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Abstract
Class-Incremental Semantic Segmentation (CISS) is an emerging trend of Continual
Learning (CL) in Computer Vision. On top of the catastrophic forgetting issue known
in CL, CISS suffers from the semantic drift of the background class, further increasing
forgetting. Existing attempts aim to solve this using pseudo-labelling, knowledge
distillation or model freezing. We attempt to improve upon these methods by focusing
predominately on the offline architecture, claiming that without suitable adjustments,
the offline training of the architecture removes valuable information for future steps,
harming overall performance.

We claim two main contributions. (1) Combining multiple class-specific 3×3 convolu-
tions into one, large, shared module to improve efficient scaling for new, continual tasks
(2) Introducing Dropout into the DeepLabV3 architecture to improve regularisation and
decrease the COMPRESSION of information, a concept introduced in the Information
Bottleneck principle that we adapt for CL.

To demonstrate the effectiveness of our approach, we have created our Dropout Con-
tinual Semantic Segmentation model (DCSS) and compared it experimentally with
existing work. DCSS achieves state-of-the-art results on various CISS scenarios on the
PASCAL VOC dataset. We improve the IoU on the 15-1 and 10-1 scenarios by over 2%
and 3% respectively while maintaining a smaller memory and MAdds footprint. Last,
we propose a new benchmark setting that lies closer to the nature of lifelong learning in
the hope for more realistic and valuable architectures in the future.
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Chapter 1

Introduction

1.1 Motivation

Tremendous progress has been made in recent years in Computer Vision. Many bench-
marks from only a couple of years ago have been saturated and are no longer challenging.
The focus on the improvement of supervised models and the chase for outperforming
state-of-the-art results, even in the context of complex high-dimensional problems that
we encounter in vision, has contributed towards stagnation in a local minimum of 2D
image recognition1. To move on from this issue, we should tackle other problems to
advance the perception algorithms and learn from visual data.

A current limitation of the dominant approach to Computer Vision is using static
datasets, where all of the training data is available outright and does not change in time.
The model is also trained with a specific, closed set of tasks or classes. This approach is
far from real-world, dynamic scenarios where data distribution can shift over time [47],
business requirements can be updated, necessitating a change in prediction power, and
other important factors can come into play. In other words, the approach of supervised
training on a static, labelled dataset is becoming obsolete for more and more practical
applications.

The area of Continual Learning aims to tackle this issue by assuming that the data or
the tasks might not be static and can change over time. This problem relaxation leads to
surprisingly complex challenges, with the most common issue being catastrophic forget-
ting [42], which describes the model’s inability to maintain the learned representation of
the past. Forgetting is caused when past experiences are overwritten with a new training
signal. A similar issue can be noticed in Multi-task Reinforcement Learning. Even
though the tasks are interleaved throughout training and learned in parallel, standard
artificial neural networks suffer from significant task interference when learning from
distinct episodes corresponding to a subset of tasks [29]. Therefore, to account for this,
our models need to be rigid enough to remember the essential details of the past and
flexible enough to adapt to future requirements.

1This has been inspired by a tweet from Andrej Karpathy: https://twitter.com/karpathy/
status/1491452689825165314
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Recent work on Continual Learning focuses on the numerous ways to combat forgetting
using replay methods, continually changing the models’ architecture to adapt to new
knowledge or distillation methods. Most problems, however, tend to have an offline
phase where the model is initialised and learns the initial data and tasks. Mirzadeh
et al. [38] show that wide convolutional models outperform standard ResNet-based
encoders [20] in Continual Learning, proving that the choice of the initial architecture is
fundamental to lessening the effect of catastrophic forgetting. Therefore, we claim that
we should put just as much effort into the training of the offline phase as we put into the
online phase; this issue tends to be overlooked by many publications in this area.

1.2 Context of current research with previous work

This project is a continuation of the work done for MInf Project Part 1 from the previous
year titled “Efficient compression of semantic segmentation neural networks”. Part
1, described further in Section 2.1, focused on the various compression techniques
applied to semantic segmentation. Segmentation will continue to be the base scenario
in this project, with the focus shifting on improvements to the Continual Learning of
the classes, further referred to as Class-Incremental Semantic Segmentation (CISS).

Continual Semantic Segmentation is still a relatively new topic, with little research
attempting to tackle the problem, which we describe further in Section 2.5. Our work
attempts to improve upon the current state-of-the-art performance of CISS models,
with the Information Bottleneck principle [48] being a foundation for the proposed
improvements.

Despite some of its claims being questioned [43], Information Bottleneck theory by
Tishby et al. [48] forms a basis for a framework that fits very well in the realms of
Continual Learning. Therefore, this project studies the effect of rigid feature space
caused by COMPRESSION in the context of Continual Semantic Segmentation, which to
our best knowledge, has not been studied before. We propose several new contributions,
forming a new Dropout Continual Semantic Segmentation (DCSS) model that achieves
state-of-the-art results on a range of scenarios on the PASCAL VOC dataset [14]. The
knowledge gained last year plays a crucial role in the success of DCSS, particularly the
use of depthwise-separable convolution as an efficient operation with fewer parameters.
Last, we have proposed a new evaluation protocol that better examines the performance
of continual segmentation models when trained for a single epoch, limiting access to
online data.

1.3 Main contributions

• Information Bottleneck theory has been introduced and discussed in the context
of Continual Learning.

• Dropout Continual Semantic Segmentation (DCSS) model has been proposed
that surpasses current state-of-the-art models in the majority of Class-Incremental
Semantic Segmentation tasks on the PASCAL VOC dataset.
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• DCSS outperforms recent models while having a smaller memory footprint and
computational complexity in the case of multiple consecutive tasks. With only a
handful of parameters added at each step, DCSS is easier to train and can work
well with data-restricted scenarios.

• Inspired by the Information Bottleneck theory, a DCSS has introduced a new
Dropout layer to the DeepLabV3 architecture to produce sparser feature represen-
tation.

• Extensive ablation study has confirmed the usefulness of DCSS contributions.

• New evaluation protocol, Restricted Class-Incremental Semantic Segmentation,
has been proposed where the continual steps are trained for only one epoch,
simulating restricted access to the stream of online data. DCSS also outperforms
previous works in this protocol.

• Finally, a new repository for Continual Semantic Segmentation has been created,
based on code from [4]. It has been reworked and extended to support multi-GPU
training, training visualisations using Tensorboard and the tqdm library. It has
been open-sourced and can be found at https://github.com/mazo20/dcss.

1.4 Structure of the report

This section has outlined the context of this work. In Chapter 2, we will further describe
work done in Part 1 of this project, followed by a short reminder on semantic segmen-
tation and a detailed description of Continual Learning, Information Bottleneck and
recent approaches to Continual Semantic Segmentation. In Chapter 3, we will propose
and describe our contribution to the topic. Chapter 4 includes dataset details, problem
evaluation metrics and implementation details. This is followed by experimental set-
tings and results thereof in Chapter 5, closed by a final discussion in Chapter 6 and
conclusion in Chapter 7.

https://github.com/mazo20/dcss


Chapter 2

Background research

2.1 Previous work

This research is the second part to the MInf Project Part 1 Report delivered in April
20211. The last project explored the popular compression techniques for Convolutional
Neural Networks, focusing on semantic segmentation. The DeepLabV3 model [6] has
been used as the baseline for the experiments on the PASCAL VOC dataset [14].

2.1.1 Motivation

In image classification, arguably the most popular and researched Computer Vision
task, it is possible to use smaller architectures like MobileNetV2 or EfficientNet, known
for their excellent scaling and efficiency on low-powered devices that utilise CPU for
inference. The general direction in achieving a small and high-throughput model is using
efficient convolution blocks that have a reduced number of parameters and Multiply-
Adds without compromising on performance [10]. However, semantic segmentation
models can vary substantially from models designed for other tasks, especially in
the upper parts. The following question was studied: will the typical compression
techniques applied to image classification models work on the pixel-level tasks?

2.1.2 Cheap convolution

The project discussed the use of cheap convolution blocks [10] like bottleneck or
depthwise-separable convolution in place of standard convolution. This technique pro-
vides similar performance for a fraction of the parameters and Multiply-Add (MAdd)
operations and produces an activation map of the exact resolution as standard con-
volution. Hence, it is possible to swap the convolution blocks without changing the
overall architecture. We also tested the Kernel-Sharing Atrous Convolution [26] that
uses just one set of parameters for multi-scale atrous convolution in the Atrous Spatial
Pyramid Pooling (ASPP) [6] module, improving their learning by having more gradient
back-propagated through it.

1The project can be found here: https://bit.ly/3ixUCTj
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2.1.3 Distillation

We used Knowledge Distillation [22] and Attention Transfer [54] for compression in
semantic segmentation, which were successfully used in other Computer Vision tasks
like classification. A typically larger, higher quality teacher model was used to transfer
the knowledge to a smaller, more efficient student model. Distillation promises that we
can use the teacher’s signal to produce a higher-quality student model, which we could
not do by simply training the model only on the original data. Thus, we effectively
hoped to capture only the rich and essential features of an otherwise cumbersome and
inefficient model.

Nonetheless, the popularity and success of distillation do not seem to be transferable to
some tasks like image segmentation. In the first project, we showed that DeepLabV3
did not benefit from the extra distillation loss. This finding has been attributed to the
inherent difference between image and pixel-level classification tasks like segmentation.

2.1.4 Compressed Atrous Spatial Pyramid Pooling

The use of ASPP was proposed by the DeepLabV3 [6] model to capture long-range
feature dependencies without reducing the feature resolution, required for final mask
prediction, using atrous (dilated) convolution. However, operating on large feature
resolutions increased the computation complexity, with up to half of the parameters
and MAdds in DeepLabV3 belonging to the ASPP module, depending on the backbone
used.

Thus, our work suggested using multiple sequential bottleneck structures in place of a
single, standard atrous convolution. Our Compressed-ASPP (CASPP) module slightly
improved the IoU on the PASCAL VOC dataset [14] (74.25 vs 73.99) while having
fewer parameters (26.08M vs 39.76M) and MAdds (8.89G vs 14.94G).

2.2 Semantic segmentation

Image segmentation is a pixel-level classification task, where each pixel in the image
is classified into one of the available classes, with a background class covering the
unclassified pixels. Segmentation is typically split into two distinct tasks: semantic
segmentation and instance segmentation. According to the definition by Arnab et al.
[1], instance segmentation treats each object of the same class as a distinct instance,
while semantic segmentation treats them as the same entity. In this project, we will
focus on semantic segmentation as a representative of the broad class of pixel-level
classification problems.

Due to the importance of maintaining high feature resolution and their location in the
image, Fully Convolutional Networks (FCN) excel at semantic segmentation, achieving
impressive results on several benchmarks. Although the output resolution is the same
as the input, we are typically computationally constrained and cannot perform compu-
tation on the original resolution whilst still benefiting from a local and global feature
aggregation done by convolutional operation and pooling. Thus, an Encoder-Decoder
architecture has been typically used, with an encoder extracting higher-level features
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from the data, usually utilising the architecture from the mainstream image classification
models. That allows us to use and share the pre-trained encoder modules as feature
extractors across tasks. This efficient initialisation vastly improves the performance and
eventual convergence to optimal predictions.

