
of the creation operator â† acting on a vacuum state |0⟩: [14]

|n⟩= (â†)n
√

n!
|0⟩ (2.10)

where the
√

n! is normalisation, and the operator used is defined as follows:

Definition 2.5.1. Creation (â†) and its corresponding annihilation (â) operators act on
number states and are defined for all n ∈ N as:

â† |n⟩=
√

n+1 |n+1⟩ â |n⟩=

{√
n |n−1⟩ n > 0

0 otherwise
(2.11)

These number states are eigenstates of the number operator â†â, satisfying â†â |n⟩=
n |n⟩, i.e. a state (=vector) |n⟩ is an eigenstate (=eigenvector) of this operator.

In we have m modes, then the number states are |n⟩ := |n1, . . . ,nm⟩, with the total
number of photons n = ∑

m
i=1 ni. Expressed using creation operators:

|n⟩=
m

∏
i=1

(â†
i )

ni

√
ni!
|0⟩⊗m (2.12)

where |0⟩⊗m = |0⟩1⊗|0⟩2⊗·· ·⊗ |0⟩m is the tensor product of m vaccum states, and
operator â†

i acts only on mode i. A linear optical device, such as interferometer (see
sec. 2.5.3), represented by a matrix U, acts on modes. It moves a photon between the
modes. Following (2.12), we can express this as the action on the creation operators:

â†
i

U7−→
m

∑
j=1

Ui, jâ
†
j (2.13)

In [3, chapter 3.2], Aaroronson and Arkhipov formalize this view that we may describe
a state as an action of creation operators: states are represented by multivariate complex
polynomials C[â†

1, â
†
2, . . . , â

†
m], where â†

i are now just formal variables. Transformations
of these states are substitutions of the variables and work exactly as in (2.13).
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2.5.1 Qudit Representation

Instead of number states which tell us the number of photons in each mode, we may
work with individual photons, and ask in which modes they are. These will be our
qudits. For example, if we have n = 1 photon in m possible modes, then a photon mode
eigenstate4 |ψ⟩ ∈ Cm means this photon is in mode ψ ∈ [m]. However, photons are
identical particles, and we can never tell which is which; hence with multiple photons
in number state |n⟩, we must always have a symmetric superposition (cf. [20]):

|n⟩ ≃ 1√
n!∏

m
i=1 ni!

∑
σ∈Sn

σ
∣∣Ψn
〉

(2.14)

where we denote σ ∈ Sn permutations which relabel the photons to give all reorderings,
and ∣∣Ψn

〉
:= |1⟩⊗n1⊗|2⟩⊗n2⊗·· ·⊗ |m⟩⊗nm =

m⊗
i=1

|i⟩⊗ni (2.15)

is a qudit state in a non-decreasing ordering of the photon modes. We use the symbol
≃ to mean these states are isomorphic: they represent the same physical system, but
formally live in different spaces: |n⟩ ∈ (Cn)⊗m and ∑σ σ

∣∣Ψn
〉
∈ (Cm)⊗n.

We do not give the derivation of the normalisation constant here. The proof is similar to
the derivation in section 3.1, and the idea is that if we have ni photons in some mode
i, then any permutation which only relabels these, while keeping them all in mode i,
actually gives the exact same state; and there are ni! of these permuations.

2.5.2 Transformation of Multiple Photons

In (2.13), we gave the action of an optical device acting on modes. Even if we have mul-
tiple photons, the transformation is clear (especially with the polynomial interpretation
by Aaronson & Arkhipov[3]). How does it translate to the qudit representation?

In the qudit representation, the basis is formed by tensor products of photons that tell us
in which mode the photon is: |ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩. Then the transformation, acting
on modes, will transform each factor of the product separately, actings as U⊗n:

modes: â†
i

U7−→
m

∑
j=1

Ui, jâ
†
j 1 qudit: |i⟩ U7−→

m

∑
j=1

Ui, j | j⟩= U |i⟩ (2.16)

n qudits:
∣∣Ψn
〉
=

n⊗
k=1

|ψk⟩
U7−−→

n⊗
k=1

(
U |ψk⟩

)
= U⊗n ∣∣Ψn

〉
(2.17)

2.5.3 Basic Optical Devices

We have mentioned the word interferometer before; here we give details: an inter-
ferometer is an optical system that splits photon beams (or, in our case, individual
photons), sends them via different paths, and recombines them later. Along the way,

4this is an eigenstate of the mode operator m̂ |ψ⟩ := ψ |ψ⟩ ,ψ ∈ [m]
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they may acquire phases, and they interfere when they are combined. Importantly, they
may interfere constructively, but also destructively: the probability amplitudes may
cancel. Unless we involve losses of photons, such a device acts as a linear unitary
transformation of modes; and even lossy devices can be decomposed into a series of
unitary transformations and lossy channels.[15]

These interferometers may be constructed from simpler devices called phase shifters
and beamsplitters. Any interferometer can be constructed by using only a combination
of these two kinds of devices[8, 4], an important fact which we use in sec. 5.1.1. Let us
define these devices:

Definition 2.5.2. A phase gate (or phase shifter), parametrised by an angle φ ∈ [0,2π),
acts on the mode i as follows

modes: â†
i 7→ eiφ â†

i qudits: |i⟩ ⟨i|eiφ (2.18)

The arrow in the graphical representation empasises that we see this as photons in mode
i going from right to left. Phase shifters are single-mode unitary operations; from now
on, to simplify, we will always multiply them into the preceding or following operations,
as suggested by Jozsa in [18].

The other basic building block is a beamsplitter, which is an optical element that reflects
or transmits a photon with some probability, i.e. it may change the mode of a photon.

Definition 2.5.3 (cf. [7]). Let θ,φR,φT ∈ [0,2π) be three angles. The beamsplitter
acting on modes i, j parametrised by these angles is:

B(θ,φT ,φR) =

(
eiφT cosθ eiφR sinθ

−e−iφR sinθ e−iφT cosθ

)
≃


|i⟩

| j⟩

⟨i|

⟨ j|

eiφT cosθ

eiφR sinθ

−e−iφR sinθ

e−iφT cosθ


(2.19)

where φT (resp. R) are phases applied to the transmitted (resp. reflected) photon. The
probability of transmission is cos2 θ, and of reflection sin2

θ; the angle θ is gives the
coupling between the two modes.

Notation 2.5.4. A beamsplitter is completely determined by these tree angles. We will
often draw it simply as

B(θ,φT ,φR) =

 |i⟩
| j⟩

⟨i|
⟨ j|

θ,φT ,φR

 (2.20)

This construction of a beamsplitter is by design unitary, which means it preserves energy,
and hence no losses occur.[7] We give a short graph-based proof in A.1.



Chapter 3

Boson Sampling

The Boson Sampling problem was first defined by Aaronson & Arkhipov in [2]. We
have n identical photons1 in m modes. In the canonical case, the number of modes
is m = n2. We have a unitary linear optical single-photon interferometer represented
by the matrix U ∈ U(m) acting on modes. Being a single-photon interferometer, the
photons do not not interact with each other. Rather, each photon may only interfere
with itself.

In the standard setting, the input state is initialised with the first n modes occupied by
exactly one photon each, and the rest is unoccupied. Following the set-up in section 2.5,
we give the number state |n⟩, as well as qudit representation

∣∣Ψn
〉
, below:

|n⟩=
n

∏
i=1

â†
i |0⟩

⊗m = |1⟩⊗n⊗|0⟩⊗(m−n) (3.1)

|n⟩ ≃ 1√
n!∏

m
i=1 ni!

∑
σ∈Sn

σ
∣∣Ψn
〉 ∣∣Ψn

〉
=

n⊗
i=1

|i⟩ (3.2)

In (3.2), we use the state
∣∣Ψn
〉

with photons ordered in non-decreasing modes as a
convenient representation[11], but recall that the actual physical state must be symmetric.
From section 2.5, we also recall the action of the interferometer U:

modes: â†
i

U7−→
m

∑
j=1

Ui, jâ
†
j qudits:

∣∣Ψn
〉 U7−→U⊗n ∣∣Ψn

〉
(3.3)

3.1 Derivation of Outcome Probabilities

Our derivation follows that in [20], filling in the missing steps. We denote |n′⟩ the output
state, the result of sending |n⟩ into the interferometer. Remember the interferometer
is unitary, so the total number of photons does not change: n = ∑i ni = ∑i n′i = n′. The

1in general, we would only need these to be bosons; however, working with photons is practical, and
this is the way it was defined

13
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probability of measuring the output state |n′⟩ is by the Born rule[5] P [n′|n] = |⟨n′|U|n⟩|2.
Using (2.15) and (3.3), we express it in qudit states:

P
[
n′
∣∣n]= ∣∣∣∣∣

(
1√

n!∏
m
i=1 n′i!

∑
σ∈Sn

〈
Ψn′
∣∣σ†

)
U⊗n

(
1√

n!∏
m
i=1 ni!

∑
τ∈Sn

τ
∣∣Ψn
〉)∣∣∣∣∣

2

(3.4)

=

∣∣∣∣∣ 1
n!
√

∏
m
i=1 ni! n′i!

∑
σ,τ∈Sn

〈
Ψn′
∣∣σ†U⊗n

τ
∣∣Ψn
〉∣∣∣∣∣

2

(3.5)

=

∣∣∣∣∣ 1
n!
√

∏
m
i=1 ni! n′i!

∑
σ,τ∈Sn

(
m⊗

j=1

⟨ j|⊗n′j

)
σ

†U⊗n
τ

(
m⊗

k=1

|k⟩⊗nk

)∣∣∣∣∣
2

(3.6)

The tensor products in (3.6) are indexed by modes, with potentially multiple photons in
any given mode. The permutations will relabel individual photons, so we need to access
those. We will denote |ψi⟩ and |ψ′i⟩ the ith photon of states

∣∣Ψn
〉

and
∣∣Ψn′

〉
, respectively.

P
[
n′
∣∣n]= ∣∣∣∣∣ 1

n!
√

∏
m
i=1 ni! n′i!

∑
σ,τ∈Sn

(
n⊗

j=1

〈
ψ
′
j
∣∣)σ

†U⊗n
τ

(
n⊗

k=1

|ψk⟩

)∣∣∣∣∣
2

(3.7)

=

∣∣∣∣∣∣ 1
n!
√

∏
m
i=1 ni! n′i!

∑
σ,τ∈Sn

(
n⊗

j=1

〈
ψ
′
j
∣∣)U⊗n

σ
†
τ︸︷︷︸

ζ

(
n⊗

k=1

|ψk⟩

)∣∣∣∣∣∣
2

(3.8)

The permutation σ† in (3.7) relabels photons after we have applied U to each of them.
This is the same as first reordering and then applying U. In (3.8), σ† and τ range over
Sn, as does their composite ζ. However, there are |Sn|= n! distinct pairs of σ† and τ

that compose to each ζ ∈ Sn, so by removing one summation, we get a factor n!.

