
Machine learning for prediction of gene
essentiality in metabolic networks

Lilli Johanna Freischem
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2022

Abstract
The identification of essential genes is a fundamental problem in systems biology.
Computational methods utilising Flux Balance Analysis (FBA) are widely used to guide
biological experiments in the search for new essential genes. However, this method
assumes that cells are optimised for maximal growth in every genetic state; it is unclear
if this is true or if cells shift their objective to focus on survival when specific genes are
knocked out.

To overcome this issue, we propose a new method for the computational prediction of
essential genes. We generate Mass Flow Graphs from metabolic networks and extract
structural features from the graphs; these are given to machine learning algorithms for
essentiality prediction. Our proposed method predicts essential genes with near state-of-
the-art accuracy, as shown by our comparison with FBA predictions. The results of this
work have been submitted for publication to the 9th International Conference on the
Foundations of Systems Biology in Engineering to be held in Cambridge, Massachusetts,
in August 2022.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Lilli Johanna Freischem)

ii

Acknowledgements
First of all, I would like to thank my supervisor Diego Oyarzún for his invaluable
support and guidance throughout the last two years, for giving me the opportunity to
explore and learn about systems biology, and for enabling me to have such a great first
research experience.

I would also like to thank my family for their love and support throughout my time at
university and my friends who make Edinburgh my home away from home.

iii

Table of Contents

1 Introduction 1
1.1 Project Description . 1
1.2 Motivation . 1
1.3 Research Question . 2
1.4 Achievements . 3

2 Background 4
2.1 Computational analysis of cell metabolism 4

2.1.1 Genome-Scale Metabolic Models 4
2.1.2 Flux Balance Analysis . 5
2.1.3 Mass Flow Graphs . 5
2.1.4 Gene-Protein-Reaction Rules 7
2.1.5 Gene Essentiality . 8
2.1.6 COBRApy . 8

2.2 Escherichia coli model iML1515 . 8
2.3 Machine learning for essentiality prediction 9
2.4 Previous work carried out . 9

2.4.1 MFGpy . 9
2.4.2 Year 1: Predicting FBA Essentiality 9
2.4.3 Year 2: Predicting Measured Essentiality 10

3 Data 11
3.1 Mass flow graph of iML1515 . 11
3.2 Feature Extraction . 12

3.2.1 Adjacency Features . 13
3.2.2 Recursive Feature Extractor 13
3.2.3 Flow Profiles . 14

3.3 Essentiality labels . 14
3.3.1 Algorithm for gene to reaction essentiality mapping 15

3.4 Essentiality Analysis . 16

4 Methodology 17
4.1 Overview . 17
4.2 Binary classification . 18
4.3 Preprocessing . 19

4.3.1 Standardisation . 19

iv

4.3.2 Dimensionality Reduction 19
4.4 Evaluation metrics . 21

4.4.1 Normalised confusion matrix 21
4.4.2 Precision-Recall Curve . 22

5 Experiments 23
5.1 Baseline . 23

5.1.1 Adjacency Features XM . 24
5.1.2 ReFeX Features XReFeX . 24
5.1.3 Flow Profiles XFP . 25

5.2 Preprocessing . 25
5.2.1 Adjacency Features . 26
5.2.2 ReFeX . 28

5.3 Hyperparameter Tuning . 28
5.3.1 Adjacency Matrix . 29
5.3.2 ReFeX . 29

5.4 Transfer Learning . 31

6 Results 32
6.1 Essentiality Analysis . 32
6.2 Essentiality predictions . 33

6.2.1 Standardised Adjacency Matrix 33
6.2.2 ReFeX . 34
6.2.3 Comparison to essentiality predictions of iML1515 35

6.3 Transfer Learning . 36

7 Conclusions 37
7.1 Findings . 37
7.2 Answering the Research Question 38
7.3 Evaluation . 38
7.4 Future Work . 39

Bibliography 40

A Appendix 44
A.1 Mapping gene essentiality to reaction essentiality 44

v

Acronyms

E. coli Escherichia coli. iv, 2–4, 7, 8, 10–12, 14–16, 33, 35, 37, 38

iML1515 Escherichia coli iML1515 metabolic model. iv, v, 2, 3, 8, 11, 12, 14–16, 19,
31–33, 35–39, 44

COBRA Constraint-Based Reconstruction and Analysis. 3, 8

CV Cross-Validation. 23–26, 28, 29, 33

FBA Flux Balance Analysis. i, iv, 5, 6, 9, 37

GPR Gene-Protein-Reaction. iv, 2, 7, 8, 14, 15, 44

GSMM Genome-Scale Metabolic Model. 4, 5, 7, 8

MFG Mass Flow Graph. 3, 6, 9, 18, 31, 37, 38

ML machine learning. 11

PCA Principal Component Analysis. 19, 20, 26

PR curve Precision-Recall curve. 22, 25–27, 36

ReFeX Recursive Feature eXtraction. 12–14, 23–25, 31

RF Random Forest. 9

SPCA Sparse Principal Component Analysis. 19, 20, 26

SVC c-Support Vector Machine. 18, 19

vi

Chapter 1

Introduction

1.1 Project Description

The identification of essential genes is a fundamental problem in systems biology.
Because of the high cost associated with experimental studies of gene essentiality,
computational methods are widely used. The most prominent approach is Flux Balance
Analysis (FBA) which has been able to accurately predict essentiality in a variety of
cells. However, this method has important limitations as it assumes that organisms are
optimised for maximal growth in every genetic state. Recent work has recognised the
potential of combining machine learning methods with FBA to overcome this issue
(Aromolaran et al., 2021).

In this project, we explore whether simple machine learning algorithms can predict
metabolic essentiality using structural features extracted from metabolic graphs. More
specifically, we utilise the novel Mass Flow Graph algorithm to generate graphs from
metabolic networks and approach essentiality prediction as binary classification task on
graph node features. In the first part of this project, we developed a machine learning
pipeline to predict essentiality values obtained from FBA simulations. Our method
achieved promising results with a binary prediction accuracy of 89.9%. However, the
essentiality labels stem from FBA simulations, so even a perfect classifier could predict
essentiality only as well as FBA. In this project, we adapt our method to use measured
data from gene essentiality studies and aim to thereby overcome the issues related to
using FBA values.

1.2 Motivation

A gene is considered essential if it is required for the survival of a cell or an organism
(Rancati et al., 2018). Essential genes play a fundamental role in metabolic engineering,
where key metabolic genes are added or deleted to redirect metabolic fluxes towards
desired end products, and for therapeutic applications, where essential genes are known
to represent current and potential novel drug targets (Rancati et al., 2018).

Identifying such essential genes typically requires genome-wide screening using high-

1

Chapter 1. Introduction 2

throughput techniques such as RNAi or CRISPR-Cas9 (Rancati et al., 2018). However,
such screens are labour-intensive and are associated with very high costs (Lu et al.,
2014). Consequently, computational methods have been developed to predict essential
genes and minimize the resources required for essentiality assays (Aromolaran et al.,
2021; Lu et al., 2014).

Cell metabolism can be computationally represented by metabolic networks which
comprise of a set of metabolites intertwined by biochemical reactions. The most popular
method for the computational study of gene essentiality is Flux Balance Analysis
(FBA) which computes genome-wide metabolic flux distributions from a genome-
scale metabolic network (Orth et al., 2010). FBA enables simulating the cell under
different genetic and environmental conditions based on the assumption that evolution
has optimised cells for a certain metabolic task, typically maximal growth. This allows
large-scale simulations of gene deletions which have been found to accurately predict
gene essentiality in simple organisms (Monk et al., 2017). However, the validity of this
assumption of optimality is not clear. In particular, the deactivation of specific genes
might shift the goal of an organism to focus on survival rather than optimal growth
(Montezano et al., 2015).

To overcome this issue, we explore whether machine learning models can predict
essentiality using graph features derived from the genome-scale metabolic network of
the wild-type cell. The wild type of an organism is its natural form without any gene
deletions. More specifically, we use binary classifiers on structural features extracted
from Mass Flow Graphs (MFGs) to predict gene essentiality. MFGs are reaction-based
metabolic graphs that take the biological and environmental context of the cell into
account (Beguerisse-Dı́az et al., 2018). They are computed from the metabolic network
and the wild-type FBA solution and therefore only assume that cells aim to maximise
growth in their native state.

First, we present an algorithm that maps gene essentiality data to reaction essentiality
labels, as MFGs are reaction-centric and nodes features are therefore reaction features.
Then, we create a small dataset of reaction nodes and their essentiality labels, utilising
data from experimental gene essentiality studies conducted on Escherichia coli (Monk
et al., 2017); this dataset was used to train and validate our classification algorithms.

1.3 Research Question

This project investigates the following research question:

Can classification algorithms predict the biological essentiality of metabolic
genes using graphs derived from wild-type flux vectors?

For this purpose, we develop an algorithm to map metabolic essentiality measurements
from the gene-space to the reaction-space based on Boolean Gene-Protein-Reaction
relationships included within genome-scale metabolic networks. With this algorithm,
we compute the essentiality of the metabolic reactions in the most complete metabolic
reconstruction of Escherichia coli, iML1515 (Monk et al., 2017). We then compute the
MFG of iML1515 and explore whether binary classifiers can predict reaction essentiality

Chapter 1. Introduction 3

using node features extracted from this graph.

1.4 Achievements

Here, the main achievements of this project are summarised.

1. Developed MFGpy, a python package for the automatic generation, analysis and
visualisation of MFGs from a COBRA model. This included implementing the
theoretical algorithm proposed by Beguerisse-Dı́az et al. (2018).

2. Simulated cells according to biological scenarios from wet lab experiments.
Reproduced published essentiality data to verify the model.

3. Developed an algorithm to translate measurements of gene essentiality to reaction
essentiality.

4. Created a small dataset of reactions in the MFG of the bacterium Escherichia coli,
computed from its metabolic reconstruction iML1515, and the corresponding
essentiality labels.

5. Developed a machine learning (ML) pipeline for metabolic essentiality prediction.

6. Conducted a series of experiments applying the ML pipeline to our dataset.

(a) Compared a selection of feature sets, different methods for preprocessing
of features, and an array of machine learning models for binary essentiality
prediction.

(b) Performed hyperparameter tuning on the most promising models after the
initial experiments.

(c) Evaluated the final models on a held-out test set of reactions. The best
classifiers achieved a predictive performance close to FBA.

