
Expertise Combination with Spectral
Clustering in Inverse Reinforcement Learning

Johannes Vallikivi
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence and Mathematics

School of Informatics
University of Edinburgh

2022

Abstract
Already present in early childhood, humans have a high capacity to learn from each
other by observation (Tomasello, 2009). Being able to model this behavior is an
active area of artificial intelligence research. This project explores the question of how
can an agent combine their own expertise with what they have learnt from observing
another, possibly suboptimal agent in order to perform a task more optimally. Expertise
combination with spectral clustering as a method for achieving the combination of
the knowledge of two agent is proposed which divides the state space of a simulated
environment into regions to aid in choosing in what state is it useful to abide by which
agent’s behavior. It is shown that the proposed method of expertise combination is
efficient in gridworld environments for creating new policies that outperform the original
agents. Ultimately, it is demonstrated that incorporating expertise combination within
the inverse reinforcement learning loop is an efficient tactic to learn from agents that do
not directly optimise for the target task.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Johannes Vallikivi)

ii

Acknowledgements

I want to thank my supervisor Dr. J. Michael Herrmann for his guidance, encouragement,
and support. My sincere thanks also go out to Billy I. Lyons who helped me build up
the initial momentum to tackle this problem.

To my friends, family, and Johanna, thank you for being there for me.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Reinforcement Learning . 3
2.2 Inverse Reinforcement Learning . 4
2.3 Learning from suboptimal experts 5
2.4 Combining expertise . 6

3 Contributions 8

4 Problem Statement 9

5 Inverse Reinforcement Learning in Gridworld 11
5.1 Gridworld dynamics . 11
5.2 Maximum Entropy Inverse Reinforcement Learning in Gridworld . . 11

6 Expertise Combination 16
6.1 Clustering the state space . 17
6.2 Combining policies using the clustered state space 18
6.3 Evaluating Expertise Combination 19
6.4 Expertise Combination with Inverse Reinforcement Learning 22

7 Discussion 26

8 Conclusion 29

A Environments 32

B Weigthing scores 35

C Examples of Expertise Combination 39

iv

Chapter 1

Introduction

Training agents to successfully complete tasks in both complex virtual and real life
environments is notoriously difficult. There is a plethora of different approaches to
tackling this problem with one of the most popular being reinforcement learning (RL)
(Sutton and Barto, 2018). However, it is difficult to successfully apply RL (Kakade,
2003) and the need for being able to model learning by observation has arisen (Taylor,
Suay, and Chernova, 2011).

This project explores the question of how can an agent in an environment, with only
partial knowledge of its task, learn from the demonstrations of another agent’s behavior
and, most importantly, how can it combine this learnt knowledge with its own expertise
to better succeed at completing its task. These questions are motivated by examples
from real life. For one, humans not only learn from interacting with their physical
surroundings, but they also learn by observing others.

When we see others performing a task we haven’t performed before, we often will
use these observations to imitate others when we have to perform that task ourselves.
This process of imitation is inherently very complex. When observing behaviour, we
have the chance of taking on that same behavior when it is useful for us. In order to
successfully imitate behavior, we need to decide and understand several things such as:

1. How to imitate given what we have seen?

2. When do we have enough observations to be successful in imitation?

3. Will this imitation be useful for our own task?

4. What parts of the behavior seen in our observations do we want to imitate?

Answering these questions could be very useful for solving various problems in artificial
intelligence such as issues in cooperative reinforcement learning or the problem of
adapting to highly dynamic environments. For example, it has been noted that in
cooperative settings, young children track the behavior and intentionality of others and
are able to quickly adapt their own behavior to complete a cooperative task when one of
their peers is unable to complete their own part of that task (Tomasello, 2009). Having
the capacity to track the behavior of others and adapt to changing environments by

1

Chapter 1. Introduction 2

using what we have learnt from our observations is very important as it could mean that
we would not have to learn from scratch each time the environment or task changes.
Also, avoiding learning from scratch could mean performing less exploratory actions
that could be detrimental to the agent or the environment.

In this report, an overview of the background to this problem is given in Chapter 2 and
the contributions of this project are listed in the following chapter. The full problem
statement is presented in Chapter 4 and the question of learning the policy of another
agent using inverse reinforcement learning is explored in Chapter 5. The approach and
results of combining expertise are covered in Chapter 6 and in the following chapter the
overall approach is discussed.

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is a popular subfield of machine learning (ML) where
agents are trained in dynamic environments to perform different tasks. Inspired by how
learning takes place in nature, the RL training procedure seeks to reward the agent’s
actions that are favourable and punish the actions that should be avoided, whereby over
time, with sufficient feedback from the environment, the agent should learn to behave
optimally.

In order to mathematically formalise the problem the agent is solving, it is most common
to use the concept of Markov decision processes (MDPs) in RL (Sutton and Barto,
2018).

A Markov decision process (MDP) is most often described as a 5-tuple

M = 〈S ,A ,T ,R ,γ〉,

where S is the set of all possible states of the environment and A is the set of all
possible actions that can be taken in the environment. T : S ×A × S → [0,1] is the
transition matrix whereby T (S0,A0,S1) is the probability that taking an action A0 in
state S0 will result in the transition to state S1. The reward function R : S ×A×S →R
gives the expected reward of a state transition, so for example R (S1,A1,S2) is the
expected reward given a transition from state S1 to state S2 by taking an action A1. The
discount rate γ ∈ [0,1] specifies how important future rewards are. For example, the

discounted sum of rewards for the transition sequence S0
A0−→ S1

A1−→ S2
A2−→ S3 is given

by ∑0≤i≤2 γiR (Si,Ai,Si+1).

A reinforcement learning agent is usually tied to its policy π : A ×S → [0,1] which
describes the desired behavior of the agent in the environment. A policy π(a|s) specifies
the probability of the agent choosing an action a ∈ A in state s ∈ S and is the mathe-
matical definition of the notion of intended behavior as mentioned above. To solve a
Markov decision process means for the agent to learn an optimal policy π∗. If the policy
is optimal then it is said that it is maximising the expected discounted sum of rewards
given any state.

3

Chapter 2. Background 4

In practice, there are several approaches to solving a given MDP. For example, if the
whole MDP-tuple is accessible, value iteration can be used, which seeks to find the
optimal value of different states whereby the value Vπ : S → R of a state seeks to
represent the average discounted sum of rewards of starting from a state and continuing
with a selected policy π. Another popular approach is temporal-difference learning
(Sutton, 1988) with a popular flavour being Q-learning (Watkins, 1989), which seeks
to learn the action-value function Q : S ×A → R which is analogous to the state-value
function V but instead of just assuming the knowledge of the current state it also assumes
knowledge of the following action within that state.

Most of modern reinforcement learning builds upon the ideas from its inception by using
neural networks to estimate different value functions. For example, Deep Q-networks
were developed by the company DeepMind to enhance Q-learning by using deep neural
networks to approximate the action-value function Q (Mnih et al., 2015).

However, reinforcement learning often makes multiple assumptions about the environ-
ment, some of which cannot be met in practical scenarios. One of these assumptions is
the knowledge of the reward function R which is difficult to design to yield optimal
results (Russell, 1998). For these reasons, there are whole subfields in RL research that
deal with estimating the reward function of an environment, like inverse reinforcement
learning (IRL), or directly deal with learning the policy from behaviour demonstrations
from experts, like imitation learning (IL) (Hussein et al., 2017).

