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Abstract

Many state-of-the-art Deepfake video detectors use Convolutional Long Short-Term
Memory-based networks (ConvLSTM) as they take video as direct input, and can in-
herently capture spatio-temporal information within the video and use it for detection.
We opt not to use this approach and instead utilise dataset pre-processing protocols
in order to transform video to image input for use with image classification algo-
rithms, inspired by the successful field of image classification for non-image tasks.
We consider three architectures, including Khalid et al.’s OC-FakeDectl (Convolu-
tional Variational Autoencoder) trained only on real images which detects Deepfakes
by treating them as anomalies. We compare this to traditional binary image classifi-
cation approaches including Afchar et al.’s MesoNet (Convolutional Neural Network)
and Dosovitskiy et al.’s Vision Transformers. We train these architectures using several
pre-processing protocols, evaluation methods, and datasets in order to deduce which
settings work best and when. We offer deep analysis of all combinations of settings,
models and datasets, which may aid the field of Deepfake detection. This results in us
creating a Vision Transformer model which approaches state-of-the-art performance
on the CelebDFv2 dataset, with a completely fair testset with no train-test split actor
overlap. This was achieved via utilising our pre-processing protocols and evaluation
methods; transforming videos to images via averaging over frames or randomly select-
ing frames, and predicting on each frame or averaging predictions over all frames for
each video. We test this model on several unseen Deepfake datasets to showcase its
superior generalisability compared to baselines.
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Chapter 1

Introduction

The term “Deepfake” is a portmanteau of the words “Deep Learning” and “Fake”.
Deepfakes refer to a type of synthetic media created via Deep Learning (the predomi-
nant method to generate this media [26]), where a person in an existing image or video
is replaced with someone else’s likeness using A.l. algorithms. Deepfakes are often
used to create fake celebrity porn or to spread false information. Deepfake technol-
ogy has significantly improved to the point that they can be indistinguishable from real
videos while requiring significantly fewer data to create [40]. This means the preva-
lence and malicious usage of ultra-realistic Deepfakes will increase, in turn increasing
the likelihood of political and social unrest.

When we can not discriminate genuine videos from forged ones, we opt for a fight
Al with Al approach, and use Deepfake detectors. This work concerns itself with such
algorithms.

1.1 Motivation

Due to the immense damage that could be inflicted on society via the misuse of easily
accessible, ultra-realistic Deepfake video, we are motivated to create detection algo-
rithms. Many state-of-the-art (SOTA) Deepfake detectors take sequences of images as
input to leverage spatio-temporal correlations to make their predictions [34] [40]. This
is similar to how we as humans can tell if a video is fake (flickering/artifacts in facial
expression over time). Most models employed for detection do not take video as direct
input, and models which do take extremely long to train, making them uneconomical
(e.g. Convolutional Long-Short Term Memory Networks [34]). Therefore, we also
investigate a variety of pre-processing and evaluation techniques that we believe may
encode temporal information.

However, since none of our models encode for time directly, we opt to use pre-
processing to add this information in image format. The field of image classification
for non-image tasks indicates that it is possible to map data points from one modality
(videos) to another (images) via pre-processing to perform classification. We choose
to do this by averaging frames over subsections of video and we will compare this to
randomly selecting a single frame over the same subsection. Averaging frames should
result in a blurring effect which is a clear indicator of movement (although not the
direction of movement Figure 4.2).
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We hypothesise this will aid the model’s performance by allowing it to pick up
on artifacts present in fake videos. Furthermore, we consider two evaluation methods:
predicting overall frames from a single video and averaging to generate a single overall
prediction for the video, and compare this to the traditional approach of predicting each
frame across all videos independently.

111 MinfParts1 &2

In part 1 of this project, we explored the same problem of Deepfake detection. Af-
ter reviewing the literature, we found the area of image classification for non-image
datasets promising, e.g. sound classification using spectral signatures [33] or malware
classification with machine code bitmaps [12]. We hypothesised this approach could
be leveraged for detection and we devised a novel video pre-processing protocol, frame
differencing (FD), and compared it against others with baselines. FD consisted of com-
puting the difference of frames over subsections. We compare FD to the averaging and
randomly pre-processing mentioned prior.

We applied this pre-processing to the ultra-realistic CelebDFv2 dataset [23] and
trained Afchar et al.’s Mesolnception4 (an existing commonly used Deepfake detec-
tor baseline) via Inductive Transfer Learning. We performed extensive hyperparame-
ter tuning of all trained models using Hyperband [22], a reinforcement learning-based
(RL) approach outperforming classical Bayesian Optimisation. We compared our three
models fine-tuned on our three pre-processed datasets with their untrained counterparts
and found poor test AUCs among all models, i.e. all six models had AUCs of ~ 0.5,
equivalent to randomly guessing. Indicating no clear improvement in performance us-
ing our novel method. We concluded part 1 by deducing that the dataset we chose to
use was too difficult for our models to correctly classify. However, on review of our
code from part 1 (at the start of part 2), we found that we were calculating AUC in-
correctly and our novel method did indeed yield good results, with AUC far above 0.5.
Despite this, we chose not to pursue FD and instead focus on new approaches.

We build on top of part 1 and explore Convolutional Neural Networks (CNN), Vision
Transformers (ViT), and Convolutional Variational Autoencoders (ConvVAE) archi-
tectures with a set of varied datasets, pre-processing protocols, and evaluation methods
for the purposes of Deepfake video detection. We consider the current SOTA in image
classification, Vision Transformers [6] and employ Transfer Learning to fine-tune it
for the task of Deepfake detection. We also consider Khalid et al.’s ConvVAE which
exclusively utilises the real class to determine the legitimacy [14], circumventing the
cat-and-mouse of Deepfake generation and detection. We compare our results against
Afchar et al.’s MesoNet [1], four CNNs especially trained for detection as baselines.

Please note that our only overlap from part 1 is that we use the same AF and RF
pre-processing protocols and the same baseline. However, in this work, we update
our pre-processing protocols based on the work done in part 1 and consider several
baselines and models. Thus, all trained models, experiments, results, etc. shown in
this project are new to this work.
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1.1.2 Contributions

We would like to draw the reader’s attention to the following novel contributions in
this paper:

¢ Created a generalisable Vision Transformer model approaching SOTA tested on sev-
eral datasets.
o Determined generalisability of models via testing on various unseen datasets.

e Created a completely fair dataset, eliminating the possibility of cheating by models
encoding individual’s identities across training and test splits.
o Reinforcing our claims of generalisability and SOTA performance across models.

e Created an intelligent and efficient method of isolating target faces and cropping
them, while excluding unwanted third party faces within the same subsections of
frames.

e Comparisons, analysis, and statistical tests of dataset pre-processing, evaluation
methods, and architectures on several datasets not yet considered by the literature.
o e.g. Optimal dataset pre-processing and evaluation method determined per
architectures per dataset.

e Trained and tested several existing Deepfake detection models and compared them
against existing baselines.

1.2 Research Objective

In this work, our aim is to create several Deepfake detection systems, which take pre-
processed images (from video) as input and output a prediction of real or fake. We
would like to deduce which architecture is best, as well as which architecture 1s most
generalisable to new unseen Deepfake algorithms. We would also like to find which
pre-processing and evaluation methods yield the best improvement in performance.

We hypothesise that ViT models will be the best overall architecture due to their
recent success in computer vision [6] and that averaging frames and averaging over pre-
dictions will be the best pre-processing protocol and evaluation method, respectively.
We believe this as they intuitively encode the most temporal information. In order to in-
vestigate this, we will train our architecture on a variety of different Deepfake datasets
in conjunction with pre-processing techniques. We also investigate the efficacy of one-
class ConvVAE based detectors that only use real images to train, and compare this
approach with the binary image classification approach employed by baselines and
ViT.

We conduct a cross-product style test on all models, datasets, pre-processing proto-
cols, and evaluation methods to conclusively determine the best settings for detection.
This methodology should allow us to provide analysis not yet seen within the literature
e.g. what settings work optimally and when. Our main objective is to create and find
the most generalisable model architecture for detecting unseen Deepfakes.
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Background

2.1 Deep Learning

Deep Learning (DL) is a subset of Machine Learning (ML) that is used to create models
that can learn from data to make predictions. DL leverages Artificial Neural Networks
(ANN), which can fit any continuous function to an arbitrary degree of accuracy with
only a single (potentially infinite) hidden layer [5]. However, this ANN would be very
prone to overfitting as the training examples would be remembered by the weights [7].
“Deep” in DL refers to the depth of the network, and it has been shown that deeper
networks learn slower and thus are less prone to overfitting [7], with each subsequent
layer learning features at increasing levels of abstraction [17]. DL learns from data
via vector operations proceeded by non-linear differentiable activation functions. The
network approximates the underlying function described by these data, such that we
can compute the gradient of the error function w.r.t. the weights, removing the need
for hand-crafted features and allowing for gradient-based optimisation methods e.g.
Stochastic Gradient Descent.

DL has been shown to be very successful in a variety of tasks, including image
classification [18], object detection [30], and semantic segmentation [25]; these were
achieved using CNNs. This suggests that these algorithms can pick up on the com-
plexities of natural images and perhaps could be leveraged for detection, not just the
creation, of Deepfakes.

2.2 Types of Deepfake Videos

There are three types of facial manipulation algorithms.

* Fully Synthesised: All components of the image are fake, including the person’s
identity. These are often produced by Generative Adversarial Networks (GANs)
with prominent examples from Nvidia’s StyleGAN [13]; examples can be seen
at This Person Does Not Exist.

* Facial Expression Transfer: Making a target’s face digitally mimic a source
actor’s emotion and facial expressions and other minor features (e.g. hairstyle)
[43], while preserving identity [39].


https://thispersondoesnotexist.com/
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* Identity Transfer: Digitally transplanting a source individual’s entire face onto
a target individual, where both source and target individuals are real people [2]
(face-swapping).

The majority of fully synthesised Deepfake algorithms only produce images, with ma-
licious actors having little control over the specifics of the images (only the ability
to vary latent features to change basic attributes such as hair colour [13]) making it
difficult to do real harm.

Facial expression transferring Deepfakes has more potential to do harm as they can
be used to create fake videos. However, this technique requires the malicious actors
to use a pre-existing video of the target, which could be traced back and proven fake,
foiling any attempts to do harm.

Identity transferring Deepfakes do not have any of these issues and are arguably
the most dangerous, thus this work concerns itself with this type of Deepfake. The
majority of Deepfakes present online are of this type, mostly used for pornography
(~96% [37]), usually face-swapped with celebrities. This is due to the large amount of
facial data available for these individuals. However, the prevalence of Deepfakes using
everyday people’s faces (via social media) will increase as SOTA Deepfake generators
use fewer data to generate convincing fakes [35]. Recent applications of this type of
Deepfake often use actors who closely resemble the source individual’s face as the
target video. This is followed by applying identity transferring Deepfake algorithms
which eliminate the possibility of the video being traced back. An example of this is
Channel 4’s Her Majesty’s 2020 Christmas (Deepfake) Address.

2.3 Convolutional Neural Network

Convolutional Neural Networks (CNN) are a special type of neural network which
rose to prominence with AlexNet in 2012 [17]. This model achieved top-five accu-
racy of 84.7% test accuracy (~11% greater than the next runner-up) on the ImageNet
challenge, a 1000-class image classification problem.

CNN s classify images by using convolution operations which filter and reduce in-
puts by a set of learnable kernels. Convolutional and Pooling layers extract spatial
correlations in the image and reduce the size of input that is fed into Dense layers.
Successive convolutions allow for feature extraction over patches of the images and
the Pooling layer rejoins the patches for further feature extraction. These features are
then passed into a final Dense network for classification.

2.4 \Variational Autoencoders

Autoencoders can be split into two neural networks, an Encoder, and a Decoder. The
encoder transforms the input into a latent representation, i.e. intermediate features
of the input. The task of the decoder is to re-create the input using only the latent
representation, trained to minimise reconstruction error (difference between the input
and the output). The latent representation is typically smaller than the input to force
the model to learn dense hidden representations. Autoencoders are analogous to (lossy)


https://www.youtube.com/watch?v=IvY-Abd2FfM
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Figure 2.1: OC-FakeDect1 (ConvVAE) architecture [14]. Reconstruction Score is defined as
RMSE(x,x’), where x is the Encoder input and x” is the Decoder output.
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Figure 2.2: Vision Transformer architecture [6], each 16 x 16 image patch is treated similarly
to a token in NLP.

data compression. They are often used to learn features [14], denoise [10], or generate
new data [27].

