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Abstract
In this project I focused on training and evaluating models for lip reading, or visual
speech recognition, using audio-visual datasets. Since large transcribed audio-visual
datasets are costly to build and supervised lip reading models are found to not generalise
well to data from a mismatched domain, I investigated how we can make use of the large
quantities of untranscribed video data that exist. I generated a multi-genre audio-visual
dataset containing 223 hours of training data, and used this to perform semi-supervised
training of both acoustic and lip reading models using the LF-MMI training criterion
with HMM-DNN based models in Kaldi. While supervised models trained on TED
talks did not generalise well to this challenging multi-genre dataset in either modality,
through semi-supervised training the word error rate for the acoustic model reduced
from 42.1% to 36.8% and for the lip reading model reduced from 93.4% to 91.3%.
This improvement, though small, is promising for this first use of the semi-supervised
LF-MMI technique in the field of lip reading.
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Chapter 1

Introduction

1.1 Motivation

Lip reading or visual speech recognition is a variation on typical automatic speech
recognition (ASR) where lip movements are analysed to recognise speech. This can be
used in different scenarios to typical ASR, for example when the audio is noisy or even
unavailable it is still possible to perform lip reading as the visuals are not affected. The
combination of the acoustic and visual modalities into audio-visual speech recognition
(AVSR) provide very interesting possibilities for improving performance in such cases
of noisy audio (Afouras et al., 2018a). Lip reading and AVSR have practical applications
for uses such as video captioning or improving hearing aids.

Lip reading involves linguistic challenges such as words that are difficult to distinguish
visually as well as the general challenges of image processing: coping with varying
background, lighting, speaker appearance and position. Therefore, large quantities
of varied data are required to build robust lip reading models. However, generating
an audio-visual dataset is a huge task. First of all, hand-transcribing utterances is
costly as it requires a lot of time and may require expertise - this is also the case for
speech datasets (Sperber et al., 2017). Additionally, having two modalities increases
the challenge: not only must the data be transcribed, but the quality of both the audio
and video components must be good, and they must be aligned (Chitu and Rothkrantz,
2007). While there are now more large audio-visual datasets available than there used
to be (Afouras et al., 2018c; Shillingford et al., 2018; Ephrat et al., 2018), it is still not a
huge number of them that are publicly available. We may need to perform lip reading
in a different domain to these existing datasets, and in this case it is difficult to generate
your own full dataset in the new genre.

We therefore wish to find ways of using the available data to generalise to new domains.
A similar problem of lack of transcribed data is found in the field of speech recognition
in under-resourced languages, and one solution to this problem is performing semi-
supervised training to make use of untranscribed data (Xu et al., 2016). While there
is a lack of accurately transcribed video data there is plenty of untranscribed video
publicly available, for example on YouTube, so this is a viable method for lip reading.
In this project I therefore investigate the benefits of semi-supervised training for lip
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Chapter 1. Introduction 2

reading, using a transcribed dataset of one domain and an untranscribed dataset of a
mismatching domain.

It is possible to perform semi-supervised training for the latest end-to-end deep neural
network (DNN) ASR models (Weninger et al., 2020), however this involves predicting
exact pseudo-transcriptions and filtering out any that are below a confidence threshold.
On the other hand, using the more conventional hybrid HMM-DNN systems allows the
use of lattices to incorporate uncertainty into the transcriptions, so all data can be used.
I therefore use semi-supervised LF-MMI training (Manohar et al., 2018) of HMM-DNN
lip reading models in Kaldi for my experiments.

1.2 Previous work

My work in this project builds upon the knowledge and insights gained from my
previous research and experiments. In the first year of the project I researched the field
of lip reading and the audio-visual datasets that have been produced for this task. I
investigated how well a lip reading model trained on one dataset could generalise to an
unseen dataset of a mismatched domain.

I used a lip reading model which had been pre-trained by Afouras et al. (2018b) on
the LRS2 dataset (Afouras et al., 2018a). I evaluated the performance of this model on
the LRS3-TED dataset (Afouras et al., 2018c). It achieved a word error rate (WER)
of 80.7% on the LRS3-TED data, compared to 48.8% when evaluated on the LRS2
test data. Although the LRS3-TED dataset is known to be more challenging (see
Section 3.1), this still demonstrates poor generalisation of the lip reading model to a
mismatching domain. I then improved the performance by doing further supervised
training of the lip reading model using a subset of the LRS3-TED training data. This
resulted in a reduction in WER to 78.0%.

This DNN lip reading model was built in TensorFlow and was based on the Transformer
architecture (Vaswani et al., 2017). As an end-to-end model it takes in the full sequence
of input video frames and outputs character probabilities, which are then decoded into
the final output sentence. Use of a language model during decoding is optional due to
the Transformer architecture which implicitly learns a language model during training.

For further detail on the MInf1 project please read the full report (Marshall, 2021).

1.3 Goals and achievements

Similarly to last year, this project focused on building lip reading models and improving
their generalisation to datasets with a mismatching domain. However instead of further
pursuing the end-to-end DNN methods, this year I worked with hybrid HMM-DNN
models. In particular, I focused on performing semi-supervised training of lip reading
models. The goals therefore shifted slightly in comparison to those noted in the Future
Work section of the MInf1 report (Marshall, 2021).

The goals of this project were:
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• Produce an audio-visual dataset

• Train an initial lip reading model on one dataset and evaluate it on another dataset
with a domain mismatch

• Improve performance of the model on the mismatched dataset by experimenting
with semi-supervised LF-MMI training

• Combine ASR and lip reading to perform audio-visual speech recognition (if
time)

I achieved these goals: I produced a 223 hour Multi-Genre Broadcast (MGB) training
dataset from the MGB Challenge dataset (Bell et al., 2015) using the AVSR pipeline
developed by Paul et al. (2021). I used SyncNet (Chung and Zisserman, 2016) to extract
visual features for use in lip reading models. I trained an acoustic and a lip reading
model on the LRS3-TED dataset, and evaluated them on the MGB test dataset. They
achieved 42.1% and 93.4% WER respectively, compared to 4.7% and 70.6% on the
LRS3-TED test set, demonstrating the large mismatch and poor generalisation between
domains. I then performed semi-supervised LF-MMI training of acoustic and lip reading
models in Kaldi (Povey et al., 2011), achieving 36.8% and 91.3% WER respectively
on the MGB test set. This demonstrated an improvement in performance via semi-
supervised training even when the initial model demonstrated such poor generalisation
to the MGB dataset.

The original intention at the start of this MInf project was to combine ASR and lip
reading into audio-visual speech recognition. However, in the end I continued to
focus on lip reading, to fully investigate the possibilities of semi-supervised training.
Although I did not implement audio-visual speech recognition, I did make use of
acoustic information in the semi-supervised training to improve the lip reading models.



Chapter 2

Technical background

In this project I used Kaldi (Povey et al., 2011), a framework for building HMM-based
speech recognition models using weighted finite-state transducers (WFSTs) (Mohri
et al., 2008). In this chapter I describe the relevant concepts for how speech recognition
is performed in Kaldi, as well as details about time delay neural networks (Waibel et al.,
1989), the LF-MMI training criterion (Povey et al., 2016) and the lip synchronisation
network SyncNet (Chung and Zisserman, 2016) which I use in my experiments.

2.1 Weighted finite-state transducer speech recognition

Speech can be represented as a sequence of feature vectors, or observations. Hidden
Markov models (HMMs) can be used to build acoustic models, in which each state
represents a speech unit and the topology defines the allowed transitions between them.
In Kaldi, each phone is represented by 3 states. HMMs are generative models, so
at each time step in a sequence, one state emits an observation. The HMM can be
decoded to find the most probable state sequence given the sequence of observations,
and therefore produce a transcription of the input speech. In HMM-GMM models,
the observation probabilities of each state are estimated by a Gaussian mixture model
(GMM). In HMM-DNN models, these probabilities are estimated by a DNN.

In Kaldi (Povey et al., 2011), an acoustic model is built by first training a monophone
HMM-GMM model. This context-independent model is then used to generate an
alignment of the training transcripts, to be used to train a context-dependent triphone
model. This better model is used to realign the transcripts again, and this repeats several
times, creating progressively better models. The training of these models can include
transformations of the input data using Linear Discriminant Analysis (LDA) (Somervuo,
2003) and Maximum Likelihood Linear Transform (MLLT) (Gales, 1998), and also
speaker adaptive training. In an HMM-DNN system, the final HMM-GMM model is
used to generate an alignment which is used to train a DNN.

Each component in the speech recognition system is represented by a WFST (Mohri
et al., 2008). The HMM acoustic model is represented by the H WFST which maps
HMM states to context-dependent phones. The C WFST maps context-dependent
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Chapter 2. Technical background 5

phones to context-independent phones. The pronunciation lexicon is represented by L,
mapping phones to words. Finally, the language model is converted into the grammar
G, mapping words to words. These WFSTs are all composed together to form a
single decoding graph: HCLG = (H ◦ (C ◦ (L◦G))). A sequence of minimization and
determinization steps (not shown) are also performed during this composition to reduce
the size of the final graph. The HCLG graph can then be used to decode utterances.

The common metric for speech recognition performance is the word error rate (WER):

WER =
S+D+ I

N

where S is the number of substitutions, D the number of deletions and I the number of
insertions. S, D and I are computed by comparing recognised transcriptions to their
reference transcriptions. N is the number of words in the reference transcriptions.

2.2 Time delay neural networks

Figure 2.1: Example computation in a TDNN with sub-sampling (red) and without (blue)
(Peddinti et al., 2015).

