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Abstract
The marked nulls used in theoretical models of incompleteness in database research
are commonly misrepresented by a single syntactic object NULL in SQL databases.
It has been already shown that interpreting SQL nulls as Codd nulls (non-repeated
marked nulls) in input databases alone is not enough to reconcile the two approaches.
The main reason is that Codd semantics of SQL nulls should be also preserved in
query answers, which are incomplete databases themselves. Unfortunately, the class of
relational algebra queries preserving Codd semantics is not recursively enumerable. It
does not mean, however, that we cannot recognize such queries. There exist a number
of sufficient conditions ensuring the preservation of Codd semantics by respective
relational algebra operations.

In this report, we introduce a query normalization step to the Codd semantics verification
process, which transforms the query in question into an equivalent query that is more
likely to satisfy sufficient conditions. Moreover, we introduce a variadic intersection
operator which leads to more relaxed constraints for intersections of many tables.
Thanks to the preprocessing step, we can apply the milder restrictions corresponding to
this and other derived operations even if they are not used directly in the query. Also,
we refine the model of the propagation of nullable values in the query. We do this by
incorporating information about non-nullable attributes in query answers derived from
a condition of a selection operation. All of these findings enable us to capture even
more Codd semantics preserving queries.
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Chapter 1

Introduction

Nowadays, incomplete information in databases is a norm rather than an exception.
Therefore, the ongoing research in database theory must take it into account and allow
for the appropriate handling of missing values. Traditionally, this has been done using
a well-established concept of ”marked” nulls [5, 10]. For example, they frequently
appear in various theoretical models of query evaluation applications, such as data
exchange or data integration [1, 9]. On the other hand, many real-life systems operate
on relational databases using SQL whose interpretation of nulls is significantly different.
Most notably, using marked nulls we can express the fact that two nulls are the same
(⊥1 =⊥1) or different (⊥1 ̸=⊥2), while it is impossible to do so using SQL nulls. This
is because all of them are denoted by the same syntactic symbol NULL.

To accommodate for this discrepancy, scientific literature considered SQL nulls to
be modelled as Codd nulls (non-repeating marked nulls) with adjusted comparison
semantics to mimic the three-valued logic used by the SQL standard [5]. After all, a
single object representing all nulls is no longer a problem, as each NULL is interpreted
as a distinct null anyway. However, this assumption was shown to be inaccurate in
many cases [7]. The main argument is that the Codd semantics of SQL nulls should not
only apply to incomplete databases but also should be preserved by queries executed on
them.

To illustrate this point, let D be a SQL database D with two relations: R = {A : NULL,2}
and S = {B : NULL}. Also, let D′ be a copy of D in which all SQL nulls were replaced
by unique marked nulls, e.g., R = {A : ⊥R,2} and S = {B : ⊥S}. Then, the answers to
the query R×S evaluated on these two databases are following:

Q(D):
A B

NULL NULL
2 NULL

Q(D′):
A B
⊥R ⊥S
2 ⊥S

If SQL nulls were modelled by Codd nulls, then we could conclude that Q(D) contains
three distinct nulls since there are three NULL objects in the resulting table. Although,
the evaluation of Q(D′) tells us that the two nulls in column B are the same, even though
initially every null in D′ was distinct. The inconsistency in the interpretation of the
missing values in the results shows that even this simple query does not preserve the

1



Chapter 1. Introduction 2

Codd semantics of SQL nulls.

The argument behind the preservation of Codd semantics described before is captured
in Figure 1. To explain it, let codd(D) be the result of replacing each null in a SQL
database D with a unique marked null. To be precise, codd(D) is a set of isomorphic
Codd databases as the names of the fresh marked nulls can be chosen arbitrarily. Now,
if Codd nulls were to reliably model the SQL nulls, then an answer to a query on
an incomplete database D should be the same (subject to the renaming of the nulls)
regardless of whether we decide to:

• first replace the SQL nulls in D and then execute the query: D codd−−−→ D′ Q−→ Q(D′)

• execute the query on a database with SQL nulls and then apply Codd semantics

as the answer can be an incomplete table itself: D
Q−→ Q(D)

codd−−−→ Q(D′)

Unfortunately, this does not hold even for many simple conjunctive queries that are of
special interest in the theoretical world.

In the light of the discrepancy between the interpretations of marked and SQL nulls
and the fact that SQL fails to model Codd nulls, one needs to refer to other solutions
attempting to bridge the gap between the theory and practice. One such approach could
be to extend SQL with the ability to ”mark” nulls. Some progress in this direction has
been made by [12], which implemented marked nulls for integer and varchar data types
in the Postgres flavour of SQL. Although promising, that project is more of a prototype
and would require further work if it was to become fully usable.

In the meantime, we can try to identify queries for which the Codd interpretation
of SQL nulls is preserved. In general, [7] proved that it is impossible to recursively
enumerate the set of all relational algebra queries that preserve Codd semantics. Instead,
its approach utilises PRIMARY KEY / NOT NULL constraints on database schemas to
analyse the propagation of nullable attributes in a query. Based on that, as well as other
properties of queries, [7] introduced sufficient conditions for the preservation of Codd
semantics of SQL nulls in an answer to the query. We will present these conditions later
in chapter 2 in Theorem 1.

However, the test for the preservation of Codd semantics proposed in [7] has its short-
comings as well. Firstly, it struggles to recognise many Codd semantics preserving
queries involving intersections that are applied one after another. In fact, in chapter 4,
we show that there exists Codd semantics preserving queries with as few as two inter-

[7]

D

D′

Q(D)

Q(D′)

Q

Q

codd codd

Figure 1: Condition for the preservation of Codd semantics for SQL nulls. Source: [7].



Chapter 1. Introduction 3

sections in a row that will never satisfy current conditions. Moreover, when working on
this problem, we noticed that the testing process depends heavily on the exact syntactic
formulation of the query. For example, even though two Codd semantics preserving
queries Q1 = R and Q2 = R∩R are equivalent, the latter is not always recognised as
preserving Codd semantics, whereas the first one is.

1.1 Contributions

Motivated by the aforementioned shortcomings, we introduced a number of improve-
ments to the process of recognizing Codd semantics preserving queries described in [7].
Specifically:

• We showed how the information about which attributes are certain to be made
non-nullable by the selection operation can be derived from its condition.

• We introduced a variadic intersection operator together with a corresponding
sufficient condition that enabled us to recognize more queries preserving Codd
semantics.

• We suggested a normalization procedure which transforms the query in question
into an equivalent query that is more likely to satisfy the sufficient conditions.

• We implemented the verification of sufficient conditions in relational algebra
queries as a Java library coddifier.

1.2 Organisation

This report is structured in the following way:

• In chapter 2, we introduce a data model, relational algebra query language, and
sufficient conditions for the preservation of Codd semantics.

• In chapter 3, we refine the propagation of nullable attributes in the selection
operation.

• In chapter 4, we formally introduce the variadic intersection, which enables us to
devise a milder restriction for an intersection of multiple tables.

• In chapter 5, we present a number of query rewrite rules that increase the chances
of satisfying the sufficient conditions. Based on them, we suggest a query
preprocessing step in the verification procedure which enables us to detect more
queries preserving Codd semantics.

• In chapter 6, we provide a brief overview of the Java library coddifier that
implements the findings described in [7] and this report.

• In chapter 7, we summarize the work done in the first part of the MInf project
and set out plans for its second part.



Chapter 2

Preliminaries

Before we present any concrete findings, let us introduce a data model and a relational
algebra query language based on which the sufficient conditions for the preservation of
Codd semantics were derived. To be consistent, we will use the same definitions and
follow the same conventions as in [7].

2.1 Data model, schemas, and (incomplete) databases

We start by defining a bag as an unordered collection of objects in which instances of
the same element, unlike in sets, can repeat. We say that an element e in a bag B has
multiplicity k, denoted as #(e,B) = k or e ∈k B, if e appears k times in B. Similarly, we
can write e ∈ B and e /∈ B to state a general fact that e is or is not in B, respectively. We
also use notation B ⊆ B′, if #(e,B)≤ #(e,B′) for every e ∈ B. Finally, we define four
bag operations: union ∪, intersection ∩, difference −, and duplicate elimination ε. If
e ∈m B and e ∈n B′, then: #(e,B∪B′) = m+n, #(e,B∩B′) = min(m,n), #(e,B−B′) =
max(0,m−n), and #(e,ε(B)) = 1 if e ∈ B, otherwise #(e,ε(B)) = 0.

Now, let us take two countably infinite and disjoint sets of names and values. Any
finite subset of names can be a signature. Then, a record is a map from some signature
to values. Using these concepts we define a table as a bag of records over the same
signature. sig(r) / sig(T ) denotes the signature of a record r / table T , respectively.

The projection of a record r on a subset α of its signature is the restriction of r on α,
denoted by πα(r). For two records r and s of disjoint signatures, the product of r with
s, denoted by r× s, is the record over sig(r)∪ sig(s) whose projections on sig(r) and
sig(s) are r and s, respectively. For a record r, given N ∈ sig(r) and N′ ̸∈ sig(r), we
define the following renaming operation:

ρN→N′(r) def
== πsig(r)−N(r)×{N′ 7→ r(N)} .

The operations on records described above extend naturally to tables:

πα(T )
def
==

{
s, . . . ,s︸ ︷︷ ︸
k times

∣∣∣ k = ∑
r∈T

πα(r)=s

#(r,T )
}

4



Chapter 2. Preliminaries 5

T ×T ′ def
==

{
r× s, . . . ,r× s︸ ︷︷ ︸

m·n times

∣∣ r ∈m T, s ∈n T ′}
ρN→N′(T ) def

==
{

r′, . . . ,r′︸ ︷︷ ︸
k times

| r ∈k T, r′ = ρN→N′(r)
}

The bag operations ∪, ∩ and − can be applied to tables of the same a signature, which
ensures the result is a table. Duplicate elimination ε applies without restrictions.

Next, a relational schema is a set of relation names together with a function sig which
associates every relation name R with a set of its attributes sig(R) - its signature. Then, a
database D maps each relation name R with a table JRKD that is over the same signature
as R. Each database instance can store values from only two countably infinite and
disjoint sets of constants (Const) and nulls (Null). The Null set contains a special value
N that is used to represent SQL’s NULL object. Other nulls are denoted ⊥, potentially
with some subscript. By Const(D) and Null(D) we denote sets of constants and nulls
present in a database D.

Real-life databases support several constraints on data in a table. We are specifically
interested in constraints that mark attributes as NOT NULL. To reflect them in our model,
we partition the signature of a relation R into nullable and non-nullable signatures,
denoted by n-sig(R) and c-sig(R) respectively. The non-nullable signature of R is a set
of its non-nullable attributes, that is, attributes that are allowed to take only constant
values (e.g., because of the NOT NULL or PRIMARY KEY constraint). On the other hand,
there is no such restriction for nullable attributes in the nullable signature of R which
can take both null and constant values.

Depending on the presence of nulls in a database as a whole, we can recognize four
types of databases. A database D is a:

• Complete database if D does not contain any nulls - Null(D) =∅.

• Naive database if D does not contain any SQL nulls - N /∈ Null(D).

• SQL database if all nulls in D are SQL nulls - Null(D) = {N}.

• Codd database if D is a naive database and each null in the database is different.

Remark. We can say that a table is a complete, naive, SQL, or Codd table if it satisfies
equivalent conditions.

Directly related to the notion of SQL and Codd databases is the idea of Codd interpreta-
tion of SQL nulls. Rephrasing what we said in the introduction using the newly defined
concepts, theoreticians model incomplete databases using naive databases, whereas in
practice SQL operates on SQL databases. To bridge this gap, SQL databases are usually
interpreted as Codd databases. This is achieved by replacing each SQL null N with a
unique element of Null−{N} that is not yet present in the database.

To formalise this idea, given a record r, we denote by sql(r) the record r′ over sig(r)
such that:

r′(A) =

{
r(A) if r(A) ∈ Const,

N otherwise
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Moreover, by sql−1(r) we denote the set of all records r′ such that sql(r′) = r.

The sql and sql−1 notation can be further extended to tables and databases. Namely, for
a table T over sig(T ), sql(T ) is a table over the same signature that consists of records
r, such that:

#
(
r,sql(T )

)
= ∑
s∈sql−1(r)

#(s,T )

For a database D, sql(D) denotes a database, having the same schema as D, where:

JRKsql(D) = sql(JRKD)

The sql−1(T ) and sql−1(D) denote sets of all tables T ′ and databases D′, respectively,
such that sql(T ′) = T and sql(D′) = D.

Finally, we can formalise what we mean by the Codd interpretation of a SQL database.
For that we define codd(D) to be a set of all Codd databases in sql−1(D). Even though
this set may be infinite as the set of Null is countably infinite, all databases in it are
isomorphic since they differ only in the names of the nulls. For that reason, we allow
ourselves to talk about a single interpretation that is unique up to the renaming of nulls.

2.2 Query language

The sufficient conditions for Codd semantics preservation considered in this report
apply to queries written in relational algebra (RA) for bags. To be consistent, we follow
the syntax and semantics of the language as described in [7]. The syntax consists
of two main constructs, that is expressions E and conditions θ, whose semantics are
summarised by Figure 2.

A term t is either a name or a value, and its semantics JtKr is given with respect to a
record r: if t is a name in sig(r), then JtKr = r(t), otherwise, if t is a value, JtKr = t.

