
Resource Constrained Business Process
Simulation

Michal Baczun
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2022

Abstract
Business Process Simulation (BPS) is a powerful technique for gaining insight into
existing or proposed business processes. In order to maximise the quality and accuracy
of the metrics gathered from BPS, we need the simulated workflow and the execution
environment to reflect the real world as accurately as possible. The resource perspective
is one aspect of BPS which is concerned with how resources are defined and used by the
workflow, and an area that is often overlooked. Resource constraints have the potential
to model complex and intricate properties of real-world resources that could be used to
simulate scenarios which were not previously possible, and yet most BPS tools only
support basic resource constructs.

Proter is a unique discrete event simulator with prioritisation at its core. Its priority-
based approach to scheduling a simulated workflow enables the creation of models that
more accurately represent how people schedule tasks in reality. This project implements
new resource constraints such as resource capacities to further improve the freedom and
flexibility of modelling afforded by Proter. To do this the project also identifies a list of
core resource constraints relevant to BPS as part of a review of BPS tools and literature.

One concern is that there are multiple ways to schedule tasks based on the different
resource and priority constraints. When we introduce more constraints, the choice
of scheduling strategy becomes an important consideration as different strategies can
produce drastically different results. This project provides a framework for evaluation
built around random workflow generation, which is used to compare the baseline
scheduling strategies supported by Proter to show how choice of strategy can impact key
performance indicators. By providing the necessary tools and demonstrating the impact
of scheduling strategy choice, the project aims to promote comparative evaluation of
strategies as an important practice in BPS studies.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Michal Baczun)

ii

Acknowledgements
I would like to thank my supervisor, Dr Petros Papapanagiotou, for his invaluable
guidance and mentorship throughout this project.

I would also like to thank my family for their support and motivation.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Previous work carried out . 3
1.3 Methodology . 3
1.4 Project Goals . 4

2 Background 5
2.1 Business Process Simulation . 5
2.2 BPS Tools . 6
2.3 Proter . 7
2.4 Scheduling Problems . 8

2.4.1 Job Shop Scheduling . 8
2.4.2 Resource Constrained Project Scheduling Problem 9

3 The Resource Perspective of BPS 11
3.1 Resources in BPS . 11
3.2 List of Resource Constraints . 13

4 Implementation of Resource Constraints 16
4.1 Schedules . 16
4.2 Weighted Schedules . 18
4.3 Tasks, Resources, and Schedulers . 19

5 Scheduling and Evaluation Framework 21
5.1 The Problem with Datasets . 21
5.2 Random Workflow Generation . 22
5.3 Evaluation Framework . 23

6 Evaluation of Scheduling Strategies 25
6.1 Baseline Scheduler Differences . 26

6.1.1 Makespan comparison . 27
6.1.2 Priority Error Comparison 29

6.2 New Constraints’ Effect on Schedulers 30

7 Conclusion 33
7.1 Project Outcomes and Critical Evaluation 34

iv

7.2 Future Work . 35

Bibliography 36

v

Chapter 1

Introduction

One of the most common applications of computing is simulation, dating back to uses
in mathematics and physics since the 1940s [7]. It has become such a prolific and
widespread tool because it enables the experimentation, examining, and understanding
of complex systems in a manner which is quicker, more flexible, and more easily repro-
ducible than equivalent real-world experiments. In many cases we can use simulation
to examine scenarios which are too expensive, dangerous, or outright infeasible to try
in reality.

The caveat to a successful simulation is developing a sufficiently detailed model for
the phenomenon being studied. If an under-simplified model is used then the observed
results may not be accurate to the real world. For instance, if studying the firing of a
neuron, a simple voltage and resistance model may suffice (see Leaky integrate-and-
fire [1], dating back to 1907!), but such a model would be insufficient for studying ionic
current across the neuron (see Hodgkin–Huxley model [11], 1952). Using a model with
an insufficient level of detail is one of the most common pitfalls of simulation [27].

This thesis concerns simulation within the discipline of Business Process Management
(BPM). BPM includes various activities such as modeling, measurement, optimisation,
discovery, and automation of operational business processes in support of enterprise
goals [28, 19]. Business Process Simulation (BPS) is a powerful tool within BPM, and
can used by BPM professionals for analysis and optimisation of business workflows.
BPS is versatile, it can be leveraged to gain insight into existing operations by mirroring
how a process works in reality to identify bottlenecks and make predictions, or it can
be used for guidance, support in decision making, and evaluating possible “What-if”
scenarios.

As with other types of simulation, the quality of the model used for BPS has a large
impact on the result. It is paramount that BPM professionals can sufficiently express
various requirements and constraints involved in business processes to study their impact
in detail. Unfortunately many of the existing BPS tools have a simplified approach to
modelling various constraints, and lack the ability to express many necessary details
of real business processes. The literature, too, tends to focus on specific aspects of
simulation such as workflow patterns, and does not place enough consideration into the

1

Chapter 1. Introduction 2

importance of resource constraints and scheduling choices.

The current project identifies and demonstrates the importance of resource constraints
in business processes simulation, and shows the underappreciated impact of scheduling
strategy on simulations when introducing additional resource requirements. The project
creates a framework used for evaluating scheduling methods, and builds on a powerful
simulator, Proter [23], to implement new resource constraints into an existing system
and evaluate their impact on schedule strategies.

1.1 Motivation

BPS is a powerful technique that can be used to gain insight into an existing or proposed
business processes. By defining a workflow, consisting of some ordering of tasks which
require some time and resources to complete, we can extrapolate into the future to study
the how the process performs: Studying how the workflow could be executed in practice
given limited resources, or the organisation’s capacity to deal with such workflows. To
be effective, we need for this workflow to reflect the real world as accurately as possible.
The level of realism and abstraction available to us will directly influence the accuracy
of the model and the quality of our simulation results.

Prioritisation is one aspect which is overlooked by most business process simulators,
but it is a core feature of our simulator, Proter [23]. In reality we tend to assign priorities
to tasks, even if this is sometimes implicit. For example if a VIP client walks into your
store then you might try to serve them as soon as possible, potentially ahead of others.
As a surgeon, if you know that a patient in critical condition will arrive on an ambulance
in half an hour, you would not start a new operation that will take 3 hours to complete,
but instead, to avoid downtime, you might take a few minutes to check on your other
patients. This is what Proter does, instead of a greedy approach where as many tasks
are started here-and-now, it puts the higher-priority tasks first and ensures these are not
delayed in favour of lower-priority ones.

Proter’s support for priorities gives users an additional degree of freedom to express
how their process works and how it should be simulated. This can be leveraged to create
workflows which are closer to the real world, and we hope to make Proter accessible for
BPM professionals and researchers so that they can effectively utilise priorities in their
simulations.

In a similar vein to priorities, the resource perspective is another commonly overlooked
aspect of BPS. The way in which various BPS tools let users define resource require-
ments tends to be basic and limiting, preventing the creation of workflows which reflect
the constraints of their real-world counterparts. For instance, if we consider a surgeon
as the resource required to complete a surgery, we may want to express that we have
a pool of surgeons available, and we can choose any one of them for the job. What if
the surgeons are on a rota, and they are not all available at any given time? Or what if
we require two surgeons simultaneously for some surgeries, but not others? Even such
basic constraints on the workflow are not supported by the majority of BPS tools, which
prevents BPS studies from accurately reflecting business processes.

Chapter 1. Introduction 3

This project aims to identify resource constraints which are relevant for business process
simulation, and begin supporting some of these within Proter, enabling researchers
and BPM professionals to create more accurate models. In supporting more resource
constraints, the choice of scheduling strategy becomes increasingly less trivial, so
researchers also need a way of choosing a scheduling strategy by evaluating relative
performance. This is made difficult by the lack of any sizable business process datasets
in this field of research (a problem discovered during previous work in part 1 of this
project). Many BPS tools support completely different sets of features, and even within
a single tool such as Proter, adding new features such as a new resource constraint
would make any previous existing datasets insufficient. To resolve this problem, the
project designs and deploys a pipeline for extensive evaluation of schedulers in a way
which does not rely on large existing datasets.

1.2 Previous work carried out

In the previous part of this honours project I worked to identify key criteria for business
process simulators according to existing literature. There is no standard set of such
requirements, so in the project I proposed the identified list as a standard against
which we could evaluate all BPS tools. This list also revealed a number of essential
capabilities missing in Proter, most notable were support for arrival rates and business
process modelling notation (BPMN), which were then implemented. With the newly
identified criteria I conducted an evaluation of some popular BPS tools alongside Proter,
and discussed relevant differences in how these tools performed on a small handmade
set of example workflows.

That work revealed many shortcomings related to the “Resource Perspective” of BPS
tools and noted the misleading terminology used to talk about resource constraints,
inspiring the work in this second part of the honours project. In implementing aspects
of the resource perspective I continue to bring Proter closer to the “Gold Standard”
proposed by my original list of key criteria, and in so doing I discover and discuss
the difficulties associated with supporting a growing number of resource constraints,
particularly related the impact of scheduling strategy on the simulation. The various
resource constraints identified in this thesis can also be viewed as an extension to the
original list of criteria.

1.3 Methodology

First this project collects a set of resource constraints which are important to BPS, based
on features supported by other simulators and discussion surrounding the resource
perspective in BPS literature. The resource constraint definitions in the literature are
sometimes vague and contradictory, so the project aims to provide clear definitions and
a coherent motivation for every point.