Variational Autoencoders (VAE) build on top of this concept by adding a latent
space. Instead of the encoder outputting the latent representations for the input, we
output a latent sample using the (learned) latent mean and log-variance. This makes
it possible to interpolate between points in the latent space and generate new data.
Variational Autoencoders are trained by minimising the reconstruction error and the
KL Divergence between the latent space and a prior distribution. Convolutional Varia-
tional Autoencoders (ConvVAE) further this by incorporating traits of CNNs so image
inputs can be used efficiently, an example of a ConvVAE can be seen in Figure 2.1.

2.5 Vision Transformer

Dosovitskiy et al. introduced a Vision Transformer-based architecture for image recog-
nition (ViT) [6]. This architecture achieved SOTA performance on multiple bench-
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Figure 2.3: An example of Inductive Transfer Learning, with the addition of custom final layers
for fine-tuning (used in our ViT models).

marks including ImageNet. Derivatives of this architecture are even used in Tesla’s
autopilot for their camera-input [38]. ViT splits the input image into patches (analo-
gous to tokens in NLP). These patches are linearly projected into lower dimensions
(similar to PCA). Positional embeddings (i.e. which part of the image the patch came
from) are concatenated, this is followed by feeding the input into the standard trans-
former encoder outlined in Vaswani et al.’s seminal paper “Attention is all you need”
[41]. This encoding step is performed several times using stacked Transformers. The
output of this is then fed into a multi-layer perceptron (Dense layers) for classifica-
tion, as seen in Figure 2.2. ViTs are pre-trained using a large supervised dataset and
then fine-tuned on the specific classification task, in the same fashion as Transductive
Transfer Learning.

ViT architecture leverages Attention, i.e. relationships between pairs of input
patches. In computer vision, (Self-)Attention plays the role of capturing spatial in-
formation across the image. This is similar to convolutions, but with more flexibility
to capture global trends across the image, not just local ones (Figure 2.5). ViTs take
substantially more data to train from scratch (hence the Transductive Transfer Learn-
ing applied in its training process) compared to CNNs. This is due to ViTs having
little inclination to fit the idiosyncrasies of particular training examples, which is what
allows CNNs to quickly fit datasets, at the cost of generalisability [29]. This lack of
bias means ViTs take longer to train (from scratch), but absorb global correlations over
the dataset aiding in generalisability. Due to this specific feature of ViT, we consider
this architecture for Deepfake detection and only perform Inductive Transfer Learning
to fine-tune the Dense layers of Dosovitskiy et al.’s ViT-B16.
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2.6 Transfer Learning

Transfer Learning is the process of using a pre-trained model already trained on a
source domain and re-purposing it for a new target domain. This allows for the transfer
of knowledge via learned features common to both domains which can be leveraged
for more efficient training and better performance given the same compute. Without
Transfer Learning, it would be infeasible to complete this project due to the costs
entailed by training large computer vision models from scratch [28].

There are two types of Transfer Learning, Inductive and Transductive. Inductive
Transfer Learning is when the model is trained on the source domain and then applied
to the target domain. Transductive Transfer Learning is training on both the source and
target domains simultaneously.

We choose to use Inductive Transfer Learning for our model for computational
reasons. We freeze the pre-trained model’s weights and remove the final classification
layer, substituting it for our own. Meaning we only train on these few (Dense) layers
proceeding the penultimate layer of the pre-trained model (Figure 2.3). We only do
this for one architecture, ViT, which is discussed in-depth in Section 6.3.

2.7 Deepfake Video Detection & Related Work

2.7.1 MesoNets (CNN)

Afchar et al. introduced a set of 4 lightweight CNN-based Deepfake detection models
in 2018 [1], achieving an AUC of 0.98, and 0.95 on the DeepFake (DF) and Face2Face
(F2F) datasets, respectively. They also consider a variety of compression rates and
showcase the robustness of their algorithms in the wild. In their work, they consider
2 model architectures trained on 2 datasets to produce 4 models, Meso4 and Mesoln-
ception trained on DF and F2F. Afchar et al. also provide all of their code to create,
initialise and run their models. They include an example dataset, DFDB, which has
already been pre-processed such that all the data points are extracted faces in image
format via the Viola-Jones algorithm [42]. Pre-trained weights for all models can also
be acquired, making testing on this baseline simple and ensure that our comparisons
are valid, with no bugs which could skew results.

Despite these models no longer being SOTA, we deem it important to compare
against them as they are a commonly used baseline among most papers in the field.

2.7.2 OC-FakeDect1 (ConvVAE)

Deepfake detection algorithms usually require real and fake data points, the latter of
which is ever-changing as video forgery algorithms improve, making it difficult to
create up-to-date detectors.

Khalid et al. introduced a ConvVAE for Deepfake detection [14] using only one
class. Their approach only uses the real class to determine legitimacy by leveraging
the reconstruction error disparity between real (which the network was trained on)
and fake faces. Khalid et al. define reconstruction score as the root mean squared
error (RMSE) between the input and generated output. Since the ConvVAE was only
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Figure 2.4: Thresholding technique on Reconstruction Score (RMSE) used by Khalid et al.s
models to classify [14].

trained on the real class, the model generates worse images when given fake faces as
input (distributional shift). Thus, they can quantify the quality of generated images
using RMSE and classify them using a scalar threshold on this metric. An example of
this thresholding can be seen in Figure 2.4.

They define two architectures OC-FakeDectl and the SOTA OC-FakeDect2. We
only consider OC-FakeDectl (Figure 2.1) as we had difficulty implementing OC-
FakeDect2 and OC-FakeDectl yields only marginally worse performance compared
to their SOTA model, and apply a series of novel pre-processing, evaluation methods,
and datasets to this architecture.

Convolution Global attention

o0 o0 o ® [ ] ]
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000 O 000 000 00000000

Figure 2.5: Diagram of Attention compared to Dense, Convolutional and Attention layers. The
black lines indicate weights which update via an optimiser e.g. SGD, whereas the colourful lines
indicate the Attention weights which change w.r.t. every input.
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Datasets

3.1 CelebDFv2

CelebDFv2 (CDFv2) [23] is the second generation of SOTA Deepfake video dataset
using celebrities as source and target actors. Released 11-2019, it contains 590 (225,400
frames) and 5,639 (2,116,800 frames) of genuine and manipulated videos sequences,
respectively.

There are 62 celebrities of various genders and ethnicities, who have been Deep-
faked among each other, based on gender, resulting in an average of 9.6 fake videos for
every real video. Both FF++ (Section 3.2) and CDFv2 have the advantage of offering
ground truths for all fake videos. That is, every fake video has a corresponding real
video. These ground truths make it possible for us to conduct a fair test, whereby we
can isolate actors so that they only appear in the testset, removing the possibility of
models remembering faces across train-test splits (see Section 4.1 for more details).

Figure 3.1: CelebDFv2 [23] where the green boxes are real images and red boxes are their
corresponding fakes.
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This dataset provides the most convincing Deepfakes, with CDFv2 showing the
highest Mask Structural Similarity Index Measure score [23] compared to its counter-
parts; indicating far superior quality compared to the other datasets mentioned. When
we conducted visual inspections on the forged videos from each dataset, we could of-
ten immediately determine if a video was legitimate. However, with CDFv2 we found
it difficult in many cases to do this. This further reinforced the value of this dataset.

3.2 FaceForensics++

FaceForensics++ (FF++) is a dataset collection [32] containing 1,000 video sequences
altered using four methods: Face2Face (F2F), DeepFakes (DF), FaceSwap (FS), Neu-
ralTextures (NT). This dataset collection was released 01-2019 using 977 real videos
gathered from genuine YouTube videos at a resolution of 256 x 256, with manipulation
methods applied, resulting in a total of 509,900 video frames per class.

In 2020 FF++ was improved with the addition of a new manipulation method,
FaceShifter (FSHFT). This method is able to generate higher quality forged videos
in comparison to the previous methods. In addition, FSHFT deals with facial occlu-
sions using a second synthesis stage consisting of a Heuristic Error Acknowledging
Refinement Network (HEAR-Net) [21]. This dataset mostly comprises frontal faces
with minimal obstruction, allowing for best-case video forgeries which may aid in the
generalisability of models trained with this dataset.

Figure 3.2: FaceForensics++ [32] where left-most column are source faces and all other faces
are Deepfake algorithms used in FF++.
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Overall Overall Faces Extracted

Dataset | Year Number Number Per Second Af tef:’ilejll?r ?)gci:sssing Af tefag(:;_lg_ z%z:sing
of Real Videos | of Fake Videos (30 Frames)
CDFv2 | 2020 590 5,639 2 7227 67901
FSHFT | 2020 1389%* 1000 2 26138 16465
F2F | 2019 1389%* 1000 2 26138 16449
DF 2019 1389%%* 1000 2 26138 16444
FS 2019 1389%%* 1000 2 26138 13032
NT 2019 1389+ 1000 2 26138 13025
DFDB | 2019 - - - 11509* 8000*

Table 3.1: * DFDB was not pre-processed by us, we obtained it in image format (we can only
pre-process video). ** Originally FF++ used 977 real videos to create 1000 fake videos (per
forgery algorithm), but as of 2021, they use 1389 to the same number of fakes. {FSHFT, F2F,
DF, FS, NT} € FF++. Please see Chapter 4 for details on what pre-processing refers to.

3.3 DeepFake Database

Afchar et al.’s original MesoNet [1] provided a download link for the dataset used, as
well as pre-trained weights for each MesoNet as discussed in Subsection 2.7.1. The
downloadable dataset, DeepFake Database (DFDB), provided is already pre-processed
meaning that each data point is a jpg image and not an mp4 video like all the other
datasets mentioned in this paper.

For this reason, we cannot conduct our own pre-processing (as there are no videos
to do this on) and thus we can not create averaged and random frame versions of this
dataset as well as perform running average evaluation on our models. Despite these
drawbacks, we deem it important to compare against this dataset as it is the one used
by Afchar et al. and it gives us a good reference point for comparison between models.

The major ethical concern among all these datasets is that the individuals in these
datasets did not consent to their faces being used for Deepfakes, let alone for others
to benefit via academic research using their identities. These datasets contain faces
of celebrities and individuals who chose to upload their faces onto YouTube. Further-
more, all of these datasets required us to sign up through academic portals and disclose
our intent of usage before gaining access. We do not create any new Deepfakes as part
of this project, only using the existing ones found online.

Despite these concerns, we choose to reluctantly carry on, as the majority of the
literature has used these datasets. For the purposes of fair comparison and to minimise
the number of people used in the field of Deepfake detection, we choose to use these
datasets over newer “’in the wild” datasets [45].
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Dataset Pre-Processing Protocol &
Evaluation Methods

This chapter focuses on the pre-processing protocols used to convert video datasets to
image datasets; all 9 models used in this paper take images as input. In short, we create
images by averaging the frames over a subsection of video or selecting a random frame
from the same subsection to obtain images used for training and prediction. We also
cover the different evaluation methods employed on these pre-processed datasets. This
means either using a single image as a data point and predicting, or predicting on all
frames from a given video and averaging over them to obtain a single prediction for
the video.

4.1 Train-Test Actor Isolation

As mentioned in Section 3.1 both CDFv2 and FF++ have ground-truth videos, allow-
ing us to isolate certain individuals for train and test purposes only. We do this in order
to ensure that our models cannot learn actors’ faces across train-test splits. CDFv2
has a consistent video file naming scheme (target actor + source actor + scene num-
ber). Whereas FF++ has an inconsistent naming scheme. Without a consistent naming
scheme, it is impossible to isolate actors in this way. For this reason, we could only
perform actor isolation on CDFv2.

We do this to keep the test as fair as possible, meaning our claims for generalis-
ability later in this work are more concrete compared to other papers. We know our
architectures will remember faces since many models in the field of ML remember
data points instead of learning [36]. Overfitting itself is caused by models encoding
training examples in their weights (remembering), which means they do not generalise
well to unseen data.

In essence, we are making this dataset more difficult compared to the literature,
and thus claims of SOTA performance are more reliable. We isolate 9 male and female
actors from CDFv2, with these 18 actors used exclusively for test purposes only and
the other 44 being used exclusively for training. This results in an approximately 30%:
70% train test split. To the best of our knowledge, train-test actor isolation has not
been considered in the field.

17
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4.2 Pre-Processing

We only have the ability to pre-process video datasets. Our motivation for doing this
comes from numerous works where image classification CNNs are employed for non-
image datasets via careful pre-processing. We do this in hopes to encode temporal
information within our time-independent models.

Our pre-processing pipeline consists of extracting all frames from a video, followed
by extracting a single face from each frame. Each video is at 30fps, and we choose
to pre-process faces every half a second. We group k = 15 non-overlapping frames
and either average over the group to produce an Averaged Frame (AF), or select a
Random Frame (RF) from the group. In this case, a group is k consecutive (cropped)
detected faces.