2.2 Inverse Reinforcement Learning

Training a reinforcement learning agent requires knowledge of the reward function of
the environment. However, it is often the case that a reward function is hard to define.
Learning a reward function instead of an optimal policy is what inverse reinforcement
learning (IRL) aims to solve. In other words, while an RL algorithm knows the reward
function that maps states to rewards and tries to find an optimal way to behave, an IRL
algorithm knows about expert behavior but tries to find the reward function.

The motivation for this is clear — while we might have a lot of examples of behavior,
we may find it hard to describe what the behavior is optimising for and hence miss
out on a learning opportunity. For example, we have a large amount of examples
of animal behavior but often we are unsure what they are optimising for. So using
IRL to model animal behavior could be beneficial (Russell, 1998). Another important
motivation is that using IRL we can also use the learned reward functions to train new
experts in perturbed environments. This allows for creating apprentices of the original
experts which are also adaptive to changed settings. Contrasting to imitation learning
methods, which directly learn the policy of the expert, Russel proposed that a policy
is not as effective and thus not as robust a representation of agent behavior as is the
the reward function. This would imply that slightly perturbing the environment and
using the learned policy may not be as successful in transferring optimal behavior
across environments as directly retraining on the estimated reward function inside the
perturbed environment.

Similarly to RL, it is common to model the behavior of an expert in IRL as the solution,

Chapter 2. Background 5

i.e. policy, for an Markov decision process M\R = 〈S ,A ,T ,γ〉 for which we do not
know the reward function R . The usual way the IRL problem is approached is by an
iterative process whereby the reward function R ′ is guessed, using a finite collection
of n demonstrations D = {Pi}0≤i<n where a path or trajectory Pi is a collection of
state-action pairs in the environment, to create, by extension, a guess of the underlying
MDP M ′ = 〈S ,A ,T ,R ′,γ〉. This MDP is then used to train an agent with which its
learned policy is compared with the expert’s policy. Over time, as the guess of the
reward function R ′ is changed to minimise differences in the policies, the reward
function should, by design, become similar to the true reward map R . This approach,
however, has multiple flaws, like the assumption of expert optimality (Piot, Geist, and
Pietquin, 2017) and the issue of reward identifiability where multiple different reward
functions can be used to describe a set of observations (Russell, 1998).

In this project, maximum entropy inverse reinforcement learning (MEIRL) (Ziebart
et al., 2008) was used to learn optimal rewards and policies. MEIRL, in a cycle,
performs gradient ascent on the predicted reward function whereby the loss gradient is
the difference between the state visitation frequency of the observed demonstrations and
the expected state visitation frequency of the policy that optimises the guessed reward
function. The state visitation frequency of demonstrations D is νD : S → [0,1] where
νD(s) is the statistical frequency of visits to state s ∈ S given the demonstrations D.
This cycle is stopped when the reward function updates become sufficiently small given
some preset threshold.

2.3 Learning from suboptimal experts

For inverse reinforcement learning, finding valuable demonstrations from an expert
optimised to doing a task represented by a reward function R is problematic for a few
reasons. For one, these demonstrations could be of humans interacting with the physical
environment and therefore noisy and inaccurate at times. Also, it could be the case
that we only have demonstrations from experts optimised for other tasks which have
incomplete, albeit valuable overlap with what we would like to optimise for. Since these
demonstrations can still be useful in human learning, it is important to explore how to
incorporate them in learning models.

There are several research directions in this area. For example, there has been research
in using demonstrations from suboptimal experts to achieve better performance than
the experts using inverse reinforcement learning, imitation learning, or apprenticeship
learning. However, this research often requires access to demonstrations that are close-
to-optimal in order for the models to have any success. For example, the TRAIL model
(Yang, Levine, and Nachum, 2022), which computes a latent action space by pretraining
on a set of offline, suboptimal demonstrations to become more sample-efficient when
observing new, optimal demonstrations, still requires that the offline demonstrations are
near-optimal.

There has also been research in ranking demonstrations which allows extrapolation
techniques to yield better policies than the experts performing demonstrations (Brown,
Goo, Nagarajan, et al., 2019 and Brown, Goo, and Niekum, 2019). While these models

Chapter 2. Background 6

can work with highly suboptimal trajectories, the momentum that the rankings provide
towards the extrapolation of better policies cannot produce optimal behavior that have
a inherently different structure to it compared to the demonstrations. Also, automatic
noise injection as a method for automatically generating ranked demonstrations cannot
accurately describe the whole set of suboptimal behavior. A simple scenario where
this fails could be, for example, when an agent is performing a completely different,
irrelevant task in a certain portion of the state space.

2.4 Combining expertise

Combining expertise, or multiple policies has been studied in recent works in a rein-
forcement learning context and most of them fall under the hierarchical reinforcement
learning research area (Pateria et al., 2021). For example, the Option Keyboard approach
where an agent learns how to combine skills by associating them with pseudo-rewards
and thus performs combination in the space of intentions has shown promise (Barreto
et al., 2019). However to combine these skills, another layer of reinforcement learning
has to be used.

Along similar lines, it has been shown how demonstrations from suboptimal experts
can be used to achieve better exploration of the complex state-action space (Jeong et al.,
2021). Also, policy reuse is another research topic that uses previously learned policies
to perform exploration and where a similarity function is defined for policies which
intends to weigh policies based on how probable it is that using them for learning the new
task will be profitable (Fernández and Veloso, 2006). Both of these research directions
describe a kind of expertise combination. However, similarly to hierarchical RL models,
these methods arrive at expertise combination through reinforcement learning.

In this project, unlike other research, reinforcement learning is not used in the policy
combination step. Instead, it is shown how spectral clustering can be used by the learner
agent to guide the combination of its own policy πL with the estimated policy πE of the
suboptimal expert such that at each state s ∈ S , the learner chooses to use either its own
policy πL(A |s) or the policy πE(A |s).

2.4.1 Clustering in Expertise Combination

In order to avoid expensive calculations, such as running an RL model as an additional
layer on top of multiple policies in order to produce a combined policy, clustering is
explored in this project as the basis for expertise combination. Graph clustering aims
to create a partition of the nodes of a graph so as to describe the structure and hence
connectedness of its nodes and subgraphs. This is useful, for example, in analysing
the behavior of agents moving between different states (nodes). Spectral clustering
is known to be a highly efficient method to cluster or partition a graph, since it can
use the eigendecomposition of the Laplacian of the graph similarty matrix (such as the
adjacency matrix) to group nodes together (Von Luxburg, 2007).

This technique does, however, have the downside of requiring symmetric affinity
matrices and hence it does not work with directed graphs. Digraphs are relevant in the

Chapter 2. Background 7

MDP setting where there may be asymmetries in the movement between any two states.
The ‘DEcomposition into DIrectional COMponents’ (DEDICOM) model (Harshman,
1978) which allows for the clustering of directed graphs is a proposed alternative in
analysing agent trajectories or policies, for example in computer games (Bauckhage
et al., 2014).

Clustering has been used before with success in imitation learning for trying to handle
demonstrations which could represent varying intentions or tasks. The Expectation-
Maximation (EM) trajectory clustering algorithm which iteratively clusters trajectories
by their intentions given any IRL method has been shown to be successful (Babes
et al., 2011). This approach is useful in differentiating between demonstrations and thus
allows to solve multiple, simpler IRL problems which result in rewards and policies
which represent different intentions.

Behavior clustering has also been used in later research, with advances in using non-
parametric methods to alleviate the need for specifying a target number of clusters
beforehand (Choi and Kim, 2012, and Rajasekaran, Zhang, and Fu, 2017). However,
these approaches do not aid in selecting useful portions of two policies to combine for
solving problems in multi-task environments.