Some of the identified resource constraints are then implemented in Proter. This has the
goal of enabling more intricate simulations in Proter which are better at reflecting real
world scenarios.

Chapter 1. Introduction 4

In implementing resource constraints we also need to update the schedulers in Proter
to work with the new features. This introduces the growing concern that more and
more autonomy is being placed on the scheduling strategy to make important decisions
about how the workflow is simulated. As such, the decision regarding which strategy
to use in a simulation becomes more important, but evaluating the impact of various
scheduling strategies is tricky because there are no real simulation model datasets in
this field - a problem we also encountered last year in part 1 of the project. In this
thesis we introduce an alternative framework for carrying out such evaluations using
random workflow generation, and this approach is used to evaluate the differences
between baseline schedulers available in Proter as well as the impact of introducing
more complexity into the model on the simulation results.

1.4 Project Goals

In summary of the above, the goals of this project are to:

1. Identify and motivate a set of resource constraints relevant to BPS (Chapter 3).

2. Extend the Proter simulator by implementing support for additional resource
constraints and extend existing scheduling strategies to support these constraints
(Chapter 4).

3. Define and implement a scalable framework for evaluating simulation metrics
within Proter (Chapter 5).

4. Evaluate the effect of different scheduling strategies before and after implement-
ing additional resource constraints (Chapter 6).

Chapter 2

Background

This chapter serves as a very brief introduction to some of the relevant background for
this project, including business process simulation, some information about the Proter
simulator, and the wider context of some constraints (particularly resource constraints)
found in closely related and widely studied scheduling problems.

2.1 Business Process Simulation

Business Process Management (BPM) is a discipline which includes various activities
such as modeling, discovery, automation, measurement, and optimisation of operational
business processes in support of enterprise goals [28, 19]. There exists a number of
BPM tools and software to support such activities, but BPM is fundamentally a set of
methodologies for managing and transforming business operations while the software
is considered auxiliary [10]. One method which is particularly useful in this field is
Business Process Simulation (BPS): BPS can enable BPM professionals to analyse
and optimise business workflows by simulating many potential scenarios for “Whatif”
analysis, in support of decision making, to identify bottlenecks in a system, or for
prediction, making it a very versatile and useful technique.

BPS refers to discrete event simulation of business processes within the field of BPM.
In BPS we are interested in simulating workflows which consist of tasks that take some
time to complete and potentially require the use of certain resources. The advantage
of BPS over alternatives such as Markov Chains is that it tends to be flexible, easy to
understand, and capable of answering a wide variety of questions [27].

In BPS we typically have a workflow which we want to simulate. A workflow consists
of a number tasks which are linked together to describe the order in which they should
be executed. Tasks usually have additional properties such as duration and cost. It is
common for BPS tools to use Business Process Modeling Notation (BPMN) [17]
diagrams to describe the order of tasks. Additionally, the simulation environment usually
has a number of resources. Depending on the BPS tool, resources might have capacities,
availability schedules, or other features which comprise the “Resource Perspective”.
Tasks typically require one or more resources before they can be run, and a resource is

5

Chapter 2. Background 6

assigned to a particular task for the duration of that task.

A possible example of this kind of BPS workflow is a surgery: The surgery itself is the
task that needs to be carried out, it will require some duration of time to be completed.
It also requires a surgeon, which is a resource in this environment. After this surgery is
complete, the surgeon becomes free again and can be assigned to another task.

2.2 BPS Tools

This section is partially a review of previous work where we evaluated a number of BPS
tools against Proter. The features found in BPS tools are also relevant to this project
because they provide an insight into how resources tend to be implemented.

There exists a wide selection of BPS tools, with varying capabilities and target users. A
BPS tool is usually based on a modeling notation like Petri nets or BPMN. BPM tools
are of particular relevance in this project, but some popular “general purpose” process
simulation tools have also been considered here.

In the literature, the term “general purpose simulator” tends to refer specifically to CPN
Tools [14] and Arena [15], a term seemingly used distinguish them as tools made for
use in many disciplines outside of BPM, and as such they do not use BPMN. CPN Tools
is a general purpose coloured Petri net [13] framework with simulation functionality
and Arena [2] is a discrete event simulator which uses its own modelling language.
Both are widely acknowledged as being strong simulation tools with good modeling
and simulation functionality, but are sometimes critiqued as being hard to model with
and “profound knowledge” of their modelling solution [12]. For this reason the more
familiar BPMN-based BPS simulators are often preferred for BPM applications [22].

There exist many BPS tools. Some of the most known tools include Adonis [9],
BIMP [18], Bizagi [4], Bonita [6], and Visual Paradigm [16]. The tools listed here,
like most BPM simulation tools, are BPMN-based. There are many differences in
the capabilities of these tools [21, 22], but in general they tend to lack some of the
features of the general purpose simulators, such as replications and built-in support
for confidence intervals. The biggest advantage that these tools have over the general
purpose tools like Arena and CPN is that they are easier to use and do not require
“profound knowledge”[12] since they use BPMN. Unfortunately many of these tools are
not open-source and do not have free versions, making them inaccessible for research
and comparative evaluation. The common pattern is that these tools tend to originate as
BPM tools which are extended with simulation capabilities, as opposed being purpose-
made simulators [21], and this can result in poorer support for criteria like replications
or resource roles.

We used some of these tools in past work to compare against Proter. One noteworthy
observation is that all these tools, to our knowledge, only use a greedy first-come first-
served strategy for scheduling tasks. This means that tasks always get started as soon as
they can given various constraints such as limited resources. Because the approach is
greedy, it is sometimes possible for a particular workflow to have a better solution (one
that completes quicker) had the tasks been scheduled in a better order.

Chapter 2. Background 7

2.3 Proter

Proter is a powerful tool for discrete event simulation, with novel features that allow
a more realistic simulation of business processes. Unlike other simulators, Proter is
centered about the importance of priorities in simulation. In the real world activities
have varying priorities which may be explicit or implicit. For instance, if a manufacturer
receives a large and expensive order, it is likely that this order would be prioritised
such that it is handled smoothly and in good time, even though at a surface level
the activities might appear to be identical to those related to lower-priority orders.
Prioritised scheduling of tasks is at the core of Proter, enabling the modelling and
simulation of such prioritised workflows, resulting in simulations which more closely
match the real world.

In addition to this, Proter supports opportunistic ad-hoc scheduling which enable
workflows to change dynamically during the course of the simulation. This can be
leveraged to change the course of a workflow in reaction to events like delays, or to
model random rare occurrences such as breakdowns.

The Proter simulator was originally created as part of the WorkflowFM platform. Work-
flowFM is a logic-based framework for formal process modelling and composition [20],
and it consists of many subsystems ranging from the workflow modelling tool to a
business process management dashboard.

In past work [3], we identified a set of important BPS criteria, expanded upon Proter
to ensure that it supports the most essential of these simulation capabilities such as
arrival processes and BPMN support, and evaluated Proter alongside existing tools to
show it is equally capable in terms of these standard features, and also to highlight that
many of the existing tools support vastly different features for modelling and simulating
workflows. It became apparent that the way in which resources are handled varies
wildly between BPS tools, and also that there is room for improvement within Proter to
allow richer expression of the resource perspective. By improving how resources can be
expressed and handled within a simulation it will be possible to simulate more nuanced
and intricate workflows, but making such changes while still adhering to Proter’s central
pillar of prioritised task scheduling makes this a novel and challenging problem.

An important part of Proter is how it schedules tasks. Just because a task is able to start
in a workflow does not mean it can actually be started, for instance if two tasks are
both waiting to begin but they both need to share the same resource. The scheduler is a
component of the Proter architecture which makes decisions about which tasks can start
next. Since the scheduler has the power to make decisions about what tasks should start
and which ones should be delayed to be handled later, there are actually many possible
strategies that can be used.

In Proter by default there are 6 possible scheduling strategies that can be used:

1. The standard one is the “Proter” scheduler, which looks at the priority of a task
to decide when it begins. If starting a low-priority task right now would result
in delaying a higher-priority task, the Proter scheduler will instead choose to
postpone starting this low-priority task until later.

Chapter 2. Background 8

2. The “Lookahead” scheduler works similar to the Proter scheduler, but it addi-
tionally tries to look ahead into the future to see what tasks will arrive when the
currently ongoing tasks finish, and then recursively checks the tasks after that
until it reaches the end of the workflow.

3. The “GreedyFCFS” strategy starts all tasks whose resources are currently idle, in
order of arrival in the queue. It ignores priorities.

4. The “StrictFCFS” strategy is similar to the above, but it forces tasks to execute
strictly in the order of arrival. This means it will reserve resources for tasks which
are at the front of the queue, and tasks at the back might be blocked from starting
even if their resources are free.

5. The “GreedyPriority” scheduler starts all tasks whose resources are currently idle,
in order of priority.

6. And lastly the “StrictPriority” scheduler, which is again similar to GreedyPriority
but it guarantees that tasks will be started in order of priority. A lower-priority
task might be blocked from starting even when all its required resources are free,
because the resources might be being held for a higher-priority task.

The StrictPriority strategy may seem similar to the Proter scheduler, but the difference
is that Proter maintains a timetable for each resource and is capable of identifying if
there are windows of time where a low-priority task can run without disturbing any
high-priority tasks. StrictPriority will always block lower-priority tasks if it knows a
high priority task is coming up, but Proter might start the lower-priority task anyway,
knowing that it will finish in time before the high priority task is ready to start.