Atomic conditions are equality/inequality comparisons between terms and tests that
determine whether a term is null or constant. Complex conditions are constructed from

JRKD is given for every R

JE1 op E2KD
def
== JE1KD op JE2KD

for op ∈ {×,∪,∩,−}

Jπα(E)KD
def
== πα

(
JEKD

)
Jσθ(E)KD

def
== σθ

(
JEKD

)
Jε(E)KD

def
== ε

(
JEKD

)
JρN→N′(E)KD

def
== ρN→N′

(
JEKD

)
(a) EXPRESSIONS

Jt1 = t2Kr = t ⇐⇒ Jt1Kr = Jt2Kr ∈ Const

Jt1 ̸= t2Kr = t ⇐⇒ Jt1 = t2Kr ̸= t

Jnull(t)Kr = t ⇐⇒ JtKr ∈ Null

Jconst(t)Kr = t ⇐⇒ JtKr ∈ Const

Jθ1 ∧θ2Kr = t ⇐⇒ Jθ1Kr = Jθ2Kr = t

Jθ1 ∨θ2Kr = t ⇐⇒ Jθ1Kr = t ∨ Jθ2Kr = t

(b) CONDITIONS

Figure 2: Semantics of relational algebra. Source: [7].
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atomic ones by means of conjunction and disjunction. There is no explicit negation, as
it can be propagated all the way down to atoms. The signature of a condition θ, denoted
by sig(θ), is the set of names appearing in it. Its semantics JθKr is defined with respect
to a record r such that sig(θ)⊆ sig(r): it can be either t (true) or f (false), as determined
by the rules in Figure 2b.

For a table T and a condition θ such that sig(θ) ⊆ sig(T ), we can then define the
following selection operation:

σθ(T )
def
==

{
r, . . . ,r︸ ︷︷ ︸
k times

| r ∈k T, JθKr = t
}

As for expressions, these are names of base relations present in the schema that can be
further composed using standard operations of union ∪, intersection ∩, difference −,
Cartesian product ×, selection σ, projection π, renaming ρ, and duplicate elimination
ε. The base of an expression E, denoted by base(E), is the set of relation names that
appear in it (i.e., the set of its atomic subexpressions).

The signature of each expression is defined recursively as follows:

sig(R) is given for every R
sig(E1 op E2) = sig(E1) for op ∈ {∪,∩,−}
sig(E1 ×E2) = sig(E1)∪ sig(E2)

sig
(
σθ(E)

)
= sig

(
ε(E)

)
= sig(E)

sig
(
πα(E)

)
= α

sig
(
ρA→B(E)

)
=
(
sig(E)−{A}

)
∪{B}

In a similar manner, we define the nullable signature of each expression:

n-sig(R) is given for every R
n-sig(E1 op E2) = n-sig(E1)∪n-sig(E2) for op ∈ {∪,×}
n-sig(E1 ∩E2) = n-sig(E1)∩n-sig(E2)

n-sig(E1 −E2) = n-sig(E1)

n-sig
(
σθ(E)

)
= n-sig

(
ε(E)

)
= n-sig(E)

n-sig
(
πα(E)

)
= n-sig(E)∩α

n-sig
(
ρA→B(E)

)
= n-sig(E)[A/B]

where n-sig(E)[A/B] means that attribute A is replaced by B in n-sig(E). The non-
nullable signature of any expression can be computed using the relation c-sig(E) =
sig(E)−n-sig(E).

A relational algebra query over some schema is an expression that is well-defined
with respect to this schema. One can recursively determine whether an expression is
well-defined using the following rules:

• An atomic expression R is well-defined if R is a relation name in the schema.
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• E1 op E2, for op ∈ {∪,∩,−}, is well-defined if both E1 and E2 are well-defined
and sig(E1) = sig(E2).

• E1×E2 is well-defined if E1 and E2 are well-defined and sig(E1)∩ sig(E2) =∅.

• σθ(E) is well-defined if E is well defined and sig(θ)⊆ sig(E).

• πα(E) is well-defined if E is well defined and sig(α)⊆ sig(E).

• ρA→B(E) is well-defined if E is well defined, A ∈ sig(E), and B /∈ sig(E)−{A}.

• ε(E) is well-defined if E is well-defined.

Given two queries Q and Q′ we say that Q is contained in Q′, written as Q ⊆ Q′, if for
every database D it is the case that JQKD ⊆ JQ′KD.

Closely related to the relational algebra query is a notion of its syntax tree.

Definition 1 ([7]). The syntax tree of an RA query Q is a binary (ordered) tree con-
structed as follows:

• Each relation symbol R is a single node labelled R.

• For each unary operation symbol op1, the syntax tree of op1(Q) has root labelled
op1 and the syntax tree of Q rooted at its single child.

• For each binary operation symbol op2, the syntax tree of Q op2 Q′ has root
labelled op2 and the syntax trees of Q and Q′ rooted at its left child and right
child, respectively.

Remark. Each node in the syntax tree of Q defines a subquery of Q, so we can associate
properties of such queries with properties of syntax tree nodes.

Finally, given two nodes N and N′ we write N ≺ N′ to indicate that N is a parent of N′

or, equivalently, that N′ is a child of N.

2.3 Queries preserving Codd semantics

We have already said that in order to be able to interpret SQL nulls as Codd nulls it
must be the case that this interpretation not only applies to input databases but is also
preserved by query answers. Figure 1 in the introduction depicts the intuition behind
the condition for the Codd semantics preservation, which is formally defined below.

Definition 2 ([7]). A query Q preserves Codd semantics if for every Codd database D
it holds that:

sql
(
JQKD

)
= JQKsql(D) (1a) and JQKD is a Codd table. (1b)

Unfortunately, [7] proved that the class of queries preserving Codd semantics is not
recursively enumerable. For that reason, we can only come up with syntactic restrictions
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that guarantee this property. Guagliardo and Libkin introduced in [7] a number of
conditions which can be satisfied by a node in a syntax tree.

Definition 3 ([7]). A node in the syntax tree of a query satisfies:

NNC (non-nullable child) - if one of its children is non-nullable.

NNA (non-nullable ancestor/self) - if either itself or one of its ancestors is non-nullable.

DJN (disjoint nullable attributes) - if its children have no common nullable attributes.

DJB (disjoint bases) - if its children have bases with no relation names in common.

Using these constraints they came up with sufficient conditions for the preservation of
Codd semantics.

Theorem 1 ([7]). Let Q be an RA query whose syntax tree is such that:

a) each ε node satisfies NNC;

b) each ∩ and − node satisfies DJN;

c) each × node satisfies NNA;

d) each ∪ node satisfies NNC or DJB or NNA.

Then, Q preserves Codd semantics.

Theorem 1 enables us to quickly verify whether a query is guaranteed to preserve Codd
semantics. We will illustrate this process on the query πA,B(T ×S)∩ ((R−T )∪ ε(U))
whose syntax tree is presented in Figure 3. The signature of each subexpression is
given to the left of the node (underlined attributes are non-nullable). The respective
sufficient conditions satisfied by the nodes are marked on the right. Now, in the right
subquery, the ε node satisfies NNC as relation U is non-nullable. The − node satisfies
DJN, as its children have non-overlapping nullable signatures. The union satisfies all
respective conditions, although one is enough for the preservation of Codd semantics.
In the left subquery, the × node satisfies the NNA condition because the root of the query
is non-nullable, which is the case, as the ∩ node satisfies DJN.

∩{A,B} |= DJN

πA,B{A,B}

×{A,B,C,D} |= NNA

T{A,B} S{C,D}

∪{A,B} |= DJB,NNC,NNA

−{A,B} |= DJN

R{A,B} T{A,B}

ε{A,B} |= NNC

U{A,B}

Figure 3: Syntax tree of the query πA,B(T ×S)∩((R−T )∪ε(U)). Each node is marked
with the sufficient conditions it satisfies. The underlined attributes are non-nullable.



Chapter 3

Nullable Attributes of Selection

In chapter 2, we defined the nullable attributes of an expression σθ(E) to be the same
as those of the expression E. However, this definition does not reflect the fact that,
depending on the condition θ, the selection operation might remove all records r such
that r(A) ∈ Null for some attribute A ∈ sig(θ). In such case, A would effectively become
non-nullable in the query answer. Take a query σconst(A)(R) as an example. Regardless
of whether the attribute A contains any nulls in the base relation R, an answer to
σconst(A)(R) is guaranteed not to have any nulls for the attribute A. In fact, in our query
language there are two types of atomic conditions that ensure a ”non-nullability” of
the attribute they are applied to, i.e.: constant test and equality comparison (recall that:
Jt1 = t2Kr = t ⇐⇒ Jt1Kr = Jt2Kr ∈ Const).

Assessing if any attributes become non-nullable when the condition is not atomic is
more complicated. For this investigation, let θA be a condition such that σθA(E) makes
some attribute A non-nullable and let θ be any condition. Now, we can combine the two
conditions using either the conjunction ∧ or the disjunction ∨. Clearly, the condition
θA ∧θ is at least as restrictive as θA, so σθA∧θ(E)⊆ σθA(E). Hence, θA ∧θ ensures that
attribute A is non-nullable as well. On the other hand, the condition θA ∨ θ may be
weaker than θA so σθA(E) ⊆ σθA∨θ(E). Therefore, in general, we cannot claim with
certainty that σθA∨θ(E) makes the attribute A non-nullable. Nonetheless, if we knew
that for θ, σθ makes the attribute A non-nullable too, then the result of the σθA∨θ(E)
would not contain nulls for A as well. This is because σθA∨θ(E)⊆ σθA(E)∪σθ(E) and
neither σθA(E) nor σθ(E) would have nulls for the attribute A.

To formalize the above observations, we define the set of all attributes that are certain to
become non-nullable in the answer to the selection σθ.

Definition 4. The set c-sig(θ) is a set of all attributes in the signature of the condition θ

for the which the selection operation σθ is guaranteed to remove all records mapping
any of these attributes to a null value. It is defined inductively as follows:

c-sig(t1 ̸= t2)
def
== c-sig(null(t)) =∅

c-sig(t1 = t2)
def
== sig(t1 = t2)

c-sig(const(t)) def
== sig(const(t))

10
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c-sig(θ1 ∧θ2)
def
== c-sig(θ1)∪ c-sig(θ2)

c-sig(θ1 ∨θ2)
def
== c-sig(θ1)∩ c-sig(θ2)

Using this new concept we are able to incorporate the extra information derived from
the condition into the definition of the nullable attributes of the selection expression,
namely:

n-sig(σθ(E))
def
== n-sig(E)− c-sig(θ) (2)

This result is important not only in theory but also in practice. The more accurate
analysis of the propagation of nullable attributes makes it easier to satisfy the conditions
of the Theorem 1 since many of its conditions rely on the notion of nullable signature.
Take query Q = σA=1(R)∩ S as an example. Figure 4 depicts the propagation of
nullable attributes in the query, on a database with relations R and S over a single
nullable attribute A, using both definitions of n-sig. The most notable difference is
that using the new definition we can say that the attribute A is non-nullable in the
answer to the query. As a consequence, the ∩ node meets the DJN condition, which is
required for Q to satisfy the premises of Theorem 1. Thus, without the new definition
of n-sig(σθ(E)) we would not be able to capture the preservation of Codd semantics in
this query.

The key point to remember is that even though there is no condition for the selection node
itself, its ability to narrow down the set of nullable attributes in the answer to the query
can facilitate the satisfiability of DJN, NNC, and NNA conditions by other nodes in the
syntax tree. For that reason, we will come back to the selection operation and its refined
definition of nullable attributes in chapter 5 where we talk about transformations that
produce equivalent queries which are more likely to be recognized as Codd semantics
preserving.

∩{A} ̸|= DJN

σA=1∨A=3{A}

R{A}

S{A}

(a) Using old definition:
n-sig(σA=1)(R) = n-sig(R)

∩{A} |= DJN

σA=1∨A=3{A}

R{A}

S{A}

(b) Using new definition:
n-sig(σA=1∨A=3)(R) = n-sig(R)−{A}

Figure 4: Propagation of nullable attributes in the query σA=1∨A=3(R)∩S. The under-
lined attributes are non-nullable. Annotations in (a) use the old definition of n-sig(σθ)
presented in [7]; in (b) use the new one described in this chapter. In (b), the new nullable
signature is computed as follows: n-sig(σA=1∨A=3) = n-sig(R)−c-sig(A= 1∨A= 3) =
{A}− (c-sig(A = 1)∩ c-sig(A = 3)) = {A}− ({A}∩{A}) = {A}−{A}=∅.



Chapter 4

Chains of Intersections

Let us recall from [7] that, in general, whether we convert marked nulls into SQL nulls
before or after an intersection makes a difference; i.e., sql(JQ1∩Q2KD) ̸= JQ1∩Q2Ksql(D)

(see Figure 5). This is because the intersection operation matches nulls syntactically.
Two different marked nulls will not be matched, whereas their SQL counterparts will
be considered the same.

sql

 JQ1KD

A
⊥1

∩
JQ2KD

A
⊥2

= ∅ ̸= A
N

=

JQ1Ksql(D)

A
⊥1

∩
JQ2Ksql(D)

A
⊥2

Figure 5: Example illustrating that, in general, sql(JQ1 ∩Q2KD) ̸= JQ1 ∩Q2Ksql(D).