Chapter 3

Contributions

The contributions of this project are listed as follows:

1. Providing an overview of the problem.

2. Programming experiments to validate the proposed approach of policy combina-
tion using spectral clustering.

3. Demonstrating the efficiency of the proposed approach in an IRL setting.

The included project materials contain all of the code that was used in this project.
Wherever not stated otherwise in the code base, I have been the sole author. Parts of the
code around inverse reinforcement learning and the gridworld environment have been
authored either wholly or partially by Billy I. Lyons and have been stated clearly within
the code base. Also, open-source libraries have been used and there are a few sections
of open-sourced code that have been adapted for this project – these adaptations have
also been stated clearly within the code base.

8

Chapter 4

Problem Statement

This project explores the following scenario. Let there be an MDP without a reward
function M\R = 〈S ,A ,T ,γ〉, an unknown task (i.e. reward function) R , a demonstrat-
ing suboptimal expert agent AE with a policy πE optimised to maximise reward RE 6= R ,
and a (learner) agent AL equipped with 1) a policy πL optimised to maximise reward
RL 6= R and 2) access to an oracle OR which gives an ordering of policies whereby
for some π1,π2 ∈Π, the space of all policies in M\R , π1 ≥ π2 means π1 is better or as
suited for completing the task given by R compared to π2. How can AL learn of the
expertise π′E of AE by receiving a demonstration Dt

E from AE at every time step t and
combine this knowledge of AE with its own experience to achieve a policy π which is
better than πE and πL in completing the task R (that is, π≥ πE and π≥ πL)?

Policy ordering oracle

As in Brown, Goo, Nagarajan, et al., 2019, in this project, instead of making known
R , a similar assumption is made by making known an ordering OR whereby for some
π1,π2 ∈Π, π1 ≥ π2 means π1 is better or as suited for completing the task given by R
compared to π2, and π2 ≥ π1 means π2 is better suited or as suited to completing the
task given by R compared to π1. This ordering will be assumed to be equivalent to a
function that compares the average rewards of two policies where the average reward
of a policy is given by the average discounted sum of rewards starting at each possible
initial state in the MDP.

The reason why the assumption is made of the existence of an ordering function is
because it is a more generic approach than evaluating policies directly and thus puts
less restrictions on the learning model compared to assuming access to the true reward
function R . This means the proposed model can be incorporated in RL settings, but
also in settings where true reward is not known. This ordering could be made available,
for example, by including human feedback or having some calculation of policy average
discounted return based on some given heuristics.

9

Chapter 4. Problem Statement 10

State and action space

For this project, the following further assumption is made of the state space S and action
space A being discrete. It should be noted, however, that all of the solutions explored in
this work can be extended to continuous state and action spaces through multiple tactics
such as discretisation using basis functions.

Chapter 5

Inverse Reinforcement Learning in
Gridworld

5.1 Gridworld dynamics

This project uses the gridworld environment to test out the strategy of learning subopti-
mal expert rewards and policies and using them for expertise combination. A gridworld
is a discrete-state environment with 4 discrete actions consisting of moving left, right,
up, or down to an adjacent cell. The gridworld is subject to noise w whereby if the agent
chooses an action then it has a w probability of going to a random adjacent cell. For
example, if w = 0.3 and the agent chooses to take the action to go right, then there is a
0.7+ 0.3

4 probability for the agent to end up in the cell adjacent to the right, cell, a 0.3
4

probability to end up in the cell above and likewise for the cells below and to the left.
Also, it should be noted, that the gridworld environments do not wrap agent positions
so, for example, moving right in a right-most cell means staying in place.

Figure 5.1 shows a 5×5 gridword with the optimal policy. The darker the arrows, the
larger the agent’s preference in taking the action to move in the respective direction. In
Figure 5.2 is an example of a 7×7 gridworld with the optimal policy. It can be seen
that starting off from any of the first three columns (from the left) of cells, the optimal
policy directs the agent to the bottom-left cell and starting off from any of the last three
columns of cells the optimal policy directs the agent to the bottom-right cell.

5.2 Maximum Entropy Inverse Reinforcement Learning
in Gridworld

The maximum entropy inverse reinforcement learning model (Ziebart et al., 2008) with
stochastic gradient ascent was used in this project to estimate the reward and policy
of agents from demonstrations. An example estimation from 300 demonstrations of
the reward function and policy from Figure 5.2 can be seen in Figure 5.4. While the
estimated policy learnt from the estimated reward function using value iteration shows
great resemblance, clearly the estimated reward function is quite different to the original.

11

Chapter 5. Inverse Reinforcement Learning in Gridworld 12

Figure 5.1: Example: Rewards (left) and optimal policy (right) for a 5×5 gridworld with
transition noise w = 0.04 and discount γ = 0.98. Rewards are received upon arrival to
any cell and the colour of the arrows denote the probability of choosing the action in the
direction of the arrow given the current cell.

Figure 5.2: Example: Rewards (left) and optimal policy (right) for a 7×7 gridworld with
transition noise w = 0.04 and discount γ = 0.98. Rewards are received upon arrival to
any cell and the colour of the arrows denote the probability of choosing the action in the
direction of the arrow given the current cell.

Chapter 5. Inverse Reinforcement Learning in Gridworld 13

This is explained by the reward identifiability issue in IRL whereby multiple reward
functions can explain the policy of an agent (Russell, 1998).

For both reinforcement learning and inverse reinforcement learning models used in this
project, the value iteration algorithm from Sutton and Barto, 2018 was used to calculate
the value function given an MDP. The resulting policy was calculated by taking the
softmax of the Q-value calculated from the value function.

5.2.1 Estimating Convergence

Since the learning agent does not have access to the true reward function in IRL models,
it is important to know after how many demonstrations can the IRL process yield a
sufficiently accurate estimation of the expert’s policy. One way to do this could be
to measure convergence of the value function after each new batch of demonstrations
arrives.

Figure 5.3 (top) shows the means and standard deviations of convergence of the true
average discounted return of the estimated expert with demonstrations from the example
policy shown in Figure 5.1. For the 7×7 gridworld, Figure 5.4 (top) shows the same
for the example policy shown in Figure 5.2. The figures also contain the means and
standard deviations of the convergence metric. For this experiment, the convergence
metric was the Kendall rank correlation coefficient whereby each value was calculated
between the new and previous estimation of the value function after each new batch
of demonstrations was provided. As can be seen from the figures by visual inspection,
the correlation coefficient has a high correlation between the true reward and could
indeed be used in a tactic to estimate when the IRL agent has observed sufficiently
many demonstrations.

The reason as to why a rank correlation coefficient was used as a comparison instead of,
say the root mean squared error between the value functions, is because the multiple
value functions can describe the same policy. For example a slight linear perturbation of
a value function will have minimal impact, if none, on the policy – in this case, the rank
correlation coefficient will be small between the two value functions, but the Euclidean
norm would be large.

Chapter 5. Inverse Reinforcement Learning in Gridworld 14

Figure 5.3: Average and standard deviation of estimated agent’s true reward (blue) given
10 experiments of performing Maximum Entropy Inverse Reinforcement Learning by
receiving demonstrations in a 5×5 gridworld, average and standard deviation of the
Kendall rank correlation coefficient (purple) between last two estimated value functions.
The average true reward for the actual policy of the agent is given a blue dashed line.

Chapter 5. Inverse Reinforcement Learning in Gridworld 15

Figure 5.4: Top: average and standard deviation of estimated agent’s true reward (blue)
given 10 experiments of performing Maximum Entropy Inverse Reinforcement Learning
by receiving demonstrations in a 7×7 gridworld, average and standard deviation of the
Kendall rank correlation coefficient (purple) between last two estimated value functions.
The average true reward for the actual policy of the agent is given a blue dashed line.
Bottom left: example of an estimated reward function (normalised to the range [0,1]) of
the expert at 300 demonstrations received. Bottom right: respective estimated policy of
the expert at 300 demonstrations received.