Decoder modules utilise additional multi-scale feature extractors to obtain short- and
long-range dependencies for improved pixel-level prediction. PSPNet [56] introduced
multi-scale pooling in the form of a pyramid pooling decoder module. DeepLabV3 [6]
uses a multi-scale atrous convolution to obtain a wider field of view. Most recently,
StripPooling [24] added a long-range pooling to PSPNet, further increasing the segmen-
tation performance. These modules effectively decode the intermediate representation
and extract features in various resolutions, helping to predict the tight boundaries around
the high-frequency object masks and the wide field of view required for better semantic
recognition. The final prediction is then upscaled to the original size, as required by the
task.

2.3 Continual Learning

Continual Learning aims to address the shortcoming of standard supervised learning
that requires large quantities of labelled data. It pursues a more natural, human-like
ability to quickly and continuously learn from small exposures to training data. The
learner experiences a stream of tasks whose relatedness is not known beforehand [5]
and has the potential to quickly learn a new task by re-using past experiences. Clearly,
we have to put constraints on the amount of memory used to store the past to prevent
the model from naively storing all experiences. This constraint enforces the need to
efficiently compress the knowledge to a modest size and limit the computation used to
recreate representation for a task at hand.

More precisely, Continual Learning in Machine Learning is the ability of a model to
smoothly update the prediction model to take into account different tasks and data
distributions using a stream of incoming data. This can be thought of as a learning
procedure where not all of the data, tasks, or distributions are initially known. This
environment is different from the typical approach to Machine Learning, where all
requirements are known from the start, and no changes will be made in the future. This
slightly more realistic scenario of models dynamically learning from the data imposes
multiple new limitations to consider when developing our solutions.

2.3.1 Continual Learning scenarios

With the relaxation of constraints on the training procedures, Continual Learning
necessitates many new approaches and proposed evaluation scenarios. Unfortunately,
despite being actively researched, there is still no consensus on the proper settings and
metrics for comparing the proposed CL techniques.

We follow the definition of van de Ven et al. and Hsu et al. [49, 25] who use three
distinct scenarios for Continual Learning in the hope of standardising the evaluation
procedure: Task-Incremental, Domain-Incremental and Class-Incremental learning.
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Task-Incremental In the first scenario, models incrementally learn new tasks. We
can utilise task-specific components since we know the task’s identity ahead of time.
Typically this implies the use of multi-headed output layer where each task has a
separate output unit, but the rest of the network is shared. Only the head of task t will
be activated at test time to make predictions. This prior task knowledge makes it the
most straightforward continual learning scenario, although still vulnerable to forgetting.

Domain-Incremental In Domain-Incremental learning, task identity is not available
at test time. However, the typical example of this scenario is a continual shift of
input distribution. A real-world example is an agent who learns to survive in different
environments without the need to explicitly identify the environment at hand [49].

Class-Incremental Lastly, Class-Incremental learning considers a scenario where the
model must be able to solve each task and infer what task it is. The dataset is typically
split into some steps, with each step containing an exclusive set of classes in a dataset.
Thus, the model learns each set of classes incrementally while trying not to forget the
previous steps. This project will focus on Class-Incremental learning, where we split
the set of semantic segmentation classes into multiple steps and learn them sequentially.

2.3.2 Catastrophic forgetting

Catastrophic forgetting [42, 33] is a phenomenon observed primarily in Continual
Learning where the earlier learned concepts are forgotten while incorporating the
more recent samples. Similarly, in Multi-task Reinforcement Learning, the system
experiences training episodes with different tasks, where each task might require
different parameter weights [29]. Since each episode can contain information from
disjoint domains, but we train a single model, we can overwrite previous knowledge,
causing interference.

Forgetting appears when previously-learned representations are degraded by more
recent exposures, a typical case in all SGD-based algorithms. The weight changes
necessary to reduce the error for one task will differ from the changes required for
another task. Since catastrophic forgetting is a crucial problem of Continual Learning,
multiple solutions have been proposed to address this issue. They can be grouped into
the following categories:

Rehearsal learning In rehearsal learning, we utilise the fact that, although we have
lost access to the original training data from the past, we are usually allowed to maintain
the data in a different form. [4] store exemplar images in a small memory buffer that can
be replayed to simulate previous data distribution. We can also store the past experiences
in a more compressed form. Compressed features in the form of embeddings [19, 28]
can be used as an efficient form of memory that can also have advantages in terms of
privacy. Finally, we can use generative strategies [44] that can efficiently store and
reconstruct past experiences to enable the replay of raw images. [30] uses a brain-
inspired dual-memory system where the new memories are consolidated from recent
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memory to a long-term memory using a generative model, similar to mechanisms that
occur during sleep.

Adaptive architecture Other approaches focus on the adaptability of the model
architectures. To integrate new classes and tasks, we can extend the architecture using
feature extractors with domain-specific trainable layers [33, 52]. Model freezing can
help with performance degradation during fine-tuning of the new models for new tasks.
It is also possible to adapt the networks without explicitly adding new modules. [17, 16]
dynamically re-arranges existing sub-networks, each specialised in one specific task, to
account for new knowledge. Moreover, continually changing data distributions can be
accounted for by explicitly correcting the classifier drift [2, 51].

Knowledge distillation Lastly, knowledge distillation methods consider the use of a
teacher-student approach. A knowledgeable teacher model trained on past inaccessible
experiences can inform the current model of the past. Therefore, distillation aims at
constraining the model to prevent forgetting as it changes to adopt new data. There are
several ways to constrain the model, with the most salient methods being applied to the
weights [31], gradients [5, 36] or output probabilities [33, 40].

Although these are the distinct categories that we can split our approaches into, in
reality, a mixture of them is used for Continual Learning, with each method having its
clear advantages and disadvantages. Feature extractors tend to underperform on the
new tasks because the shared representation fails to represent crucial discriminative
information for the task, and fine-tuning leads to forgetting. Duplicating and fine-tuning
help with forgetting at the cost of a linear increase of memory footprint and computation
at test time. Distillation can be costly and can prevent the model from adapting to new
data.

Moreover, it is worth noting that not every approach is comparable since specific
methods are aimed at different task definitions. Thus, the resulting performance can
vary substantially depending on the given constraints. For example, a set of raw images
containing examples of previous classes can be used for rehearsal learning and usually
allows us to recover and adapt to the underlying data distribution, thus limiting the
severity of catastrophic forgetting. However, it can be impossible to store past raw data
for privacy or storage reasons.

2.3.3 Continual Learning datasets

Continual learning of high-dimensional data streams is a challenging but also crucial
problem. Existing datasets can usually be adapted for CL purposes, helping us achieve
proof-of-concept solutions that, hopefully, can help us eventually converge to the results
of offline learning. However, none of them were explicitly designed for lifelong learning,
lacking the necessary details like spatial or temporal cohesion of training objects that
cause the model’s failure outside the artificial configuration.

Therefore, new datasets are emerging, with the foremost aim of developing methods for
combating catastrophic forgetting while being manageable in size and complexity to
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speed up the research cycle. PermutedMNIST [55] randomly permutes all MNIST [32]
pixels, differently for each task. Random permutation ensures that the model cannot
learn a simple operation like rotation or translation. Each task is equally difficult as the
original MNIST, although it requires a new solution.

CORe50 [35] contains a collection of 50 objects, each represented with a 15 seconds
video delivering 300 RGB-D frames. The presence of temporal data (objects in the
videos gently move across the frame) simulates visual data streaming. Since each video
is experienced as a sequence of images of a specific class, it can quickly deteriorate the
performance of past objects when using standard SGD optimisation.

Multi-modal data like CORe50 can help us transition better from 2D to 3D images
and video understanding. However, many Computer Vision tasks do not yet have a
corresponding Continual Learning dataset, including semantic segmentation. Therefore,
there is still the need to transform existing, static datasets to account for data streaming.
These adapted datasets should be considered as a temporary solution and a reference
base for future improved datasets.

Tiered-ImageNet and mini-ImageNet [41] are popular classification datasets generated
from the original ImageNet, with a categorical split among training, validation, and
testing subsets. PASCAL VOC [14] and ADE20k [57] are also regularly adapted for
Continual Learning in semantic segmentation and object recognition [3]. In this project,
we will focus on the former, described further in Section 4.1.1.

2.4 Continual Learning in Semantic Segmentation

Despite vast progress in image segmentation, most algorithms are still trained offline,
restricting the number of possible applications. On the other hand, continuous learning
advances are mainly being researched in the context of image classification, with
no reference to segmentation or considering other visual tasks as an afterthought.
Only in the last couple of years has there been some progress in Continual Semantic
Segmentation, formulating the problems and setting up initial benchmarks and their
corresponding baselines.

2.4.1 Problem definition and notation

We consider the setting initially formulated by Cermelli et al. [3] and further extended
by Cha et al. [4]. In Class-Incremental learning, the training happens with t = 1, . . . ,T
incremental tasks, with t = 1 being the offline step. For each incremental state t, we
observe a training dataset Dt that consists of pairs (xt , yt), where xt ∈ X N denotes an
input image of N pixels, and yt ∈ Y N

t denotes the corresponding ground-truth pixel
labels.

Equation 2.1 describes the set of labels Yt used only at t, consisting of the current
classes and the background class cb. In C t we don’t consider the past or the future
classes. Thus, on top of the the true background pixels ct

b, the cb label is also assigned
to the pixels of potential objects that belong to past classes C 1:t−1 and the future classes
C t+1:T (Equation 2.2).
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Yt = C t ∪ ct
b (2.1)

c t
b = cb ∪C 1:t−1︸ ︷︷ ︸

past

∪C t+1:T︸ ︷︷ ︸
f uture

(2.2)

This counter-intuitive behaviour of the background class’ labels causes the problem of
background shift [3], on top of the catastrophic forgetting found in CL. The background
class modification introduces unwanted noise into the model because the same object
can be labelled differently, depending on the step t. Background shift is a key problem
in Continual Semantic Segmentation and requires unique approaches, described in the
next section.

The architecture of f t
θ

is typically a fully-convolutional network, which consists of a
convolutional feature extractor, followed by the final 1 × 1 classifier filters {φt

c}c∈Y 1:t ,
one for each output class in Y 1:t . The learning of f t

θ
can be done in conjunction with

the previous model f t−1
θ

, depending on the chosen Continual Learning constraints, to
prevent forgetting when incrementally updating the model. Determining the shape of
the classifier, the activation and loss functions as well as how to transfer the knowledge
of f t−1

θ
to f t

θ
are design choices, with each work having its own approach.

The semantic segmentation model f t
θ

is required to predict whether a pixel belongs to
all the classes learned so far, C 1:t−1 ∪C t , or the true background. Once the learning of
task t by the model f t

θ
is done, the prediction for pixel i of an input image x at test time

is obtained by
ỹ t

i = argmaxc∈Y 1:t f t
θ,ic(xt) (2.3)

for all the classes learned so far in Y 1:t . The performance is measured by the Intersection-
over-Union (IoU) metric for the classes in Y 1:t , described further in Section 4.2.

2.5 Related work

Continual Learning in semantic segmentation is a relatively new topic that has not been
adequately researched yet. There have been some recent initial attempts at improving
the catastrophic forgetting with pixel-level classification in mind and working around
the background shift problem, which we will cover in this section.