7. Compiled the results of our experiments into a paper which was submitted for
publication in the Proceedings of the 9th International Conference on the Founda-
tions of Systems Biology in Engineering (FOSBE 2022). A preprint is available
at https://www.biorxiv.org/content/10.1101/2022.03.31.486520v1.

Chapter 2

Background

This chapter provides a literature review of the methods applied to analyse metabolic
networks using machine learning. First, we introduce computational models of cell
metabolism and define gene essentiality. Then, the model organism Escherichia coli
used in our experiments is briefly introduced. Finally, we provide an overview of
previous work using machine learning for essentiality prediction, both in the literature
part one of this project.

2.1 Computational analysis of cell metabolism

The analysis of cell metabolism in biological experiments involves expensive and
time-consuming technologies (Dong et al., 2018). This has motivated the development
of a wide array of computational methods. Here, we introduce the core concepts of
constraint-based modelling of metabolic networks.

2.1.1 Genome-Scale Metabolic Models

Genome-scale metabolic models (GSMMs) computationally describe the metabolism
of an organism. A metabolic network that contains n metabolites and m reactions is
defined as:

R j :
n

∑
i=1

αi jXi ⇋
n

∑
i=1

βi jXi, j = 1, ...,m, (2.1)

where αi j and βi j are the stoichiometric coefficients of metabolite Xi in reaction R j.
This means, R j consumes αi j and produces βi j molecules of metabolite Xi when it takes
place. The stoichiometric coefficients can be compiled into the n×m stoichiometric
matrix S such that each entry Si j = βi j−αi j denotes the total number of Xi molecules
produced (Si j > 0) or consumed (Si j < 0) by reaction R j (Figure 2.1a, b).

Fundamental for GSMMs is the identification and mathematical definition of constraints
as upper and lower flux bounds of reactions (Terzer et al., 2009). They constrain the
availability of nutrients and other metabolites to define realistic metabolic behaviour
(Hameri et al., 2019).

4

Chapter 2. Background 5

2.1.2 Flux Balance Analysis

Flux Balance Analysis (FBA) is the most widespread computational method for analysing
cell metabolism (Beguerisse-Dı́az et al., 2018). It is a linear programming algorithm
that computes a cell’s optimal flux distribution at steady state; the flux distribution
defines the cell phenotype (Orth et al., 2010).

The input is a genome-scale metabolic network (Figure 2.1a). A linear system of
equations is derived from its stoichiometric matrix S and upper and lower bounds on
reaction fluxes (Figure 2.1b, c). Additionally, the cell objective function Z is defined
(Figure 2.1d) which encodes the cell’s biological goal. This is based on the assumption
that cell metabolism is optimised to achieve maximal growth. Using linear programming,
FBA finds the solution vector v∗ to the following constrained optimisation problem:

maximise: Z = c⊤v

subject to

{
dx
dt = Sv = 0
vlb ≤ v≤ vub,

(2.2)

where c encodes the cell objective function and vlb and vub are vectors containing the
lower and upper bounds on reaction fluxes, respectively (Figure 2.1e). Researchers
can use FBA to simulate cells under different environmental and genetic conditions by
altering the reaction flux bounds (Orth et al., 2010).

A

A ↔ B + C
B + 2C → D

Reaction 1
Reaction 2
…
Reaction m

C −v! +
				v! − 		v" +
				v! − 2v" +

… = 0
… = 0
… = 0

 etc.

D Objective:
maximise / = v#$%&'((

B Reactions
 1 2 … m
 A
 B ∗ = 0
 …
 n

 Stoichiometric matrix, S Fluxes, v

E

M
et

ab
ol

ite
s v!

v"
…
v&

solution space
defined by
constraints

point of
optimal v

Z

Figure 2.1: Formulation of an FBA problem. (A) A genome-scale metabolic network is
reconstructed. (B) Metabolic reactions and constraints are mathematically represented.
(C) A set of linear equations is defined by the mass balance (Sv = 0). (D) An objective
function Z is defined. (E) Fluxes that maximise Z are calculated. Figure adapted from
(Orth et al., 2010).

2.1.3 Mass Flow Graphs

Researchers have analysed the structural properties of metabolic networks by apply-
ing tools from graph theory to graphs derived from GSMMs (Beguerisse-Dı́az et al.,

Chapter 2. Background 6

2018). Beguerisse-Diaz et al. developed an algorithm for deriving flux-based, weighted
digraphs from metabolic networks called Mass Flow Graphs (MFGs). The nodes in an
MFG are reactions which have edges between them if they share metabolites.

A cell’s MFG is derived from its stoichiometric matrix S and an FBA solution vector v∗
(Figure 2.2). By incorporating the FBA solution into the graph structure, MFGs account
for environmental conditions and genetic perturbations (Beguerisse-Dı́az et al., 2018).

𝑋! 𝑋" 𝑋#

𝑋$

𝑅! 𝑅" 𝑅#

𝑅$ 𝑅%

𝑅&

FBA solution: 𝐯∗

𝑅!

𝑅#

𝑅$

𝑅"

𝑅&

𝑅%

𝑅(

Mass Flow Graph 𝐌 𝐯∗

Figure 2.2: Derivation of Mass Flow Graphs from an FBA solution of a metabolic network.

To compute the MFG, v∗ is unfolded into a vector containing the reaction rates of 2m
forward and reverse reactions:

v∗2m =

[
v∗+
v∗−

]
=

1
2

[
abs(v∗)+v∗
abs(v∗)−v∗

]
. (2.3)

Similarly, S is unfolded as:

S2m = [S−S]
[

Im 0
0 diag(r)

]
,

where r is the m-dimensional reversibility vector such that r j = 1 if reaction R j is
reversible and r j = 0, otherwise. The m×m matrix diag(r) contains r in its main
diagonal.

This is used to define production and consumption stoichiometric matrices as:

Production: S+
2m =

1
2
(abs(S2m)+S2m)

Consumption: S−2m =
1
2
(abs(S2m)−S2m).

(2.4)

Next, the vector of production and consumption fluxes is computed as:

j(v∗) = S+
2mv∗2m = S−2mv∗2m (2.5)

where ji(v∗) is the flux at which metabolite Xi is produced and consumed. S+
2mv∗2m and

S−2mv∗2m are equal due to the steady state condition.

Finally, the adjacency matrix of the MFG is computed as:

M(v∗) = (S+
2mV∗)⊤J†

v(S
−
2mV∗), (2.6)

where V∗ = diag(v∗2m), Jv = diag(j(v∗)) and † denotes the matrix pseudoinverse.

Chapter 2. Background 7

2.1.4 Gene-Protein-Reaction Rules

In addition to the stoichiometric matrix, GSMMs define the relationship between genes,
proteins and reactions via logical rules, the Gene-Protein-Reaction (GPR) rules (Cardoso
et al., 2012). As shown in Figure 2.3, GPRs provide an explicit connection between
genotype and phenotype, linking the gene to the protein that catalyses a reaction in the
network (Monk et al., 2017).

&

Reaction GAPDReaction SUCD1i SUCD4

&

Gene b1779 b1416 b1417Gene b0721 b0722 b0723 b0724

Gene b0721 b0722 b0723 b0724

Peptide sdhC sdhD sdhA sdhB

&

Reaction SUCD1i SUCD4 Reaction GAPD

Gene b1779 b1416 b1417

Peptide gapC2 gapC1gapA

&

Protein Sdh GapCGapAProtein

Gene-Protein-Reaction Rules

SUCD4 b0721 b0722 b0723 b0724AND AND AND=
b0721 b0722 b0723 b0724AND AND ANDSUCD1i =

GAPD b1779 b1416 b1417AND()= OR

A B

C

Figure 2.3: Illustration of two Gene-Protein-Reaction (GPR) rules in Escherichia
coli. (A) The Sdh enzyme is built from 4 peptides and catalyses the two reactions
SUCD4 and SUCD1i. (B) GAPD reaction is catalysed by two proteins (GapA and GapC);
GapC is composed of two peptides encoded by distinct genes. (C) The resulting GPR
rules. Figure adapted from Cardoso et al. (2012).

Including GPR rules within GSMMs is essential to enable predicting the cell phenotype
under different genetic conditions, e.g., due to gene knockouts; these predictions are
fundamental for gene essentiality studies (Cardoso et al., 2012).

Chapter 2. Background 8

2.1.5 Gene Essentiality

The essentiality of a gene describes how its knockout, the deactivation of that gene,
affects the growth of a biological cell or organism. It is typically computed from growth
rate measurements obtained from in vitro experiments. Given the growth rate of the
wild type - the cell in its natural form without any gene deletions - gWT , and the growth
rate after the knockout of gene i, gi, the essentiality of gene i is defined as:

ei = 1− gi

gWT
. (2.7)

By this definition, a gene has an essentiality of 1 if its knockout leads to the death of
the cell, and an essentiality of 0 if it does not affect the cell’s growth rate.

Most genes have an essentiality close to 0 or 1, so essentiality values are typically
binarised (Bartha et al., 2018) yielding essentiality class labels:

yi =

{
0, if ei < 0.5
1, otherwise.

(2.8)

2.1.6 COBRApy

Becker et al. developed the COBRA toolbox, a leading software package provid-
ing methods for constraint-based generation and analysis of GSMMs in MATLAB
(Becker et al., 2007). Based on the COBRA toolbox, Ebrahim et al. presented CO-
BRA for Python (COBRApy), an object-oriented framework providing methods for
constraint-based generation and analysis of GSMMs (Ebrahim et al., 2013). It was
developed as part of the openCOBRA project, a community project aiming to improve
the accessibility of and promote constraint-based research by making software freely
available.

2.2 Escherichia coli model iML1515

The microorganism Escherichia coli (E. coli) can be found in the intestine of humans
and other mammals (Kaper et al., 2004). It is the best characterised bacterial species;
it was one of the first bacteria to have its complete genome decoded and has been the
focus of numerous genomic studies (Sahl et al., 2013; Monk et al., 2017).

The findings of such studies have been used to develop iML1515, the most complete
genome-scale reconstruction of E. coli’s metabolic network to date (Monk et al., 2017).
It includes the most up-to-date set of characterised genes and metabolic reactions for E.
coli, as well as the corresponding Gene-Protein-Reaction relationships. iML1515 has
been used to build models of E. coli and predict their metabolic capabilities; it has been
extensively validated and customized for the use in different growth conditions (Monk
et al., 2017).