2.4 Scheduling Problems

The challenge of simulating sequences of tasks with various resource requirements
can be likened to a variety of scheduling problems, some of which have been studied
for over half a century. Different scheduling problems employ various constraints
and assumptions about the permissible sequences of tasks and resource assignments,
but they usually have the goal of finding an optimal sequence of tasks given various
constraints which minimises the makespan of the sequence.

Below we discuss two of the scheduling problems which are most similar to the
scheduling problem faced in BPS.

2.4.1 Job Shop Scheduling

The job shop scheduling problem is one of the oldest scheduling problems that is
applicable in business process simulation.

This problem consists of a set of M different machines that perform operations on a job,
and a set of N jobs that needs to be processed through the machines. Each job consist of
a set of operations which need to be processed on a specific machine and in a specific
order, which takes some processing time.

Chapter 2. Background 9

Job shop scheduling has many related variants, such as Flow Shop Scheduling which
restricts each operation in a job to being executed in a specific order and on a spe-
cific machine, or Open Shop Scheduling in which the order of operations in a job is
unconstrained and so operations can be completed in any arbitrary order.

This scheduling problem is closey related to business process simulation. It provides a
solid foundation for reasoning about scheduling tasks which require resources, making
it a good starting point for BPS, but it is insufficient for expressing certain resource
features. For example machines are dedicated, meaning one operation occupies an entire
machine all to itself, making it unavailable to be used by other operations, whereas in
BPS it is often desirable to express machine capacities, or the available quantity of a
resource (for instance if there are 4 identical laser cutters in a workshop and any of the
4 machines can be used for the task). To this end there exist extensions of the problem
such as Flexible Job Shop Scheduling, which allows an operation to be processed by
any machine from a given set, but this extension still has limiting restrictions, most
notably that a task only uses one resource.

2.4.2 Resource Constrained Project Scheduling Problem

More recently the Resource-Constrained Project Scheduling Problem (RCPSP) has
become a popular alternative problem definition to the Job Shop Scheduling family,
which alleviates the resource limitations described above. The mathematical model for
the RCPSP was first formalized in 1969 by Pritsker et al. [25], but the standard unified
notation used today was introduced 30 years later by Bucker et al. [8]. The standard
RCPSP belongs to a class of strongly NP-hard problems, as shown by Blazewicz et
al. [5].

In its basic form the problem consists of a set of J activities, 1, ...,J, each with a
processing time p j. An activity cannot be interrupted once started, and additionally
constraints can be placed on the order in which activities must be carried out using
precedence constraints. This is commonly given as a set of immediate predecessors
of a task which must be completed before the next task can be started. Alternatively a
graph can be used, where single precedence constraints are denoted by as edges. This
activity-on-node network is assumed to be acyclic.

There is a set of K renewable resources, each one with an availability Rk per time period.
Renewable means that the same specified number of units of a resource are available
at every time period before being divided among activities. Each activity may require
some number of various resources to be completed, and for the entire duration pi of an
activity i, all the required units of resource k must be allocated to i.

The objective of this problem is to minimise the makespan by finding a sequence of
start times of activities that leads to the earliest possible completion of the project which
satisfies all of the above constraints.

There exists a wide variety of approaches to finding solutions for the RCPSP, includ-
ing stochastic methods such as markov chains, numerical methods such as dynamic
planning, and most prominently in recent years we see a number of meta-heuristic

Chapter 2. Background 10

approaches including artificial immune systems, ant colony optimisation, and genetic
algorithms which remain the de-facto approach for finding optimal solutions.

The downside of methods such as genetic algorithms is that they are slow and require
many hours of processing time to evaluate hundreds of generations of genomes in search
of the optimum answer. This is problematic for BPS use-cases, especially in tools such
as Proter in which quick ad-hoc simulation is desirable, and where it is common to
make changes to the model and re-simulate for purposes such as live decision support,
or in use cases where the simulation is frequently updated to reflect the state of a real
system in order to provide a simulated preview of the upcoming minutes or hours of
an environment. In such cases we need faster solutions which complete in a matter of
seconds, potentially delivering ”good enough” solutions as opposed to optimal results.

A further problem with using RCPSP approaches in simulation is that it assumes
absolute knowledge of the entire workflow from the get-go. In reality future tasks
are not always certain, and with tools such as Proter the ad-hoc nature of simulated
workflows means that everything could change as a result of a delay or malfunction.
In a standard RCPSP solution, such unexpected events would require that the entire
schedule is re-calculated, which again may take a very long time.

As with the Job Shop Scheduling problem, the RCPSP provides a good baseline for
reasoning about the structure of tasks and resources in BPS, but this problem does
not entirely match the goals of simulators such as Proter, and does not express all
aspects of the resource perspective in which we are interested. There is an improvement
in expressive power when compared to Job Shop Scheduling in that it can express
multi-resource requirements with renewable resource capacities, but there is still no way
to express resource roles or availability of resources. The next chapter delves further
into BPS literature to identify a list of relevant resource constraints which are desirable
for creating accurate and descriptive workflows.

Chapter 3

The Resource Perspective of BPS

As discussed in the previous, there are a variety of BPS tools available for general use,
but these tend to support vastly different capabilities for modeling and simulation. The
resource perspective, which encapsulates a number of features relating to how resource
constraints can be expressed with the given tools, is an area which is particularly lacking
in most tools, and an aspect of simulation which is frequently overlooked [27]. The
existing literature surrounding the resource perspective is also sparse, but we can turn
to closely related fields such as job shop scheduling for help in defining standard
resource constraints. This chapter aims to define and motivate a list of relevant resource
constraints which are beneficial to BPS.

3.1 Resources in BPS

As defined in Chapter 2, a workflow consists of a number of tasks, where each task
might require one or more resources to complete. A resource may be anything ranging
from a tool or machine required to complete the task, to a human actor (for instance a
qualified operator of the machine). Unfortunately, the way in which these resources can
be expressed within existing tools tends to be limited.

Through existing literature we can evaluate the resource perspective supported in
existing BPS tools. There is no consensus within the literature on which resource
constraints should be evaluated, and to our knowledge only a handful of reviews exist
which even consider resources, but these provide a good starting point.

The first review, by M.H. Jansen-Vullers and M. Netjes [12], is largely focused on
evaluating the usability of tools and the way in which they present results, for instance
a focus on simulation replays and animations. There is relatively little regarding
evaluation of the tools’ technical capabilities. Regarding resources, the paper states “the
process model should include the resource and data perspective”, without going into
detail about what this means.

Peters et al. [22] surveys a number of BPS tools as part of their work on a prototype. This
work is very useful and has a detailed breakdown of some of the most common resource
constraints, namely Capacities, Roles, Schedules, Cost of Usage, and Multiple Roles.

11

Chapter 3. The Resource Perspective of BPS 12

They also define a set of advanced constructs which offer an interesting perspective into
the way resources are utilised in simulations, but these seem to be chosen specifically
to bolster their prototype, and they remain as the focus for the rest of the paper.

The terminology used for some resource constraints by Peters et al. can be misleading
and conflicts with our own definitions which are listed at the end of the chapter. Specifi-
cally Roles and Multiple Roles need to be defined in more detail: In this survey Roles
refer purely to the fact that distinct classes of resource exist, in other words that the
simulation has more than one type of resource and that a task can specify exactly which
type of resource it needs. It is strange to have this distinction, because a tool which does
not implement roles would essentially not support resources at all, so for this reason we
believe it is clearer to simply refer to this construct as “Resource” instead of “Role”.
In combination with resource capacities, we can view a Role as a bucket, where the
capacity described the number of resources in each bucket, and when a task requests a
specific Role then a single resource is removed from the bucket for the entire duration
of the task, similar to the RCPSP which we defined in Chapter 2. The “Multiple Roles”
category refers simply to the fact that a task can request two or more different resources,
instead of being limited to just one. For instance, this feature would enable a task to
require both a machine resource from the pool of machines, and a worker resource from
the pool of workers to operate the machine. For clarity, this thesis will instead refer to
these resource constructs as Single-Resource and Multi-Resource assignment, and the
term “Roles” is reserved for a different concept.

The final survey we review here, by J.L. Pereira and A.P. Freita [21], also has relevant
section on the resource perspective. It includes categories for Capacity, Allocation Plan,
Unavailability, and Schedule. Unfortunately these categories hardly explained, and are
not cited. Capacity and Schedule categories are fairly common and consistent with
other papers, but Allocation Plan and Unavailability are hard to interpret. Unavailability
is only described with as “Definition of unavailability periods for resources”, but the
definition of Schedules in the literature is essentially identical (and the paper defines
Schedules as “Definition of work schedules for resources”), so unfortunately I am not
able to discern the difference given these definitions. In other literature such as the
Survival Guide [27], it is commonplace to define resource schedules as periods of
unavailability, for instance to model a worker which takes lunch breaks and goes home
in the evenings.

Two of the above reviews lean on the influential paper on resource patterns by Russel
et al. [26], which is concerned with identifying resource patterns in workflows and
support for these patterns within workflow systems. The identified patterns are grouped
into a number of categories, but the focus is generally on defining how tasks are assigned
to resources as opposed to how different properties of a resource might be modelled. For
instance, the paper defines “push patterns” where the system offers or allocates tasks
to be handled by each resource, versus a category such as “pull patterns” where task
allocation is resource-initiated. The paper is insightful for thinking about the resource
perspective from the angle of how allocation is handled in systems, but the target is
workflows systems rather than simulators, and so many of the allocation patterns defined
here are not applicable in this project.

