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Abstract

The study of using past prices to predict future ones is a problem as old as financial
markets themselves. In an age of stock ‘“‘savants” selling courses in the hundreds
of dollars, zero-commission apps allowing millions of people to day trade, and an
explosion of those who claim to have found price patterns that all but guarantee profit, a
methodical approach to the study of price-action trading is needed.

To that end, this project aims to apply entropic methods to discern the effectiveness
of different price patterns, and apply them to trading strategies. These methods imply
that pure candlestick pattern based trading is unlikely to be a learnable system, and
consequently that pure price-action trading on single financial instruments are unlikely
to be profitable.
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Chapter 1

Introduction

1.1 Outline

Over the last 20 years, 95% of all professional investment funds in the US investing in
large-cap stocks have failed to outperform the S&P 500 [3]. For investors in smaller and
mid-sized companies the story is much the same; 91% and 93% failed to outperform
their respective indices (S&P MidCap and SmallCap) [3]. In fact, across all of the
indices, S&P Global tracked as part of their latest SPIVA (Standard and Poor’s Indices
Versus Active) report, the best performing active investors are in real estate, where 84%
underperformed relative to their benchmark [3]].

The problem is clear: virtually every investor loses money relative to the market. This
problem is as old as financial markets themselves. In his 1688 book, Confusion de
Confusiones, Joseph de la Vega describes financial markets as:

“Piedra de toque de los sagaces y piedra de tiimulo de los atrevidos” [24]
Translating to ““a touchstone for the intelligent, and a tombstone for the audacious”.

In the modern-day, where trading is cheaper and easier than ever before, there has been
a surge in fechnical analysis [19], which is trading based on using past prices to predict
future ones. This has ushered in a new wave of “Wall Street Gurus”, day-traders such
as Rayner Teo, Ryan Scribner, and The Lifestyle Trader, who claim to have solved the
market.

Using price patterns, or in some cases star alignmentﬂ they propose that by using their
methods, a profit is guaranteed. Though such coveted information is typically locked
away under a $500 price tag.

On the other hand, the Efficient Market Hypothesis (EMH) suggests that any form
of technical analysis will not consistently beat the market, as the price of an asset
is reflective of all information known about it [9]. The literature regarding technical
analysis remains divided and there is no clear consensus on the profitability of it [20],

'No, we’re not kidding: https://en.wikipedia.org/wiki/Planetary_Stock_Trading
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meaning that further investigation into the information that price changes contain is
needed.

Consequently, with 300 years of hindsight, modern mathematics, and computers on our
side, we seek to answer the following question:

What can entropy tell us about the informational content of prices?

The central finding of this report is that through the lens of entropic methods, irrespective
of asset class or time horizon, a time series of prices is highly unlikely to be informative.
Specifically, by sampling a given series of prices, these methods indicate that we are
unable to learn from them and that we can distinguish very little (if anything) about the
underlying market.

The body of this report is composed of 7 chapters.

e Background (Chapter 2) outlines the existing literature both in technical analysis
and complex systems and introduces the mathematics behind both methods used.

e Methodology (Chapter 3) gives the methodology used to analyze financial time
series and subsequently apply the techniques outlined in Chapter 2.

e Findings (Chapter 4) discusses the results of experiments run on different markets,
assets, and time ranges.

e Applications (Chapter 5) explains a handful of simple trading strategies developed
using the findings.

e Discussion (Chapter 6) lists some possible improvements for trading strategies
and discusses the findings.

e Conclusion (Chapter 7) evaluates the experiments run in Chapters 4 and 5 and
comments on future directions for the body of work.
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1.2 Definitions

e Financial Instrument — any asset that is traded in a financial market. These
include (but are not limited to) stocks, bonds, cryptocurrencies, currencies, and
commodities.

o Technical Analysis — using a time series of past prices to predict future ones.

e Fundamental Analysis — looking at the business model, cash flows, balance
sheets, etc. of a particular company to determine whether or not to buy/sell it.

e Speculation — buying an asset in hopes that it will appreciate, or selling (shorting)
an asset in hopes that it will depreciate.

e [nvesting — buying an asset whilst having a direct say in how it is controlled, eg.
purchasing a majority stake in a company to change its business model.

e Signal — information that one uses as the “trigger” to buy or sell a financial
instrument, eg. if the price is above $10, buy, and if it is above $15, sell.

e Candlestick — characterizing price changes in a given time period by a quadruple,
[Open Price, Close Price, High Price, Low Price]. If the Open Price is greater
than the Close Price, this is a bearish (downwards) candle, colored red or black.
If the Close Price is greater than the Open Price, this is a bullish (upwards) candle,
colored green or white.

e Body — the difference between the Open Price and the Close Price.

e Shadows — the upwards shadow is the difference between the High Price and
the Body. The downwards shadow is the difference between the Low Price and
the Body.

e Candlestick Pattern — a collection of one or more candlesticks, these are normally
given names, such are engulfing, three crows, etc.

e Alpha (o) — how much a trading strategy outperforms the market.

e Position — what trades you currently are engaging in, ie. what assets you have
bought (or sold).

e Long Position — buying an asset, expecting the price to increase.

e Short Position — selling an asset borrowed from another party, hoping to buy it
back when the price of the asset falls.

e Closing a Position — selling an asset you had previously bought, or buying back
an asset you had previously shorted.



Chapter 2

Background

This chapter begins by providing an overview on the existing literature on technical
analysis, noise, and trading. Then, we introduce the mathematics, notation, and set-up
for using entropy to find maximally informative samples of a system. Finally, we
explain where this report fits in to the broader body of work in finance and statistical
mechanics.

2.1 Technical Analysis

2.1.1 Candlestick Patterns
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Figure 2.1: Anatomy and plot of candlesticks.

One of the most common ways to represent a time series of prices is through candlestick
patterns or candlestick charts. The way to construct these is by taking a series of prices,
dividing them into categories of a particular time period, and then calculating prices
at the beginning (Open Price) and end (Close Price) of that period, in addition to the
maximum and minimum prices throughout the time period. These four numbers form a
candle, and a series of candles can then be plotted on a graph. Throughout this report,
we take candlestick patterns to mean daily intervals, as they are considered the most
common and reliable time interval to use [20].
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Each candle is composed of a “body”, which is the difference between the open and
close prices, and a “shadow” or “wick”, which are the high and low prices for the time
interval. A candle can then be colored green (“bullish”) if the close price is greater than
the open indicating that the price moved up during the time period, or red (“bearish”) if
the opposite is true. Modern candle patterns were first popularized in Europe and North
America by Steve Nison in 1990 [18]] and have become virtually ubiquitous in financial
time series analysis.

To classify different types and patterns of candles, many of them are given names
depending on the relationship between the open, high, low, and close prices. For
instance, a “Hammer” is when the high price is equal to either the open or close, but the
low price is significantly lower than both the open and the close. This would represent
the price falling greatly and then rising back up close to where it opened. Some more
named examples can be found in Figure[2.2]

Hanging Man —)T

. Bearish Engulfing

Ifl <€— Hammer

Time
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Price
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\ 4

Figure 2.2: Hammer, Hanging Man, and Engulfing Patterns.

2.1.2 Trading Theory

The core theory behind technical analysis is that of using past prices to predict future
ones. Using candlestick patterns, a common way to do this is to first identify a candle-
stick pattern, check if it is associated with either an upwards or downwards change in
price and then act on that information by either buying or selling.

So, as an example, suppose that the “Bearish Engulfing” pattern from Figure [2.2]
historically corresponded to a decrease in price during a given time period. Then, if at
the end of a given day, we saw that a “Bearish Engulfing” had occurred over the last two
days, we would look to sell that asset the following day, expecting a further decrease in
price in the future.