Chapter 6

Expertise Combination

As part of the research question of this project, given two policies π1 and π2, a policy π

is seeked such that given some state s ∈ S there is either π(s) = π1(s) or π(s) = π2(s)
whereby π is better than the two initial policies. This effectively means that any state,
the agent using policy π will either behave like an agent with policy π1 or an agent with
policy π2. However, we can see that if we have a state space of size 100 (for example,
in a 10× 10 gridworld), then by brute force, we would have to cover 2100 different
policies to find the best combination of expertise from π1 and π2.

Consider the set of states S1 ⊆ S where π(s) = π1(s) if and only if s ∈ S1 and π(s) =
π2(s) if and only if s /∈ S1. Let us define the policy combination function

C : P (S)×Π×Π→Π

with C(S1,π1,π2)(s, :) = π1(s, :) whenever s ∈ S1 and otherwise C(S1,π1,π2)(s, :) =
π2(s, :). Since policies describe trajectories across multiple states and hence expertise
should not be viewed on a per-state basis, it is useful to realise that S1 and therefore
S \S1 most probably contains some states that are adjacent to one another as deemed
by the transition matrix T . This is useful when we are looking to significantly reduce
the search space for a good combined policy π.

To this end, the idea of finding a set of clusters PS of the state space S is explored such
that:

1. ∀K1,K2 ∈ PS ,K1∩K2 = /0

2.
⋃

PS = S

3. ∀K ∈ PS , K is connected in S

4. |PS |< |S |

Then a subset P⊆ PS of the clustering is seeked such that the policy π =C(
⋃

P,π1,π2)
would be an adequate combination of expertise, i.e. π≥ π1 and π≥ π2.

16

Chapter 6. Expertise Combination 17

6.1 Clustering the state space

In order to find connected clusters of the state space, the problem of graph clustering is
visited. It is important to note that in the case of an MDP, the state space S , combined
with the transition matrix T , yields a homogeneous Markov chain if we sum over
possible actions A and assume a policy π to represent state-action probabilities. Note
that the choice of π could, for example, be the uniform distribution over actions,
regardless of state. Hence, we can convert the MDP into a weighted directed graph,
the representation of a Markov chain, and consider the clustering problem as a graph
clustering problem.

This yields another large benefit aside from reducing the search space. The benefit
comes from the fact that, for clustering the state space, spectral clustering can be used,
instead of more complex clustering methods, such as performing trajectory-analysis
to compute a high-dimensional latent space which encodes a distance metric between
each and every state. Spectral clustering can efficiently cluster graphs given adjacency
matrices which is why defining one is the following topic.

It must be noted however, that there have been examples (such as by Bauckhage et al.,
2014), where the requirement of symmetry in the adjacency matrix is detrimental to
spectral clustering results. For that reason, the clustering with the DEDICOM model
was attempted. However, this yielded unsatisfactory results. For one, clusters were not
always path-connected, which was one of the requirements in project. This could be due
to the high connectivity imposed by the transition matrix in gridworld environments.

6.1.1 Defining an adjacency matrix

First, the weighted adjacency matrix Aw : S ×S → R+ is defined as

Aw(s0,s1) = ∑
a∈A

w(s0,a)T (s0,a,s1)

which, for some s0,s1 ∈ S , is the probability of going from s0 to s1 given a weighting
w : S ×A → R. For spectral clustering this adjacency matrix is then averaged with its
transpose to create a symmetric affinity matrix.

The reason as to why a linear weighting was be introduced in the calculation was to
make possible the incorporation of information from the policies π1 and π2 which we
are looking to combine. This means that clustering could be performed which is not
only aware of the system dynamics (the transition matrix) but also of the preferences
set out in the policies we are combining.

To make the role of the weighting more intuitive we can consider cases where for some
state s ∈ S and a ∈ A we have that w(s,a) is low in one case and high in the other. In
the former case, if w(s,a) is small, then the ”connectedness” between s and the states
where a can take the agent is smaller than for the latter case, that is when w(s,a) is
large. In other words, if we consider that T (s,a,s′)> 0 for some s′ ∈ S , then as w(s,a)
increases there is a increasingly larger chance that s and s′ end up in the same cluster.

In the experiments, several values for w were tried. The first of which was a uniform
weighting to compare against the results of values w which depend on π1 and π2. That

Chapter 6. Expertise Combination 18

is, the uniform weighting was defined asas wuni =
1
|A | given any s ∈ S and a ∈ A . The

resulting adjacency matrix Awuni can be thought as representative of the Markov chain
for the agent in the MDP who prefers all actions equally.

The policies π1 and π2 were incorporated into the other values of w that were tested. In
order for the clustering algorithm not to have any bias towards one policy or the other
and hence consider both policies equally, preference was not subjected to either π1 or
π2 within w. In other words, the roles of π1 and π2 were defined to be symmetric. The
first weighting that was tested which combines the two policies is

wavg : (s,a) 7→ π1(a|s)+π2(a|s)
2

which is a simple average of the two policies. The reason for introducing this was
to explore the scenario where two states have a high probability of being in the same
cluster when both policies strongly prefer movement between the two states. However,
this weighting loses information about the difference between the two policies. This is
why the second weighting that combines two policies was

wdiff : (s,a) 7→ |π1(a|s)−π2(a|s)|

which would increase the probability of two states being connected in a cluster whenever
the disagreement between the two policies’ preferences of movement between the two
states increased. To further explore different weightings and since both wavg and wdiff
take values between 0 and 1 and can thus be interpreted as probabilities, the softmax
and complement variations of these weightings were introduced, whereby the softmax
was defined with an inverse temperature β for a weighting w by

σβ(w) : (s,a) 7→ exp(βw(s,a))
∑a′∈A exp(βw(s,a′))

and the complement was simply defined for a weighting w as wc : (s,a) 7→ 1−w(s,a).

6.2 Combining policies using the clustered state space

Given a clustering of the state space PS , the next step was to find a subset of clusters
P ⊆ PS such that C(

⋃
P,π1,π2) would be an improvement to both π1 and π2. In this

project, the greedy subset selection approach was used, which, one-by-one adds to
the the subset of clusters if a new cluster can be found that improves the subset. The
description of the algorithm is as follows. First, let P← { /0}. If a cluster K ∈ PS \P
can be chosen such that by the policy ordering oracle OR we have

C(K∪
⋃

P,π1,π2)>C(
⋃

P,π1,π2)

and
C(K∪

⋃
P,π1,π2)>C(K′∪

⋃
P,π1,π2)

for all K′ ∈ PS \P,K′ 6= K, then set P← P∪{K}. This process is repeated until a
suitable K cannot be chosen. In the interest of not preferring a single policy, this

Chapter 6. Expertise Combination 19

Figure 6.1: Spectral clustering result for wc
diff and the test environment no. 6 with number

of clusters n = 5. π1 and π2 are shown alongside the true policy πtrue for the environment
in the second, third, and fourth subfigure from the left, respectively. On the right is the
combined policy πcomb =C(

⋃
P,π1,π2). On the left, the clusters that were selected from

π1 are in a a lighter red, i.e. they make up P.

whole procedure is repeated to find a suitable P′ ⊆ PS , such that C(
⋃

P′,π2,π1) is
an improvement to π1 and π2. Then, either C(

⋃
P,π1,π2) or C(

⋃
P′,π2,π1) is chosen

depending on which choice was better using the oracle OR . Figure 6.1 contains an
example result from the clustering approach with weighting wc

diff. In the figure, the
similarity of πcomb to πtrue is apparent. This approach has a time-complexity of O(n2)
where n is the number of clusters. For the purposes of having n << |S |, such as
2≤ n≤ 8, this algorithm is suitable. More examples can be seen in Appendix C.