2.5.1 Modelling the background

Cermelli et al. in MiB [3] defined the issue of background shift and proposed to adapt
the loss function such that it takes into consideration potential previous classes C 1:t−1

that could be included in ct
b. They adapt the output probabilities to match the available

labels or distillation probabilities. In particular, they sum the output probabilities of
C 1:t and cb to match the available label ct

b that contains them when computing the
cross-entropy loss. Conversely, they sum the probabilities of C t and ct−1

b for knowledge
distillation to match the output of f t−1

θ
.
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The summation of class probabilities to modify the cross-entropy and distillation
losses is a novel approach in semantic segmentation, but it makes it hard to learn the
underlying probability distribution for the classes at each pixel. Nonetheless, this eases
the background shift of previous classes and substantially improves the baseline scores
produced by standard CL algorithms like EWC [31], ILT [37] or simple SGD.

2.5.2 Pseudo labels with Localised Pooled Distillation

PLOP [12] extends the knowledge distillation on output probabilities with an additional
attention transfer mechanism called Local POD or Localised Pooled Distillation [12],
applied at each convolution layer across multiple scales for each filter. Using Local POD,
the new model preserves the activation signal of previous classes while accommodating
the new set of classes. Local POD helps with catastrophic forgetting and acts as a
distilled supervision signal, helping to preserve existing features in the model.

Moreover, the target labels y t are augmented with the predicted classes by a model from
a previous step f t−1

θ
, commonly called pseudo-labels [27]. For each pixel i we find the

predicted class using a model from a previous step t −1 as in Equation 2.4.

The confidence score (Equation 2.5) describes the certainty of the prediction by model
f t−1
θ

, where σ(.) is the sigmoid function. In case of a noisy, low-confidence prediction,
we are not interested in using this label in the next steps. Therefore, we limit the
pseudo-labels propagation with a threshold τ. PLOP uses an entropy-based threshold to
account for the noisiness of the predictions. Pseudo-labels with the ratio of entropy and
maximum pixel entropy in the image below τ are not used in ỹ t

i .

Equation 2.6 shows the final label generation for each pixel i. We use labels of y t and
update them with pseudo-labels ŷ t only if they pixel currently belongs to the background
class, was predicted by a previous model as member of C 1:t−1 and has a confidence
score µi greater than τ.

ŷ t
i = argmaxc∈Y t−1 f t−1

θ,ic (xt) (2.4)

µi = maxc∈Y t−1σ( f t−1
θ,ic (x

t)) (2.5)

ỹ t
i =

{
ŷ t

i yt,i = cb ∧ ŷ t
i ∈ C 1:t−1 ∧µi > τ

yt
i otherwise

(2.6)

In other words, for each training image the labels ŷ t−1 with classes C 1:t−1 are predicted
by the model f t−1

θ
and are copied to the target labels y t if they contain important

information. This yields the target semantic map ỹ t containing background class b,
pseudo labels ŷ t−1 and current labels y t .

Pseudo-labelling is an essential addition to the background modelling approach from
[3], recovering the signal for the past classes from the background. However, it does not
deal with the potential future classes appearing in the unclassified pixels. Local POD
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Figure 2.1: Architecture of SSUL [4]. Labels y t are extended with the saliency map and
pseudo-labels. Image taken from [4].

helps to prevent catastrophic forgetting, but at the same time, it heavily constrains the
model from learning new tasks.

2.5.3 Model freezing with unknown label

SSUL [4] is the current state-of-the-art solution for this problem. Cha et al. approach the
issue of catastrophic forgetting by freezing the model to ensure the previous knowledge
is unaffected by new tasks. Moreover, they use saliency maps as the unknown class to
distinguish potential future classes from the background pixels, further reducing the
effect of background shift.

Model freezing SSUL changes the approach to combating catastrophic forgetting in
Continual Semantic Segmentation. Instead of fine-tuning the whole model at step t, all
parameters from f t−1

θ
are being frozen in f t

θ
, preventing any changes to the prediction

of classes C 1: t . Freezing means that no gradient is being propagated to these parameters,
and they are not being updated anymore. The only trainable parameters per step are in
a single 3×3 convolution layer and the final 1×1 vector producing the output value
for each pixel. These belong to the newly added classifier for the current set of classes,
predicting final values from the output of the decoder.

The benefits of freezing also include reduced training time and resource utilisation for
the remaining parameters, as we do not have to track and propagate the gradients for
frozen convolutions. Moreover, less trainable parameters reduce the required training
time and data requirements at the cost of rigidity of the representation.

Foreground prediction SSUL uses saliency maps generated by a separate, off-the-
shelf salient object detector with short connections [23] to predict a region of interest
from the background. Semi-supervised foreground prediction helps to differentiate the
difference between true background and background that may contain a past or future
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class. The saliency maps are predicted with a separate model before training and added
to the image target labels in place of a part of the background class. As can be seen
at the top of Figure 2.1, similarly to pseudo-labels, the saliency map is added to the
label y t and predicted by the model during training. The unknown class cu and the
background class cb predictions are combined at test time, representing the unclassified
pixels.

The authors claim the addition of a foreground class is beneficial to the model as it
can learn to differentiate the potential future classes from the true background. This
assumes that the future classes are more likely to be objects like a bike or a dog, rather
than boundary-less classes like sky or sea. Moreover, assuming that potential future
classes are contained in the unknown class, SSUL performs weight transfer from the
unknown class to the new classifier at the beginning of each continual step (Equation
2.7), providing a better initialisation that can reduce reliance on the quantity of data.

φ
t−1
cu

→ φ
t
c (2.7)

Binary cross-entropy loss SSUL relies heavily on the frozen model maintaining
its predictions for past classes and preventing catastrophic forgetting. However, the
background classifier cannot become fully frozen as it needs to adapt to the new tasks
that might be a subset of the background. The prediction can be further deteriorated
by the noise introduced by the pseudo labels. All this can change the relative outputs
produced by the softmax function, even with frozen parameters. Therefore, SSUL
proposes the use of a sigmoid activation function with binary cross-entropy loss to
accommodate the labels’ noisiness instead of the typical softmax and cross-entropy
loss.

Cha et al. claim that the sigmoid function with binary cross-entropy increases the
model’s stability and better handles the cases of mislabelled pixels by the pseudo-
labelling process that can cause trainable classifiers φ t

cu
and φ t

cb
for unknown and

background class respectively to overpredict.

Limitations of the frozen model While extending existing offline models for Contin-
ual Learning is an important feature, there are times when we can anticipate the future
learning adjustment. Thus, we argue that it is just as important to train a task-aware
offline model as it is to improve CL algorithms. However, except for the foreground pre-
diction, SSUL trains the offline model at step t = 1 as if it was not meant to be trained in
a continual learning manner. Therefore, the feature representation available for the new
classifier might be too rigid to learn new classes. Indeed, being aware of the continual
nature of the training is generally challenging to account for since we do not have access
to an oracle to predict future tasks. However, we can limit the COMPRESSION with a
handful of techniques, including better regularisation, use of a self-supervised backbone
that will contain more features or, perhaps, have skip-connections to the final layer so
that the classifier can have access to a richer feature representation.
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Figure 2.2: Information Bottleneck visualisation. The x-axis plots information between
each layer and the input, while the y-axis plots information between each layer and the
output. The colour scale indicates training time in epochs. Mutual information about
the input tends to decrease as the training goes by, signalling the compression phase.
Image taken from [43].

2.6 Information Bottleneck theory

In supervised learning, it is common to use pre-trained models for good weights
initialisation that promises faster convergence when training. Pre-trained models provide
us with good initial feature representation even if not trained on a similar domain as the
target task. They tend to be trained on extensive datasets like ImageNet [11] or COCO
[34].

Their generalisation performance is crucial in domain adaptation since adding convolu-
tional filters is very resource and time-intensive, but it is relatively easy to disregard
them. Thus, since we tend to have more features than necessary, during fine-tuning, we
can simple remove unnecessary features and boost the signal of favourable ones.

Therefore, it is possible that by performing supervised training at step t = 1, our model
is likely to remove and prevent the propagation of unused features from the pre-trained
encoder model. This behaviour is desirable in offline training when our static dataset
already contains all classes and is a good representation of the true data distribution.
The model is looking for a quick and cheap way to train the model as fast as possible,
so undesired features should be removed. However, excessive compression means that
we might remove features that are crucial for learning a prediction of one of the future
classes that we might not be aware of at this time.

The Information Bottleneck Principle (IB) [48] can partially explain and support the
above difficulty of training Continual Learning models with gradient-based optimisation.
Tishby et al. claim that modern Deep Neural Networks undergo two phases of learning:
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GENERALISATION and COMPRESSION (Figure 2.2). During GENERALISATION phase,
the model learns an internal feature representation to extract high-level information,
used for final prediction. In COMPRESSION, unused and noisy features that prevent
robust adaptation to the data are stripped away and removed from the feature space,
ultimately improving useful features’ signal quality.

The IB theory is based on the idea of mutual information. In probability theory, mutual
information represents the amount of information obtained about one variable A by
observing another random variable B (Equation 2.8). The higher the value, the more
dependency there is between the variables.

I(A;B) = H(A)+H(B)−H(A;B) (2.8)

Let X and Y be input and output layers, while T is any hidden layer of a Deep Neural
Network. Tishby et al. measured the mutual information I(X ;T ) and I(T ;Y ), which
quantify the hidden layer’s information about the input and the output, respectively.

In Figure 2.2 we see that as the training is happening, the amount of information about
the output I(T ;Y ) steadily increases until a high number of epochs is experienced, and
the model starts overfitting. The information about the input I(X ;T ) raises initially but
quickly starts decreasing. This adverse change can be considered as the COMPRESSION

phase because we remove information from the input that does not contribute much to
the output. COMPRESSION accelerates rapidly when the number of training epochs is
high. Although the importance of the Information Bottleneck theory has been questioned
by some papers [43], it serves as an interesting point of view on the learning phases of
neural networks and can be noticed empirically.

2.6.1 Effect on Continual Learning

COMPRESSION phase, although natural and expected in static supervised environments,
is not particularly useful in Continual Learning. The uncertainty about the future
requires us to maintain as many high-quality features as possible since they might be
sought in other tasks. Thus, it is in our best interest to promote GENERALISATION

whilst limiting the effect of the COMPRESSION phase in Continual Learning. We know
that wider models better manage catastrophic forgetting [38], proving that passing
information through the bottleneck, which inherently implies COMPRESSION, can have
adverse effects on future tasks.

Being aware of the COMPRESSION, we can think of ways to alleviate some of its
unwanted effects on lifelong learning. Therefore, this work aims to determine the
potential impact of enforced feature sparsity in a typical encoder-decoder model for
Semantic Segmentation and how well it behaves under parameter freezing conditions.
Having a reliable and accurate frozen representation with a broad range of features can
be a key to short-term advances in Continual Learning.
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DCSS model design

SSUL [4], the current state-of-the-art model, achieved a significant improvement over
the previous papers tackling Class-Incremental Semantic Segmentation, in particular
MiB and PLOP (Table 5.1). SSUL prevents catastrophic forgetting as we know it in
typical Stochastic Gradient Descent approaches, even in a long sequence of continual
tasks. We attribute this improvement to the model freezing combined with the sig-
moid activation function and binary cross-entropy loss function. Counter-intuitively,
model freezing also helps with the learning of the new classes, compared to previous
distillation-heavy approaches of MiB and PLOP. This demonstrates that, in the short-
term, Continual Learning methods benefit disproportionately from increased learning
stability, even at the cost of more rigid architecture that limits their flexibility to learn
new feature representations.