To that end, one of the most common goals of technical analysis is finding reversals
[20]. The idea of a reversal is that the price has hit a temporary “peak” or “trough” in
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the market and that it will reverse in direction in the following days. The way to profit
off of finding a reversal, therefore, is simply by buying at a trough and selling at the
peak, and vice versa if one is short selling. By doing this, a speculator aims to profit
from the difference between the high point and low point of the price.
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A 4

Time
Figure 2.3: Graph showing peaks/troughs on a candlestick chart.

In Figure [2.3] there is a labeled graph of this where if one were able to know the
future would time reversal trades to perfectly coincide with the peaks and troughs in the
market.

2.1.3 Evidence

The literature on the feasibility of any form of technical analysis is highly divided
[19]]. Eugene Fama, Nobel Prize winner and widely considered the “father of modern
finance” [7], first formalized the “Efficient Market Hypothesis” (EMH) [9]] in 1970. For
preciseness, we take the EMH to mean the semi-strong EMH, which Fama posits occurs
when the price of a financial instrument accounts for all public information about the
stock [9]. That is, the only way to profit from speculation is through insider information.

The EMH goes further than simply refuting technical analysis, theorizing that any
investment that doesn’t rely on insider trading will not outperform the market in the
long run.

Technical analysis is both increasing in popularity, and there is a growth of literature
with empirical findings of successful trading strategies using technical analysis [19].
However, studies in technical analysis are normally riddled with methodological mis-
takes, chief among which is data snooping, ie. using hindsight [20]. Although blatant
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mistakes are rare (such as failing to correctly partition training and backtesting datasets),
more subtle mistakes are commonplace.

The most common forms of data snooping include tailoring a trading strategy to a
fixed asset for a fixed period of time and as a consequence experiments are not run on
large enough datasets [20]. Additionally, studies frequently construct trading strategies
ex-post, whereby upon examination of a particular asset, a trading strategy is developed
around it and then tested. Given that any trading strategy requires some level of
subjective judgment, this inadvertent data snooping often means that results are not
generalizable [19].

The consequence of these two things is that when a research paper on technical analysis
is written, it is for the most part ignored and quickly falls into obscurity. Therefore, it’s
unsurprising that the most recent meta-study on technical analysis was published in
2007 (with an addendum in 2011) [19]]. As such, the literature on technical analysis
remains fragmented and controversial.

This is particularly problematic in candlestick-based technical analysis, where the evi-
dence is particularly contested. On the one hand, proponents of it claim that candlestick
patterns are highly generalizable, whereby the same patterns can be applied across
many different assets to achieve profits. Yet, on the other hand, virtually all papers
with empirically successful findings only found them for very specific patterns in very
specific assets [[11] [[14].

2.1.4 Noise Reduction

The double-edged sword of noise in financial markets is best explained by Fischer Black
in his 1986 paper, “Noise.”:

Noise creates the opportunity to trade profitably, but at the same time makes

it difficult to trade profitably [3|.

Noise in markets increases liquidity but distorts prices.

2.1.4.1 Noise & Candlesticks

The amount of data produced for a single financial instrument is enormous. For instance,
the Bitcoin-US Tether (BTC-USDT) market on the Binance exchange regularly sees
over 100,000 trades per day [4], and order book information is significantly larger
than this. Moreover, this is only a single asset on a single exchange; markets for
Bitcoin also include Bitcoin-USD Coin (BTC-USDC), Bitcoin-TrueUSD (BTC-TUSD),
and Bitcoin-Binance USD (BTC-BUSD) to name a few. These markets also exist on
multiple exchanges meaning that the daily trades are much higher than this.

However, virtually all of these trades do not give meaningful information about the
future price of Bitcoin. This is where candlesticks are useful, as they can turn hundreds
of thousands of prices, each representing a trade, into four prices for a single day.
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2.1.4.2 Noise & Technical Analysis

Noise also plays a role in technical analysis in terms of one of the theoretical explana-
tions to support the profitability of technical analysis: noisy efficient markets.

In a noisy efficient market, the current price of an instrument does not contain all
available information regarding it because we have some variable level of noise added
to the current price [20]. Therefore, it would follow that as the amount of noise changes,
so too does the price.

This hypothesis does have some empirical findings namely that if there was no noise
trading in financial markets, very little trading would occur, as the only thing that could
change prices was new information being revealed about the asset [20]. However, given
the amount of trading that does occur, then it follows that there is a high level of noise
trading in all markets.

This means that assuming that the EMH holds in the long run, ie. that the market
will “correct” from the noisy price to the true price and if you can separate noisy price
changes from true price changes, then there exists an opportunity to trade profitably
when the disparity between the two is big enough.

Therefore, it follows that if market participants hope to use technical analysis to trade
profitably, they need some way to reduce this noise.

To that end, we introduce the entropic methods in the following section, with the aim of
discerning informative price movements from noise.

2.2 Entropy & Complex Systems

2.2.1 Overview

We begin by giving an outline of complex systems: systems made up of many compo-
nents that interact with each other and whose behavior is intrinsically near-impossible
to model. The seminal paper concerning this report is Matteo Marsili, lacopo Mastro-
matteo, and Yasser Roudi’s 2013 paper “On Sampling and Modeling Complex Systems”
[16].

Consider some complex system, S. This system takes in variables s = sy, ...,s,, and
seeks to optimize some unknown objective function U (s). We can observe some of the
variables that go into the system, as well as the states of the system, ie. how the system
behaves to optimize U (s).

Let s =s1,...,5; be the variables that are known to us and § = s; 1, ..., 5, be the variables
that are unknown to us [16]]. Therefore, s = (s,5) = (s1,-..,5;,Si+1,---,5,). Note that we
don’t know what we don’t know: n is unknown.

Moreover, considering that the system seeks to optimize U (s) it follows that there exists
an optimal solution for the variables, s*, such that:

s* =argmaxU (s)
N
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For example, consider a piece of text. The author, through writing, is trying to achieve
something. The precise nature of this something is unknown to us and therefore forms
the unknown objective function, U. We assume that the author is trying to optimize U
and that the words were chosen by the author play a role in this.

In this case, our known variables are the words in the text, which therefore constitute s.
However, there are many other variables that we can’t observe and likely don’t even
know of, such as editorial constraints, cultural influences, or how the author was feeling
that morning|“| These constitute 5.

If we assume that every word is chosen optimally in regards to U, then it follows that
each word in the text is an observation of s* € s* [[16]]. From now on, we take s to mean
s*, as every observed state is assumed to be maximizing U.

2.2.2 Sampling the System
Only using s, what can we learn about the system?

We begin by sampling the system M times. We now have S = {s',...,s™} observations,
each corresponding to an optimal solution for U (s). Next, we count the frequency of
each unique s' € S, denoted by K. The discrete probability distribution of each s’ is
given by:

Ps’) = 2 16 2.1
(s') = W [16] (2.1)
We can then derive the discrete probability distribution for Kj:

kmk

Where my, is the number of states observed k times.

In our example of a text, Equation (2.1)) would involve generating the relative frequencies
of each word. Equation (2.2]) would calculate the relative frequencies of the number of
unique words appearing exactly k times in the text.

2.2.3 Entropy

In 1948, Claude Shannon introduced the concept of information entropy, in his paper
“A Mathematical Theory of Communication” [21]]. In it, he defines the informational
entropy of a discrete random variable X, with xi,...,x, outcomes, and probabilities
P(x1),...,P(x,) to be

H(X)=-Y P(x)In(P(x;) [21]

The key idea behind entropy is that we are measuring the average information gained
based on the outcome of a trial.[21]] For instance, the informational entropy of flipping
a fair coin tells us that we are unable to gain any information about the next flip, and

2We note that these unknown unknowns also means that the exact nature of U is also unknown to the
author.
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therefore entropy is maximal. Equally, flipping a biased coin would give us a lower
entropy, as due to the bias we can gain information about the outcome of the next flip.