For this reason, the DJN condition from Theorem 1 requires that the intersection oper-
ation is only applied to subqueries with disjoint sets of nullable attributes. Logically,
if the two queries do not have nullable attributes in common, then the intersection
cannot match any two records on the null value at all. This constraint ensures that
sql(JQ1 ∩ Q2KD) = sql(JQ1KD)∩ sql(JQ2KD) which is then used to prove that such
queries preserve Codd semantics [7].

Whilst the DJN condition is sufficient for a single intersection node on its own, it
becomes unnecessarily restrictive as soon as more intersections are chained together.
Indeed, there exist chains of intersections that preserve Codd semantics but for which
the DJN condition cannot be satisfied by all of the ∩ nodes, and therefore the overall
expression does not fulfil the requirements of Theorem 1. One such example is given in
Figure 6.

Before jumping to the proposed solution, let us understand the implications of the
current constraints imposed on individual nodes for the satisfiability of the conditions
of Theorem 1 by chained intersections. For the purpose of this analysis, we adopt the
following terminology.

12
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∩1{A,B,C} |= DJN

RC{A,B,C} ∩2{A,B,C} ̸|= DJN

RA{A,B,C} RB{A,B,C}

∩1{A,B,C} |= DJN

RB{A,B,C} ∩2{A,B,C} ̸|= DJN

RA{A,B,C} RC{A,B,C}

∩1{A,B,C} |= DJN

RA{A,B,C} ∩2{A,B,C} ̸|= DJN

RB{A,B,C} RC{A,B,C}

Figure 6: All three ways to intersect relations RA, RB, and RC over attributes A,B,C,
such that n-sig(Ri) = {i}, for i ∈ {A,B,C}. The underlined attributes are non-nullable.
Note that no permutation of the operands makes the node ∩2 satisfy the DJN condition,
even though all queries do indeed preserve the Codd semantics.

Definition 5. (Chains of Intersections)

1. A chain of intersections is a query Q∩ complying with the grammar Q∩ := Q∩Q
and Q := Q∩Q | E where E is an expression that does not have ∩ as its root.

2. A terminal intersection in the chain of intersections is an intersection of the form
E ∩E.

We refer to leaves of a chain of intersections as E1, . . . ,En.

Now, regardless of the exact formulation of Q∩, at least one intersection in the query
must be of the form Ei ∩E j, for some i, j ∈ {1, . . . ,n}. For each such terminal inter-
section, n-sig(Ei)∩n-sig(E j) =∅ becomes the necessary condition for Q∩ to meet the
requirements of Theorem 1, as the ∩ node must satisfy the DJN condition. This insight
led us to the following relationship:

Proposition 1. Let Q∩ be a chain of intersections. Then, all intersections in the chain
will satisfy the DJN condition if and only if all terminal intersections satisfy the DJN
condition.

The proof of the above proposition is given in Appendix A.

Combining Proposition 1 with the fact that for each chain of intersections there exists
an equivalent chain that uses only one terminal intersection, we can state the condition
for the existence of a chain satisfying the requirements of Theorem 1:

Corollary 1. Given expressions E1, . . . ,En, there always exists a chain of intersections
with leaves E1 to En which satisfies the premises of Theorem 1 if and only if:

∃ Ep,Eq ∈ {E1, . . . ,En} : n-sig(Ep)∩n-sig(Eq) =∅ (3)

In simple words, we can find a chain that intersects a given set of expressions and
satisfies the requirements of Theorem 1 if and only if at least two of those expressions
have no nullable attributes in common. This explains why in the example described
in Figure 6 it is impossible to formulate a chain of intersections that would satisfy the
premises of Theorem 1. Namely, the sets of nullable attributes of relations RA, RB, and
RC overlap with each other, making the condition (3) impossible to satisfy.

That said, three problems can be identified with this implicit requirement for the chain
of intersections identified in Corollary 1:
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1. When two or more queries are intersected together, it should be enough that for
each attribute A ∈ sig(E1 ∩ ·· · ∩En) there is an expression, EA, which has the
attribute A marked as non-nullable. Intuitively, if EA does not contain any record
with a null value for the attribute A, then the result of intersecting EA with other
queries cannot have such a record as well. The DJN condition captures this idea
correctly for the binary case. However, for chains of intersections, the condition
(3) is too strict as it ignores the fact that more than two subqueries can contribute
to the final result of the overall intersection.

2. Neither the DJN condition nor the intersection operation itself captures information
about other queries that take part in the entire intersection of multiple subqueries.

3. The satisfiability of the condition (3) merely indicates whether a query meeting
the criteria of Theorem 1 exists. As indicated before, when testing an actual query
for Codd semantics preservation, the satisfiability of the DJN conditions by all
of the chained intersection nodes depends on the query’s formulation. This is at
odds with the fact that the intersection operation is commutative and associative.
Ideally, all equivalent intersection chains should be equally likely to satisfy the
premises of the theorem.

In what follows, we present our solution which addresses the described shortcomings.
In section 4.1, we introduce a new variadic RA operation - the n-ary intersection. It
enables us to express the intersection of multiple queries using a single operator, and
thus contains information about its nullable attributes. In section 4.2, we adjust the DJN
condition to the new operation and prove that the refined condition guarantees the Codd
semantics preservation by the n-ary intersection.

4.1 Variadic intersection

Let us extend the language of relational algebra with a new operation: n-ary intersection⋂
(E1, . . . ,En). It is well-defined with respect to a schema when:

• E1, . . . ,En are well-defined expressions;

• sig(E1) = · · ·= sig(En)

The signature of a well-defined n-ary intersection
⋂
(E1, ...,En) is defined as follows:

sig
(⋂

(E1, . . . ,En)
)

def
== sig(E1) = · · ·= sig(En)

The set of nullable attributes is given by:

n-sig
(⋂

(E1, ...,En)
) def
==

n⋂
i=1

n-sig(Ei)

The semantics of an n-ary intersection
⋂
(E1, . . . ,En) w.r.t. a database D is defined as

follows: r⋂
(E1, . . . ,En)

z

D

def
== JE1KD ∩·· ·∩ JEnKD
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Remark. The RHS of the previous definition is well-defined since the intersection
operation is associative and commutative.

For notational convenience, we also define the n-ary intersection of bags B1, . . . ,Bn as⋂
(B1, . . . ,Bn) = B1 ∩·· ·∩Bn. Then, the following holds trivially:

r⋂
(E1, . . . ,En)

z

D
=

⋂
(JE1KD, . . . ,JEnKD) (4)

The definition of the syntax tree is also expanded to accommodate for the n-ary operator:

• For each operator
⋂
(...), the syntax tree of

⋂
(Q1, ...,Qn) has the root labelled

with ∩ and syntax trees of Q1, ...,Qn as its children. The order of operands is
preserved, meaning that the syntax trees of Q1 and Qn are rooted as the leftmost
and rightmost child nodes respectively.

All of the above definitions are generalizations of corresponding definitions for the
binary intersection operation. For that reason, it should not be a surprise that queries
Q = Q1∩Q2 and Q′ =

⋂
(Q1,Q2) are equivalent. As expected, the semantics of queries

Q and Q′, as well as their properties (e.g., the signature, the nullable signature, etc.), are
the same without regard to whether the rules for the regular binary intersection or the
n-ary intersection are used.

Below, we present relevant properties of the newly defined n-ary intersection which we
will later use extensively in various proofs.

Theorem 2 (Algebraic Properties of the n-ary Intersection of Bags). Let B1, . . . ,Bm,
Bm+1, . . . ,Bn, for 2 ≤ m < n, be bags. Then:

(a) The order of bags in the n-ary intersections does not affect the result;

(b)
⋂
(B1,B1) = B1 - idempotent law;

(c)
⋂
(B1, . . . ,B1,B2, . . . ,Bn) =

⋂
(B1,B2, . . . ,Bn) - the result of an n-ary intersection

where some bag appears more than once is equal to the result of an n-ary
intersection where each bag appears only once;

(d)
⋂(⋂

(B1, . . . ,Bm),Bm+1, . . . ,Bn
)
=

⋂
(B1, . . . ,Bn).

A proof of the theorem can be found in Appendix A.

Remark. Theorem 2 presents the properties of the n-ary intersection of bags. However,
because of the relation (4), all of these properties can be lifted to the query level as long
as an RA expression

⋂
(· · ·) is well-defined.

Knowing the basic properties of the n-ary intersection, it should not be difficult to see
that every chain of intersections Q∩ combining expressions E1 to En is equivalent to
the expression

⋂
(E1, . . . ,En). To put it in another way, regardless of the order in which

we decide to intersect these expressions, the outcome will be always the same as if
we combined them ”simultaneously” using a single n-ary intersection

⋂
(· · ·). This

idea is formalized by Proposition 4 in Appendix B. The intuition is that each chain of
intersections can be reduced to a single n-ary intersection by the means of Theorem 2(d).
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4.2 Sufficient condition for the n-ary intersection

4.2.1 Refining the DJN condition

The fact that ∩ node can have multiple children in the syntax tree introduces an am-
biguity in the definition of the DJN condition. Namely, for a node N with more than
two children, the statement ”children have no common nullable attributes” can have a
twofold meaning:

1. ∀Xi,X j ∈ {X |X is a child of N} : Xi ̸= X j =⇒ n-sig(Xi)∩n-sig(X j) =∅

2.
⋂n

i=1 n-sig(Xi) =∅, where X1, . . . ,Xn are all children of N

Both interpretations result in n-sig
(⋂

(X1, . . . ,Xn)
)
=∅, but the first definition of the

condition is much stricter than the second one. Therefore, the latter is more desirable as
it can be satisfied by more intersection nodes.

Remark. Requiring an n-ary intersection node to satisfy the first interpretation would
not enable us to detect more queries preserving Codd semantics. As all children of
such node would have non-overlapping nullable attributes, every possible terminal inter-
section in the equivalent chain of binary intersections would satisfy the DJN condition.
Consequently, by Proposition 1, all chains equivalent to such n-ary intersection would
already meet the criteria of Theorem 1.

For the reasons outlined above, we decided to clarify the DJN condition in the refined
syntax tree setup and define it as follows:

Definition 6. A node, N, in the syntax tree of a query satisfies the DJN condition if⋂n
i=1 n-sig(Xi) =∅, where X1, . . . ,Xn are all children of N.

4.2.2 Proving that the refined DJN is a sufficient condition

Equipped with the new RA operator and the refined DJN condition we present extended
conditions for the Codd semantics preservation:

Theorem 3. Let Q be an RA query whose syntax tree is such that:

a) each ε node satisfies NNC;

b) each − node satisfies DJN;

c) each ∩ node satisfies DJN (both binary & n-ary intersection);

d) each × node satisfies NNA;

e) each ∪ node satisfies NNC or DJB or NNA.

Then, Q preserves Codd semantics.

To prove Theorem 3 which extends Theorem 1 with the n-ary intersection operator and
its corresponding DJN condition, we first need to understand when a query Q is Codd
semantics preserving. Let us recall that RA query Q preserves Codd semantics if for
every Codd database D it holds that sql(JQKD) = JQKsql(D) and JQKD is a Codd table.
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Not surprisingly, the proof of Theorem 1 presented in [7] consists of two parts. One for
each of the two properties (1a) and (1b). Both statements are proved by the induction
on the structure of a relation algebra query. To prove Theorem 3, we extend the proofs
of Theorem 1 to handle the case of the n-ary intersection. In order not to repeat the
work from the original paper, here, we only present base cases of those inductions and
complement their inductive steps with our proofs showing that properties (1a) and (1b)
hold for the new n-ary intersection satisfying the refined DJN condition. For the full
proof of Theorem 1 which we are extending, see [7].

To begin with, we notice that the n-ary intersection poses problems mainly with the
property (1a). This is because, in general:

sql(
q⋂

(Q1, . . . ,Qn)
y

D) ̸=
q⋂

(Q1, . . . ,Qn)
y

sql(D)
(5)

As it was the case with the binary intersection, the moment when we convert nulls
into SQL nulls can impact the result (recall Figure 5). Therefore, we first introduce
constraints that make sql operation distributive over the n-ary intersection:

Lemma 1. Let T1, . . . ,Tn be tables with the same signature. Assume that, for every
attribute A, there do not exist records r1, . . . ,rn such that ri ∈ Ti and ri(A) ∈ Null, for
i = 1, . . . ,n. Then, the following holds:

sql
(⋂

(T1, . . . ,Tn)
)
=

⋂
(sql(T1), . . . ,sql(Tn)) =

⋂
(T1, . . . ,Tn)

Proof of the above Lemma can be found in Appendix A.

Remark. When the root of Q =
⋂
(Q1, . . . ,Qn) satisfies the DJN condition, we have

that
⋂n

i=1 n-sig(Qi) = ∅. That is, for each attribute A ∈ sig(Q) there exists a table
TA ∈ {JQ1KD, . . . ,JQnKD} such that A ∈ c-sig(TA), which ensures that the assumptions
of Lemma 1 are satisfied.

Equipped with Lemma 1, we can prove Theorem 3. We proceed in two parts. Each
proves that any query satisfying the requirements of Theorem 3 satisfies the conditions
(1a) and (1b) respectively.

Proof of condition (1a). Let Q be a query whose nodes in the syntax tree satisfy one of
the conditions required by the theorem. Also, let D be any database. Using induction
we prove that sql(JQKD) = JQKsql(D).

