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Abstract
The rise of complex black-box machine learning models has led to an increase in
explainable AI research to understand their reasoning and build trust in these models.
Trust is especially important in medical applications. Peptide presentation is the immune
system’s window into the cell and a key step in peptide vaccine development. This
project aimed to interpret the decisions of the peptide presentation prediction model
ImmunoBERT using the DeepCover explainability technique.

The quality of the produced explanations was evaluated by comparing the explanations
to previous research and known biological properties of the input. This showed that the
positions uncovered by DeepCover could be biologically motivated, and that the expla-
nations were meaningful. Comparisons of the explanations produces by DeepCover to
the explanations produced by the other explanation techniques LIME and DC-Causal
showed that the different techniques agreed less on the ranking of the input positions.
However, we note that evaluation by agreement is flawed and where they did not agree
it is likely that they uncovered different but valid explanations as the problem does not
have one true explanation. The evaluation also showed that the different fault locali-
sation metrics implemented in DeepCover produced very similar explanations. Lastly,
the runtime was significantly improved through data parallelisation when explaining
multiple instances.
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Chapter 1

Introduction

Peptide Presentation. A vital task of the immune system is to kill infected and
tumorigenic cells. The role of cytotoxic T-lymphocytes is to detect affected cells and
kill them [1, 2, 3]. However, they cannot look inside the cell to see if it is affected so
the cell itself has a system to broadcast its internal state to the immune system [1, 2, 3].
Cells do this using major histocompatibility complex-I (MHC-I) molecules that present
snippets, called peptides, of the internal proteins on the cell surface for the immune
system to diagnose [1, 2, 3].

ImmunoBERT is a model that predicts peptide presentation [4]. It is a Bidirectional
Encoder Representations from Transformers (BERT)-based architecture that treats
peptides and MHC-I proteins as amino acid sequences and outputs a presentation score
representing how likely it is that a peptide would be presented by the given MHC-I
molecule [4]. Understanding and modelling peptide presentation is important to aid
peptide vaccine development for viruses and cancer [2, 4]. However, ImmunoBERT,
like other peptide presentation models, is a black-box model and interpreting how its
decisions are made is crucial to actually understanding more about which peptides are
most likely to be presented by the MHC-I molecule [4, 5].

Explainable artificial intelligence (AI) aims to do just that, explaining the reasoning of
AI models to expose bias, build trust and better understand the model and the problem
it models [6]. Moreover, decision transparency and trust is particularly important
in the medical domain [7], with predictability and translation of in silico (computer
models or experiments) to the clinical setting being of special interest. DeepCover is an
explainable AI technique developed for images [8]. DeepCover repeatedly mutates the
input and measures the effect on the output using statistical fault localisation measures
from software testing [8]. It computes an importance score per component of the
input (such as input position or super-pixel) and provides an algorithm for building
minimal explanations that uses the importance scores to produce minimal and sufficient
explanations as a subset of the components of the input instance [8]. The minimal
explanation algorithm is one of the main things that sets DeepCover apart from the
common explanation method LIME, which also uses local perturbations to create
explanations [9]. The goal of this project was to modify DeepCover to interpret the
ImmunoBERT model.
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Chapter 1. Introduction 2

1.1 Overview of the Report

Aim. The aim of this project was to use DeepCover to explain the classification decisions
made by presentation prediction model ImmunoBERT and evaluate the quality of the
explanations. Another aim was to improve the runtime of DeepCover to make it more
realistic for explaining multiple instances.

Chapters. Chapter 2 provides further background on peptide presentation biology and
ImmunoBERT as well as an overview of other explanation techniques in the related
works in Section 2.3. Chapter 3 explains how DeepCover was modified to interpret the
ImmunoBERT model which involved handling the input format, mutating the amino
acid sequences using substitution mutations mirroring real life and parallelising the
generation of explanations. Chapter 4 outlines the setup of the experiments to evaluate
whether DeepCover was successful in the peptide presentation domain and Chapter 5
presents the results of the experiments. The final chapter is Chapter 6 which discusses
the results, limitation and further work.

Results. The results showed that DeepCover was successfully modified to handle
the ImmunoBERT input, but it struggled with the binary class problem (presented or
not presented), which made it unable to create full and minimal explanations for a
portion of the instances. The explanations that were produced were useful, as they
highlighted positions of the input which could be biologically motivated as important
for binding between the peptide and MHC-I molecule. The explanations produced
using the different statistical fault localisation measures included in DeepCover agreed
on both the trends and on the instance-level. Meanwhile, comparison with the other
explanation methods LIME and DC-Causal showed less agreement, with the caveat
that evaluation by agreement is a disputed evaluation method for explainable AI [10].
Finally, the runtime of DeepCover was poor compared to LIME but improvements from
parallelisation implemented in this project made it competitive.

Contributions. In summary, the contributions presented in this report are:

• Modifying DeepCover to handle the protein input and explain the decisions of
the ImmunoBERT model.

• Parallelising the execution of DeepCover for explaining multiple instances.