Therefore, considering our previous set-up, where we defined two discrete probability
distributions, P(s') and P(K,:), it follows that we can calculate their entropies to deter-
mine how informative they are. To that end, we introduce the two defining equations of
this report:

K, K kmy, k
H[g]:—ZﬁlnMs:—;ﬁlogn—“lﬂ (2.3)
s
kmy, kmy, kmy,
HIK] = —Zk:ﬁlogT = Hs| —Zk:ﬁlogmk [16] (2.4)

These are the key findings made in Marsili’s paper.

This method is well-suited for complex systems as neither H|[s] nor H[K] rely on s,
meaning that we are able to derive information about the system only through the
distribution of s throughout the samples, not s itself [16]. This is important as it allows
us to determine which s’ are the most informative independently of our understanding
of them.

Moreover, as seen in Equation H[K] is a function of H[s], meaning that as we vary
the size of M by grouping sequences of observed states together we would expect a
relationship between the two which we can then interpret. Marsili argues that by doing
so we should expect to see the states with the highest H[K] to be the most informative
[16].

2.2.4 Breaking Things Down

The core concept behind this method is that by taking our M samples of the system as a
single state, calculating H|[s| and H[K], then splitting up the samples into two states of
size M /2, and repeating the process until we terminate with M states of length one, the
states which contain the highest H[K] are the most informative [16].

We define the following procedure to calculate H|s| and H [K].

1. Get every unique sample in S.

2. For every sample:
2.1. Calculate H|[s] and H[K]| with 1 state of length M.
2.2. Find the next smallest divisor of M, d.
2.3. Calculate H|[s] and H[K]| with d states of length M /d.
2.4. Normalize H|s] and H[K] by dividing them both by log(M/d).
2.5. Repeat 2.2-2.4 until no divisors of M remain.

3. Output every sample and their sequence of associated H|[s] and H[K].
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1 | like cats | like dogs

2 | like cats | like dogs

3 | like cats | like dogs

6 | like cats | like dogs

Figure 2.4: Division procedure for generating H[K] and H|s| for the sentences "I like
cats. | like dogs.”

Then, we can look at the sequence of values H [K| and H [s], and determine the maximally
informative states of the system; those that give us the most insight as to the underlying
optimization problem, U (s).

Figure 2.4 shows an example of the division for the simple sentence “I like cats. I like
dogs.”. We point out that in the cases of d = 2 and d = 3, we build on the notion in
Section and treat the word and state frequencies as the probability distributions
for the frequency of the word in that group instead of across all observed samples.

2.2.5 Visual Representation of Entropies

One of the best ways to interpret the results of H[K] and H|s] calculations from Sec-
tion [2.2.4]is to plot them on a graph, given that H[K] is a function of H[s]. In systems
that we can learn from, those in which s provides us with some information regarding
U, we would expect to see a clear separation between the H K| values for informative
versus uninformative states. For systems whose observations of s provide us with no
information, we would expect no clear separation in terms of the informational content
HIK] that each state gives us.

To illustrate this point, we ran the procedure in Section|2.2.4)on two different datasets.
First, on a list of strings chosen uniformly at random from 8 potential options.

Second, on Mary Shelley’s novel “Frankenstein”. We plotted the normalized H[K|/H s]
graphs (by dividing both H[K| and H[s] by log M), for selected states (words), shown in

Figure

For the random words, we sampled them uniformly 75,000 times (the number of words
in Frankenstein). As seen in Figure [2.5] for the text made up of entirely random words,
there is virtually no difference between them. Their peak is also relatively low with
none of them exceeding H[K] = 0.4.

For Frankenstein, we see that “creature” (what Victor Frankenstein’s creation is referred
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Figure 2.5: H[K] and H |s| for Frankenstein and randomly chosen words.

to as throughout the novel) and “human” have higher H[K]| values for virtually every
value that H [s| takes, compared to “filler” words such as “the” and “and”. This indicates
that they contain more information regarding Shelley’s unknown optimization function
U.

99 46

This method is not perfect, with words such as “day”, “other”, and “came” all ranking
higher than some words which we would subjectively consider to be important, such
as “Elizabeth” (the fiancé of Victor Frankenstein), “death”, and even “Frankenstein”,
despite all of them appearing frequently throughout the book.

Therefore, we argue that states which contain the highest implied informational content
must satisfy two conditions.

First, there needs to be a clear difference in both the average and maximal values of
H[K]. That is, when plotting H[K] as a function of H|s], informative states should take
higher H[K] values than those that are uninformative for virtually all H|s].

Second, these states should have higher absolute informational content. Looking at our
random colors example above, we point out that even a random state has a peak H K]
of around 0.4. Therefore, it would follow that any informative states ought to have a
higher H[K] than this, irrespective of the H[K] values of the other states.

2.2.6 Order Matters

We also point out that this method is distribution agnostic: even if the underlying
distribution of samples is not uniform we can still differentiate those s which are
uninformative. The reason for this is that because we consider sequences of s, then the
placement of each s matters. That is, if a state is uncommon but roughly uniformly
distributed throughout the samples as M/d decreases in size then it would still be
considered noise.
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Figure 2.6: Random Colors that Follow a Zipf Distribution

Figure shows this, whereby a sample of 75,000 states were selected from a Zipf
DistributiorE], however, we can see that there is still very little difference between them.

This is because this method differentiates the placement of the states in the sequence of
samples s!, ..., s from merely the frequency of the states in the samples.

2.2.7 Importance of Many Samples

In this analysis, arguably the most important thing is a large sample size: M should be
as large as possible. As an illustrative example, we plotted H[K| and H s for random
words, only with M = 200 instead of M = 75,000.

As we can see in Figure not knowing that the data is uninformative a priori, we
might conclude that “blue” is highly informative relative to “orange”. However, this
is a consequence of the sample size, rather than the information we can gain from the
underlying system.

Of course, we don’t need the true probability distribution and sequences of s’ of the
system to model it, however, we ought to get as close as possible to the distribution of
the underlying system, and to do so we need as many samples as possible.

2.2.8 Power Law Considerations

Marsili argues that the systems which are most suited for these techniques are those
whose s follow power-law distributions, and specifically those that most closely follow
a power-law distribution with an exponent of u = 2, Zipf’s Law [16].

3 A power law distribution with an exponent of 2, whereby the second most common element is half
as common as the first, the fourth element is half as common as the second, and so on. A more detailed
discussion can be found in Section @
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Figure 2.7: Random Colors with a Small Sample Size

That is, if we have M samples of s, and rank them by frequency K;i, we would expect
the systems for which we can derive the most information from to have the frequency
inversely proportional to one over the rank squared:

K 2

st

o< RANK(s')~

This may imply that these methods are particularly well suited to most distributions
that follow a power-law distribution, especially when u ~ 2.

Additionally, Marsili indicates that maximal H[K| tends to occur when, following the
procedure from Section [2.2.4] the d states of size M /d most closely follow a u =2
power law distribution [16].

2.3 Applications

2.3.1 Existing Applications

There have been a variety of papers on applications of Marsili’s methods in complex
systems. To give some concrete examples:

The process of selecting the number and size of hidden layers in neural networks has
been observed to follow this pattern [8]]. Treating the process of selecting the optimal
neural network configuration from a large hypothesis class as a complex system, with
some adjustments, can be used to find maximally informative configurations of the
network [[8]].