Notwithstanding, the results of SSUL are still far from the practical upper bound
achievable with offline, JOINT training. Despite significant improvements in learning of
the continual tasks, the difference is growing the more steps there are. We notice that
SSUL trains the offline model at step t = 1 as if it was not meant to be trained further in
a Continual Learning manner. The COMPRESSION phase of Deep Learning can severely
impact future performance in CL and has to be accounted for, while SSUL’s approach
to introducing new classifiers into the model is not scalable and introduces new issues.
Our goal was to improve upon the architecture of SSUL by introducing superior and
more efficient feature space produced by the frozen model, inspired by the Information
Bottleneck theory.

Therefore, in this section we introduce our Dropout Continual Semantic Segmenta-
tion model (DCSS) for Class-Incremental Semantic Segmentation. The main contribu-
tion of this work is determining whether the SSUL [4] model for Continual Learning can
be improved with regularisation methods. Regularisation of the offline model should
alleviate the unwanted effect of the COMPRESSION phase and maintain more features
for the online phase. We suggest new approaches to mitigate this issue that offer other
benefits like computational efficiency and implementation simplicity. We describe our
contributions that provide quantifiable advantages over SSUL and set an additional
context for their origins. To prove the advantages of DCSS, we perform a range of
experiments in Section 5. Additionally, we propose the Restricted Class-Incremental

16
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Figure 3.1: High-level architecture of DeepLabV3 used for offline training. The ASPP
module is followed with a single 3×3 convolution and 1×1 classifiers of 256 channels
to produce output value for each class.

Semantic Segmentation (RCISS) task, a new Continual Learning evaluation protocol
that uses only one training epoch at each step t > 1.

3.1 Classifiers and shared convolution

In Class-Incremental Continual Learning we add a set of classes C t at each step t.
Since we do not know at step t = 1 how many classes will be added, we have to add
additional classifiers {φt

c}c∈C t to the model to predict the prediction score for each new
class. Usually, this means a 1×1 convolution that sums over all channels in semantic
segmentation.

In DeepLabV3, the final 1×1 convolution is preceded by the ASPP module and one
3× 3 convolution (Figure 3.1). The last 3× 3 convolution is important to aggregate
and mix multi-scale features produced by the ASPP module. We will refer to this
3×3 convolution layer as HEAD for readability reasons. Recent papers tackling Class-
Incremental Semantic Segmentation, including MiB, PLOP and SSUL, replicate the
HEAD module for each step. Therefore, each set of classes C t has its own HEAD and
final classifier, as seen in Figure 3.2a

The addition of a new HEAD at each step facilitates extracting additional features from
the frozen model, which, in theory, should vastly improve the prediction capability
and performance of the model. However, in DeepLabV3, the HEAD layer is a costly
operation that applies 256 filters, each having 256 3×3 kernels, totalling over 0.5M
parameters. Therefore, each step of SSUL adds a substantial amount of parameters
which accumulate as we add more and more classes. Despite this significant linear
model growth being a substantial modification to the architecture, we did not manage to
find any reference to that specific implementation detail in the above papers.

3.1.1 Shared head in DCSS

Therefore, we compare the existing SSUL implementation with a separate HEAD

(SEPARATE) per task with our DCSS model containing a single shared HEAD (SHARED)
trained offline and only 1×1 convolutions added at online steps t > 1.
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Using the original HEAD from DeepLabV3 for the shared module, we are left with a
single, 256-dimensional 1×1 vector of trainable parameters for each new class. We
argue that, although this is sufficient for offline learning and is a typical size found in
DeepLabV3, it might not be enough for Continual Learning properties. A large number
of output channels from a frozen model is crucial, as this will determine the maximal
amount of information that can be propagated for further use by the classifiers.

Thus, to recuperate some of the performance lost with a SHARED model, we increase the
size of HEAD output channels to 2048. Hence, a more detailed feature space is available
for the classifiers to exploit while removing the need to learn the HEAD module at each
step. Our experiments in Section 5.1.1 show a significant reduction in the computational
requirements in the long run while producing comparable or better results.

Moreover, to balance the required larger number of channels with the expensive convolu-
tion, we use depthwise-separable convolution in the shared HEAD. Depthwise-separable
convolution produces the same activation map using a cheaper operation with fewer
parameters and MAdds. In our work, we have used an intermediate width multiplier of
4 and 4 convolution groups (Figure 3.3). Standard shared HEAD has almost twice the
parameters of the depthwise-separable implementation (4.71M vs 2.68M).

Therefore, despite initially having more parameters than SSUL, DCSS will be smaller
after only two continual steps. The impact on the model size will be further studied in
Section 5.1.1. The high-level architecture comparison can be found in Figure 3.2.

3.2 Regularisation

COMPRESSION phase tends to remove information that could be used in the future.
It can be helpful since it increases the stability of the trained model and helps with
overfitting. In Continual Learning, this is a less desirable property. We argue that in the
majority of the cases, it is better to sacrifice a small chunk of performance at step t = 1
to maintain more features for steps t > 1 and achieve a better model overall. Thus, we
test the addition of regularisation techniques in the form of DROPOUT and WEIGHT

DECAY.

3.2.1 Weight decay

A popular technique to regularise the model’s weights and prevent it from overfitting
and over-compression is weight decay. Large weights cause large changes in output
even for small changes in the inputs, causing sharp transitions in the functions. By
replacing the original objective of minimizing the prediction loss on the training labels
with the new objective of minimizing the sum of the prediction loss and the penalty
term, we ensure that the weights are prevented from growing too large.

Lall = LBCE︸ ︷︷ ︸
prediction

+
λ

2
||w||2︸ ︷︷ ︸

penalty

(3.1)
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(a) High-level architecture of SSUL [4]. Each step has its own 3× 3 convolution block that is
trained in the online phase.
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(b) High-level architecture of our DCSS model. One large 3× 3 convolution is trained in the
offline step and frozen. With 2048 channels, the 1×1 convolution has enough representation to
outperform SSUL containing multiple modules.

Figure 3.2: Comparison of the SSUL and DCSS high-level architectures. The Blue area
represents frozen parameters after the offline step. The Green area represents example
modules trained in the online phase. Only one 1×1 convolution is trained at each step.

Weight decay is a standard technique widely used in Deep Learning, with the ℓ2 loss
(Equation 3.1) being the most popular in Convolutional Neural Nets. However, we
would like to test whether the increased value of the hyper-parameter λ can positively
impact the sparsity of features, reducing the effect of COMPRESSION. Increasing the
penalty can induce a more holistic approach to feature propagation, removing the
reliance on salient features and increasing the importance of less prominent ones.

3.2.2 Dropout

Initially proposed by [46], Dropout randomly sets select activations of a layer to 0
with probability p, effectively disabling their contribution to the calculation of the
output (Figure 3.4). As described by the authors, this can be thought of as having many
ensembles of smaller models, with each iteration effectively creating a new model.
Dropout introduces uncertainty that the model must account for by learning a more
sparse feature representation since a particular feature can disappear with probability
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from torch import nn

def separateHead () :
#256x256x3x3 parameters (0.59M) per step
return nn.Conv2d(256, 256, 3, padding=1)

def standardSharedHead() :
#256x2048x3x3 parameters (4.71M) for all steps ,
return nn.Conv2d(256, 2048, 3, padding=1)

def separableSharedHead() :
#1024x(256/4)x3x3 + 1024x2048x1x1 parameters (2.68M) for all steps
return nn. Sequential (

# Separable Conv
nn.Conv2d(256, 1024, 3, padding=1, groups=4),
# PointWise Conv
nn.Conv2d(1024, 2048, 1, padding=0),

)

Figure 3.3: Example PyTorch implementation of the different HEAD types. SSUL uses
the first one, while DCSS uses the last one. We notice a significant difference in the
depthwise separable implementation parameter count.

p. Therefore, the uncertainty prevents the model from removing too much available
information from the encoder, learning more robust and feature-rich embeddings. The
improved representation should, in turn, allow the new classes to achieve better online
performance.

The placement of the Dropout is also essential. Following [45] we conclude that the
best place to put the Dropout layer in the context of semantic segmentation is between
the encoder and decoder modules. DeepLabV3 uses a pre-trained backbone model
like ResNet50 to compute high-level features, later decoded with the Atrous Spatial
Pyramid Pooling (ASPP) [6] module. Since we train the ASPP from scratch, we can
improve its sparsity by limiting the number of passed features from the encoder module
with Dropout.

We test two popular Dropout approaches in CNNs: standard Dropout as proposed by
[46] and channel Dropout, where the whole convolutional channel can be dropped
with probability p. Moreover, [45] shows that using ScheduledDropout yields sig-
nificant improvements to the training phase. ScheduledDropout linearly increases
the dropout probability from 0 to p during training. During the exploration phase
(GENERALISATION), we use smaller values of p to increase feature accumulation.
Heavier regularisation is more useful during the exploitation phase (COMPRESSION),
thus requiring higher values of p. In the end, we should obtain similar benefits while
improving learning convergence.

Last, we suggest the removal of the Dropout after offline training. We cannot add new
features in the online phase with model freezing. Therefore, limiting the access to
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Figure 3.4: Dropout illustration on a fully-connected neural network. Dropout reduces
model’s over-reliance on particular features. Image taken from [46].

features will only restrain the model from using them while offering few benefits in
generalisation since we are less likely to overfit with only a single trainable vector per
class.

3.3 Restricted access to continual data

The initial problem formulation introduced by Cermelli et al. [3] is the first proper
introduction of Continual Learning in semantic segmentation. SSUL and previous works
propose important contributions that bring us closer to achieving usable, continually
learning models. Nonetheless, the allowed training configuration might not encourage
the efficient use of data. We are only constrained to using data with labels Y t belonging
to the current step t, but we can use them in any way we desire.

PLOP and MiB train each step for 30 epochs, while SSUL trains the model for 50 epochs.
That means storing data for step t in memory and a longer training time to extract more
information. Given that we already restrain ourselves from using any memory buffers
to store previous class training examples, we believe this is an unnatural setting that
promotes irrelevant models. Continual Learning models should aim to efficiently use
the available data and aim for an approach similar to few-shot learning, where only a
few examples for each class are available.

Therefore, we propose Restricted Class-Incremental Semantic Segmentation (RCISS),
a new benchmark for Continual Semantic Segmentation, where each of the continual
steps can be trained for only one epoch. This restriction effectively allows our model
to see each online training example just once, simulating the limited chance of being
able to store the online data, even for training during the same step. This scenario lies
closer to the lifelong learning setting by Chaudhry et al. in their A-GEM work [5]. We
evaluate SSUL and DCSS on RCISS in Section 5.4 to obtain initial results.
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Methodology

4.1 Dataset

With Continual Learning becoming a popular research topic, new datasets are being
released regularly. There are not that many datasets available for Continual Semantic
Segmentation, with the majority of the papers still using the popular PASCAL VOC or
ADE20k. The most common approach to adapt them to the continual setup is to divide
the dataset into the main part, trained in an offline fashion, that is later extended with
additional training episodes consisting of the remaining classes.