Chapter 2. Background 9

2.3 Machine learning for essentiality prediction

The potential of machine learning to complement constraint-based computational and
experimental methods to minimise resources required for essentiality assays has been
established (Zampieri et al., 2019). Early studies combining machine learning with
FBA predictions utilised an array of features on top of predicted fluxes to improve
essentiality predictions (Plaimas et al., 2010). Chen and Xu (2005) first applied machine
learning methods to essentiality prediction; they used neural networks and support
vector machines on high-throughput data to predict protein dispensability in yeast.
Since then, several studies have used machine learning on computational models of cell
metabolism and have shown promising predictive capabilities (Yuan et al., 2012; Guo
et al., 2017; Dong et al., 2018).

Nonetheless, current studies still have important limitations. Aromolaran et al. (2021)
identified the lack of data relevant for essentiality prediction as a major limiting factor.
Further key issues are finding features that are relevant for essentiality prediction,
improving generalisability of models across organisms, and retrieving biologically
accurate essentiality measurements to use as training data (Aromolaran et al., 2021).

2.4 Previous work carried out

The first part of this project focused on predicting the FBA essentiality of reactions in
cancer cells. A key contribution was the development of MFGpy, a Python package
automating the generation of MFGs from COBRA models. Here, MFGpy is introduced
alongside core findings that are relevant for this year’s project.

2.4.1 MFGpy

In MFGpy, we implemented the novel MFG algorithm using COBRApy methods for
constraint-based modelling. It contains the MFG class which provides methods to
analyse, visualise, cluster and export the MFG. Importantly, after generating the MFG
this package enables exporting its adjacency matrix as NumPy file or the nodes and
edges tables as CSV files to be used for experiments and further analysis.

2.4.2 Year 1: Predicting FBA Essentiality

The focus of last year’s work was essentiality classification of reactions in cancer cell
lines based on structural features of MFGs. The MFGs were computed using MFGpy
and the essentiality classes originated from FBA simulations. Multiple classification
algorithms were compared; the best performance was achieved by a Random Forest
which had a binary prediction accuracy of 89.9%. Our results showed that classification
algorithms can accurately predict FBA reaction essentiality.

Chapter 2. Background 10

2.4.3 Year 2: Predicting Measured Essentiality

This year, we extended our analysis to the prediction of measured essentiality values by
training classification algorithms on reaction essentiality data gathered from biological
experiments. This was approached analogous to FBA essentiality prediction using gene
essentiality data of E. coli (Monk et al., 2017).

Chapter 3

Data

A dataset of reactions in an MFG and their essentiality labels was required to train a
supervised machine learning model to predict reaction essentiality. This dataset had to
be manually constructed.

We utilised the iML1515 E. coli model to create our dataset. Monk et al. (2017) provide
the gene essentiality values that were used to design and validate iML1515 together with
the model. We computed the MFG of E. coli in the conditions matching the essentiality
studies and extracted reaction-node features. Then, we translated gene essentiality
measurements to reaction essentiality. The details of collection, labelling and dataset
analysis are discussed in this chapter.

3.1 Mass flow graph of iML1515

The objective of this project was to use biological essentiality measurements for training
classification algorithms instead of the previously used FBA essentiality predictions. We
therefore had to focus our analyses on an organism that has been the focus of extensive
gene essentiality studies; E. coli satisfies this requirement.

Monk et al. provide iML1515, the metabolic reconstruction of E. coli K-12 MG1655.
Alongside the model, they provide in vitro gene essentiality measurements obtained
from studying E. coli cells of the K-12 BW25113 strain. For our experiments, we used
cell measurements with glucose as primary carbon source.

To train ML models to predict reaction essentiality labels inferred from the gene
essentiality measurements, the computational E. coli model must match the cells that
were investigated experimentally. We therefore had to adjust the constraints on iML1515
accordingly. K-12 BW25113 lacks several genes that are present in K-12 MG1655:
araBAD, rhaBAD, and lacZ (Monk et al., 2017), so we set the upper and lower flux
bounds of the associated reactions to zero. The cells were growing aerobically, so we
adjusted the oxygen exchange reaction bounds to simulate aerobic growth. Glucose was
used as primary carbon source and, hence, the glucose uptake reaction bounds were
adjusted appropriately. The updated bounds are summarised in Table 3.1.

11

Chapter 3. Data 12

Reactions Adjusted bounds

L-arabinose isomerase (ARAI),
L-ribulokinase (RBK L1),

Rhamnulose-1-phosphate aldolase (RMPA),
Lyxose isomerase (LYXI), lb = ub = 0

L-rhamnose isomerase (RMI),
Rhamnulokinase (RMK), and

B-galactosidase (LACZ)

Oxygen exchange (EX o2 e) lb =−20

Glucose uptake (EX glc D e) lb =−10

Table 3.1: The adjusted lower bounds (lb) and upper bounds (ub) on reaction flux in
iML1515 to simulate aerobic cell growth using glucose as primary carbon source.

We calculated the FBA solution vector of the resulting model. Then, we used MFGpy
to compute the corresponding MFG which contains 444 reactions (Figure 3.1).

Figure 3.1: Mass flow graph of the iML1515 metabolic model of E. coli with glucose as
primary carbon source.

3.2 Feature Extraction

We extracted three distinct feature sets from the MFG of iML1515, adjacency features,
ReFeX features, and Flow Profiles, and investigated their suitability for essentiality
prediction.

Chapter 3. Data 13

3.2.1 Adjacency Features

We obtain the first set of reaction features from the MFG adjacency matrix M, as defined
in Equation 2.6. Reactions that are not in the MFG do not contribute to the optimal
FBA solution and thus are non-essential.1 Their corresponding rows and columns in M
only contain zeros. Hence, they are removed from M for classification. Mk denotes the
resulting k× k matrix where k is the number of nodes in the MFG.

The rows in Mk correspond to the outgoing edges and the columns to the incoming
edges of each node. To consider both incoming and outgoing fluxes for each reaction,
we concatenate Mk and its transpose. We obtain the k×2k node-feature matrix:

XM = [Mk M⊤k], (3.1)

where row j of X contains first the outgoing and then the incoming edges to reaction R j.

3.2.2 Recursive Feature Extractor

The Recursive Feature eXtraction algorithm (ReFeX) recursively computes regional
features of nodes. To initialise the algorithm, neighbourhood features are computed
which consist of local and egonet features. A node’s egonet consists of node itself, all of
its neighbours, and all edges within this set of nodes; ReFeX additionally considers the
incoming and outgoing edges to the egonet (Figure 3.2). Local features are measures of
node degree. For a weighted, digraph, they include weighted in-, out- and total degree;
egonet features consist of the weighted, directed number of edges within, entering and
leaving the egonet.

	

egonet of 𝑣!

	𝑣!

Figure 3.2: Visualisation of a node’s egonet. The egonet of v1 consists of the node
itself (blue), the node’s neighbours and all edges within this group (orange). In addition,
ReFeX considers incoming and outgoing edges to the egonet (green).

The initial features are recursively combined into regional features using two operations:
means and sums. More specifically, ReFeX computes weighted means and sums of all
feature values in a node’s egonet, for incoming and outgoing edges separately.

1Knocking out reactions forces their flux to be zero. Reactions that are not in the MFG already
have zero flux in the wild-type cell, so their knockout does not impact cell growth meaning they are, by
definition, non-essential.

Chapter 3. Data 14

There is an infinite number of possible recursive features, so ReFeX prunes features
that do not add any additional information to the set of already computed features. The
feature values are mapped to small integers using logarithmic binning. Features are
considered duplicate if they are within a fixed range of each other for every node in the
network. An undirected graph is constructed with features as nodes that have edges
between them if they are duplicate. Then, every connected component in the feature
graph is replaced by the node of its feature that was generated with the smallest number
of recursions. The algorithm halts once it reaches an iteration in which no new features
are kept after pruning. The features which are in the final pruned graph are used to
construct the feature vector of each node.

We compute ReFeX features utilising Kaslovsky’s implementation of the recursive
feature extraction algorithm and assemble them in the k× f feature matrix:

XReFeX =

x1,ReFeX
...

xN,ReFeX

 (3.2)

3.2.3 Flow Profiles

An alternative approach to node feature extraction from digraphs was presented by
Cooper and Barahona (2010) who compute flow profiles of nodes. A node’s flow profile
is defined by the overall pattern of incoming and outgoing fluxes. The matrix of flow
profiles XFP is computed from the MFG adjacency matrix M as:

XFP =

x1,FP
...

xN,FP

≡ [
· · ·(βMT)k1 · · · | · · ·(βM)k1 · · ·

]
for k = 1,2, ..., (3.3)

with β = α/λ1, where λ1 is the largest eigenvalue of A and α is a scale factor between
0 and 1 that controls the weighting of the local against the global flow structure of the
graph. For α→ 0 only paths of length 1 are taken into account, so the flow profiles
measure a node’s in- and out-degree. For α→ 1, the weight assigned to longer paths
increases and the flow profiles increasingly take global flows into account.

3.3 Essentiality labels

Monk et al. (2017) provide gene essentiality measurements for E. coli K-12 BW25113
in different environmental conditions. As MFGs have reactions as nodes, we had to
translate gene essentiality to reaction essentiality using the Gene-Protein-Reaction
(GPR) rules included in the iML1515 E. coli model. The GPR rules provide a formal
connection that links genes to their corresponding proteins and the reactions they
catalyse (Monk et al., 2017). Hence, they enable mapping data from the gene-space to
the reaction-space.

Chapter 3. Data 15

iML1515 provides the most up-to-date set of characterised genes and metabolic reac-
tions for E. coli. It contains 1516 genes and 2712 reactions; essentiality measurements
are available for 1502 of the genes (Monk et al., 2017).

3.3.1 Algorithm for gene to reaction essentiality mapping

We analysed the GPR rules of iML1515 to find reaction knockouts that have a one-to-one
mapping to a gene knockout under the following assumption:

Assumption 1 If the knockout of gene G deactivates exactly one reaction R j, the
essentiality of R j corresponds to the measured essentiality of G: eG = eR j

.