6.3 Evaluating Expertise Combination

Several experiments were ran to deem whether using spectral clustering in order to
combine policies is a viable approach to expertise combination. The goal was to
understand if it is possible to use spectral clustering to create combined policies that
better suit the task at hand than the policies being combined, and, whether using the
original policies π1 and π2 in the weightings w in the creation of the adjacency matrix
Aw can yield more optimal results than using just wrand.

6.3.1 Evaluation with combined policy average return

The different weightings and their combinations across multiple different tasks were
compared through measuring the average discounted return of the resulting com-
bined policies. Several values for the number of clusters n with n ∈ N where N =
{2,3,4,5,6,7} and several environments were tried.

Two metrics were used to compare the weighting matrices that were input to the expertise
combination algorithm. The first, most obvious one was comparing the performance of
the resulting, combined policy. Since being successful using a small number of clusters
is more useful and shows the success of the choice of w, a weighted scoring s was
defined by

s(w) = ∑n∈N αnsn(w)
∑n∈N αn

for each choice of weighting w, where sn(w) is the average discounted return (nor-
malised to between 0 and 1 across all used n and w) in the environment given the

Chapter 6. Expertise Combination 20

resulting combined policy using the clustering defined by Aw, and where n is the num-
ber of clusters and αn is the respective weight given the number of clusters n. The choice
of weight αn was αn = e

1
n which means that for numbers of clusters n,m ∈ N,n < m

implies that αn > αm.

The second metric that was used was the monotonicity of the scores as cluster sizes
increased. An adjacency matrix Aw would have a high positive monotonicity score
if the resulting combined policy’s score increased each time the number of clusters
was increased. The reason for this metric is to analyse the reliability of the clustering
as the number of clusters are increased given some adjacency matrix. That is, it is
desirable that if the cluster number is increased by one, there is a high probability that
performance will not be worse than before. The monotonicity score m was defined, for
a choice of weighting w, by

m(w) = o(w)
maxi(si(w))−mini(si(w))
∑ j∈N\{7} |s j+1(w)− s j(w)|

where o(w)= sgn(argmaxi(si(w))−argmini(si(w))) and where sgn is the sign function.
A monotonicity score m that is close to 1 indicates high monotonicity in the sequence
(sn(w)) where n ∈ N increases. On the other hand, a monotonicity score that is negative
indicates that the respective sequence tends to decrease more than increase as the
number of clusters n increases.

Several experiments in multiple 5×5 and 9×9 gridworld environments were run, all
of which have been included in Appendix A. Figure 6.2 contains the sn(w) values for
the several w and n ∈ N that were tested in the 5× 5 gridworlds. As can be seen in
the figure, the performance of the combined policy was often better than the original
policies π1 and π2, even with a low number of clusters. However, there is no clear
indication of a statistical difference between the different weightings. Also, it was
often the case that average discounted returns were yielded which were better than the
expected discounted return of the agent that directly solves the true problem, specified
by R . This is because the policy calculation from the value function that was learnt
used the softmax function to convert q-values into probabilities, instead of a greedy
policy.

The scoring results for the weightings are included in Appendix B, with mean values
and standard deviations included. The correlation between the two gridworld types, the
5×5 and 9×9 gridworlds, was also measured. There was a 0.75 Pearson’s correlation
coefficient between the mean values for s(w) in the 5×5 and 9×9 gridworlds (see the
mean values in Tables B.1 and B.3) with a low p-value of 0.0031. This could imply
that there is a high probability that the scoring function s retains some consistency
across environment size and hence it could be the case that certain weightings have
better performance than others in general, for example, the values s(σ10(wavg)) in both
gridworld sizes were one of the best. For the monotonicity scores c(w) for weightings
w, the respective Pearson’s correlation coefficient between the mean values was a low
0.07. This means that there was not a strong consistency of c between the 5×5 and
9×9 gridworlds.

In general, with these results it has been shown that the proposed approach of expertise

Chapter 6. Expertise Combination 21

Figure 6.2: Spectral clustering results (average discounted return for the combined
policies) for the 6 different test 5× 5 gridworld environments from Figure A.1. Each
clustering result is recorded for each weighting w and for four different numbers of
clusters. For the fourth and fifth environments, the π2 average discounted return values
were omitted from the figure (they were −0.748 and −0.7 respectively).

Chapter 6. Expertise Combination 22

combination works well and that it has consistency in producing the desired results.
These results also demonstrate that certain weightings seem to have an edge. However,
since the standard deviations of results are relatively high, then it is hard to single
out one weighting as the best and it is also not possible to conclude that, for example
using wrand, the only weighting that did not incorporate information from π1 and π2,
was somehow worse that using the other weightings. Even though policy combination
with spectral clustering is clearly successful, since large differences between the results
for the different weightings were not seen, it was hypothesised that these differences
will come out in larger gridworlds. The experiment designed for larger gridworlds is
described next.

6.3.2 Evaluation using policy mean euclidean distance

For larger gridworlds, it was decided to compare clusterings directly instead of through
greedy subset selection and the approximation of the resulting combined policies’
expected discounted returns. The latter can be an expensive calculation in large en-
vironments when a large number of simulations is required for the average value
would be statistically meaningful. For the direct approach, for each cluster in a clus-
tering, either π1 or π2 was chosen depending on which policy the target policy πtrue
was closest to. The distance metric that was used was the root mean squared error
RMSE : Π×Π×P (S)→ R which is expressed as:

RMSE(π,π′,C) =

√
1

|C||A | ∑s∈C
∑

a∈A
(π(s,a)−π′(s,a))2

where π, π′ are arbitrary policies and C is a cluster within the state space. Then as
the new policy πcomb was defined this way, the resulting mean euclidean distance was
recorded RMSE(πcomb,πtrue,S).

For the experiment, one of the 9× 9 gridworlds was superimposed (see Appendix
A, Figure A.2, environment no. 1) into the bottom right corner of a simple 50× 50
gridworld. Then, the same weightings as for the previous experiment were used for
creating the clusters and above procedure was performed for a longer sequence of
number of clusters n. The results are shown in Figure 6.3. Clearly, there is a large
difference between the weightings that were used. The scores for wrand did not seem to
be getting better as the number of clusters was increased, but for some others, like wavg,
it was definitely the case. From this the conclusion was made that incorporating π1 and
π2 definitely has an impact towards getting better policy combination results and some
weightings have clear advantages over others.

6.4 Expertise Combination with Inverse Reinforcement
Learning

The final goal of this project was to validate spectral clustering as an approach to
guide expertise clustering within an inverse reinforcement learning cycle. Within
multiple gridworld environments, the learner (IRL) agents were trained to see how

Chapter 6. Expertise Combination 23

Figure 6.3: Clustering results for several different weightings in a 50× 50 gridworld
whereby the first 9×9 gridworld from A.2 has been superimposed in the bottom right
corner. Top: root mean squared error between the true policy and the best clustering
depending on the number of clusters for different weightings. Bottom: clusterings
displayed on top of π1 in the gridworld environment. Bottom left: clustering of the
gridworld into 25 clusters using the wrand weighting. Bottom middle: clustering of the
gridworld into 20 clusters using the wavg weighting. Bottom right: zoomed in view of the
relevant 9×9 area of the clustering on its left.