P
[
n′
∣∣n]= ∣∣∣∣∣ 1

n!
√

∏
m
i=1 ni! n′i!

n! ∑
ζ∈Sn

(
n⊗

j=1

〈
ψ
′
j
∣∣)U⊗n

ζ

(
n⊗

k=1

|ψk⟩

)∣∣∣∣∣
2

(3.9)

=

∣∣∣∣∣ 1√
∏

m
i=1 ni! n′i!

∑
ζ∈Sn

(
n⊗

j=1

〈
ψ
′
j
∣∣)U⊗n

(
n⊗

k=1

∣∣∣ψζ−1(k)

〉)∣∣∣∣∣
2

(3.10)

In (3.9), photons in the product
⊗

k |ψk⟩ are reordered by ζ. A photon |ψk⟩ that is at
position k in the product is moved to index ζ(k). Then in the reordered state, the photon
that is at position k was also put there by ζ, and to find where it was originally, we invert
ζ. This way we can directly reorder the product and get (3.10). Then we simplify the
inner products (in fact, matrix elements) of tensor products, to get just the product of
the matrix elements of corresponding qudits:

P
[
n′
∣∣n]= ∣∣∣∣∣ 1√

∏
m
i=1 ni! n′i!

∑
π∈Sn

n

∏
j=1

〈
ψ
′
j
∣∣U ∣∣ψπ( j)

〉∣∣∣∣∣
2

(3.11)

In (3.11), we define π := ζ−1. We should sum over π−1, but addition commutes and
there are no other occurences of π, so we reorder the summation into a more convenient
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form. Now, the expression is exactly a permanent from definition 2.4.1. To make this
clear, let us define a matrix V ∈ Cn×n by giving its matrix elements:

Vi, j :=
〈
ψ
′
i
∣∣U ∣∣ψ j

〉
i, j = 1, . . . ,n (3.12)

Using this matrix, we rewrite (3.11) to

P
[
n′
∣∣n]= ∣∣∣∣∣ 1√

∏
m
i=1 ni! n′i!

∑
π∈Sn

n

∏
j=1

V j,π( j)

∣∣∣∣∣
2

=

∣∣perV
∣∣2

∏
m
i=1 ni! ·n′i!

(3.13)

and finally, we fill in the initial state defined in (3.1) as |n⟩= |1⟩⊗n⊗|0⟩⊗(m−n). Every
ni is either 0 or 1, so all factorials ni! = 1. As |n⟩ is fixed, the probability distribution
P [n′|n] becomes just[20]:

P
[
n′
]
=

∣∣perV
∣∣2

∏
m
i=1 n′i!

(3.14)

3.2 Discussion

In (3.14), we see that, up to normalisation, the probability of outcome |n′⟩ depends on
the permanent of some matrix V . But why should it be the permanent, and what is this
matrix?

We start with V . This is a matrix that represents the possible paths that photons can take
through the interferometer. In the derivation, we simply defined it from the expression
that was already there, but there is meaning in it. Recall from (3.12):

Vi, j :=
〈
ψ
′
i
∣∣U ∣∣ψ j

〉
i, j = 1, . . . ,n

where
∣∣ψ j
〉

is the jth photon of
∣∣Ψn
〉
= |1⟩⊗n1⊗|2⟩⊗n2⊗·· ·⊗|m⟩⊗nm , and likewise |ψ′i⟩

is the ith photon of
∣∣Ψn′

〉
. Clearly, the photon modes may repeat (i.e. multiple photons

may be in the same mode). Example 3.2.1 shows how this leads to the copying of rows
(or columns, but that will never happen with our standard definition of input |n⟩).

Example 3.2.1. For n = n′ = 3, m = 5, let

|n⟩= |1,1,1,0,0⟩ ,
∣∣n′〉= |2,0,0,1,0⟩ ,∣∣Ψn

〉
= |1⟩ |2⟩ |3⟩ ,

∣∣Ψn′
〉
= |1⟩ |1⟩ |4⟩ .

Then, for example, we have these matrix elements: V1,1 = ⟨ψ′1|U|ψ1⟩= ⟨1|U|1⟩=U1,1
and V2,3 = ⟨ψ′2|U|ψ3⟩= ⟨1|U|3⟩= U1,3. The full matrix is:

V =

U1,1 U1,2 U1,3
U1,1 U1,2 U1,3
U4,1 U4,2 U4,3


Notice how rows 1 and 2 are the same! This is because the output photons 1 and 2 are
in the same mode.
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In general, to obtain V , we take n′i copies of row i in U to create an n×m matrix, and
from this we take n j copies of column j. Since |n⟩= |1n,0m−n⟩, this operation simply
takes the first n columns of U.[20] This suggests that while U ∈ Cm×m is an operator
acting on modes (of a single photon), V ∈ Cn×n describes the possible behaviour of
each of the n photons. We could say that V is a realisation of U on the given input and
output occupations. We find the meaning of V easier to understand on graphs, so we
give the following (original) graphical formalization of the construction of V .

Definition 3.2.2 (input and output preparation). Let U ∈ Cm×m be an interferometer
matrix and G(U) its graph. We have n photons, input state |n⟩= |1n,0m−n⟩, and output
|n′⟩= |n′1, . . . ,n′m⟩, with n′ = n. Define the following:

• The input preparation function Γin
n that deletes all input (right-hand-side) vertices

⟨ j| with j > n in G(U); see the red hatched rectangle in (3.15). This is the
deletion of columns.

• The output preparation function Γout
n′ that replaces each output (left-hand-side)

vertex |i⟩ with n′i copies, also copying edges; this is shown with bold red edges
for |1⟩ in (3.15). This is the copying of rows.

• The full preparation is defined as Γn′ = Γout
n′ ◦Γin

n . This gives V .

G(U) =



|1⟩

|2⟩
...

...
|m⟩

⟨1|

⟨2|
...
⟨n|
...
⟨m|

...


Γn′7−−→



|1⟩1
|1⟩2

...
|1⟩n′1
|2⟩1

...
|2⟩n′2...

⟨1|

⟨2|
...
⟨n|

...


(3.15)

This construction formalizes the idea that the matrix V = Γn′(U) describes the paths
the photons may take. First, notice that the input vertices (right-hand-side) are precisely
the factors of

∣∣Ψn
〉
= |1⟩⊗ |2⟩⊗ · · ·⊗ |n⟩, and likewise for the outputs (left-hand-side)

and
∣∣Ψn′

〉
= |ψ′1⟩⊗ |ψ′2⟩⊗ · · ·⊗ |ψ′n⟩. We have an edge |ψ′i⟩

〈
ψ j
∣∣ if the photon

at position j in mode ψ j is allowed to reach position i (which has mode ψi), and the
weight of this edge is the probability amplitude.

These are the possibilities. In the end, every photon starts and ends in a single position
of the product, i.e. a single input and a single output vertex. It must pass exactly one
of the allowed edges from right to left. This is a perfect matching on the graph! Its
probability amplitude is the product of amplitudes of its edges, and we sum over all
allowed matchings for any particular |n⟩ , |n′⟩. We have now arrived at the permanent of
V (cf. sec. 2.4.1). Finally, we will note that this understanding of why a permanent
appears agrees exactly with [26, Section 4].
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3.3 Classical Simulation

In this work, we adapt the results by Clifford & Clifford from [11]. They give two
algorithms to sample the outcomes of a Boson Sampling experiment, which we will
label CC-A (for which we give pseudocode) and CC-B. Algorithm CC-A requires time
O(mn3n), while CC-B takes O(n2n + poly(m,n)) time, where poly(m,n) = O(mn2).
Both algorithms require O(m) space on top of input storage. Notably, algorithm
CC-B creates one sample in time approximately equivalent to that of computing two
permanents[11] (see sec. 2.4.2); and it is currently (to our knowledge) the best algorithm
to do this for arbitrary inputs.2 We will not prove these complexities, but in section
5.3.3 we derive the complexity of our algorithm that is based on CC-A.

Both algorithms use the same underlying idea: to create a progressively larger sample
by computing marginal probability distributions one photon at a time. We can imagine
it as first asking the first photon to which mode it went, then conditioned on that, we
ask the second photon, and so on. Concretely, for photon at position k = 2, . . . ,n, we
know the modes of the previous k−1 photons. This way, we generate a sequence of
photon modes (qudits) |ψ1⟩ · · · |ψn⟩. In the end, we sort these to get

∣∣Ψn′
〉

as defined in
(2.15), which is a convenient representation of |n′⟩.

Algorithm CC-A: Boson Sampling by Clifford & Clifford[11, Algorithm A]
Input:

• m,n ∈ Z+, with n≤ m
• matrix U ∈ U(m) a Haar random unitary representing an interferometer.

Result: a single sample
∣∣Ψn′

〉
1 for k← 1, . . . ,n do
2 for i ∈ [m] do

3 wk(i)← ∑C⊆[n]
|C |=k

∣∣∣per
(

Γ̃out
(ψ1,...,ψk−1,i)

Γ̃in
C U

)∣∣∣2
4 sample ψk← i using an (unnormalised) pmf wk(i)

5
∣∣Ψn′

〉
← sort |ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩ in non-decreasing order

6 return
∣∣Ψn′

〉
Algorithm CC-A works by computing an (unnormalised) probability mass function
(pmf) wk : [m]→R for each photon k in the sequence, where k∈ [n]. This is a probability
that photon k is in mode i: |ψk⟩= |i⟩; and is conditioned on the already known modes
of all previous photons. This function wk is used at each stage to sample the mode of
photon k.

We will follow the argument in [11], filling in our own steps and commenting on the
physical intuition. From (3.14), we have the probability of a particular sample |n′⟩:

P
[
n′
]
=

∣∣perV
∣∣2

∏
m
i=1 n′i!

=

∣∣per Γn′(U)
∣∣2

∏
m
i=1 n′i!

=

∣∣∣per Γout
n′ Γin

n (U)
∣∣∣2

∏
m
i=1 n′i!

(3.16)

2Clifford and Clifford published another algorithm that runs much faster if m ∝ n. In particular, if
m = n, then the average time is O(n ·1.69n).[12]
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where we have fully expanded the definition of input and output preparation Γn. The
number state corresponds to

∣∣Ψn′
〉
= |ψ1⟩ · · · |ψn⟩ which is a non-decreasing sequence

of photon modes. To simplify notation, we will denote this sequence as z ∈ [m]n. We
rewrite the probability in this representation:

q(z) := P [z] =

∣∣∣per Γ̃out
z Γ̃in

[n](U)
∣∣∣2

∏
m
i=1 n′i!

= P
[
n′
]

(3.17)

which is now in the qudit representation. These are the same z and q(z) as used in [11].
We have also redefined the preparation functions Γ for this representation:

Definition 3.3.1 (input preparation (qudits)). Let U ∈ CR×C (with R = C = [m]) be
an interferometer matrix, C ′ ⊆ C be a subset of input modes (columns), and r ∈ R |C ′|
a sequence of output mode (rows) of length |C ′|. The input preparation Γ̃in

C ′ deletes all
input modes that are not in C ′, and the output preparation Γ̃out

r takes a matrix U and
creates a new one with rows Ur1 ,Ur2, . . . ,Ur|C ′| .