It is worth noting that the approach taken to split the dataset has a crucial impact
on the final performance, given that it changes the difficulty of training and the data
distribution at each step. Unfortunately, there is no concrete guideline for the dataset
splitting procedure common across visual tasks. Therefore, in this work, we will follow
the assumptions made by [3, 12, 4].

In the case of Class-Incremental learning, that means splitting the dataset into multiple
parts where the initial classes are learned offline, usually representing more than half of
the available classes. In subsequent steps, new and only new classes are being shown,
in batches or one by one. The new tasks test the model’s ability to generalise new data
while not forgetting the previous experiences.

4.1.1 PASCAL VOC 2012

The experiments are evaluated on the PASCAL VOC 2012 [14] semantic segmentation
dataset, which contains 1,464 train, 1,449 validation and 1,456 test images. The images
have a 513×513 resolution. Each image is labelled on a pixel level, with 20 foreground
object classes and one common background class. The dataset is augmented with the
extra contour annotations [18] of the PASCAL VOC 2011 dataset, commonly referred
to as PASCAL VOC 2012aug. This yields a total of 10,582 training images. Following
[12], we split the training set and used 80% for training and 20% for validation, with
the testing set left untouched for model evaluation.

Following the existing evaluation techniques applied to our Class-Incremental problem

22



Chapter 4. Methodology 23

[3, 4, 12], we perform several different experiments concerning the different ways of
splitting the dataset for offline and online episodes.

[3] introduces two different settings for Class-Incremental Semantic Segmentation:
Disjoint and Overlapped. Both cases consider training examples where only the back-
ground class cb and classes in C t are labelled. In Disjoint, only the old and present
classes can appear, while in Overlapped pixels can belong to any old, current and future
classes. Thus, following the previous works, we also focus only on the Overlapped
setting as it is more challenging and also more realistic, given that in the real world,
we do not have access to any oracle method that can exclude future classes from the
background.

The difficulty of the Class-Incremental challenge also depends on the number of steps
and the number of new classes. Thus, our model is evaluated on five different scenarios
generated from the PASCAL VOC, each with a varying level of difficulty:

• 10-1 (11 tasks)

• 15-1 (6 tasks)

• 5-3 (6 tasks)

• 19-1 (2 tasks)

• 15-5 (2 tasks)

The numbers in each scenario define the number of classes introduced at each step. For
example, 5-3 (6 tasks) means learning 5 base classes at the offline step t = 1, followed
by 5 incremental steps t ∈ {2, . . . ,6} introducing 3 new classes at each step, yielding 6
training steps covering all 20 classes for PASCAL VOC.

Since the order in which particular classes are being introduced to the model can have a
significant impact on the final score, and the number of permutations for 20 classes in
PASCAL VOC is larger than 1018, we follow the simplification used by other works
[3, 12, 4] and consider only the alphabetical ordering of classes.

4.1.2 Saliency maps for an unknown class

To help distinguish the background containing potential future classes from the true
background, SSUL [4] proposed the use of an off-the-shelf salient object detector
with short connections [23] to predict a region of interest. Thus, we follow their
implementation and extend the labels of the PASCAL VOC training set to include the
additional foreground class.

4.2 Evaluation metrics

The standard accuracy metric used to measure the performance of a segmentation model
is the mean Intersection over Union, averaged across all classes or mIoU (Equation 4.1),
where 0 ≤ mIoU ≤ 1. For visibility reasons we will report our results in IoU, where
IoU = 100∗mIoU and 0 ≤ IoU ≤ 100.
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VOC 15-1 (6 tasks)
0-15 16-20 all

77.31 36.59 67.61

77.66 42.69 69.33

Table 4.1: Example evaluation results. Numerical values in bold represent the best IoU
score in a corresponding column.

mIoU =
∑
|C |
i=1

Ai∩Bi
Ai∪Bi

|C |
(4.1)

For each class i, the intersection Ai∩Bi indicates the number of shared pixels found both
in the prediction mask and ground truth mask. The union Ai ∪Bi indicates the number
of pixels found in either of the masks. The intersection and union ratio represents how
well the predicted mask overlaps the target mask - a too small prediction mask will lead
to the intersection being small, a too-large prediction will lead to the union being large,
making the IoU smaller in both cases.

In an offline setting, the calculated overlap for each class is averaged out over the
number of classes C, yielding the IoU. In our scenario with a mixture of offline learning
(initial step) and the following online learning, the use of a single metric does not
give the whole perspective on the final performance. Therefore, we will report the
performance of our models with the IoU over the old classes, and the new classes
learned online separately to distinguish the performance of learning from forgetting, as
reported in [4, 12, 3]. Table 4.1 shows example results. The first row signifies the CISS
scenario, in this case 15-1. Values in columns show the IoU in old classes (0-15), new
classes learned continually (16-20) and overall average (all). Values in bold show the
highest score in the corresponding column.

Last, we compare the performance to jointly-trained models on all classes in set C in an
offline manner. This method’s performance can be considered as a reasonable upper
bound on the IoU that the model can achieve [33]. The bound will be later referred to
as JOINT.

4.3 Implementation details

The code for this project has been based on the last year’s project and the implemen-
tations of PLOP [12] papers and SSUL [4], which is further based on the PyTorch
implementation of DeepLabV3 and DeepLabV3+ by [15].

The codebase contains the implementation of the popular semantic segmentation models
DeepLabV3 and DeepLabV3+, with an option to use MobileNetV2, ResNet50 or
ResNet101 for the backbone. The standard PASCAL VOC image loader has been
adopted to allow for splitting the dataset to perform Class-Incremental training.
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Backbone The structure of DeepLabV3 [6] utilises encoder modules, known as
backbones, to supply high-level features to the upper layers. The quality of the features
depends on the size of the encoder. Therefore, most papers [3, 12, 4] use a large
ResNet101 model as the backbone due to its extensive and accurate features at the cost
of large compute requirements. To compare the results of DCSS, we also use ResNet101
while keeping in mind that a smaller encoder would have a better performance-to-cost
ratio.

Segmentation head The ability to reuse pre-trained models for other tasks signif-
icantly boosts a range of tasks, including segmentation. However, the architecture
of models designed to perform image classification requires slight modifications to
preserve more spatial resolution of the image features for tasks like pixel-level classifi-
cation. Typical ResNet model designed for classification compresses the features to 1

256
of the input resolution, also described as having an output stride of 256. DeepLabV3
is typically used with an output stride of 16, maintaining the higher resolution for
segmentation map prediction. To achieve that output stride, it uses atrous convolutions
in place of the strided convolution in the ResNet backbone to maintain a large receptive
field, similarly to striding, without the unwanted effect of reducing the resolution.

In DCSS, we use a modified version of the DeepLabV3 semantic segmentation model,
as described in Section 3.1. Compared to SSUL and previous works, we use one
SHARED decoder instead of the SEPARATE one with multiple HEAD modules for each
step on top of the background and unknown classes. Therefore, we have one sizeable
HEAD instead of t +2 medium-sized ones.

Data augmentation The setup used for data preprocessing consists of applying the
same data augmentation as in SSUL [4], originally used for DeepLabV3 [6]. Each
image is normalised channel-wise with a mean µ of [0.485,0.456,0.406] and standard
deviation σ of [0.229,0.224,0.225]. Additionally, a random scaling of the input images
by a factor in the range [0.5,2] has been applied to each image in the training set,
followed by a random horizontal flip and a random image crop of 513×513.

Learning rate policy A standard learning rate of 0.01 has been used, with the value
decreased to 0.001 for the backbone when using pre-trained weights [6]. The lower
learning rate for the encoder part ensures the model relies on the visual features extracted
from the image and prevents it from overfitting, thus promoting healthier learning of the
classifier. We use poly1 learning rate scheduler, as proposed by the DeepLabV3 authors
[6].

Training protocol Larger batch size values can have regularisation effects on the
model. On the other hand, smaller batches can induce faster convergence to optimal
values. Thus, we have used a batch size of 24 for all experiments compared to the size of
32 used by SSUL, as we have found more success with smaller values, especially for the
continual steps. We use binary cross-entropy loss with sigmoid activation function, as in

1The scheduler has been called “poly” by the authors of DeepLabV3, even though the learning rate is
not a polynomial [50].
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SSUL. Pseudo-labels are added to labels in the continual steps, with an entropy-based
threshold of τ = 0.9. SSUL uses a smaller value of τ = 0.7, but in our experiments, this
diminishes the model’s confidence by a large margin and reduces the performance of
new class predictions.

The training phase of continual models consists of several distinct steps. Hence, the
weights from a previous step are loaded in from memory, and the training details are
reset to simulate the nature of learning in distinct episodes. Lastly, to reduce the impact
of random seeds influencing the results [39] we have conducted each experiment at
least three times on random seeds. Thus, each score reported in this work is a mean of
the experiment results.

Multi-GPU setup Thorough hypothesis evaluation is a crucial step in each project.
Unfortunately, the size of the semantic segmentation models like DeepLabV3 is a
major obstacle in performing an extensive set of experiments. With the batch size
recommended by the authors, the model requires 16GB of GPU memory to hold model
weights and parameter gradients for the backpropagation. The largest GPU available
for undergraduate students is RTX 2080Ti, with 11GB of memory. Therefore, for last
year’s project, we were forced to use smaller models (ResNet50 vs ResNet101) and
evaluate the models with a smaller image crop size (256 vs 513), reducing the number
of activations at the cost of decreased accuracy.

In this project, we have utilised the torch.distributed library to run each experiment
on multiple GPUs in parallel. This extension has allowed us to replicate solutions from
published papers and produce state-of-the-art results at the cost of increased compute
utilisation and prolonged training.

With 4 GPUs running in parallel, each experiment takes approximately 2-4 hours,
depending on the scenario. To accommodate for the large number of GPUs required
and long training time, we have opted to use Informatics GPGPU cluster2 as well as
BayesWatch GPU servers3, each containing tens of GPUS that we used to perform
hyper-parameter tuning in parallel.

2https://computing.help.inf.ed.ac.uk/teaching-cluster
3https://www.bayeswatch.com/gpu_resources/

https://computing.help.inf.ed.ac.uk/teaching-cluster
https://www.bayeswatch.com/gpu_resources/
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Experiments

In this section, we compare the performance of our Dropout Continual Semantic
Segmentation model (DCSS) with current state-of-the-art approaches on a selection of
Class-Incremental tasks from Section 4.1.1. We analyse the impact of our shared HEAD

module on performance, complexity and memory footprint. We verify the usefulness
of the addition of the Dropout layer and perform a thorough hyper-parameter search,
proving the importance of DCSS contributions with an extensive ablation study. Lastly,
we suggest a new evaluation protocol for Class-Incremental Semantic Segmentation
that lies closer to the lifelong learning philosophy.