Chapter 6. Expertise Combination 24

useful the Kendall rank correlation coefficient is as a threshold for performing expertise
combination between the learner’s policy πL and the estimated suboptimal expert’s
policy πE . Thus, multiple thresholds were tested alongside multiple target number of
clusters and the results compared.

For this experiment the complement of the average policy πc
avg was used to weigh

the transition matrix to create the affinity matrix required for spectral clustering. The
result was also compared to clustering results based on the uniform policy πrand. Both
weightings resulted in combined policies that were better than the demonstrator and
learner originally. As can be seen in Figure 6.4, πc

avg displayed better monotonicity (as
cluster sizes increased, returns tended to increase) than πrand. This correlates with the
fact that in general, πrand had lower monotonicity scores (as seen in Appendix 2, tables
B.2 and B.4). Returns were quite varying up until the high threshold levels when in
most cases the mean return increased. Also, in a lot of cases, variability decreased at
higher threshold levels.

Chapter 6. Expertise Combination 25

Figure 6.4: Top: spectral clustering results in the sixth 5x5 gridworld (seen in Figure
A.1). Discounted return given the Kendall rank correlation correlation as a threshold to
performing expertise combination. Each line is the average discounted return given a
number of clusters over 10 runs. Shaded areas are 30% standard deviations. Top left:
results with clustering using the adjacency matrix computed using a uniformly random
policy. Top right: results with clustering using the adjacency matrix computed using
the complement of the average policy between the learner’s policy and the estimated
expert’s policy. For this simulation, the learner’s own expected discounted return was
-82.7, while for the demonstrator and the optimal expert the values were -170.5 and
-3.91 respectively. Bottom: the learner’s, demonstrator’s and the true policy for the
environment. Contains an example clustering made by the weighting wc

avg. Selected
areas for policy combination from the learner and demonstrator are highlighted on the
learner’s and demonstrator’s policies, respectively.

Chapter 7

Discussion

Being able to combine the expertise of a demonstrator with one’s own in order to
complete a new task is a highly beneficial skill. In this project, we showed that spectral
clustering as the method driving expertise combination works well in reducing search
space and most importantly allows producing policies that are better than the original
input policies. This means that there are concrete implications to the per-cluster policy
combination we have presented. This list includes a positive effect on performance,
that is, there is less learning from scratch. Also, expertise combination allows for less
exploratory interaction with the original environment, which, in a real-life setting, for
example in robotics, could be highly beneficial in terms of safety.

Expertise Combination

For smaller environments we did not observe stark differences between using the
different weightings for creating the adjacency matrix which was the input for spectral
clustering. There was however some correlation in the scoring s between the two
environment sizes and thus there is an indication that this correlation may scale into
even bigger environment sizes. For example, the σ10(wavg) weighting was one of the
best in both the 5× 5 and 9× 9 gridworld environments. The same weighting also
performed well in our 50× 50 gridworld experiment. The large-scale environment
experiment also showed that the best performing results came when weightings that
consisted of a combination of π1 and π2 were used.

For future research, we believe that a larger set of environments and weightings should
be explored. Due to the connection between the weight and the probability of two
states being connected in a cluster, there could be further mathematical analyses done to
derive bounds in the space of possible weighting functions. Also, an interesting avenue
would be to explore the search of weightings by training a neural network to estimate
an optimal per-state weighting wnet with an input of two probability distributions over
actions and an action. For this function the loss could be derived from the fact that
for some s ∈ S and a ∈ A , the loss of w(s,a) is linked to whether the states S⊂ S that
are taken to by action a from state s should belong to the same cluster as s and hence
should have the same source policy in the resulting combined policy. Thus, the resulting
weighting over π1 and π2 could be defined as w : (s,a) 7→ wnet(π1(A |s),π2(A |s),a).

26

Chapter 7. Discussion 27

Another aspect to note is that there is a loss of information when combining two
policies within a single weighting. For example, wavg loses information about whether
preferences were aligned or not, i.e. we lose information on the difference of the
policies. To minimise this loss when performing clustering, we believe that another
avenue to explore would be to perform clustering separately such that two adjacency
matrices Aπ1 and Aπ2 are used whereby the two resulting clusterings are combined
instead. Additionally, while we explored weightings which combined two policies
symmetrically in order to have no bias, introducing bias when performing weighting
could be beneficial, for example by using the policy ordering oracle OR to give a larger
weight to the policy which is deemed better.

As to the use of spectral clustering, we hypothesise that the fact that spectral clustering
loses information about the directionality of the policies means that the resulting
clusterings are not as optimal. This loss of information could be quite large, since,
given a Markov chain where the adjacency matrix has been post-processed to be
symmetric, we can infer about original trajectories, but not the direction of trajectories.
Moving forward, to address the issue of the requirement of symmetry, we believe that
exploring weighted directed graph clustering methods would yield benefits. In this
project, we tested the DEDICOM model, which, compared to spectral clustering, failed
to consistently produce clusters that were connected. However, there are multiple other
models which could be used, such as directed graph clustering using weighted cuts (see
Meilă and Pentney, 2007).

The assumption of the existence of a policy ordering oracle OR was important as
it allowed us to choose the relevant subset P ⊆ PS . However, we believe there are
additional, relatively simple optimisations which could decrease the search space and
increase performance even further and thus reduce the reliance on the oracle within the
best-subset search algorithm. Firstly, clusters where both policies are highly similar
(e.g. have a low RMSE between the two policies in the cluster) could be ignored by the
best subset selection algorithm. Secondly, certain inefficient policy combinations could
be excluded by performing simple trajectory analysis to keep the number of cluster
boundary crossings to a minimum. That is, if for a trajectory, the number of cluster
boundary crossings is close to the length of the trajectory, then it is highly probable that
the trajectory is not exhibiting behavior similar to either source policy.

The use of the greedy subset selection should also be noted. This algorithm does not
guarantee that it will find the optimal subset from PS . Finding the optimal subset from
a set is an NP-hard problem (Natarajan, 1995 and Thompson, 2022), and employing
existing, better solutions in this domain than the greedy approach are left for subsequent
research.

Expertise Combination in Inverse Reinforcement Learning

We put expertise combination in an inverse reinforcement learning scenario and showed
that it is possible to get desirable results even when one of the policies being combined
is derived from an estimation of a reward function. Hence it was shown that even if the
demonstrating agent is highly suboptimal, we are able to use expertise combination to
produce near-optimal policies.

Chapter 7. Discussion 28

On average there is a decrease in the variability of the average returns as the expertise
combination threshold, the Kendall rank correlation coefficient, was increased. This
confirms the fact that a higher expertise combination threshold is desirable when looking
for consistent results. Also, more importantly, increasing the threshold of when expertise
combination is used from around 0.95 onwards, on average showed a slight increase in
average returns. Both of these results we believe are due to the fact that at these high
thresholds, the estimated demonstrator’s policy is very close to the true one and hence
policy combination benefits from this increased accuracy.

For future research, we would like to explore the scenario when multiple demonstrators
are available to the learner. This method of expertise combination could be scaled
to combine the expertise of multiple agents. For example, one learner agent could
track multiple demonstrators and perform expertise combination with the demonstrator
with whom the combined policy is the best. This could be defined as an iterative
process, whereby the underlying environment and agents could be changed over time.
Also, while we used maximum entropy inverse reinforcement learning, there is a large
collection of IRL models that could also be used with the expertise combination method
proposed in this project.