Base case ([7]): Q is a relation name R. In such case, Q satisfies the condition as by the
definition of sql(D): JRKsql(D) = sql(JRK)

Inductive step: Q =
⋂
(Q1, . . . ,Qn). Then:

sql
(q⋂

(Q1, . . . ,Qn)
y

D

)
= sql

(⋂(
JQ1KD, . . . ,JQnKD

))
(by semantics)

=
⋂(

sql(JQ1KD), . . . ,sql(JQnKD)
)

(by Lemma 1)

=
⋂(

JQ1Ksql(D), . . . ,JQnKsql(D)

)
(induction hypothesis)

=
r⋂

(Q1, . . . ,Qn)
z

sql(D)
(by semantics)

For the remaining operations and conditions see the full proof of Theorem 1 in [7].
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Proof of condition (1b). To satisfy this condition, we need to prove that for every Codd
database D, JQKD is a Codd table. For that, let Q be a query whose nodes in the syntax
tree satisfy one of the conditions required by the theorem. We proceed with the proof
by induction as follows:

Base cases ([7]):

• Q is a relation name R. In such a case, JQKD is trivially a Codd table since D is a
Codd database.

• Q is non-nullable. Then JQKD is a complete table which is also a Codd table.

Inductive step: If Q =
⋂
(Q1, . . . ,Qn), then the DJN condition ensures that Q is non-

nullable. Consequently, the new n-ary intersection is covered by the base case.

For the remaining operations and conditions see the full proof of Theorem 1 in [7].

Using Theorem 3 and the explicit n-ary intersection operation instead of chains of
intersection we can express queries preserving Codd semantics which couldn’t be
recognized as such by the means of Theorem 1.

For instance, at the beginning of the chapter we showed an example with three relations
RA, RB, and RC over attributes A,B,C, such that n-sig(Ri) = {i}, for i ∈ {A,B,C}.
Because of Corollary 1 we claimed that there does not exist a chain of intersection that
combines these relations and at the same time satisfies the premises Theorem 1 (see
Figure 6). Having proved Theorem 3 this is no longer the case. The query

⋂
(RA,RB,RC)

can be recognized as Codd semantics preserving because the ∩ node satisfies the DJN
condition since n-sig(RA)∩n-sig(RB)∩n-sig(RC) =∅.



Chapter 5

Transforming Queries to Capture Codd
Semantics Preservation

The new variadic intersection together with the refined DJN condition enabled us to
capture Codd semantics preserving intersections of multiple queries which would not
otherwise be able to satisfy the conditions of Theorem 1. Moreover, satisfiability of
Theorem 3 by the n-ary intersection does not depend on the order of intersected operands
as is the case with equivalent chains of intersections. It might seem as if the presented
solution resolves all the shortcomings of chained binary intersections. However, the
introduction of the new operation did not change the fact that many queries containing
chains of intersections still cannot be recognized as Codd semantics preserving on their
own. Moreover, it is up to the author of a query to use the n-ary intersection and to use
it properly. That is to ensure that the variadic intersection always represents the overall
intersection and is not chained with other intersections.

It turns out that chains of intersections face exactly the same issues regardless of
what operators they use. For example, an intersection of queries Q1,Q2,Q3,Q4 can be
expressed using many equivalent queries:

•
⋂
(Q1,Q2,Q3,Q4)

•
⋂
(
⋂
(Q1,Q2),Q3,Q4)

•
⋂
(Q1,Q2,Q3)∩Q4

• · · ·

Depending on the nullable attributes of queries Q1 to Q4, syntax trees of none, some, or
all of the above intersections may meet the sufficient conditions for the preservation of
Codd semantics. Most importantly, some query Q may be considered as Codd semantics
preserving, whilst another equivalent query Q′ is not. The issue here is the fact that
the classification of whether a query is preserving Codd semantics, depends solely on
its formulation. However, if Q and Q′ are equivalent and Q preserves Codd semantics,
then Q′ must preserve Codd semantics as well.

Motivated by this observation, in section 5.1, we present and justify transformations that

19
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output an equivalent syntax tree of query that is more likely to satisfy the conditions of
Theorem 3. Proposed transformation rules are of the form A → B where A is a template
tree and B is a target tree. A single application of a transformation rule consists of
matching the syntax tree of an input query against the template of the rule and replacing
the matched subtree with a target subtree. In sections 5.2 - 5.4, we prove for each
transformation rule that if an input query satisfies the criteria of Theorem 3, then the
output query satisfies them as well. We call such property condition preservation.
Finally, in section 5.5, we combine findings from the previous sections and propose an
algorithm that transforms a query into an equivalent query that is more likely to satisfy
the conditions of Theorem 3.

5.1 Favourable transformations

We have already suggested that if a syntax tree of some query Q does not meet the
conditions of Theorem 3, then one could look for an equivalent query that does meet the
sufficient conditions. But exhaustive generation and analysis of all equivalent queries
is impossible in general, so we need some heuristics to guide the search. In what
follows, we present carefully motivated query rewrite rules that allow us to produce
such equivalent queries.

5.1.1 Merging chained intersections

In the previous chapter, we showed that by using a single n-ary intersection
⋂
(· · ·) one

can capture more queries preserving Codd semantic than using a chain of intersections.
The reasoning is that each terminal intersection node imposes an extra condition on
the chain to satisfy the criteria of Theorem 3. Thus, having a single n-ary intersection
representing the whole complex expression gives the best chance of satisfying the
criteria. This insight can be used to find an equivalent query that is more likely to satisfy
the sufficient conditions. Namely, we can merge chained intersections in a query to get
an equivalent query in the intersection reduced form.

Definition 7. A query Q is in the intersection reduced form (IRF) if its syntax tree does
not contain any chained intersections (binary nor n-ary).

Remark. Any query Q that is not in IRF is equivalent to at least one query in IRF.

The simplest syntax tree transformation rule that captures the idea of converting query
into intersection reduced form is the Intersection Merge (IM) transformation rule pre-
sented in Figure 7. It merges two neighbouring intersections into a single n-ary in-
tersection. The equivalence of input and output queries is guaranteed by Theorem
2(d).

Theoretically, even a single application of the rule increases the chances of satisfying
the requirements of Theorem 3. Indeed, in the query on the left of Figure 7 both node
∩1 and ∩2 would need to satisfy DJN, which requires no common nullable attributes
among subqueries Q1, . . . ,Qn, but also among subqueries Q1, . . . ,Qk, in particular. On
the other hand, node ∩3 on the right of Figure 7 only requires subqueries Q1, . . . ,Qn not
to share nullable attributes for node ∩2 to satisfy DJN, which is clearly less restrictive.
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⋂
1

⋂
2

Q1 . . . Qk

Qk+1 . . . Qn →

⋂
3

Q1 . . . Qk Qk+1 . . . Qn

Figure 7: Intersection Merge (IM) transformation rule.

Practically, by Proposition 1, this makes a difference only when ∩2 is a terminal
intersection. However, this is not a problem because the goal is to merge all chained
intersections nodes into a single node. The exact order in which this transformation
happens does not matter. In addition, by not restricting the ∩2 node to be a terminal
intersection we keep the overall transformation rule more universal.

5.1.2 Bringing disconnected intersections together

Sometimes a few disconnected intersections can be represented as a single n-ary inter-
section. For example, queries

⋂
(Q1,σθ(

⋂
(Q2,Q3))) and

⋂
(Q1,σθ(Q2),σθ(Q3)) are

equivalent, but the latter is more likely to satisfy the conditions of Theorem 3. Moreover,
as demonstrated in chapter 3, even the order of other operations in some query Q can
impact the satisfiability of the DJN condition by the intersection nodes. Thus, in this
section, we present transformations that ”normalize” the order of intersection, selection,
and renaming operations in a query. Those transformations are based on distributive
properties of selection and renaming operations over intersections.

For arbitrary queries Q1 and Q2, the selection and renaming operators distribute over
binary intersections as follows:

ρA→B(Q1 ∩Q2) = ρA→B(Q1)∩ρA→B(Q2)

σθ(Q1 ∩Q2) = σθ(Q1)∩σθ(Q2) = σθ(Q1)∩Q2 = Q1 ∩σθ(Q2)

The distributive properties over binary intersection naturally extend to the n-ary inter-
section operator:

ρA→B(
⋂

(Q1, . . . ,Qn)) =
⋂

(ρA→B(Q1), . . . ,ρA→B(Qn)) (6)

σθ(
⋂

(Q1, . . . ,Qn)) =
⋂

(Q′
1, . . . ,Q

′
n),

where Q′
i = σθ(Qi) or Qi for i ∈ {1, . . . ,n} and at least one Q′

i equals σθ(Qi)
(7)

The outline of the proof for ρA→B(
⋂
(Q1, . . . ,Qn)) =

⋂
(ρA→B(Q1), . . . ,ρA→B(Qn)) pro-

ceeds as follows:

By Proposition 4 we know that we can rewrite
⋂
(Q1, . . . ,Qn) as n − 1 binary

intersections over Q1, . . . ,Qn. Then, we repetitively apply the distributive prop-
erty over the binary intersections until we end up with n − 1 intersections ap-
plied to ρA→B(Q1), . . . ,ρA→B(Qn). Finally, due to Proposition 4, we know that we
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can represent this chain of n − 1 binary intersections using the n-ary operator as⋂
(ρA→B(Q1), . . . ,ρA→B(Qn)) which completes the proof. The same reasoning holds

for the distributive property of the selection over the n-ary intersection, but when propa-
gating the selections over the binary intersections, at each step, we might propagate it
to only one of the operands rather than to both of them.

Figure 8 presents the Renaming and Selection Propagation rules (RP / SP) that are used
to push those operators down the syntax tree. Those transformations help to detect
queries preserving Codd semantics in two ways. In the first place, by distributing
selections over intersections, we can potentially restrict the set of nullable attributes
in operands of the intersection (as shown in Figure 9). Moreover, after applying the
transformation rules, the intersections which were previously interleaved with selections
and renamings are now stacked all together in the syntax tree. As a result, these rules
constitute a good normalization step before applying the IM transformation because they
can increase the number of intersections that get merged (example in Figure 10). Each
of these outcomes increases the chance that the intersection nodes will satisfy the DJN
condition and, consequently, helps to create a query that is more likely to be recognised
as Codd semantics preserving.

Now, even though the RP and SP transformations simply represent the properties (6)
and (7), their exact form is carefully motivated. The distributive properties allow us
to push the renaming and selection operations both up and down the syntax tree. In
combination with the IM transformation, moving them in either direction enables us to
capture more Codd semantics preserving queries. However, in order to maximize this
number, we chose to propagate them toward the leaves of the syntax tree. There are two

op

∩

Q1 . . . Qn

→

∩∗

op1

Q1

. . . opn

Qn

for op ∈ {ρ,σ}

Figure 8: Renaming/Selection Propagation (RP / SP) transformation rules.

σconst(C){A,B,C}

∩{A,B,C} ̸|= DJN

R{A,B,C} S{A,B,C}

SP→

∩∗{A,B,C} |= DJN

σ1
const(C){A,B,C}

R{A,B,C}

σ2
const(C){A,B,C}

S{A,B,C}

Figure 9: ∩ node in the LHS query does not satisfy the DJN condition. By distributing
the selection over the intersection, the attribute C becomes non-nullable before the
intersection is applied and ∩∗ satisfies the DJN in the transformed query. Consequently,
the query after transformation can be recognized as Codd semantics preserving.
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∩1{A,B,D} |= DJN

ρC→D{A,B,D}

∩2{A,B,C} ̸|= DJN

R{A,B,C} S{A,B,C}

T{A,B,D}
IM◦RP−−−→

∩3{A,B,D} |= DJN

ρ1
C→D{A,B,D}

R{A,B,C}

ρ2
C→D{A,B,D}

S{A,B,C}

T{A,B,D}

Figure 10: ∩2 node in the LHS query does not satisfy the DJN condition. By distributing
the renaming over the intersection, the two intersection operators can be merged pro-
ducing the RHS query. Now, the original query can be recognised as Codd semantics
preserving because the ∩3 node in the transformed query satisfies the DJN condition.

reasons for that:

• To propagate the renaming operator towards the root, the same renaming operation
must be applied to all operands of the intersection. On the other hand, there are no
constraints on distributing the renaming over an intersection to all of its operands.
Consequently, by pushing all selection and renaming operators down the syntax
tree, more intersection operators can be chained together.

• As shown before, propagating selection to operands of an intersection increases
the chances of satisfying the DJN condition by the intersection node. Doing the
opposite decreases this chance.

5.1.3 Removing redundant intersections

In previous sections, the transformations aimed to increase the chances of satisfying
the DJN condition by normalizing the query. Transformation rules presented in this
section attempt to go a step further. In some cases, when operands of an intersection are
identical, the operation can be removed altogether. The Intersection Simplification (IS)
and Intersection Reduction (IR) transformation rules that capture this idea are presented

∩

Q1 Q1 Q2 . . . Qn

→
∩∗

Q1 Q2 . . . Qn

Figure 11: Intersection Simplification (IS) transformation rule.

∩

Q1 Q1

→ Q1

Figure 12: Intersection Reduction (IR) transformation rule.
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in Figure 11 and Figure 12. The equivalence of the matched and target trees follows
directly from Theorem 2(b) and (c).