5.1 Experimental results of DCSS

In Table 5.1 we observe that DCSS consistently outperforms other models while having
a simpler and more extendable architecture that is also easier to train (Figure 3.2b).
DCSS offers a significant improvement in learning of the continual steps while also
preventing the catastrophic forgetting of old classes, even with multiple continual steps.
In the most popular 15-1 scenario, DCSS achieves a 1.72% improvement over SSUL, a
current state-of-the-art model. The biggest overall gain of over 3% can be found in 10-1
scenario that has a larger number of continual steps.

Most importantly, in all scenarios we have improved the mean score of the new, continual
classes, up to 6% in the case of 15-1. We believe that, although there is still a large
IoU gap between classes learned offline and online, DCSS significantly improves
the performance of online learning and brings it closer to the performance of offline
learning. This gain can be a surprising result, considering that we are only training a
single 2048-dimensional vector at each step.

Since model freezing prevents any new features from being added, we only learn a linear
mapping of existing features during the continual phase. Therefore, we conclude that
adding a new HEAD module at each step, like in SSUL, does not bring any noticeable
improvements. On the other hand, it is cumbersome to train, requiring more training
data, which the PASCAL VOC dataset does not have. These factors cause DCSS to
outperform SSUL, with the regularisation further improving the scores (Table 5.2).

27
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VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 19-1 (2 tasks) VOC 15-5 (2 tasks)
Method 0-10 11-20 all 0-15 16-20 all 0-5 6-20 all 0-19 20 all 0-15 15-20 all

ILT [37] 7.15 3.67 5.50 8.75 7.99 8.56 22.51 31.66 29.04 67.75 10.88 65.05 67.08 39.23 60.45

MiB [3] 12.25 13.09 12.65 34.22 13.50 29.29 57.10 42.56 46.71 71.43 23.59 69.15 76.37 49.97 70.08

PLOP [12] 44.03 15.51 30.45 65.12 21.11 54.64 17.48 19.16 18.68 75.35 37.35 73.54 75.73 51.71 70.09

SSUL [4] 71.31 45.98 59.25 77.31 36.59 67.61 71.17 45.38 52.75 77.73 29.68 75.44 77.82 50.10 71.22

DCSS (ours) 73.34 50.20 62.32 77.66 42.69 69.33 68.10 48.83 54.34 77.22 36.85 75.30 77.49 51.49 71.30

Joint (V3) 78.41 76.35 77.43 79.77 72.35 77.43 76.91 77.63 77.43 77.51 77.04 77.43 79.77 72.35 77.43

Joint (DCSS) 77.80 76.58 77.22 78.77 72.25 77.22 76.29 77.61 77.22 77.30 75.60 77.22 78.77 72.25 77.22

Table 5.1: Main results for our DCSS model. We substantially outperform previous
works in new classes (middle columns) in all scenarios and achieve improvements in
combined scores in the more difficult scenarios with multiple tasks.
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Figure 5.1: IoU comparison of DCSS and SSUL with their respective Joint upper-
bounds.

Moreover, adding large modules goes against the nature of Continual Learning in
which it is vital to be able to quickly learn from a small amount of data that might
not be accessible for long. Therefore, relying more heavily on the existing feature
representation gathered during the offline phase is likely beneficial when using model
freezing instead of using large quantities of data to learn large convolutional layers for
new tasks. Things can change in the very extreme case of a 2-2 scenario (10 tasks) and
2-1 (19 tasks) (Table A.1), where SSUL slightly outperforms DCSS. We attribute this
to the small initial set of classes leading to insufficient amount of features. This finding
is described further in the Appendix.

JOINT results show the practical upper-bound that we can achieve by training on all
classes offline (Table 5.1, Figure 5.1). DCSS offers worse performance in joint training
than SSUL, directly based on a DeepLabV3 model. This can be mainly attributed
to adding a Dropout layer to DCSS and changing the classifier’s size. Most changes
applied to the models designed for optimal offline performance, like DeepLabV3,
will be detrimental to the accuracy. To learn a more balanced embedding space, we
have to sacrifice some of the performance during the offline phase. Indeed, in our
case, we include a Dropout layer with a high probability p that decreases the model’s
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(b) Model complexity comparison

Figure 5.2: Resource comparison in the 15-1 scenario. SSUL adds significantly more
trainable parameters at each step, surpassing DCSS size and complexity in just 2 steps.

performance. Despite worse initial IoU, our experiments confirm that this trade-off is
favourable for DCSS, which maintains better performance in the long run and shows a
general direction for all Continual Learning models that rely on parameter freezing.

5.1.1 Size and complexity

To compare our results to the ones produced by previous works, we have to constrain
ourselves to a model of a similar learning capacity. Ideally, we are interested in
comparable results for the offline step, showing that we are not increasing the capacity.
A visible improvement in all online steps would suggest that our addition helps with
continual learning and not just the segmentation capability. Figure 5.1 proves that we
increase Continual Learning performance despite the decreased overall performance
of DCSS in offline learning, further signifying the importance of our contributions to
online learning.

What is most important, all of this is achieved with a smaller and easier to train model.
In 15-1 DCSS has over 2M parameters less than SSUL (Figure 5.2), while in the extreme
case of 10-1 the model is actually smaller by over 5M parameters and the difference
grows linearly with each additional step.

As can be noted in Figure 5.2, SSUL implementation increases linearly in size and
complexity with each additional continual step. The reason why at step t = 1 the DCSS
is larger than standard DeepLabV3, despite both being trained in an offline fashion,
is the requirement of having a separate classifier for the background class cb and the
unknown class cu, which means that we already have three HEAD modules at t = 1,
including the one for classes in C t=1. In contrast, increasing the size of the HEAD

to produce 2048 channels with separable convolution as in DCSS, compared to 256
channels in SSUL, yields a significantly smaller model in the long run while achieving
better results than SSUL.
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Figure 5.3: Comparison of the DCSS model with a different number of channels and
standard or separable convolution. (a) shows the achieved IoU while (b) compares
models’ size. The Blue cross shows the chosen setting for DCSS.

5.2 Ablation study

5.2.1 Head size

We tested a range of configurations to choose an optimal size and configuration for
the HEAD. In particular, DCSS with a HEAD with 256, 1024, 2048 or 4096 channels,
with or without the depthwise separable convolution. Figure 5.3a shows a plotted graph
of the results. The larger number of channels increases the performance, with the
gains diminishing with more than 2048 channels. HEAD with a separable convolution
achieves worse results across all sizes, conforming that we lose some performance when
compressing convolution blocks.

The model parameter count in Figure 5.3b tells the other side of the story. Increasing
the number of channels increases the size exponentially, undermining the use of a very
large HEAD. However, we can recuperate some of the performance with the separable
convolution. DCSS with 2048 channels and separable convolution, marked with a blue
cross in the figures, achieves the best ratio of performance and efficiency and thus was
used for all remaining experiments.

5.2.2 Model regularisation

The increase in HEAD size helps SHARED model be both more accurate and more effort-
less to train than SSUL, as seen in Figures 5.1 and 5.2 respectively. Notwithstanding, it
relies heavily on a good embedding space learned by the model before freezing since
we have only one trainable linear layer to predict the pixel’s class probability. Inspired
by the Information Bottleneck theory, we have attempted to reduce the impact of the
COMPRESSION phase, assuming that this should maintain a richer and more balanced
high-level feature representation, even if contained only in the final 2048 channels.
Therefore, we have experimented with stronger regularisation in the decoder modules.
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Figure 5.4: IoU comparison of the Standard and Channel Dropout in 15-1 sce-
nario. DROPOUT2D is more effective with small probabilities but gets outperformed
by DROPOUT1D with p = 0.3, which we use for further experiments.

VOC 15-1 (6 tasks)
Dropout p 0-15 16-20 all

None - 77.09 39.39 68.11

Standard 0.1 77.35 40.70 68.69

Standard 0.2 77.30 41.88 69.06

Standard 0.3 77.66 42.69 69.33
Standard 0.4 77.72 42.02 69.23

Channel 0.1 77.71 41.34 69.05

Channel 0.2 77.28 41.65 68.80

Channel 0.3 77.22 41.43 68.66

Channel 0.4 76.98 39.29 67.98

Table 5.2: IoU comparison of the Standard and Channel Dropout in 15-1 scenario.
DROPOUT1D with p = 0.3 achieves the best IoU scores in new tasks, proving the effect
of regularisation of frozen models used for Continual Learning.

Dropout Table 5.2 and Figure 5.4 present the scores of DCSS in the 15-1 scenario
with a range of Dropout settings. We have tested standard Dropout (DROPOUT1D) as
proposed in [46] as well as channel Dropout (DROPOUT2D) with a range of dropout
probabilities p.

Dropout improves the model results in both new and old tasks. In the 15-1 scenario, the
DCSS model was able to improve the overall IoU by more than 1% and the average IoU
of the new classes by more than 2.5%. DCSS learned a better feature representation
before freezing despite having an initially worse performance at t = 1. This is an
influential discovery since Dropout does not change the complexity of the model while
being very easy to add to existing architectures, signifying a natural enhancement to
Continual Learning models.

In our experiments, we found that adding Dropout right after the ResNet encoder did
help, confirming our predictions. Interestingly, DeepLabV3 already has one Dropout
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Dropout p at step t VOC 15-1 (6 tasks)
t = 1 t > 1 0-15 16-20 all

0.3 0.3 76.90 40.92 68.31

0.3 0.1 77.14 41.45 68.65

0.3 0.0 77.66 42.69 69.33

(a) Reduce Dropout at step t

VOC 15-1 (6 tasks)
ScheduledDropout 0-15 16-20 all

✓ 77.66 42.69 69.33
✗ 77.54 39.60 68.50

- - - -

(b) ScheduledDropout

Table 5.3: Comparison of the Dropout strategies. (a) Removing Dropout for continual
steps improves the performance of new tasks. (b) ScheduledDropout helps to learn
better features while eventually still offering the benefits of Dropout.

layer in the ASPP module with probability p = 0.1 suggesting that the authors found
it helpful even in the offline training. We have tested an increased Dropout likelihood
in the existing ASPP layers and additional Dropout layers closer to the final 1× 1
convolution. Surprisingly, these additions did not seem to help and yielded worse
results. We conclude that the location of the Dropout layer plays an important role,
with the addition between a pre-trained encoder and an untrained decoder being a good
starting point [45].

Figure 5.4 shows that DROPOUT1D outperforms DROPOUT2D, despite many papers
claiming that DROPOUT2D should work better for convolutional networks [21, 45].
Interestingly, we have noticed increased sensitivity of the DROPOUT2D, which works
best with a small probability of p = 0.1, with larger probabilities decreasing the overall
performance. Standard DROPOUT1D works best with a probability p = 0.3, outperform-
ing DROPOUT2D by a sizable margin. Thus, this is the setting that we have decided to
use for DCSS.

The results follow our intuition, which suggests that dropping the whole channels
removes a feature across the whole image, whereas DROPOUT1D can work inter-
channel, which is vital in pixel-level tasks. Removing whole channels can prevent the
propagation of features, while removing specific neurons can decrease the reliance on
more salient parts of the image and promote more holistic attention.