Chapter 8

Conclusion

This project investigated policy combination with spectral clustering in a multi-task
inverse reinforcement learning setting. Inspired by scenarios from real life and robotics,
the prospect of being able to join two policies to better complete a new task than either
the two policies can is desirable. This is because, by being able to efficiently combine
expertise, there is a potential to interact less with the environment directly, thus reducing
learning time and possibly expensive interaction with the environment. Also, this opens
up the potential to learn from other agents, where their behavior may not be optimising
for performing the target task directly, thereby allowing the relaxation of the assumption
of expert optimality in inverse reinforcement learning.

With the availability of a policy ordering oracle which can compare two policies in the
context of the true reward function, expertise combination was introduced whereby one
policy is combined with another such that at every state the new policy either follows
the first or the second policy. Since the search space for a good expertise combination
combinatorically explodes as state space increases, we looked at clustering the state
space so as to reduce search space and thus combine policies not on a per-state basis,
but a per-cluster basis.

We showed that in the gridworld environment, using spectral clustering to combine
policies is a useful technique and weighing the adjacency matrix by the two policies that
are being combined yield clustering results whereby less clusters are required to yield
more optimal results. We also demonstrated that the Kendall rank correlation coefficient
is a useful metric to estimate the convergence of the inverse reinforcement learning
model, so as to choose an optimal time to combine the policy of the learner agent and
the demonstrating agent. Even at low correlation thresholds combining policies yielded
results that outperform the original learner and demonstrator.

In future research, we would like to explore the use of expertise combination in con-
tinuous environments using techniques such as discretisation with basis functions. We
would like to look into the benefits of using clustering methods that allow for asymmet-
ric adjacency matrices. Furthermore, we believe that limiting the search space for the
best-subset algorithm by excluding clusters which yield redundant combined policies is
an avenue that could further advance the approach presented in this thesis.

29

Bibliography

Babes, Monica et al. (2011). “Apprenticeship learning about multiple intentions”. In:
ICML.

Barreto, André et al. (2019). “The option keyboard: Combining skills in reinforcement
learning”. In: Advances in Neural Information Processing Systems 32.

Bauckhage, Christian et al. (2014). “Beyond heatmaps: Spatio-temporal clustering using
behavior-based partitioning of game levels”. In: 2014 IEEE Conference on Computa-
tional Intelligence and Games, pp. 1–8. DOI: 10.1109/CIG.2014.6932865.

Brown, Daniel S., Wonjoon Goo, Prabhat Nagarajan, et al. (2019). Extrapolating Beyond
Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations.
arXiv: 1904.06387 [cs.LG].

Brown, Daniel S., Wonjoon Goo, and Scott Niekum (2019). Better-than-Demonstrator
Imitation Learning via Automatically-Ranked Demonstrations. arXiv: 1907.03976
[cs.LG].

Choi, Jaedeug and Kee-Eung Kim (2012). “Nonparametric Bayesian inverse reinforce-
ment learning for multiple reward functions”. In: Advances in Neural Information
Processing Systems 25.

Fernández, Fernando and Manuela Veloso (2006). “Probabilistic policy reuse in a rein-
forcement learning agent”. In: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pp. 720–727.

Harshman, Richard A (1978). “Models for analysis of asymmetrical relationships among
N objects or stimuli”. In: First Joint Meeting of the Psychometric Society and the
Society of Mathematical Psychology, Hamilton, Ontario, 1978.

Hussein, Ahmed et al. (2017). “Imitation learning: A survey of learning methods”. In:
ACM Computing Surveys (CSUR) 50.2, pp. 1–35.

Jeong, Rae et al. (2021). Learning Dexterous Manipulation from Suboptimal Experts.
arXiv: 2010.08587 [cs.RO].

Kakade, Sham M. (2003). “On the sample complexity of reinforcement learning.” In:
Meilă, Marina and William Pentney (2007). “Clustering by weighted cuts in directed

graphs”. In: Proceedings of the 2007 SIAM international conference on data mining.
SIAM, pp. 135–144.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518, pp. 529–533.

Natarajan, Balas Kausik (1995). “Sparse approximate solutions to linear systems”. In:
SIAM journal on computing 24.2, pp. 227–234.

Pateria, Shubham et al. (2021). “Hierarchical reinforcement learning: A comprehensive
survey”. In: ACM Computing Surveys (CSUR) 54.5, pp. 1–35.

30

BIBLIOGRAPHY 31

Piot, Bilal, Matthieu Geist, and Olivier Pietquin (2017). “Bridging the Gap Between
Imitation Learning and Inverse Reinforcement Learning”. In: IEEE Transactions on
Neural Networks and Learning Systems 28.8, pp. 1814–1826. DOI: 10.1109/TNNLS.
2016.2543000.

Rajasekaran, Siddharthan, Jinwei Zhang, and Jie Fu (2017). “Inverse reinforce learning
with nonparametric behavior clustering”. In: arXiv preprint arXiv:1712.05514.

Russell, Stuart (1998). “Learning Agents for Uncertain Environments (Extended Ab-
stract)”. In: Proceedings of the Eleventh Annual Conference on Computational
Learning Theory. COLT’ 98. Madison, Wisconsin, USA: Association for Computing
Machinery, pp. 101–103. ISBN: 1581130570. DOI: 10.1145/279943.279964. URL:
https://doi.org/10.1145/279943.279964.

Sutton, R.S. (Aug. 1988). “Learning to Predict by the Methods of Temporal Differences”.
In: Mach. Learn. 3.1, pp. 9–44. ISSN: 0885-6125. DOI: 10.1023/A:1022633531479.
URL: https://doi.org/10.1023/A:1022633531479.

Sutton, R.S. and A.G. Barto (2018). Reinforcement Learning, second edition: An In-
troduction. Adaptive Computation and Machine Learning series. MIT Press. ISBN:
9780262352703. URL: https://books.google.co.uk/books?id=uWV0DwAAQBAJ.

Taylor, Matthew E., Halit Bener Suay, and Sonia Chernova (2011). “Integrating Rein-
forcement Learning with Human Demonstrations of Varying Ability”. In: The 10th
International Conference on Autonomous Agents and Multiagent Systems - Volume 2.
AAMAS ’11. Taipei, Taiwan: International Foundation for Autonomous Agents and
Multiagent Systems, pp. 617–624. ISBN: 0982657161.

Thompson, Ryan (2022). “Robust subset selection”. In: Computational Statistics &
Data Analysis, p. 107415.

Tomasello, Michael (2009). Why we cooperate. MIT press.
Von Luxburg, Ulrike (2007). “A tutorial on spectral clustering”. In: Statistics and

computing 17.4, pp. 395–416.
Watkins, Christopher (Jan. 1989). “Learning From Delayed Rewards”. In:
Yang, Mengjiao, Sergey Levine, and Ofir Nachum (2022). “TRAIL: Near-Optimal

Imitation Learning with Suboptimal Data”. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=6q_2b6u0BnJ.

Ziebart, Brian D et al. (2008). “Maximum entropy inverse reinforcement learning.” In:
Aaai. Vol. 8. Chicago, IL, USA, pp. 1433–1438.

Appendix A

Environments

32

Appendix A. Environments 33

Figure A.1: 6 different 5×5 gridworlds (per row) with π1 (left), π2 (centre) and the true
policy πtrue (right). The darker the arrow, the larger the preference in respective action.
A state with no arrows is a terminal state.

Appendix A. Environments 34

Figure A.2: 6 different 9×9 gridworlds (per row) with π1 (left), π2 (centre) and the true
policy πtrue (right). The darker the arrow, the larger the preference in respective action.
A state with no arrows is a terminal state.