Chapter 3. The Resource Perspective of BPS 13

3.2 List of Resource Constraints

Compiling the relevant features of resources from the above literature gives a more
complete perspective on resources. This set of resource constraints is shown below,
with clear definitions of each constraint. The list additionally includes some novel ideas
which to our knowledge were not present in the literature nor in any existing BPS tools,
yet describe common aspects of resources in real world scenarios. The function and
motivation for these novel items is also explained below.

• Single Resource Assignment - Tasks should be able to require a resource in
order to run, where the resource is assigned to said task for the duration of the
task. This is the most basic resource constraint, for example a surgery task which
requires a specific surgeon to be assigned to perform the surgery.

• Multi-Resource Assignment - Tasks can require multiple resources of different
types. This could be a surgery task that requires two resources: A specific surgeon,
and a specific operating room.

• Resource Capacity / Quantity - Resources have a capacity or quantity, so that
they can handle multiple tasks at the same time, for instance a single oven resource
which has room for 2 baking tasks. This has advantages over modelling the two
shelves of the oven as separate resources: We can say that our baking task just
requires any oven shelf and we don’t mind which one is used, instead needing
to commit to a specific shelf for this task when we create the workflow. With
capacities, if shelf 1 is occupied the task can resort to using shelf 2; Without
capacities, the task has to wait for shelf 1 to become free, which is wasteful.

• Multi-Capacity Assignment - Resources have a capacity or quantity, and tasks
can require more than one unit of a resource. This builds on from the previous
point, enabling tasks to request multiple capacity slots from a resource, such as
a single baking task which is allowed to use both shelves of the oven resource
simultaneously.

• Resource Schedules - Resources can become unavailable at certain times, at
which point they cannot be used to complete tasks. This also comes with the
question of what happens to tasks when a resource becomes unavailable - can
tasks be interrupted, can they be restarted or are they continued once the resource
becomes available? This constraint can model a worker’s shifts, or routine
downtime of a machine.

• Resource Efficiency - Depending on the choice of resource, a different amount
of time may be needed to complete the task, for instance one surgeon which is
experienced and performs the surgery much faster than another surgeon.

• Variable Resource Efficiency - Resources that can become more or less produc-
tive based on any number of factors such as time of day, remaining capacity, or
uptime, for instance a worker which becomes tired and less productive over the
course of the day.

• Resource Roles - Instead of requiring a specific resource, tasks require a certain

Chapter 3. The Resource Perspective of BPS 14

role to be completed, and multiple resources can fulfill the same role. For example,
we could have a surgery which requires a surgeon resource, but there are multiple
doctors that can fulfill the surgeon role and the system can choose any one of them.
On the surface this might seem similar to having a single “Surgeons” resource
which has a capacity of n surgeons, but this is different because the surgeons are
unique: They can have different efficiency or availability from one another.

• Multiple Roles per Resource - Resources can implement any combination of the
existing roles, for instance a scenario where one medical practitioner can serve
as a surgeon or as a GP, while another can only do the GP role. In combination
with previous points such as variable efficiency and resource schedules, it could
become hard to choose which resource to use for a given task, for instance one
strategy could be greedy while another could try to keep the resources that fulfill
rarer roles free, like making sure the only person with the surgeon role is always
available to perform an emergency surgery.

Note that some of the above points have overlapping criteria. For example, in a
system which supports variable resource efficiency, resource efficiency also needs to
be supported, because the prior builds on top of the latter feature. If a system supports
resource roles but not multiple resource roles, then such a system is equivalent to one
which only supports resource capacity: Instead of defining a resource with N capacity,
we can define N resources which each fulfill the same role R, such that when role R is
required by a task then there are N resources to choose from. This breaks down if we
consider roles to be discrete but allow capacities to be continuous, for instance we can
have a system which allows a resource to have 2.5 capacity.

Various BPS tools support different mixtures of the above capabilities, but to our
knowledge features such as multiple resource roles are novel and are unsupported by
any existing solution.

One reason why tools tend to only support a subset of this resource perspective is
that scheduling becomes more difficult as more elements are introduced. Scheduling
a task is simple when you only support single resource assignment - if the specific
resource required by that task is available then you can start the task, if not you need to
wait. Resource capacities are only slightly more difficult, just check if enough of that

Criteria Job Shop RCPSP Bonita BIMP Proter

Single Resource Assignment + + + + +
Multi-Resource Assignment - + + - +

Resource Capacity + + + + -
Multi-Capacity Assignment - + + - -

Resource Schedules - - - + -
Resource Efficiency - - - - -

Variable Resource Efficiency - - - - -
Resource Roles - - - - -

Multiple Roles per Resource - - - - -

Table 3.1: Resource perspective support across existing problems and tools

Chapter 3. The Resource Perspective of BPS 15

resource quantity is available and if so you can start the task. It is harder to schedule
tasks optimally if you need to make a choice about which resource to use when they
have different efficiencies, and harder still when resources have multiple roles: For
instance suppose resource 1 can do roles A and B, and resource 2 can only do role A;
If a task arrives which needs role A and you assign it to use resource 1, then another
task arriving which requires role B will need to be delayed. Maybe resource 1 is more
efficient though, and it is better to use it despite the delay? What if the second task only
has a 50% chance of arriving?

Table 3.1 summarizes this resource perspective landscape by indicating what aspects
are supported by the previously discussed scheduling problems, as well as showing
what is supported by some existing BPS tools. Note that for the scheduling problems
there tend to exist various extensions that support some additional resource criteria, but
for simplicity only the standard general version is shown.

Chapter 4

Implementation of Resource
Constraints

To enrich the simulations that are possible in Proter, this project originally aimed to
implement as many of the resource constraints as possible out of the list outlined in
Chapter 3. This list is already roughly in order of importance- the topmost features
being those that are commonly discussed in literature and widespread among other BPS
tools, while the bottom features were completely novel to our knowledge. As explained
in Chapter 3, Proter already supported Single- and Multi-Resource assignment before
this project, which means that tasks in Proter can express the need to be assigned to
one or more resources in order to be executed. The next order of business was to add
capacity to resources, and then multi-capacity assignment to tasks, which would enable
a single task to not only request multiple resources but also a custom amount of capacity
in each resource.

This project didn’t implement further resource constraints beyond these two capacity-
related points due to various challenges that arose in implementing these features and
supporting them in an existing codebase, such as updating the various scheduling
strategies in Proter to support the new resource system. A portion of the limited time
and bandwidth for this project also had to be allocated to implementing code related to
the evaluation framework, which is also discussed in the next chapter.

To implement capacity-related criteria this project introduced “Weighted Schedules”
into Proter, and updated the functionality of the various schedulers to use these new
weighted schedules. The design and implementation of this solution is detailed in the
following sections.

4.1 Schedules

The Scheduler is an object within Proter which is used to run a simulation. This is a
core part of the architecture that existed prior to this project, and it is relevant to the new
features implemented in the next section. Whenever a simulation starts, or when some
task finishes, the Scheduler is used to determine which new tasks are allowed to begin.

16

Chapter 4. Implementation of Resource Constraints 17

Figure 4.1: Example of a simple schedule in Proter

For instance, consider the example schedule illustrated in Figure 4.1. This schedule is
the result of simulating a workflow consisting of three tasks, where tasks 1, 2, and 3
are all allowed to run in parallel. The figure shows how these tasks all require different
resources, and task 3 even requires two resources simultaneously, visualised using an
are which spans multiple resource lanes in the schedule.

Consider what would happen at time t = 2 during the simulation in this example: Task
2 just finished, so the scheduler is consulted about what new tasks are allowed to begin.
Task 3 is the only task waiting to start. The scheduler will check if task 3 is allowed to
begin by checking if all the resources needed for task 3 are available. It will discover
that resource r1 is occupied, because r1 is still assigned to task 1 at this time, so the
scheduler concludes that task 3 cannot begin yet. It returns an empty list of tasks. The
scheduler will be queried yet again when task 1 completes at time t = 3, at which point
it will find that all the resources needed for task3 are finally free, so task 3 will starts.

The system for checking if a resource is free or occupied is called the schedule in Proter.
Before this project every single resource was assigned a schedule by the Scheduler.
The schedule for a resource is simply a list of intervals during which this resource is
occupied. Consider the example:

{[0,2], [3,6]}

This schedule represents two busy periods for a resource: This resource is busy from
time t = 0 to t = 2, then it’s unoccupied from t = 2 to t = 3 , and then becomes occupied
again until t = 6. This schedule would correspond to resource t2 in Figure 4.1.

This system is important in Proter, because it has advantages over a simple greedy
method which does not make a schedule. In the greedy approach, we might be tempted
to simply assign a Boolean value to each resource to express if it is busy right now. This
does not work when we introduce priorities, a core feature of Proter. If we know that
a high priority task is coming up in the future, we don’t want to delay it with a lower
priority task. For this reason, we need to schedule the high-priority task ahead of time,
which is done using schedules.

Schedules are flexible because they still allow low-priority tasks to start, so long as they
don’t interfere with the high-priority tasks which were scheduled before them. In the
ongoing example from Figure 4.1, consider what might happen if we introduce task 4
which has low priority and starts during the small gap in the schedule of r2, as soon as
task 2 ends.