Since speech contains long term dependencies it is very useful to be able to model
temporal context in speech recognition. There are different approaches to modelling
context, I described recurrent neural networks (RNNs) and encoder-decoder architec-
tures in Marshall (2021). In this project I take a different approach, using time delay
neural networks (TDNNs) (Waibel et al., 1989).

Subsampled TDNNs (Peddinti et al., 2015) are the standard architecture used in the
HMM-DNN models in Kaldi. In the Kaldi nnet3 library the TDNNs are trained using
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the LF-MMI (Povey et al., 2016) training criterion, and this is also referred to as the
‘chain’ model. There are also variations on the plain TDNN, such as the factored TDNN
(Povey et al., 2018) and TDNN-LSTMs (Peddinti et al., 2017).

A TDNN is a feed-forward neural network in which hidden units process multiple
frames of input at once, referred to as windows of context. Since each layer in the
network processes a window of context from the layer below, the higher layers can learn
wider temporal dependencies compared to the lower layers. Processing every single
hidden unit activation in the network would take considerably more computation and
storage compared to a standard DNN. However, since hidden units at neighbouring
time steps process overlapping context windows the activations can be sub-sampled to
reduce the computation and storage without losing useful information. This is shown in
Figure 2.1.

Since TDNNs are a feed-forward network they can be more easily parallelised across
GPUs compared to RNNs, so are a good option for modelling wide temporal contexts
with reduced computational costs.

2.3 Lattice-free maximum mutual information training

Lattice-free maximum mutual information (LF-MMI) (Povey et al., 2016) is an efficient
sequence-discriminative training criterion, which was found to improve performance
compared to the frame-based cross-entropy (CE) training criterion. This type of training
is suitable for neural networks, for example the TDNNs used in Kaldi. The lattice-
free version of MMI (Bahl et al., 1986) takes inspiration from connectionist temporal
classification (CTC) (Graves et al., 2006) training and reduces the computational costs
of MMI training.

In MMI training, the objective function maximises the likelihood of the sequence
of observations given the correct word sequence for the utterance (computed using
a numerator), while minimising the likelihood of the observation sequence given all
possible word sequences (computed using a denominator).

In LF-MMI the numerators and denominator are represented as HCLG WFSTs. The
key contribution is that the denominator WFST is trained from scratch using a language
model, removing the need to compute lattices representing all possible word sequences
using an initial CE trained system. This, and parallelising the computation across GPUs,
greatly reduces the computational costs. Numerator WFSTs are produced for each
training utterance, using lattices produced by an HMM-GMM model which encode all
possible pronunciations of the utterance.

There are some other differences to the standard techniques described in Section 2.1
used to make LF-MMI training more efficient, these are described in Povey et al. (2016).

The LF-MMI training criterion is a highly suitable method to be used in semi-supervised
training, as the numerator lattices can be used to encode uncertainties of transcriptions.
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2.4 SyncNet

Chung and Zisserman (2016) developed SyncNet, a network primarily built to synchro-
nise audio and video when there is a lag between them. Their novel contribution to this
task is that they use only the audio and video to find the synchronisation. They use a
convolutional neural network (CNN) with two streams to learn embeddings of the input
data: the audio stream processes Mel-frequency cepstral coefficients (MFCCs) and the
visual stream processes grayscale images of mouth regions. Two sets of features are
output from the final fully connected layers, these are then compared for similarity to
determine if the audio and video are synchronised.

The embeddings of the input video and audio learnt by the network can be applied to
other related tasks, such as active speaker detection (as used by Paul et al. (2021) in their
AVSR pipeline), or lip reading. Chung and Zisserman (2016) achieved state-of-the-art
lip reading results on the OuluVS2 dataset (Anina et al., 2015), which is a promising
first investigation into using these features. This dataset is however quite small and
constrained. In this project we are similarly using the SyncNet visual features to perform
lip reading, but on the much more difficult MGB dataset.



Chapter 3

Literature review

In this chapter I describe the audio-visual datasets relevant to this project, as well as
give an overview of related work in the field of lip reading and previous approaches to
semi-supervised training in speech recognition.

3.1 Datasets

In order to train lip reading models we require audio-visual (AV) datasets containing
video clips of speakers’ faces. Over the years there has been a shift from more con-
strained datasets recorded specifically for this purpose (Cooke et al., 2006), towards
larger and more diverse datasets produced from existing video content (Afouras et al.,
2018a,c; Shillingford et al., 2018). Here I give a brief description of just those relevant
to this project - a more detailed overview of the history of audio-visual datasets is given
in my MInf1 report (Marshall, 2021).

The LRS3-TED (Afouras et al., 2018c) dataset contains cropped videos of speakers’
faces from TED talks, and transcriptions of the videos. This challenging dataset contains
approximately 152,000 utterances from over 5000 different speakers, and varying
viewpoints as the speaker moves their head. I used this dataset to train supervised
acoustic and visual models.

The LRS2 (Afouras et al., 2018a) dataset contains similar video clips with a variety of
angles of speakers’ faces, but taken from BBC TV news programmes and talk shows. It
contains approximately 144,000 utterances, and contains slightly shorter sentences than
LRS3-TED.

Soon after the LRS3-TED (Afouras et al., 2018c) dataset was produced, a baseline was
set for lip reading performance on it by Afouras et al. (2018a). The best performance was
58.9% WER, achieved using the sequence-to-sequence trained Transformer architecture
from Afouras et al. (2018b). Their model fine-tuned on LRS2 data achieved 48.3%
WER on the LRS2 test set, demonstrating that for lip reading the LRS3-TED dataset is
more challenging than LRS2. Their acoustic models performed better on LRS3-TED
(8.3%) compared to LRS2 (9.7%), suggesting that the audio in the LRS3-TED may be
cleaner, although the difference is not as noticeable as for the visual aspect.
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Chapter 3. Literature review 9

The Multi-Genre Broadcast (MGB) Challenge dataset (Bell et al., 2015) was created
in 2015 for an ASR challenge. It contains the full videos of seven weeks of BBC
TV broadcasts of various genres, and their subtitles. The dataset contains training,
development and evaluation datasets, and also defines a ‘short’ training dataset, which
is a one week subset of the full training dataset. I used this dataset to generate my own
AV dataset. Due to its multi-genre nature, this is an even more challenging dataset than
LRS2 and LRS3-TED. This is demonstrated by the results of my supervised acoustic
model (trained on LRS3-TED data) which achieved 4.7% WER on LRS3-TED, 12.9%
on LRS2 and 42.1% on MGB (see Section 6.1 for more details).

3.2 Lip reading

Lip reading methods have evolved over the years as new developments in deep neural
networks have occurred, much in the same way as ASR methods have. Traditionally,
handcrafted features were extracted from the video and fed into HMM-based systems
to perform speech recognition (Potamianos et al., 1998). More recently, end-to-end
trainable DNN systems have been developed, where the network extracts features itself
as part of the training process. Common end-to-end DNN architectures include using
convolutional neural networks (CNNs) as a front end for visual feature extraction, then
long short-term memory (LSTM) networks or other sequence modelling architectures
such as Transformers for recognition (Assael et al., 2016; Chung et al., 2017). In
between these two extremes are the hybrid HMM-DNN systems, where a DNN replaces
the GMM in the traditional HMM-GMM systems (Thangthai et al., 2015). For more in
depth background on end-to-end lip reading methods please refer to my MInf1 report
(Marshall, 2021).

Examples of traditional methods that can be used to extract visual features from images
of faces or lips include geometric feature extraction (Petajan, 1984), appearance-based
approaches such as active appearance models (AAM) (Cootes et al., 2001) and image
transforms (Potamianos et al., 1998). However, techniques have moved on and nowa-
days visual features are usually extracted by a DNN such as a CNN, and these features
can be used in HMM-based systems as well as in end-to-end models. These features
do not require the expense of hand-labelling and are found to improve performance
compared to methods such as image transforms (Noda et al., 2014). In this project I use
features extracted by a CNN in an HMM-DNN system.

The Kaldi toolkit (Povey et al., 2011) as described in Chapter 2 was built for speech
recognition research. Although originally designed for building acoustic models, it
can also be used to build visual speech recognition models. Thangthai et al. (2015)
investigated lip reading and AVSR using HMM-DNN based models in Kaldi, showing
that they improved performance compared to HMM-GMM based systems. However,
they used only a small corpus containing utterances from one speaker, and used AAM
features, which require hand-labelling. Abdelaziz et al. (2017) performed AVSR using
HMM-DNN models in Kaldi, again using the more traditional dimensionality reduction
methods to extract features (Discrete Cosine Transform (DCT) and Principal Component
Analysis (PCA)).
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A more interesting comparison is performed by Yu et al. (2020). They compare hybrid
and end-to-end DNNs systems for lip reading and audio-visual speech recognition,
motivated by the findings of Lüscher et al. (2019) that hybrid ASR systems are capable
of out-performing end-to-end acoustic models. Their hybrid LF-MMI trained TDNN
lip reading model built in Kaldi and using visual features extracted by LipNet (Assael
et al., 2016) achieves competitive results (48.86%) on the LRS2 dataset compared to
the Transformer architectures of Afouras et al. (2018a) which achieved 48.3%. The
sequence-to-sequence Transformer model used was the same one I used in last year’s
project (Marshall, 2021), which I found to be very genre specific, struggling to generalise
to a new domain. The LF-MMI trained TDNN from Yu et al. (2020) also outperformed
their cross-entropy trained TDNN. These findings are all good motivations for my use
of LF-MMI training of HMM-DNN models in Kaldi.