Protein structuring to determine the most relevant amino acids in a given cell can be
found with this method [16]. Treating the observed amino acids as s, and then sampling
how they behave in a cell, suggests that we can find more relevant amino acids in the
cell-function optimization function [[16].
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Most relevant for this report, however, is the application to find keywords in a text. By
treating each word as an observed state of the system, a text is made up of M words.
Therefore, given a word we can calculate H[s| and H[K], for varying lengths of text
(states). The words with the maximal H[K] are deemed to be more informative as to
the underlying optimization function of the author, and can therefore be considered
keywords [16].

Montemurro and Zanette introduced a similar technique in 2001 [17], purely by looking
at H|s|. They argue that the keywords in a text are those that have the maximal difference
in H|s|, and the entropy of a random reshuffling of the text [17]]. The concept behind this
is that words with higher H|s] give us more information about the underlying system,
and because word position is important, the most important words no longer provide as
much information when randomly shuffled.

2.3.2 New Applications

From our perspective, we can treat financial markets as a complex system. We assume
that the markets are trying to optimize some U. Knowing that the price of an instrument
is a variable in the system (arguably the most important one), it follows that each price
seen in the market is therefore trying to optimize U. We can sample the system by
looking at its historical prices. Thus, each price of the market can be treated as an s'.

To do so, we view the series of daily classified candlestick prices as “words” in a text,
with the full text being composed of a list of the classified candles, each one representing
a day. Then, by calculating H[K] and H|s] for the candles observed, Marsili’s method
would provide us with the most informative ones: those which are the least noisy and
most closely related to the underlying U.

To empirically evaluate the predictive success of the most informative candles, we treat
them as price signals for a trading model and evaluate their performance across a wide
range of assets.

With all of this in mind, we believe that this report serves two purposes.

First, a novel application of existing methods in noise reduction in markets. Most of the
academic literature focuses on non-entropic methods, such as jump detection, filters,
kernels, etc. Moreover, existing papers on entropy either primarily discuss information
flow between news-driven trading activities [13]], or representations of data [[12]].

Second, a discussion about the empirical observations made across markets, and an
extensive amount of tests for a trading strategy built using these techniques.



Chapter 3

Methodology

3.1 Setup

To calculate H[K] and Hs], we make the following changes to the data.

As discussed in Chapter 2, we treat the prices as daily. Then, we take the [OPEN, HIGH,
Low, CLOSE] prices for the day, and encode them as a list of candlesticks using the
technical analysis library, TA-LIB [22]]. Then, we apply Marsili’s and Montemurro’s
techniques to this list to find the key candles.

These transformations still preserve the information of the underlying system, as we are
simply providing an abstraction away from the raw data, but the behavior of the time
series is preserved.

3.2 Library

To run the experiments, we implemented a Python [10] library, made of three parts. Code
for both the ENTROPY and CANDLEPATTERNS classes can be found in Appendix [A.]]

and Appendix respectively.

First, there is the ENTROPY class, which, given any list of strings will run both Marsili’s
and Montemurro’s methods and subsequently rank the most informative words. This
can be run on any system whose sampled states s can be represented as a list of strings,
and can therefore be used for non-financial applications, such as to find keywords in a

book (Figure [2.5] Figure Figure [2.6).

Second, to apply it to financial markets, we implemented a CANDLEPATTERNS class,
which takes any time series of [OPEN, HIGH, LOW, CLOSE] prices, and returns a list of
named candles.

Third, we used BACKTESTING.PY [15] to build and test trading strategies using entropy
calculations.

16
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3.3 Data Collection

The data used for these experiments are single-day candlestick patterns on a variety
of different financial instruments. All data was gathered using the YFINANCE Python
package, which is a wrapper for the Yahoo Finance API [2].

We ran the experiments both on the raw data, and the log-normalized data. The reason
for log-normalization is because it only looks at relative prices by calculating:

p
Pnorm = In ( d )
Pt+1

Where p is the quadruple of [OPEN, CLOSE, High, LOW], 7 is the given trading day,
and 7 + 1 is the following trading day. This means that we can correct for longer-term
trends in prices, and instead focus on daily changes. Additionally, log-normalizing has
the benefit of taking into account the asymmetric nature of percentage changes, namely
that a +1% change in price, followed by a -1% change in price is greater than a -1%
price change, following by a +1% change in price.

However, the trading strategies were run only on the raw data to maintain strictly positive
numbers. There was also not a significant difference in results between the two data
types, as the candle calculations were daily and therefore maintain their characteristics
irrespective of log-normalization.

Another consideration is that the fact that there are on average 250 trading days in a year
means that many instruments have limited data. Therefore, we picked instruments with
more trading days. This does introduce some survivor bias, as stocks that haven’t been
de-listed from the S&P 500 over many years are more likely to be better investments.
However, this is unlikely to make a large difference, as the experiments were run across
multiple assets and on 444/500 stocks currently listed on the S&P.

Finally, as Marsili’s method requires dividing the data into as many integer-length
pieces as possible, we removed elements from the beginning of the dataset to maximize
the number of divisors present in the series with the constraint of not removing more
the 25% of the original data. This means that we can obtain more data points of H|s]
and H[K] and therefore better evaluate which candles are the most informative.

3.4 Prices to Candlesticks

To classify the candles, we used TA-LIB in Python which has a classifier for candlestick
patterns. Given a series of prices, TA-LIB returns whether or not they correspond to
named candles. It can classify 60 different candle patterns, for sequences of one, two,
and three candles [22].

Each candle was further classified into “bull” or “bear”, depending on whether the open
price was higher or lower than the close price. Candles that TA-LIB didn’t classify were
marked as BULLNONE or BEARNONE, accordingly. In the case of multiple candles
being assigned to the same trading day, we gave priority to rarer candle patterns. The
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reason for this is that from our perspective, less common candlesticks may be more
informative.

For instance, this pattern of price-candles:

L

LNE oL

Would be transformed into the following array

[BULLNONE, BULLMARUBOZU, BEARHARAMI, BEARSPINNINGTOP,
BEARGRAVESTONEDOIJI, BULLNONE, BEARENGULFING, BULLNONE,
BULLHANGINGMAN, BEARNONE, BEARNONE]

3.5 Entropy Calculations

3.5.1 Marsili

The first analysis of the data involved using the calculations outlined previously. We ran
the algorithm to find H|[s] and H[K] for each unique candle observed in the time series.

However, there emerged the challenge of ranking the candles. This is because even
though we have several thousand data points per instrument, the scale of the data
produced was still relatively small. In Marsili’s analysis, he used Charles Darwin’s
“The Origin of Species” (~120,000 words). Montemurro used ‘“The Complete Works
of William Shakespeare” (~900,000 words) and in Figure [2.5| we used “Frankenstein”
(~75,000 words).

These datasets are much larger than the data for daily financial markets (~3,000-10,000
data points). Moreover, both of the aforementioned texts have thousands of unique
words, whereas TA-LIB is only able to classify a maximum of 122 different candlesticks
(60 patterns + NONE, each bull or bear).

This meant that in many cases, there simply were not enough samples of the system
to see the distinct differences seen in other work. Candles frequently had equal or
similar values for H[K] and there was high variance in the values. When differences in
H|K] were large (Figure [4.3), this may have been an outcome akin to that in Figure
randomness with a small sample size.

However, we are constrained in terms of sample size. The reason we didn’t decrease
the time period in question for candles (eg. 1-minute intervals) is precisely because we
empirically know that they represent noise trading. Therefore, if we were to decrease the
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time period, we risk only adding noise to the model and not achieving more informative
results.

There may also be completely different objective functions for different time periods.
Intraday trading may be considered an entirely different complex system and thus trying
to infer information about multi-day trends with intraday sampling is unlikely to yield
generalizable results.

To overcome these issues we used two ranking methods to evaluate the most informative
candles.