Note that we do not require r to be sorted in the non-decreasing order: we are now
looking at the particular measurements of photon modes, not the number states. The
probability of a particular sample r ∈ [m]n is:[11]

p(r) := P[r] =

∣∣per Γ̃out
r Γ̃in

[n](U)
∣∣2

n!
=

∣∣per Γ̃out
z Γ̃in

[n](U)
∣∣2

n!
= p(z) (3.18)

where we used the fact that permanents are invariant under row or column permutation
(lemma 2.4.5) to equate this to probability of getting the sorted z corresponding to r (we
write this z≃ r). Still dealing with a full sample of n photons, the input preparation is
over the full [n] (this will change later). For any number state |n′⟩ represented by z (in
qudits), we have

( n
n′1,...,n

′
m

)
different possible r, i.e. distinct orderings of photons (recall

that n′i is the number of photons in mode i). Clearly, r are just different configurations
(microstates) of the number state represented by z, and we show that their probabilities
sum to q(z):

∑
r≃z

p(r)
(3.18)
= p(z) ∑

r≃z
1 =

(
n

n′1,n
′
2, . . . ,n

′
m

)∣∣per Γ̃out
z Γ̃in

[n](U)
∣∣2

n!
(3.19)

=
n!

∏
m
i=1 n′i!

·

∣∣per Γ̃out
z Γ̃in

[n](U)
∣∣2

n!
(3.17)
= q(z) (3.20)

Looking at qudit measurements like this allows us to work with partial samples of k < n
photons. The definition of Γ̃in

C ′ allows us to select which of the incoming photons were
measured in the partial sample. This is important, because if we only measure the first
k photons, we cannot assume they are the same ones that were in the first k input modes
(recall we have single-photon modes at input). Instead, the probability of measuring
some partial sample r := (r1, . . . ,rk) ∈ [m]k of k photons will have to sum over the

(n
k

)
possible subsets of input modes from which these photons came:3[11]

3we drop the prime from C ′ here, just to simplify notation
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Lemma 3.3.2 (partial sample). The marginal pmf of a partial sample of k ∈ [n] photons
is

p(r1, . . . ,rk) =
(n− k)!

n! ∑
C⊆[n]; |C |=k

∣∣∣per Γ̃
out
(r1,...,rk)

Γ̃
in
C (U)

∣∣∣2 (3.21)

Proof. Let r = (r1, . . . ,rn) be the full sample and r′ = (rk+1, . . . ,rn) the part that we do
not want. Then

p(r1, . . . ,rk) = ∑
r′

p(r) = ∑
r′

∣∣per Γ̃out
r Γ̃in

[n](U)
∣∣2

n!
(3.22)

=
1
n! ∑

r′

(
∑

σ∈Sn

n

∏
j=1

Ur j,σ j

)(
∑

τ∈Sn

n

∏
ℓ=1

Urℓ,τℓ

)∗
(3.23)

where we have expanded the definition of permanent 2.4.1, used that for x ∈ C the mag-
niture squared is |x|2 = x ·x∗. Recall that Γ̃out

r (M) gives a matrix with rows Mr1, . . . ,Mrn .
For efficiency, we write σ j ≡ σ( j), likewise for τ.

p(r1, . . . ,rk) =
1
n! ∑

r′
∑

σ,τ∈Sn

n

∏
j=1

Ur j,σ jU
∗
r j,τ j

=
1
n! ∑

r′
∑

σ,τ∈Sn

n

∏
j=1

U†
τ j,r j

Ur j,σ j (3.24)

=
1
n! ∑

σ,τ∈Sn

(
k

∏
j=1

U†
τ j,r j

Ur j,σ j

)
∑
r′

n

∏
ℓ=k+1

U†
τℓ,rℓUrℓ,σℓ (3.25)

We have rearranged the expressions. In the right hand side of (3.24), we used the
unitarity of U, giving us U∗r j,τ j

= U†
τ j,r j . In (3.25), we moved the terms not summed

over outside of the summation over r′ = (rk+1, . . . ,rn).

p(r1, . . . ,rk) =
1
n! ∑

σ,τ∈Sn

(
k

∏
j=1

U†
τ j,r j

Ur j,σ j

)
n

∏
ℓ=k+1

m

∑
rℓ=1

U†
τℓ,rℓUrℓ,σℓ (3.26)

=
1
n! ∑

σ,τ∈Sn

(
k

∏
j=1

U†
τ j,r j

Ur j,σ j

)
n

∏
ℓ=k+1

[U†U]τℓ,σℓ (3.27)

In (3.26), we exchanged the product and sum by distributivity. Only one rℓ appears now,
but the product ranges over ℓ. By unitarity U†U = 1. This means the only non-zero
terms are those where σℓ = τℓ for all ℓ > k. We partition the permutations as σ = µ⊕ζ

and τ = ν⊕ζ into a shared part ζ ∈ Sn−k (this is the σℓ = τℓ), and smaller permutations
µ,ν ∈ Sk. This means we also partition the set [n] on which σ,τ act into a subset C of
size k on which µ,ν act, and [n]\C acted upon by ζ. We sum over partitions C , and for
each there are (n− k)! possible permutations ζ; this gives the new factor in (3.28).

p(r1, . . . ,rk) =
(n− k)!

n! ∑
C⊆[n]; |C |=k

(
∑

µ∈SC

k

∏
j=1

Ur j,µ j

)(
∑

ν∈SC

k

∏
ℓ=1

Urℓ,νℓ

)∗
(3.28)

=
(n− k)!

n! ∑
C⊆[n]; |C |=k

∣∣∣per Γ̃
out
(r1,...,rk)

Γ̃
in
C (U)

∣∣∣2 (3.29)

In (3.28), we have also split apart the permutations µ,ν, and arrived back at the expres-
sion of a permanent.[11] ■
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Lemma 3.3.3. For r ∈ [m]n as defined above, the probability is[11]

p(r) = p(r1) · p(r2|r1) · p(r3|r1,r2) · · · p(rn|r1, . . . ,rn−1) (3.30)

Proof. Here, we use the chain rule for probabilities P[A,B] = P[A|B] ·P[B]:

p(r) = p(rn|r1, . . . ,rn−1) · p(r1, . . . ,rn−1) (3.31)
= p(rn|r1, . . . ,rn−1) · p(rn−1|r1, . . . ,rn−2) · p(r1, . . . ,rn−2) (3.32)

and we expand this until we have p(r1) · p(r2|r1) · p(r3|r1,r2) · · · p(rn|r1, . . . ,rn−1). ■

Lemma 3.3.3 gives us the ability to generate the sample progressively, one photon at
a time, each conditioned on all the previous photon modes. The p(r1, . . . ,rk) in (3.21)
is exactly the pmf wk that is computed at line 3 of Algorithm CC-A (but wk is not
normalised). Hence, we have shown the idea of the algorithm that we aim to extend.

3.3.1 Permuting Input Modes

With what we have done so far, we always have to account for the
(n

k

)
possible subsets of

input modes from which the k sampled photons came. This introduces more complexity.
A clever trick done in [11] allows us to randomly permute the input modes instead.

We recall equation (3.21) which gives the probability distribution of partial samples of
k photons:

p(r1, . . . ,rk) =
(n− k)!

n! ∑
C⊆[n]; |C |=k

∣∣∣per Γ̃
out
(r1,...,rk)

Γ̃
in
C (U)

∣∣∣2
Instead of summing over subsets C , we sum over permutations α ∈ Sn (not m, only the
occupied inputs!), and always take C = α([k]) = {α(c)|c ∈ [k]}. This corresponds to
taking the first k columns of a permuted matrix.

p(r1, . . . ,rk) =
(n− k)!

n!
1

k!(n− k)! ∑
α∈Sn

∣∣∣perΓ
out
(r1,...,rk)

Γ
in
α([k])(U)

∣∣∣2 (3.33)

= ∑
α∈Sn

1
n!

[
1
k!

∣∣∣perΓ
out
(r1,...,rk)

Γ
in
α([k])(U)

∣∣∣2] (3.34)

= Eα∈Sn

[
1
k!

∣∣∣perΓ
out
(r1,...,rk)

Γ
in
α([k])(U)

∣∣∣2]︸ ︷︷ ︸
φ(r1,...,rk|α)

(3.35)

In (3.33), we sum over α ∈ Sn. For each subset C , there are k!(n− k)! corresponding
permutations α, so we need to divide by this factor. After rearranging, in (3.34), we
recognize that the summation is an expectation over uniformly distributed permutations
α ∈ Sn (each with probability 1/n!) of the function in brackets, which Clifford &
Clifford[11] call φ(r1, . . . ,rk|α).

Equation (3.35) allows us to randomly permute the matrix columns at the beginning
and then compute the probabilities without needing to sum over subsets of inputs. This
is exactly what the algorithm CC-B does.[11, Algorithm B] We will also use this trick
in our algorithm.



Chapter 4

Tree Decompositions

We wish to sample from a shallow interferometer. As we will see later, in lemma 5.1.6,
this means the matrix of that interferometer is sparse, which means many of its elements
are zero. This chapter is about tree decompositions, which are not by themselves related
to Boson Sampling. However, these are tools from which we will benefit greatly.

In [9], Cifuentes and Parrilo give an algorithm that can compute the permanent of a
sparse matrix very efficiently by taking advantage of the sparsity structure. Essentially,
in a sparse matrix, many terms in the permanent vanish, and with proper preparation,
we can avoid even looking at those terms, thus reducing the computation time.

4.1 Basics

Definition 4.1.1 ((bipartite) tree decomposition[9]). Let G = (V = (R ,C ),E ⊆ R ×C )
be a bipartite graph. A tree decomposition T = (T,ρ,κ) is a triple containing:

• the underlying tree T , which is rooted in root(T ), and for each node t ∈ T , we
denote ch(t) the unordered set of its children; and

• the functions ρ : T → P (R ) and κ : T → P (C ) that label the nodes with subsets
of R and C ; we will say that a node t ∈ T contains the elements ρ(t) and κ(t).

A valid tree decomposition must satisfy the following axioms:

(T1) The union of labels over the entire tree must cover all vertices of the graph:⋃
t∈T

ρ(t) = R
⋃
t∈T

κ(t) = C

(T2) For every edge (r,c)∈ E, there exists a node t ∈ T that contains both its endpoints:

r ∈ ρ(t) c ∈ κ(t)

(T3) For every r ∈ R (resp. c ∈ C ), the set of all nodes that contain it is a subtree of T ,
i.e. all nodes containing r (resp. c) are connected in T .

21
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For a graph G, we will write T (G) for the set of all valid tree decompositions of this
graph.