Doing this has the issue of inconsistent image sizes within the group (due to crop-
ping), meaning we can not average over the group without dead zones. We fixed this
in MInf part 1 by only considering the largest bounding box which contains all faces
in the group of size k. However, this worked poorly in the edge case where multiple
faces are detected in the scene, say at the edge of the frame, the largest bounding box
over the group may encompass the entire frame.

We remedy this in part 2, by keeping track of the average face location within
the group and only consider the largest bounding box which is b pixels away from
the centroid. We arbitrarily determined b by considering the worst offenders of this
edge case and found that b equal to the 75th percentile of the most common face
distance among all distances over the group worked best. That is, we use the 779 of
the interquartile range of face distances; i.e. sort all distances from the centroid and
use the 75" percentile for the new largest bounding box over the group to determine
when to crop, and discard all frames which all outside this range. This gave us the
best balance between not accidentally including unwanted faces while keeping tight
face crops, which is important as model input sizes could be as low as 100 x 100 (OC-
FakeDectl). This means that if a new face is detected within the scene, we only focus
on the most common actor. This works well as all scenes among all datasets tend to be
interview-style videos with minimal movement. A clear example of this can be seen
in Figure 4.1 where k = 4 and using only frames that fall into 779 of face distances
from the average face location results in isolation of the target face (with only a single
discarded target face crop).

Notice in Table 3.1 that datasets from FF++ have 26,138 real frames after pre-
processing, whereas fakes have approximately 16,000 frames. This was because FF++
datasets do not use the entire video sequence to create the forged videos. The quality
of Deepfakes among FF++ datasets seems to vary the number of fake images produced
after pre-processing. This indicates our face extraction system did not always find
the same faces, despite all FF++ videos being derived from the same real videos. We
hypothesise this is due to the CNN we use to extract faces from video frames, which
was trained to detect (real) human faces and segment them [8]. Since this CNN was
trained to detect real faces, it would struggle to pick up on the unconvincing faces
which are so poor in quality that the CNN does not deem them a face. As mentioned
prior, FSHFT was a new addition to the FF++ dataset and Table 3.1 shows that this
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was the dataset the CNN extracted the most faces for, a testament to its realism.

4.3 Evaluation Methods

This pre-processing has allowed us to convert each video into a sequence of images,
in such a way that we can recover which video each image was from (via filename).
This allows us to vary the way we make predictions at inference time. We try two
methods of evaluation. Standard Evaluation (SE), which is where we predict every
single image in our testset and predict as normal, treating every image independently
from the last. We also try Running Average Evaluation (RAE) where we average
over the predictions of images from a given video to provide a single prediction per
video. Thus, RAE requires our pre-processing, doing RF or AF.

For example, say we are evaluating 2 videos, one real and one fake, that yielded 10
images each after pre-processing was applied. SE would independently predict on all
20 images to provide 20 predictions, one for each image. Whereas RAE would average
the predictions over the 10 images from each video to provide 2 final predictions. We
hypothesise that RAE will yield better performance compared to SE (which the major-
ity of the literature use), as RAE may have the ability to pick up on the idiosyncrasies
of fake videos; which tend to showcase flickering at the edges of faces.

def classify(
preprocessed_images_from_video: list,
model: (ViT | Meso4 | MesoInception | OCFakeDectl),
evaluation_method: str
) —> list:

====> Psuedocode for performing RAE/SE <====

nmnn

# * “preprocessed_images_from video® 1is all the pre-processed images
# from a given (single) video

# * "model” is the model being considered

predictions = []

for image in preprocessed_images_from _video:
# Append model's prediction on image to predictions list
predictions += [ model.predict (image) ]

if evaluation_method == "Running Average Evaluation":
# Average the predictions over images from the given video
predictions = [ sum(predictions) / len(predictions) ]

# Either len(predictions) == 1 or
# len(predictions) == len(preprocessed_images_from_video)
return predictions
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Figure 4.1: Face cropping protocol, using Ty of the interquartile range of face distances from
the overall average face location in order to isolate the target face (red), and exclude unwanted
detected faces (yellow). This results in a good face crop containing only the target face (green)
compared to the largest bounding box approach used in MInf Part 1 (blue).

Figure 4.2: Examples of RF (upper row) and AF (lower row) pre-processed images. Notice
how we as humans can use AF to infer movement, but not direction of movement in time.



Chapter 5

Methodology

In this chapter, we discuss the methodology of our experiments, specific models, and
their settings used in this work. In total, we consider 9 models:

* 4 Baseline models which we do not train, only evaluate.
[Mesod4 with DF pre-trained weights,
Meso4 with F2F pre-trained weights,
MesoInception with DF pre-trained weights,
MesoInception with F2F pre-trained weights]

* 2 Vision Transformer models which we exclusively train on CDFv2
[VIT fine-tuned on CDFv2 pre-processed with RF,
ViT fine-tuned on CDFv2 pre-processed with AF]

* 3 OC-FakeDectl models which we train on CDFv2 and DFDB
[0OC-FakeDectl trained on CDFv2 pre-processed with RF,
OC-FakeDectl trained on CDFvZ2 pre-processed with AF,
OC-FakeDectl trained on DFDB]

Each of these 9 models is tested 25 times, resulting in 225 total experiments. This is
because there are 7 datasets in total, 6 of which were obtained in video format, and
thus they could be pre-processed with the protocols discussed in Section 4.2 (RF, AF)
into 12 datasets. These 12 datasets can then be evaluated image by image (SE) or as
a video (RAE) to obtain 24 evaluation sets plus the extra dataset which was already in
image format, DFDB. Recall, that we can only perform RAE when we can perform RF
or AF, this is discussed in depth in Section 4.3.

25 = ((6 x2x2)+ 1) = ((Video Datasets x Pre-Processing Protocols x Evaluation
Methods) + Image Dataset). Where:
Video Datasets = [CDFv2, F2F, DF, FSHFT, FS, NT]
Pre-Processing Protocols = [Random Frame (RF), Average Frame (AF)]
Image Dataset = [DFDB]
Evaluation Methods = [Standard Evaluation (SE),
Running Average Evaluation (RAE)]

After these 9 models are trained, we test them on all testsets, essentially conducting

21
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Table 5.1: Left Table: Model descriptions. Includes the model architecture (Model), train-
ing set (Trainset), and its associated pre-processing protocol (Trainset Pre-Processing). Rows
where Trainset Pre-Processing contain a dash (-) indicate that we could not conduct any pre-
processing (DFDB). Trainsets with asterisks (*) refer to the pre-trained weights provided by
Afchar et al.

Description of All Models Description of All Test Sets
Model Trainset | Trainset Pre-Processing | Testset | Testset Pre-Processing
Mesolnception DF* - CDFv2 AF
Mesolnception | F2F* - CDFv2 RF
Meso4 DF* - DF AF
Meso4 F2F* - DF RF

ViT CDFv2 RF DFDB -

ViT CDFv2 AF F2F AF
OC-FakeDectl | DFDB - F2F RF
OC-FakeDectl | CDFv2 RF FS AF
OC-FakeDectl | CDFv2 AF FS RF

FSHFT AF
FSHFT RF
NT AF
NT RF

Table 5.2: Right Table: Testset descriptions. Includes testset and its associated pre-
processing protocol (Testset Pre-Processing). DFDB does not have a pre-processing protocol
as we obtained it with prior pre-processing (DFDB already came as still images). Thus, testsets
are ([CDFv2, F2F, DF, FSHFT, FS, NT]x[AF, RF]) + [DFDB]

a cross-product of models, datasets, pre-processing, and evaluation methods where
applicable. Table 5.1 and Table 5.2 showcases all models and datasets (with pre-
processing protocols but not their evaluation methods). Notice that in Table 5.2 there
are only 13 testsets when in reality there are 25 when we include the evaluation method
(SE, RAE).

Of these 9 models, 4 are MesoNet baselines which we do not train, only test. The
other 5 are the ViT and OC-FakeDect]l models outlined above.

5.1 Models

The following section covers the experiment settings for each of our architectures. We
try our best to mimic the settings outlined by Afchar et al. (for ViT models) and Khalid
et al. (for OC-FakeDectl) when appropriate. We do this to ensure that the test is as
fair as possible, however, we could not always keep to this protocol. In hindsight,
we believe we may have hindered our model’s performance by doing this but we still
manage to create models approaching SOTA.
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5.1.1 Untrained Baselines: Meso4 & Mesolnception

MesoNets were not trained at all, as pre-trained weights were provided. We use
Meso4 & Mesolnception as untrained baselines. These models come pre-trained with
two sets of weights for the DF and F2F datasets (from FF++). In addition, they also
provide an image dataset called DFDB which we use as a testset. However, since
DFDB has already been pre-processed into images, we can not easily recover the
source video of each image (naming convention of DFDB image files has no bearing
on the video source). Thus we can not test evaluation methods (RAE, SE).

Afchar et al.’s version of DF and F2F datasets were pre-processed slightly differ-
ently compared to ours. They utilised the Viola-Jones algorithm to detect faces [42]
[1], which tends to work optimally for frontal faces, with ~ 50 faces extracted from
each scene. Whereas we use a pre-trained facial recognition CNN [9] which works
well no matter the face orientation, and we extract a face every 15 frames (0.5 sec-
onds) resulting in an average of 12 faces extracted per video (for CDFv2). This is less
than the expected 20 faces per video as not every frame had a detectable face. We
believe that these pre-processing differences may skew results in favor of our baselines
as the CNN can pick up more difficult to detect faces that the Viola-Jones algorithm
can not [20] [9], in turn making our version of the dataset more difficult and hence
harder for our models to classify correctly.

We considered applying Inductive Transfer Learning and fine-tuning each of these
baselines but we decided not to as this would be repeating work from MInf Project
(Part 1). Note: When DF and F2F are mentioned as a testset in this paper, it refers
to the video datasets pre-processed to AF and RD images by us. When DF and F2F
are referred to in the context of trainset we mean DF weights and F2F weights and we
denote this with an asterisk e.g. DF*.

5.1.2 OC-FakeDect1

OC-FakeDect] Training Settings, unless stated otherwise, are the same as Khalid et al.
OC-FakeDect1 was trained from scratch, as we did not have pre-trained weights
for this model. We train OC-FakeDectl twice, we did this due to abnormal training
loss curves and to fix a bug within our code. We used the following settings for our
second and final training iteration for OC-FakeDect1 models:

e Trainset: {CDFv2 (AF), CDFv2 (RF), DFDB}, CDFv2 with actor-isolated train-set
split and both pre-processing protocols plus DFDB.

e Batch Size: 128

e Image Input Size: 100 x 100, this can not be varied without changing the entire
architecture. In their paper, convolution strides, kernel sizes, etc. result in the in-
termediate latent vector being 20,000 dimensions, therefore changing the input size
would force us to vary these parameters to keep the dimensionality of the latent vector
consistent Figure 2.1.

e Training Epochs: 100 — 300, increased due to noisy training loss (Khalid et al. use
100 training epochs). We increased the number of epochs due to the noisy training loss
during training iteration 1 (Figure 5.1).
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Figure 5.1: Botched Training Iteration 1: OC-FakeDect1 training metrics for DFDB [Right]
and CDFv2 (AF) [Left]. Please note: Full training losses of this model being trained on CDFv2
(RF) was lost due to bad code management (overwritten plots).

e Learning Rate, A: 1 x 1073 — 1 x 10~%, (Khalid et al. use a constant A = 1 x 1073),
similar to training epochs, we lowered the learning rate to help fix training loss.

e Train-Test Split: 7.4% : 92.6% (Trainset Reals : Testset Reals + Testset Fake +
Trainset Fakes) when testing on CDFv2 (due to actor-isolated train-set split). This
skewed train-test split is caused by CDFv2 having x9.6 number of fakes compared
to real images. 25% : 75% split on all other datasets as FF++ datasets have an equal
number of real and fake videos (see Figure 5.4). Recall we are only training on the real
class and using the rest to determine thresholds. (Khalid et al. use 30,000 real images
for training and 4,000 real and fake images to determine thresholds).

o Loss Function: Mean Squared Error (MSE), 32, (x; — yi)2.
e Optimiser: Adam [15].

e Data Augmentation: {Original, Horizontal Flip, Vertical Flip}, we apply the same
data augmentation (generating new data points via linear transformations on existing
data points) strategies as employed by Khalid et al.

e Callbacks: Early Stopping and Model Checkpoint — None. During the first train-
ing iteration, we used callbacks to prematurely end training (after 10 epochs of no
improvement) and save model weights (when model improves), where improvement
is defined by getting a lower training loss compared to the lowest training loss so far.
This worked poorly due to the noisy training loss, hence the low epoch numbers on the
x-axis of Figure 5.1. We dropped this in favor of no callbacks, instead of taking the
model as is after the 300" epoch.