This assumption formalises the following intuition: a gene knockout that deactivates a
single reaction whilst all other reactions in the cell can still take place is equivalent to
the knockout of that single reaction. Therefore, the cell growth rate after the knockout
of G is equivalent to the growth rate after the knockout of R j, we have gG = gR j

. As the

essentiality of a gene or reaction U is defined as eU = 1− gU
gWT

we have:

eG = 1− gG

gWT

= 1−
gR j

gWT

= eR j
(3.4)

The set of reactions with a one-to-one mapping to a gene knockout were computed from
the GPR rules. Out of the 444 reactions in the MFG of iML1515, only 155 reactions
had a one-to-one knockout mapping to a gene (Figure 3.3). We therefore only obtain
essentiality labels for 155 reactions when using one-to-one mappings only. To maximise
the number of labelled reactions, we made the following second assumption:

Assumption 2 The essentiality of reaction R j corresponds to the measured essentiality
of gene G if the knockout of G deactivates R j. This holds even if there exists a reaction
Rl ̸= R j which is also deactivated by the knockout of G.

We could increase the number essentiality labels obtained from the measurement data
for reactions in the MFG to 255 when using this assumption (Figure 3.3). Hence, the
advantage from using this assumption (increasing the size of our dataset by a factor of
1.65) outweighs the potential approximation error that arises. This assumption is not
entirely accurate and can lead to labelling too many reactions as essential: (i) a reaction
that is not essential but is knocked-out by the same single-gene knockout as a different,
essential reaction, or (ii) a set of reactions which are not essential individually but are
essential as a group and are knocked out by the same single-gene knockout. However,
since we can only up/down-regulate metabolic genes and are unable to target individual
reactions, the individual essentiality of reactions that can only be deactivated as a group
is unclear.

Reactions that cannot be deactivated by the knockout of a single gene were excluded
from model training because their essentiality labels cannot be inferred from the avail-
able growth data.

We obtain a small dataset of 255 reactions in the MFG with measured essentiality
labels. The limited size is caused by the number of reactions in the MFG (only 444)

Chapter 3. Data 16

Genes Reactions 1-to-1 1-to-X
0

500

1000

1500

2000

2500

C
ou

nt 1516

2712

444 524

155

1276

255

iML1515
mass flow graph

Figure 3.3: Reaction and gene counts in iML1515. From left to right, we show the
total number of genes, the total number of reactions, the number of reactions which
are deactivated by single-gene knockouts that do not deactivate any other reactions
(”1-to-1”) and that deactivate one or more reactions (”1-to-X”).

as well as the number of reactions whose essentiality cannot be measured via single
gene knockouts. Nonetheless, this dataset is sufficient for our experiments which act as
a proof of concept. Pseudocode for the algorithm is included in the Appendix.

3.4 Essentiality Analysis

We conducted a first analysis of the essentiality distribution in the dataset. As shown in
Fig. 3.4, around 75% of labelled reactions in the MFG are essential. Only 23 reactions
(9%) have an essentiality between 0.1 and 0.9. This supports the claim that essentiality
prediction can be approached as binary classification problem.

0 50 100 150 200 250
Reaction

0.0

0.2

0.4

0.6

0.8

1.0

Es
se

nt
ia

lit
y

Non-Essential

Essential

MFG Reaction Essentialities

Figure 3.4: Measured essentiality of all reactions in the MFG of the K-12 BW25113 E.
coli strain. The MFG was computed using the iML1515 E. coli model.

Chapter 4

Methodology

In this chapter, we present the methodology used for training binary classifiers to
predict reaction essentiality based on structural features extracted from MFGs. First,
we provide an overview of the machine learning pipeline. Then, we introduce the
four classification algorithms we used in our experiments. Next, we discuss the data
preprocessing methods that were investigated. Finally, we present the evaluation metrics
used to quantitatively assess and compare the performance of different classification
models.

4.1 Overview

We train binary classifiers to predict reaction essentiality labels from MFG reaction node
features An overview of the machine learning pipeline is depicted in Figure 4.1. Starting
with an MFG adjacency matrix M, we extract node feature matrices (Section 3.2) and
apply preprocessing steps (Section 4.3). The resulting feature matrix is provided as input
to classification algorithms, together with the essentiality class labels computed from
gene essentiality measurements (Section 3.3). Finally, we performed hyperparameter
optimisation (Section 4.4).

𝐲

𝐗𝐌

Feature
Extraction

Hyperparameter Optimisation

Figure 4.1: Training binary classification algorithms on Mass Flow Graphs. From the
adjacency matrix of a Mass Flow Graph M, the node-feature matrix X is computed. Binary
classifiers are trained using X and measured essentiality labels y. For hyperparameter
optimisation, different performance metrics are tracked, focusing on precision and recall.

17

Chapter 4. Methodology 18

4.2 Binary classification

In a binary classification problem, a set of elements is divided into two classes. Given
an element from this set, a classification algorithm (or classifier) assigns a class label
according to the element’s features and classification rules (Larrañaga et al., 2006).

Supervised classification algorithms automatically learn these classification rules from
a set of labelled samples, the training set:

D = {(x(1),y(1)),(x(2),y(2)), ...,(x(J),y(J))}, (4.1)

which contains a d-dimensional feature vector x(j) ∈ R d and a class label y(j) ∈ {0,1}
for each sample j.

The feature vectors and labels are assembled in a feature matrix X and a vector of class
labels y:

X = [x(1),x(2), ...,x(J)]⊤,

y = [y(1),y(2), ...,y(J)]⊤,
(4.2)

which are provided to the classifiers to learn the classification rules. Afterwards, it
can assign labels to new instances according to their feature vectors. Given a new
element’s feature vector x, it predicts the corresponding class label ŷ based on the
learned classification rules.

Various supervised classification algorithms exist; which algorithm is most suitable
for a given task depends significantly on the characteristics of the dataset at hand.
We experimentally explored the suitability of four standard classification algorithms,
Random Forests, Logistic Regression, Multilayer Perceptron, and Support Vector
Machine, for essentiality prediction from MFG features.

Random Forest (RF) is an ensemble method that trains a collection of decision trees
individually, on a random subset of the training data. To classify a given example, each
tree predicts its class and the RF outputs the most popular prediction.

Logistic Regression uses a logistic sigmoid function as transformation to linear output
labels to model a binary output variable (Dreiseitl and Ohno-Machado, 2002). The
resulting outputs are between 0 and 1 and are interpreted as the probability of a sample
to be in class 1. Maximum likelihood estimation is used to find weights that maximise
the probability of the data (Dreiseitl and Ohno-Machado, 2002).

Multilayer Perceptrons (MLP) use feedforward neural networks to learn classification
rules; they are universal function approximators and are thus able to learn non-linear
models (Kotsiantis, 2007).

c-Support Vector Machines (SVC) find a hyperplane which separates the two classes
in the feature space (Kotsiantis, 2007). They aim to maximise the margin that separates
the classes which reduces the risk of false classification. SVCs are memory efficient and
versatile classifiers which can be used for binary as well as multi-class classification.

Chapter 4. Methodology 19

4.3 Preprocessing

4.3.1 Standardisation

Classification models, especially distance-based classifiers such as SVCs, are negatively
impacted by differently scaled dimensions in the data. They aim to maximise the
distance between the separating plane and the support vectors; if features have different
scales, features with large values will dominate over smaller features when calculating
the distance. Prior to training such models, the dataset thus has to be standardised.

To standardise the feature matrix, the mean and standard deviation of each feature
dimension is computed from the training samples. These values are used to compute
standardised features as:

x̃i j =
xi j−µ j

σ j
, (4.3)

where xi j is the entry in the ith column and the jth row of X and µ j and σ j are the mean
and standard deviation of column i in the training set.

If the matrix that is standardised is sparse, the mean is not subtracted to prevent
destroying the sparsity structure (Zheng and Casari, 2018). Instead, features are scaled
to unit standard deviation only:

x̃i j, (sparse) =
xi j

σ j
. (4.4)

Besides improving the performance of classifiers, standardisation is a prerequisite for
using dimensionality reduction techniques such as PCA. Tree-based models, however,
do not require standardisation as they find partition rules that best split the feature space
which is independent of feature scaling.

4.3.2 Dimensionality Reduction

The adjacency feature matrix XM is of shape k×2k and thus high-dimensional (Section
3.2.1). Further, the matrix is sparse; only 7% of the entries in the adjacency feature
matrix of the iML1515 MFG are nonzero. The number of trainable parameters in
classification algorithms rises with the dimensionality of the input data. To avoid
training unnecessarily complex models, we attempt to reduce the dimensionality of
the input features. Each column has at least one non-zero entry, so we are not able to
simply remove columns from the input matrix.

We therefore investigate the effects of adding dimensionality reduction, more specifically
Principal Component Analysis and Sparse Principal Component Analysis, to the ML
pipeline. The benefit would be a significant reduction in problem size which would be
especially useful because of the small amount of data available for model training.

4.3.2.1 Principal Component Analysis

Principal component analysis (PCA) is a method for linear dimensionality reduction
that minimises information loss and increases the interpretability of the data (Jolliffe
and Cadima, 2016).

Chapter 4. Methodology 20

To compute the principal components of X we first compute its covariance matrix A as:

A = cov(X,X) =
1

n−1

n

∑
i=1

(xi− x̄)(xi− x̄)⊤. (4.5)

The principal components are the eigenvectors of this covariance matrix, so they are the
vectors v that solve the following equation:

A ·v = λ ·v, (4.6)

where λ is the corresponding eigenvalue.

The eigenvectors are sorted by their eigenvalues, as they correspond to the amount
of variation that samples show along the direction of the eigenvector. To reduce
the dimensionality of X to q, we therefore select the eigenvectors with the q largest
eigenvalues.

Using PCA to reduce the dimensionality of X, we obtain:

XPCAq = PCAq(X), (4.7)

where q denotes the number of principal components that are kept and therefore the
dimensionality of XPCAq . It has to be chosen manually which is a trade-off between
minimising dimensionality and minimising information loss (Jolliffe and Cadima, 2016).

4.3.2.2 Sparse Principal Component Analysis

Regular PCA suffers from the restriction that each principal component is a linear
combination of all other variables which makes interpreting the derived components
as new features difficult (Zou and Xue, 2018). Sparse variants of PCA have been
developed to overcome this issue.

Zou et al. (2006) introduced Sparse Principal Component Analysis (SPCA), the first
computationally efficient algorithm for computing sparse principal components. In
SPCA, components are computed using the following regression formulation:

(U∗,V ∗) = arg minU,V
1
2
||X−UV ||2Fro +α||V ||1,1

subject to ||Uk||2 <= 1 for all 0≤ k < q,
(4.8)

where || · ||Fro is the Frobenius norm, || · ||1,1 is the entry-wise matrix norm which is the
sum of the absolute values of all the entries in the matrix, and q denotes the number
of sparse components that are used (Pedregosa et al., 2011). Including the entry-wise
matrix norm of V in the loss term induces sparsity in the derived components and
prevents learning components from noise when a small number of training samples
is available (Pedregosa et al., 2011). The hyperparameter α controls the sparsity;
small values lead to a gently regularized factorization, while larger values shrink many
coefficients to zero.