Note the tree is written T , while the tree decomposition built upon it is written upright: T.
Also note that in the definition in [9], Cifuentes & Parrilo use different symbols: A for
R , α for ρ, X for C , and χ for κ. We use these to to represent rows and columns of a
matrix, so we choose a different notation, in the hope that is it easier to remember.1 For
clarity, we make also the distinction in words used: whenever we say node, it means the
node of a tree decomposition; and when we use vertex, it will always be a vertex of the
original graph.

We give an example of a tree decomposition from a matrix graph in figure 4.1.

M =

M1,1 M1,2 0
0 0 M2,3

M3,1 M3,2 M3,3

 G(M) =


|1⟩

|2⟩

|3⟩

⟨1|

⟨2|

⟨3|


|2⟩ ,⟨3|
t3
|3⟩ ,⟨3|
t2

|3⟩ ,⟨1| ,⟨2|
t1

|1⟩ ,⟨1| ,⟨2|
t4

Figure 4.1: Example of a tree decomposition T = (T,ρ,κ) of G(M)

Definition 4.1.2 (subtree). If T is a tree rooted at root(t), and t ∈ T is some node, then
we call Tt the subtree of T that is rooted at t and contains all its descendants (with the
same structure as in T ). We can see T as a directed graph, with arrows oriented from
parent→ child; then Tt is exactly what we get by finding t, keeping t and everything
reachable from it, and throwing out everything else. For example, in figure 4.1, the
subtree Tt2 = {t2, t3}.

Note 4.1.3 (forests). If the graph we are decomposing has multiple connected compo-
nents that are disconnected from each other, the axioms would only require that we
have a forest, where each disjoint tree corresponds to one of those components. We
need the decomposition to be a tree, so we must connect the disjoint trees of the forest;
any way will do, and everything will still work. This corresponds to having block-like
structures in the matrix (up to maybe permuting rows and columns).

A tree decomposition captures the connectedness (or, even more importantly, the
disconnectedness) of a graph. In particular, the axiom (T2) ensures that all edges
are contained, and this is central. It does not exclude nonexistent edges from being
hinted at, i.e. by putting vertices that do not have an edge into the same tree node.
Then a valid tree decomposition of any graph G = ((R ,C ),E) is the following trivial
one: T = (T = {t},ρ : t 7→ R ,κ : t 7→ C ). Here, T has a tree of single node, and all
vertices are contained in that node. This clearly satisfies axioms, but it is not a good
tree decomposition.

1Cifuentes and Parrilo use it for the same purpose; it may be that A, X for rows and columns is
a convention unknown to us.
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4.2 Treewidth

What is a good tree decomposition? It is one that captures the structure of the graph
correctly, but does not contain more vertices than necessary in each node. In particular,
computing with trees is easier than computing with graphs containing cycles (in fact,
this is sometimes NP-hard).[25] We want a tree decomposition to capture the essential
treeness of a graph, and we quantify what that means using the following notion:

Definition 4.2.1 (treewidth[9, 25]). Let G be a bipartite graph and T = (T,ρ,κ) some
tree decomposition of G. Then the treewidth of the tree decomposition is

tw(T) := max
t∈T

{
|ρ(t)|+ |κ(t)|

}
−1, (4.1)

that is the size of the largest node t (in terms of its contents ρ(t) and κ(t)) minus one.
Conversely, the treewidth of the graph G is the minimum treewidth possible with any
tree decomposition:

t̂w(G) := min
T∈T (G)

tw(T), (4.2)

which we denote with a hat to distinguish it from the treewidth of a particular decompo-
sition.

The minus sign in (4.1) was chosen arbitrarily, so that the treewidth of a tree T is
t̂w(T ) = 1. This is because treewidth measures how different a graph is from a tree. The
treewidth of the decomposition in figure 4.1 is tw(T) = 2: the graph G(M) is almost a
tree, but there is a cycle, namely |1⟩−⟨1|− |3⟩−⟨2|− |1⟩.

There may be many valid tree decompositions of any graph. In particular, equation
(4.2) suggests that finding a good one is a minimization task in its own right. Tree
decompositions, and especially the bounds of treewidth, have been explored for various
classes of graphs. However, in particular for bipartite graphs, we do not have a good
way to bound the treewidth or compute a low-treewidth decomposition.[25] Recall that
our graph representation of matrices is bipartite! This may pose a problem, and we need
more structure in our matrices.

Cifuentes & Parrilo give a few examples of low-treewidth tree decompositions, and
among them is a tree decomposition of a graph of a banded matrix.[9] Bandedness
turns out to be exactly what we need, and this decomposition will be very useful for
our algorithm. We describe it in section 5.1.2. Additionally, we have explored two
other methods for generating tree decompositions: one is a greedy algorithm, and one
performs decycling of the line graph of G(M). We have not used them, and so they are
only shortly described in A.2, A.3.

4.3 Permanent From a Tree Decomposition

While (T1) and (T2) capture all vertices and edges, it is together with (T3) that we are
able to extract the structure of a graph. At a high level, (T3) causes the edges that share
a vertex in the graph to be also connected by a path in the tree decomposition, and this
will be useful for the permanent calculation.
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Algorithm CP-2: BipartitePermanent
Input:

• a matrix M ∈ Cn×n, or equivalently its bipartite graph G = G(M),
• a tree decomposition T = (T,ρ,κ) of G

Result: the permanent perM
1 order← list of nodes in T , in topological order, starting from leaves
2 for t ∈ order do
3 Q[t],P[t]← new tables

4 Q[t](R,C)← per
(

M
∣∣
R,C

)
for R⊆ ρ(t) and C ⊆ κ(t)

5 if t is a leaf, i.e. ch(t) =∅ then
6 P[t]← Q[t]

7 else
8 EvalResursion(t)

9 return P[r](ρ(r),κ(r)) = perM, where r = root(T )

Procedure EvalResursion(t)
1 ch← |ch(t)|
2 for c j ∈ ch(t) do

3

{
∆

ρ

j ← ρ(c j)\ρ(t)
Iρ

j ← ρ(c j)∩ρ(t)

{
∆κ

j ← κ(c j)\κ(t)
Iκ

j ← κ(c j)∩κ(t)
4 Q′[ t |c j ],Q′′[ t→ c j ]← new tables
5 for R⊆ Iρ

j and C ⊆ Iκ
j do

6 Q′[ t |c j ](R,C)← (−1)|R| ·Q[t](R,C)

7 Q′′[ t→ c j ](R,C)← P[c j](R∪∆
ρ

j ,C∪∆κ
j )

8 for R⊆ ρ(t) and C ⊆ κ(t) do
9 P[t](R,C)← Subset Convolution(R,C;Q[t],Q′[t|c1], Q′′[t→ c1],. . . , Q′[t|cch],

Q′′[t→ cch])

Cifuentes & Parrilo give in [9, Algorithm 2] a dynamic programming algorithm that
can compute the permanent of an n×n matrix by using the tree decomposition of its
graph in time Õ(n2ω), where ω is the treewidth of the decomposition. The notation Õ is
like the asymptotic complexity O, but it also hides polynomial factors of ω.

We give the pseudocode in Algorithm CP-2 and procedure EvalResursion. However, we
do not provide the proof of this algorithm nor its running time: it is very complex and
relies on other previous work that is out of scope for this project (in particular, the paper
[6] on subset convolutions). Instead, we demonstrate the algorithm with an example;
we believe this will convey the intuition more efficiently.

The algorithm builds the permanent of the whole matrix from permanents of submatrices.[9]
The tree decomposition gives us the ability to avoid the zeros in the matrix, so we will
not even need to look at terms that would vanish.
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We will use the tree decomposition in figure 4.1 as our example. Before delving in,
we recall the matrix M ∈ CR×C (with R = C = [3]), and we assume that Mi, j are
nonzero elements, unless we explicitly put a zero into the matrix below. We give
also its permanent to know what we expect to compute. In figure 4.2, we recall its
tree decomposition T = (T,ρ,κ), and annotate it with data computed in the following
subsections.

M =

M1,1 M1,2 0
0 0 M2,3

M3,1 M3,2 M3,3

 perM = M1,2M2,3M3,1 +M1,1M2,3M3,2. (4.3)

In the following subsections, we compute multiple dynamic programming tables. The
main ones are Q, relating a single node to permanents of matrices it contains, and P,
relating to a subtree in a similar way. We find the final result in the P table of the root,
in the part that represents the submatrix of all rows and columns contained in the root.

|3⟩ ,⟨1| ,⟨2|
t1

|3⟩ ,⟨3|
t2

|2⟩ ,⟨3|
t3

|1⟩ ,⟨1| ,⟨2|
t4

Q = P : R ′\C ′ ∅ {⟨3|}
∅ 1 0

{|2⟩} 0 M2,3

Q : R ′\C ′ ∅ {⟨3|}
∅ 1 0

{|3⟩} 0 M3,3

P : R ′\C ′ ∅ {⟨3|}
∅ 0 M2,3

{|3⟩} 0 0

Q = P : R ′\C ′ ∅ {⟨1|} {⟨2|} {⟨1| ,⟨2|}
∅ 1 0 0 0

{|1⟩} 0 M1,1 M1,2 0

Q : R ′\C ′ ∅ {⟨1|} {⟨2|} {⟨1| ,⟨2|}
∅ 1 0 0 0

{|3⟩} 0 M3,1 M3,2 0

P : R ′\C ′ ∅ {⟨1|} {⟨2|} {⟨1| ,⟨2|}
∅ 0 M1,1M2,3 M1,2M2,3 0

{|3⟩} 0 M3,1 M3,2
M1,2M2,3M3,1

+M1,1M2,3M3,2

Figure 4.2: Tree decomposition from figure 4.1, annotated with the dynamic programming
tables from the execution of Algorithm CP-2.

4.3.1 Simple Steps

Definition 4.3.1 (local table[9]). For a node of the tree t ∈ T , we define the table as

Q[t] : P
(
ρ(t)

)
×P

(
κ(t)

)
→ C

(R ′,C ′) 7→ per
(

M
∣∣
R ′,C ′

) (4.4)

This table assigns to all subsets R ′ ⊆ ρ(t) of rows and C ′ ⊆ κ(t) of columns contained
in t (in other works, the submatrices M

∣∣
R ′,C ′) the values of their permanents. This way,

the tables Q are local, each Q[t] only deals with the node t and nothing else.