3.5.2 Ranking

The first method, used by Marsili, simply takes the maximal H K] for each unique
word (candle) [16]]. This works well in most cases, however, due to only having 122
candles, and most commonly 40-60, it meant that multiple candlesticks could have
equal maximal H[K] scores.

The second method used is the sum of the H[K] scores. The reasoning for this is that
we are interested in candles that not only have high maximal information but that on
average have more information. Therefore, summing their H[K] scores enables us to
distinguish candles that have a high peak, but are low everywhere else, from those that
consistently have higher H[K] values.

3.5.3 Montemurro & Zanette

We use the same application in candle patterns, taking the series of candles and shuffling
them, and consequently finding the maximal difference in the average H[s|, and a
random shuffling A[s] [17]. In the case of a tie, the candle with the higher maximal
difference was given priority.
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Findings

The findings across the board indicated relatively small differences between the most
and least informative candles, supporting the claim that prices alone are unlikely to be
an informative system. We ran experiments on a variety of different assets, and have
included some sample results below.

4.1 Stocks
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Figure 4.1: IBM Stock (left), 3M Stock (right)

Figure[4.T|and Figure[d.2)show the results of the experiments for two candles: BEARTHRUST-
ING and BEARHIKKAKE. These two candles were chosen as they ranked the highest for
IBM stock. The reason these stocks were chosen was because IBM, 3M, and Lockheed
Martin had among the most datapoints available, which we know from [16]] implies that

we are better able to model the system.

As seen, there is some variation for the same candle across different stocks, however,
the differences between the candles are relatively small, even though their ranks vary
significantly in terms of the theoretical information value they provide. Both of these
factors point towards randomness, after all, if all candles were equally uninformative
then we would expect the difference between their entropies to be similar.

20
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GOOG Aug 2004 - Jan 2022

Lockheed Martin Jan 1977 - Jan 2022
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Figure 4.2: Google Stock (left), Lockheed Martin Stock (right)

Taking a look at Lockheed Martin, we see what we believe to be one of the limitations
of the data available to us, in the form of the behavior of the BEARTHRUSTING candle.
The majority of the data points are clustered in the bottom left portion of the H|s|/H K]
graph, but the candle has a high maximal H[K]. Increasing the number of samples (and
therefore the number of times we would expect a given candle to be sampled), would
enable the distribution of H[K] to take on more unique values as the size of each state
increases, shifting the distribution towards one with more spread out H|s| values for
that candle.

One possible insight, which again may be due to sheer randomness, is the fact that both
candles are lower in absolute terms for Google than for the other stocks. This may
indicate that the time series of prices for Google is less informative as a whole than for
the others — though with 30 years less of data that may be unsurprising.

4.2 Commodities
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Figure 4.3: Silver Futures April 2022 (left), Natural Gas Futures March 2022 (right)

The April 22 Silver Futures market had the largest difference of any of the experiments
(Figure [4.3)), both in terms of peak H[K], but also in terms of the area under the curve
of H[K]. There are two possible explanations for this.
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The first is that in running experiments across many different assets, we were bound to
“get lucky” in terms of finding a significant result, even if the general distributions of
H|[K] are random, due to all candles containing the same information (as in Figure [2.7).

The second is that in this particular market, BULLHIKKAKE candles contain much more
information as to the underlying objective function. Therefore, should we speculate
about price changes, it would be reasonable to begin by examining instances of the
BULLHIKKAKE as these methods suggest that it is likely to contain less noise.

The chart on the right shows the same two candles for March ’22 Natural Gas Futures.
This is where the ranking methodology outlined in Section [3.5.2] becomes relevant, as
we observe that the BULLSPINNINGTOP candle has a higher maximal H K], but the
BULLHIKKAKE has a higher average H[K].

An important thing to note is that the relative importance of maximal versus average
HIK] in this report is primarily a subjective decision. Further investigation into this
topic is left for future work.

4.3 Bonds
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Figure 4.4: 5-Year US Dollar Treasuries (left), 10-Year US Dollar Treasuries (right)

Next, we ran Marsili’s technique on 5 and 10-year treasure notes (Figure [4.4). For 5
year treasuries, BULLLONGLINE candles had the maximal H[K]. For BULLDOIJI, we
see that they fend to be slightly higher on average, however, the distribution seems to
indicate that both candles represent noise. Additionally, their peak H|[K] are similar,
again suggesting that we are unlikely to be able to learn from the system.

For 10 year notes, we see the most informative candle pattern is a three-candle pattern,
the BEARTRISTAR. It has both a noticeably higher maximal H[K] and a higher average
HIK].

When comparing the two markets, there are no clear similarities in their maximally
informative candles, and this trend holds for 30-year treasuries, too. This supports the
hypothesis that we can consider the market for each instrument (especially those the
size of the US-treasury market) to be its own complex system.
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One possible explanation for treasuries, in particular, might be as follows: a speculator
may purchase treasuries of different time periods with different goals, that is, shorter-
term treasuries likely serve an entirely different purpose than long-term ones. For
instance, an insurance company may purchase 5-year treasuries in anticipation of
the expected payouts in that year, but may purchase 30-year treasuries primarily for
their cash flows. Therefore, the optimization function of each market participant, and
subsequently the market as a whole, is different.

4.4 Foreign Exchange (FX)
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Figure 4.5: Euro-US Dollar FX (left), British Pound-US Dollar (right)

Of interest in this experiment (Figure is the difference in maximally H K] between
the two assets. We see that the GBP-USD market has a higher maximal H[K] (0.579)
than the EUR-USD market (0.531). This, much like in the Google case explained in
Figure 4.2] may imply that we can derive more information from GBP-USD, indicating

that the market may be less random.

4.5 Cryptocurrencies
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Figure 4.6: Bitcoin-US Dollar Spot Market (left), Ripple-US Dollar Spot Market (right)




Chapter 4. Findings 24

Perhaps the most well-known example of both irrational market participants and an
extraordinarily high signal-to-noise ratio, we see the following (Figure 4.6)).

First, for Bitcoin, there is very little difference in the average between BEARENGULFING
and BEARNONE (where TA-LIB is unable to classify the candle). This could imply that
given a small difference in information, the total amount of meaning we can extract
from the system is significantly less. Moreover, BEARNONE being the least informative
candle does (fortunately) suggest that named candles can provide more insight.

Second, if we compare the two candles used for Bitcoin to Ripple, we see that the
BEARENGULFING is also more informative than BEARNONE. Perhaps the complex
systems of cryptocurrency markets have some similarities.

We see that across markets, with perhaps the exception of Silver Futures, the difference
between the implied informational content of the candles tends to be relatively small.
This indicates that the underlying prices are random, and therefore not informative.
However, to put this hypothesis to the test, we applied these techniques in the form of
two trading strategies.
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Applications

Now that we have learned something about the relative importance of each candlestick,
we designed some trading strategies utilizing that information. The first strategy outlined
is very simple, only using two candlesticks as signals, “common knowledge” about
what the patterns might mean in terms of price, and the role that luck plays in trading.

The second strategy is a step up from this, fully automating candlestick selection
according to their H[K] values, utilizing stop-losses, and backtesting on several different
asset classes.

5.1 A Simple Trading Strategy
Coming back to the discussion of reversals outlined in Section [2.1.2] we define the
following goals for our trading strategy.

1. Find the most informative candles.

2. Within those, isolate ones that are most associated with a reversal in price.

3. Split the candles into “buy” signals, ie. an upwards reversal and “sell” signals, ie.
a downwards reversal.

4. When we see one of those candles, we either buy or sell the instrument.

To implement the trading strategy, we use BACKTESTING.PY, a lightweight Python
module built for backtesting trading strategies [[15]. In BACKTESTING.PY, we define
our strategy as a class, extending the methods in the STRATEGY class in the module.
Next, before running the backtest we define INDICATOR variables, which are arrays of
data corresponding to buy/sell signals.