We use SPCA to reduce the dimensionality of X and obtain:

XSPCAq = SPCAq(X). (4.9)

Chapter 4. Methodology 21

4.4 Evaluation metrics

A binary classifier labels examples as either positive or negative. In this project,
the examples are reactions that are labelled as essential (positive, class label 1) or
non-essential (negative, class-label 0). The decisions made by the classifier can be
represented as confusion matrix (Figure 4.2) which has the following four categories:

1. True Positives (TP): essential reactions correctly labelled as essential,
2. False Positives (FP): non-essential reactions incorrectly labelled as essential,
3. True Negatives (TN): non-essential reactions correctly labelled as non-essential,
4. False Negatives (FN): essential reactions incorrectly labelled as non-essential.

Figure 4.2: Confusion matrix for binary essentiality prediction.

Performance metrics need to be defined to assess classification performance. Our dataset
contains an unbalanced number of essential and non-essential reactions (25% / 75%
split). Overall classification accuracy therefore does not contain sufficient information
to evaluate classification performance. Instead, we use performance metrics based on
the confusion matrix and the precision-recall curve for evaluation.

Performance was quantified using accuracy, precision, recall (true positive rate, TPR),
specificity (true negative rate, TNR) and the F1 Score:

accuracy = (TP + TN) / k
precision = TP / (TP + FP)

recall (TPR) = TP / (TP + FN)
specificity (TNR) = TN / (TN + FP)

F1 Score =
2 ·precision · recall
precision+ recall

.

(4.10)

In addition, we compute the macro-averaged F1 (Macro-F1) score which is the arith-
metic mean of the F1 scores of the positive and negative class. Therefore, it prevents
neglecting the classification performance on non-essential reactions, the minority class.

4.4.1 Normalised confusion matrix

Because of the significant imbalance of non-essential to essential reactions, used the
normalised confusion matrix to evaluated classification performance (Figure 4.3). It
contains the entries of a standard confusion matrix (TP, FP, TN, FN) normalised by
class size, so its rows sum to 1. This makes it easier to compare performance on the
two classes.

Chapter 4. Methodology 22

Figure 4.3: Normalised confusion matrix for binary essentiality prediction.

4.4.2 Precision-Recall Curve

The precision-recall curve (PR curve) provides a visualisation of classification perfor-
mance and is well-suited for comparing classifiers on unbalanced datasets (Fu et al.,
2018). In addition, it enables computing the area under the curve (AUC-PR). The
AUC-PR depends on the fraction of samples that belong to the positive class. In our
case, approximately 75% of reactions are essential. Hence, a no-skill classifier, which
simply labels all samples as essential, will have an AUC-PR of 0.75. A perfect classifier
on the other hand has an AUC-PR of 1.0. A classifier with some predictive skill will
therefore have AUC-PR ∈ (0.75,1). The PR curve of an example classifier trained on a
dataset containing 75% positive samples is shown in Fig. 4.4.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

No Skill
(AUC=0.75)
Classifier
(AUC=0.91)

Figure 4.4: Example of a precision-recall curve with a class imbalance of 25% to 75%.

Chapter 5

Experiments

This chapter presents the essentiality prediction experiments conducted in this project
alongside intermedite results which guided further steps. The aim of our experiments
was to find structural features that enable simple binary classification models to predict
reaction essentiality.

Investigated were three sets of features extracted from the MFG: adjacency features,
Recursive Feature eXtraction (ReFeX) features, and Flow Profiles. For each feature set,
we first trained simple classifiers to establish performance baselines. Following this,
different preprocessing methods and their effect on model performance are investigated.
Finally, hyperparameter tuning is carried out on the best models on each feature set.

Prior to our experiments, we used stratified sampling to set aside 20% of the input
samples as test set. These 51 reactions were not used in training but only for the final
evaluation of the best models (Section 6.2). We used stratified 5-fold cross-validation
(CV) to compare different models, feature sets, and hyperparameters.

We conducted our experiments using an array of simple classification algorithms:
Random Forests, Logistic Regression, Multilayer Perceptrons, and c-Support Vector
Machines. The machine learning models were implemented using the Python library
scikit-learn (Pedregosa et al., 2011). Unless specified otherwise, the models were
trained using scikit-learn’s default parameters.

5.1 Baseline

Initial experiments were conducted to gain a first insight into the suitability of the three
candidate feature sets and obtain performance baselines. To enable a fair comparison
of the three feature sets, model hyperparameters were kept constant across all baseline
experiments. The kernel of the SVC was set to polynomial because classifiers that use
the default rbf kernel were unskilled and classified all reactions as essential.

We focused on the Macro-F1 score to evaluate model performance as it best represents
classification skill on our unbalanced dataset.

23

Chapter 5. Experiments 24

5.1.1 Adjacency Features XM

Our first baseline experiments were conducted on the adjacency features as derived
in Equation 3.1. Table 5.1 shows the CV accuracy, F1 Score and Macro-F1 score of
each classification algorithm. The classifier with the best Macro-F1 score of 58.3%
was a Random Forest; this is our baseline model for further evaluations. Its normalised
confusion matrix is displayed in Figure 5.1

To gain a deeper insight into classification performance, we investigated the confusion
matrices for each classifier. We found that the Logistic Regression and the SVC model
struggle to learn from the input data and classify nearly all reactions as essential.

Classifier Accuracy F1 Score Macro-F1 Score

RF 76.0±4.2% 85.3±2.7% 58.3±8.2%
LogReg 74.0±1.9% 85.0±1.2% 44.2±3.5%

MLP 76.5±1.9% 86.2±1.0% 52.0±8.3%
SVC (poly) 74.5±2.3% 85.3±1.5% 44.5±4.1%

Table 5.1: Baseline CV performance of different classifiers on the feature matrix X.

Non-Essential Essential
Predicted label

N
on

-E
ss

en
tia

l
E

ss
en

tia
lTr

ue
 la

be
l

0.24 0.76

0.065 0.93

Random Forest on XM

0.2

0.4

0.6

0.8

Figure 5.1: Cross-validation confusion matrix of the Random Forest on the adjacency
features XM.

5.1.2 ReFeX Features XReFeX

Our second set of baseline experiments was conducted on ReFeX features. Except for
the SVC, all models reach higher Macro-F1 scores on average, however, the larger stan-
dard deviations indicate that performance varies stronger across CV folds. Noticeable is
the significantly better performance of the logistic regression model on ReFeX features
compared to adjacency features; on average, its Macro-F1 score is 14.2% higher. The
performance of the Random Forest on this feature set becomes our baseline on ReFeX
features with a Macro-F1 score of 61.2%.

Chapter 5. Experiments 25

Classifier Accuracy F1 Score Macro-F1 Score

RF 76.4±7.1% 85.5±4.2% 61.2±13.3%
LogReg 74.5±1.4% 84.1±1.3% 58.4±5.5%

MLP 67.7±7.3% 78.9±5.2% 53.9±10.4%
SVC (poly) 75.0±0.9% 85.7±0.6% 42.9±0.3%

Table 5.2: Baseline CV performance of different classifiers on ReFeX features.

5.1.3 Flow Profiles XFP

The third feature set we investigated were Flow Profiles (see Section 3.2.3). However,
no classifier showed predictive skill when trained on this feature set. As example, Figure
5.2 shows the cross-validated PR curves of the Random Forest; the other classifiers per-
formed similar. Flow Profiles converge by definition, so poor classification performance
cannot be caused by differently scaled features even in the distance-based classifiers.
We decided not to conduct further experiments on this feature set.

Random Forest on XFlow Profiles

Figure 5.2: Precision-Recall curve of the Random Forest trained on Flow Profiles.

5.2 Preprocessing

After establishing performance baselines on adjacency matrix and ReFeX features,
we examined whether preprocessing could improve classification performance. First,
we standardised features as distance-based classification algorithms are negatively im-
pacted by differently scaled feature dimensions. The values used for standardisation
are computed from the training samples and stored to transform future inputs accord-
ingly. Second, we applied dimensionality reduction methods to the high-dimensional
adjacency features but found that classifiers cannot use the emerging features to predict
reaction essentiality.

Chapter 5. Experiments 26

5.2.1 Adjacency Features

5.2.1.1 Standardised Adjacency Features

Standardisation is usually achieved by subtracting the feature mean and scaling to unit
variance. However, as explained previously the MFG adjacency matrix tends to be
sparse (Section 4.3.2). To maintain the sparsity structure in the data, we only scale
features to unit variance.

Classifier Accuracy F1 Score Macro-F1 Score

RF 76.0±5.4% 85.2±3.7% 59.4±9.2%
LogReg 69.1±6.8% 79.1±6.1% 57.7±7.6%

MLP 72.5±4.1% 82.7±2.6% 57.3±7.5%
SVC (poly) 68.2±5.9% 78.7±6.3% 53.5±7.6%

Table 5.3: Performance of different classifiers on the standardised feature matrix XM,std .

The classification performance on the standardised adjacency matrix is summarised
in Table 5.3. Remarkable are the significant improvements of the Macro-F1 score of
Logistic Regression, MLP, and SVC classifiers of 13.5%, 9% and 5.3%, respectively.
This is not surprising since distance-based classifiers in particular struggle to learn from
data with differently scaled feature dimensions. As expected, the performance of the
Random Forests is not affected by scaling features and therefore remains unchanged;
the minimal variations in metrics can be explained by the randomness associated with
the training process. Adjacency features were standardised for all further experiments.

5.2.1.2 Dimensionality Reduction

The feature vectors in XM are 888-dimensional because the MFG contains 444 nodes;
the dimensionality of our data is over three times the size of our dataset. Therefore,
we explored if dimensionality reduction techniques can reduce the problem size and
improve classification performance. For this purpose, we applied Principal Component
Analysis and Sparse Principal Component Analysis.

Using standard principal components as input features was found to be detrimental for
performance. The resulting models could not reach CV accuracies beyond 70% and the
Macro-F1 scores were around 50% and lower (Figure 5.3B).