There are a few options for how things might progress, some of which are shown in
Figure 4.2. The greedy approach, without schedules, would give the result on the left,

Chapter 4. Implementation of Resource Constraints 18

Figure 4.2: Two possible simulation schedules when task 4 is introduced

where task 4 is started as soon as the opportunity arises. This happens because the
resource it required was free at the time, but it results in delaying task 3 by one time
unit. Now, with schedules, the high-priority task 3 is already scheduled to start, and
the gap at time t = 2 is not big enough for task 4, which is why it is scheduled at the
end instead, at t = 6. There is a third option, not illustrated, which would happen if
task 4 was even shorter than in the previous example. If it’s short enough to fit in the
gap at t = 2, it would be assigned to that spot at t = 2. In this case the scheduler would
check the schedule of r2 against the expected duration of task 4 to discover that there is
enough space remaining to deal with task 4 without offsetting task 3.

This scheduling system is what had to be modified to support capacity-related con-
straints. The existing schedules are binary; a resource is either completely occupied or
completely free. Instead, as part of resource capacities, we need to quantify “how busy”
a resource is. Weighted schedules were introduced to solve this problem.

4.2 Weighted Schedules

Now, in this project, we want resources have a capacity. This means that some resource
r with capacity n is not just completely busy or completely free. There might also
exists periods of time during which only part of the capacity, m, is being used, where
0 < m < n. This project implements Weighted Schedules, which elegantly solve the
problem by building on the ideas of regular (“binary”) Proter schedules through the
addition of a third value which represents how much of the capacity of a resource
happens to be used during each time period.

Weighted schedules are a set of intervals with “weights”: WSr = {(s,e,w)}. Each
interval is a 3-tuple: s and e are the start and end times of the interval, and w is the
weight representing how busy the resource r is during this interval of time. For instance
consider the following example weighted schedule which is also visualised in Figure 4.3,
where the height of a bar represents how busy the resource is at that time:

{[1,3,2], [3,5,1], [5,8,3]}

Weighted schedules like this can easily be converted into the original binary schedules
during task scheduling. To determine if a task is allowed to start we can take the
schedule of each resource along with the max capacity of this resource and the capacity
required by the task. For instance if the resource shown in the weighted schedule above
and in Figure 4.3 has a max capacity of 3, and we have a task which requires 1 capacity
from this resource, then this resource has enough space for the task during times where
2 or less capacity is being used. This is shown with the red line: During intervals where

Chapter 4. Implementation of Resource Constraints 19

Figure 4.3: Weighted Schedule visualisation

the resource usage is above the line, the resource is too full for our task. Converting this
example into a binary schedule will give the following interval, just by checking all the
weighted intervals and only keeping the ones that are too full:

{[5,8]}

From here the original method of scheduling can continue by finding a window of space
in the binary schedule which is long enough given the expected duration of the task.

There were some technical challenges during this implementation involving merging
of multiple intervals. If two intervals are next to each other and they have the same
weight, they need to be merged into one. For instance {[1,2,1], [2,3,1]} is the same
as {[1,3,1]}. This gets challenging when we need to add a new interval to an existing
schedule, because intervals can also overlap in which case we need to add the weights.
Consider the expected behaviour for the previous example in Figure 4.3 when we try to
add a new interval such as [3,6,1]:

{[1,3,2], [3,5,1], [5,8,3]}+[3,6,1]⇒{[1,5,2], [5,6,4], [6,8,3]}

As you can see, all the old intervals were affected by the new addition. The first interval,
[1,3,2], didn’t overlap with the new interval, but after the addition it was neighbouring
another interval which has the same weight, so these needed to be merged. The middle
interval, [3,5,1], completely overlaps with the newly added interval, so at first the
weights of the two are combined giving [3,5,2], but this is then merged with [1,3,2]
as mentioned previously. The final interval, [5,8,3], partially overlaps with the new
addition, so it was split into two new intervals.

There exist other minor complications and edge cases along these lines when it comes
to adding and merging intervals in weighted schedules. Unit tests were carefully made
for all possible examples and the implementation had to be re-visited a number of times
before everything worked.

4.3 Tasks, Resources, and Schedulers

Weighted schedules were the core solution for adding capacity constraints to Proter, but
all the surrounding elements also had to be updated.

The Proter Scheduler, described in Section 4.1, is not the only scheduling method in
Proter. Other prioritised and greedy methods are also supported, which we evaluate in

Chapter 4. Implementation of Resource Constraints 20

Figure 4.4: Two possible simulation schedules with capacity

more detail later in Chapter 6, and all of which had to be updated to work with weighted
schedules and other changes related to the task and resource classes in Proter.

To support the Resource Capacity constraint, the resource class was updated. Since
resources now have a capacity, multiple tasks can be assigned to a single resource at
any one time, so methods related to scheduling and data structures related to storing
allocated tasks had to be updated or expanded while remaining backwards-compatible.

To support Multi-Capacity Assignment, the task class also had to be updated to express
required capacity for every one of the resources requested, while again maintaining
backwards-compatibility.

Having implemented all of these changes, the Resource Capacity and Multi-Capacity
Assignment constraints are now fully supported. This lets the user simulate workflows
which were not previously possible. Consider the example with 3 parallel tasks in-
troduced in Figure 4.1, but now using capacities we say each resource actually has 2
capacity instead. The timeline on the left of Figure 4.4 shows the result: With this
change there’s enough capacity for task 3 to start alongside tasks 1 and 2, and we don’t
need to wait to start task 3 like before. Now let’s say that task 3 requires only 1 capacity
from resource r1 just as before, but also 2 capacity from r2 instead of just 1. The right
timeline in Figure 4.4 shows what happens: There’s not enough capacity in r2 while
task 2 is running, but as soon as it finishes task 3 can begin. Meanwhile r1 still has
enough capacity to support tasks 1 and 3 simultaneously.

Implementing capacities was hard because they need to exist alongside other constraints
available in Proter, such as priorities and multi-resource assignment. As more and
more resource constraints are added to a system, they become harder to implement
due to the different ways in which these constraints can interact. Another effect is that
scheduling becomes less trivial as new constraints are added. For instance if we didn’t
have priorities then a greedy approach to scheduling might give the best result, but
with priorities the Scheduler has to make a choice: should a low-priority task start now,
risking delaying a high-priority task, or should it be delayed until later? New constraints
might force the Scheduler to decide between high or low-efficiency resources, or to
consider limited availability of a resource.

When choice of scheduling strategy becomes less trivial, it necessitates the ability for
BPM professionals to evaluate various strategies in order to pick the best one. The next
chapter discusses how this was designed and implemented in Proter.

Chapter 5

Scheduling and Evaluation Framework

As mentioned in the Introduction of this project, there is this problem that optimally
scheduling a workflow becomes less trivial when more detail is introduced into the
model. In a very simple BPS tool, if tasks can only be assigned to one resource,
scheduling is trivial: There is only one way to assign the tasks and complete the
simulation. When we add new features, for instance maybe the Scheduler can choose
which resource to use given a few options, then there could be many equally compelling
ways of scheduling a workflow.

Proter priorities already make scheduling a bit more challenging, because now there is
a potential choice about whether we want to respect priorities by delaying low-priority
tasks to start high-priority tasks as soon as possible, or if we want to be greedy and
start all tasks as soon as possible irrespective of priority. We could even prefer some
balance between these two extremes to achieve a good ratio between prioritisation and
workflow duration. This is a choice that can be made by the BPM professional based on
their requirements: They might be trying to reproduce the planning strategy used by an
organisation in the real world, or to find a strategy which maximises some set of key
performance indicators.

5.1 The Problem with Datasets

To make an informed decision about scheduling strategy we need a framework for
comparison and evaluation of different schedulers. One standard approach might be
to collect a large dataset consisting of many workflows which we can feed into the
simulator to compare how different scheduling strategies perform. The problem, as
discovered in part 1 of this honours project, is that there is no such dataset. For part 1
of the project a small set of handmade examples was put together in order to compare
a small number of simulators, but this introduced another issue: Different BPS tools
support different features, for instance only Proter supports priorities.

Making a dataset that worked across all the tools that we evaluated was hard, and in
the end a number of the handmade examples did not work in some of the simulators
because it was impossible to model them. Another issue is that such a dataset is only a

21

Chapter 5. Scheduling and Evaluation Framework 22

description of the workflow, and each workflow still has to manually implemented with
each tool.

Clearly using a dataset wouldn’t work. We need to be able to simulate and compare
performance on very large number of workflows, and even if an extremely large dataset
was created it would become obsolete as soon as a new feature is added. We could
have a dataset of hundreds of examples in Proter, but every example would need to be
updated as soon as this project added any new resource constraint.

Instead, in this Project we propose a different framework for evaluating simulator
performance, which involves programmatically generation of random workflows.

5.2 Random Workflow Generation

Instead of relying on a static set of handmade workflows, we can generate them our-
selves. This allows for thousands of workflows to be made and simulated in a matter of
seconds, solving the problem of limited examples. It also solves the problem of scalabil-
ity: If the simulator is updated with a new feature, for instance resource capacities, then
the workflow generator can also be expanded to enable the generation of workflows
which include the new feature.