Finally, we pass testing data containing [OPEN, HIGH, Low, CLOSE] prices (candle-
sticks) and run the backtest. The BACKTEST class steps through each row of the data
and indicators, revealing them to the strategy. Upon completion, we receive a summary
of the strategy’s performance.

In testing these strategies we make the following assumptions:

25
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1. We are always able to execute buy and sell orders at the close price for the day.

2. Transaction costs are fixed at 0.2%. This is realistic in the short term, but probably
not in the long term.

3. Our position size never changes, that is, we always buy or sell our entire position
size and not portions of our portfolio.

4. If we don’t currently hold any of the stock, a sell order acts as a short position.
Let us consider the Lockheed Martin (LMT) stock time series in Figure @

We first limit our date range to the last 10 years. Then, we split the data into training
and testing data, with 2000 days in the training, and 516 in the testing data (~ 80/20
split).
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Figure 5.1: LMT Stock Price (top) and LMT Log-Normalized Stock (bottom)

005 ] u i | | - | b
l.l mﬁuhk]“lﬁ: W"l'l-m""m“"‘Mﬂ"ﬁ"-‘r‘h‘r’f‘:W[ﬂf'.w'-IM‘!'W{*ﬁq"‘“"ﬂ”‘}"“*’*",h-"""*’*"'}l"r’“ﬁ“"'.‘“’*;m{hlu'li'"l'"'l' lhlh

Next, we run both Marsili’s and Montemurro’s analyses to find the most informative
candles on the training data. We only consider candles that appear at least 10 times in
the dataset, leaving us with 34 candles (out of the 48 classified).

Of those, we find the 5 most informative candles according to the two Marsili ranking
systems outlined in Section[3.5.2]and the Montemurro ranking.

1. Marsili Max:
1.1. BEARKICKING: 0.579

1.2. BULLMORNINGSTAR: 0.579

1.3.
1.4.
1.5.

BEARNONE: 0.579
BULLKICKING: 0.579

BULLHIKKAKE: 0.579

2. Marsili Sum
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2.1. BEARNONE: 11.9

2.2. BULLNONE: 11.5

2.3. BULLLONGLINE: 10.9
2.4. BEARENGULFING: 10.8
2.5. BULLHIKKAKE: 10.6

3. Montemurro

3.1. BULLNONE: 22.9

3.2. BEARNONE: 22.2

3.3. BULLENGULFING: 18.5
3.4. BULLHIKKAKE: 18.2
3.5. BEARENGULFING: 18.1

We consider the candlesticks most commonly associated with reversals. To do so, we
use the “The Pattern Site” [6]], which contains information on the candles that traders
believe to be most important. We use the following criteria when evaluating potential
signals:

1. Does the candle rank highly on all 3 measurements?
2. Is the theoretical performance of the candle a reversal?
3. Is the reversal downwards or upwards?

For a buy signal, the clear choice seems to be the BULLHIKKAKE candle, which is in
the top 5 in the Montemurro and Marsili Sum rankings and also has a maximum H K]
of 0.579. It is normally associated with an increase in price [6].

For the sell signal, the BEARENGULFING candle could be a good choice. It ranks well
in the Sum and Montemurro rankings, but only has a maximum H [K] of 0.554, trailing
behind several candles, and is seen as an indication of a future decrease in price [6].
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Figure 5.2: Entropy for our chosen candles. Log-Normalized Prices (left), Prices (right)
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Therefore, we define our INDICATOR as being equal to 1 (buy) if a BULLHIKKAKE is
seen, -1 (sell) if a BEARENGULFING is seen, and O (hold) otherwise.

We run the strategy.
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Figure 5.3: In descending order: LMT Stock Price, Equity (Portfolio Value), Trades Made
Profit/Loss

Equity Final [$] 14083.114803
Equity Peak [S$] 15508.822262
Return [%] 40.831148
Buy & Hold Return [%] 15.195962
Return (Ann.) [%] 18.20077
Volatility (Ann.) [%] 32.463016
Max. Drawdown [%] -24.620957
Avg. Drawdown [%] -5.587871
# Trades 25
Win Rate [%] 48.0
Best Trade [%] 33.718523
Worst Trade [%] -6.237576
Avg. Trade [%] 1.389471

Figure 5.4: Returns of Trading Strategy

As we can see in Figure [5.4] and Figure the strategy performs well for Lockheed
Martin stock. Buying and holding would have seen a 15% return, whereas this strategy
achieved returns of around 40%.

However, there are a few considerations to be had. Looking at the “Win Rate”, the
percentage of profitable trades, this is only 48% or 12 out of 25 trades made. Moreover,
the return on our average trade was on average 1.4%, with our best trade giving us a
33.7% return.

Specifically, our best trade on the 28th of April 2020 and our second-best trade on the
21st of March 2022 (+24%) account for virtually all of the returns. All other trades had
less than +-5% profit/loss.

This indicates that we got lucky. Moreover, these candles were selected partially for
their implied informational content, but also used “common knowledge” in regards to
interpreting them. This is clearly not generalizable and uses highly subjective judgment.
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Therefore, we move on to build a more generalizable trading strategy, with no human
involvement in determining “buy” and “sell” decisions, using these principles.

5.2 A Less Simple Trading Strategy

5.2.1 Candle Ranking

To evaluate the candles, we take a weighted average of the maximal H K| and the sum
of H[K]. Next, we take the 5 most informative candles and calculate their average
returns for 2 weeks in the future (10 trading days), as well as at 2, 3, 5, and 7 trading-day
intervals. We also calculate the Sharpe Ratio for each candle, given by the expected
value of the returns divided by the standard deviation of the returns. This is a measure
of risk-adjusted returns. This information is stored in the form of a MODEL, treating
each candle as the index and the various statistics as columns.

We treat highly informative candles with positive Sharpe Ratios (positive returns) as
buy signals and negative ones as sell signals. For any other candle, we hold.

5.2.2 Stop-Loss

One important consideration is that when markets are moving upwards, as they have for
the last century and certainly in the last decade, we would expect virtually every candle
to have positive expected returns. This means that we are much less likely to encounter
indications to sell, compared with indications to buy.

Moreover, it means that if the price does fall and we don’t see a sell candle, then we
have no way to close unprofitable positions. As such, we introduce a stop-loss, which is
the maximum decrease in price that can occur before we close our position.

We used a 14-day (n = 14) Average True Range (ATR) stop loss on orders. What this is
is an average of the maximum daily range in prices, over a given lookback period as a
proxy for volatility, given by the formula:

1 n

ATR = (—) Z max (HIGH; — Low;, |[HIGH; — CLOSE;|, |[LOW; — CLOSE;|)
nJ i3

On a long position, the ATR can only increase. Consider entering a position at an entry

price of $10 and an ATR of $0.05. We would set a stop-loss order for 2x-ATR, meaning

that if the price falls below $9.90, we would close the trade. Therefore, if the price

increases to $10.50 with an ATR of $0.05, we would update our stop-loss to be $10.40.

Similarly, if the price had instead risen to $10.50 and the ATR had also risen to $0.1,
we would place a stop-loss at $10.30. The opposite is true for a short position, where
we want the price to fall and therefore our 2x-ATR stop-loss would be above the close
price.

Therefore, we exit a position in one of two ways: either we see an informative candle
that is associated with a price drop or the price changes to +-2x-ATR.
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5.2.3 Results

The results from the backtests are unanimous: it’s almost impossible to meaningfully
and consistently beat the market with this strategy.

This finding is unsurprising given that, as outlined in Section [I.1] between 85% and
95% of professional investment funds fail to beat their benchmark [3].