We made the same observations when sparse principal components were used as input
features; classifiers trained on sparse PCs could not reach Macro-F1 scores beyond 55%
(Figure 5.4A). The highest Macro-F1 score was reached by the model trained on 22
sparse PCs; a closer investigation of its cross-validated confusion matrix and PR curve
showed that this model hardly learns from the provided data (Figure 5.4B and C).

Overall, we found that classifiers cannot use the lower-dimensional features computed
with (Sparse) PCA to predict reaction essentiality. Hence, we did not apply dimension-
ality reduction in further experiments.

Chapter 5. Experiments 27

B

A

Figure 5.3: Principal component analysis of XM. (A) A cumulative plot of the explained
variance of the principal components. (B) Random Forest CV classification performance
across varying number of principal components.

B CA

Figure 5.4: Sparse Principal Component Analysis of XM. (A) Random Forest CV
classification performance across varying number of sparse principal components. (B)
Cross-validated confusion matrix of Random Forest on 22 sparse PCs. (C) Cross-
validated PR curve of Random Forest on 22 sparse PCs.

Chapter 5. Experiments 28

5.2.2 ReFeX

5.2.2.1 Standardised ReFeX

The ReFeX features were standardised by removing the mean from each dimension
and scaling to unit variance. The mean was removed because firstly, the ReFeX feature
matrix is dense and secondly, features are of very different scales and feature means
range from ∼1 to ∼200,000. The vastly different scales emerge from the recursive
computation of averages and sums of positive values.

Standardising ReFeX features especially improved the performance of the SVC; its
Macro-F1 score improved by 9.8%. The Macro-F1 scores of both the Logistic Regres-
sion model and the MLP also improved, by 3.1% and 5.8%, respectively. As expected,
the performance of the Random Forest was not affected by standardising the input
features. Further experiments were conducted on standardised ReFeX features only.

Classifier Accuracy F1 Score Macro-F1 Score

RF 76.0±6.2% 85.2±3.7% 60.4±11.8%
LogReg 77.5±4.9% 86.3±2.8% 61.5±10.0%

MLP 73.0±4.8% 82.4±4.1% 59.7±7.0%
SVC (poly) 77.4±2.9% 86.9±1.6% 52.7±9.4%

Table 5.4: Performance of classifiers on the standardised ReFeX features.

5.3 Hyperparameter Tuning

We investigated whether hyperparameter tuning could improve the classification perfor-
mance of our best models found in the comparison of several classification algorithms
and feature sets in our baseline and preprocessing experiments. Again, different hyper-
parameter settings were compared using stratified 5-fold CV.

To reduce the computational cost of hyperparameter optimisation, we used the hyperopt
package (Bergstra et al., 2013) which employs Bayesian optimisation to automatically
choose optimal hyperparameters. This method produces a reproducible and unbiased
optimisation process and yields a significant reduction in computation time.

Selecting hyperparameters through Bayesian optimization requires the definition of a
measure of prediction quality. As explained previously, accuracy is not a good measure
of classification skill due to the class imbalance in our dataset. Empirically, we found
that the hyperparameter settings found when optimising for accuracy produce unskilled
classifiers which naively label all reactions as essential. Instead, we used the Macro-F1
score which prevents choosing models without classification skill for non-essential
reactions by assigning equal weight to precision and recall on non-essential and essential
reactions.

Chapter 5. Experiments 29

5.3.1 Adjacency Matrix

The model with the highest Macro-F1 score on standardised adjacency features was a
Random Forest. We used hyperopt to find optimal hyperparameters within the search
space shown in Table 5.5.

Random Forest Hyperparameters

Hyperparameter Search Space

Number of estimators randint(100, 500)

Maximum depth of the tree randint(10,200)

Minimum number of randint(1, 10)
samples per leaf

Criterion gini or entropy

Max features sqrt or log2

Table 5.5: The hyperparameter search space used for optimising the Random Forest.

The optimised model contains 300 trees, with a maximum depth of 50, using information
gain as criterion, and considering log2(2k) features when looking for the best split. In
CV, it had a Macro-F1 score of 64.8%, with a precision of 82% and 86% recall.
Compared to the Random Forest with default hyperparameters, the Macro-F1 score
improved by 5.3%, however, the accuracy and F1 Score are slightly lower (1.1% and
1.8%). Whilst the model is better at correctly classifying non-essential reactions, it
makes more mistakes in its predictions of essential reactions.

Classifier Accuracy F1 Score Macro-F1 Score

RF 74.9±8.6% 83.4±6.5% 64.8±10.8%

Table 5.6: Performance of the Random Forest with largest Macro-F1 score on standard-
ised adjacency features found in hyperparameter tuning.

5.3.2 ReFeX

On the standardised ReFeX features, the Random Forest, MLP and Logistic Regression
classifiers performed well, with Macro-F1 scores of 60-61%. We therefore decided
to examine if hyperparameter tuning could improve the performance of these three
classifiers.

For the Random Forest, we employed the same search space as presented in Section
5.3.1, however, model performance could not be further improved.

The search space of the Logistic Regression and the MLP classifier, as well as the
chosen hyperparameters are displayed in Tables 5.7 and 5.8. Through hyperparameter
search, we were able to improve the performance of both classifiers. The best model

Chapter 5. Experiments 30

we found was the Logistic Regression classifier with a Macro-F1 score of 63.2%, an
improvement of 1.7% over the model without hyperparameter tuning. The Macro-F1
score of the MLP was only slightly lower, with an average of 62.8% in cross-validation.

Logistic Regression Hyperparameters

Hyperparameter Search Space Chosen Value

Penalty l1 or l2 l1

Fit intercept True or False False

Class weight None, {0:2, 1:1}, {0:3, 1:1} {0:2, 1:1}

Solver liblinear, lbfgs liblinear

Tolerance uniform(10−6,10−2) 0.0025

C uniform(0.5, 1.5) 0.75

Table 5.7: The hyperparameter search space used for optimising the Logistic Regression
classifier on standardised ReFeX Features.

Multilayer Perceptron Hyperparameters

Hyperparameter Search Space Chosen Value

Learning rate constant, invscaling, adaptive adaptive

Hidden layer (50,100,50), (50,50,50), (50)
sizes (25,50,25), (100), (50), (25)

Activation identity, logistic, tanh, relu tanh

Solver lbfgs, adam lbfgs

Early stopping True, False False

Alpha uniform(10−6,10−3) 0.0003

Table 5.8: The hyperparameter search space used for optimising the Multilayer Percep-
tron classifier on standardised ReFeX features.

Chapter 5. Experiments 31

Classifier Accuracy F1 Score Macro-F1 Score

RF 76.0±6.2% 85.2±3.7% 60.4±11.8%
MLP 72.5±6.9% 81.6±4.8% 62.8±9.7%

LogReg 75.5±4.6% 84.3±2.6% 63.2±9.4%

Table 5.9: Performance of the three best classifiers with largest F1macro score on
standardised ReFeX features found in hyperparameter tuning.

5.4 Transfer Learning

Our final experiment investigated whether classification models trained on genes with
essentiality labels of one MFG could be used to predict gene essentiality in different
environmental conditions. For this purpose, we generated a second MFG of iML1515,
now using acetate as carbon source.

Acetate was chosen as it had the highest number of genes with different measured
essentiality compared to glucose. We therefore expect models to find it harder to
predict gene essentialities in this environment. Hence, it is most suited for assessing the
suitability of our method for predicting conditional essentiality.

For this experiment, we computed the MFGs for both environmental conditions and
generated the adjacency matrix feature sets as presented in Section 3.2.1. To use models
trained on the glucose MFG for predictions on the acetate MFG, the columns in the
feature matrix need to correspond to the same features; in this case, to edges to the
same reactions. The two MFGs contain 397 of the same reactions; 47 and 44 reactions
appear only in the MFG of glucose and acetate, respectively. We removed columns that
correspond to reactions which only appear in one of the MFGs from each feature matrix.
Next, we computed essentiality labels for reactions in the acetate MFG as presented in
Section 3.3.

We trained the Random Forest with optimised hyperparameters on the training set of
the glucose reactions and used the glucose test set for validation; this ensured that
removing reactions that are unique two the glucose MFG did not significantly impact
classification performance. We found that classification performance did not worsen
when these columns were removed from the feature matrix.

Chapter 6

Results

In this chapter, the final results of our experiments are presented. First, we present our
findings from essentiality analysis in the MFG of iML1515. Next, we evaluate the best
essentiality classifiers on the held-out test set to gain insight into the generalisation
performance of our algorithm. Finally, we compare our results to the FBA essentiality
predictions of iML1515 which are used as benchmark.

6.1 Essentiality Analysis

We analysed the essentiality distribution in the complete iML1515 model and in the
corresponding MFG.

Gene essentiality measurements are available for 1503 out of the 1516 genes included
in iML1515 (Monk et al., 2017). When grown on glucose as primary carbon source,
1252 genes are non-essential and 251 genes are essential, which corresponds to 16.7%
of genes being essential (Figure 6.1).

0 200 400 600 800 1000 1200 1400
Reaction

0.0

0.2

0.4

0.6

0.8

1.0

Es
se

nt
ia

lit
y

Non-Essential

Essential

iML1515 Gene Essentialities

Figure 6.1: Measured gene essentiality in iML1515 using glucose as carbon source,
data from (Monk et al., 2017).

32

Chapter 6. Results 33

The essentiality distribution changes significantly when only genes which correspond
to reactions included in the MFG are considered (Figure 3.4). In the MFG, we have
63 non-essential and 192 essential reactions (75.3% reactions are essential). Figure
6.2 shows the corresponding MFG with reaction nodes coloured according to their
essentiality label.

Figure 6.2: Mass flow graph of Escherichia coli (E. coli) under aerobic growth with glu-
cose as sole carbon source, computed from iML1515. The k = 444 nodes are coloured
by essentiality label (blue=non-essential, red=essential, grey=essentiality cannot be
inferred from the available gene essentiality measurements).

6.2 Essentiality predictions

Classifiers trained on both the adjacency features and the ReFeX features showed some
skill at predicting reaction essentialities. For a final evaluation of the performance of
our models, the best model on each feature set was re-trained on the whole training set
and then evaluated on the previously unseen test set.

6.2.1 Standardised Adjacency Matrix

The model with the highest Macro-F1 score on the standardised adjacency features was
a Random Forest with hyperparameter settings presented in 5.3.1. Evaluated on the test
set, the model had an overall accuracy of 76% and a Macro-F1 score of 67.3%, with a
precision of 82.5% and a recall of 86.8% (Figure 6.3).