One of the simplest examples that shows the usefulness of this transformation is a
query Q =

⋂
(R,R,R) which will be marked as Codd semantics preserving only when

R is non-nullable. As soon as any of the attributes of R is nullable, the analysis of the
query Q alone will fail to recognize it as Codd semantic preserving query. However,
by transforming Q, using IS and IR rules, into an equivalent query Q =

⋂
(R,R,R)≡⋂

(R,R) ≡ R = Q′ and then analysing Q′ instead, we can determine that Q is indeed
Codd semantics preserving regardless of what constraint are put on the attributes of R.

From the theoretical point of view, these transformation rules can be further generalised.
Namely, we do not need to require that the repeating operands of an intersection are
syntactically the same. In fact, we can perform either transformation as long as one
of operands of the intersection in contained by the other. Specifically, if for some
queries Q1 to Qn it is true that Qi ⊆ Q j for some i, j ∈ {1, . . . ,n}, i ̸= j, then it is the
case that

⋂
(Q1, . . . ,Q j, . . . ,Qn)≡

⋂
(Q1, . . . ,Q j−1,Q j+1, . . . ,Qn) and

⋂
(Qi,Q j)≡ Qi.

An example of the application of such generalized rule is presented in Figure 13.

As one could expect, proving query containment is much harder than detecting syntac-
tically the same queries. In general, the query containment problem for two arbitrary
relational algebra queries is undecidable for both set and bags semantics [13]. Although,
this does not mean that one cannot take a pragmatic approach to detect contained queries.
Recently, several projects described and implemented practical systems proving equiva-
lence of numerous queries (a problem directly related to query containment by the fact
that Q1 ≡ Q2 ⇐⇒ Q1 ⊆ Q2 ∧Q2 ⊆ Q1). Despite the same theoretical limitations, they
can prove the equivalence of many pairs of arbitrary SQL queries using set and bag se-
mantics. Examples of such systems are Cosette [2], UDP [3], EQUITAS [16], or SPES
[15]. The successes of the aforementioned tools suggest that the generalized IS and IR
transformation rules can have a practical application in the process of determining the
preservation of Codd semantics.

∩

∪

R S

R → R

Figure 13: Example of an application of the generalized IR rule to a syntax tree rooted at
∩ node. Since R ⊆ R∪S under all databases, we can transform the original query, which
requires the ∩ node to satisfy the DJN condition to be considered as Codd semantics
preserving, into a much simpler query that trivially preserves the Codd semantics.
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5.2 Transformations preserving sufficient conditions

Definition 8. Let φ be a transformation that takes a relational algebra query and produces
an equivalent query. If φ(Q) satisfies the sufficient conditions for every query Q that
satisfies them as well, then φ is condition preserving.

Transformations preserving sufficient conditions are of special interest to us. This
is because they guarantee that we can detect all queries Q satisfying the sufficient
conditions by checking the conditions in transformed queries. The relation between the
sets of queries that are recognized to be Codd semantics preserving with and without
the help of condition preserving transformation φ is following:

{Q | φ(Q) satisfies Theorem 3 } ⊇ {Q | Q satisfies Theorem 3} (8)

Using a transformation to detect Codd semantics preserving queries that could be
recognized as such without transforming them in the first place is not that useful.
However, if we show that there exists a query Q such that φ(Q) satisfies the premises of
Theorem 3 while Q does not satisfy the sufficient conditions, then:

{Q | φ(Q) satisfies Theorem 3 } ⊃ {Q | Q satisfies Theorem 3} (9)

In simple words, if the relation (9) holds, then by checking the conditions in transformed
queries we can detect more queries preserving Codd semantics.

Unfortunately, not all transformations are condition preserving. Even transformations
producing equivalent queries are not guaranteed to be condition preserving. A simple
counterexample is a transformation taking a query Q and returning the query Q∩Q.
Such transformation is not condition preserving as the ∩ node is not guaranteed to
satisfy the DJN condition for all Codd semantics preserving queries Q. Besides, proving
the condition preservation for an arbitrary transformation can be a non-trivial task. In
fact, we tried it, unsuccessfully, for a more complex algorithm producing an equivalent
RA query in the intersection reduced form. The main obstacle was to formally reason
about conditions when the transformation affected multiple parts of the syntax tree.

This motivated us to come up with the ”atomic” transformation rules presented before.
Their simplicity facilitates the analysis of condition preservation, as all the syntax tree
changes are local to the transformed subtree. Furthermore, despite using only simple
syntax tree rewrite rules, we are still able to express more complex transformations.
For example, the transformation of an RA query to the intersection reduced form can
be achieved by repeatedly applying the IM rule until there are no more neighbouring
intersections. Also, composing atomic transformations makes it easier to analyse the
condition preservation of the resulting complex transformations. Intuitively, if all
composed transformations are condition preserving then the resulting transformation is
condition preserving as well. This idea is captured in Proposition 2.

Proposition 2. Let φ = φn ◦ · · · ◦φ1. If φ1 to φn are all condition preserving then φ is
condition preserving as well. Moreover, if any of the composed transformations satisfies
the relation (9), then it holds for φ too.

Proof. Both statements follow directly from the transitivity of relations (8) and (9).
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We have already shown in section 5.1 that with the help of our transformation rules
we can identify new Codd semantics preserving queries. In the following sections, we
prove that all of the presented transformation rules preserve the DJB, NNA, DJN, and NNC
conditions.

5.3 Sufficient conditions for condition preservation

Before we prove that proposed rules are condition preserving, we want to make a few
observations about what parts of a query’s syntax tree are relevant for each condition
and how changes to a syntax tree structure can impact the condition preservation. The
purpose of this subsection is to create a unified framework that can be later used to
evaluate whether a transformation rule is condition preserving.

5.3.1 Terminology

Recall that given a transformation rule φ we can apply it to a query Q to produce an
equivalent query φ(Q). If some subtree of the syntax tree of Q matches the template
tree of φ, we call such subtree a matched subtree. In such a case, φ(Q) is created by
replacing the matched subtree with the target tree of the transformation rule.

To make the discussion more concise, the terms ”query”, ”syntax tree of the query”, and
”node” (when referring to the specific node in a syntax tree) are used interchangeably.
We allow for this ambiguity as each query is uniquely represented by its syntax tree
or by a syntax tree rooted at the particular node. Moreover, on top of the normal rules
for labelling nodes in the syntax tree, we require that node labels are unique in both
template and target trees of a transformation rule as well as in Q and φ(Q). This way
we can uniquely refer to parts of the query before and after the transformation. The
exception to this rule is a situation when a syntactically identical subquery is present in
a query before and after the transformation (it was unaffected by the transformation). In
such a case, the corresponding nodes of this subquery can have the same labels in both
trees and we say that these nodes are the same. We illustrate and explain the labelling
rules in Figure 14.

∪1

Q1 Q2

→
∪2

Q2 Q1

Figure 14: Example of labelling rules used in a transformation rule. Nodes Q1 and
Q2 represent any two potentially different queries. Since they are present in both the
template and the target tree, we know they represent the same subquery (i.e., Q1 in the
template tree is the same as Q1 in the target tree). On the other hand, union ∪2 in the
target tree, could not be labelled as ∪1 because it represents a syntactically different
query (the order of operands is changed).

Also, to make the discussion about condition preservation clearer, we can identify the
following elements within the matched and target trees:
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Roots (of matched and target trees) - these two nodes always have different labels as
they represent two different queries. From now on, we refer to them as Rm and Rt nodes
respectively.

Ancestors (of transformation) - ancestors of Rm and Rt . Note that the transformation
rule cannot change the structure of a syntax tree of a query Q above the root of the
matched tree. Therefore, for every ancestor, A, of Rm in Q, there exists a corresponding
ancestor, Aφ, of Rt in φ(Q) so that the path between the root of the respective query
and the two ancestors is the same. Naturally, A and Aφ always represent the same
type of operation. For notational convenience, we use subscript φ to represent such a
corresponding node in φ(Q). Note that ancestors of transformation could not be labelled
the same, as they have two different queries rooted at them.

Remark. When a transformation rule is applied to some query, roots of matched and
target trees may or may not have ancestors (e.g. when the rule is applied to the root of a
query). For the sake of generality, when proving the condition preservation, we will
assume that roots always have some ancestors.

Leaves (of matched and target trees) - they are usually labelled Q with some subscript.
They represent subqueries rooted at them (we will refer to them as subqueries of the
transformation). The transformation φ does not alter those subqueries in any way.

Inodes (of matched and target trees) - internal nodes present in matched and target trees
respectively.

Inserted inodes - inodes present in a target tree but not in a matched tree.

Removed inodes - inodes present in a matched tree but not in a target tree.

Remark. Due to the way we label/identify nodes in a transformation rule, inodes of a
target tree consist only of inserted nodes and non-removed inodes.

Unrelated nodes - nodes that are neither descendants nor ancestors of Rm or Rt . Queries
rooted at them are not modified by the transformation in any way. Thus, two corre-
sponding unrelated nodes N in Q and Nφ in φ(Q) must represent the same subquery.

5.3.2 Transformation’s impact on satisfiability of the conditions

Sufficient conditions for Codd semantics preservation can be split into two categories
concerned with:

• a base of a query - DJB; and

• nullable attributes of a query - DJN, NNC, NNA.

To prove that the transformation is condition preserving, we need to show that all nodes
in the transformed query satisfy one of the required conditions, regardless of conditions
satisfied by each node in the initial query. To facilitate this task, we split the nodes in
φ(Q) into five groups depending on their position in the transformed syntax tree. Table
1 introduces the node groups as well as summarizes the impact a transformation could
have on nodes’ properties. In the following sections, we explain how each property is (or
is not) affected by transformation rules presented in this report and outline what suffices
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Type of nodes
Can be altered by a transformation?

n-sig base
path to an
ancestor

n-sig of an
ancestor

ancestors of the transformation yes yes no yes
non-removed inodes no no yes yes
inserted inodes n/a n/a n/a n/a
nodes in subqueries of the trans-
formation

no no yes yes

unrelated nodes no no no yes

Table 1: Nodes in a transformed query can be split into five groups based on their
position in a syntax tree. Table presents the impact a transformation could have on the
various node properties and related to them conditions (n-sig: DJN, NNC, NNA; base: DJB;
path to an ancestor: NNA; n-sig of an ancestor: NNA)

to be shown to ensure that a rule is condition preserving. We will omit the inserted
nodes in our considerations as it is impossible to talk about condition preservation in
their case. Instead, their satisfiability of the sufficient conditions needs to be proven
separately for each transformation rule.

5.3.3 Preservation of the DJB condition

Since the base of a query is defined inductively with respect to its children, the bases of
all subqueries not modified by the transformation remain the same. Such subqueries
are represented by nodes that have the same label in the original and transformed
query. That is: non-removed nodes, unrelated nodes, and nodes in subqueries of the
transformation. Therefore, if one of these nodes satisfied the DJB condition before the
transformation, it will continue to do so after it. For that reason, as shown in Table 1,
we only need to ensure that ancestors of the transformation preserve the DJB condition,
as their base can be affected by the transformation. The condition which guarantees this
is following:

base(Rt)⊆ base(Rm) (10)

Proof. Let A be the ancestor of Rm such that A satisfies the DJB condition. Also, let Al

and Ar be the children of A. Following our notation, Al
φ

and Ar
φ

are the corresponding
children of Aφ. Without the loss of generality, we can assume that Rm is a descendant of
Al . In such a case, Ar is not modified by the transformation and is the same as Ar

φ
.

Next, let V be the set of relation names that appear in the subtree rooted at Al excluding
the subtree rooted at Rm. Note that V is equal to the set of relation names that appear in
the subtree rooted at Al

φ
excluding the subtree rooted at Rt . This is because Al

φ
can be

created by replacing Rm with Rt in Al . Therefore, we can express bases of Al and Al
φ

as:

base(Al) =V ∪base(Rm) (11)

base(Al
φ) =V ∪base(Rt) (12)
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Finally, we can use the above observations to proof that Aφ satisfies the DJB condition
as well:

base(Al
φ)∩base(Ar

φ) = base(Al
φ)∩base(Ar) (because Ar = Ar

φ
)

= (V ∪base(Rt))∩base(Ar) (by 12)
⊆ (V ∪base(Rm))∩base(Ar) (condition 10)

⊆ base(Al)∩base(Ar) (by 11)
=∅ (because A |= DJB)

Remark. We prove the preservation of the DJB condition only for nodes with two
children as it is only required from the binary union operation.

5.3.4 Preservation of the NNA, DJN, and NNC conditions

Similarly to the base property, changes in nullable attributes of the transformed subquery
can propagate only towards the root of the input query, as the nullable signature is
defined recursively with respect to children of a given node. Using this observation, we
formulate the following lemma which we will then use to prove the preservation of NNA,
DJN, and NNC conditions.

Lemma 2. Let φ be a transformation rule φ with Rm and Rt being the roots of the
matched and target tree respectively. For any two corresponding ancestors of the
transformation, A in Q and Aφ in φ(Q), the following statement holds:

n-sig(Rt)⊆ n-sig(Rm) =⇒ n-sig(Aφ)⊆ n-sig(A)

Proof. In chapter 2, we showed the recursive definition of the nullable signature of a
RA expression. Using those formulas, we can represent nullable attributes of a complex
query as a function of a nullable signature of its sub-expression. Assuming that a query
Q′ is a child of Q and that the nullable attributes of all the other children of Q are fixed,
let function fQ′→Q(N) represent the nullable signature of Q if n-sig(Q′) was equal to N.
For example, let Q = Q1∩Q2, with n-sig(Q1) = {A,B}. Then, fQ2→Q(N) = N∩{A,B}.
What is more, observe that by definition: fQ′→Q(n-sig(Q′)) = n-sig(Q). That is, if we
assume that the nullable signature of Q′ is equal to the actual nullable signature of Q′,
then fQ′→Q(n-sig(Q′)) is equal to the actual nullable signature of Q.