We ran this strategy on ~2000 backtests in total; 444 individual stocks, the S&P
500 ETF, 37 futures (primarily commodities), 4 US treasuries, 24 currencies, and 8
cryptocurrencies. These were run, where applicable, for 5, 10, and 20 year lookback
periods followed by the maximum range of the available data.

All datasets were split into an 80/20 training/test split, to train and test the entropy
model. Then the o for the strategy, win rate, and other metrics were calculated. We
used the return from buying and holding the asset as a benchmark for the strategy.

5.2.3.1 o Distributions

Across these tests, we begin by plotting our o, which we take to be the difference
between the return from buying and holding (%) and the return (%) from the trading
strategy. This is perhaps the most important metric for any investment, as it measures
how the trading strategy performed relative to the market.

5 Years 10 Years

1009 _-_- Mean:-9.73 ! 1004 ---- Mean: -62.65

80 A
60 -
40 A

20 1

-200 -100 0 -600 —-400 -200 O 200

20 Years Max Years
100 ---- Mean: 0.8 ---- Mean: -28.48

80 1

60 -

40 A

20 1

-200 O 200 400 600 -500 0 500 1000

Figure 5.5: o for stock results over time periods (higher o is better). As we can
see, the average performance of the trading strategy for stocks was primarily grouped
slightly below zero though the tails of the distributions varied significantly. Of note is the
particularly poor performance over a 10 year time period.
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Figure 5.6: o for futures results over time periods. The performance was worse than
that of stocks, which may be due to the fact that prices for futures are more volatile and
haven’t seen the large upwards trends that stocks have. Returning to our discussion of
Silver Futures from Chapter [4} they had an o of 23 over the maximum time period and
a win rate of 54%, possibly supporting the hypothesis that they are a more informative
market.

Regarding cryptocurrencies, whose graphs are omitted due to having 8 of them and
only having between 3 and 7 years worth of data, we saw an o of -200% for Bitcoin
with the others ranging from ot = 0.6 to 43%.

Bonds were the most bleak, with a return of -100% across all 4 of them.

5.2.3.2 Power-Law Exponents

A calculation was made using the POWERLAW package for Python [1]]. We calculated
u, the exponent for the power-law that most closely fit the data, and &, the standard
error. This was calculated using the frequency and rank for the candles of each asset in
the training data. The following graphs show the o of the strategy with the power-law
exponent, with a line of best fit overlaid.

As explained in Section [2.2.8] if the series of candlesticks (and therefore prices) was
non-random, we would expect to see higher returns associated with exponents closer to
u = 2, indicating that the candlestick distribution more closely follows Zipf’s Law.
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Figure 5.7: a for currency results over time periods. We saw a slight, yet consistent
underperformance. This could be due to the fact that currencies, because they are traded
in “pairs” (meaning that to buy a currency you must sell another currency) and tend to
have more direct government intervention regarding their value, are less volatile than
other assets. Moreover, many currency pairs haven’t seen the large increases in value
seen in stocks and therefore both returns and losses are more contained (Figure .

5.2.3.3 Win Rate

Next, as a proxy for measuring the “luck” seen in the backtesting we plot graphs
showing the win rate, which is the % of profitable trades out of all trades made, relative
to . In theory, the returns of the trading strategy should be closely correlated with
their win rate, whereas the closer the trading strategy approximates random chance, we
would expect to see a handful of large successful trades constituting the majority of the
returns and a handful of large unsuccessful trades constituting the majority of the loses.

There is a problem with this measure, though, which is that we have no way to bench-
mark it. Due to our benchmark being buying and holding, we only have one trade
to compare it to meaning that the win rate as a measure in and of itself may not be a
particularly good indicator. Moreover, if the price trends upwards we would expect
an artificially increased win rate as increasing prices mean that the probability of a
profitable trade is much higher.
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Figure 5.8: Exchange rates often don’t have large swings and therefore both losses and
returns are more contained relative to other assets.
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Figure 5.9: o versus u power-law exponent for stocks. There is virtually no association
of returns with a power-law fit of u = 2. This once again points toward financial markets
not being learnable, and the distribution of candle patterns being uninformative of the
underlying system. We point out that the lines of best fit for all time periods other than
5 Years slope upwards, suggesting that markets with exponents further away from 2
actually performed better.
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Figure 5.10: o versus u power-law exponent for futures (left) and currencies (right). The
trend seen for stocks in Figure continues across asset classes, with futures and
currencies also exhibiting no clear relationship between u and o. However, unlike stocks,
the lines of best fit have a slight downwards slope, indicating that better returns may
be very loosely related to an exponent closer to 2. This may also be a consequence of
having fewer assets (and therefore more randomness), as there are around 10 times
more stocks on the S&P than all others combined. Cryptocurrencies and bonds also
exhibited similar behaviors.
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Figure 5.11: o versus win rate for stocks. Further indications of randomness constituting
the majority of the returns can be seen in stocks, with a weakly positive relationship
between win rate and o.
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Figure 5.12: o versus win rate for futures (left) and currencies (right). We see much of
the same story for futures and currencies. Note that the 100% win rate outlier for futures
came from Orange Juice contracts, where a single trade was made on the second day
of backtesting. This is an illustrative example of win rate not necessarily being a good
measure, due to having no benchmark.
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Discussion

6.1 Improvements

We believe that the findings in Chapter 4] and Chapter [5| constitute a relatively extensive
analysis of the implied informational content in a variety of different financial markets.
However, we note that the primary trading strategy used to test the predictive value of
informative candles may be improved in several ways.

First, the most informative candles may change, and could therefore be continually
re-calculated. This may result in the buy/sell signals changing with the passage of
time, which may lead to better returns. However, we point to the findings in Chapter ]
which indicate that even when looking at the entire dataset without partitioning it into
training/testing data, the differences between the candles are still small, and indicate an
uninformative system.

Second, in the applications of these methods so far, the objective function of the complex
system is not changing. That is, Mary Shelley’s U is assumed to be the same for the
two years it took her to write Frankenstein. However, the objective function of financial
markets may have changed. The advent of electronic trading, the post-2008 financial
crisis regulations, and the current ultra-low interest rate environment may have all
shifted the U we are trying to model. Markets are drastically different from what they
were 15 years ago and as such our methods fall short in accounting for that.

However, a restriction in the date range to account for this problem leads to a decrease in
sample size, which may cause inaccurate results. As such, when evaluating the 5-Year
performances from Chapter |5 perhaps the objective function they were trying to model
was more consistent but fell short due to a lack of sufficient samples.

Third, we believe that improvement of the “sell” signal beyond that of +-2x-ATR may
lead to better returns. Making adaptations to design the trading strategy to be entirely
based on candlestick signals may see improvements as perhaps the shortcoming of the
strategy outlined in Chapter [3]is entirely from failing to close unprofitable positions in
time, or not keeping positions open for long enough.

Despite these areas for improvement, we believe that given the relatively small differ-
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ences observed between candles classified as highly informative and uninformative,
further strategies built on this technique may see a modest change in findings, but the
general outcome is unlikely to change.

6.2 Future Work

In addition to the improvements outlined in Section we think that the potential for
applications of these techniques in financial markets remains large.

Given that this report suggests that candlestick price patterns alone are unlikely to be
informative, adding additional information in each s may be extremely valuable. This
may include factors such as interest rates, inflation, growth indicators, and trading
volume. This may give us more insight as to the importance of price patterns under
specific conditions and incorporating a wider range of inputs to the entropy models may
cause greater differences in the informational content.

Moreover, these methods have applications in other financial domains other than techni-
cal analysis. For instance, analyzing orders being sent to an exchange may enable both
brokers and exchanges to better understand liquidity conditions. Or, by applying these
methods to macroeconomic trends, central banks can better understand key indicators
for the business cycle.