We have also experimented with the DROPOUT1D probability during the continual steps.
Since regularisation helps us learn better and more reliable feature representation, its
importance is lessened with frozen parameters. Results in Table 5.3a prove that we can
achieve better results with no Dropout at steps t > 1. By training just one final classifier
layer at t, we are essentially learning the mapping of features to final probabilities,
which in our understanding, does not benefit from Dropout. Therefore, all results
reported for DCSS use DROPOUT1D with p = 0.3 at step t = 1 and probability p = 0 in
continual steps t > 1.

Scheduled Dropout Although Dropout maintains more features for online learning,
the increased entropy of the output features can cause problems with proper learning.
Following IB theory, we are primarily interested in regularising the COMPRESSION

phase of learning while leaving the GENERALISATION unconstrained. In other words,
adding Dropout is beneficial in the exploitation phase as long as it does not interfere
exceedingly with the exploration phase. Therefore, we have tested the use of Sched-
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VOC 15-1 (6 tasks)
Decay λ 0-15 16-20 all

ℓ2 0.0001 77.66 42.69 69.33
ℓ2 0.0005 77.43 38.74 68.21

ℓ2 0.001 75.72 33.66 65.70

(a) Weight decay

VOC 15-1 (6 tasks)
Weight transfer 0-15 16-20 all

Random → φ t
c 77.66 42.69 69.33

φ t−1
cu → φ t

c 77.58 40.89 68.84

- - - -

(b) Weight transfer

Table 5.4: Ablation study for the weight decay and weight transfer. (a) Increasing the
weight decay decreases performance for new classes. (b) Impact of the weight transfer
for the new classifier’s parameters at step t.

uledDropout [45], where the probability increases linearly from 0 to p during training
(Section 3.2.2). Table 5.3b proves that ScheduledDropout improves the IoU by almost
1%, despite using the simplest, linear scheduling of the Dropout. Therefore we conclude
that the optimal introduction of the regularisation can have a decisive effect on its
success.

Weight decay DCSS uses a standard SGD optimiser with a momentum of 0.9 and
ℓ2 weight decay of 0.0001, as in DeepLabV3 [6]. Inspired by Dropout’s promising
regularisation results, we tested an increase in the weight decay λ parameter. Results
in Table 5.4a show that any increase from the original value of 0.0001 used in most
semantic segmentation models decreases performance, especially in the ability to
learn new classes, while old classes learned in the offline step were mainly unaffected.
Therefore, we must wisely choose the regularisation technique to achieve a sparse and
feature-rich representation.

5.2.3 Weight transfer

SSUL relies heavily on the weight transfer from the unknown class cb
t−1 to each of

current classes C t . In the original paper [4], it is shown that for scenario 15-1 weight
transfer makes a considerable difference, especially for the new classes (36.59 IoU vs
23.99 IoU). This step is probably required due to the large number of parameters trained
at each step (over 0.5M) with insufficient data. Weight initialisation to the foreground
predictor’s weights assumes that the classifier is more or less ready from the get-go to
recognise new classes.

In the context of the reduced set of trainable parameters in DCSS, we found that weight
transfer is unnecessary and might prevent the model from finding an optimal solution.
Table 5.4b shows that random initialisation outperforms weight transfer from both the
background class and the unknown class.
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Figure 5.5: Example predictions of DCSS and SSUL in the 15-1 scenario.

5.3 Qualitative results

We examine the predicted masks learned continually to compare the results of SSUL
and DCSS qualitatively. We see that both models can learn certain classes like sheep
with ease. We notice DCSS behaving more stable under challenging conditions where
the predictions are starting to become noisy. Class boundaries of similar classes like
bus and train can be fuzzy in both cases, leading to mispredicted patches and severe
degradation. The fuzziness is the drawback of using frozen models combined with
binary cross-entropy: it is challenging to learn the actual distribution of the classes,
causing under or over-prediction of classes with similar frequencies. However, DCSS
tends to be less noisy than SSUL, which we attribute to having less trainable parameters,
thus less overfitting while having higher quality features due to the Dropout layer.

5.4 New Protocols and Evaluation

We have seen the performance of DCSS on the tasks proposed initially by [3]. DCSS
offers a better IoU score while being a generally cheaper model to train in the long run.
We argue, however, that the evaluation protocol has an unrealistic assumption about the
ability to store the continual training data and use it multiple times over the step t.
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VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 15-5 (2 tasks)
Method Epochs 0-10 11-20 all 0-15 16-20 all 0-5 6-20 all 0-15 15-20 all

SSUL [4] 50 71.31 45.98 59.25 77.31 36.59 67.61 71.17 45.38 52.75 77.82 50.10 71.22

DCSS 50 73.34 50.20 62.32 77.66 42.69 69.33 68.10 48.83 54.34 77.49 51.49 71.30

SSUL [4] 1 73.23 38.10 56.50 77.34 32.44 66.65 69.90 27.52 39.63 76.68 47.64 69.76

DCSS 1 73.78 43.26 59.24 77.16 37.46 67.71 68.44 38.84 47.30 77.46 45.60 69.88

Table 5.5: Experimental results on the Restricted Class-Incremental Semantic Seg-
mentation protocol. Both SSUL and DCSS decrease their performance in new tasks,
although the scores still lie in similar ranges. This proves that more training cannot
extract missing features from the frozen model.

Therefore, we also evaluate our DCSS model on the proposed Restricted Class-Incremental
Semantic Segmentation protocol, where we train each continual step for only one epoch.
The setting for the offline step t = 1 remains relaxed, with no constraints on its training
protocol. Additionally, to account for the changes in the training protocol, we have
removed learning rate scheduling, maintaining the learning rate at 0.01 throughout the
training. Moreover, we have reduced the batch size in the continual phase from 24 to
4, effectively increasing the number of backpropagation steps in the hope that, while
being noisy, it will better utilise the limited exposure to data.

Table 5.5 shows the result of our experiments on four scenarios in RCISS, similar to
previous scenarios in standard CISS. Again, DCSS outperforms SSUL while having a
simpler and more extendable architecture. We notice that both models struggle more
with learning multiple classes at once (5-3), although DCSS manages to outperform
SSUL in the continual classes by a large margin. Things change around in 15-5 where
SSUL achieves better results in the new classes, the only case that this happened in
our experiments. This difference can be explained by the different weight initialisation
(Table 5.4b). Our experiments found that weight transfer from the unknown class is
worse than random initialisation, but we see that it might be necessary for low-epoch
scenarios. Moreover, a more regularised training signal containing multiple classes in
a batch can usually benefit from having more training epochs, further increasing the
difficulty of our protocol.

Notwithstanding, although we see a decrease in performance, we notice that the results
are mainly in the same range as the models trained on the entire 50 epochs. We believe
that this shows both the strengths of the frozen model architectures and the weaknesses
of these implementations since no amount of training can extract missing features from
the pre-computed feature representation.
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Discussion

This chapter provides a final analysis of the problem and the outcomes of our work. The
conducted experiments proved that changes introduced by the DCSS model improve its
performance versus the SSUL model that it was based on. We will discuss the impact
of the results and highlight crucial aspects that we think will be important in the near
and long-term future.

6.1 Frozen model with few trainable parameters

A shared HEAD with the same number of output channels initially decreases the model’s
performance, with fewer features available for the model to learn from (Figure 5.3a).
This decline is expected and suggests why all previous works have used a separate
HEAD. However, it is worth noting that none of the authors mentioned the adverse
effect this approach has on the model’s complexity. Adding more than 0.5M parameters
at each step is not a sustainable policy assuming that the number of steps can become
considerable.

However, the above information indicates also the strengths of DCSS. Using shared
HEAD we can essentially freeze it after offline training and only focus on the classifiers
φ t

c. A single vector at step t is a lot simpler to train, and since we cannot realistically
introduce new features without unfreezing the encoder, we achieve the same goal of
mapping frozen representation to output probabilities.

Thankfully, the performance of the SHARED approach can be effortlessly recuperated
with a larger number of channels while still making the model smaller after t steps
compared to the SEPARATE implementation of SSUL. One larger module gives us
also more predictability and flexibility when it comes to the expected final size of the
model. Moreover, we can use depthwise separable convolution to decrease some of the
parameter and MAdd costs while maintaining the crucial, large number of channels.
Although separable convolution entails adverse effects on the predictive power, the
experiments have proved that this is a worthwhile trade-off. We believe that separable
convolution should be further researched and exploited in Continual Learning models
with frozen parameters.
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A frozen, shared HEAD means that we train only a single 1×1 classification vector per
online class, causing new problems. A single trainable layer limits the learning capacity
of the model by a large margin, usually causing underfitting. Nonetheless, we argue that
this aspect can be beneficial in the context of architectures with frozen feature extraction
modules, preventing sudden prediction shifts from appearing in similar classes like cat
and dog.

6.2 Information Bottleneck theory and Dropout

Following the Information Bottleneck theory, we see that the COMPRESSION phase can
impact the number of features available for future learning. Information Bottleneck
theory suggests that Deep Learning models keep adding new features in the initial
exploration phase but start removing unused or noisy ones in the exploitation phase.
This behaviour is beneficially in the context of static, supervised learning but is counter-
productive in Continual Learning. Adding new features tends to be expensive and can
require multiple layers to extract complex relations. In contrast, removal of a feature
connected with the COMPRESSION can happen rapidly and even in a single layer. Thus,
we should aim to maintain a diversified representation as long as possible, reducing the
COMPRESSION phase to its minimum.

COMPRESSION can also be connected to the overfitting, with overly compressed net-
works removing features not valuable for the training, causing over-reliance on the
training set. Therefore, we can look into the numerous ways to combat overfitting,
including early-stopping, weight decay and Dropout. Heavy regularisation can reduce
the score of offline training, causing underfitting. We argue that with the requirement to
maintain features for future use being of a higher priority, we should settle for a lower
offline score with the hope of a better generalisation.

Weight decay did not offer the results that we were looking for. This misprediction can
be partially attributed to the negative impact on the pre-trained weights of the ResNet
encoder. Fine-tuning a pre-trained model with a more significant weight penalty term
can cause undesirable incentives for the model to remove some of its existing features,
clearly contradicting our initial plans. Despite this, we believe that there still is a place
for a different approach to weight decay for Continual Learning with frozen models.
However, we did not find a successful configuration that would yield promising results.

On the other hand, Dropout does not cause detrimental effects on the encoder module,
as long as we place it in a strategic place. We can use the signal uncertainty produced by
turning off random features to regularise the segmentation module without interfering
with the encoder’s feature generation. Moreover, the intelligent introduction of the
Dropout using the ScheduledDropout strategy helps us achieve both uninterrupted initial
learning and regularised final model.

We saw that ScheduledDropout combined with the larger, shared HEAD could make
DCSS perform on-par with standard SSUL or DeepLabV3 model, albeit at the cost
of space. Despite that, we have shown that it is a trade-off worth taking as DCSS
outperforms any existing model in the ability to learn new tasks while still preventing
overfitting.
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6.3 Restricted access to data in Continual Learning

DCSS has an unquestionable advantage of being easy to adapt to new tasks. The large
output of the frozen module allows for as little as a single layer to be trained, lessening
the requirements for training and data. The clear advantage of being less reliant on the
amount of continual data can also be a good candidate for few-shot learning.