We were unable to recreate Khalid et al.’s SOTA OC-FakeDect2 due to GPU VRAM
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Figure 5.2: Final Training Iteration 2: OC-FakeDect1 training losses (MSE).

limitations and general ML library difficulties. However, OC-FakeDect1 still yields
performance metrics ~ 2% lower than the SOTA OC-FakeDect2. This is why we only
consider OC-FakeDectl. As mentioned prior, OCFakeDect models only train on a sin-
gle class (real images) and use the RMSE discrepancy between classes to classify. This
means that there is no validation set needed. Figure 5.4 showcases how we convert our
binary datasets for use with this one-class model while still utilising all of the data
available to us.

5.1.2.1 Determining Classification Threshold

We use the real class from our trainset for training. Then, we combine the fakes from
trainset and testset, and use the reals from the testset in order to determine the optimal
threshold for separation. Figure 5.4 illustrates this process. Khalid et al. determine
their threshold by calculating the inter-quartile range (IQR) to mark the 80% quartile
(T3o) of the distribution (seen in Figure 2.4). We also considered calculating the point
of intersection if the two RMSE distributions were normal curves, or by looping over
all thresholds between the minimum and maximum RMSEs and picking the one that
yields the highest F1 score.

However, we found that all of these methods yielded unreasonable thresholds. We
opt to determine our threshold using 759 between the means of the two distributions
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Figure 5.3: Reconstructed face (from single held-out validation image) via OC-FakeDect1 at
1st epoch vs 6th epoch.

(maximal separation between means) as this yielded the most sensible thresholds (ex-
ample seen in the left-hand plot of Figure 5.5). One could argue that this is cheating in
some sense, as we are determining a threshold on this testset and then testing whether
it is a good fit. But this is the approach adopted by Khalid et al. Furthermore, the met-
ric of AUC also considers all possible thresholds in order to aid in threshold selection
in binary image classification, thus we do not deem this cheating. All thresholds are
found on the trainset, even for new unseen datasets.

5.1.2.2 Botched Training Loss (Training Iteration 1)

Figure 5.1 shows the training metrics of OC-FakeDectl on DFDB and CDFv2 (AF) on
our first training iteration. We see that training loss is erratic, with no clear downward
trend. This type of training loss curve is an indicator of the learning rate being too
high [3]. For this reason and the fact that this model takes substantially less time to
train compared to ViT, we chose to break our commitment to making this model close
to the baselines/original paper; and conducted light hyperparameter tuning. That is,
we tested a variety of learning rates with this model and saw the same erratic loss.
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Figure 5.4: One-Class training protocol (how we convert our binary datasets for use with OC-
FakeDect1)

We followed this by sanity checks whereby we train this model on a single batch of
64 images for 1000 "epochs” and we saw a clear reduction in training loss (classical
decaying loss curves on the single batch).

This suggests that we are not training for enough epochs (when considering all
images) for the model to learn good latent representations of the input faces. Thus,
we increased the total number of training epochs from Khalid et al.’s 100 to 300. In
addition to this, we lowered the learning rate by an order of magnitude to 1 x 1074, we
did this to ensure that our second training iteration would be successful.

5.1.2.3 Final Training Iteration

Due to the reasons discussed above and the fact that we found a major bug in our code,
we had no option but to retrain our model. Hence, we have two sets of loss metrics
Figure 5.1 and Figure 5.2 for the first botched and the second final training iteration,
respectively. The training settings above are for our final model, and all further results
are from the final model (second training iteration). We omit the results from our first
bugged training iteration as they are too numerous, but these can be found via our links
in our Appendices.

During test time on a dataset the model has not been trained on, we perform the
same thresholding technique on its train split (used as a validation split). Classification
is carried out on the test split using the threshold determined on the training set (see
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Figure 5.5: Left: Highest F1 threshold for OC-FakeDect1 trained and tested on DFDB w/ SE
(first training iteration) Right: Cosine learning rate schedule for ViT models

Figure 5.4).

5.1.3 VIT

ViT Training Settings, unless stated otherwise, are the same as Dosovitskiy et al.’s
original ViT paper, otherwise, we use Afchar et al.’s baselines settings where possible.
ViTs were not trained from scratch, we use ImageNet 2012 pre-trained weights
and only fine-tune the Dense final layer:

e Trainset: {CDFv2 (AF), CDFv2 (RF)}, CDFv2 with actor-isolated train-set split
and both pre-processing protocols.

e Batch Size: 64. Baselines and original ViTs use batch sizes of 75 and 512, respec-
tively, neither of which fit onto our GPU’s VRAM.

e Image Input Size: 256 x 256. Same as baselines.
¢ Training Epochs: 100. Same as baselines.

e Max Learning Rate, Aya: 5 x 1072, We use a Cosine Annealed learning rate used
by Dosovitskiy et al., which starts at 0 linearly climbing to Apax 20% through training
and decays based on a cosine curve (see right-hand plot of Figure 5.5). This ensures
convergence to local minima.

e Validation Split: 20% of Trainset.

e Train-Test Split: 73.9% : 26.1% when testing on CDFv2 (due to actor-isolated
train-set split). 20% of the trainset was used for validation metrics, thus validation
metrics are not actor-isolated, unlike the testset.

e Loss Function: Binary Cross-Entropy —(ylog(p) + (1 —y)log(1 —p)) where y €
{0,1}.
e Optimiser: Stochastic Gradient Descent (SGD) [31] with 0.9 momentum and Cosine

Annealed learning rate schedule. SGD was used to train the final Dense unit from ViT
feature extractor. Original ViT was optimised using Adam [16].
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Train & Validation AUC and Loss of ViTs Trained on CDFv2 (AF/RF)
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Figure 5.6: ViT training metrics. Orange and green dots signify the highest validation AUC ViT
models we chose to use for evaluation: ViT (CDFv2 RF) and ViT (CDFv2 AF), respectively.

e Callbacks: Same Early Stopping and Model Checkpointing used as OC-FakeDect1.

Dosovitskiy et al. outlined several ViT models in their original paper. When we say
ViT, we are referring to ViT-Base with 16 x 16 input patch size. We had the option
of using the SOTA ViT-Large and ViT-Huge models with 307 million and 632 million
parameters, respectively; however, these proved too unwieldy to use. We choose to
use Inductive Transfer Learning and use pre-trained weights from ImageNet 2012. We
freeze all weights of the network and detach the final dense layer (which had 1000
units corresponding to the 1000 classes in ImageNet) and replace it with our own net-
work. To minimise compute constraints we only choose to add a single trainable layer
truncating the features from the penultimate layer into a single Dense unit for classi-
fication. This single Dense unit has Sigmoid activation corresponding to the proba-
bility of the input being fake. We only fine-tune this final layer resulting in 769 and
85.8 million trainable and non-trainable parameters, respectively. We hypothesise that
adding extra trainable layers would vastly improve ViT performance beyond the re-
sults showcased in Section 6.3, but we leave this as future work. In most applications
of Inductive Transfer Learning, several trainable layers are employed for fine-tuning,
including Dropout, Batch-Norm, etc in addition to Dense layers [28].

Both Deepfake detection and ImageNet classification concern themselves with
(semi-)natural images. This means the first few layers of the network tend to be the
same regardless of domain. Weights in early layers distinguish general features (lines/-
gradients/edges). Intermediate layers combine features learned in earlier ones to learn
new increasingly complex features (simple shapes/curves/corners), with final layers
learning domain-specific features (real/fake faces in our case). Examples of this can
be seen in Figure 5.7.

Since we use the same random seeds in all cases, our training datasets are mirror
copies of each other; everything is the same from the network initialisation to the
order that we train images, with the only difference being the pre-processing protocol
applied. Thus, both ViTs start at the same position in the loss landscape and we can
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make direct comparisons between the two. Notice that we trained OC-FakeDectl on
three datasets {CDFv2 (AF), CDFv2 (RF), DFDB} Whereas we only train ViT on
two datasets (not DFDB). This was because training the OC-FakeDectl model was
relatively quick in comparison to ViT and we deemed it more important to train on the
harder datasets for which we had spent time pre-processing/isolating actors.

Throughout the training process, in addition to keeping track of validation loss,
we also keep track of validation AUC, this allows us to retrieve the weights of the
model with the best validation AUC and use it for evaluation. We choose to stop our
model based on maximal validation AUC instead of minimal validation loss since in
preliminary experiments, this yielded better non-actor-isolated test AUC on CDFv2
(RF). However, we only did this once as it is bad practice to optimise to our testset like
this. Furthermore, we use actor-isolated test splits for all other evaluations, so this did
not skew our results.
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Figure 5.7: Visualisation of learned features from weights in AlexNet for ImageNet 2012 [44]
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5.2 Overview

In this chapter, we have outlined both the methodology and experiment settings for
all architectures. The majority of our time was spent pre-processing and refining
our OC-FakeDectl models, with ViT models working well with minimal alterations.
Training each ViT model took approximately 48 hours, twice as long as training OC-
FakeDectls. However, we only trained one of the two architectures on all three datasets,
resulting in a total of five models trained by us (not six as we did not train ViT on DFDB
due to compute constraints).

All of this resulted in 225 experiments. We chose to do this cross-product style
experiment method to provide analysis in Chapter 6 and Chapter 7 which has not yet
been seen by the Deepfake detection literature. This was not a trial-and-error/see-
what-sticks style experiment method, as all results have their use and can be compared
with their counterparts. This methodology allows us to vary independent variables (per
architecture) and apply the scientific method. Each architecture’s results were trained
and tested in the exact same way with only the independent variables changing. The
bulk of our results come from testing on all possible testsets for each model. We do
this in order to concretely verify the effects of pre-processing protocols and evaluation
methods on our models, allowing us to determine which is best and when.

We use a variety of carefully crafted statistical tests in order to draw conclusions
about the validity of our approach and which combinations of settings work best. To
the best of our knowledge, no other papers consider an actor-isolated test split for
CDFv2. However, doing this allows us to make stronger claims about model general-
isability as the model can not use remembered faces or background scenes in order to
cheat.
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Results & Evaluation

We showcase results and perform an objective analysis with surface-level explanations
in this chapter. Subjective conclusions, further comments, and trends are included in
Chapter 7. All code to create figures, tables, t-tests, and all 225 experiments can be
viewed in the Appendices of this paper. Please note that:

Baselines & DF/F2F Trainsets: Any table where the model is Meso4/Mesolnception
and trainset is DF/F2F, these models were not trained on DF/F2F by us. Instead, they
use pre-trained weights fine-tuned on the DF/F2F datasets by Afchar et al., we denote
this with an asterisk (*). Any other mention of trainset being DF/F2F outside of these
baselines refers to the actual datasets and not weights.

F1, Precision & Recall: We purposefully choose not to draw any conclusions from
F1, Precision, or Recall as all of these metrics use a threshold of 0.5 which is not the
optimal threshold for each model. This is why some models show high AUC but low
F1. We realised this a few days before the submission deadline and retesting all models
would be infeasible, this is why we do not include any confusion matrices. Further-
more, AUC tends to give a fuller picture of a model’s performance as it considers all
thresholds. This being said, this is an academic exercise; if we were to deploy these
models in the real world for Deepfake detection, we would take great care to pick the
most optimal thresholds to obtain the best results on unseen data. i.e. AUC has no
bearing on real-world performance, we have to pick a threshold for classification.

Dependent t-test for Paired Samples: We use scipy.stats.ttest_rel which cal-
culates t-test on two related samples of scores. To eliminate any correlation between
the train and test splits, all t-tests performed are done using the full generalisability list
of models (Figure 6.1, Table 6.3) i.e. where trainset # testset; testing on new unseen
datasets that are not the dataset we trained on. This is a test for the null hypothesis
that two related or repeated samples have identical mean values, where variance is un-
known. We make no assumptions about the distributions of the two groups.

One could argue that we can not meaningfully conduct a t-test on AUC as there is
a correlation we are not accounting for, as we tested on the same dataset we trained
on. However, we eliminate this correlation by filtering out all models where trainset #
testset, the generalisability list (a subset of which can be seen in Table 6.3) and thus
we can use a dependent t-test for paired samples. For each t-test we vary the alternate
hypothesis, a, from a € {<,#, >} which will test if the mean of the distribution under-
lying the first sample (uGroupa) 18 alternate to the mean of the distribution underlying
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the second sample (uGroup). We use a p-value significance threshold of 0.05. E.g. if
ae {>} then hy : HGroupA = MGroupB> and hy : HGroupA = HMGroupB-

Overall List:
Average Test AUCs For Each Architecture
NT

Meso4 Mesolnception OC-FakeDect1
Models

Testset
CDFv2
DF
DFDB
F2F

FS
FSHFT

Generalisability List:
Average Test AUCs For Each Architecture
Where Trainset # Testset, i.e. Out of Trianing Dist.