3.3 Semi-supervised training

Semi-supervised training can be used to develop ASR systems using a small quantity
of transcribed data and large amount of untranscribed data. This works by training an
initial model on the transcribed data, then using this initial model to predict pseudo-
labels for the untranscribed data. The initial model can then be trained further using
this pseudo-labelled data, which can be seen to improve performance (Lamel et al.,
2002). This is useful in any case where there is a lack of transcribed speech data,
such as under-resourced languages (Xu et al., 2016), or even new domains in well-
resourced languages, as it reduces the time and expense spent creating hand-labelled
datasets. Semi-supervised training has been implemented with end-to-end DNN models
(Weninger et al., 2020) as well as the traditional HMM-GMM based systems (Lamel
et al., 2002).

A problem with training using pseudo-transcriptions is that if they are wrong, the model
is being trained to recognise utterances incorrectly - and these incorrect transcriptions
have more of an effect in systems trained with a discriminative criterion, such as MMI,
compared to maximum likelihood estimation (Yu et al., 2007). To reduce this problem,
usually utterances below a certain confidence threshold are removed. However, this
can mean that the challenging utterances are removed from the training data, leaving
the easier utterances and therefore the final model will not be able to cope with any
challenging unseen utterances.

Manohar et al. (2018) solve this problem by introducing the LF-MMI (Povey et al.,
2016) training criterion to semi-supervised training for ASR. Instead of using pseudo-
transcriptions, the untranscribed data is decoded and the entire resulting lattice for
each utterance is used in the semi-supervised training - this allows uncertainty to be
incorporated into each training utterance, rather than discarding an utterance entirely
because its transcription is uncertain. They compared several different methods of
generating the lattices, and all were found to give better performance compared to
using the best path word sequence (i.e. pseudo-transcriptions). The various methods of
generating lattices did not show much difference between themselves - in my project I
use their naı̈ve lattice splitting method.
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Wallington et al. (2021) demonstrate that in semi-supervised LF-MMI training the
quality of the language model used can have more of an impact on performance than the
quality of the initial acoustic model. This is promising for the case of semi-supervised
lip reading, since in cases where we do not have aligned transcriptions for an audio-
visual dataset, we may still have the unaligned video captions and can therefore still
generate language models well suited to the target domain even if we have an initial lip
reading model that does not generalise well to the domain.

Despite these semi-supervised training techniques being widely used for improving
acoustic models, far less research has been done into using these techniques for lip
reading or audio-visual speech recognition. In Afouras et al. (2020) they use a similar
concept, cross-modal knowledge distillation, where they use transcriptions of unlabeled
audio-visual data generated by an ASR system to train a lip reading model. There
are instances of untranscribed data being leveraged to learn visual features that better
represent the audio-visual data through semi-supervised (Su et al., 2018) and self-
supervised (Sheng et al., 2021) learning. While these better features should in turn
improve lip reading model performance, this is not the same as directly improving the
lip reading models using semi-supervised training. Therefore, as far as I am aware, my
project is the first to experiment with semi-supervised training of HMM-DNN based lip
reading models using the LF-MMI training criterion.



Chapter 4

Dataset generation

In order to produce an audio-visual dataset I made use of the audio-visual speech
recognition (AVSR) pipeline developed by Paul et al. (2021). I input videos from the
News, Documentary, Childrens and Drama genres of the MGB Challenge dataset into
the pipeline to generate an MGB audio-visual dataset. This chapter describes details of
the pipeline, the dataset produced and practical issues encountered in the process.

4.1 Audio-visual speech recognition pipeline

The AVSR pipeline (Paul et al., 2021) takes in a full input video and processes it to
output cropped video clips of talking faces. This involves first segmenting the video
into scenes using histogram based shot detection, then for each scene facetracks are
extracted using the SyncNet (Chung and Zisserman, 2016) face detector. For each
facetrack SyncNet is used to detect segments containing an active speaker. This is done
by extracting acoustic and visual features (as described in Section 2.4) and computing
a confidence score. If the score is above a given confidence threshold the audio likely
matches the video, i.e. the speaker is active, and the talking segment is saved as a video
clip. These clips make up the final AV dataset.

Later on, in my semi-supervised training experiments, I extract SyncNet features from
the videos to use as features for lip reading (this is described more fully in Section 5.1).
Since these features were already computed during the dataset generation it would be
beneficial for the future to make edits to the pipeline, so that the features are saved as the
dataset is being generated, instead of needing to be computed again for the experiments.

The SyncNet confidence score for an audio/video pair should be close to 0 for a video of
a non-speaker, while video containing the active speaker should have a high confidence
score, with an example score of 7.56 given in Chung and Zisserman (2016). The
default confidence threshold set in the AVSR pipeline is 2.5. Before deciding to use
this, I compared the output of the pipeline on one programme from each genre using a
threshold of 2.0 and 2.5. The lower threshold produced a few extra video clips compared
to the 2.5 threshold, as would be expected. These extra clips were not useful, containing
facetracks of non-speakers, so I decided to use the default threshold.

12
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As I ran the pipeline I discovered a synchronisation error was occurring so that some
clips output by the pipeline had audio that did not correspond the video. In cases where
the audio was very short, this resulted in very short video clips being produced (for
example, 6 frames long), and in some cases a video was trimmed to 0 frames, which
caused an exception to occur. The pipeline was updated by Paul et al. (2021) to resolve
these issues in response to my debugging.

4.2 Multi-Genre Broadcast training set

I generated the Multi-Genre Broadcast (MGB) training set by feeding the MGB Chal-
lenge training data through the AVSR pipeline. The number of utterances, duration and
retention rate for each genre in the MGB training dataset is shown in Table 4.1. The
original duration is the number of hours of video data of that genre in the original MGB
Challenge training dataset, while the final duration is the duration of the MGB training
set produced by the AVSR pipeline. The retention rate is the percentage of the original
video that made it through the pipeline. The MGB training set contains 223 hours of
data.

I also generated the MGB short training set, containing 27 hours of data. This is a
sample of the full dataset, which I created for the purpose of having a smaller dataset
that could be produced and experimented with more quickly than the full dataset. I
produced it using a continuous one week sample of the continuous seven weeks of TV
broadcasts in the MGB Challenge training set. Since the schedule of TV broadcasts
is similar from week to week, the short dataset is a representative sample of the full
dataset. This can be seen from the charts in Figure 4.1, which give a genre breakdown
of the datasets, and show that the percentages of each genre are very similar between
the full and short training sets.

Figure 4.1 also shows that the News genre dominates the training datasets. This means
that models trained using these datasets may be slightly biased towards recognising
the News genre. This imbalance is partly present because the MGB Challenge dataset
contains more hours of News broadcasts than any other genre, and partly because the
News genre had a higher retention rate than any other genre. The reason for this higher
retention rate is discussed in Section 4.4.

The MGB training dataset contains only video clips, no corresponding transcriptions. I

Table 4.1: Number of utterances, duration and retention rate of the MGB full training set.

Genre # utterances
Original
duration
(hours)

Final
duration
(hours)

Retention
rate (%)

News 62727 351.55 141.75 40.3
Documentary 29369 214.26 38.84 18.1
Childrens 21952 168.65 24.36 14.4
Drama 26731 107.90 18.47 17.1
All 140779 842.36 223.43 26.5
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(a) MGB training set (b) MGBshort training set

(c) MGB test set

Figure 4.1: The split of genres that make up the MGB datasets.

use this dataset for semi-supervised training, so transcriptions are not needed. In this
case since the BBC subtitles for the MGB Challenge videos are available, it would be
possible to create transcriptions. These could be interesting to have in order to check
how good the semi-supervised decoding of the training data is compared to reference
transcriptions. However, the subtitles are the captions from the original broadcast: they
are not hand-transcribed so may not be reliable, and they may not be correctly aligned
with the video. Since this would require extra work to align the captions using SyncNet
(Chung and Zisserman, 2016) and it was not necessary for this project, I decided not to
produce these transcriptions.

4.3 Multi-Genre Broadcast test set

The MGB test set was generated from the MGB Challenge development dataset by Paul
et al. (2021) using an older version of the AVSR pipeline. The duration and number of
utterances for each genre in the MGB test dataset are shown in Table 4.2, along with
the statistics for the LRS2 and LRS3 test sets.

Unlike the training data, the MGB Challenge development dataset includes hand-
transcribed and aligned transcriptions, and so this test dataset contains video clips
and their corresponding transcriptions. It is to be noted that the original reference
transcriptions must still be processed to generate transcriptions for the output videos
from the pipeline. The latest version of the pipeline does not process these transcriptions
so I could not generate a new test set and used this older version instead.

Figure 4.1c shows the percentage of each genre present in the MGB test set. Noticeably,
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Table 4.2: Number of utterances and duration of the LRS2 test set, LRS3 test set and
the MGB test set (including a genre breakdown).

Test Set # utterances Duration (hours)
LRS2 1243 0.59
LRS3 1321 0.86
MGB 4244 2.62
News 783 0.67
Documentary 1851 1.16
Childrens 587 0.35
Drama 1023 0.44

the dominant genre in the test set is Documentary, not News as in the training set. In
fact, the test set contains less than half the proportion of News clips that are in the
training set. This means there is a mismatch in the genre split of the training and test
sets. This imbalance is present from the original MGB Challenge development set,
which contains more Documentary programmes than programmes of any other genre. If
I were to regenerate the test set, I would consider leaving out some of the Documentary
videos in order to have a more balanced test set.