To our knowledge this approach is not used in any existing BPS tool. There exist some
systems for generating random processes, for instance PLG2 [24] which creates ran-
domised BPMN diagrams, but these are not enough for simulation because our models
additionally require information about resource requirements, priorities, durations, and
so on. In this project a system for random workflow generation was implemented in
Proter to support the proposed evaluation framework. The generator enables studying
the impact of various workflow properties on the simulation, for instance how different
scheduling strategies fare as we implement new resource constraints, which is a topic
that this project explores in Chapter 6.

The method of generating a random workflow uses Proter Flows. Flows provide an
easy way to define a workflow by connecting tasks together in a binary tree structure. A
typical flow consists of tasks connected by “And” (parallelism) or “Then” (sequence)
operators, which are represented by + and > symbols respectively. As an example, Fig-
ure 5.1 shows a simple flow consisting of three tasks and the binary tree representation
of this flow. In this example, tasks A and C are allowed begin right away in parallel, but
task B can only start once A has finished.

(A > B)+C

Figure 5.1: Example flow and corresponding tree

Chapter 5. Scheduling and Evaluation Framework 23

This project added a “Random Flow Factory” object which generates these flows given
some configuration parameters. The object takes a number of probability distributions
which describe properties such as the number of tasks, how many random resources
each task uses, the duration, priority, and so on. By default Proter has support for
constant, uniform, and exponential distributions, but others can easily be defined. The
random binary tree is generated depth-first, recursively:

1. Initialise the root of the tree by specifying n, the number of tasks that this tree
needs to include. n will have been drawn from a random probability distribution
provided by the user.

2. If n = 1, this is a leaf node. Insert a random task at this point of the tree by
sampling properties of the task such as duration and priority from the variety of
provided probability distributions.

3. Otherwise, if n > 1:

(a) This is a non-leaf node, so randomly choose an operator to place here (+
or >). The ratio between + and > operators is defined by the user, so we
can roughly control how much branching vs parallelism is present in the
generated flows.

(b) n represents how many tasks still need to be placed. Split this number
randomly between the left and right children of this tree node, such that
each child receives n ≥ 1. Repeat Step 2 and 3 for each child node.

4. The random flow is complete once all n random tasks have been created and
placed in the tree.

5.3 Evaluation Framework

Random workflow generation is the core part of this proposed BPS evaluation frame-
work. Using the system outlined above researchers can generate thousands of workflows
while controlling various fine details of the workflows to target the specific research
question being evaluated. A large number statistics can be gathered and exported for
every single workflow to be analysed separately.

The general elements which should be supported by BPS tools to enable this kind of
analysis need to involve:

• A method for generating workflows given a number of parameters, such as the
Proter implementation described above.

• An API or other interface method enabling researchers to configure their exper-
iments. Some BPS tools are completely closed-off systems which were only
designed for manual human interaction. Proter allows programmatic access to all
the relevant features making it possible to define the experiment in code, although
the barrier to entry is high due to some required knowledge about the Proter
system; Improving this interface is a possible future improvement.

Chapter 5. Scheduling and Evaluation Framework 24

• A system for outputting raw data. Many BPS tools only generate PDF reports or
web-based summaries of the simulation, while the raw data is inaccessible.

In regards to the last point, Proter already had a “Metrics Handler” system which
collected all the possible simulation metrics. For this project, a new type of metrics
output handler was created which collects the metrics from many simulation runs into
a handful of CSV files. This was necessary because previous output handlers would
overwrite or make new CSV files for every simulation run, and the new handler lets all
the results from thousands of random workflow simulations be collected together.

These newly implemented Proter systems finally enable us to test one of the core
hypotheses of this project, which states that the implementation of additional resource
constraints makes scheduling more difficult and thus careful choice of scheduling
strategy becomes more important to the simulation performance. Using this framework,
the next Chapter goes on to evaluate how different schedulers perform before and after
adding the resource constraints implemented in this project.

Chapter 6

Evaluation of Scheduling Strategies

Throughout this thesis it is mentioned how the choice of strategy used for scheduling
becomes more impactful on the simulation outcome when we add more complexity. In
a very simple model, there might only be one way of possibly scheduling all the tasks,
for instance if there is only one resource and we don’t have priorities, then the single
viable approach is to simply start a task as soon as the resource is free.

This project aimed to provide a more rich and expressive variety of possible resource
constraints in Proter to allow for better simulations, but in doing so we make scheduling
more difficult. Suddenly the scheduler has more choices to make, more options to weigh.
Should tasks be delayed or started right away? Should this resource be kept available
for emergencies (such as extra high priority tasks, like a surgeon on standby for an
emergency surgery)? Which resource to choose? BPM researchers and professionals
need to be able to make an informed decision about what strategy to use, whether it be
an optimal method which maximises some key performance indicators, or a strategy
which reflects the real world organisation as closely as possible.

The evaluation framework developed in Chapter 5 equips us with the tools to tackle
these questions. Of course, the specific key performance indicators being evaluated
will vary from one study to another. In this project we aim to convince you, the reader,
that the choice of scheduling strategy has a tangible impact on simulations, especially
as we add new features to the simulator, and that the study and comparison of various
strategies requires careful consideration and is deserving of more attention in BPM
studies and literature.

To be specific, this scheduler evaluation addresses two core questions:

1. How do different scheduling strategies perform over a large variety of workflows?
This is a baseline evaluation which aims to definitively and quantitatively show
that different strategies are better for different applications. We expect that
prioritised strategies will handle priorities better than greedy methods, but that
the greedy approach will give shorter workflow durations. Prioritised methods
should be slower because they work by deliberately delaying low priority tasks.

2. How does adding new resource constraints impact schedulers? We hypothesise

25

Chapter 6. Evaluation of Scheduling Strategies 26

that more resource features result in more freedom of choice by the scheduler, so
the difference in relative scheduler performance across select key performance
indicators should increase.

6.1 Baseline Scheduler Differences

Proter currently supports 6 schedulers, which were introduced in Chapter 2. To compare
these schedulers, a few sets of results were collected by simulating 10,000 workflows
and executing each workflow with every scheduler. Some of the core metrics we are
interested in involve the makespan and “priority error” scores.

The makespan of a simulation is the length of total simulated time that it takes to
complete the workflow. It should roughly scale as the sum of task durations increase,
since it makes sense for the entire workflow to be longer if the tasks are longer. The ratio
of makespan to the sum of task durations also depends on the amount of branching and
parallelism in the workflow, because we can save time if many tasks can be executed in
parallel while respecting resource constraints, reducing makespan.

The priority error is a metric designed to measure how good a particular solution is
at respecting priorities. In a perfect simulation result, where every single task starts
as soon as it arrives and there are no delays, the priority error will be zero. Such a
perfect scenario is rarely possible, it is more likely that there are some conflicts in the
workflow resulting from limited resources, so some tasks are inevitably delayed. The
priority error is a metric which penalises delaying high-priority tasks more strongly
than low-priority tasks. The error is calculated using the formula:

PE = ∑
t

P(t)D(t)

This is a sum over all tasks, t, where P(t) ≥ 0 is the priority of t and D(t) ≥ 0 is the
amount of time that task t was delayed. A higher-priority task thigh has a greater priority
than a lower priority task, tlow: P(thigh) > P(tlow). In our experiments we even allow for
tasks to have a priority of 0, meaning we are fine with delaying such a task indefinitely.

It is expected that scheduling strategies which consider priorities should have a larger
makespan but a lower priority error. This is because, in general, in order to start a
higher-priority task sooner the scheduler needs to deliberately delay starting a lower
priority task. As a result, the total makespan tends to be higher because of the added
delays, but the higher-priority tasks are less delayed than when a greedy first-come
first-served method is used.

Four sets of workflows are compared: There is a small and large set, and each has a
version with random priorities and a version where the priorities of all tasks are equal.
10,000 examples were generated for each set.

• The small sets consist of workflows which contain anywhere between 5 and 10
tasks and 3 resources. Tasks can use anywhere between 1 and 3 resources, and
have a duration between 1 and 10.

Chapter 6. Evaluation of Scheduling Strategies 27

(a) Small workflows with no priorities (b) Small workflows with priorities

(c) Large workflows with no priorities (d) Large workflows with priorities

Figure 6.1: Makespan achieved by schedulers, relative to the GreedyFCFS scheduler

• The large sets consist of workflows with 50 to 100 tasks and 10 resources. each
task has a duration up to 25, and can request any possible combination of re-
sources.

6.1.1 Makespan comparison

Figure 6.1 shows the makespan achieved by each scheduler relative to the Greedy
first-come first-served scheduler. The plots in 6.1a and 6.1b, which correspond to the
two sets with small workflow sizes, had to be filtered to make the box plots visible,
because by default the 25th and 75th percentile was 0. The filtered results remove the
workflow data points where all the schedulers achieved the exact same makespan, the
idea being that we only keep the non-trivial workflows where at least one scheduler
performs differently. For the small sets, about 70% of the data points were removed

Chapter 6. Evaluation of Scheduling Strategies 28

with this method.

This filtering method was not necessary for the large workflows, since for both large
workflow sets had sufficient complexity to where nearly every single example was gave
a different result in at least one scheduler. When filtering was used, less than 1% of the
points were filtered out, so these results use all 10,000 data points.

The makespans need to be analysed relative to one another. This is because some
workflows are much larger than others (for example if the sum of task durations is
bigger), so the only way to evaluate how “good” a makespan is would be to compare it
to a baseline. In these experiments, the makespan achieved by the Greedy first-come
first-served scheduler is used as the baseline, because this is the method of scheduling
which is most commonly used other BPS tools. As a result, the relative makespan of
GreedyFCFS is always zero, and any point below the y = 0 line in Figure 6.1 represents
an experiment where the scheduler achieved a better (smaller) makespan than the greedy
strategy.