Testset
CDFv2
DF
DFDB
F2F

FS
FSHFT
NT

Meso4 MesolInception OC-FakeDect1
Models

Figure 6.1: Top: Average test AUCs for each model. Bottom: Generalisability list of models,
average test AUCs for each model where trainset # testset. Black lines indicate standard error.
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Figure 6.2: Top: Average test AUCs of 7 main models (not considering our AF and RF pre-
processing). Middle: Each architecture’s best test AUCs for from overall list (Table 8.1. Bottom:
Each architecture’s best test AUCs for generalisability list (subset at Table 6.3)
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Evaluation Trainset Testset

Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing

(0=SE, 1=RAE) | (0=RF, 1=AF ) | (0=RF, 1=AF)
1 | Mesolnception DF* DFDB | 0.975 | 0.925 0.953 0.900 0 - -
3 | Mesolnception | F2F* F2F | 0.905 | 0.318 0.252 0.430 1 0
8 Meso4 DF* DF 0.856 | 0.175 0.159 0.194 1 0
30 Meso4 DF* FSHFT | 0.704 | 0.380 0.316 0.476 1 0
40 | Mesolnception | F2F* | CDFv2 | 0.673 | 0.908 0.915 0.902 1 1
70 | Mesolnception DF* NT | 0.628 | 0.445 0.363 0.573 1 0
95 | Mesolnception DF* FS 0.602 | 0.211 0.287 0.166 1 1

Table 6.1: Best baselines by testset, where asterisk (*) in testset denotes that we are using
pre-trained weights and these models were not trained by us.

Evaluation Trainset Testset

Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing

(0=SE, 1=RAE) | (0=RF, 1=AF ) | (0=RF, 1=AF)
1 | Mesolnception DF* DFDB | 0.975 | 0.925 0.953 0.900 0 - -
3 | Mesolnception | F2F* F2F | 0.905 | 0.318 0.252 0.430 1 - 0
5 ViT CDFv2 | CDFv2 | 0.864 | 0.963 0.930 0.999 1 0 0
8 Meso4 DF* DF | 0.856 | 0.175 0.159 0.194 1 - 0
30 Meso4 DF* FSHFT | 0.704 | 0.380 | 0.316 0.476 1 0
51 ViT CDFv2 NT |0.650 | 0.594 | 0.597 0.592 0 1 0
63 ViT CDFv2 FS 0.633 | 0.597 0.603 0.592 0 1 0

Table 6.2: Overall best test AUC models by testset.
6.1 Untrained Baselines

Table 6.1 shows the best baseline models (Meso4/Mesolnception) for each testset. The
numbers on the left-most column indicate the total ranking in terms of AUC among all
models. Table 6.2 shows that the best performing models (regardless of trainset/testset)
are the baselines, with Mesolnception tending to outperform Meso4. Recall that both
baselines came with DF/F2F pre-trained weights, they were not trained on the DF/F2F
datasets by us (denoted via *). Thus, we’d expect baselines to do extremely well on the
DFDB dataset (as this is what the baselines were fine-tuned to) and on both DF/F2F
testsets. This is because they are all in the same training distribution.

Table 6.3 shows the highest test AUC models by testset to gauge model gener-
alisability. This can more clearly be visualised by Figure 6.1 where we can see the
average AUC of all models tested on datasets that they were not trained on. The re-
sults indicate that baselines perform extremely well when trainset-testset are aligned
(top of error bars on green/yellow in the upper bar chart of Figure 6.1). However, they
perform extremely poorly in terms of generalisability AUC when tested on Deepfakes
outwith their training distribution. Furthermore, AUC of baselines tested on datasets
corresponding to their pre-trained weights is lower compared to metrics stated in their
paper. We hypothesise this is due to our face extraction method making our dataset
harder compared to Afchar et al.’s Viola-Jones approach. e.g. Meso4 with DF weights
yields 0.856 AUC on our pre-processed version of the DF dataset. Most baselines
gained test AUC when RAE was applied, with the only exception to this being DFDB,
the dataset provided by the paper.
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Evaluation Trainset Testset
Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing
(0=SE, 1=RAE) | (0=RF, 1=AF ) | (0=RF, 1=AF)
20 ViT CDFv2 DF 0.770 | 0.661 0.511 0.933 1 1 0
23 ViT CDFv2 | DFDB | 0.757 | 0.958 0.922 0.997 0 0
30 Meso4 DF* FSHFT | 0.704 | 0.380 0.316 0.476 1 - 0
40 | Mesolnception | F2F* | CDFv2 | 0.673 | 0.908 0.915 0.902 1 - 1
51 ViT CDFv2 NT | 0.650 | 0.594 0.597 0.592 0 1 0
54 ViT CDFv2 F2F | 0.646 | 0.601 0.440 0.946 1 0 0
63 ViT CDFv2 FS 0.633 | 0.597 0.603 0.592 0 1 0

Table 6.3: [Subset of generalisability list] most generalisable model by test AUC by testset
(where generalisability means that training dataset # testing dataset, i.e. out of distribution
testing).

Evaluation Trainset Testset
Model | Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing
(0=SE, 1=RAE ) | (0=RF, 1=AF ) | (0=RF, 1=AF)
5 ViT CDFv2 | CDFv2 | 0.864 | 0.963 0.930 0.999 1 0 0
20 | ViT CDFv2 DF 0.770 | 0.661 0.511 0.933 1 1 0
23| ViT CDFv2 | DFDB | 0.757 | 0.958 0.922 0.997 0 0
37| ViT CDFv2 | FSHFT | 0.675 | 0.621 0.463 0.940 1 1 1
51| ViT CDFv2 NT 0.650 | 0.594 0.597 0.592 0 1 0
54| ViT CDFv2 F2F | 0.646 | 0.601 0.440 0.946 1 0 0
63 | ViT CDFv2 FS 0.633 | 0.597 0.603 0.592 0 1 0

Table 6.4: Overall best ViT models by testset.

6.2 Best Models

The upper bar chart of Figure 6.1 shows the average test AUCs of each model for all
models, whereas the lower chart shows the same but when testset # trainset (hence
the missing bars). Table 6.2 and Table 6.3 show the same (but only top results per
testset). Notice that OC-FakeDectl has been tested on all datasets, as all testset bars
are present, this is because OC-FakeDectl was trained on both CDFv2 and DFDB, and
the bar for CDFv2 indicates the model performance on DFDB and vice-versa. This is
not a mistake. Similarly, Meso4 and Mesolnception both still have bars for DF/F2F
despite them using pre-trained weights for these datasets, these bars are average test
AUCs from the opposite trainsets; E.g. the yellow bar (DF) in the lower chart plot
in Figure 6.1 indicates DF performance on F2F* (for MesoNets). Overall the best
model is Mesolnception with DF weights tested on DFDB. We fully expect to see
this baseline outperform our models as Afchar et al. conducted a full hyperparameter
search whereas we did not. Recall that each model tries to mimic the training protocol
(input size, learning rate decays, etc) of the Meso baselines where possible, despite
this approach (probably) not being optimal for each model.

Table 6.3 and the lower chart of Figure 6.1 both clearly indicate that our ViTs are
the most generalisable, achieving test AUCs just under 0.78 on the unseen datasets
of DF and DFDB. We believe this is due to the more convincing Deepfakes present
in CDFv2 allowing ViT to pick up on features the other models struggle to. OC-
FakeDectl struggles to classify well on any unseen datasets except on DFDB, most
likely due to the unconvincing Deepfakes present in DFDB, allowing for the ConvVAE
to pick up on “low-hanging” latent features which do not generalise well to other
datasets.
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Figure 6.3: Attention map of real and fake test image from ViT trained on CDFv2 with RF pre-
processing.
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Figure 6.4: OC-FakeDect1 trained on CDFv2 (RF) thresholds when Left: RAE vs Right: SE.
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Evaluation Trainset Testset

Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing

(0=SE, 1=RAE) | (0=RF, 1=AF ) | (0=RF, 1=AF)
9 | OC-FakeDectl | CDFv2 | CDFv2 | 0.849 | 0.428 0.770 0.296 0 0 0
72 | OC-FakeDectl | CDFv2 | DFDB | 0.627 | 0.338 0.291 0.405 0 0 -
101 | OC-FakeDectl | DFDB | FSHFT | 0.590 | 0.552 | 0.460 0.690 0 - 0
117 | OC-FakeDectl | DFDB FS 0.574 | 0.495 0.389 0.681 0 0
118 | OC-FakeDectl | DFDB F2F | 0.573 | 0.536 | 0.446 0.671 0 0
124 | OC-FakeDectl | DFDB DF | 0.571 | 0.535 0.444 0.675 0 0
129 | OC-FakeDectl | DFDB NT | 0.568 | 0.489 0.385 0.669 0 0

Table 6.5: Overall best OC-FakeDect1 models by testset.

6.3 Vision Transformer

Table 6.2 shows the highest AUC (0.864) model which was not a baseline is ViT,
when trained and tested on CDFv2; which is a substantially harder dataset compared
to the others. As mentioned prior, Table 6.3 indicates that ViTs are most generalisable.
The most generalisable ViTs used a variety of trainset pre-processing and evaluation
methods, but most seem to yield better performance with RF testsets. The best overall
ViT used RAE with RF pre-processing applied to both trainset and testset, whereas the
most generalisable ViT prefers an AF trainset instead.

Self-Attention allows ViT to visualise which parts of the image the model “’fo-
cuses” on to make predictions. Figure 6.3 shows the Attention maps for a real and
fake test image from ViT trained on CDFv2 (RF). Attention weights focus on the same
parts of the image, whether real or fake, with more Attention placed on the fake image
(especially around the nose and upper lip). We hypothesise that with proper hyperpa-
rameter tuning and modernised training protocols (e.g. input masking [24] [19]) we
would be able to achieve the new SOTA (~0.95 AUC [4]). Recall that we perform
actor isolation on our CDFv2 testset, this reinforces our claims of SOTA performance.

6.4 OC-FakeDect1

Despite the marginal inferiority of OC-FakeDectl compared to OC-FakeDect2, we
found that no ConvVAE models achieved the best test AUC on any of our testsets.
In Table 6.5 our best OC-FakeDect1 ranks 9" overall and reaches an AUC of 0.849,
just under ViT’s best of 0.864. All OC-FakeDectls preferred RF train and testset
pre-processing, in addition to SE. These models can not properly utilise RAE as we
are averaging over RMSE meaning the RMSE/Count histogram is skewed as averages
accumulate; bad re-creation RMSEs propagate over the predictions. This can clearly
be seen in Figure 6.4.

Our intuition that these models would perform better when trained on the less re-
alistic DFDB proved false, as the best ConvVAEs are trained on the more realistic
CDFv2. Training on this dataset was the most generalisable option but only for DFDB
with all others yielding AUCs marginally higher than random. The results above sug-
gest that OC-FakeDectl does well when trained on crisp (RF) high-quality Deepfakes,
but it does not generalise well. One reason for this could be due to the VAE using
the latent space to create distinguishing features to re-create the input images and thus
high-quality Deepfakes (DFDB) aid the VAE in learning latent representations and
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re-creating the input.

Training losses for this model (Figure 5.2) never settle for DFDB, so we expect
poor performance when trained on this dataset. However, we found that training losses
plateaued at a lower level for CDFv2 when pre-processed with AF compared to RF.
Despite this the RF variant was the best performing model, indicating that our models
were overfitting to training reals.

6.5 Pre-Processing: AF vs RF

Figure 6.6 shows the average test AUCs split by trainset and testset pre-processing
protocol for each model. It suggests that models tested on AF datasets yield a small
improvement in test AUC. To determine which pre-processing protocol is most bene-
ficial to model performance, we consider a set of dependent t-tests for paired samples
as described at the start of this chapter on the generalisability list (trainset # testset)
mentioned prior. We set groups A and B to all non-matching combinations of trainset
and testset pre-processing protocols to obtain Table 6.6.

There is strong evidence to suggest that testing on AF datasets yields higher mean
test AUC compared to RF, mostly when trainset pre-processing differs from testset. It
also suggests that there is no significant difference in test AUC means among AF and
RF train tested models. i.e. when trainset and testset have the same pre-processing
applied there is no difference in mean test AUC. These findings found in Table 6.6
match what is shown in Figure 6.6.

Although we can use Table 6.6 to conclude that some pre-processing protocols are
better than others (first 3 rows are better than the bottom 3 rows). We can not use p-
value rankings to make any claims about which protocol is better compared to others
that also yield improved AUC (i.e. within the top 3 rows).

6.6 Evaluation Method: RAE vs SE

Figure 6.5 shows the average test AUC of all models split by whether the evaluation
method was RAE or SE. RAE improved model performance in all cases except OC-
FakeDectl. We used the same t-test setup mentioned prior.