Currently there exist only the MGB training and test sets, not a validation set. It would
be preferable in future to use this test set as a validation set, and generate a separate test
set using the MGB Challenge evaluation dataset.

4.4 Genre differences

Figure 4.2 shows frames from videos in each of the four genres: News, Documentary,
Childrens and Drama. Note the variety of backgrounds (indoors and outdoors), lighting
and face angles present in just four different programmes.

The four genres used were selected by Paul et al. (2021) as the most interesting ones
to work with, since they provide a variety of styles of content. Choosing a selection
of genres to work with also reduces the quantity of data to process, which is useful to

Figure 4.2: Example frames from videos in the MGB training set. Source programmes
and genres from left to right: BBC London News (News), Around the World in 80 Gardens
(Documentary), Blue Peter (Childrens), Doctor Who (Drama).
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reduce the time and resources spent running experiments. In a real-world scenario the
other genres (Comedy, Advice, etc.) could additionally be utilised to make the most of
the available data.

The News genre has a retention rate more than double the retention rate of other genres.
This is perhaps unsurprising, since most News programmes consist of a newsreader
sitting facing straight into the camera, which is ideal for extracting face tracks. This is
in contrast to the Drama genre, which may have more cuts between different filming
angles, and the speakers may be moving around more.

The Childrens genre has the lowest retention rate, which may be due to the fact that
it contains content such as animated cartoons and puppet shows, where there are not
many human faces. The AVSR pipeline does actually extract some facetracks from
the animated cartoons. I have kept these facetracks, but it would be worth considering
removing them for future projects. They are unlikely to provide useful training data for
lip reading, unless the lip movements are animated very accurately. The speech content
of the Childrens genre is very varied, visually and acoustically, containing children
speaking, adults speaking in an exaggerated child-friendly manner, people singing and
even vampires. These types of speech may be difficult for a system trained on more
typical adult speech to recognise.

The Documentary genre may not always produce output due to the content of the
programme. In one notable case where a programme produced no output this was
because it was a nature documentary about wildebeests, with no humans in it.

4.5 Comparison of datasets

The LRS3-TED, LRS2 and MGB datasets are introduced in Section 3.1. Here I discuss
in more detail how the datasets differ in content and difficulty.

In this project I use the LRS3-TED and MGB datasets, the deliberate mismatch between
the domains of the datasets motivated in Section 1.1. The datasets have a similar size,
with MGB containing approximately 145,000 utterances and LRS3-TED containing
around 152,000 utterances. While there are benchmarks for AVSR and lip reading on
the LRS3-TED dataset, since the MGB dataset was produced in this project, there is no
benchmark for performance on this dataset.

When making comparisons between results on both of these datasets, it is important to
note that the MGB dataset is more challenging than the LRS3-TED dataset. It contains
a variety of genres of TV broadcasts with different visual and acoustic characteristics,
as noted in Section 4.4, while LRS3-TED contains only TED talks, which tend to be
quite consistent in style with similar indoor backgrounds and speakers often wearing
microphones on their faces. The TED talks are likely to have clean audio, lacking
background noise and having only one speaker. In comparison, the MGB dataset may
contain more background noise or overlapping speakers due to the nature of television
programmes, particularly in the Drama genre.

The LRS2 dataset was used in last year’s project. It is similar to MGB in some senses as
it contains BBC TV news and talk show programmes, but MGB also contains additional



Chapter 4. Dataset generation 17

genres which make it more challenging than LRS2. Since some of the genres overlap,
the domain mismatch between LRS2 and MGB is more ambiguous than that between
MGB and LRS3-TED, and so clear conclusions cannot be drawn by experimenting with
LRS2. I therefore use LRS3-TED and MGB in this project.

4.6 Practical issues

Since the dataset generation requires a lot of computation I parallelised the task to be
more efficient, splitting up the data into the four genres and running them separately
through the pipeline on different GPUs. I was slightly limited by the GPU server I was
using, which had around 60GB of memory. The pipeline uses up a lot of memory, so
I could not use all four GPUs at once or this would have consumed all the available
memory. I therefore used 2-3 GPUs at a time. In order to do this, I changed the naming
of some temporary audio and video files in the pipeline code so that the different
instances of the pipeline were not all trying to read/write the same temporary files at
once.

In order to generate the AV dataset, I first had to convert the original MGB Challenge
dataset videos to a frame rate of 25 frames per second (fps) using ffmpeg before feeding
them into the AVSR pipeline. Generating the full training set took approximately 631
hours, if I had been running it serially (112 hours to convert to 25 fps, 519 hours using
the pipeline). However, since I ran it on 2-3 GPUs in parallel, it took less time - around
10 days.

A problem I encountered with the AVSR pipeline that remains unresolved was that very
occasionally the process would hang, stuck on generating a temporary audio file for one
facetrack within a video. This happened only a handful of times, and by killing that
one process that face track could be skipped and the rest of the process continued to
run smoothly, generating clips for the rest of the video. The cause of this problem is
unknown. It did not occur when the same video file was put through the pipeline on a
different server, so it may have been a memory issue specific to the server I was using.

A minor issue I noticed with the MGB Challenge data is that the programme recordings
do not cut off immediately after the programmes end. There are therefore some instances
where the start of the next programme, which may be classed as a different genre, is
included as part of the genre of the previous programme. For example, I found a 60
Second News Blast (genre: News) at the end of an episode of Doctor Who (genre:
Drama). Unfortunately there was not much that I could do about this, as it was due to
the format of the BBC TV data. However, this is unlikely to cause many erroneously
classified clips, since the overlapping segment at the end of the programme is very short
in comparison to the length of the overall programme.
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Lip reading implementation

In this chapter I describe the visual features I used for lip reading, the implementation
details of supervised and semi-supervised training of acoustic and visual models, the
default parameters and the language models used in my experiments, and related
practical issues.

5.1 Visual features

Acoustic models typically use MFCC features as input, as these have been found to
be a compact and insightful representation of speech. An interesting challenge when
designing a lip reading model is choosing visual features which will carry similarly
useful information about the speech, extracted from each frame of the video data. As
described in Section 3.2, there are various traditional methods of generating visual
features to be used as input to HMM-based models, as well as end-to-end models which
simply take in the original video as input and extract features within their network. I
would like use more insightful modern methods than the traditional ones to extract
features to feed into my HMM-DNN system.

In this project I use SyncNet (Chung and Zisserman, 2016) to generate visual features.
This network was described in more detail in Section 2.4. The idea behind using
these features is that since SyncNet is used to synchronise audio and video, it learns
a representation of the images strongly related to lip movement of the speaker. Since
lip movement is key to visual speech recognition, this representation should be more
insightful compared to the plain pixels of the images, or the traditional handcrafted
features.

After running the feature extraction each video clip is represented by a sequence of
512-dimensional feature vectors, one for each frame of the video. These feature vectors
are suitable input to the Kaldi models.

A potential issue with using these visual features is that while they are related to
lip movement, SyncNet was optimised for a different objective function, namely au-
dio/video synchronisation. It is therefore possible that it is extracting some information
relevant only to the synchronisation task and missing some information relevant to
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speech recognition. More useful features may be extracted if I were to fine tune SyncNet
for the task of lip reading.

In the lip reading experiment by Chung and Zisserman (2016), they used the features
output by the final fully connected layer of the visual stream of the SyncNet CNN.
However, I use the features output by the final convolutional layer of the CNN before
the fully connected layers. The output of this layer should contain slightly more general
lip features compared to the final output which was trained to be compared against the
audio output for synchronisation.

5.2 Supervised training

I trained supervised acoustic and visual models using scripts initially developed by my
co-supervisor Ondřej Klejch. The models were all built using Kaldi (Povey et al., 2011).

The acoustic model takes as input high-resolution 40-dimensional MFCC feature vectors.
The visual model takes as input the 512-dimensional visual features described in Section
5.1. The models were trained using the LRS3-TED pretrain and training datasets. The
pretrain set contains 118,516 utterances, while the training set contains 30,851 utterances
from the trainval set (Afouras et al., 2018c). 1131 utterances were set aside from the
trainval set as a validation set, though this was not used in this project.

The acoustic model is built using the standard Kaldi recipe for training HMM-DNN
systems, as described in Section 2.1. A series of progressively better HMM-GMM
models are trained and the audio and transcripts realigned at each stage, starting with a
monophone model, and then several triphone models. The last triphone model is used to
produce a final alignment which is used to train a time delay neural network (TDNN).

The visual model builds upon the acoustic model. The last acoustic triphone model
is used to generate alignments for the visual features. A TDNN visual model is then
trained using these alignments.

The frame subsampling factor is the ratio of frames per second of features trained on
to model output. The alignment subsampling factor is the ratio of frames per second
of input alignments to model output. The default value for both these parameters is 3.
Since the MFCCs are 100 frames per second but the visual features are 25 frames per
second, I used a frame subsampling factor of 4 for the acoustic model and 1 for the
visual model, so that they both have the same frame rate. The alignment subsampling
factor for both models is set to 4. A few other key training parameters are specified in
Table 5.1.

5.3 Semi-supervised training

As detailed in Section 3.3, semi-supervised LF-MMI training involves decoding untran-
scribed training data to produce lattices. I performed semi-supervised decoding of the
MGB training set using the supervised LRS3 acoustic and visual models. Due to the
choice in subsampling factors as explained in Section 5.2, the lattices produced by either
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the acoustic model or the visual model can be used for the semi-supervised training of
either acoustic or visual models. I train models using three of these combinations:

• Semi-supervised acoustic models: acoustic models trained using the lattices
produced by the acoustic model.