We note that on the test set, the model has slightly better Macro-F1 score than on
average during CV (67.3% vs 64.8%). This is likely caused by the limited size of our
test set of 51 reactions but shows that the model performs similar on reactions that did
not guide the model selection process.

Chapter 6. Results 34

A B

Figure 6.3: Classification performance of the optimised Random Forest model on the
reactions in our test set using standardised adjacency features.

6.2.2 ReFeX

Using ReFeX features, the Logistic Regression model had the highest Macro-F1 score
after hyperparameter tuning (Section 5.3.2). Again, we trained the model on the
complete training set and evaluated its performance on the test set (Figure 6.4A and B).
The results show that the model is unable to predict reaction essentiality of reactions in
the test set.

A B

C D

Figure 6.4: Classification performance of the optimised Logistic Regression (A and B)
and Random Forest (C and D) models on the reactions in our test set using standardised
ReFeX features.

Chapter 6. Results 35

To investigate whether this is only the case for the logistic regression model, we also
trained the Random Forest on the complete training set and evaluated it on the test set,
motivated by its good test performance using adjacency features. However, we again
found that the model is unable to accurately predict reaction essentiality using ReFeX
features (Figure 6.4C and D).

6.2.3 Comparison to essentiality predictions of iML1515

From the paper published by Monk et al. (2017), we know that iML1515 has a gene
essentiality prediction accuracy of 93.4% across all of their experiments.

However, we are only training and predicting the essentiality of a small subset of
reactions in the model, namely the reactions contained in the MFG. To enable a direct
comparison of the predictions made by our method and by iML1515, we computed
the metrics of iML1515’s predictions on the genes associated with the reactions in our
test set (Figure 6.5). We find that the iML1515’s FBA predictions on these genes have
84.3% accuracy, precision and recall of both 89.5%, with a Macro-F1 score of 79.4%.

Non-Essential Essential
Predicted label

N
on

-E
ss

en
tia

l
E

ss
en

tia
lTr

ue
 la

be
l

0.69 0.31

0.11 0.89

iML1515

0.2

0.4

0.6

0.8

Figure 6.5: Confusion matrix of the FBA gene essentiality predictions of iML1515 on the
group of genes in our test set.

Overall, iML1515 shows sub-optimal performance on the test set of reactions, and the
whole set of reactions in the MFG, compared to the overall accuracy. This indicates
that the set of reactions our classifiers are trained and evaluated on is harder to predict
than the average reaction in the metabolic network of E. coli.

In the direct comparison with predictions of the Random Forest on standardised adja-
cency features, we find that our method can predict essential reactions nearly as well as
FBA; its TPR is only 2% lower. However, our models struggle noticeably to predict
non-essential reactions and only reach a TNR of 46%, compared to iML1515’s 69%.
Consequently, the Macro-F1 score of our method is 12% lower than that of iML1515.

Chapter 6. Results 36

6.3 Transfer Learning

In our final experiment, we evaluated the Random Forest trained on the glucose MFG
on the 252 labelled reactions in the acetate MFG. The model had an overall accuracy of
70.2% and a Macro-F1 score of 64.8%, with a precision of 81.2% and a recall of 76.2%.
The corresponding confusion matrix (Figure 6.6A) shows that its true positive rate is
11% lower and its true negative rate is 9% higher than on the test set of reactions of the
glucose MFG (Section 6.2.1).

(AUC=0.84)

A B

Figure 6.6: Predictions of the Random Forest trained on the MFG of iML1515 using
glucose as carbon source on the MFG of iML1515 using acetate as carbon source.

The confusion matrix and PR curve (Figure 6.6B) indicate that the classifier trained on
the glucose MFG can predict reaction essentiality in an MFG of a closely related cell.

Chapter 7

Conclusions

In this report, we presented a novel method for essentiality prediction in metabolic
networks that combines the currently prominent method, Flux Balance Analysis, with
machine learning utilising methods from graph analysis. We used MFGpy, our software
package for the generation and mathematical analysis of cell line specific MFGs, to
construct and analyse the MFG of the E. coli model iML1515. We then applied our
proposed machine learning pipeline to this model and showed that simple classification
models can predict the essentiality of reactions in MFGs based on network properties.

7.1 Findings

We developed a novel method for predicting gene essentiality, using Flux Balance
Analysis in combination with machine learning algorithms. Essentiality prediction
was approached as a binary classification problem and reaction essentiality labels were
extracted from gene essentiality measurements using an algorithm that we developed.

We then tested our proposed method by applying it to iML1515, the metabolic network
of Escherichia coli. We simulated cells according to the biological scenarios in which
essentiality studies were conducted and verified our simulations by reproducing the
FBA gene essentiality predictions of Monk et al. (2017). We used our simulations to
generate the MFG of iML1515 and, in combination with reaction essentiality labels
inferred from published gene essentiality measurements, created a small dataset of
reactions and corresponding essentiality labels.

We created three sets of structural reaction node features from the MFGs. Then, we
trained an array of binary classifiers to predict the essentiality labels using these feature
sets. The best model was a Random Forest trained on standardised adjacency features
with an accuracy of 74.9% and Macro-F1 score of 64.8%. The small number of non-
essential reactions in the training dataset posed a challenge to our classifiers and caused
low prediction performance on this essentiality class.

Compared to the FBA predictions of iML1515, which were used as benchmark, we
found that our method achieves true positive rates near the state-of-the-art, but performs
significantly worse at detecting non-essential reactions.

37

Chapter 7. Conclusions 38

7.2 Answering the Research Question

The aim of this project was to investigate if graphs derived from a cell’s wild-type
flux distribution contain sufficient information to predict the biological essentiality of
metabolic genes. For this purpose, we examined if classification algorithms can predict
gene essentiality in E. coli using structural features extracted from Mass Flow Graphs
derived from the iML1515 E. coli model. By creating digraphs from the FBA flux
vectors, we were able to approach this problem as binary classification task on graph
nodes.

Our classifiers showed promising prediction skills when trained on standardised adja-
cency features, reaching near state-of-the-art accuracy in their predictions of essential
reactions and showing some skill at predicting non-essential reactions. These results
indicate that it is indeed possible to predict essentiality based on the wild-type flux
distribution only. This is a significant finding as it removes the need to assume that cells
aim to maximise growth after specific genes have been deleted; an assumption made
when only FBA is used to solve this task.

7.3 Evaluation

A recent review by Aromolaran et al. (2021) identified key needs of machine learning
models applied to essentiality prediction: (1) finding relevant features which enable
essentiality classification, (2) constructing accurate gold standard class labels for model
training, and (3) improving the predictive abilities of models across organisms. We will
now evaluate our proposed method on the basis of these key requirements.

We established that structural node features extracted from mass flow graphs contain
sufficient information to predict reaction essentiality. By mapping the wild-type flux
distribution onto MFGs and treating reactions as graph nodes, we were able to create
novel feature sets which, to the best of our knowledge, have not been explored before.
Our results indicate their suitability for the problem of essentiality prediction.

By utilising gene essentiality measurements from in vitro studies of Escherichia coli,
we were able to construct biologically accurate gold standard essentiality labels. In
contrast to using, e.g., FBA to label the remaining reactions, this ensures the maximum
possible reliability of the essentiality labels used for model training. Since we did not
employ FBA essentiality values, we removed the requirement to assume optimality
of deletion strains; a key objective of this research. However, this posed significant
limitations on the size of our dataset; the MFG contains 444 reactions and we can only
label reactions that can be deactivated by single-gene knockouts which are 57% of the
reactions in the MFG. Consequently, the trained classifiers struggled to correctly predict
non-essential reactions; the minority class in our dataset.

So far, we have mainly evaluated essentiality predictions of our models on reactions
within the same MFG. Additionally, we briefly investigated if models can predict
essentiality in the same cell when grown on a different carbon source. The training
and test set therefore originate from the same organism in the same genetic and similar
environmental conditions. A key motivation behind exploring the suitability of Flow

Chapter 7. Conclusions 39

Profile and ReFeX features for essentiality prediction was that they can be computed for
different MFGs and would potentially be well-suited for transfer learning across more
distantly related cells and organisms. Unfortunately, classifiers trained on these feature
sets were unable to correctly predict essentiality. Hence, improving the predictive
abilities of models across organisms remains an open question for future work, as
discussed in the next section.

7.4 Future Work

With the work presented in this report, we answered our research question and fulfilled
the main objective of this project. Nonetheless, there are a lot of interesting directions
for future work.

Our machine learning models were trained using a very limited amount of data. For
further study, additional training data should be generated to train and test our method,
e.g. from MFGs of iML1515 corresponding to different growth conditions. We expect
that increasing the size of the training dataset will improve the accuracy of essentiality
predictions especially for non-essential reactions.

Transfer learning across cells in different environmental and genetic conditions, as
well as across organisms should be further explored. Our preliminary results (see
Section 6.3) are promising and motivate the application of our method to more MFGs
of iML1515 that correspond to different growth conditions. This would enable further
investigating the generalisability of the method. It would also facilitate studying
conditional essentiality, i.e., genes which are essential only under specific environmental
conditions. Next, the analysis should be extended to metabolic networks of other
organisms and eukaryotic cells, e.g., cancer cells utilising available gene essentiality
measurements (Gatto et al., 2015).

To enable transfer learning across more distantly related cells, further structural feature
sets should be explored. As mentioned in 7.3, this would be a key contribution to the
field (Aromolaran et al., 2021). Whilst our preliminary transfer learning results are
promising, they also underline that finding good features is key. The adjacency features
can be used to make predictions in closely related cells such as the same organism in a
different environment. However, they are not suited for predictions across organisms as
the set of reactions in the MFG has to be similar. A feature set that computes structural
features similar to Flow Profiles and ReFeX could potentially overcome this limitation;
classifiers trained on these feature sets, however, were not able to accurately predict
essentiality. Further studies should therefore be conducted to investigate whether more
elaborate machine learning models combined with ReFeX features or Flow Profiles,
or different structural feature sets could enable transfer learning across more distantly
related cells.

Bibliography

Aromolaran, O., Aromolaran, D., Isewon, I., and Oyelade, J. (2021). Machine learning
approach to gene essentiality prediction: a review. Briefings in bioinformatics, 22(5).
doi:10.1093/bib/bbab128.