We can see that the makespans of large workflows were about 10 times bigger than the
makespans of small workflows, across all schedulers. This makes sense given that the
large workflows had 10 times as many tasks.

Over all 4 sets, the GreedyFCFS scheduler achieves the shortest makespan on average,
which matches our expectations. The result is most pronounced on the large, prioritised
workflows in Figure 6.1d. In prioritised experiments, occasionally the prioritised
methods such as the Proter and GreedyPriority schedulers achieve a shorter makespan,
but this is rare and can be attributed to lucky situations where delaying a task accidentally
resulted in a shorter overall duration.

It is interesting that prioritised strategies frequently outperform the GreedyFCFS strat-
egy when we set all the priorities to be equal, essentially removing priorities from
the experiments. This is especially clear in Figure 6.1a. This is because the Proter
prioritisation system has to uses a priority queue to order tasks, so even if they have
the same priority we use some other property of the task to determine the order. In
particular, tasks which require a larger number of resources are prioritised more, so
they get scheduled first. Surprisingly this method often ends up working better than
GreedyFCFS of the time.

As a small detail we can check how the average Makespan changes as the workflow
becomes larger. The size of a workflow is estimated by taking the sum of the durations
of all the tasks in that workflow. Again we look at all the makespans relative to the
GreedyFCFS baseline. Figure 6.2 shows the result on the set consisting of large,
prioritised workflows (the same set used in 6.1d), but this result was consistent across
all the sets: As the workflows become larger and more complicated, the difference in
performance between scheduling strategies becomes larger. The greedy methods remain
the best on average, while prioritised and strict methods produce progressively worse
makespans.

Chapter 6. Evaluation of Scheduling Strategies 29

Figure 6.2: Average makespan relative to GreedyFCFS, as a function of workflow size

(a) Small workflow set (b) Large workflow set

Figure 6.3: Priority error relative to GreedyFCFS

6.1.2 Priority Error Comparison

We compare priority error using the same method as above. Figure 6.3 summarises the
results for the prioritised small and large workflows. These figures serve to demonstrate
how prioritised strategies do in fact achieve a better error (lower is better), and that
the spread of results is very large. Since some of the box plots are very close to one
another, the mean priority error achieved by each scheduler is additionally summarised
in Table 6.1, again keep in mind that these values are all relative to the GreedyFCFS
scheduler, so:

Mean Relative Errors =
∑w PEs(w)−PEGreedyFCFS(w)

|w|
,

where s is the scheduler, w is the w’th workflow, |w| is the total number of workflows
(10,000 in these experiments), and PEGreedyFCFS(w) and PEs(w) are the priority errors as
defined previously.

As shown by these results, the various priority methods perform very similarly using
our priority error metric. The Proter scheduler’s average narrowly beats out the basic

Chapter 6. Evaluation of Scheduling Strategies 30

Proter StrictFCFS GreedyPri. StrictPri. Lookahead
Small Flows -24.6938 4.1098 -24.4321 -23.6937 -24.6254
Large Flows -3442.298 1072.6789 -3329.1951 -3377.9733 -3412.3749

Table 6.1: Mean Relative Priority Error for small and large workflows

prioritised strategies such as the GreedyPriority scheduler. There exist individual
examples where other strategies end up getting a better priority error than the Proter
scheduler, but these are uncommon. All the methods get a better score than the basic
GreedyFCFS strategy, except for StrictFCFS which gets noticeably worse results,
especially on the large workflows.

The above experiments confirm our baseline beliefs, showing that prioritised schedulers
such as the Proter scheduler are in fact better at respecting workflow priorities, at
the cost of makespan. The experiments also demonstrate that these various basic
strategies result in very different simulation behaviour, supporting our claim that choice
of scheduling strategy is important, and that being able to compare strategies using this
framework against an organisation’s personalised metrics has value in revealing which
strategy should be used. In the last section we also want to study how the new resource
constraints added in this project affect these scheduling strategies.

6.2 New Constraints’ Effect on Schedulers

(a) Small workflow set (b) Large workflow set

Figure 6.4: Makespan relative to GreedyFCFS

Building on from the previous section, we can repeat similar experiments on new
workflow simulations with the new resource constraints introduced in this project. We
use two new sets where resource capacities are enabled, and where tasks can request a
random number of resources and also a random capacity from each of these resources,
all drawn from uniform probability distributions. As before, we use a set of small

Chapter 6. Evaluation of Scheduling Strategies 31

(a) Small workflow set (b) Large workflow set

Figure 6.5: Priority error relative to GreedyFCFS

workflows which consist of 5 to 10 tasks, and large workflows consisting of 50 to 100
tasks. The small workflows can choose between 3 resources each with a max capacity
of 3, and there are 10 resources used for the large workflows, each with a capacity of
30. These parameters are chosen so that there should still be some amount of conflict
between task start times, resulting in delays. If we make the capacities of resources too
generous, then all tasks could easily run in parallel without the constraint of a resource’s
limited space.

These results no longer include the Lookahead scheduler because it did not fully support
capacities at the end of this project. It is quite difficult to add capacities with the
way lookahead scheduling is implemented in Proter, and it would require a number of
reworks and a lot of refactoring which was not possible due to time constraints. The
remaining schedulers are still tested in a similar manner to the previous section.

Makespan and priority error for the small and large sets are reported in Figures 6.4
and 6.5, relative to GreedyFCFS metrics just as before. Comparing these results to the
previous figures will show that the trends between the different scheduling strategies
are almost exactly the same.

We expected that adding more complexity via enabling capacities would result in a
larger spread of results, so the standard deviations of observation differences should
be greater than before. For makespan, the standard deviation of results on the small
workflow set is essentially identical, but the large dataset shows a subtle increase. The
standard deviation of the relative makespan across all schedulers with large workflows
was originally 40.110, and after adding capacities it is now 57.006. This is noteworthy
because the average size of the workflows, approximated using the sum of all task
durations, is still the same since we use the same parameter settings for number of tasks
and their durations. The mean makespan is smaller after adding capacities: 883.436
compared to 775.242 originally. This makes sense because the resources have more
capacity than before (originally they essentially only had 1 capacity), and tasks don’t

Chapter 6. Evaluation of Scheduling Strategies 32

always use the entire capacity of a resource, meaning that there are typically more
opportunities for parallelism which reduces makespan.

Unfortunately, the results regarding priority error contradict this. The results for small
workflows are essentially identical before and after enabling capacities. For the large
workflows, the original results without capacities showed a mean relative error of -
1815.357, and a standard deviation of 2661.894, and now after enabling capacities we
observe an increased mean of -977.326 and a standard deviation of 2046.004. So, just as
with makespan, the mean is reduced as a result of more parallelism thanks to capacities,
but the standard deviation of results goes up.

The results showing an increased standard deviation in makespans are evidence in favour
of the initial hypothesis that adding more resource features results in more freedom
of choice by the scheduler, leading to a larger spread of performance by different
schedulers. The results for priority score seem to contradict this. One interpretation of
this is that not all key performance indicators are impacted the same way by increased
complexity. The added capacities seem to make scheduling with priorities more difficult
(as evidenced by the increased mean error), but also slightly more consistent across
scheduling strategies. In contrast, makespans are shorter but results are more spread
out after adding capacities, showing that there is generally more ways for schedulers to
run the simulation despite the shorter makespans. The fact that these results are hardly
noticeable on small workflows and only manifest in larger workflows is also evidence
that added complexity leads to a larger spread of results.

The core takeaway remains, that the choice between scheduling strategies - even very
basic ones which only have minuscule differences - can drastically impact the results
of simulations. Most BPS tools take scheduling for granted, and simply resort to
only using a basic first-come first-served approach like GreedyFCFS in Proter. If
researchers and BPM professionals want to model and simulate complex and realistic
workflows which match real business operations, they need to be equipped with the tools
to examine how different scheduling strategies impact their systems. In this project,
while trying to provide users with more flexibility by implementing features such as
resource capacities and multi-capacity assignment of resources, we inadvertently impact
how well these schedulers perform on various metrics. We discovered here that some
key performance indicators like makespan may become more dependent on choice of
scheduling strategy, while other metrics such as our priority error might (surprisingly)
become more consistent between schedulers. Since different metrics seem to be affected
in different ways when we increase model complexity, this is even further motivation
as to why researchers need to explore different scheduling strategies to see how they
impact their own domain-specific key performance indicators.

Chapter 7

Conclusion

Business Process Simulation is a widespread and very powerful technique for studying
business processes. In many cases, it is beneficial to simulate models which closely
reflect the real world, such that the results of the simulation accurately predict how the
proposed scenario will perform if it was implemented in reality. By making giving
researchers and BPM professionals more tools we want to empower them to make more
detailed models.

One area which we found to be lacking in terms of expressive power was the “Resource
Perspective”, which is concerned with how resources are modelled in BPS. We found
that many BPS tools only provide basic resource features, and that even in the literature
there is little consensus on what resource constraints are relevant to the field of BPM.
Our simulator, Proter, already had some resource constraints which are not always
found in other tools, such as Multi-Resource assignment, and it has additional unique
advantages over other tools such as the prioritised ad-hoc scheduling mechanism which
is at its core. We decided to implement some of the resource constraints which we
identified into Proter, enabling its users to create more accurate models.