Recall from lemma 2.4.3 that if R ′ = C ′ =∅, then perM
∣∣
R ′,C ′ = 1; and if the submatrix

is not square (|R ′| ̸= |C ′|), then perM
∣∣
R ′,C ′ = 0. In figure 4.2, these tables are labeled

just Q, and are connected to their corresponding node.
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4.3.2 Recursive Steps

Having computed Q, we now need the recursion to happen. We go up the tree, in a
topological ordering starting from the leaves. For each node t ∈ T , we will compute
another table called P[t] : P

(
ρ(t)

)
×P

(
κ(t)

)
→ C. These have the same type as Q[t],

assigning numbers to subsets of rows and columns contained in t. Their difference from
Q is that while Q[t] has information only about the submatrices it contains, P[t] knows
about the subtree Tt . Clearly, since a leaf ℓ ∈ T no children, the tables are the same:
Q[ℓ] = P[ℓ].[9]

4.3.2.1 Definitions of Recursion Tables

If we are computing the recursive step at a node t (not leaf), we compute the intersections
and differences in the content of t compared to its children c1, . . . ,ck ∈ ch(t):

Definition 4.3.2 (intersections and differences[9]). For every child c j of t, we define:

∆
ρ
c j

:= ρ(t3)\ρ(t2) Λ
ρ
c j

:= ρ(t3)∩ρ(t2) (4.5)

∆
κ
c j

:= κ(t3)\κ(t2) Λ
κ
c j

:= κ(t3)∩κ(t2) (4.6)

Definition 4.3.3 (auxiliary tables[9]). For every child c j of t, we define the table Q′[t|c j],
where we use (our own) notation to suggest that this is a table for node t given that we
are looking at its child c j. It is defined as:

Q′[t|c j] : P (Λρ
c j
)×P (Λκ

c j
)→ C

(R ′,C ′) 7→ (−1)|R
′| ·Q[t](R ′,C ′)

(4.7)

We define also Q′′[t→ c j], which corresponds to looking into the child c j from t:

Q′′[t→ c j] : P (Λρ
c j
)×P (Λκ

c j
)→ C

(R ′,C ′) 7→ P[c j]
(

R ′∪∆
ρ
c j
,C ′∪∆

κ
c j

) (4.8)

Definition 4.3.4 (permanent table). For a node t, the permanent table P[t] joins together
the auxiliary tables of all its children c1, . . . ,ck ∈ ch(t) by subset convolution. It has the
same type as Q[t], that is P[t] : P (ρ(t))×P (κ(t))→ C.

P[t](R ′,C ′) := ∑
R0,...,R2k; C0,...,C2k
(R ′=R0⊔···⊔R2)
(C ′=C0⊔···⊔C2)

Q[t2] ·Q′[t2|c1] ·Q′′[t2→ c1] · · ·Q′[t2|ck] ·Q′′[t2→ ck]

(4.9)
We omit arguments for clarity, but each factor gets a pair of Ri,Ci.

4.3.2.2 Recursive Step t3→ t2

The first recursive step we compute is (by virtue of topological ordering) the table
P[t2]. It is a simple one: looking at the figure 4.2, we see that the node t2 has only one
child, ch(t2) = {t3}. The differences are ∆

ρ

t3 = {|2⟩}, ∆κ
c j
=∅, and the intersections are

Λ
ρ

t3 =∅, Λκ
t3 = {⟨3|}. Then we compute the auxiliary tables:
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Q′[t2|t3] : R ′\C ′ ∅ ⟨3| Q′′[t2→ t3] : R ′\C ′ ∅ ⟨3|
∅ 1 0 ∅ 0 M2,3

Both assign values to submatrices of rows and columns shared between t2 and t3. The
table Q′[t2|t3] reuses values from Q[t2], but makes some of them (exactly when |R ′| is
odd) negative. This is a preparation for the subset convolution. The table Q′′[t2→ t3]
pulls values up the tree from P[t3]. Notice, however, that computing Q′′[t2→ t3](R ′,C ′)
does not just take P[t3](R ′,C ′); it extends the argument by the difference sets ∆ρ,κ. This
way, we are reaching possibly a different part of matrix M.

Lastly, we compute the table P[t2] by subset convolution of Q[t2],Q′[t2|t3] and Q′′[t2→
t3]. For P[t2](R ′⊆ ρ(t),C ′⊆ κ(t)), we sum over the partitions of these R ′,C ′, such that
each of the tables gets one subset. For example, we solve it for R ′ =∅ and C ′ = {⟨3|}:

P[t2](∅,{⟨3|}) = ∑
C0,C1,C2

({⟨3|}=C0⊔C1⊔C2)

Q[t2](∅,C0) ·Q′[t2|t3](∅,C1) ·Q′′[t2→ t3](∅,C2)

(4.10)

= Q[t2](∅,{⟨3|})︸ ︷︷ ︸
0

·Q′[t2|t3](∅,∅) ·Q′′[t2→ t3](∅,∅) (4.11)

+Q[t2](∅,∅)︸ ︷︷ ︸
1

·Q′[t2|t3](∅,{⟨3|})︸ ︷︷ ︸
0

·Q′′[t2→ t3](∅,∅) (4.12)

+Q[t2](∅,∅)︸ ︷︷ ︸
1

·Q′[t2|t3](∅,∅)︸ ︷︷ ︸
1

·Q′′[t2→ t3](∅,{⟨3|})︸ ︷︷ ︸
M2,3

(4.13)

= M2,3 (4.14)

The full table is below, as well as in the figure 4.2. Note that while t2 contains |3⟩ and
⟨3|, the value M3,3 was already eliminated. This makes sense: the node t2 is related to
t3, which contains the row label |2⟩. In the matrix, we do not have any non-zero element
in row 2 that is not in the same column as M3,3, so a permanent term including a factor
of M3,3 is not possible. The same idea would work if t3 contained a row not in t2.

P[t2] : R ′\C ′ ∅ ⟨3|
∅ 0 M2,3
|3⟩ 0 0

4.3.2.3 Recursive step t2, t4→ t1

Reaching the root t1, we repeat the same process. The difference is that t1 has two
children, however everything works the same. The intersections and differences, as
well as the auxiliary tables, are computed individually for each child of t1. Then the
permanent table P[t1] joins them in a subset convolution. We filled this table in the
figure 4.2.

Having reached the root, the permanent of the entire matrix M is found in the entry
P[t1](ρ(t1),κ(t1)), i.e. the table P of the root, selecting the whole submatrix in that
node. This is our final result.



Chapter 5

New Algorithm

So far, we have seen Boson Sampling and the algorithms by Clifford & Clifford[11]
in chapter 3. In chapter 4, we have seen how we can efficiently compute permanents
of sparse matrices using tree decompositions. In this chapter, we join these and a few
other ideas together, and this will allow us to quickly generate samples from a Boson
Sampling experiment where the interferometer is shallow.

In section 5.1, we review what circuit depth means and what are shallow circuits. We
give a construction of shallow unitaries. In section 5.2, we prove that removing rows or
columns from a tree decomposition gives a valid decomposition for a submatrix. Then
in section 5.3, we use these findings to give our algorithm that adapts the sampling
algorithm CC-A by Clifford & Clifford with the permanent computation CP-2 by
Cifuentes & Parrilo.

The idea of our algorithm is to generate a tree decomposition of the given interferometer
matrix and then look at smaller parts of this decomposition to compute permanents and
thus generate samples for a shallow matrix efficiently.

5.1 Shallow Circuit

The primary constraint in this work is that the interferometer being simulated is shallow.
We recapitulate here what that means.

Definition 5.1.1 (reduced circuit[18]). For a circuit C, its reduced circuit Cred is obtained
by first multiplying all consecutive single-mode gates into the following or preceding
multi-mode gate and then multiplying together all consecutive k-mode gates that act on
the same modes.

Definition 5.1.2 (depth of a circuit[18]). If C is a circuit, we call its depth D the
maximum number of consecutive operations applied to any mode in the reduced circuit
Cred. If C is a circuit acting on m modes, then we call C shallow if D = O(logm), and
we call it deep if D = Ω(logm).

28
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L1({θi,φi
T ,φ

i
R}) L0({θi,φi

T ,φ
i
R})

=



|1⟩
|2⟩

|3⟩
|4⟩
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⟨7|

θ1,φ1
T ,φ

1
R
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Figure 5.1: Beamsplitter layers on m = 7 modes

5.1.1 Beamsplitter Arrays

For us, the circuit is a unitary interferometer U ∈ U(m) acting on m modes. In the
original description of the problem, it was only required that U be a Haar random
unitary; however, in this work, we will constrain U further to bound the depth nicely.

In section 2.5.3, we have seen the basic optical devices: the phase shifter and the
beamsplitter. These two are enough to construct an arbitrary unitary transformation we
like.[8, 4] Now, we define the central part of our construction. The idea is to build the
interferometer up from beamsplitters, each acting on two nearest-neighbour modes. We
will interleave layers of these beamsplitters acting in parallel, so that different modes
may interact. Our construction was inspired by the Clements scheme[10].

Definition 5.1.3 (beamsplitter layer). We define a beamsplitter layer L0,1(m;{θi,φi
T ,φ

i
R})

acting on m modes, parametrised by θi,φi
T ,φ

i
R for each constituent beamsplitter i, as

L1(m;{θi,φi
T ,φ

i
R}) = B(θ1,φ1

T ,φ
1
R)⊕·· ·⊕B(θk,φk

T ,φ
k
R) (⊕1) (5.1)

L0(m;{θi,φi
T ,φ

i
R}) = 1⊕B(θ1,φ1

T ,φ
1
R)⊕·· ·⊕B(θk,φk

T ,φ
k
R) (⊕1) (5.2)

These are depicted in figure 5.1. We have two variants, which we call the even beam-
splitter layer L0, and odd layer L1. These will allow for interleaving. The number of
beamsplitters is

k =

{⌊m
2 −1

⌋
for even m and the variant L0⌊m

2

⌋
otherwise.

In (5.1) and (5.2), the (⊕1) is there if the number of modes requires it, so that we do
not disconnect the last mode m.

Definition 5.1.4 (beamsplitter array). An alternating beamsplitter array ABA(m,D;{θi,φi
T ,φ

i
R})

on m modes and of depth D is a product of alternating L0 and L1:

ABA(m,D;{θi,φi
T ,φ

i
R}) = LDmod2 · · ·L0 ·L1 ·L0 ·L1︸ ︷︷ ︸

D

(5.3)
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as depicted in figure 5.2. (Compare with the Clements scheme[10, 4].) This is what
allows for the interleaving of nearest-neighbour interactions. We will denote the set of
such possible arrays as ABA(m,D), i.e. without giving the angles.
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Figure 5.2: Beamsplitter array ABA(m,D;{θi,φi
T ,φ

i
R})

Using the construction of alternating beamsplitter arrays, we can easily compose
arbitrary interferometers[4] that are unitary and have not only the required depth,
but also other nice properties. One of them is that U ∈ ABA(m,D) is, by construction,
a banded matrix, and the depth translates directly into the bandwidths. We define what
banded means below:

Definition 5.1.5 (banded matrix). Let M ∈Cm×n be a matrix. We say that this is banded,
with bandwidths w1,w2 ∈ Z+ if for all rows i and columns j, such that i− j > w1 or
j− i > w2, the element Mi, j = 0. This creates a band around the main diagonal, and
non-zero elements are only allowed within this band. We usually assume w1 and w2 are
minimal. An example of a banded matrix is in figure 5.3.

Lemma 5.1.6 (bandwidth of ABA). If m ∈ Z+ is the number of modes, and D ∈ Z+ the
chosen depth, then the matrix U ∈ ABA(m,D) has bandwidth w1 +w2 +1≤ 2D.