Appendix B

Weigthing scores

w 1 2 3 4 5 6 mean std

wrand 0.90 0.68 0.90 0.48 0.42 0.73 0.69 0.18

wavg 0.48 0.65 0.71 0.76 0.47 0.68 0.62 0.11

wc
avg 0.90 0.74 0.90 0.55 0.56 0.56 0.70 0.16

wdiff 0.55 0.52 0.78 0.37 0.63 0.68 0.59 0.13

wc
diff 0.96 0.79 0.95 0.51 0.41 0.73 0.73 0.20

σ1(wavg) 0.89 0.60 0.71 0.53 0.51 0.74 0.66 0.14

σ1(wc
avg) 0.88 0.70 0.91 0.55 0.44 0.58 0.68 0.17

σ1(wdiff) 0.60 0.52 0.73 0.69 0.54 0.48 0.59 0.09

σ1(wc
diff) 0.90 0.74 0.90 0.54 0.49 0.57 0.69 0.17

σ10(wavg) 0.77 0.48 0.91 0.87 0.77 0.76 0.76 0.14

σ10(wc
avg) 0.96 0.82 0.91 0.58 0.38 0.42 0.68 0.23

σ10(wdiff) 0.18 0.29 0.43 0.58 0.67 0.47 0.44 0.17

σ10(wc
diff) 0.95 0.69 0.88 0.34 0.29 0.21 0.56 0.29

Table B.1: Weighted scores s(w) for different weightings w across the six 5×5 gridworlds
in Figure A.1. Includes means and standard deviations.

35

Appendix B. Weigthing scores 36

w 1 2 3 4 5 6 mean std

wrand 0.49 0.60 -0.54 0.56 0.84 0.71 0.44 0.45

wavg 0.76 0.58 0.80 0.83 0.74 0.38 0.68 0.16

wc
avg 0.48 0.43 -0.29 0.39 0.66 0.75 0.40 0.33

wdiff 0.64 0.53 0.71 0.57 -0.35 0.39 0.41 0.36

wc
diff 0.32 0.87 0.40 0.52 0.62 0.64 0.56 0.18

σ1(wavg) 0.42 0.66 0.70 0.78 1.00 0.74 0.72 0.17

σ1(wc
avg) 0.32 0.60 -0.40 0.59 1.00 0.80 0.48 0.45

σ1(wdiff) 0.75 0.75 0.74 0.37 0.79 0.39 0.63 0.18

σ1(wc
diff) 0.41 0.57 0.40 0.51 0.87 0.62 0.57 0.16

σ10(wavg) 0.52 0.43 0.45 0.46 0.83 0.71 0.57 0.15

σ10(wc
avg) -0.42 0.96 0.50 0.91 0.87 0.35 0.53 0.48

σ10(wdiff) 0.95 0.44 0.83 0.48 1.00 0.38 0.68 0.25

σ10(wc
diff) 0.66 0.87 -0.49 0.50 0.77 0.91 0.53 0.48

Table B.2: Monotonicity scores c(w) for different weightings w across the six 5× 5
gridworlds in Figure A.1. Includes means and standard deviations.

Appendix B. Weigthing scores 37

w 1 2 3 4 5 6 mean std

wrand 0.65 0.59 0.50 0.54 0.58 0.90 0.63 0.13

wavg 0.67 0.77 0.57 0.60 0.60 0.74 0.66 0.07

wc
avg 0.69 0.71 0.50 0.54 0.71 0.72 0.64 0.09

wdiff 0.56 0.40 0.79 0.41 0.74 0.41 0.55 0.16

wc
diff 0.69 0.69 0.47 0.48 0.64 0.89 0.64 0.14

σ1(wavg) 0.62 0.52 0.52 0.54 0.63 0.72 0.59 0.07

σ1(wc
avg) 0.53 0.68 0.50 0.55 0.65 0.88 0.63 0.13

σ1(wdiff) 0.49 0.57 0.67 0.59 0.69 0.55 0.59 0.07

σ1(wc
diff) 0.65 0.53 0.43 0.60 0.71 0.89 0.63 0.14

σ10(wavg) 0.62 0.77 0.59 0.68 0.78 0.50 0.66 0.10

σ10(wc
avg) 0.77 0.76 0.34 0.52 0.61 0.89 0.65 0.18

σ10(wdiff) 0.51 0.49 0.48 0.50 0.79 0.21 0.50 0.17

σ10(wc
diff) 0.75 0.73 0.37 0.33 0.84 0.91 0.65 0.22

Table B.3: Weighted scores s(w) for different weightings w across the six 9×9 gridworlds
in Figure A.2. Includes means and standard deviations.

Appendix B. Weigthing scores 38

w 1 2 3 4 5 6 mean std

wrand 0.49 -0.61 0.35 -0.48 0.32 -0.32 -0.04 0.44

wavg -0.51 -0.50 0.41 0.66 -0.46 0.46 0.01 0.51

wc
avg 0.36 -0.98 0.67 -0.45 -0.46 0.84 -0.00 0.67

wdiff 0.38 -0.38 -0.59 0.60 -0.37 0.66 0.05 0.51

wc
diff -0.55 0.49 0.62 -0.44 -0.56 -0.61 -0.17 0.52

σ1(wavg) 0.55 -0.54 0.74 0.60 -0.44 0.45 0.23 0.52

σ1(wc
avg) -0.49 -0.93 0.65 -0.38 -0.36 -0.42 -0.32 0.48

σ1(wdiff) -0.35 -0.83 0.43 -0.45 0.41 0.80 0.00 0.58

σ1(wc
diff) -0.45 -0.52 -0.39 0.34 -0.40 -0.68 -0.35 0.32

σ10(wavg) 0.56 0.43 0.44 0.48 0.75 -0.52 0.36 0.41

σ10(wc
avg) 0.52 0.87 0.31 0.52 0.72 -0.50 0.41 0.44

σ10(wdiff) -0.40 -0.74 0.53 -0.46 -0.44 0.66 -0.14 0.53

σ10(wc
diff) 0.46 0.95 0.44 0.46 -0.40 0.33 0.37 0.40

Table B.4: Monotonicity scores c(w) for different weightings w across the six 9× 9
gridworlds in Figure A.2. Includes means and standard deviations.

Appendix C

Examples of Expertise Combination

39

Appendix C. Examples of Expertise Combination 40

Figure C.1: Policy combination in the first 9×9 gridworld from Figure A.2 using weighting
wrand and n = 7. Top: true policy (left), combined policy (right), policies that were
combined (middle two). Selected clusters from π1 and π2 are highlighted. Bottom: true
reward (left) and per-state euclidean distances between πtrue and the respective policy
above (others).

Figure C.2: Policy combination in the second 9× 9 gridworld from Figure A.2 using
weighting σq(wavg) and n = 6. Top: true policy (left), combined policy (right), policies that
were combined (middle two). Selected clusters from π1 and π2 are highlighted. Bottom:
true reward (left) and per-state euclidean distances between πtrue and the respective
policy above (others).

Appendix C. Examples of Expertise Combination 41

Figure C.3: Policy combination in the third 9×9 gridworld from Figure A.2 using weighting
wc

diff and n= 6. Top: true policy (left), combined policy (right), policies that were combined
(middle two). Selected clusters from π1 and π2 are highlighted. Bottom: true reward
(left) and per-state euclidean distances between πtrue and the respective policy above
(others).

Figure C.4: Policy combination in the fourth 9× 9 gridworld from Figure A.2 using
weighting wavg and n = 7. Top: true policy (left), combined policy (right), policies that
were combined (middle two). Selected clusters from π1 and π2 are highlighted. Bottom:
true reward (left) and per-state euclidean distances between πtrue and the respective
policy above (others).