• Semi-supervised visual models: visual models trained using the lattices produced
by the visual model.

• Semi-supervised acoustic-visual models: visual models trained using the lattices
produced by the acoustic model.

I experimented with semi-supervised models initialised with the supervised LRS3 model
and trained further on the MGB training data - I refer to these as LRS3+MGB models. I
also trained models from scratch, using only the MGB training data, these are referred
to as MGB models.

I created scripts for semi-supervised training of acoustic, visual and acoustic-visual
models. I based my implementation on the implementation of semi-supervised LF-MMI
training for acoustic models by Manohar et al. (2018)12, adapting the scripts to work
with the supervised LRS3 models and for training of visual models.

The general structure of the semi-supervised training script for each modality is the
same. First, I extract the acoustic or visual features from the MGB training data, then
decode the data using the supervised acoustic or visual model and the semi-supervised
decoding language model. The resulting lattices are saved. The denominator WFST is
computed. I then generate training examples using the semi-supervised lattices and the
training data features. Each utterance is split up into examples containing 150 feature
frames, for more efficient minibatch training on GPUs. I train a TDNN model on these
examples, either starting from a pretrained input model or from a flat start. Once trained,
this semi-supervised model can then be decoded on the MGB test set using the MGB
language model.

Both the semi-supervised acoustic and visual models follow all these stages, with the
acoustic model generating lattices using the acoustic supervised model and using those
to generate training examples alongside the MFCC features, and the visual model
generating lattices using the visual supervised model and using those to generate
training examples with the visual features. Since the acoustic-visual model uses the
lattices generated by the acoustic model, it only needs to run from the stage where the
denominator WFST is produced, and generates training examples using the acoustic
lattices and the visual features.

This implementation of semi-supervised training uses the naı̈ve lattice splitting method
described in Manohar et al. (2018) to create numerator graphs for the utterances, pruning
the lattices with a beam of 4.0 and using an LM-scale of 0.5 to scale the weights of the
lattices when generating the numerator graphs. The original script extracts i-vectors

1https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_english/s5/local/
semisup/run_100k.sh

2https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_english/s5/local/
semisup/chain/tuning/run_tdnn_100k_semisupervised_1a.sh

https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_english/s5/local/semisup/run_100k.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_english/s5/local/semisup/run_100k.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_english/s5/local/semisup/chain/tuning/run_tdnn_100k_semisupervised_1a.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_english/s5/local/semisup/chain/tuning/run_tdnn_100k_semisupervised_1a.sh
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for speaker adaptation, I removed this as I am not performing speaker adaptation. They
also performed speed perturbation to augment the audio data, but I also removed this
as it does not make sense in the context of video data. They trained a model from
scratch using both the supervised and unsupervised data, whereas I train using only the
semi-supervised data either from scratch or from the initial supervised model.

For the semi-supervised acoustic-visual model trained from a flat start I used the same
architecture as the supervised visual model described in Section 5.2.

I used the same frame subsampling factor for the semi-supervised models as for the
supervised models: 4 for the acoustic models, 1 for the visual models, so that the frame
rate for the acoustic and visual features matches. For all the semi-supervised models I
set the alignment subsampling factor to 1, since they use the alignments produced by
the supervised models which have already been subsampled. A few other key training
parameters that differ between the acoustic and visual models are specified in Table 5.1.

5.4 Default model parameters

The default parameters I used for each of the model types is given in Table 5.1. The
parameters for the supervised LRS3 models were already tuned previously.

For the semi-supervised LRS3+MGB models, since they build upon a pre-trained
model, I decided to perform fewer epochs of semi-supervised training compared to the
supervised training. For the semi-supervised LRS3+MGB acoustic model, I chose 4
epochs, which is 2/3 of the 6 epochs used in supervised training. This was not tuned. For
the semi-supervised LRS3+MGB acoustic-visual model I tried a few different numbers
of epochs - results are shown in the experiment in Section 6.3. The number of epochs
which gave the best WER was 12, which also happens to be 2/3 of the supervised
epochs (18), making it consistent with the acoustic model. I used the same number of
epochs for the semi-supervised LRS3+MGB visual model, since it is based on the same
supervised LRS3 visual model. For the semi-supervised MGB acoustic-visual model,
since it is a visual model trained from scratch, I used the same number of epochs as the
supervised LRS3 visual model (18).

For the semi-supervised training I used the same minibatch size as in the supervised

Table 5.1: Default parameters for training the models.

Training
method Model # epochs Minibatch size

Initial
learning

rate

Final
learning

rate

Supervised
LRS3 Acoustic 6 256 2.5E-04 2.5E-05
LRS3 Visual 18 256,128,64,32 2.5E-04 2.5E-05

Semi-
supervised

LRS3+MGB (A) 4 256 1.25E-04 2.5E-05
LRS3+MGB (V) 12 256,128,64,32 1.25E-04 2.5E-05
LRS3+MGB (AV) 12 256,128,64,32 1.25E-04 2.5E-05
MGB 18 256,128,64,32 2.5E-04 2.5E-05
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training. For visual models I used a variable minibatch size, meaning that the largest
possible size is used until there is no longer enough input for a batch that large, at
which point the next possible largest size is used. This is represented by a list of sizes:
256,128,64,32.

For the semi-supervised training, I chose an initial learning rate that was half of the
initial learning rate of the supervised models, and the same final learning rate. I chose
a smaller initial learning rate so that while the model trains on the MGB data it does
not forget what it has learned from the LRS3 data. Since the semi-supervised MGB
acoustic-visual model is trained from scratch, I gave it the same default learning rates
as the supervised models.

5.5 Language models

The language models I used in my experiments are the following:

MGB – a tri-gram language model created using the top 150,000 most frequent words
in the vocabulary of the MGB Challenge dataset transcriptions, in addition to transcripts
of previous BBC TV programme data, amounting to a total of several hundred million
words.

MGB big – a less pruned version of the MGB language model.

MGB big del - the MGB big language model with a deletion penalty of 1 applied.

MGB big del2 – the MGB big language model with a deletion penalty of 2 applied.

LRS3 – a tri-gram language model trained on the transcriptions of the LRS3-TED
training dataset.

In my semi-supervised training experiments I used the MGB, MGB big, MGB big del
and MGB big del2 language models for the semi-supervised decoding of the MGB
training data. For decoding the MGB test data I always used the MGB language
model. This was for consistency, so that I could more easily compare the results of
semi-supervised training with different semi-supervised decoding language models.

I only used the LRS3 language model to decode the test data in the supervised training
experiments, for comparison with the MGB language model.

I applied the deletion penalty by running a script (Fainberg et al., 2019) to convert the
HCLG decoding graph for the MGB big language model into a new graph with the
penalty applied.

5.6 Practical issues

Currently, utterances longer than 637 frames (25.46 seconds) are skipped during visual
feature extraction. This is because any longer clips are too long to fit in memory during
the feature extraction. In order to include these clips, I would need to edit the visual
feature extraction script to split up the long videos into multiple chunks to be processed



Chapter 5. Lip reading implementation 23

separately. I decided it was not worth changing this during the course of this project,
since the number of clips skipped is not high enough to be of concern for data quantities,
and additionally, such long utterances would be likely to be difficult for Kaldi to deal
with.

When I extracted the visual features for the full MGB training set 3890 utterances were
skipped due to being too long. This accounts for 2.8% of the total utterances. It is
interesting to note upon closer inspection that the majority of these were from the News
genre - with 5.4% of News clips being skipped, compared to less than 1% of clips from
each other genre. As mentioned in Section 4.4, the News genre contains more face-on
views of speakers and less camera movement than other genres, so it makes sense that
longer facetracks can be found in this genre compared to other genres. Drama had the
least skipped videos, which makes sense since the filming style of cutting frequently
between different angles does not allow for long facetracks.

The visual feature extraction requires a large amount of compute power, so to make this
more efficient I parallelised the task across 4 GPUs. I split the data into 4 subsets and
processed each individually, after which I recombined the features into one place. It
took approximately 4.25 hours to extract the visual features for the full MGB training
set.

The semi-supervised decoding of the MGB training data was quite slow, so for the later
experiments (the semi-supervised training using the language models with deletion
penalty) I changed the lattice pruning beam value used in the decoding script from the
default of 8.0 to 4.0. This heavier pruning made it run faster and produced smaller
lattices therefore taking up less storage space as well. Since the lattices are pruned with
a beam of 4.0 before being used for training anyway, as mentioned in Section 5.3, this
change does not affect the results of training.

Once features have been extracted from the data or the lattices or training examples
have been generated these can be saved for later use. This makes training many models
with varying parameters much more time efficient, as the features, lattices and training
examples do not need to be regenerated every time. However, the training examples
are quite large so this is not always space efficient, and care must be taken that there is
enough disk space to store them. For instance, the acoustic training examples for the
full MGB training set take up approximately 8.5GB, the acoustic-visual examples take
up approximately 7.5GB and the visual examples take up an enormous 20GB.
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Experiments and results

In this chapter I present my experiments on supervised and semi-supervised LF-MMI
training of acoustic and lip reading models and discuss their results.

6.1 Supervised LRS3 models

The aim of this experiment is to compare how the supervised LRS3 models perform on
the MGB test set compared to the LRS3 test set, and how the performance differs when
decoding using the LRS3 or the MGB language model. Performance on the LRS2 test
set is also given for comparison.