Proof. The idea is that the interleaving layers of nearest-neighbour interaction constrain
how far the influence of one mode can reach; they give rise to a causal cone.1 Each
added layer only extends the possible reach by two new modes. This is shown for input
mode (vertex) ⟨4| in figure 5.2 in red.

We prove this by induction on depth D, using the graph formalism. We denote W :=
w1 +w2 +1 the total width of output modes reached by an arbitrary input mode ⟨i|.

Base case: If D = 1, then ⟨i| is connected straight across to the left to |i⟩, and possibly
to |i−1⟩ or |i+1⟩, but not both, by a beamsplitter. It may also only be connected to |i⟩,
if there is no beamsplitter at this position. The width is W ≤ 2 = 2D.

1this is a similar concept to a light cone in relativity
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Induction: If for D≥ 1 the width is W ≡ w1+w2+1≤ 2D, then we can reach | j⟩ , . . . ,
| j+W −1⟩ from some arbitrary ⟨i|. The minus one is there so that we do not count
past the last mode. We compose another layer L0,1 (odd or even, as appropriate) from
the left, and we denote the new widths W ′ ≡ w′1 +w′2 +1.

• If L0,1 contains a beamsplitter
[
| j−1⟩
| j⟩ ▷

◁⟨ j−1|
⟨ j|

]
to which | j⟩ can connect, then the

new width is w′1 = w1 + 1. If L0,1 does not contain such a beamsplitter, then
w′1 = w1.

• Simirarly, if L0,1 contains a beamsplitter
[
| j+W−1⟩
| j+W ⟩ ▷

◁⟨ j+W−1|
⟨ j+W |

]
that | j+W −1⟩

connects to, then w′2 = w2 +1. Otherwise w′2 = w2.

By adding one more layer (D′ = D+ 1), we increase the reach at most by two more
output modes: W ′ = w′1 +w′2 +1≤ (w1 +1)+(w2 +1)+1 =W +2≤ 2D+2 = 2D′.
Hence we have W ′ ≤ 2D′.

Finally, for all D ≥ 1, we have the width W = w1 +w2 +1 ≤ 2D. Note that we have
shown this in the direction from input to output modes (right-to-left in figure 5.2). The
same holds in the other direction, by symmetry. ■

5.1.2 Decomposing a Banded Matrix

Now that we have a band, we use the result of Cifuentes and Parrilo: they give the
optimal tree decomposition for a bipartite graph of a banded matrix in [9]. We present
it in lemma 5.1.7. In figure 5.3, we give an example of a matrix with bandwidths
w1 = w2 = 1, its graph representation, and its tree decomposition . We believe it is best
to see the idea behind this particular decomposition visually.

M =


M1,1 M1,2 0 0 0
M2,1 M2,2 M2,3 0 0

0 M3,2 M3,3 M3,4 0
0 0 M4,3 M4,4 M4,5
0 0 0 M5,4 M5,5

 G(M) =


|1⟩

|2⟩

|3⟩

|4⟩

|5⟩

⟨1|

⟨2|

⟨3|

⟨4|

⟨5|

N (|2⟩)↑

N (|2⟩)↓


t ∈ T ρ(t) κ(t)

t0 |1⟩ ⟨1| ,⟨2|
t1 |2⟩ ⟨1| ,⟨2|
t2 |2⟩ ⟨2| ,⟨3|
t3 |3⟩ ⟨2| ,⟨3|
t4 |3⟩ ⟨3| ,⟨4|
t5 |4⟩ ⟨3| ,⟨4|
t6 |4⟩ ⟨4| ,⟨5|
t7 |5⟩ ⟨4| ,⟨5|

|1⟩ ,⟨1| ,⟨2|t0

|2⟩ ,⟨1| ,⟨2|t1

|2⟩ ,⟨2| ,⟨3|t2

|3⟩ ,⟨2| ,⟨3|t3

|3⟩ ,⟨3| ,⟨4| t4

|4⟩ ,⟨3| ,⟨4| t5

|4⟩ ,⟨4| ,⟨5| t6

|5⟩ ,⟨4| ,⟨5| t7

Figure 5.3: Example of tree decomposition of a banded matrix (with w1 = w2 = 1)
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We provide an example in figure 5.3. We write N (|i⟩) for the neighbour set of the
vertex |i⟩. Let N (|i⟩)↑ be the set of neighbours with the last one removed. Dually, let
N (|i⟩)↓ as the set of neighbours except the first one. We depict them in the figure. The
tree decomposition in lemma 5.1.7 below is generated as follows: We select |i⟩ and its
N (|i⟩)↑ and make this a node. Then we move the right side of the selection down by
one vertex to N (|i⟩)↓, and make this another node with |i⟩. Then we move down the
left side of the selection to |i+1⟩, which makes the right hand side N (|i+1⟩)↑. We
repeat this process throughout the entire graph.

Lemma 5.1.7 (tree decomposition of a banded matrix[9]). If M ∈ Cm×n is a banded
matrix with bandwidths w1,w2, and G = G(M) its graph, then in general2 the tree
decomposition T = (T,ρ,κ) of minimum treewidth is the following: The tree is a path
T = {t2(1−w1), . . . , t−1, t0, t1, . . . , t2(n−w2)−1}, where ti is connected to ti+1, and its root
is chosen on one of the middle nodes. The contents of the nodes are:

ρ(t2i−1) =
{
|i+w1⟩

}
κ(t2i−1) =

{
⟨i| ,⟨i+1| , . . . ,⟨i+w1 +w2−1|

}
ρ(t2i) =

{
|i+w1⟩

}
κ(t2i) =

{
⟨i+1| ,⟨i+2| , . . . ,⟨i+w1 +w2|

}
The treewidth is tw(T) = w1 +w2. Note that the number of nodes |T |= O(n).

As an aside, while we usually consider banded matrices with relatively low widths
w1,w2, we may use this decomposition also in the worst case: If the matrix has no zeros,
i.e. its graph is complete, we may take the band to be the entire matrix (w1 = m and
w2 = n). This would allow us to use the above decomposition in this case also.

We are now ready to show a central result of this work: bounds on treewidth of a shallow
interferometer, as constructed in section 5.1.1.

Theorem 5.1.8 (treewidth of ABA). If U ∈ABA(m,D) is a matrix of an interferometer,
with D ∈ Z+ the chosen depth, and G(U) its graph, then it has treewidth

t̂w(G(U))≤ 2D−1.

Proof. By lemma 5.1.6, we know that the bandwidths of U are bounded by w1 +w2 +
1≤ 2D. In lemma 5.1.7, we have the best (in general) tree decomposition T of such a
banded matrix, and its treewidth is tw(T) = w1 +w2. Hence, the treewidth of the graph
is boundes as t̂w(G(U))≤ 2D−1. ■

5.2 Restriction of a Tree Decomposition

In this section, we define an original3 concept that our algorithm uses. Intuitively, a
restriction of the tree decomposition means deleting the unwanted row and column
vertices from all tree nodes while keeping the structure intact. We define this formally
as follows, and we give an example in figure 5.4.

2By in general, we mean if we assume all allowed edges exist; of course if some of them do not, there
may be an even better decomposition.

3as far as we know
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T =


|2⟩ ,⟨3|
t3
|3⟩ ,⟨3|
t2

|3⟩ ,⟨1| ,⟨2|
t1

|1⟩ ,⟨1| ,⟨2|
t4

 T
∣∣R ′={|2⟩}
C ′={⟨3|,⟨1|}

=


|2⟩ ,⟨3|
t3
⟨3|

t2
⟨1|

t1

⟨1|
t4


Figure 5.4: Example of a restriction of a tree decomposition

Definition 5.2.1. If T = (T,ρ,κ) is a decomposition of G(M) = (V = (R ,C ),E), and
R ′ ⊆ R ,C ′ ⊆ C are subsets of rows and columns, then the restriction on those subsets
is T
∣∣
R ′,C ′ := (T,ρ′,κ′), with the same tree T , where ρ′ and κ′ are the restrictions on the

ranges of ρ,κ:

ρ
′ : T → R ′ κ

′ : T → C ′

t 7→ ρ(t)∩R ′ t 7→ κ(t)∩C ′ for all t ∈ T
(5.4)

Lemma 5.2.2. For T = (T,ρ,κ) ∈ T (G(M)), the restriction T
∣∣
R ′,C ′ = (T,ρ′,κ′) is a

tree decomposition of the submatrix M
∣∣
R ′,C ′ .

Proof. We have T ∈ T (G(M)), and we need to check that T′ ∈ T (G(M′)), where we
denote M′ := M

∣∣
R ′,C ′ . We check (T1) (we show it for ρ′, but the argument works the

same way for κ′):

⋃
t∈T

ρ
′(t)

(5.4)
=

⋃
t∈T

ρ(t)∩R ′ =

(⋃
t∈T

ρ(t)

)
∩R ′ (T1)

= R ∩R ′ (R
′⊆R )
= R ′ (5.5)

and (T1) holds.

Now we check (T2). Note that the graph of a submatrix G(M′) is an induced subgraph
of G(M). This means that for all edges (|i⟩ ,⟨ j|) in G(M), if the vertices are also in
G(M′), that is |i⟩ ∈ R ′ and ⟨ j| ∈ C ′, then the edge is in G(M′) too. By (T2) on T, for
all edges (|i⟩ ,⟨ j|), there is a node t ∈ T such that |i⟩ ∈ ρ(t) and ⟨ j| ∈ κ(t). If these
endpoints are in R ′,C ′, they are in ρ′(t),κ′(t) also, and the node t satisfies (T2) for T′.
Hence (T2) holds.

Lastly, for all |i⟩ ∈ R ′ (resp. ⟨ j| ∈ C ′), if ρ−1(|i⟩) :=
{

t ∈ T
∣∣ |i⟩ ∈ ρ(t)

}
, the set of all

nodes that contain |i⟩ (resp. ⟨ j|) is a subtree of T by (T3). If the restriction includes the
vertex, i.e. |i⟩ ∈ R ′, then by (5.4) these are exactly the nodes that contain the vertex in
T′. Hence (T3) holds. ■

Lemma 5.2.3. If we have a matrix M ∈ CR×C and the decomposition of its graph
T ∈ T (G(M)), and if R ′ ⊆ R and C ′ ⊆ C are subsets of rows and columns of M, then
the follwing holds:

perM

(
T
∣∣
R ′,C ′

)
= per

(
M
∣∣
R ′,C ′

)
(5.6)
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where we denote perM T the result of applying Algorithm CP-2 on matrix M and tree
decomposition T.

Proof. By lemma 5.2.3, the restriction T
∣∣
R ′,C ′ is a tree decomposition of G(M

∣∣
R ′,C ′).