The analysis of the propagation of nullable attributes naturally extends beyond the scope
of a direct parent-child relation. Given nodes Q1,Q2,Q3 such that Q1 ≺ Q2 ≺ Q3, we
can represent the impact of nullable attributes of Q3 on the nullable signature of Q1 as a
function fQ2→Q1( fQ3→Q2(N)). For notational convenience, we will write:

fQn→Q1(N) = ( fQ2→Q1 ◦ fQ3→Q2 ◦ · · · ◦ fQn→Qn−1)(N) (13)

for nodes Q1 to Qn such that Q1 ≺ ·· · ≺ Qn.
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The last bit needed to prove the lemma is the fact that for any ancestor node A of Rm
and its child A′, such that A′ ≺ ·· · ≺ Rm or A′ = Rm, it is the case that

fA′→A(N) = fA′
φ
→Aφ

(N) (14)

This follows from the fact that a transformation can only impact the nullable attributes
of nodes on the path from the root of the query to the node Rm. Other children of A are
equal to their corresponding nodes in φ(Q), so their nullable signature is unchanged.
Hence, the nullable attributes fixed by fA′→A are the same as those fixed by fA′

φ
→Aφ

and
the two functions are equal.

Finally, we can assemble all the insights and proceed with the final proof. Let:

X = n-sig(Rm) Y = n-sig(Rt) and Z = n-sig(Rm)−n-sig(Rt),

then the set of nullable attributes of A can be expressed as follows:

n-sig(A) = fRm→A(n-sig(Rm)) (by definition of fRm→A)
= fRm→A(X)

= fRm→A(Y ∪Z)
= fRm→A(Y )∪ fRm→A(Z) (property of a map on sets)
= fRt→Aφ

(Y )∪ fRm→A(Z) (by relation 14)

= fRt→Aφ
(n-sig(Rt))∪ fRm→A(Z)

= n-sig(Aφ)∪ fRm→A(Z) (by definition of fRt→Aφ
)

which implies that n-sig(Aφ)⊆ n-sig(A) and completes the proof.

Equipped in Lemma 2, we can find sufficient conditions for the preservation of DJN,
NNC, and NNA conditions.

5.3.4.1 Preservation of the DJN and NNC conditions

Similarly to the base of a query, the query’s nullable attributes are defined inductively
with respect to its children. Therefore, nullable signatures of all nodes that are not
modified by the transformation will remain unchanged. As a consequence, non-removed
nodes, unrelated nodes, and nodes in subqueries of the transformation which satisfied
the DJN or NNC condition in the original query will continue to do so in the transformed
one. Therefore, to prove that a transformation rule preserves the DJN and NNC conditions,
we only need to show that those conditions are preserved among the ancestors of the
transformed tree. The following condition ensures that this is indeed the case:

n-sig(Rt)⊆ n-sig(Rm) (15)

Proof. Let A be an ancestor of Rm such that A satisfies the DJN condition. Also,
let A1 to An be the children nodes of A. Since A satisfies the DJN, we know that
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⋂n
i=1 n-sig(Ai) = ∅. Now, without the loss of generality we can assume that Rm is a

descendant of A1. Assuming that n-sig(Rt)⊆ n-sig(Rm), we proceed as follows:
n⋂

i=1

n-sig(Aφ

i ) = n-sig(Aφ

1)∩
n⋂

i=2

n-sig(Aφ

i )

= n-sig(Aφ

1)∩
n⋂

i=2

n-sig(Ai) (other children are unaffected)

⊆ n-sig(A1)∩
n⋂

i=2

n-sig(Ai) (by Lemma 2)

⊆
n⋂

i=1

n-sig(Ai) =∅ (because A |= DJN)

Hence, the DJN condition is satisfied for all ancestors of Rt that satisfied the DJN in the
input query. The proof for NNC is analogous.

5.3.4.2 Preservation of the NNA condition

Recall that NNA can be satisfied in two ways. Either the node is non-nullable or one of
its ancestors is. We will prove both cases in one go. We start by assuming, without the
loss of generality, that:

• NNA condition is satisfied by a node N in a syntax tree of a query Q.

• M is the non-nullable ancestor of N in Q or M is N itself.

• N is a leaf node in the syntax tree of Q. If the NNA condition is preserved for a
leaf, then it must be preserved for all nodes between the node M and the leaf N.

At this point, there are two scenarios. Either N is a node in a subquery of the transfor-
mation or not. We start by assuming the former. In such a case, let Qi be a leaf node of
the matched tree such that Qi = N or Qi ≺ ·· · ≺ N. At this point, we assume that Qi is
a leaf of the target tree as well. If it was not the case, then N would not be a part of the
transformed query and there would be nothing to preserve.

Then, we have three cases:

1. M is in the subquery rooted at Qi. Under such circumstances, the NNA condi-
tion is trivially preserved as the subquery rooted at Qi is not modified by the
transformation.

2. M is an inode of the matched tree. Then we need to show that there exists another
non-nullable inode in the target tree, call it M′, that is an ancestor of Qi. By
the transitivity of the ancestor relation, M′ will be an ancestor of N and the NNA
condition will be preserved.

3. M is the ancestor of Rm. Consequently, Mφ is an ancestor of Rt , which is an
ancestor of N. In this case, it is sufficient to show that n-sig(Rt) ⊆ n-sig(Rm).
If this condition is met, then, by Lemma 2, n-sig(Mφ) ⊆ n-sig(M) = ∅ as M is
non-nullable. By the transitivity of the ancestor relation, Mφ is a non-nullable
ancestor of N in φ(Q) and the NNA condition is preserved.
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Now, if N is not in any subquery of the transformation, then we have two more cases:

4. M is not an ancestor of Rm (M is a unrelated node). Under such circumstances,
the corresponding node Mφ in φ(Q) is equal to M and the NNA condition is trivially
preserved. This is because the transformation could not alter the nullable attributes
of M, so M is still the non-nullable ancestor of N.

5. M is an ancestor of Rm. Again, by requiring that n-sig(Rt)⊆ n-sig(Rm), we ensure
that n-sig(Mφ)⊆ n-sig(M) =∅ as M is non-nullable. Consequently, the Mφ node
is a non-nullable ancestor of N and the NNA condition is preserved.

In the first and fourth cases, the NNA is trivially preserved. Therefore, to show that a
transformation rule preserves the NNA condition it is sufficient to prove that:

• n-sig(Rt)⊆ n-sig(Rm); and

• for every inode x in the matched tree we need to show that: if we assume x to be
non-nullable, then, for every leaf Qd of the matched tree that has x as an ancestor,
there exists a non-nullable inode in the target tree that is an ancestor of Qd .

5.3.5 Sufficient conditions for condition preservation - summary

All things considered, we just showed that when proving the condition preservation of
a transformation rule, we only need to focus on the requirements related to inodes of
matched and target subtrees of the rule. Specifically:

• for DJB we need to show that: base(Rt)⊆ base(Rm)

• for DJN & NNC we need to show that: n-sig(Rt)⊆ n-sig(Rm)

• for NNA we need to show that:

– n-sig(Rt)⊆ n-sig(Rm); and

– for every inode x in the matched tree we need to show that: if we assume
x to be non-nullable, then, for every leaf Qd of the matched tree that has x
as an ancestor, there exists a non-nullable inode in the target tree that is an
ancestor of Qd .

• for every inserted node we need to show that it satisfies at least one condition
required by its expression type, regardless of what conditions are satisfied by
nodes in the matched tree

Remark. None of the transformation rules presented in this report adds a base relation
that is not already present in base(Rm) to the target tree, thus we consider all presented
transformations to be DJB preserving.

5.4 Proofs of condition preservation

In the next subsections, we formally prove that all transformation rules presented in this
report are condition preserving.
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5.4.1 Intersection Merge rule

Keeping in mind our findings from previous sections, to prove that the IM transformation
rule is condition preserving we will show that:

• ∩3 satisfies the DJN condition - because ∩3 is an inserted node.

• ∩3 is non-nullable - for the preservation of the NNA condition (so all nodes in a
transformed subtree can refer to it as their non-nullable ancestor).

• n-sig(∩3)⊆ n-sig(∩1) - for the preservation of the DJN and NNA conditions.

As a matter of fact, all of these conditions come down to showing that n-sig(∩3) =∅.
This is because for any intersection operation Q =

⋂
(Q1, . . . ,Qn) it is the case that

n-sig(Q) = ∅ ⇐⇒
⋂n

i=1 n-sig(Qi) = ∅ and the empty set is a subset of every set so
the last condition is satisfied as well.

We proceed by noticing that n-sig(∩2) =
⋂k

i=1 n-sig(Qi) =∅ since ∩2 must satisfy the
DJN condition. We use this observation to prove that ∩3 is non-nullable as follows:

n-sig(∩3) =
n⋂

i=1

n-sig(Qi) =
k⋂

i=1

n-sig(Qi) ∩
n⋂

i=k+1

n-sig(Qi) =∅ ∩
n⋂

i=k+1

n-sig(Qi) =∅

Thus, the IM transformation rule is condition preserving.

5.4.2 Selection/Renaming Propagation rules

To prove that SP/RP rules are condition preserving we will show that:

• ∩∗ node satisfies the DJN condition - because ∩∗ is an inserted node.

• ∩∗ node is non-nullable - for the preservation of the NNA condition.

• n-sig(∩∗)⊆ n-sig(op) - for the preservation of the DJN and NNA conditions.

Again, all of these come down to showing that n-sig(∩∗) =∅.

We start the proof by noticing that n-sig(∩) =
⋂n

i=1 n-sig(Qi) =∅ as the ∩ node must
satisfy the DJN condition. Using this observation we prove that n-sig(∩∗) =∅ for both
operations.

For the selection operation, n-sig(σi
θ
(Qi))⊆ n-sig(Qi) since selection can only remove

attributes from the nullable signature. Hence, we get that:

n-sig(∩∗) =
n⋂

i=1

n-sig(σi
θ(Qi))⊆

n⋂
i=1

n-sig(Qi) =∅

Similarly, for the renaming operation:

n-sig(∩∗) =
n⋂

i=1

n-sig(ρi
A→B(Qi)) =

n⋂
i=1

n-sig(Qi)[A/B] =
( n⋂

i=1

n-sig(Qi)
)
[A/B]

=∅[A/B] =∅

Therefore, SP and RP rules are condition preserving.
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5.4.3 Intersection Simplification rule

To prove that the IS rule is condition preserving we will show that:

• ∩∗ satisfies the DJN condition - because
⋂∗ is an inserted node

• ∩∗ is non-nullable - for the preservation of the NNA condition

• n-sig(∩∗)⊆ n-sig(∩) - for the preservation of the DJN and NNA conditions

Once again, all of these reduce to showing that n-sig(∩∗) =∅, which is the case as:

n-sig(∩∗) =
n⋂

i=1

n-sig(Qi) = n-sig(Q1)∩
n⋂

i=1

n-sig(Qi) = n-sig(∩) =∅ (as ∩ |= DJN)

which proves that IS is a condition preserving transformation rule.

5.4.4 Intersection Reduction rule

The IR rule is unusual because its subquery of transformation Q1 becomes the root of
the transformed subtree. This, however, does not change the way in which we prove
the condition preservation for the IR rule. The things we will show this time are the
following:

• n-sig(Q1)⊆ n-sig(∩) - for the preservation of the DJN and NNA conditions

• Q1 is non-nullable - for the preservation of the NNA condition (by nodes in the
query rooted at Q1)

Once more, both of these conditions are equivalent because n-sig(∩) = ∅ (as the
intersection node must satisfy the DJN condition) requiring n-sig(Q1) to be an empty
set for IR to be condition preserving. We proceed with the proof as follows:

Since ∩ node satisfies the DJN condition, we know that:

n-sig(∩) = n-sig(Q1)∩n-sig(Q1) =∅

However:
n-sig(Q1)∩n-sig(Q1) =∅ ⇐⇒ n-sig(Q1) =∅

Hence, Q1 must be non-nullable, which proves that the IR transformation rule is
condition preserving.

5.5 Proposed query preprocessing step

Finally, we present the transformation that can be used to capture more queries preserv-
ing Codd semantics:

Definition 9. φIRF is a transformation which takes as an input a relational algebra query
Q and outputs an equivalent RA query in the intersection reduced form. It transforms
the query in three phases:
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1. Distribution phase: all selections and renamings are distributed over intersec-
tions according to the SP and RP transformation rules.

2. Merging phase: each chain of intersections is reduced to a single n-ary intersec-
tion according to the IM rule.

3. Reduction phase: First, all duplicates of intersections’ operands are removed
according to the IS rule. Then, any intersection that has the same subquery as its
operands is replaced by that subquery according to the IR rule. Simplifying/re-
ducing all children of a node before the node itself is processed guarantees that
the syntax tree is simplified as much as possible.

It should be clear from the definition of φIRF that every phase of the transformation is
equivalent to repeated applications of respective transformation rules. As each of these
rules produces an equivalent query, the result of the overall transformation is equivalent
to the original query. Consequently, this allows us to arrive at the following proposition.