The results of the decoding the supervised LRS3 acoustic and visual models are found
in Table 6.1.

These results clearly show that the supervised models struggle to generalise to a mis-
matching domain, since there is a stark difference in performance on the LRS3 test set
compared to the MGB test set. This is particularly noticeable in the acoustic model,
where 4.7% is achieved on the LRS3 test set, compared to the much worse 42.1% on
the MGB test set. The difference is smaller but still quite large for the visual model,
70.6% on LRS3 vs 93.4% on MGB. This demonstrates the motivation to perform semi-
supervised training experiments to try and improve this performance on the data from
the mismatched domain.

I also decoded on the LRS2 dataset. As explained in Section 4.5, the MGB dataset is a
harder dataset than LRS2 and LRS3, due to its multiple genres, and this is demonstrated
by the results for the acoustic model. The results on LRS2 (12.9%) are worse than for
LRS3, since it is also a mismatched domain, but these results are still much better than
on MGB. Interestingly, the visual model does very well on LRS2, getting almost the
same result as for LRS3 when the MGB LM is used, although it does worse when the
LRS3 LM is used, which makes sense as the MGB LM and the LRS2 dataset both
contain BBC data so are well matched.

When comparing the performance between genres in the MGB test set we can see that
the News genre performs best. This makes sense, as mentioned in Section 4.2 the News
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Table 6.1: The WER of the supervised LRS3 acoustic and visual models, decoded on
the LRS3, LRS2 and MGB test sets using the LRS3 and MGB language models.

Test language model
Model type Test Data LRS3 MGB

Acoustic

LRS3 5.1% 4.7%
LRS2 19.2% 12.9%
MGB 45.9% 42.1%
News 35.7% 31.9%
Documentary 45.4% 42.0%
Childrens 46.0% 40.6%
Drama 61.6% 57.6%

Visual

LRS3 71.1% 70.6%
LRS2 77.6% 70.2%
MGB 93.4% 93.4%
News 88.5% 88.7%
Documentary 94.6% 94.7%
Childrens 94.3% 94.2%
Drama 97.0% 96.1%

genre is the dominant genre present in the MGB training dataset. Additionally, the
News genre tends to contain more frontal views of faces, and less background noise,
therefore making it one of the easier genres from which to recognise speech. The
hardest genre is found to be Drama, which again is to be expected, since compared
to News it contains more movement of faces and background noise. The Childrens
and Documentary genres produce similar results to each other, in between News and
Drama. The difference between genres is much greater in the acoustic results compared
to the visual results, with a difference of approximately 26% between News and Drama,
compared to a difference of approximately 8% for the visual. This indicates that the
model may be struggling to deal with the more noisy audio present in the Drama genre
that is not in the News genre - which does not affect the visual model since it uses visual
features unaffected by background audio. This is one of the reasons why it is interesting
to look into audio-visual speech recognition, as it may be able to improve recognition
in cases where the acoustic models struggle.

Comparing the WER when decoding using the different language models, the MGB
language model outperforms the LRS3 language model on all test data for the acoustic
model. For the visual model, the MGB LM performs better or equally to the LRS3
LM for the LRS3 test data and the full MGB test set - though it performs very slightly
worse on some individual genres. The improvements in WER produced by using the
MGB LM compared to LRS3 LM were less than 1% for the LRS3 test set, and for the
MGB data using the visual model, but using the acoustic model on the MGB data gave
a much more noticeable improvement of between 3.4-5.4%.

One might expect that since the supervised model is trained on LRS3 data, an LRS3
language model would be more suitable than the MGB language model, particularly
when decoding on the LRS3 test data. However, the better performance achieved using
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the MGB language model may be because the MGB model was trained on a larger
vocabulary than the LRS3 model. In conclusion, the MGB language model is used in
future experiments to decode the test data since it gave better performance.

The main results to note from this experiment are the 93.4% on the MGB test set with
the visual model and 42.1% with the acoustic model. These are the results I am aiming
to improve upon using semi-supervised training.

6.2 Language models

In this experiment I decoded the MGB test data using the supervised LRS3 acoustic and
visual models and a variety of language models: MGB, MGB big, MGB big del and
MGB big del2. See Section 5.5 for details of each model. These language models were
later used for semi-supervised decoding, not test decoding, so the aim of this experiment
was to perform a sanity check to see how the big language models and deletion penalty
affect the decoding of MGB data.

The results of this experiment are found in Table 6.2.

As expected, using the MGB big LM decreased the WER compared to the more pruned
MGB LM. This was more noticeable in the acoustic model, which improved by 2.8%.
In comparison, the visual model improved by only 0.7%. This improvement motivates
the use of the MGB big LM for semi-supervised decoding, to improve the lattices
produced and therefore improve the final model.

The WER breakdown shows that the visual model has a very high deletion rate - similar
to the number of substitutions, and almost half of the overall WER - and almost no
insertions. This means almost half of each utterance is being deleted. In an ideal ASR
system we expect to see the majority of errors being substitutions, and fewer deletion
and insertion errors. The acoustic model has a better breakdown - the deletions are
lower than the substitutions, but are still double the insertions, meaning that utterances
are still being predicted to be shorter than they are.

Table 6.2: The WER breakdown into percentages of substitution, deletion and insertion
errors of the supervised LRS3 acoustic and visual models, decoded on the MGB test set
using varying language models.

Test language model
Model type Metric MGB MGB big MGB big del MGB big del2

Acoustic

WER 42.1% 39.3% 38.4% 39.4%
Substitutions 20.0% 18.0% 18.4% 19.5%
Deletions 15.3% 14.2% 11.8% 9.9%
Insertions 6.8% 7.1% 8.2% 10.0%

Visual

WER 93.4% 92.7% 92.3% 98.6%
Substitutions 44.9% 46.5% 44.9% 65.9%
Deletions 46.7% 43.9% 45.3% 22.1%
Insertions 1.8% 2.3% 2.2% 10.7%
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When a model is prone to deletion, we expect that the semi-supervised training will
increase this effect, and the final model trained on the semi-supervised lattices which
are prone to deletion will be even more prone to deletion. Therefore, to help reduce
the deletion error rate in the final model, it seems a good idea to introduce a deletion
penalty into the language model used for semi-supervised decoding.

Prior to using the deletion penalty in the semi-supervised decoding, I decoded the
supervised models with the MGB big del and MGB big del2 LMs on the test data to
check what effect it had. The deletion penalty of 1 gave promising results, decreasing the
deletion rate and the overall WER for the acoustic model compared to using MGB big.
The deletion penalty of 2 decreased the deletion rate even more, but due to an increase
in substitution and insertion errors, the overall WER increased, compared to using
MGB big. For the visual model the results were less consistent, with the deletions
actually increasing when the deletion penalty was 1.

The conclusion from this experiment is that it is worth using the larger language model
in the semi-supervised training, particularly since it improves the acoustic model more,
and the main experiment in this project is the semi-supervised acoustic-visual model
which involves semi-supervised decoding using the acoustic model. Additionally, it is
worth paying attention to how the deletion rate changes for semi-supervised models
compared to the supervised models, and experimenting with the deletion penalty to
mitigate any increase in deletions.

6.3 Epoch tuning

Table 6.3: The WER of the semi-
supervised LRS3+MGB acoustic-
visual model trained using varying
number of epochs.

# epochs WER
4 92.2%
6 92.0%

12 91.9%

The aim of this experiment was to determine the
number of epochs to use for training the semi-
supervised LRS3+MGB acoustic-visual models.

This experiment was carried out using the MGB
language model for semi-supervised decoding
and test decoding. The default minibatch size
and learning rates given in Table 5.1 were used.

The results of this experiment are found in Table
6.3.

12 epochs provided the lowest WER of 91.9%
and so in future experiments in training semi-
supervised LRS3+MGB acoustic-visual models, this is the number of epochs used. I
also used this number of epochs for the semi-supervised LRS3+MGB visual models,
since they are similar since they are based upon the same initial model.

6.4 Semi-supervised LRS3+MGB models

The aim of this experiment was to improve performance on the MGB test set by training
semi-supervised acoustic, visual and acoustic-visual models, using the supervised LRS3
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Table 6.4: The WER of the semi-supervised LRS3+MGB acoustic, visual and acoustic-
visual models decoded on the MGB test set. Models trained using the default parameters,
and varying the language model used for semi-supervised decoding of the training data.

Semi-supervised decoding language model
Model MGB MGB big MGB big del MGB big del2
LRS3+MGBshort (A) 40.5% 39.8% 39.3% 40.2%
LRS3+MGB (A) 37.8% 37.3% 36.8% 37.7%
LRS3+MGBshort (V) 95.2% - - -
LRS3+MGB (V) 95.0% - - -
LRS3+MGBshort (AV) 94.0% 93.9% 93.9% 93.4%
LRS3+MGB (AV) 91.9% 91.8% 91.7% 91.4%

Table 6.5: The WER breakdown into percentages of substitution, deletion and insertion
errors of the semi-supervised LRS3+MGB acoustic, visual and acoustic-visual models,
decoded on the MGB test set using varying language models for semi-supervised
decoding of the training data.