Therefore, we proposed the Restricted Class-Incremental Semantic Segmentation bench-
mark to simulate more restricted environments where the data is seen just once as if it
was streamed. RCISS follows the structure of the training protocol introduced by [3],
which was also used in this work, but limits the number of epochs to just one, similar to
lifelong learning.

Analysis of the results shows that both SSUL and DCSS deteriorate in their ability to
learn new classes in RCISS. While DCSS still outperforms SSUL, the performance
suggests that the restricted access to data has a destructive effect on already troublesome
Continual Semantic Segmentation. Methods like A-GEM [5] could improve our models
and should be tested in future works. Ultimately, we believe that this benchmark should
be preferred to the one from [3] as it better relates to the nature of lifelong learning and
focuses on the efficient use of data, an essential and often overlooked characteristic of
Deep Neural Networks.

6.4 DCSS limitations

In Section 5 we have shown that DCSS improves upon the previous work of SSUL.
Nevertheless, there is still plenty of room for improvement. The counter-intuitive use
of a single trainable layer per continual step due to the use of shared HEAD, although
successful, imposes strong limitations that will prevent the model from reaching optimal
performance in the long term. Lacking any non-linearities, we essentially perform a
simple linear mapping of the existing features learned in the offline phase to new tasks
(Section 3.1.1). Therefore, Continual Learning is strictly limited to features obtained in
the past. In scenarios where limited offline training is allowed (Table A.1), this leads to
worse performance than SSUL. Moreover, model freezing prevents the effects of the
informational collapse, but it does not prevent catastrophic forgetting. Thus, it should
be considered a temporary approach, not a long-term solution.

In Section 3.2.2 we claim that introduction of Dropout reduces the effect of COMPRES-
SION of the features from a pre-trained encoder. However, we might not be using
pre-trained models, thus limiting the effectiveness of our approach. Ultimately, the
biggest gain could be achieved not with the reduction of COMPRESSION, but with a
different approach to learning the representation that will increase the GENERALISA-
TION. Recent trends tend to remove the reliance on supervised training for a more
contextualised signal using self-supervised learning in the form of contrastive models
or multi-modal data, where a more holistic type of learning must appear to capture the
whole context. Altogether, these approaches should allow for encoders that are less
task-specific, providing the required flexibility in Continual Learning.



Chapter 7

Conclusion

This project proposed a new DCSS method for Class-Incremental Semantic Segmen-
tation (CISS) that has achieved state-of-the-art results on the PASCAL VOC dataset.
To improve the model freezing approach suggested by SSUL, we have made two main
contributions. The first one is scaling down the models’ linear size growth with each
additional continual step to a minimum. We have introduced a wider, shared HEAD

module with depthwise separable convolution instead of the separate, smaller HEADS

used by previous works. The importance of this change has been proven experimentally
and showed performance gain while decreasing the overall model footprint. Second,
inspired by the Information Bottleneck theory, we have studied the impact of heavier
model regularisation during offline training to maintain more features for future learn-
ing. The addition of a Dropout layer has indeed increased the performance of DCSS,
significantly improving the ability to learn new tasks at the cost of slight underfitting of
the offline model.

Despite improving upon the results of SSUL and achieving current state-of-the-art
results, we acknowledge certain limitations of our model. Although successfully
used in our work, model freezing imposes unnatural constraints. The discrepancy
between DCSS and the reasonable upper bound that we achieve with offline training
is still significant and leaves plenty of room for improvement. Moreover, the current
framework for CISS can promote unreasonable solutions that overfit to the specific
task definition [3]. Therefore, we have introduced a new Restricted Class-Incremental
Semantic Segmentation (RCISS) protocol, where the models are allowed to be trained
only for epoch during the continual training, simulating a stream of data that cannot
be stored in memory. While DCSS continues to outperform SSUL in that setting, both
models achieve similar results to the original CISS setting despite limited training
possibilities. RCISS shows the limitation of model freezing - no amount of training can
recuperate the performance when missing crucial features.

Last, future work on this topic should be extended beyond the PASCAL VOC dataset,
as any work on datasets not explicitly designed for Continual Semantic Segmentation
should be treated as a temporary solution. New, dedicated datasets need to emphasize
the issue of the background shift problem and introduce temporal and spatial locality of
the data, which should spur new interest in this topic.
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Appendix A

Supplementary materials

A.1 Additional experimental results

In Section 5 we have presented the results on 5 main tasks, in particular 10-1, 15-1, 5-3,
15-5 and 19-1. We notice in Table 5.1 that DCSS surpasses the results of other works.
We have also carried additional experiments as introduced by Cha et al. [4], shown in
Table A.1. DCSS performs slightly worse in 2-1 and 2-2 scenario. The shared HEAD

module of DCSS means that we only have a single 1×1 trainable vector per class. In
these extreme scenarios, the frozen encoder does not contain enough information and
can benefit from the additional trainable layer of SSUL. We conclude that the number
of initial classes used for offline training plays a crucial role in further offline training.

A.1.1 Per-class performance

Table A.2 shows the summarized results of DCSS model on the PASCAL VOC dataset
by each class.

A.1.2 Confusion matrix of DCSS

Figure A.1 shows the confusion matrix of the DCSS model in the 15-1 scenario. We
can notice that the model correctly predicts most of the pixels, with a large part of the
mistakes caused by over-prediction of the background class.

VOC 10-1 (11 tasks) VOC 5-1 (16 tasks) VOC 2-1 (19 tasks) VOC 2-2 (10 tasks)
Method 0-10 11-20 all 0-5 6-20 all 0-2 3-20 all 0-2 3-20 all

PLOP [12] 44.03 15.51 30.45 0.12 9.00 6.46 0.01 5.22 4.47 24.05 11.92 13.66

SSUL [4] 71.31 45.98 59.25 69.32 40.38 48.65 62.35 34.32 38.32 62.38 42.46 45.31
DCSS (ours) 73.34 50.20 62.32 70.22 40.59 49.05 61.06 32.60 36.67 56.94 41.36 43.59

Table A.1: IoU results on the more extreme scenarios with low initial number of classes.
DCSS struggles if the frozen model was trained only on a few classes.
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Figure A.1: Confusion matrix of the accuracy of DCSS model in the 15-1 scenario.

bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv all
10-1 (11 tasks) 88.76 83.91 38.36 88.48 65.01 79.16 87.63 88.08 85.94 33.34 68.05 29.83 70.31 46.79 73.45 79.43 27.85 53.63 24.66 47.80 48.22 62.32
15-1 (6 tasks) 90.54 88.97 37.15 89.05 70.35 81.02 86.78 88.38 94.17 35.71 80.14 56.00 89.86 84.27 84.66 85.41 30.98 58.78 25.15 55.97 42.59 69.33
5-3 (6 tasks) 87.75 76.87 32.98 83.85 54.33 72.79 53.00 71.94 73.18 10.94 49.95 24.15 65.78 47.90 67.00 77.42 24.84 54.23 21.15 48.31 42.76 54.34
19-1 (2 tasks) 92.63 89.36 39.67 89.05 73.74 80.75 92.23 87.17 92.01 40.42 84.27 57.49 90.49 83.64 85.65 84.82 58.85 83.04 51.11 87.99 36.85 75.30
15-5 (2 tasks) 91.01 86.45 39.14 88.22 68.61 79.07 93.03 86.97 92.31 34.85 79.66 57.84 89.49 83.01 85.46 84.81 35.14 64.54 30.73 74.29 52.74 71.30

Table A.2: Details of PASCAL VOC IoU performance per task per class.
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A.2 Additional discussions

DCSS proposes distinct changes that yield a more reliable model (Table 5.1). Notwith-
standing, these changes are only a fraction of the applicable approaches, even when
considering only the approaches with a frozen model.

A.2.1 Residual connection

Initially, we have tested the addition of skip-connections from low-level layers to the
final decoder module, providing low-level features to the classifier. This is a similar
approach to the one of DeepLabV3+ [7], although there, the low-level features are used
to inform the offline model of more precise mask boundaries.

The idea behind residual connections for Continual Learning stems from the same
Information Bottleneck theory as discussed before. Feature-rich representation in the
output layer of a frozen model is a crucial requirement for the successful learning of
new classes. Therefore, we have experimented with increasing the capacity of the final
layer by doing a bit more than simply extending the number of channels as in DCSS.

Additionally, residual connections benefit from being separated from the main model
trunk. This separation can be used by having a separate skip-connection for each
continual step, thus enabling the model to look further into the feature representation
and potentially reduce the effect of COMPRESSION. Unfortunately, we did not have any
success with this naive addition, potentially because the residual connections increased
the GENERALISATION by learning more features but did not weaken COMPRESSION.

A possible option suggested in Head2Toe [13] is the use of group lasso [53] to select
specific parameters across the layers for model fine-tuning instead of relying only on
the output features. Dynamic selection of features from the frozen model could prevent
information bottlenecks in the models. We conjecture that this approach could extend
and improve the naive residual connections and should be researched in the feature.

A.2.2 Self-supervised learning

In self-supervised learning, the model is trained using a proxy task, like in contrasting
learning. The idea behind the proxy task is that we can generate a similar task that is
easier to train or can be trained on a large quantity of unlabelled data that we utilise to
produce a proxy supervision signal. Therefore, to obtain results on par with supervised
learning, we must learn a better representation using more varied data that will do just
as well or better on the target dataset. Self-supervised learning implies a very sparse
representation containing many potentially useful features.

We can use this characteristic of self-supervised learning to our advantage in Continual
Learning, where such training of the offline step can yield a more robust model with
a large quantity of data. Although this type of training is expensive and data-hungry,
it could most likely lead to state-of-the-art results using the frozen model approach.
Temporarily, even using a self-supervised pre-trained model like MoCoV2 [9] or Sim-
CLR [8] could be a viable option for inducing a sparser feature representation during
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fine-tuning.

A.2.3 Adaptable frozen model

Despite having frozen weights to maintain the learned prediction ability for past tasks,
there are ways to overcome this excess rigidity for new classes. Using adaptive modules
like Squeeze-and-Excitation (SE) in the backbone can offer us increased plasticity while
maintaining previous representation. The squeeze element of SE captures the details of
the channels with global average pooling and passes the signal through non-linearities
and fully-connected layers. The vector produced by the Squeeze procedure describes
the channels’ importance, which is then applied in the Excitation phase. In essence, we
can extract the value of each filter and scale the detected features accordingly.

Although SE would not allow us to add new features to the model, it could extend the
flexibility of representing less salient features that could be crucial for new tasks. Thus,
each task could learn its independent Squeeze vectors. During the forward pass, we
would be required to dynamically select the scaling vectors not to repeat the calculation
for each task. In theory, the dynamic selection should maintain efficiency while offering
additional predictive power for Continual Learning.

Moreover, learning new features usually occurs across several layers and might require
new channels to prevent catastrophic forgetting. Some works focus on enabling the
dynamic channel activation depending on the class or introduction of new, task-specific
modules across the depth of the model. However, in the short term, we are probably
left with the freezing approach in which DCSS’ approach achieves visibly better results.
Therefore, we claim that we should aim to provide better features with the frozen model
that can be quickly and efficiently utilised for continual learning rather than trying to
add new features on top of the offline representation.
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