Proposition 3. Let Q be a relational algebra query. If the syntax tree of φIRF(Q)
satisfies the conditions of Theorem 3, then Q preserves Codd semantics.

In order to ensure that the new method of testing queries for the preservation of
Codd semantics is practical, we must require that a transformation of the original
query terminates in the polynomial time with respect to the number of nodes in the
syntax tree of the input query. N.B. deciding whether a query satisfies the premises
of Theorem 1 and 3 can be performed in the linear time with respect to the size of its
syntax tree [7]. As one could expect, this is indeed the case for the φIRF transformation
(see Appendix C for the supporting argument), which brings us to the final conclusion
of this report:

Theorem 4. Proposition 3 enables us to capture more Codd semantics preserving
queries than Theorem 3 alone.

Proof. By definition, φIRF is always equivalent to some composition of SP, RP, IM, IS,
and IR transformations, all of which are condition preserving. Moreover, in section 5.1,
we have already demonstrated that there exist queries for which SP(Q1), IM(Q2), and
IR(Q3) satisfy the premises of Theorem 3, while queries Q1,Q3,Q3 on their own do not.
Meaning that the relation (9) holds for the SP, IM, and IR transformation rules. Thus,
by Proposition 2, we get that:

{Q | φIRF(Q) satisfies Theorem 3 } ⊃ {Q | Q satisfies Theorem 3}

which is the same as:

{Q | Q satisfies Proposition 3 } ⊃ {Q | Q satisfies Theorem 3}
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Testing Codd Semantics in Java

As a part of the project, we developed an open-source Java library, coddifier [11], which
enables its clients to verify whether an RA expression is guaranteed to preserve Codd
semantics. The library exposes its API through two methods in Coddifier class:

• isGuaranteedToPreserveCoddSemanticsAsIs checks whether a query is
guaranteed to preserve Codd semantics by analyzing its syntax tree.

• isGuaranteedToPreserveCoddSemantics first normalizes the query using
φIRF transformation and then analyzes the syntax tree of the transformed ex-
pression.

6.1 Coddifier’s architecture

The system architecture consists of three main building blocks: RA Expressions,
ExpressionTransformations, and database Schemas. Their relation with each other
is depicted in Figure 15. To use the Coddifier class, a client needs to represent a
query as an Expression object and pass a Schema with respect to which the query is
to be tested for Codd semantics preservation. We provide basic implementations of
these interfaces so the library can be used independently with a minimal amount of
supporting code. Moreover, the simplicity of the required interface facilities seamless
integration with existing software that already defines its structures for expressions and
schemas. In the following subsections, we will briefly describe the core components of
the coddifier package.

Figure 15: The overview of the system architecture. The dashed lines represent the
dependencies between the modules.

36
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6.1.1 RA expressions

In coddifier library, RA expressions are represented by subclasses of the Expression
class. The base class uses a template method pattern to test for Codd semantics
preservation in which classes representing individual expression types must im-
plement computeSignature, computeNullableSignature, isWellDefined, and
satisfiesSufficientConditions functions. The verification procedure follows
the algorithm described in [7], with exception that all conditions are checked for each
syntax tree node.

Currently, we support testing of RA queries under bags semantics as described in
Theorem 3. Atomic expressions are implemented by the Relation class and com-
plex expressions by Difference, Distinct, Intersection, Product, Projection,
Renaming, Selection, and Union classes. However, extending this set with new oper-
ations and their corresponding sufficient conditions can be easily achieved by inheriting
from Expression or other expression classes. For example, the projection expression
under set semantics is required to satisfy the NNA condition [7]. To reflect this in our
system, the client can extend the Projection class in the following manner:
class SetProjection extends Projection {

protected boolean satisfiesSufficientConditions() {
return nna; // where "nna" is a boolean flag set to true

// if the node satisfies the NNA condition
}

}

6.1.2 Database schemas

Sufficient conditions can guarantee that a query will preserve Codd semantics when
evaluated on a database instance, or rather, a set of instances that match some database
schema. Hence, we need to be able to capture information about relations and their
attributes in a database. We do this by passing to the system an implementation of the
Schema interface:
public interface Schema {

boolean hasRelation(String relation);
Set<String > getRelationAttributeNames(String relation);
Set<String > getRelationNullableAttributeNames(String relation);

}

Except for the consistent implementation of the above functions (i.e., for every relation
R in database schema sig(R) ̸=∅ and n-sig(R)⊆ sig(R)), we also require that objects
implementing Schema interface are immutable. This is because they are used as keys
when caching attributes of each subexpression, which avoids unnecessary recomputation
of those properties every time they are used during the condition checking process.

6.1.3 Expression transformations

ExpressionTransformations are used by the Coddifier class to transform the orig-
inal expression into an equivalent expression that is more likely to satisfy the sufficient
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conditions. At the moment, the input query is preprocessed using the φIRF transfor-
mation. As proved in section 5.5, it is guaranteed to produce an equivalent query and
to preserve sufficient conditions. To maintain these correctness guarantees, we do
not allow clients to specify their transformations to be used by the Coddifier class.
However, nothing prevents users from transforming queries on their own before testing
them for Codd semantics preservation. Once new transformations are shown to facilitate
the detection of Codd semantics preserving queries, they will be incorporated into the
verification process so that everyone can benefit from them.

6.2 Evaluation

The correctness of the implementation is verified using 171 unit and integration tests
providing 100% line and branch coverage. While the unit tests focus on the individual
functions ensuring proper functioning of all subcomponents, the integration tests verify
the correct behaviour of the exposed API as a whole. The latter mainly includes: testing
queries for the preservation of Codd semantics, checking if individual nodes satisfy
appropriate conditions; ensuring that transformations produce expected results.

6.3 Integration with RA Parser

The coddifier package on its own enables testing of queries represented only as
Expression objects. While in some cases it might be acceptable to manually hardcode
a predetermined list of queries using appropriate classes in a Java program, ideally, we
would like users to be able to specify queries using some user-friendly interface.

However, we deliberately decided not to deliver any interactive user interface, nor to
provide a way to build these queries dynamically. There are several reasons for that.
Most notably, we wanted to keep the coddifier package simple. If we added RA parsing
module, we would also need to add the support for creating the database schemas,
handling input errors, supporting derived operations, etc. All of a sudden, the package
would have many responsibilities that are not directly related to the problem of Codd
semantics preservation. By focusing on one thing only, we can: keep the code simple,
maintainable, and well-tested; minimize the number of dependencies and the overall
size of the package; make the library highly customisable and extendable; have a clearly
defined purpose. All of the above are the desirable properties of a software library
which make it more likely to be used by other software.

Moreover, there already exist open-source RA interpreters, such as real [4] or RA [14],
that do much more than just parse RA queries. We believe that the coddifier package fits
best on top of such systems extending their functionality with the ability to check queries
for Codd semantics preservation. Having said that, to make the functionality of the
library accessible to the broader community, we integrated the coddifier library with the
command line RA interpreter real. We hope that it will officially become a part of real
in the near future. In the meantime, the fork implementing the changes is available at [8]
(branch ’develop’). Examples of how to check queries for Codd semantics preservation
using coddifier library alone and using the real tool are presented in Appendix D.
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Conclusions and Future Work

This report set out a number of improvements that facilitate recognition of Codd
semantics preserving queries to techniques described in [7].

Firstly, in chapter 3, we refined the way nullable attributes are propagated in selection
by deriving information about which attributes are certain to be made non-nullable by
the operation from its condition. Even though there are not any conditions put directly
on the selection node, this change can facilitate satisfiability of DJN, NNC, and NNA
constraints by other nodes in the syntax tree.

Secondly, in chapter 4, we observed that the original DJN condition was ill-suited to
capture the Codd semantics preservation of chains of intersections. For that reason,
we introduced a variadic intersection operation that makes it possible for us to express
the intersection of all subqueries at once. This enabled us to apply the redefined DJN
constraint in a way that imposes the desired state of the query answer on the overall
intersection, rather than requiring it from each intermediate binary intersection. The
described solution fits into the general observation that introducing derived operations
to the syntax of the query language allows to relax the sufficient conditions for the
underlying operations [7]. The downside of this approach is that queries must use the
new constructs explicitly and properly to see any benefits. This might not always be
achievable, e.g., if queries are automatically generated using the standard set of RA
operators.

To overcome this problem, in chapter 5, we suggested a query normalization procedure
that transforms an input query into an equivalent query that is more likely to satisfy the
sufficient conditions. Thanks to this method we can incorporate the derived operations
in the testing process even if the original query does not include them in the first place.
Moreover, we showed that the syntax tree rewrite rules involved in the transformation
are conditions preserving. As a result, by preprocessing the query using the φIRF

transformation we can detect more queries preserving Codd semantics than using
Theorem 3 alone.

Furthermore, we came up with sufficient conditions for the preservation of the con-
ditions. Interestingly, transformation rules do not always need to preserve all the
conditions. For example, if queries of interest never contained a union operation, then
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we would not need to prove the preservation of the DJB condition as it would never
be required by any of the syntax tree nodes. This could allow for the creation of
transformation rules tailored to the problem at hand.

Finally, as described in chapter 6, we implemented the checks for the preservation of
Codd semantics as a Java library - coddifier. To the best of our knowledge, this is the
first implementation of the work described in [7] and this report. Moreover, to make the
package more accessible and easier to use for the broader community, we added the
functionality of the coddifier system as a feature in the command line RA interpreter
real.

7.1 Plan for MInf Project (Part 2)

This project has many extensions, which we are planning to pursue in its second
part. One possibility is to identify new derived operations that may result in weaker
constraints. Our candidate is a variadic union operation. Namely, we observed that
in the binary case, we either consider the base or the nullable attributes of the union’s
operands. In the n-ary case, we could look at the two properties at the same time.
Intuitively, nullable records from relations in non-nullable children cannot propagate to
the query answer. Therefore, we should be able to exclude the non-nullable operands of
the n-ary from the DJB check - potentially relaxing the constraints. Another option is
to check whether the newly derived operations (e.g., the variadic intersection) help to
relax sufficient conditions for queries evaluated under set semantics.

The second direction of research is to identify other syntax tree transformations facil-
itating satisfiability of the sufficient conditions. We showed before that the order of
operations can impact the nullable attributes of individual nodes. By distributing opera-
tions that can narrow down the nullable signature of other nodes (such as selections or
projections) we should be able to detect even more queries preserving Codd semantics.

One more interesting extension is to attempt to evaluate datasets of queries written in a
suitable fragment of SQL. For that, we could use translations from SQL to RA presented
in [6] and test the translated queries for Codd semantics preservation. Naturally, the
satisfiability of restrictions will depend on the exact translations used, but we hope
that our normalization step will mitigate this problem to a certain degree. A more
challenging continuation is to understand Codd semantics preservation in the context
of aggregations and groupings. This would enable us to express and verify even more
queries that frequently appear in real life.

Finally, we would like to investigate a database model (suggested in [7]) in which
duplicates of nullable records are allowed. Note that this was not possible in Codd
databases as Codd nulls cannot repeat. In this scenario, a table could be represented as a
set of records, each associated with its multiplicity in the given table. Such a setup poses
many interesting questions: Can we even talk about the preservation of Codd semantics
in that context? If yes, how can duplicated nullable records be interpreted in SQL
databases? Are the corresponding restriction weaker or stronger than those required
for the preservation of Codd semantics in databases where only constant records can
repeat? We will try to answer these questions in the second part of the project.
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Appendix A

Additional Proofs

Proof of Proposition 1. If all intersections in the chain satisfy the DJN condition, then,
trivially, all terminal intersections satisfy the DJN condition as well. Thus, we focus on
the proof in the other direction.

We start by noticing that each intersection node in the chain, call it N, is either a terminal
intersection or one of its children contains some terminal intersection. In the former
case, N satisfies the DJN by the assumption.

In the latter, let N ≺ ·· · ≺ T , where T is a terminal intersection node. Since all nodes on
the path between N and T are labelled ∩ and n-sig(Q1 ∩Q2) = n-sig(Q1)∩n-sig(Q2)
implies that n-sig(Q1 ∩Q2)⊆ n-sig(Q1) and n-sig(Q1 ∩Q2)⊆ n-sig(Q2), it holds that:

n-sig(N)⊆ ·· · ⊆ n-sig(T )

As T satisfies the DJN condition, n-sig(T ) =∅ which in turn means that n-sig(N) must
be an empty set. Hence, N must satisfy the DJN condition as well.

Proof of Theorem 2. All the properties are derived directly from the definition of the
n-ary bag intersection:

(a) As the the binary intersection is commutative and associative, the n-ary intersec-
tion is equal to:⋂

(B1, . . . ,Bn) = B1 ∩·· ·∩Bn = { r, . . . ,r︸ ︷︷ ︸
min(k1, . . . ,kn) times

| r ∈k1 B1, . . . , r ∈kn Bn}

Since the reordering of bags does not change the counts of elements in bags, we
can conclude that the ordering of bags in the n-ary intersection operation does no
matter for the final result.