Chapter 7

Conclusion

The project set out to give a proof-of-concept in financial applications of entropy
methods as a basis for technical analysis. By encoding a series of price movements
into candlestick patterns, labeling, and concatenating the candlesticks into a list, and
then ranking them according to their H[K| and H s| values, we were able to analyze the
differences in the information different candles provide.

To do this, we implemented a library, which first turns numerical candlesticks into a
labeled series, and then runs the entropy methods to find the most informative ones.
We observe that the differences between the most and least informative candles tend
to be quite small, indicating that the total information to be gained from the system is
therefore small. Moreover, random variations in the candles may explain away some of
the differences found.

Following on from this, we built and tested a trading strategy using these methods as
inputs to build a model, and found that these strategies universally underperformed
relative to buying and holding. This further points to the fact that a series of prices
alone is unlikely to provide meaningful information in regards to the underlying system
of the financial market. This has two potential consequences.

The first is that Eugene Fama is right and the EMH holds. If it is the case that there is
little to no difference between candles deemed to be maximally informative and those
that are minimally informative, then it follows that one cannot learn about the system.
Meaning that, if all price movements are equally uninformative, then predicting future
prices based on past ones is impossible.

Second, if because of noise, herd behavior, or other factors [20] lead to noisy efficient
markets then there is the potential to predict future prices. By adapting the methods
in this report, we may still be able to distinguish noise trading from informative price
changes. However, a time series of prices alone does not contain enough information
to do so. This means that by only looking at the prices, the system may appear
uninformative to us, even though it need not be.
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Consequently, Marsili’s methods will remain applicable to financial markets and techni-
cal analysis may still be profitable, but prices alone are unlikely to provide a sufficient
basis for it.

So, yes, Day-Trading Gurus obey the laws of entropy, but not in a way that implies
anything more than getting lucky.
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Appendix A

Relevant Code

A.1 ENTROPY Class

class Entropy:
def __init__ (self, data):
data = data[: self.calc_best_len(len(data))]
unique_values = np.unique (data)
iterables = [unique_values, ["hs", "hk"]]
multi_index = pd.MultilIndex.from_product (
iterables, names=["value", "calculation"]
)
self.entropies = pd.DataFrame (columns=multi_index)
for i in unique_values:
hs_frac, hk_frac = self.calc_entropies(data, 1)
self.entropies[i, "hs"] = hs_frac
self.entropies[i, "hk"] = hk_frac
self.maxes, self.sums, self.aucs = self.get_most_informative
()
self.montemurro = self.montemurro_shuffling(data)
self.frequencies = data.value_counts ()
def calc_best_len(self, n):
best_fact = {0}
j = n
best_len = 0
while 3 > 0.75 * n:
all_fact = set (
ft.reduce (
list.__add__,
([i, j // 1] for i in range(l, int(j ** 0.5) +
1) if 3 % 1 == 0),

if len(all_fact) > len(best_fact):
best_fact = all_fact
best_len = j
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return best_len
def h_of_s(self, states):
_, counts = np.unique (states, return_counts=True, axis=0)
unique, counts = np.unique (counts, return_counts=True)
M = states.shape[0]
to_return = -np.sum((unique * counts) / M * np.log(unique /

M)) / np.log (M)
if np.isnan(to_return):
return 1
return to_return

def h_of_k(self, states):

_, counts = np.unique (states, return_counts=True, axis=0)
unique, counts = np.unique (counts, return_counts=True)

M = states.shape[0]
to_return = -np.sum/

(unique * counts) / M * np.log(unique * counts / M)

) / np.log (M)

if np.isnan(to_return):
return 0

return to_return

def word_probabilities(self, states, word):
prob = np.count_nonzero (states =

shape [0]
return prob

def calc_entropies (self, samples, word):
length = len(samples)

hs = []
hk = []
for i in range(length):
if length % (i + 1) == 0:
new_shape = [(i1 + 1), math.floor (length / (i + 1))]

hs_app = self.h_of_s(
self.word_probabilities (

np.reshape (np.array (samples, copy=True),

new_shape), word

)
hk_app = self.h_of_k(
self.word_probabilities(

np.reshape (np.array (samples, copy=True),

new_shape), word

)
hs.append (hs_app)
hk.append (hk_app)
hs = np.array (hs)
hk = np.array (hk)
return zip (*sorted(zip (hs, hk), key=lambda x: x[0]))

def get_most_informative (self):
max_max = {}

{}

max_sum

= word, axis=0) / states.
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max_auc = {}

45

for i in list(self.entropies.columns.levels[0]):

max_max[i] max (self.entropies[i, "hk"]

max_sum[i] = sum(self.entropies[i, "hk"]

max_auc [1] np.trapz (self.entropies|[i,
entropies[i, "hs"])

)

)
"hk"], self.

return dict (sorted(max_max.items (), key=lambda item: item

[(11)), \

dict (sorted (max_sum.items (), key=lambda item: item
[(11)), \

dict (sorted (max_auc.items (), key=lambda item: item
[11))

def montemurro_shuffling(self, data):
maxes = {}
unique_values = np.unique (data)
for i in unique_values:
maxes[i] = 0

for i in range (10) :
shuffled = data.sample (frac=1)
for j in unique_values:
hs, _ = self.calc_entropies (shuffled
maxes[j] += sum(np.absolute (hs + sel
hs"1)) / 10

return dict (sorted(maxes.items (), key=lambda

A.2 CANDLEPATTERNS CLASS

class CandlePatterns:
def __init__ (self, raw_data):
self.data = raw_data[["Open", "Close", "High
self.data self.data.dropna (how="any")
self.data = self.__classify_candles ()
self.data = self.__backfill candles ()

def __classify_candles (self):

for candle in CS_PATTERNS:

self.data[candle] = getattr(ta, candle) (
self.data["Open"],
self.data["High"],
self.data["Low"],
self.data["Close"],

)

return self.data

def __candle_overlap(self):
counts = dict (self.data[CS_PATTERNS].count ()
overlaps = self.data[CS_PATTERNS].apply (
lambda x: list (x.dropna()), axis=l
)
for i, v in overlaps.items () :
if not wv:

rJ)

f.entropies[j, "

item: item[1]))

ll, "LOW"]}

)
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overlaps [
elif len(v) == 1:
overlaps[i] = v[0]
else:
rarest = v[0]
for j in wv:
if counts[j[5:
rarest = j

1]

i] = "NONE"

overlaps[i] = rarest

self.data["Pattern"] = overlaps

return self.data

def __backfill_candles (self):

self.data = self.data.dropna (how="any")
self.data[CS_PATTERNS] = self.data[CS_PATTERNS].replace (0,

np.NaN)
self.data.replace (
=100,
pd.Series (["bear_" + 1
.data.columns),
inplace=True,
)
self.data.replace (
-200,

pd.Series (["bear_" + i

.data.columns),
inplace=True,
)
self.data.replace (
100,

pd.Series (["bull_" + i

.data.columns),
inplace=True,
)
self.data.replace (
200,

pd.Series (["bull_" + i

.data.columns),
inplace=True,

)

for

for

for

for

in

in

in

in

self.data = self.__candle_overlap ()

self.data.loc]
(self.data["Pattern"]
self.data["Close"]),
"Pattern",
] = "bull_ NONE"
self.data.loc]|
(self.data["Pattern"]
self.data["Close"]),
"Pattern",
] = "bear_ NONE"
return self.data[["Close",

"NONE ")

"NONE ")

"Open“ ,

self.

self.

self.

self.

data.

data

data.

data.

< counts|[rarest [5:]]:

columns],

.columns],

columns],

columns],

46

self

self

self

self

& (self.data["Open"] <

& (self.data["Open"] >

llHighll,

n LOW" p

"Pattern"
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