We isolate all models where the evaluation method was RAE (group A) and their
equivalent model where the evaluation method was SE (group B), with the alternative
hypothesis being a = {<} i.e. group A has a mean less than group B. This results in a
p-value 0.0873 which is strong evidence to suggest that the two distributions are equal.
However, this is not what Figure 6.5 shows. On average all models have improved
AUC when evaluated with RAE with exception of OC-FakeDectl. We decided to fur-
ther isolate the two groups by filtering out OC-FakeDectl models, with the alternative
being >, i.e. RAE models have greater mean AUC than SE models when excluding
OC-FakeDectl. This resulted in a 0.0004 p-value (several orders of magnitude less
than the previous p-value) which is strong evidence to suggest that the average test
AUC of RAE models is greater than SE models when the model is not OC-FakeDectl.
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Evaluation Method, RAE vs SE:
Average Test AUCs by Evaluation Method For Each Architecture

Evaluation Method
mmm Standard Evalution (SE)
B Running Average Evaluation (RAE)

Mesolnception Meso4 OC-FakeDectl
Models

Figure 6.5: RAE vs SE: Average test by evaluation method for each model.

Accepted Accepted
Group A Group B p-Value Alternate Null
(Train Pre-Proc’, Test Pre-Proc’) | (Train Pre-Proc’, Test Pre-Proc’) Hypothesis Hypothesis

Htrain, Htest Mtrain, Htest

1 (RF, RF) (RF, AF) 0.000700 | (RF, RF)>(RF, AF) -

2 (AF, RF) (RF, AF) 0.003730 | (AF, RF)>(RF, AF)

3 (AF, AF) (AF, RF) 0.005005 | (AF, RF)>(AF, AF)

4 (AF, AF) (RF, AF) 0.062791 - (AF, AF) =(RF, AF)

5 (RF, RF) (AF, RF) 0.213224 - (RF, RF)==(AF, RF)

6 (RF, RF) (AF, AF) 0.262400 - (RF, RF)==(AF, AF)

Table 6.6: Trainset-testset pre-processing t-tests (performed on generalisability list) to deduce
which combinations are better than others. Note that the two left most columns indicate the
means of the pre-processing distributions, e.g. (RF, RF)>(RF, AF) <= uRF RF) > U(RF, AF)-

6.7 Pre-Processing vs Evaluation Method

Please note, the width of the Violin plots in Figure 6.7 indicates the proportion of
models which achieved a given AUC (similar to a probability density function) with
the black lines within the plot showing individual data points. The heights of the
opaque and transparent violins indicate the actual and hypothetical maximum AUCs
for each variable, respectively. The main focus should be the opaque violins, where
the colour and x-axis denote categorical variables. We also use (X, Y) as shorthand
to denote X pre-processing was applied to the trainset and Y pre-processing on the
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testset.

Figure 6.7 reinforces what has been shown in Figure 6.5, Figure 6.6, and Table 6.6.
Models perform best with (RF, RF) with RAE. The most significant improvement
in AUC is achieved by using RAE when (AF, AF). We already concluded this pre-
processing arrangement was superior to (AF, RF). Overall, the top plot indicates that
RAE closes the gap between (x, RF) and (x, AF), where x € {AF,RF}. The bottom
plot shows that RAE always improved the AUC with higher variance among all pre-
processing combinations.

Pre-Processing, AF vs RF:
Average Test by Trainset-Testset Pre-Processing Protocol For Each Architecture

Train-Test Pre-Processing Protocol
(TrainsetPreProc, TestsetPreProc)

11 (AF, AF)
10 (AE, RF)
01 (RF, AF)
00 (RF, RF)
-1 (n/a, AF)

-0 (n/a, RF)
| -~ (n/a, n/a)
ViT

OC-FakeDect1

Mesolnception Meso4
Models

Figure 6.6: AF vs RF: Average test AUCs by trainset/testset pre-processing protocol for each
model. n/a defers to DFDB (no pre-processing by us, hence top of error bars for baselines is
performance on DFDB).
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Pre-Processing (AF, RF) vs Evaluation Method (RAE, SE):
Average Test AUCs by Evaluation Method & Testset Pre-Processing Protocol

Testset Pre-Processing Protocol
Il Random Frame (RF)

[ Average Frame (AF)

Standard Evalution (SE) Running Average Evaluation (RAE)
Evaluation Method

Pre-Processing (AF, RF) vs Evaluation Method (RAE, SE):
Average Test AUCs by Trainset-Testset Pre-Processing Protocol & Evaluation Method
I Running Average Evaluation (RAE)

Yy

00 (RF, RF) 01 (RF, AF) 10 (AF, RF) 11 (AFE AF)
Train-Test Pre-Processing Protocol,
(TrainsetPreProc, TestsetPreProc)

Evaluation Method
I Standard Evalution (SE)

Figure 6.7: (RAE vs SE) vs (AF vs RF): Violin plots of average test AUCs by trainset-testset
pre-processing protocol, evaluation methods, and their proportions. Notes on how to read these
plots are given in Section 6.7.
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Discussion

7.1 Conclusion

We have shown that our ViT models outperform existing baselines in terms of gener-
alisability (experiment no. 20) which was our main objective, and the objective of any
ML model. Our hypothesis that ViT models in conjunction with RAE and AF would
be best was partially correct, with our most generalisable model using this setup (but
with a RF testset).

We have also shown our ViT’s performance approaches SOTA on CDFv2 (exper-
iment no. 5), falling 0.086 below the current SOTA [4] which did not use an actor-
isolated train-test split. Our SOTA ViT achieves this by only training on a single Dense
layer with only 769 trainable parameters, no hyperparameter tuning whatsoever, and
what we believe to be a harder (actor-isolated) dataset. Thus, we fully expect our
model to be the new SOTA with steps on how to achieve this in Subsection 7.2.1.

7.2 Future Work

7.2.1 Reaching & Surpassing SOTA

The following steps could be applied to make experiment no. 5 beat the current SOTA
on the CDFv2: conduct a full hyperparameter search, explore classification networks
architectures (i.e. how many layers, what layers to add, etc. to include in our trainable
network), and increase the number of training epochs with varied network initialisa-
tions. Alternatively, use Transductive Transfer Learning. We recommend hyperparam-
eter tuning via Hyperband [22], an automated multi-armed bandit RL approach used
in part 1 which showed promising results (on validation AUC). We especially recom-
mend this method as it provides constant exploration, which is important with a lim-
ited amount of compute given the extremely large search space. Bayesian approaches
would also be permissible.

7.2.2 Improvements

We saw that pre-processing the FF++ datasets was difficult as it produced a varied
number of fake frames despite them all being derived from the same real videos (Ta-
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ble 3.1). A simple way to fix this is to share the same face crop locations among all
FF++ datasets which would result in an equal number of fake images produced. We
grouped frames of video for pre-processing using the arbitrary number of £k = 15 (0.5
seconds), we would like to see further work exploring how varying k impacts perfor-
mance on both binary and one-class detection algorithms.

In CDFv2, we only tested using our fair actor-isolated train-test split, which we
believe to be harder than the traditional random shuffle used by other papers. However,
we would like to see further work to test this and answer the question of whether
our CNN-based face extraction method does indeed make detection datasets harder
compared to the Viola-Jones approach used by Afchar et al. Perhaps performance
on these datasets is more correlated to which faces were extracted compared to the
algorithms used for detection. This would also help standardise the field, which is
important as the speed and convincingness of new Deepfake creation methods increase.

We conducted RAE calculating the mean over the predictions, however, we do
not be believe this to be the optimal way of classifying using RAE. We would advise
doing this via an exponential weighting of consecutive fake predictions. E.g. when
averaging over 20 predictions, having a sequence of 3 fake predictions should be a
clearer indicator of a Deepfake than if there were 3 isolated fake predictions among the
20. This is similar to how human can distinguish fake videos in ultra-realistic cases, a
split second of visual artifacts indicating that the video is fake despite the majority of
the video fooling us.

7.2.3 Modern VAEs & One-Class Systems

We find Khalid et al.’s approach of determining thresholds dubious as it still requires
fake examples despite aiming to just train on the real class. Furthermore, they use
a latent vector of 20,000 dimensions when their input is only 100,000 dimensions.
This means the model is not learning Dense hidden representations useful to classifi-
cation. In addition, Reconstruction Scores have no consistent ranges and can not be
used among different datasets. Normalising RMSE would solve this issue. However,
if we still require fake examples as part of this model, why not train on both classes?

During this work we considered a Masked Autoencoder (MAE) [11], which masks
parts of the input (similar to Self-Supervised Learning in NLP) and trains a Vision
Transformer-based Autoencoder. It learns to reconstruct the missing pixels, and cre-
ate generalisable hidden representations. After MAE has been trained, we discard the
Decoder and perform linear probing, i.e. we use Dense layers to classify the hidden
representations produced by the trained Encoder.

We actually created and trained this model on several datasets and it showed ex-
tremely promising results, with code being available in our GitHub (see Appendices).
However, we chose not to consider this model as results would be too numerous and
we thought that it would be better to focus on being able to thoroughly analyse the
other models.
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Appendices

Notice

This chapter does not intend to infringe on the 40-page limit. Everything included
from here onwards is supplementary and not vital to the understanding of this project.
To view the table of all results ordered by test AUC, see Table 8.1.

Code

We strongly encourage the reader of this paper to take a look at our GitHub, specifi-
cally . /Collate_Results.ipynb which contains the bulk of the code used for analysing.
This GitHub contains all code used for experimentation. However, we exclude the
datasets and saved weights for each trained model as they are too large in size to fit to

onto our repository.

e ./_BASELINE_TESTS/ contains code for all baselines experiments.
o ./_BASELINE_TESTS/Results/ contains individual AUCs, F1s, y_true, y_pred,
etc. as text files for all baselines experiments.

e ./_DATASETS/ would usually contain all pre-processed datasets but this was omitted

due to GitHub’s repository file limit.
o./_DATASETS/FaceForensicspp/pipeline.py contains our pre-processing
algorithms as a set of helper functions within one python file. Please see
get_stable_faces () function to see the 77¢ protocol described in Section 4.2
and Figure 4.1.
o ./FaceForensicspp/preprocess_ffpp.ipynb contains the code to pre-
process FF++ into AF and RF datsets. The same code was used to pre-process
CDFv2.

e ./ _PLOTS/ contains all plots generated for our analysis.

e ./ TRAINING/ViT/ contains all code to train and test our ViT models.
o./_TRAINING/ViT/Results/ contains individual AUCs, Fls, y_true, y_pred,
etc. as text files for all ViT experiments.

e ./ _TRAINING/OC-FakeDect-Implementation/ contains all code to train and test
our OC-FakeDect1l models.
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o ./_TRAINING/OC-FakeDect-Implementation/Results/ contains individ-
ual AUCs, Fls, y_true, y_pred, etc. as text files for all OC-FakeDectl experi-
ments.

e ./ _WEIGHTS/ would usually contain all saved model weights but this was omitted
due to GitHub’s repository file limit.

e ./env.yaml is the environment used to produce all of these results, in contains
libraries used and their source. All experiments were either done using a Tesla P100
via Google Colab Pro or an RTX 3070 at home, both utilising 16GB RAM.

If you would like to access our saved model weights, pre-proccessed datsets, or
any other part of this project. Please email at zsakib.ahamedgmail .com and we
will send you the relevant files. Please note that all these files total 63GB.

Supplementary Plots

All plots can be found via the links above: ./_PLOTS/, ./ _BASELINE_TESTS/Results/,
./_TRAINING/ViT/,and ./_TRAINING/OC-FakeDect-Implementation/Results/.
However we choose to add the following these plots here to for clarity.