Provided Algorithm CP-2 is correct, it will use T
∣∣
R ′,C ′ to compute the permanent of

this submatrix perM
∣∣
R ′,C ′ . ■

A restriction could yield a decomposition T = (T,ρ′,κ′) that has an empty node e ∈ T ,
i.e. ρ′(e) = κ′(e) = ∅. This still satisfies the axioms, but it is also compatible with
permanents. We do not need a fully formal treatment. Nevertheless, the intuition is as
follows: Recall from note 4.1.3 that if the decomposition is a forest, it corresponds to
block-like structures in the matrix. Cutting off all connections to e (making e a disjoint
tree in a forest, and likewise for every subtree to which it was connected) turns our
decomposition into that same kind of forest. The permanent then becomes the product
of permanents of each. From lemma 2.4.3, the permanent of no rows and no columns
(so the contents of e) is 1. Hence this edge case behaves nicely.

Lemma 5.2.4 (treewidth). For a tree decomposition T of a graph G = (V = (R ,C ),E),
and subsets R ′ ⊆ R , C ′ ⊆ C , its restriction T′ := T

∣∣
R ′,C ′ has treewidth

tw(T′)≤min
(
tw(T), |R ′|+ |C ′|−1

)
(5.7)

Proof. We have T = (T,ρ,κ). If there is a node t ∈ T such that R ′ ⊆ ρ(t) and C ′ ⊆ κ(t),
then this must be a largest node in the restriction T′, because there can be no other
vertices contained anywhere else. Hence tw(T′)≤ |R ′|+ |C ′|−1, where we recall the
−1 comes from the definition 4.2.1 of treewidth. A restriction can only decrease the
treewidth, because it is removing vertices from nodes, so the restricted width cannot be
larger than the original: tw(T′)≤ tw(T). ■

Lemma 5.2.5 (time complexity). If we have a tree decomposition T of a graph
G = (V = (R ,C ),E), and subsets R ′ ⊆ R , C ′ ⊆ C , then computing the restric-
tion T

∣∣
R ′,C ′ takes time O

(
|T | · τττ∩[ω, ℓ]

)
, where ω := tw(T) and ℓ := |R ′|+ |C ′|, and τττ∩

is the representation-dependent time complexity of set intersection as a function of set
sizes.

Proof. We have to look at every t ∈ T , which gives the factor |T |. For each t, we need to
compute two set intersections: ρ(t)∩R ′, and κ(t)∩C ′. The sizes of nodes are bounded
by treewidth: |ρ| ≤ |ρ(t)|+ |κ(t)| ≤ ω+1, and likewise |κ(t)| ≤ ω+1. The sizes of
the restricting subsets are also bounded: |R |′ ≤ |R ′|+ |C ′|= ℓ, and likewise |C ′| ≤ ℓ.
Then we may bound the time needed for each intersection as O(τττ∩[ω, ℓ]). ■

5.3 The Algorithm

As we hinted at the beginning of this chapter, the idea of our original proposed algorithm
is to take the original matrix describing the interferometer U ∈ U(m), compute its tree
decomposition T = (T,ρ,κ), and then use this to sample photons, by only looking at
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the relevant restrictions of T at each step. We give the pseudocode in Algorithm ⋆ (page
35).4 Note that we are working with the original Boson Sampling from [2], where
collisions of photons (i.e. two or more photons sharing an output mode) are forbidden
by definition.

This is the finale where we put everything seen in previous chapters and sections
together: Clifford and Clifford’s algorithm (see Algorithm CC-A) tells us how to
properly use the marginal probability distributions to obtain a correct sample. In that
algorithm, we often need to compute permanents of ever-larger matrices. We extend the
algorithm CC-A, also using the permutation trick from CC-B5 (see sec. 3.3.1) in the
following way:

We will replace the permanent calculation by algorithm CP-2 by Cifuentes and Parrilo.
As seen in lemma 5.1.6, our construction of shallow interferometers gives us a banded
matrix, and from lemma 5.1.7, we know how to get good tree decompositions for those.
Lastly, we have lemma 5.2.3, showing that restricting a tree decomposition will give
us the permanent of a submatrix, which allows us to use the easy decomposition of a
banded matrix.

Algorithm ⋆: Boson Sampling using tree decomposition
Input:

• m,n ∈ Z+ such that m > n,
• a matrix V = Γin

n (U) ∈ Cm×n, which is the first n columns of U ∈ ABA(m,D)
the matrix of an interferometer of depth D acting on m modes

Result: a single sample
∣∣Ψn′

〉
// Preparation

1 T = (T,ρ,κ)← decompose the matrix V using the method in lemma 5.1.7
2 α← a uniformly random permutation from Sn
3 κ(t)←{α(c)|c ∈ κ(t)} for all t ∈ T (rename all columns labels in T using α)
// Sampling the first photon

4 w1(i)← |⟨i|V |α(1)⟩ |2 for modes i ∈ [m]
5 sample ψ1← i using an (unnormalised) pmf w1(i)
// Sampling the rest

6 for photon k← 2, . . . ,n do
7 for mode i ∈ [m]\{ψ1, . . . ,ψk−1} do
8 T′← T

∣∣
R ′={ψ1,...,ψk−1,i},C ′=α([k]) restrict the decomposition

9 wk(i)← perV (T′) (see Algorithm CP-2)

10 sample ψk← i using wk(i)

11
∣∣Ψn′

〉
← sort |ψ1⟩⊗ |ψ2⟩⊗ · · ·⊗ |ψn⟩ in non-decreasing order

12 return
∣∣Ψn′

〉
4We call it ⋆ to signify that this is the new one.
5We extend CC-A and not CC-B because while we take the permutation trick from the latter, CC-B

has another difference from CC-A: permanents computed by Laplace expansion, which we do not use.
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5.3.1 Comments on the Steps

Here, we shortly describe the steps of Algorithm ⋆. The input is, in principle, the whole
interferometer matrix U ∈ABA(m,D). However, we will only ever need to use the first
n columns (the only occupied input modes), so we already specify the actual input as
V = Γin

n (U), the matrix with only the first n columns on U. This is a convention set
by Algorithm CC-A. If we did not specify that, everything would still work, we would
simply have to delete those columns in the algorithm.

Notice that we decompose this matrix (technically, its graph) first, and then we employ
the permutation trick of Clifford & Clifford from section 3.3.1. Instead of permuting
the columns of V , we use the uniformly random permutation α to relabel the κ(t) for
each node t ∈ T . Since we mostly access the matrix via the tree decomposition, this
will have the same effect as first permuting the columns of V (see lemma 5.3.1); except
if we did that, we could no longer use the easy decomposition for banded matrices. We
have to keep this in mind when computing the marginal pmf for the first photon: in
CC-B, this is computed from the first column of the permuted matrix; for us, not having
permuted columns, we use the column α(1).

For each subsequent photon k (with k ∈ {2, . . . ,n}), and for each possible mode i ∈ [m]
of the new photon, we restrict the decomposition T to row labels R ′ = {ψ1, . . . ,ψk−1, i},
i.e. all the previously sampled photon modes, and the new possibility i. The columns
will be α([k]) = {α(c)|c ∈ [k]}, the first k columns, but permuted (see above).

At the end, we have the sampled photon modes ψ1, . . . ,ψn, corresponding to state
|ψ1⟩⊗ · · ·⊗ |ψn⟩; this is just different notation. Finally, we sort them in non-decreasing
order to get

∣∣Ψn′
〉

from equation (2.15), which corresponds to the the output number
state |n′⟩ ≃ 1√

n!∏
m
i=1 n′i!

∑σ∈Sn σ
∣∣Ψn′

〉
(see equation (2.14). This is our full sample.

5.3.2 Correctness

Being an extension of CC-A, our algorithm does the sampling correctly, provided
the permanents computed are the right ones. As seen in lemma 5.2.3, restricting the
tree decomposition to compute permanents of submatrices is valid. We employ the
permutation trick, but we only do it after we have already computed a tree decomposition.
The last remaining step is to show that this does not introduce problems:

Lemma 5.3.1. Let T= (T,ρ,κ) a tree decomposition of a graph G of matrix M ∈CR×C ,
and α ∈ SC a permutation of column labels. Let T′ := (T,ρ,κ′) be a decomposition
where we permute column labels: κ′(t) := {α(c)|c ∈ κ(t)}, and let M′ be a matrix, with
elements M′r,c := Mr,α(c). Then T′ is a tree decomposition of the graph M′.

Proof. Similarly to reasoning in lemma 2.4.5, the permutation α ∈ SC is simply a
relabeling of columns. In terms of the graph of matrix G(M), it is a graph isomorphism
that relabels column vertices and preserves edge weights. In T′, it also relabels the same
column vertices. Then T′ must be a valid tree decomposition for G(M′). Intuition may
be found in figure 5.5. ■
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|1⟩
|2⟩
|3⟩
|4⟩
|5⟩

⟨1|
⟨2|
⟨3|
⟨4|
⟨5|

|1⟩
|2⟩
|3⟩
|4⟩
|5⟩

⟨2|
⟨3|
⟨1|
⟨5|
⟨4|

{
1 7→ 2
2 7→ 3
3 7→ 1{4 7→ 5
5 7→ 4

|1⟩
|2⟩
|3⟩
|4⟩
|5⟩

⟨1|
⟨2|
⟨3|
⟨4|
⟨5|

=

t ρ(t) κ(t)
⟨1| ⟨2| ⟨3| ⟨4| ⟨5|

t0 |1⟩ • •
t1 |2⟩ • •
t2 |2⟩ • •
t3 |3⟩ • •
t4 |3⟩ • •
t5 |4⟩ • •
t6 |4⟩ • •
t7 |5⟩ • •

t ρ(t) κ(t)
⟨1| ⟨2| ⟨3| ⟨4| ⟨5|

t0 |1⟩ • •
t1 |2⟩ • •
t2 |2⟩ • •
t3 |3⟩ • •
t4 |3⟩ • •
t5 |4⟩ • •
t6 |4⟩ • •
t7 |5⟩ • •

Figure 5.5: Example of a permutation acting on columns of a matrix and on its tree
decomposition. On the RHS of the equality, we rearranged vertices geometrically.

5.3.3 Running Time

Lemma 5.3.2. The time required to compute the probability for photon k with 1 < k≤ n
being in mode i (see lines 8, 9 in Algorithm ⋆) is

O
(

n+ k2ω′
ω
′2
)

(5.8)

where ω′≤min(tw(T),2k−1) is the treewidth of the restriction to k rows and k columns
T′ := T

∣∣
R ′={ψ1,...,ψk−1,i},C ′=α([k]).

Proof. We need to restrict the overall tree decomposition T. By lemma 5.2.5, we know
that this takes time O

(
|T | · τττ∩[ω, ℓ]

)
, where |T | is the number of nodes, ω := tw(T) and

ℓ := |R ′|+ |C ′|= 2k. The placeholder τττ∩ is the time complexity of set intersection, a
function of sizes of the sets being intersected. We are using a result from Cifuentes &
Parrilo[9], where they assume efficient representation of sets (this could be for example
a hash-map, or a bit-vector, since we know exactly what the allowed elements in our sets
are). To derive time consistent with theirs, we assume the same: τττ∩ = O(1). Our tree
decomposition is constructed as in lemma 5.1.7, so the number of nodes is |T |= Θ(n).
This gives the term O(n) in (5.8).