Bartha, I., di Iulio, J., Venter, J.C., and Telenti, A. (2018). Human gene essentiality.
Nature Reviews Genetics, 19(1), 51–62. doi:10.1038/nrg.2017.75. URL https:
//doi.org/10.1038/nrg.2017.75.

Becker, S.A., Feist, A.M., Mo, M.L., Hannum, G., Palsson, B., and Herrgard, M.J.
(2007). Quantitative prediction of cellular metabolism with constraint-based models:
The COBRA Toolbox. Nature Protocols, 2(3), 727–738. doi:10.1038/nprot.2007.99.

Beguerisse-Dı́az, M., Bosque, G., Oyarzún, D., Picó, J., and Barahona, M. (2018).
Flux-dependent graphs for metabolic networks. npj Systems Biology and Applica-
tions, 4(1). doi:10.1038/s41540-018-0067-y. URL http://dx.doi.org/10.1038/
s41540-018-0067-y.

Bergstra, J., Yamins, D., and Cox, D. (2013). Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In S. Dasgupta and D. McAllester (eds.), Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, 115–123. PMLR, Atlanta, Georgia, USA. URL https://proceedings.
mlr.press/v28/bergstra13.html.

Cardoso, J., Vilaça, P., Soares, S., and Rocha, M. (2012). An algorithm to assemble
gene-protein-reaction associations for genome-scale metabolic model reconstruction.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7632 LNBI, 118–128. doi:10.
1007/978-3-642-34123-6\ 11.

Chen, Y. and Xu, D. (2005). Understanding protein dispensability through machine-
learning analysis of high-throughput data. Bioinformatics (Oxford, England), 21(5),
575–581. doi:10.1093/bioinformatics/bti058.

Cooper, K. and Barahona, M. (2010). Role-based similarity in directed networks.
arXiv:1012.2726v1.

Dong, C., Jin, Y.T., Hua, H.L., Wen, Q.F., Luo, S., Zheng, W.X., and Guo, F.B.
(2018). Comprehensive review of the identification of essential genes using com-
putational methods: focusing on feature implementation and assessment. Brief-

40

Bibliography 41

ings in Bioinformatics, 21(1), 171–181. doi:10.1093/bib/bby116. URL https:
//doi.org/10.1093/bib/bby116.

Dreiseitl, S. and Ohno-Machado, L. (2002). Logistic regression and artificial neural net-
work classification models: a methodology review. Journal of Biomedical Informatics,
35(5), 352–359. doi:https://doi.org/10.1016/S1532-0464(03)00034-0. URL https:
//www.sciencedirect.com/science/article/pii/S1532046403000340.

Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke, D.R. (2013). COBRApy:
COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biol-
ogy, 7(1), 74. doi:10.1186/1752-0509-7-74. URL https://doi.org/10.1186/
1752-0509-7-74.

Fu, G., Yi, L., and Pan, J. (2018). Tuning model parameters in class-imbalanced learning
with precision-recall curve. Biometrical Journal, 61. doi:10.1002/bimj.201800148.

Gatto, F., Miess, H., Schulze, A., and Nielsen, J. (2015). Flux balance analysis predicts
essential genes in clear cell renal cell carcinoma metabolism. Scientific reports,
5, 10738. doi:10.1038/srep10738. URL https://pubmed.ncbi.nlm.nih.gov/
26040780https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603759/.

Guo, F.B., Dong, C., Hua, H.L., Liu, S., Luo, H., Zhang, H.W., Jin, Y.T., and Zhang,
K.Y. (2017). Accurate prediction of human essential genes using only nucleotide
composition and association information. Bioinformatics (Oxford, England), 33(12),
1758–1764. doi:10.1093/bioinformatics/btx055.

Hameri, T., Fengos, G., Ataman, M., Miskovic, L., and Hatzimanikatis, V. (2019).
Kinetic models of metabolism that consider alternative steady-state solutions of
intracellular fluxes and concentrations. Metabolic Engineering, 52, 29–41. doi:
https://doi.org/10.1016/j.ymben.2018.10.005. URL https://www.sciencedirect.
com/science/article/pii/S1096717618302933.

Jolliffe, I.T. and Cadima, J. (2016). Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374. URL http://doi.org/10.1098/rsta.
2015.0202.

Kaper, J.B., Nataro, J.P., and Mobley, H.L.T. (2004). Pathogenic Escherichia coli.
Nature Reviews Microbiology, 2(2), 123–140. doi:10.1038/nrmicro818. URL https:
//doi.org/10.1038/nrmicro818.

Kaslovsky, D. (Accessed 15 Mar 2021). GraphRole: Automatic feature extraction and
node role assignment for transfer learning on graphs.
https://github.com/dkaslovsky/GraphRole.git.

Kotsiantis, S.B. (2007). Supervised machine learning: A review of classification
techniques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence
Applications in Computer Engineering: Real Word AI Systems with Applications in
EHealth, HCI, Information Retrieval and Pervasive Technologies, 3–24. IOS Press.

Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A.,
Armañanzas, R., Santafé, G., Pérez, A., and Robles, V. (2006). Machine learning in

Bibliography 42

bioinformatics. Briefings in Bioinformatics, 7(1), 86–112. doi:10.1093/bib/bbk007.
URL https://doi.org/10.1093/bib/bbk007.

Lu, Y., Deng, J., Rhodes, J.C., Lu, H., and Lu, L.J. (2014). Predicting essential
genes for identifying potential drug targets in Aspergillus fumigatus. Computational
Biology and Chemistry, 50, 29–40. doi:https://doi.org/10.1016/j.compbiolchem.
2014.01.011. URL https://www.sciencedirect.com/science/article/pii/
S1476927114000139.

Monk, J.M., Lloyd, C.J., Brunk, E., Mih, N., Sastry, A., King, Z., Takeuchi, R.,
Nomura, W., Zhang, Z., Mori, H., Feist, A.M., and Palsson, B.O. (2017). iML1515, a
knowledgebase that computes Escherichia coli traits. Nature Biotechnology, 35(10),
904 – 908. doi:https://doi.org/10.1038/nbt.3956.

Montezano, D., Meek, L., Gupta, R., Bermudez, L.E., and Bermudez, J.C.M. (2015).
Flux Balance Analysis with Objective Function Defined by Proteomics Data-
Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine. PloS one,
10(7), e0134014. doi:10.1371/journal.pone.0134014.

Orth, J.D., Thiele, I., and Palsson, B.O. (2010). What is flux balance analysis? Nature
Biotechnology, 28(3), 245–248. doi:10.1038/nbt.1614.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Plaimas, K., Eils, R., and König, R. (2010). Identifying essential genes in bacterial
metabolic networks with machine learning methods. BMC systems biology, 4.

Rancati, G., Moffat, J., Typas, A., and Pavelka, N. (2018). Emerging and evolving
concepts in gene essentiality. Nature Reviews Genetics, 19(1), 34–49. doi:10.1038/
nrg.2017.74. URL https://doi.org/10.1038/nrg.2017.74.

Sahl, J.W., Morris, C.R., and Rasko, D.A. (2013). Chapter 2 – comparative genomics
of pathogenic escherichia coli. In M.S. Donnenberg (ed.), Escherichia coli (Second
Edition), 21–43. Academic Press.

Terzer, M., Maynard, N.D., Covert, M.W., and Stelling, J. (2009). Genome-scale
metabolic networks. Wiley interdisciplinary reviews. Systems biology and medicine,
1(3), 285–297. doi:10.1002/wsbm.37.

Yuan, Y., Xu, Y., Xu, J., Ball, R.L., and Liang, H. (2012). Predicting the lethal
phenotype of the knockout mouse by integrating comprehensive genomic data. Bioin-
formatics (Oxford, England), 28(9), 1246–1252. doi:10.1093/bioinformatics/bts120.
URL https://pubmed.ncbi.nlm.nih.gov/22419784https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3338016/.

Zampieri, G., Vijayakumar, S., Yaneske, E., and Angione, C. (2019). Machine and deep
learning meet genome-scale metabolic modeling. PLOS Computational Biology,
15(7), e1007084.

Bibliography 43

Zheng, A. and Casari, A. (2018). Feature Engineering for Machine Learning: Principles
and Techniques for Data Scientists. O’Reilly Media, Inc., 1st edition.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.
Journal of Computational and Graphical Statistics, 15(2), 265–286.

Zou, H. and Xue, L. (2018). A selective overview of sparse principal component analysis.
Proceedings of the IEEE, 106(8), 1311–1320. doi:10.1109/JPROC.2018.2846588.

Appendix A

Appendix

A.1 Mapping gene essentiality to reaction essentiality

In this section, we present the pseudocode of the algorithm used to find reactions in
iML1515 that can be deactivated by single-gene knockouts.

Algorithm 1 FINDREQUIREDGENES(rule)
Require: rule not empty

if rule contains a single gene then
genes←{gene}

if rule contains no brackets then
if rule contains ’or’ then genes← {}
else genes← set of all genes in rule

if rule contains brackets then
rulebe f ore← part of rule that is before the outermost brackets
rulewithin← part of rule that is inside the outermost brackets
rulea f ter← part of rule that follows the outermost brackets
genes← FINDREQUIREDGENES (rulewithin)
for subrule in [rulebe f ore, rulea f ter] do

if subrule is not empty then
subgenes← FINDREQUIREDGENES (subrule)
if the logic operations before the brackets is ’and’ then

genes← union(genes,subgenes)
else // logic operation before bracket is ’or’

genes← intersection(genes,subgenes)
return genes

The Gene-Protein-Reaction (GPR) rules are provided individually for each reaction
in iML1515. In MAPGENETOREACTIONKNOCKOUT, we therefore loop through the
rules for each reaction R j. We use the recursive algorithm FINDREQUIREDGENES to
compute the set of genes that, if knocked out individually, would knockout R j. If the
set of genes contains exactly one gene g, reaction R j is knocked out by the single-gene

44

Appendix A. Appendix 45

knockout of g, but not by any other genes. In this case, we assume the essentiality of R j
to equal the essentiality of g following Assumption 2. We therefore append reaction R j
to the list of reactions that are deactivated by the single-gene knockout of g.

Algorithm 2 MAPGENETOREACTIONKNOCKOUTS(model)

// initialise a dictionary mapping gene knockout to reaction knockout
koReactions← {model.genes : empty list}
for reaction in model.reactions do

requiredGenes← FINDREQUIREDGENES (reaction.gene reaction rule)
if requiredGenes contains exactly one gene gene then

append reaction to koReactions[gene]
return koReactions