Pre-Processing, AF vs RF:
Average Test AUCs by Testset Pre-Processing For Each Architecture
i.e. Regardless of Trainset Pre-Processing
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Figure 8.1: Pre-Processing, AF vs RF: Average Test AUCs by Testset Pre-Processing For Each
Architecture i.e. Regardless of Trainset Pre-Processing
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Test Set Pre-Processing = Random Frame (RF) Test Set Pre-Processing = Average Frame (AF)
Evaluation Method Evaluation Method
mmm Standard Evalution (SE) mmm Standard Evalution (SE)
| B Running Average Evaluation (RAE) | mmm Running Average Evaluation (RAE)
CDFv2 FSHFT CDFv2 FSHFT
Testset Testset

Evaluation Method = Standard Evalution (SE) Evaluation Method = Running Average Evaluation (RAE)

Testset Pre-Processing Protocol Testset Pre-Processing Protocol
B Random Frame (RF) B Random Frame (RF)
|| mmm Average Frame (AF) mmm Average Frame (AF)
CDFv2 FSHFT CDFv2 FSHFT
Testset Testset

Figure 8.2: (RAE vs SE) vs (AF vs RF): Category plot of evaluation method, testset pre-
processing method by dataset over all models. Note: poor performance on OC-FakeDect1
skew these plots to suggest RF is better, which is not generally true.
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Pre-Processing, AF vs RF (Trainset — Testset Aligned):
Average Test AUCs by Trainset-Testset Pre-Processing For Each Architecture
Where Trainset==Testset
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Figure 8.3: Trainset Testset Aligned: Average Test AUCs For Each Architecture Where Train-
set==Testset

Pre-Processing, AF vs RF:
Average Test AUCs by Trainset Pre-Processing For Each Architecture
i.e. Regardless of Testset Pre-Processing
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Figure 8.4: Pre-Processing, AF vs RF: Average Test AUCs by Trainset Pre-Processing For
Each Architecture i.e. Regardless of Testset Pre-Processing
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Evaluation Trainset Testset
Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing
(0=SE, 1=RAE) | (0=RF, 1=AF ) | (0=RF, 1=AF)

1 | Mesolnception DF* DFDB | 0.975 | 0.925 0.953 0.900 0 - -
2 Meso4 DF* DFDB | 0.962 | 0.904 | 0.930 0.880 0 - -
3 | Mesolnception | F2F* F2F | 0.905 | 0.318 0.252 0.430 1 - 0
4 Meso4 F2F* F2F | 0.905 | 0.128 0.118 0.139 1 - 0
5 ViT CDFv2 | CDFv2 | 0.864 | 0.963 0.930 0.999 1 0 0
6 ViT CDFv2 | CDFv2 | 0.860 | 0.953 0.944 0.964 1 1 0
7 ViT CDFv2 | CDFv2 | 0.857 | 0.963 0.932 0.996 1 1 1
8 Meso4 DF* DF | 0.856 | 0.175 0.159 0.194 1 - 0
9 | OC-FakeDectl | CDFv2 | CDFv2 | 0.849 | 0.428 0.770 0.296 0 0 0
10 | Mesolnception DF* DF | 0.844 | 0.174 | 0.159 0.190 1 - 0
11 | OC-FakeDectl | CDFv2 | CDFv2 | 0.833 | 0.454 | 0.785 0.319 0 1 1
12 ViT CDFv2 | CDFv2 | 0.831 | 0.960 | 0.930 0.993 0 0 0
13 ViT CDFv2 | CDFv2 | 0.820 | 0.948 0.943 0.953 0 1 0
14 ViT CDFv2 | CDFv2 | 0.808 | 0.960 | 0.922 1.000 1 0 1
15 | Mesolnception | F2F* F2F | 0.805 | 0.800 | 0.746 0.863 0 - 0
16 ViT CDFv2 | CDFv2 | 0.791 | 0.956 | 0.934 0.980 0 1 1
17 Meso4 F2F* F2F | 0.790 | 0.742 | 0.803 0.689 0 - 0
18 | Mesolnception DF* DF | 0.778 | 0.737 0.818 0.671 0 0
19 Meso4 DF* DF | 0.775 | 0.735 0.792 0.685 0 - 0
20 ViT CDFv2 DF | 0.770 | 0.661 0.511 0.933 1 1 0
21 ViT CDFv2 DF | 0.759 | 0.549 0.512 0.592 0 1 0
22 ViT CDFv2 | CDFv2 | 0.757 | 0.958 0.922 0.997 0 0 1
23 ViT CDFv2 | DFDB | 0.757 | 0.958 0.922 0.997 0 0 -
24 Meso4 F2F* DF | 0.751 | 0.339 0.286 0.417 1 - 0
25 ViT CDFv2 DF | 0.738 | 0.617 0.450 0.982 1 0 0
26 Meso4 F2F* F2F | 0.737 | 0.110 | 0.167 0.082 1 - 1
27 ViT CDFv2 DF | 0.736 | 0.633 0.470 0.966 1 1 1
28 ViT CDFv2 DF | 0.715 | 0.687 0.580 0.841 0 0 0
29 ViT CDFv2 DF | 0.709 | 0.639 0.559 0.745 0 1 1
30 Meso4 DF* FSHFT | 0.704 | 0.380 | 0.316 0.476 1 - 0
31 | Mesolnception DF* FSHFT | 0.692 | 0.382 | 0.320 0.473 1 - 0
32 | Mesolnception DF* DF 0.692 | 0.145 0.211 0.110 1 - 1
33 | Mesolnception | F2F* DF 0.687 | 0.550 0.402 0.870 1 - 1
34 | Mesolnception | F2F* F2F | 0.684 | 0.551 0.403 0.873 1 - 1
35 Meso4 F2F* DFDB | 0.682 | 0.750 | 0.637 0.912 0 - -
36 Meso4 F2F* F2F | 0.678 | 0.527 0.793 0.394 0 - 1
37 ViT CDFv2 | FSHFT | 0.675 | 0.621 0.463 0.940 1 1 1
38 | Mesolnception | F2F* | FSHFT | 0.675 | 0.609 0.439 0.995 1 - 0
39 ViT CDFv2 | DFDB | 0.674 | 0.501 0.490 0.511 0 1 -
40 | Mesolnception | F2F* | CDFv2 | 0.673 | 0.908 0.915 0.902 1 - 1
41 Meso4 F2F* DF | 0.672 | 0.695 0.701 0.689 0 - 0
42 Meso4 DF* DF | 0.669 | 0.091 0.200 0.059 1 - 1
43 Meso4 F2F* | CDFv2 | 0.667 | 0.512 | 0.869 0.363 1 - 0
44 ViT CDFv2 | FSHFT | 0.666 | 0.563 0.536 0.592 0 1 0
45 ViT CDFv2 DF | 0.665 | 0.600 | 0.430 0.996 1 0 1
46 ViT CDFv2 | FSHFT | 0.663 | 0.624 | 0.491 0.859 1 1 0
47 | Mesolnception DF* FSHFT | 0.662 | 0.144 | 0.209 0.109 1 - 1
48 | Mesolnception DF* FSHFT | 0.660 | 0.685 0.700 0.671 0 - 0
49 ViT CDFv2 | FSHFT | 0.659 | 0.644 | 0.567 0.745 0 1 1
50 ViT CDFv2 DF | 0.650 | 0.734 | 0.602 0.940 0 0 1
51 ViT CDFv2 NT | 0.650 | 0.594 | 0.597 0.592 0 1 0
52 | Mesolnception | F2F* DF | 0.649 | 0.738 0.636 0.881 0 - 1
53 | Mesolnception | F2F* | CDFv2 | 0.648 | 0.945 0.918 0.974 1 - 0
54 ViT CDFv2 F2F | 0.646 | 0.601 0.440 0.946 1 0 0
55 ViT CDFv2 F2F | 0.646 | 0.567 0.544 0.592 0 1 0
56 Meso4 DF* FSHFT | 0.645 | 0.683 0.680 0.685 0 - 0