A concern with adding extra resource constraints was that there is more responsibility
placed on the scheduler to make decisions about how the workflow is scheduled and ex-
ecuted. We believed that the choice of scheduling strategy will become more important
to the outcome of the simulation as we increase model complexity, so researchers also
need to be given the tools to effectively compare and evaluate workflows and schedulers
in order to make an informed decision for their own systems. Traditionally a greedy
scheduling approach was used by default, but there is a high chance that this is not
sufficient for more complex systems. We found that using large datasets to evaluate
performance is unfortunately not a viable option. As such, this project also proposes an
evaluation framework based around random generation of workflows, and the relevant
tools for this type of evaluation were implemented in Proter. We used these tools to
evaluate the basic schedulers available in Proter, showing how much of an impact they
can have on the outcome of a simulation. Using this system we demonstrate why
evaluating scheduling strategies as part of BPS studies becomes increasingly important
when the models become complex. By demonstrating the importance of scheduling
strategy choice, and through providing the tools necessary to carry out such evaluations

33

Chapter 7. Conclusion 34

in Proter, we hope that this practice could become more commonplace in this field of
research.

7.1 Project Outcomes and Critical Evaluation

In this project we collected and carefully described a number of resource constraints
which are important to BPS, which was presented in Chapter 3. The list is inspired
from features found in existing BPS tools and the literature surrounding the resource
perspective of BPS. It also introduces a few new resource constraint ideas which are
grounded in reality and could be useful for certain simulations. The definitions for
resource constraints found in the literature are sometimes vague and contradictory, so
we make sure to carefully define each point on our list, and we propose that this set of
resource constraints could be used as a standard guideline for the resource perspective.
We believe the list is fair and unbiased, and it was not designed to try and make Proter
look more sophisticated than other tools; Even after this project Proter has still only has
support for under half of the listed points.

The project managed to implement two of the identified resource constraints into Proter:
Resource Capacity / Quantity, and Multi-Capacity Assignment. Most of the schedulers
in Proter were also updated to work with these new capacities. This implementation
involved designing weighted schedules, which were tricky to get right but ended up
working very well. It is a shame that the Lookahead scheduler was not fully working
with the new capacities at the end of this project due to time limitations, given more
time this would be the first thing to fix. This scheduler still currently works, but it
assumes that resources still only have 1 capacity.

Originally we also hoped to implement more resource constraints. This did not end up
happening because we discovered that a lot more attention had to be directed towards
the choice-of-sheduler problems which we ended up tackling in this project. It was
not immediately clear at the start how important the scheduler comparison and the
evaluation framework would be to this thesis, and the project might have progressed
more smoothly if these ideas were explored more in the early stages. It would also be
good to have even more resource constraints in Proter, but this is a good direction to
undertake for future work, especially now that a very thorough evaluation system is
supported in Proter.

The framework for evaluation which we outline in this project is also a useful outcome.
As far as we are concerned, this type of approach to evaluation has not been used in
any BPS studies or tool comparisons. Proter was improved with the tools to generate
random workflows given a wide range of parameters specifying the configuration of
tasks and resources, enabling future work with Proter to easily gather large amounts of
data.

The newly implemented features in Proter were also used to show why the choice of
scheduling strategy is important to simulations. We evaluated the basic schedulers in
Proter to show how much they differ when it comes to some basic key performance
indicators. This evaluation also demonstrates that adding additional complexity to
the simulator (such as the resource capacities implemented during this project) might

Chapter 7. Conclusion 35

make the impact of scheduling strategy more important to the simulation for certain
metrics. We hope this serves as motivation for future BPS studies as to why the choice
of scheduling strategy deserves attention, and that by providing the tools to carry out
such evaluations in Proter this practice can become commonplace.

As a critique, there is room for more exploration in our scheduler evaluation, and given
more time on this Project it would have been good to see more detail in this section. We
had many interesting ideas for exploring how different parameters of workflows affect
the outcome, for instance exploring the effect of the branching factor (the ratio of “and”
nodes to “then” nodes), or varying the ratio of tasks to resources.

Overall we think that this project was successful in improving Proter in a number of
ways, and we are glad it also has some outcomes which have positive contributions to
the ongoing discussion in the literature surrounding resource constraints and scheduling
in addition providing tools which enable new research with Proter in the future.

7.2 Future Work

Using the list of resource constraints identified in this project gives a good potential
direction for the development of Proter. It would be great to see more of these resource
features implemented in future work.

Thanks to the evaluation framework which is now supported in Proter more work can
be done in exploring the effect of various workflow properties. Future work could study
the impact of branching and resource number on workflows of different scales. Work
could also evaluate more metrics such as establishing a balanced score which accounts
for multiple results including makespan, priority error, and resource utilisation.

Another compelling research direction would be to implement and evaluate more
sophisticated scheduling strategies. Approaches including artificial immune systems,
ant colony optimisation, and genetic algorithms, are common in related areas such as
RCPSP, and it would be interesting to try and implement one or more such systems in
Proter, and to compare it to the roster of existing baseline strategies.

Lastly, Proter could be applied in new real-world practical industry settings to use it for
simulation and analysis of real systems. Some past work has seen WorkflowFM (the
platform which includes the Proter simulator) be used in healthcare and manufacturing
applications, and it would be good to see more work in these directions which can
benefit from the newly added resource constraints.

Bibliography

[1] Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain research bulletin, 50(5-6):303–304, 1999.

[2] Rockwell Automation. Arena simulation software. https://www.
arenasimulation.com/. Retrieved 9 April 2021.

[3] Michal Baczun. Enhancing Simulation Capabilities in Proter. PhD thesis, The
University of Edinburgh, 2021.

[4] Bizagi. Simulation in bizagi. https://help.bizagi.com/bpm-suite/en/
index.html?simulation_in_bizagi.htm. Retrieved 9 April 2021.

[5] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. Scheduling subject to
resource constraints: classification and complexity. Discrete applied mathematics,
5(1):11–24, 1983.

[6] Bonitasoft. Bonitasoft. https://www.bonitasoft.com/. Retrieved 9 April
2021.

[7] Arianna Borrelli and Janina Wellmann. Computer simulations then and now: an
introduction and historical reassessment, 2019.

[8] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Erwin Pesch.
Resource-constrained project scheduling: Notation, classification, models, and
methods. European journal of operational research, 112(1):3–41, 1999.

[9] BOC Group. Adonis process simulation. https://knowledge.boc-group.
com/en/module/adonis-process-simulation/. Retrieved 10 April 2021.

[10] Michael Hammer. What is business process management? In Handbook on
business process management 1, pages 3–16. Springer, 2015.

[11] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
physiology, 117(4):500, 1952.

[12] Monique Jansen-Vullers and Mariska Netjes. Business process simulation–a tool
survey. In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, Aarhus, Denmark, volume 38, 2006.

[13] Kurt Jensen. Coloured petri nets. In Petri nets: central models and their properties,
pages 248–299. Springer, 1987.

36

Bibliography 37

[14] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and cpn
tools for modelling and validation of concurrent systems. International Journal
on Software Tools for Technology Transfer, 9(3-4):213–254, 2007.

[15] W David Kelton. Simulation with ARENA. McGraw-hill, 2002.

[16] Visual Paradigm International Ltd. Visual paradigm. https://www.
visual-paradigm.com/. Retrieved 10 April 2021.

[17] OMG. Business process modeling notation (bpmn) (2011). https://www.omg.
org/spec/BPMN/2.0/PDF. Retrieved 23 October 2020.

[18] MABEL OÜ. Bimp simulator. https://bimp.cs.ut.ee/simulator/. Re-
trieved 9 April 2021.

[19] Nathaniel Palmer. What is bpm? https://bpm.com/what-is-bpm. Retrieved
23 October 2020.

[20] Petros Papapanagiotou and Jacques Fleuriot. Workflowfm: A logic-based frame-
work for formal process specification and composition. In International Confer-
ence on Automated Deduction, pages 357–370. Springer, 2017.

[21] José Luı́s Pereira and António Paulo Freitas. Simulation of bpmn process models:
Current bpm tools capabilities. In New Advances in Information Systems and
Technologies, pages 557–566. Springer, 2016.

[22] Sander PF Peters, Remco M Dijkman, and Paul WPJ Grefen. Advanced simulation
of resource constructs in business process models. In International Conference on
Business Process Management, pages 159–175. Springer, 2018.

[23] WorkflowFM Petros Papapanagiotou. Proter. http://docs.workflowfm.com/
proter/. Retrieved 9 April 2021.

[24] PLG2. Multiperspective processes randomization and simulation for online and
offline settings. https://plg.processmining.it/. Retrieved 7 April 2022.

[25] A Alan B Pritsker, Lawrence J Waiters, and Philip M Wolfe. Multiproject schedul-
ing with limited resources: A zero-one programming approach. Management
science, 16(1):93–108, 1969.

[26] Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and David Edmond.
Workflow resource patterns: Identification, representation and tool support. In
International conference on advanced information systems engineering, pages
216–232. Springer, 2005.

[27] Wil MP Van Der Aalst. Business process simulation survival guide. In Handbook
on Business Process Management 1, pages 337–370. Springer, 2015.

[28] Wil MP Van Der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business
process management: A survey. In International conference on business process
management, pages 1–12. Springer, 2003.