Having computed the restriction, we now use Algorithm CP-2 to compute the permanent.
By lemma 5.2.4, the treewidth of the restriction is ω′ ≤min(tw(T), |R ′|+ |C ′|−1) =
min(ω,2k− 1). Cifuentes & Parrilo give the running time of CP-2 as Õ(k2ω′) for a
k× k matrix and decomposition of width ω′. Recall that Õ hides polynomial factors of
ω′; however, we recover the polynomial factor from their proofs [9, Lemma 2, proof of
Theorem 14], and the full running time is O(k ω′2 2ω′).

Hence, the time required to compute the value wk(i), i.e. probability of photon k being
sampled in mode i is O(n+ k ω′2 2ω′), where ω′ ≤min(ω,2k−1). ■

Theorem 5.3.3. The running time of Algorithm ⋆ for sampling n photons from an
interferometer U ∈ABA(m;D) which is shallow, meaning D := c logm = O(logm) for
some chosen constant c,6 is

O
(

mn32ω′(n)
ω
′(n)2

)
(5.9)

6we introduced the constant c because the depth appears in exponents and we did not want it to
disappear by just assuming O(logm)
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where ω′(n) := O(min(c logm,2n)).

Proof. Generating the tree decomposition T (line 1) requires us to look at elements
within the bands of the matrix. By lemma 5.1.6, the bandwidth of U is bounded as
W :=w1+w2+1≤ 2D, where W is exactly the maximum number of non-zero elements
in any row of the matrix. In theorem 5.1.8, we see that this is in fact related to the
treewidth of our decomposition ω := tw(T) ≤ 2D− 1 = W − 1. Our matrix has m
rows (output modes), so to generate the tree decomposition, we need to look at O(mω)
elements of U.

The first photon is sampled in time O(m) because we need to compute w1(i) for i ∈ [m],
and each of these requires looking at one element of U. We assume constant time
look-up in the permutation α because this can be represented as an array [n]n.

From lemma 5.3.2, we know that the time required to compute wk(i) for some k ∈
{2, . . . ,n} and i ∈ [m] is O(n+k2ω′ω′2), where ω′(k)≤min(ω,2k−1). Sampling from
wk(i) takes O(m) as before. We do this for each photon and each mode, giving us

n

∑
k=2

m ·O
(

n+ k2ω′(k)
ω
′(k)2

)
+O(m) = O

(
n

∑
k=2

m ·
(

n+ k2ω′(n)
ω
′(n)2

)
+m

)
(5.10)

= O
(

mn32ω′(n)
ω
′(n)2 +mn2 +mn

)
(5.11)

The sequence summed over is increasing, so in (5.10) we give an upper bound by
(pessimistically) summing over the last (largest) element. We have D := c logm and
ω ≤ 2D−1, hence ω ≤ 2c logm−1, so ω′(n) = O(min(c logm,n)). Finally, keeping
only the largest growing term, the total time is

O(mω)+O(m)+O
(

mn32ω′(n)
ω
′(n)2 +mn2 +mn

)
= O

(
m
(

n32ω′(n)
ω
′(n)2 +n2 +n+ c logm+1

))
= O

(
mn32ω′(n)

ω
′(n)2

) (5.12)

■

Theorem 5.3.4. If we further set m = n2, then the running time is

O
(

n5+cc2 log2 n
)
. (5.13)

Proof. Following from theorem 5.3.3, we set m = n2 and simplify. We simplify first
the exponent ω′(n) := O(min(c logm,2n)) = O(min(2c logn,2n)) = O(c logn). Then
we simplify (5.9):

O
(

n2n32O(c logn)O(c logn)2
)
= O

(
n5+cc2 log2 n

)
(5.14)

■
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Conclusion

We have explored ideal collision-less Boson Sampling and its classical simulation.
Independently, we learned about tree decompositions and how they can be used to
simplify even NP-hard problems (or, in our case of permanent computation, a #P-hard
problem) by leveraging additional structure, such as sparsity.

We gave the original Algorithm ⋆ that can generate a sample from the Boson Sam-
pling experiment for a shallow interferometer in time O

(
n3 2ω′(n)ω′(n)2), where n

is the number of photons in the sample, m is the number of modes, and ω′(n) :=
O(min(c logm,2n)). We can choose the constant c as we like: it is a parameter relating
the depth of the circuit to the number of modes: D := O(c logm). If we further set
m = n2, as in common, then the running time becomes O

(
n5+c c2 log2 n

)
.

This running time is much lower than the general method that samples from arbi-
trary interferometers. For comparison, the algorithms CC-A and CC-B by Clifford
& Clifford[11] take, respectively, time O(mn3n) and O(n2n +mn2); i.e. they scale
exponentially.

To obtain our algorithm, we augmented the algorithm CC-A. In fact, we based our work
on an algorithm halfway between CC-A and CC-B. The latter gave us a nice trick of
permuting columns to decrease complexity. However, CC-B uses Laplace expansions
to compute permanents, and we needed to replace the permanent computation entirely;
hence the main basis was the simpler CC-A.

We leveraged the sparsity structure of the interferometer, and we gave a construction
of arbitrary unitary circuits, where we may freely choose the depth. To do this, we
used our new notation for graphs of matrices which we defined as a helpful tool along
the way. We proved that our construction leads to a banded matrix. Following that
result, we used the Algorithm CP-2 given by Cifuentes & Parrilo[9] that can efficiently
compute the permanents of sparse matrices (such as our banded interferometer matrix)
using bipartite tree decompositions.

We proved new results about these decompositions, which allowed us to first decom-
pose the whole interferometer matrix, and then use restrictions of the decomposition
to compute permanents of submatrices. This result is useful because finding a tree
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decomposition is, in general, difficult. However, using our method, we can instead
take an easily constructed decomposition (banded matrix), and obtain from it valid
decompositions of submatrices.

We have fulfilled the aims stated in section 1.1: we have understood ideal Boson
Sampling and its classical simulation; tree decompositions, and the permanent algorithm
based on them. We arrived at the aforementioned efficient algorithm for sampling from
a shallow interferometer. For now, we are satisfied with it; however, we believe it can
be made more efficient, and we give the ideas in the following section.

6.1 Future Work

6.1.1 Reuse of Partial Results

The Algorithm CP-2 uses dynamical programming to reuse previous partial results.
The Algorithm CC-B does something similar: using Laplace expansion, it can com-
pute permanents of bigger matrices from previously computed permanents of smaller
submatrices.

Our algorithm is not capable of this. At each step, the decomposition that we use is
different by virtue of restricting the overall decomposition of the whole interferometer
matrix. For a node t of the tree, the table Q only knows about permanents of submatrices
corresponding to the row and column labels contained in t; this may be reused. However,
the table P[t] contains permanents relating to the entire subtree Tt . When the contents
of the descendant nodes change, such as when we use a restriction that allows more
rows and columns, it is no longer clear if whatever we compute in P[t] can be reused in
subsequent steps (more photons being sampled). We believe this can be done, but we
do not yet know how, so we state the following:

Conjecture 6.1.1. It is possible to extend our Algorithm ⋆ so that the dynamic program-
ming table P[t] computed for photon k (where k = 2, . . . ,n−1) can be reused for the
next photon k+1.

6.1.2 Allowing Collisions

In this work, we assumed that no collisions of photons may happen. Such is the standard
definition of Boson Sampling by [2]. However, since it was defined, researchers have
generalised this problem to allow for collisions.

Our algorithm cannot handle collisions. A collision of photons means that some row is
in the matrix is copied. Equivalently, a row (output) vertex in the graph of the matrix
is copied, along with its edges. If that row vertex had more than one neighbour, both
copies have those same neighbours, and we created a new cycle in the graph. This
means the original tree decomposition is no longer valid. We either have to compute a
new one that will have higher treewidth, or figure out another way to handle copying.

Conjecture 6.1.2. It is possible to extend Algorithm ⋆ to handle collisions of photons.
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Appendix A

Supplementary Material

A.1 Beamsplitter

In section 2.5.3, we defined the beamsplitter and said that it is unitary according to our
definition. Here we provide the proof. This is well known (see e.g. [7]), but we use it as
a demonstration of the graph formalism and our notation 2.3.1.

Lemma A.1.1. A beamsplitter B(θ,φT ,φR) from definition 2.5.3 is unitary.

Proof. We denote B≡ B(θ,φT ,φR), and B† its adjoint.

B†B =


|i⟩

| j⟩

⟨i|i⟩

⟨ j| j⟩

⟨i|

⟨ j|

e−iφT cosθ

−eiφR sinθ

e−iφR sinθ

eiφT cosθ

eiφT cosθ

eiφR sinθ

−e−iφR sinθ

e−iφT cosθ

 (A.1)

=


|i⟩

| j⟩

⟨i|

⟨ j|

e−iφT+iφT cos2 θ+ eiφR−iφR sin2
θ

e−iφT +iφR sinθcosθ

−eiφR−iφT sinθcosθ

e−iφR+iφT sinθcosθ

−eiφT−iφR sinθcosθ

eiφR−iφR sin2
θ+ eiφT−iφT cos2 θ

 (A.2)

=

 |i⟩
| j⟩

⟨i|

⟨ j|
1 1

= 1 (A.3)

Likewise, BB† = 1. ■

A.2 Greedy Algorithm

A basic tree decomposition algorithm for a graph G = (V,E) that generates a decompo-
sition works as follows:
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We will generate a chain of tree nodes with no branching. Let W be a set of vertices, a
selection. We initialise it with a single arbitrary vertex v ∈V , so W = {v}. We find the
set N of all neighbours of all vertices in the selection W :

N := {n ∈V |∃w ∈W. n∼ w}

where n∼ w means there is an edge between n and w. In the first step, this is just all
neighbours of v. We create a node t in the tree decomposition that contains vertices
W ∪N. Then we delete (or otherwise mark as no longer usable) vertices in W from G
and set W := N. We repeat the process until there are no more vertices left in V .

A.3 By Decycling of the Line Graph

This sketch of an idea follows from the geometric intuition of a graph of a matrix. Let
M ∈ F3×4 be some matrix

M :=

• • • 0
0 0 • •
0 • 0 •

 .

We denote non-zero elements by •. We represent this as a graph, and we put the edges
inside the matrix. We connect the ones that share an endpoint: this is a line graph of the
original matrix graph.

|1⟩ ,⟨1| |1⟩ ,⟨2| |1⟩ ,⟨3|

|2⟩ ,⟨3| |2⟩ ,⟨4|

|3⟩ ,⟨2| |3⟩ ,⟨4|


Now the idea is to find the cycles in this graph, and for each one, find a good place
to cut it. To preserve axiom (T3), we have to find the vertex that violates (T3) and
propagate it througout the uncut part of the former cycle.
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