Table 8.1: All Results
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Evaluation Trainset Testset
Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing
(0=SE, 1=RAE ) | (0=RF, 1=AF ) | (0=RF, 1=AF)
57 ViT CDFv2 NT | 0.645 | 0.602 0.441 0.948 1 0 0
58 ViT CDFv2 NT | 0.642 | 0.606 0.480 0.822 1 1 0
59 ViT CDFv2 F2F | 0.641 | 0.605 0.479 0.821 1 1 0
60 | Mesolnception DF* DF | 0.639 | 0.462 0.784 0.328 0 - 1
61 ViT CDFv2 NT | 0.634 | 0.730 0.645 0.841 0 0 0
62 ViT CDFv2 F2F | 0.633 | 0.694 0.590 0.841 0 0 0
63 ViT CDFv2 FS 0.633 | 0.597 0.603 0.592 0 1 0
64 Meso4 F2F* DF | 0.632 | 0.181 0.255 0.140 1 - 1
65 ViT CDFv2 FS 0.631 | 0.599 0.429 0.994 1 0 1
66 Meso4 DF* FSHFT | 0.631 | 0.110 0.234 0.072 1 - 1
67 | Mesolnception | F2F* | CDFv2 | 0.630 | 0.856 0.910 0.809 0 - 1
68 ViT CDFv2 FS 0.628 | 0.609 0.457 0.915 1 1 1
69 ViT CDFv2 | FSHFT | 0.628 | 0.600 0.430 0.996 1 0 1
70 | Mesolnception DF* NT | 0.628 | 0.445 0.363 0.573 1 - 0
71 | Mesolnception | F2F* F2F | 0.627 | 0.742 0.641 0.881 0 - 1
72 | OC-FakeDectl | CDFv2 | DFDB | 0.627 | 0.338 0.291 0.405 0 0 -
73 ViT CDFv2 FS 0.626 | 0.773 0.657 0.940 0 0 1
74 Meso4 DF* DF | 0.626 | 0.379 0.772 0.251 0 - 1
75 ViT CDFv2 F2F | 0.624 | 0.605 0.454 0.905 1 1 1
76 ViT CDFv2 FS 0.623 | 0.683 0.630 0.745 0 1 1
77 | Mesolnception | F2F* CDFv2 | 0.622 | 0.921 0.915 0.927 0 - 0
78 | OC-FakeDectl | CDFv2 | DFDB | 0.622 | 0.348 0.297 0.420 0 1 -
79 ViT CDFv2 FS 0.621 | 0.604 0.478 0.818 1 1 0
80 | Mesolnception DF* FSHFT | 0.620 | 0.458 0.760 0.328 0 - 1
81 ViT CDFv2 | FSHFT | 0.619 | 0.735 0.603 0.940 0 0 1
82 ViT CDFv2 NT | 0.618 | 0.598 0.428 0.989 1 0 1
83 ViT CDFv2 F2F | 0.618 | 0.597 0.428 0.989 1 0 1
84 ViT CDFv2 | FSHFT | 0.617 | 0.602 0.441 0.948 1 0 0
85 ViT CDFv2 F2F | 0.616 | 0.650 0.577 0.745 0 1 1
86 ViT CDFv2 NT | 0.616 | 0.599 0.451 0.892 1 1 1
87 ViT CDFv2 NT | 0.612 | 0.684 0.632 0.745 0 1 1
88 | Mesolnception DF* NT 0.611 | 0.199 0.275 0.156 1 - 1
89 ViT CDFv2 NT | 0.610 | 0.775 0.658 0.940 0 0 1
90 ViT CDFv2 F2F | 0.610 | 0.736 0.605 0.940 0 0 1
91 ViT CDFv2 | FSHFT | 0.610 | 0.694 0.591 0.841 0 0 0
92 | Mesolnception DF* NT 0.609 | 0.694 0.719 0.671 0 - 0
93 Meso4 F2F* DF | 0.605 | 0.511 0.728 0.394 0 - 1
94 | Mesolnception | F2F* | FSHFT | 0.603 | 0.696 0.584 0.863 0 - 0
95 | Mesolnception DF* FS 0.602 | 0.211 0.287 0.166 1 - 1
96 Meso4 DF* NT | 0.599 | 0.455 0.368 0.598 1 - 0
97 | Mesolnception | F2F* DF | 0.597 | 0.711 0.605 0.863 0 - 0
98 Meso4 DF* FSHFT | 0.596 | 0.372 0.720 0.251 0 - 1
99 | Mesolnception | F2F* DF 0.595 | 0.592 0.429 0.957 1 - 0
100 Meso4 F2F* | CDFv2 | 0.594 | 0.585 0.898 0.434 0 - 0
101 | OC-FakeDectl | DFDB | FSHFT | 0.590 | 0.552 0.460 0.690 0 - 0
102 Meso4 F2F* NT | 0.589 | 0.491 0.389 0.664 1 - 0
103 | Mesolnception DF* CDFv2 | 0.589 | 0.490 0.900 0.336 1 - 0
104 ViT CDFv2 FS 0.588 | 0.731 0.647 0.841 0 0 0
105 | Mesolnception | F2F* DFDB | 0.586 | 0.734 0.613 0.914 0 - -
106 ViT CDFv2 FS 0.586 | 0.600 0.440 0.945 1 0 0
107 | OC-FakeDectl | CDFv2 | FSHFT | 0.586 | 0.549 0.456 0.690 0 0 0
108 Meso4 DF* CDFv2 | 0.585 | 0.319 0.861 0.196 1 - 0
109 | Mesolnception | F2F* FS 0.584 | 0.744 0.655 0.863 0 - 0
110 | Mesolnception DF* NT 0.584 | 0.459 0.766 0.328 0 - 1
111 | OC-FakeDectl | CDFv2 | FSHFT | 0.581 | 0.544 0.452 0.683 0 1 0
112 | Mesolnception | F2F* NT | 0.580 | 0.608 0.438 0.992 1 - 0
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Evaluation Trainset Testset
Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing
(0=SE, 1=RAE ) | (0=RF, 1=AF ) | (0=RF, 1=AF)
113 | Mesolnception DF* F2F | 0.580 | 0.223 0.301 0.177 1 - 1
114 | Mesolnception DF* FS 0.579 | 0.457 0.753 0.328 0 - 1
115 Meso4 F2F* | FSHFT | 0.577 | 0.508 0.400 0.694 1 - 0
116 Meso4 DF* NT | 0.577 | 0.172 0.330 0.116 1 - 1
117 | OC-FakeDectl | DFDB FS 0.574 | 0.495 0.389 0.681 0 - 0
118 | OC-FakeDectl | DFDB F2F | 0.573 | 0.536 0.446 0.671 0 - 0
119 | OC-FakeDectl | DFDB | DFDB | 0.573 | 0.388 0.336 0.459 0 - -
120 | OC-FakeDectl | CDFv2 F2F | 0.572 | 0.536 0.444 0.676 0 1 0
121 | OC-FakeDectl | CDFv2 F2F | 0.572 | 0.536 0.444 0.675 0 0 0
122 | OC-FakeDectl | DFDB | CDFv2 | 0.571 | 0.766 0.935 0.648 0 - 0
123 Meso4 DF* NT | 0.571 | 0.691 0.697 0.685 0 - 0
124 | OC-FakeDectl | DFDB DF | 0.571 | 0.535 0.444 0.675 0 - 0
125 Meso4 F2F* FS 0.570 | 0.273 0.352 0.222 1 - 1
126 Meso4 F2F* NT | 0.569 | 0.690 0.690 0.689 0 - 0
127 Meso4 DF* FS 0.569 | 0.166 0.322 0.112 1 - 1
128 | OC-FakeDectl | CDFv2 FS 0.568 | 0.491 0.384 0.679 0 0 0
129 | OC-FakeDectl | DFDB NT | 0.568 | 0.489 0.385 0.669 0 - 0
130 | OC-FakeDectl | CDFv2 FS 0.567 | 0.489 0.383 0.677 0 1 0
131 | Mesolnception | F2F* FS 0.566 | 0.595 0.429 0.971 1 - 1
132 | OC-FakeDectl | CDFv2 NT | 0.565 | 0.486 0.382 0.668 0 0 0
133 | OC-FakeDectl | DFDB | FSHFT | 0.563 | 0.527 0.438 0.663 0 - 1
134 Meso4 DF* CDFv2 | 0.563 | 0.499 0.896 0.346 0 - 0
135 | OC-FakeDectl | CDFv2 NT | 0.563 | 0.484 0.380 0.666 0 1 0
136 Meso4 F2F* | FSHFT | 0.562 | 0.658 0.630 0.689 0 - 0
137 | OC-FakeDectl | DFDB FS 0.562 | 0.484 0.380 0.666 0 - 1
138 Meso4 F2F* NT | 0.562 | 0.277 0.356 0.226 1 - 1
139 | OC-FakeDectl | CDFv2 | CDFv2 | 0.561 | 0.650 0.901 0.508 0 0 1
140 | Mesolnception DF* CDFv2 | 0.561 | 0.535 0.900 0.381 0 - 0
141 Meso4 F2F* FS 0.561 | 0.510 0.723 0.394 0 - 1
142 Meso4 F2F* | CDFv2 | 0.561 | 0.213 0.891 0.121 1 - 1
143 | Mesolnception DF* F2F | 0.559 | 0.444 0.691 0.328 0 - 1
144 Meso4 DF* NT | 0.558 | 0.373 0.724 0.251 0 - 1
145 | Mesolnception | F2F* | FSHFT | 0.557 | 0.596 0.430 0.974 1 - 1
146 Meso4 DF* FS 0.557 | 0.559 0.433 0.787 1 - 0
147 | OC-FakeDectl | DFDB F2F | 0.557 | 0.521 0.433 0.654 0 - 1
148 | OC-FakeDectl | CDFv2 | FSHFT | 0.556 | 0.522 0.431 0.661 0 0 1
149 | OC-FakeDectl | CDFv2 DF | 0.556 | 0.522 0.431 0.660 0 0 0
150 Meso4 F2F* NT | 0.556 | 0.510 0.723 0.394 0 - 1
151 | OC-FakeDectl | CDFv2 DF | 0.555 | 0.521 0.430 0.659 0 1 0
152 Meso4 DF* FS 0.554 | 0.373 0.723 0.251 0 - 1
153 | Mesolnception | F2F* FS 0.553 | 0.753 0.658 0.881 0 - 1
154 | OC-FakeDectl | CDFv2 | FSHFT | 0.553 | 0.519 0.429 0.657 0 1 1
155 | OC-FakeDectl | DFDB NT | 0.553 | 0.475 0.373 0.653 0 - 1
156 | OC-FakeDectl | CDFv2 F2F | 0.551 | 0.517 0.427 0.655 0 0 1
157 | Mesolnception DF* F2F | 0.551 | 0.506 0.403 0.678 1 - 0
158 | OC-FakeDectl | CDFv2 FS 0.551 | 0.476 0.371 0.661 0 0 1
159 Meso4 DF* FS 0.549 | 0.668 0.651 0.685 0 - 0
160 | Mesolnception DF* F2F | 0.549 | 0.651 0.633 0.671 0 - 0
161 | OC-FakeDectl | CDFv2 | CDFv2 | 0.549 | 0.629 0.905 0.482 1 1 0
162 | OC-FakeDectl | CDFv2 FS 0.549 | 0.473 0.369 0.659 0 1 1
163 Meso4 F2F* | CDFv2 | 0.549 | 0.327 0.895 0.200 0 - 1
164 | OC-FakeDectl | CDFv2 F2F | 0.547 | 0.513 0.424 0.652 0 1 1
165 Meso4 F2F* | FSHFT | 0.545 | 0.495 0.665 0.394 0 - 1
166 | OC-FakeDectl | CDFv2 NT | 0.545 | 0.469 0.367 0.651 0 0 1
167 Meso4 F2F* | FSHFT | 0.544 | 0.285 0.364 0.234 1 - 1
168 | OC-FakeDectl | DFDB | CDFv2 | 0.542 | 0.725 0.929 0.594 0 - 1
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Evaluation Trainset Testset
Model Trainset | Testset | AUC | F1 | Precision | Recall Method Pre-Processing | Pre-Processing
(0=SE, 1=RAE) | (0=RF, 1=AF) | (0=RF, 1=AF)
169 | OC-FakeDectl | CDFv2 NT | 0.542 | 0.466 0.364 0.648 0 1 1
170 | Mesolnception DF* FS 0.541 | 0.554 0.434 0.769 1 - 0
171 | OC-FakeDectl | DFDB DF | 0.540 | 0.504 0.418 0.632 0 - 1
172 | Mesolnception | F2F* NT | 0.539 | 0.738 0.644 0.863 0 - 0
173 Meso4 F2F* FS 0.536 | 0.524 0.410 0.724 1 - 0
174 Meso4 F2F* FS 0.528 | 0.683 0.678 0.689 0 - 0
175 | Mesolnception DF* FS 0.528 | 0.663 0.657 0.671 0 - 0
176 | OC-FakeDectl | DFDB | CDFv2 | 0.528 | 0.662 0.928 0.515 1 - 0
177 Meso4 DF* F2F | 0.524 | 0.217 0.389 0.150 1 - 1
178 | Mesolnception | F2F* | FSHFT | 0.523 | 0.714 0.601 0.881 0 - 1
179 | OC-FakeDectl | CDFv2 | CDFv2 | 0.523 | 0.680 0.926 0.538 1 0 1
180 | OC-FakeDectl | CDFv2 | CDFv2 | 0.523 | 0.641 0.913 0.494 1 0 0
181 | OC-FakeDectl | CDFv2 DF | 0.522 | 0.489 0.403 0.621 0 0 1
182 | OC-FakeDectl | CDFv2 DF | 0.520 | 0.488 0.402 0.621 0 1 1
183 | Mesolnception | F2F* FS 0.519 | 0.601 0.434 0.977 1 - 0
184 | OC-FakeDectl | CDFv2 F2F | 0.518 | 0.441 0.406 0.484 1 0 0
185 Meso4 DF* F2F | 0.518 | 0.359 0.632 0.251 0 - 1
186 | OC-FakeDectl | CDFv2 FS 0.517 | 0.475 0.440 0.517 1 0 0
187 | OC-FakeDectl | CDFv2 NT | 0.516 | 0.474 0.439 0.517 1 0 1
188 | OC-FakeDectl | CDFv2 | FSHFT | 0.516 | 0.446 0.407 0.492 1 0 0
189 | Mesolnception DF* CDFv2 | 0.516 | 0.370 0.899 0.233 0 - 1
190 | OC-FakeDectl | DFDB | CDFv2 | 0.515 | 0.667 0.924 0.521 1 - 1
191 | OC-FakeDectl | CDFv2 NT | 0.515|0.472 0.438 0.511 1 1 0
192 | OC-FakeDectl | CDFv2 FS 0.515 | 0.469 0.439 0.504 1 1 0
193 | Mesolnception DF* CDFv2 | 0.515 | 0.279 0.877 0.166 1 - 1
194 | OC-FakeDectl | DFDB | FSHFT | 0.512 | 0.447 0.411 0.489 1 - 0
195 | OC-FakeDectl | DFDB FS 0.512 | 0.443 0.411 0.481 1 - 1
196 | Mesolnception | F2F* NT | 0.511 | 0.754 0.659 0.881 0 - 1
197 Meso4 DF* F2F | 0.511 | 0.643 0.606 0.685 0 - 0
198 Meso4 DF* F2F 0.510 | 0.545 0.425 0.761 1 - 0
199 | OC-FakeDectl | DFDB NT 0.510 | 0.465 0.434 0.503 1 - 0
200 | OC-FakeDectl | CDFv2 | CDFv2 | 0.509 | 0.694 0916 0.558 0 1 0
201 | OC-FakeDectl | CDFv2 | CDFv2 | 0.509 | 0.671 0.923 0.527 1 1 1
202 | OC-FakeDectl | CDFv2 DF | 0.509 | 0.447 0414 0.485 1 0 0
203 | OC-FakeDectl | CDFv2 NT | 0.508 | 0.465 0.431 0.505 1 1 1
204 | OC-FakeDectl | CDFv2 F2F | 0.508 | 0.465 0.431 0.504 1 1 0
205 | OC-FakeDectl | CDFv2 | FSHFT | 0.508 | 0.455 0.415 0.504 1 1 1
206 Meso4 DF* CDFv2 | 0.508 | 0.231 0.908 0.132 0 - 1
207 | OC-FakeDectl | CDFv2 F2F | 0.507 | 0.467 0.430 0.512 1 0 1
208 | OC-FakeDectl | DFDB NT | 0.507 | 0.453 0.416 0.496 1 - 1
209 | OC-FakeDectl | CDFv2 DF | 0.507 | 0.451 0.417 0.491 1 0 1
210 | OC-FakeDectl | CDFv2 NT 0.507 | 0.450 0.416 0.489 1 0 0
211 Meso4 DF* CDFv2 | 0.507 | 0.053 0.830 0.027 1 - 1
212 | Mesolnception | F2F* NT | 0.506 | 0.594 0.429 0.969 1 - 1
213 | OC-FakeDectl | DFDB DF | 0.506 | 0.465 0.429 0.506 1 - 0
214 | OC-FakeDectl | CDFv2 FS 0.506 | 0.456 0.417 0.502 1 1 1
215 | OC-FakeDectl | CDFv2 | FSHFT | 0.506 | 0.453 0.418 0.495 1 1 0
216 | OC-FakeDectl | CDFv2 | FSHFT | 0.505 | 0.467 0.428 0.515 1 0 1
217 | OC-FakeDectl | CDFv2 DF | 0.505 | 0.464 0.428 0.508 1 1 0
218 | OC-FakeDectl | CDFv2 FS 0.505 | 0.461 0.428 0.500 1 0 1
219 | OC-FakeDectl | DFDB F2F | 0.505 | 0.452 0.418 0.492 1 - 1
220 | OC-FakeDectl | DFDB FS 0.504 | 0.455 0.419 0.499 1 - 0
221 | OC-FakeDectl | DFDB F2F | 0.503 | 0.463 0.426 0.508 1 - 0
222 | OC-FakeDectl | CDFv2 DF 0.503 | 0.453 0.420 0.490 1 1 1
223 | OC-FakeDectl | DFDB DF | 0.501 | 0.457 0.425 0.496 1 - 1
224 | OC-FakeDectl | DFDB | FSHFT | 0.500 | 0.459 0.423 0.502 1 - 1
225 | OC-FakeDectl | CDFv2 F2F | 0.500 | 0.459 0.423 0.501 1 1 1
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