Semi-supervised decoding language model
Model Metric MGB MGB big MGB big del MGB big del2

LRS3+MGB
(A)

WER 37.8% 37.3% 36.8% 37.7%
Substitutions 16.1% 17.2% 17.1% 18.4%
Deletions 15.7% 13.2% 11.8% 10.3%
Insertions 6.0% 7.0% 7.9% 9.0%

LRS3+MGB
(V)

WER 95.0% - - -
Substitutions 33.1% - - -
Deletions 60.9% - - -
Insertions 0.9% - - -

LRS3+MGB
(AV)

WER 91.9% 91.8% 91.7% 91.4%
Substitutions 39.0% 40.4% 36.7% 42.9%
Deletions 51.5% 49.8% 53.7% 46.5%
Insertions 1.4% 1.6% 1.3% 1.9%

models as an initial model and training further using the MGB training set. This
experiment used the default parameters specified in Table 5.1, and various different
LMs were used for semi-supervised decoding.

The experiments were run using both the full and short training set, the results are given
in Table 6.4. The breakdown of the WER into substitution, deletion and insertion errors
for the models trained using the full training set is given in Table 6.5. The breakdown
of WER for each genre for the best performing models is given in Table 6.6, and a full
breakdown is given in Tables A.1 and A.2.

All the semi-supervised acoustic models improved upon the supervised acoustic model
result of 42.1%. The most basic model, trained using the short training set and using the
MGB LM achieved 40.5%, which is a promising start from training on just the small
amount of MGB training data with the smallest language model. This was brought
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Table 6.6: The WER of the best semi-supervised LRS3+MGB acoustic, visual and
acoustic-visual models decoded on the MGB test set, broken down by genre. Models
trained using the default parameters.

Model
Test data LRS3+MGB (A) LRS3+MGB (V) LRS3+MGB (AV)
MGB 36.8% 95.0% 91.4%
News 27.2% 91.9% 84.5%
Documentary 37.4% 96.0% 93.6%
Childrens 34.6% 94.8% 91.0%
Drama 50.8% 97.1% 95.6%

down a few more percentage points by using the full training set, achieving 37.8%.
Using the larger MGB big LM to decode the training data took much longer compared
to the MGB LM, but it was worth the extra time as it decreased the WER even more,
and further to that, adding the deletion penalty of 1 gave the best result of 36.8%.

From the genre breakdown in Table 6.6 note that we still see a general genre trend as
seen with the supervised models, where the News genre has the best WER while the
Drama genre has the worst, and this difference is larger in the acoustic models compared
to the visual or acoustic-visual models. The lowest WER achieved in the whole set of
experiments was for the News genre with the semi-supervised LRS3+MGB acoustic
model using the deletion penalty of 1, which achieved 27.2% (compared to 31.9% with
the supervised model). The lowest WER achieved by a visual model was 84.5% on the
News genre by the semi-supervised LRS3+MGB acoustic-visual model using deletion
penalty of 2 (compared to 88.5% with the supervised model).

The semi-supervised LRS3+MGB visual model performed worse than the supervised
visual model, with a WER of 95.0% compared to 93.4%. This is not surprising, since
the initial visual model has such a high WER that the semi-supervised decoding of the
MGB data does not produce useful training examples. The supervised visual model
has roughly equal substitution errors and deletion errors (and very low insertion errors),
and the semi-supervised training exacerbates this resulting in the highest deletion rate
seen, 60.9% (almost double the substitution rate). This means that that more than half
of the words in utterances are being left out. This is why I perform the acoustic-visual
experiments, the idea being to use the acoustic model to decode the semi-supervised
training data, rather than the visual model, since it performs much better.

I did not run the visual experiments with the MGB big language model, because the
semi-supervised decoding of the training data with the visual model would create
enormous lattices that take up too much memory and time to create. Additionally, they
would be unlikely to give any useful result in the end, based off the result using MGB.

The semi-supervised LRS3+MGB acoustic-visual models trained using the full MGB
training set improved upon the supervised visual model by 2.0%, achieving 91.4%.
Similarly to the acoustic model, the larger language models improved the results slightly
compared to the MGB LM. When trained only on the short training set the models
achieved worse or equal performance compared to the visual model.
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Looking at the breakdown of substitutions, insertions and deletions in Table 6.5 we
can see that the semi-supervised training increases the quantity of deletions. Note that
similar trends were seen for the short and full training sets, so only the breakdown for
the full set is included in this report. For the semi-supervised LRS3+MGB acoustic
model decoded using the MGB LM, although the overall WER decreases compared
to the supervised model, the number of deletions increased. This brings the number
of deletions much closer to the number of substitutions, compared to the supervised
model.

Looking to the semi-supervised acoustic-visual model, the deletions also increase
compared to the supervised model. Notably, however, the deletions do not increase
as much as they do for the semi-supervised visual model. This makes sense since the
model use to decode the lattices (the supervised acoustic model) had a lower deletion
rate compared to the supervised visual model, which was used to decode the lattices for
the semi-supervised visual model.

Generally the deletion penalty was effective in reducing the number of deletions, with
the higher penalty of 2 having a stronger effect - but due to an increase in insertion and
substitution errors this did not always result in an overall decrease in WER, e.g. for the
acoustic model the deletion penalty of 1 gave the best results. For the acoustic-visual
model the deletion penalty of 2 was more effective in reducing the WER compared to
the penalty of 1, reducing it almost exactly back to the deletion rate of the supervised
model. Therefore, in the next experiment I only used the deletion penalty of 2.

In the next experiment to tune the learning rate of the semi-supervised acoustic-visual
model I decided to use only the full MGB training set. The idea of using the short set
was to be faster, but in the end it did not take too long to train using the full set, and the
MGB short training set did not give promising results for this type of model.

6.5 Learning rate tuning

The aim of this experiment was to tune the initial and final learning rate for the semi-
supervised LRS3+MGB acoustic-visual model to try to improve upon the WER achieved
using the default learning rates in the previous experiment.

The results of this experiment are given in Table 6.7 and the full genre breakdown is
given in Table A.3.

The best result, 91.3% was achieved using an initial learning rate of 2.5E-04 and final
learning rate of 2.5E-05 and the MGB big del2 language model. The best learning rates
were different for each semi-supervised language model. The tuning only improved the
models by up to 0.2% compared to the defaults.

I did not perform any learning rate tuning for the semi-supervised LRS3+MGB acoustic
models, as the focus of the project was on the visual models and there was not time
to carry out comprehensive experiments in all directions, although it would have been
interesting for completeness to investigate if there is any improvement to be gained in
the acoustic model by changing the learning rate.
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Table 6.7: The WER of the semi-supervised LRS3+MGB acoustic-visual models decoded
on the MGB test set, tuning over initial and final learning rates and varying the language
model used for semi-supervised decoding of the training data.

Initial learning rate, final learning rate
2.5E-04 1.25E-04 1.25E-04 1E-04 2.5E-05 1E-05

Semi-supervised
decoding
language model 2.5E-05 2.5E-05 1.25E-05 1E-05 2.5E-06 1E-06
MGB 92.1% 91.9% 92.1% 92.0% 92.1% 92.6%
MGB big 91.8% 91.8% 91.9% 91.6% 92.0% 92.2%
MGB big del2 91.3% 91.4% 91.5% 91.5% 91.7% 91.6%

6.6 Semi-supervised MGB models

The aim of this experiment was to train a semi-supervised acoustic-visual model from
scratch, using only the semi-supervised MGB training data, and to compare its per-
formance to the supervised LRS3 visual model and the semi-supervised LRS3+MGB
acoustic-visual models. The default parameters specified in Table 5.1 were used, except
for the learning rates which were tuned.

The results of this experiment are given in Table 6.8 and the full genre breakdown is
given in Table A.4.

The best WER achieved by this model was 92.0%, using initial learning rate 5E-04,
final learning rate 5E-05 and the MGB big del2 LM. This is an improvement compared
to the supervised visual model result of 93.4%. It is not as good as the result of the
semi-supervised LRS3+MGB acoustic-visual model, which achieved 91.3%. However
the result is still promising, since it uses no supervised data whatsoever and still gets
very close to the results of the LRS3+MGB models which are additionally pretrained
on the whole LRS3 training data.

In this experiment, using the deletion penalty of 2 improved the results, but only by up
to 0.3%.

Note that in this experiment I only used the full training data set. I decided that for a
model being trained from scratch the short dataset (containing 27 hours) was too small
to be useful.

Table 6.8: The WER of the semi-supervised MGB acoustic-visual models decoded on
the MGB test set, tuning over initial and final learning rates and varying the language
model used for semi-supervised decoding of the training data.

Semi-supervised
decoding
language model

Initial learning rate, final learning rate
1E-03 5E-04 2.5E-04 1E-04 1E-05
1E-04 5E-05 2.5E-05 1E-05 1E-06

MGB 92.7% 92.6% 92.3% 93.0% 94.8%
MGB big 92.4% 92.3% 92.1% 92.6% 94.5%
MGB big del2 92.6% 92.0% 92.1% 92.3% 94.2%
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For the future, it would be interesting to experiment with different model architectures
which use more layers, as this may improve the performance. It would also be interesting
to train a semi-supervised MGB acoustic model from scratch, to compare how it
performs against the semi-supervised LRS3+MGB acoustic model.



Chapter 7

Conclusions

7.1 Summary of results

I produced a 223 hour MGB training dataset (and a 27 hour short subset) from the MGB
Challenge dataset, containing video clips from the News, Documentary, Childrens and
Drama genres, and used this in my semi-supervised training experiments.

The summary of the best WER achieved for each type of model on the MGB test set
after experimenting with various language models and parameters is given in Table 7.1.