(b) ⋂
(B1,B1) = B1 ∩B1 = B1
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(c) ⋂
(B1, . . . ,B1,B2, . . . ,Bn) = B1 ∩·· ·∩B1 ∩B2 ∩·· ·∩Bn

= (B1 ∩·· ·∩B1)∩B2 ∩·· ·∩Bn

= B1 ∩B2 ∩·· ·∩Bn

=
⋂

(B1, . . . ,Bn)

(d) ⋂(⋂
(B1, . . . ,Bm),Bm+1, . . . ,Bn

)
=

⋂
(B1, . . . ,Bm)∩Bm+1 ∩·· ·∩Bn

=
(
B1 ∩·· ·∩Bm

)
∩Bm+1 ∩·· ·∩Bn

= B1 ∩·· ·∩Bm ∩Bm+1 ∩·· ·∩Bn
(by the associativity)

=
⋂

(B1, . . . ,Bn)

Proof of Lemma 1. We assumed that there do not exist records r1, . . . ,rn such that, for
every attribute A, ri ∈ Ti and ri(A) ∈ Null, for i = 1, . . . ,n. Hence, it is impossible for
some record r taking a nullable value for some attribute to be present in all the tables
T1, . . . ,Tn at the same time. Thus, a result of the n-ary intersection

⋂
(T1, . . . ,Tn) must

be a complete table. Hence, trivially,
⋂
(T1, . . . ,Tn) = sql

(⋂
(T1, . . . ,Tn)

)
Now, we can show that

⋂
(T1, . . . ,Tn) =

⋂(
sql(T1), . . . ,sql(Tn)

)
as follows:

#(r,
⋂

(T1, . . . ,Tn)) = #(r, T1 ∩·· ·∩Tn)

= min
{

#(r,T1), . . . ,#(r,Tn)
}

(•)
= min

{ k1︷ ︸︸ ︷
∑

s∈sql−1(r)

#(s,T1), . . . ,

kn︷ ︸︸ ︷
∑

s∈sql−1(r)

#(s,Tn)
}

= min
{

#(r,sql(T1)), . . . ,#(r,sql(Tn))
}

= #(r,
⋂

(sql(T1), . . . ,sql(Tn)))

All equalities, but (•), follow directly from the definition of the n-ary intersection and
the sql operation. To prove that equality (•) holds, we have to consider two cases: (1)
when r maps all attributes to constant values, (2) when r maps some attribute A to a
nullable value.

For (1): the equality holds because, in such case, sql−1(r) = {r}.

For (2): since
⋂
(T1, . . . ,Tn) is complete and r(A) ∈ Null, then #(r,

⋂
(T1, . . . ,Tn)) = 0.

By our assumption, we know that there are not any records r1, . . . ,rn such that ri ∈ Ti
and ri(A) ∈ Null, for i = 1, . . . ,n. Because of that, at least one of the sums k1, . . . ,kn
must be equal to 0 (as otherwise s would contradict the assumption of the lemma) and
thus the RHS of (•) is also equal to 0.
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Equivalence of the n-ary Intersection
and Chains of Intersections

The goal of this appendix is to prove the following proposition:

Proposition 4. Let E be any complex RA expression whose syntax tree meets the
following conditions:

• the root and all internal nodes are labelled
⋂

• leaf nodes, X1, . . . ,Xn, are roots of any well-formed expressions

Then, E is equivalent to the expression
⋂
(X1, . . . ,Xn)

To do that, we will first prove a related lemma which will greatly simplify the proof of
Proposition 4.

Lemma 3. Let E be an RA expression whose syntax tree satisfies the following condi-
tions:

• all internal nodes, if any, are labelled
⋂

;

• all leaf nodes, X1, . . . ,Xn are roots of any well-formed expression

Then E is equivalent to the expression
⋂
(X1,X1,X2,X2, . . . ,Xn,Xn).

Proof. We give an inductive proof on the structure of the assumed RA expression.

Basis: The base case is when E is any expression other than an intersection, so its
syntax tree has a single leaf node (the root node), meaning that E = X1. In such case,
E =

⋂
(X1,X1), so the basic case holds.

Induction: The inductive step applies when the root node of the syntax tree of E is
labeled with

⋂
. In such case, E =

⋂
(E1, ...,Ek), for some k ≥ 2. By the induction

hypothesis, each sub-expression Ei, for i∈ {1, . . . ,k}, has an assumed syntax tree with ni
leaf nodes labeled X1

i , . . . ,X
ni
i and can be represented as

⋂
(X1

i ,X
1
i , . . . ,X

ni
i ,Xni

i ). Thus:

E =
⋂

(E1, ...,Ek)≡
⋂(⋂

(X1
1 ,X

1
1 , . . . ,X

n1
1 ,Xn1

1 ), . . . ,
⋂

(X1
k ,X

1
k , . . . ,X

nk
k ,Xnk

k )
)
(16)
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Now, using Theorem 2(d), we can merge nested intersections in the equation (16) to
get:

E ≡
⋂(⋂

(X1
1 ,X

1
1 , . . . ,X

n1
1 ,Xn1

1 ), . . . ,
⋂

(X1
k ,X

1
k , . . . ,X

nk
k ,Xnk

k )
)

≡
⋂(

X1
1 ,X

1
1 , . . . ,X

n1
1 ,Xn1

1 , . . . ,
⋂

(X1
k ,X

1
k , . . . ,X

nk
k ,Xnk

k )
)

≡ . . .

≡
⋂(

X1
1 ,X

1
1 , . . . ,X

n1
1 ,Xn1

1 , . . . ,X1
k ,X

1
k , . . . ,X

nk
k ,Xnk

k

)
Finally, note that the leaf nodes of the syntax trees of E1 to Ek constitute all of the leaves
of the syntax tree of E - as required by the induction hypothesis. This is because E1 to
Ek are all children of E. This observation completes the inductive step and concludes
the proof.

Eventually, equipped with Lemma 3, we can prove Proposition 4.

Proof of Proposition 4. Let E be an expression such that its syntax tree meets the
assumption of the proposition:

• the root and all internal nodes are labelled
⋂

• leaf nodes, X1, . . . ,Xn, are roots of any well-formed expression

Since E satisfies the assumptions of Lemma 3, the expression
⋂
(X1,X1, ...,Xn,Xn) is

equivalent to E. Using Theorem 2(c) we can remove duplicated leaf nodes from the
n-ary intersection to get:

E ≡
⋂

(X1,X1, ...,Xn,Xn)≡
⋂

(X1, ...,Xn)



Appendix C

Time Complexity of φIRF Transformation

The purpose of this appendix is to present an argument that the time complexity of the
φIRF transformation is polynomially bounded with respect to the size of the input query,
i.e., the number of nodes in its syntax tree.

We do so by showing that the time complexity of each phase (distribution, merging, and
reduction) is O(nO(1)), where n is the number of nodes in the syntax tree of the original
input query. As a result, we claim that the time taken by the overall transformation is:

O(nO(1))+O(nO(1))+O(nO(1)) = O(nO(1))

C.1 Time complexity of the distribution phase

The problem of distributing selections and renamings over intersections in an arbitrary
query Q can be reduced to solving a problem of distributing selections/renamings over

(a) Before transformation (b) After transformation

Figure 16: Transformation of the local chain of intersections.
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local chains of intersections in the input query. In this analysis, we consider a single
intersection to be a chain of intersections as well. Now, let us assume that k ops ∈
{σ,ρ} are to be distributed over a chain of c intersections with p leaves, for k,c ≥ 1 and
that the parent of the root of such subtree is different than a selection or renaming node.
Clearly, k+c+ p ≤ n as all the nodes making up the chain must have already existed in
the input query. Figure 16a demonstrates the considered chain of intersections.

After the local transformation, we end up with a subtree that has no ops at the top.
Instead, there are k ∗ p of them at the bottom of the chain (see Figure 16b). We
can construct such tree by propagating each opi, for i = 1, . . . ,k, to every leaf of the
intersection chain. While the exact time taken to propagate an op to a single leaf
depends on the tree representation and the algorithm used, it can be surely done in
O(nO(1)) time. Hence, to propagate k op nodes to p leaves, thus to transform a single
local chain of transformations, it takes

k ∗ p∗O(nO(1)) = n∗n∗O(nO(1)) = O(nO(1))

time, as k ∗ p ≤ n∗n.

Moreover, we notice that each transformation of a local chain of intersections cannot
produce any new chains. This is because:

• Subqueries Q1 to Qp cannot have an ∩ node as the root (by the definition of the
intersection chain) so the propagated ops cannot create any new chains which
would require further transformation.

• If the root of any subquery Qi, for i = 1, . . . , p, is a σ or ρ node, then the prop-
agated ops could extend an already existing chain of intersections, not create a
new one.

• If op1 has no parent, then there is nothing left to distribute over the chain rooted
at the ∩1 node in the transformed chain of intersections.

• If the parent of op1 is an intersection node then the chain of intersections rooted
at ∩1 in the transformed subtree extends the already existing chain of intersection.

• If the parent of op1 is any other node (but σ and ρ which it cannot be by our initial
assumption) then the new parent of ∩1 cannot be propagated over the intersection
so a new chain is not created.

Furthermore, we know that there must be fewer than n chains of intersections as there
are less than n intersection nodes in the input query. Combining all the findings together,
we get that the time complexity of the overall transformation is:

n∗O(nO(1))+n∗O(nO(1)) = O(nO(1))

where the first term represents the transformation time of at most n chains of intersec-
tions and the second term is the time needed to find each chain, which certainly can be
done in polynomial time.
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C.2 Time complexity of the merging phase

The merging phase can be completed in the polynomial time with respect to the size
of its input simply by traversing the syntax tree once and merging the neighbouring
intersection nodes.

Having said that, the input of the merging phase might be different than the input to
the overall transformation. This is because the query might have already been modified
by the distribution phase. However, we know that size of the new input has to be
polynomially bounded with respect to the size of the original input as the distribution
step terminates in the polynomial time.

As a result, the time complexity of the merging phase is also polynomially bounded
with respect to the original input since:

O
(
O(nO(1))O(1))= O(nO(1)∗O(1)) = O(nO(1))

C.3 Time complexity of the reduction phase

Again, the size of the input to the reduction step, m, might be different than the size of
the original input. However, as explained before, m must polynomially bounded with
respect to n, hence m = O(nO(1)).

To show that the reduction phase terminates in time O(nO(1)), as all the other phases,
we first consider the simplification/reduction of a single intersection node.

For that, let b be the maximum branching factor of the input syntax tree. Consequently,
each intersection can have no more than b children. We can test any two subqueries for
syntactical equality by traversing their syntax trees in the same order. Given that each
subquery can consist of at most m nodes, the comparison can be done in O(m) time.
Since there are at most (

b
2

)
=

b(b−1)
2

≤ b2 ≤ m2

pairs of children to be compared in each intersection node, we can simplify/reduce each
intersection node in time:

m2 ∗O(m) = O(m3)

Finally to carry out the reduction phase, we can perform a postorder traversal of the
syntax tree and attempt to simplify and reduce each visited intersection node. Thus, the
time complexity of the reduction phase is:

O(m)+m∗O(m3) = O(m)+O(m4) = O(m4)

where O(m) is the syntax tree traversal time and m∗O(m3) is the time taken to reduce,
at most, m intersection nodes. This, in turn, implies that the reduction phase terminates
in polynomial time with the respect to the size of the original input, as:

O(m4) = O(O(nO(1))4) = O(n4∗O(1)) = O(nO(1))

Consequently, the whole φIRF transformation can be run in the polynomial time with
respect to the number of nodes in the syntax tree of the input query.



Appendix D

Using coddifier Library and real
Interpreter

Currently, there are two ways to use the functionality of the coddifier library:

1. using coddifier package directly in the Java program

2. using the command-line interpreter real

In this appendix, we will show how to use both methods to verify whether a query
R∩ (S∩T ) preserves the Codd semantics in the database with schema:

• R: A (non-nullable), B, C

• S: A, B (non-nullable), C

• T : A, B, C (non-nullable)

To use the coddifier library in the source code, it first needs to be added as a dependency.
Then the user can access all the classes and interfaces. The code listing below presents
a code which creates the schema and the RA query using provided implementations of
the respective interfaces:
// 1. construct a schema object
var schema = new SimpleSchema.Builder()

.addTable(
"R",
new Attribute("A", false), // non-nullable
new Attribute("B", true), // nullable
new Attribute("C", true) // nullable

)
.addTable(

"S",
new Attribute("A", true),
new Attribute("B", false),
new Attribute("C", true)

)
.addTable(

"T",
new Attribute("A", true),
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new Attribute("B", true),
new Attribute("C", false)

)
.build();

// 2. build the query
var R = new Relation("R");
var S = new Relation("S");
var T = new Relation("T");
var expression = new Intersection(R, new Intersection(S, T));

// 3. test the query
Coddifier.isGuaranteedToPreserveCoddSemanticsAsIs(

expression , schema); // returns false

Coddifier.isGuaranteedToPreserveCoddSemantics(
expression , schema); // returns true

To test the same query using the real interpreter, it must be first built from sources in
the repository [8]. Having installed the tool, the following commands can be used to
setup the schema and test the query for the preservation of Codd semantics:
# 1. create the schema:
# - the *.csv files can be any existing files - they are not used
# - the schema can be saved for later use
# - ’!’ means that the attribute is non-nullable
&> .add R(A!, B, C) : R.csv
&> .add S(A, B!, C) : S.csv
&> .add T(A, B, C!) : T.csv

# 2. switch the evaluation mode to Codd semantics testing:
&> .eval codd

# 3. enter query using the RA grammar supported by "real":
&> R <I> (S <I> T)
Is guaranteed to preserve Codd semantics: true