Comparing the performance of supervised LRS3 models on the LRS3-TED dataset and
the MGB dataset, we can see that there is a much higher WER on the MGB dataset (4.7%
-> 42.1% for acoustic, 70.6% -> 93.4% for visual) - demonstrating that the models
struggle to generalise to the mismatching domain. Despite this poor performance on
MGB data from the initial model, the semi-supervised training methods were successful
in improving performance on this challenging dataset.

The acoustic semi-supervised training showed good signs of improvement, with the
WER decreasing by 5.3% to 36.8%. The visual semi-supervised training showed
worsening WER (95.0%), while the acoustic-visual training improved to 91.3%, demon-
strating the benefits of using information from both the acoustic and visual domains.
Although the improvement of the semi-supervised LRS3+MGB acoustic-visual model
was quite small (2.1%), the fact it improved at all is promising for the concept of using
semi-supervised LF-MMI training for lip reading models. The semi-supervised MGB

Table 7.1: The overall best WER on the MGB test dataset for each modality and type of
model training.

Supervised Acoustic Visual
LRS3 42.1% 93.4%
Semi-supervised A V AV
LRS3+MGBshort 39.3% 95.2% 93.4%
LRS3+MGB 36.8% 95.0% 91.3%
MGB - - 92.0%

33
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acoustic-visual model trained from a flat start gave a similar result (92.0%), but the
pretrained LRS3+MGB model gave the best result.

Using larger language models and incorporating a deletion penalty during semi-supervised
decoding was found to be beneficial. However, it is to be noted that the visual models
still have a much higher deletion rate than would be expected in an ideal ASR system.

7.2 Future work

Since the semi-supervised pipeline has been shown to improve lip reading performance
but not as much as hoped, it is worth investigating ways to improve these models. A key
improvement would be to improve the utility of the visual features used. As described
in Section 5.1 the SyncNet feature extraction is tuned for the task of synchronisation. It
would be therefore be beneficial to fine tune the output of SyncNet to the task of lip
reading.

Since the semi-supervised acoustic model performs much better than the supervised
LRS3 acoustic model, in future I would experiment with using the semi-supervised
acoustic model to decode the training data again. This should produce better training
examples, which could be used to train a better semi-supervised acoustic-visual model.
This would be a form of incremental semi-supervised training, which has been found to
be beneficial in ASR (Khonglah et al., 2020). It may be useful to train semi-supervised
MGB acoustic models from scratch for this, so far I only trained semi-supervised
LRS3+MGB acoustic models.

It is also worth investigating different model architectures for the visual models. Cur-
rently, the acoustic models have more layers than the visual models, so adding more
layers to the visual models may provide some improvement.

It would also be interesting to try and combine the acoustic and visual features into
one model to perform AVSR. Since the acoustic models perform much better than the
visual models, this is very likely to improve the visual models. However, much more
intriguing is the possibility of using the visual model to improve the acoustic model in
some select circumstances where the audio is noisy. Combining these two streams in
Kaldi however may be challenging.

Finally, a few smaller items of further work mentioned previously in this report are:

• Modifying the AVSR pipeline to save the SyncNet visual features during dataset
generation

• Generating a new MGB test dataset with the latest version of the AVSR pipeline,
and balancing the genre split in the dataset

• Creating an MGB validation set

• Generating transcriptions for the MGB training dataset to be used for comparison
to the semi-supervised experiments
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Table A.1: The WER of the semi-supervised LRS3+MGB acoustic and acoustic-visual
models decoded on the MGB test set, broken down by genre. Models trained using the
default parameters, and varying the language model used for semi-supervised decoding
of the training data.

Semi-supervised decoding language model
Model Test data MGB MGB big MGB big del MGB big del2

LRS3+MGBshort
(A)

MGB 40.5% 39.8% 39.3% 40.2%
News 29.7% 28.9% 28.9% 29.3%
Documentary 41.5% 40.8% 39.9% 41.0%
Childrens 37.2% 37.5% 37.8% 39.1%
Drama 55.0% 54.8% 53.8% 54.1%

LRS3+MGB
(A)

MGB 37.8% 37.3% 36.8% 37.7%
News 27.8% 27.5% 27.2% 27.7%
Documentary 38.9% 38.0% 37.4% 38.4%
Childrens 35.0% 34.9% 34.6% 35.5%
Drama 51.3% 50.8% 50.8% 51.6%

LRS3+MGBshort
(AV)

MGB 94.0% 93.9% 93.9% 93.4%
News 88.5% 88.8% 88.4% 88.2%
Documentary 95.6% 95.5% 95.3% 95.1%
Childrens 94.6% 94.5% 94.4% 93.9%
Drama 97.3% 97.1% 97.1% 96.6%

LRS3+MGB
(AV)

MGB 91.9% 91.8% 91.7% 91.4%
News 85.1% 85.2% 85.3% 84.5%
Documentary 94.1% 93.8% 93.8% 93.6%
Childrens 91.9% 91.9% 91.3% 91.0%
Drama 96.3% 95.9% 95.7% 95.6%

Table A.2: The WER of the semi-supervised LRS3+MGB visual models decoded on the
MGB test set, broken down by genre. Models trained using the default parameters, and
using the MGB language model for semi-supervised decoding of the training data.

Model
Test data LRS3+MGBshort (V) LRS3+MGB (V)
MGB 95.2% 95.0%
News 92.3% 91.9%
Documentary 96.2% 96.0%
Childrens 95.2% 94.8%
Drama 97.1% 97.1%
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Table A.3: The WER of the semi-supervised LRS3+MGB acoustic-visual models decoded
on the MGB test set, broken down by genre, tuning over initial and final learning rates
and varying the language model used for semi-supervised decoding of the training data.

Initial learning rate, final learning rate

2.5E-04 1.25E-04 1.25E-04 1E-04 2.5E-05 1E-05

Semi-
supervised
decoding
language
model

Test data

2.5E-05 2.5E-05 1.25E-05 1E-05 2.5E-06 1E-06
MGB 92.1% 91.9% 92.1% 92.0% 92.1% 92.6%
News 85.4% 85.1% 86.0% 85.4% 85.3% 86.5%
Documentary 94.2% 94.1% 93.6% 94.0% 94.5% 94.6%
Childrens 92.3% 91.9% 92.5% 92.2% 92.2% 93.1%

MGB

Drama 96.2% 96.3% 96.5% 96.5% 96.1% 96.5%
MGB 91.8% 91.8% 91.9% 91.6% 92.0% 92.2%
News 85.2% 85.2% 85.2% 84.9% 85.3% 85.6%
Documentary 93.8% 93.8% 93.8% 93.7% 94.2% 94.2%
Childrens 92.0% 91.9% 92.5% 91.7% 92.3% 92.7%

MGB big

Drama 96.3% 95.9% 96.2% 96.2% 96.0% 96.3%
MGB 91.3% 91.4% 91.5% 91.5% 91.7% 91.6%
News 84.6% 84.5% 84.6% 85.0% 85.4% 85.3%
Documentary 93.3% 93.6% 93.5% 93.4% 93.5% 93.3%
Childrens 91.5% 91.0% 91.3% 91.1% 92.0% 91.9%

MGB big
del2

Drama 95.7% 95.6% 95.6% 95.9% 96.2% 96.0%

Table A.4: The WER of the semi-supervised MGB acoustic-visual models decoded on
the MGB test set, broken down by genre, tuning over initial and final learning rates and
varying the language model used for semi-supervised decoding of the training data.

Semi-supervised
decoding
language model

Test data
Initial learning rate, final learning rate
1E-03 5E-04 2.5E-04 1E-04 1E-05
1E-04 5E-05 2.5E-05 1E-05 1E-06

MGB

MGB 92.7% 92.6% 92.3% 93.0% 94.8%
News 86.9% 86.5% 86.1% 87.1% 91.0%
Documentary 94.4% 94.6% 94.2% 94.7% 95.9%
Childrens 92.8% 92.6% 92.4% 93.6% 95.0%
Drama 97.0% 96.4% 96.7% 96.8% 97.6%

MGB big

MGB 92.4% 92.3% 92.1% 92.6% 94.5%
News 86.6% 86.2% 85.5% 86.7% 90.4%
Documentary 94.2% 94.3% 94.3% 94.7% 95.6%
Childrens 92.7% 92.0% 92.1% 92.4% 94.6%
Drama 96.5% 96.5% 96.4% 96.5% 97.5%

MGB big del2

MGB 92.6% 92.0% 92.1% 92.3% 94.2%
News 86.5% 85.5% 85.7% 86.3% 89.9%
Documentary 94.3% 93.8% 94.0% 94.1% 95.2%
Childrens 92.4% 92.2% 92.4% 92.9% 94.5%
Drama 96.4% 95.9% 96.0% 96.2% 97.3%


	Introduction
	Motivation
	Previous work
	Goals and achievements

	Technical background
	Weighted finite-state transducer speech recognition
	Time delay neural networks
	Lattice-free maximum mutual information training
	SyncNet

	Literature review
	Datasets
	Lip reading
	Semi-supervised training

	Dataset generation
	Audio-visual speech recognition pipeline
	Multi-Genre Broadcast training set
	Multi-Genre Broadcast test set
	Genre differences
	Comparison of datasets
	Practical issues

	Lip reading implementation
	Visual features
	Supervised training
	Semi-supervised training
	Default model parameters
	Language models
	Practical issues

	Experiments and results
	Supervised LRS3 models
	Language models
	Epoch tuning
	Semi-supervised LRS3+MGB models
	Learning rate tuning
	Semi-supervised MGB models

	Conclusions
	Summary of results
	Future work

	Bibliography
	WER broken down by genre