• Experiments to evaluate whether DeepCover can produce explanations for Im-
munoBERT and evaluation of the quality of explanations for ImmunoBERT
through biological interpretation and comparisons with other explainability tech-
niques.

• Comparing the explanations produced using DeepCover’s different fault localisa-
tion measures.

MInf Project (Part 1). The first part of the MInf project was creating a tool to produce
execution traces of compiled Java programs [11]. The current report presents MInf
project part 2 which is loosely related to the first part as it explores another application
of sequences. Part 2 is not a direct continuation of part 1 as it reached a suitable and
natural end when it resulted in a journal publication [12].



Chapter 2

Background

2.1 Biology: Peptide presentation by MHC-I molecules

The immune system is a network of biological processes of cells and molecules that
defend the body against disease. There are two types of immune responses. The first
type are innate (natural) responses which happen with the same strength every time
they are activated by a certain entity, e.g. a pathogen. The second type are acquired
(adaptive) responses make up the memory of the immune system, and are improved
every time they are activated in response to a specific threat [1].

One cell that is part of an acquired immune response mechanism is cytotoxic T-
lymphocytes (CTLs), also called CD8+ T-cells, whose role is to identify and kill
infected (particularly with viruses) and tumorigenic cells [1, 2, 3]. However, CTLs
cannot see what is happening inside the cells by themselves.

Major histocompatibility complex (MHC) molecules are present in all nucleated cells
in the body, and their task is to expose the internal state of the cell to the immune system
by presenting snippets (peptides) of internal proteins on the outside of the cell [1, 2,
3]. CTLs specifically bind to MHC class I (MHC-I) proteins, also referred to as human
leukocyte antigens (HLAs) in humans, and kill the cell only if the presented peptides
are not part of the normal set of proteins expressed in the cell, the proteome [2]. Briefly,
the steps in the MHC-I pathway are: [3]

1. Proteins (both normal to the proteome and pathogenic, i.e. disease-causing) in
the cell are degraded into peptides by proteasome. They are further trimmed and
many are destroyed by cytosolic peptidases.

2. The surviving peptides are transported into the endoplasmic reticulum of the cell
by a peptide transporter called transporter associated with antigen processing.

3. The peptides in the endoplasmic reticulum are loaded into the MHC-I molecules,
which produce a stable complex that can be transported to the cell surface for
presentation.

4. The MHC-I/peptide complexes are presented on the outside of the cell and can
be detected and bound to by scanning CTLs.

3



Chapter 2. Background 4

Understanding which peptides will be presented by the MHC-I molecules is important
in vaccine development. For instance, by identifying which cancer antigens will be
presented on the cell surface using a combination of in silico prediction models and
in vitro experiments (outside of a living organism), vaccines can be developed that
leverage the memory capabilities of the acquired immune response of the CTLs [2].

2.1.1 Biological Properties of the MHC-I Molecules and Peptides

Alleles are variant forms of a gene. The MHC-I protein is encoded in the genetic
code/DNA on chromosome six which contains three encodings for MHC-I molecules,
HLA-A, HLA-B and HLA-C [2, 3]. Additionally, because most human cells are
diploid, meaning that they have two versions of most chromosomes, between three and
six different HLA alleles are expressed in an individual’s cells [3]. MHC molecules
are unusually polymorphic, meaning that different people express different MHC-I
molecules, which affects which peptides are presented on their cell surface [2, 3]. The
set of peptides presented on the surface of the cells is called the immunopeptidome. The
diversity of the MHC molecules and immunopeptidome in the population is important
as it creates a diverse protection against antigens and viruses.

Figure 2.1: The positions of the peptide
binding groove of the MHC protein and
which pocket they belong to for allele
HLA-A2. Image from van Deutekom
and Keşmir [13].

The peptide and MHC-I proteins are pre-
sented as sequences of amino acids in this
project where the start side in reading direc-
tion is called the N-terminus and the end
the C-terminus. The MHC molecule has
an outward-facing groove where the peptides
bind which has been divided into pockets A-F
[14], as shown in Figure 2.1. Pockets A and
F usually accommodate the N and C termini
of the peptides, respectively [14]. Most of
the preserved mutations (polymorphism) exist
in the peptide-binding groove as that diversi-
fies which peptides are presented by the MHC
molecule [14].

Another important structural property of the
MHC-I/peptide complexes are the anchor
residues, i.e. the amino acids (also called
residues when part of a protein or peptide)
of the peptide that bind to the pockets of the
MHC-I molecule [3].

2.1.2 ImmunoBERT

ImmunoBERT is a recently developed in silico MHC-I peptide presentation prediction
model. Bidirectional Encoder Representations from Transformers (BERT) is a trans-
former model originally developed for natural language tasks [15]. ImmunoBERT is
built on a pre-trained BERT architecture called Tasks Assessing Protein Embeddings
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(TAPE) for protein inputs [4]. ImmunoBERT answers the question “Will the given pep-
tide be presented by the given MHC molecule?” with a likelihood score between zero
and one [4]. The input to ImmunoBERT is the peptide to predict the presentation score
for, its surroundings in the source protein, also called the flanks, and a pseudo sequence
of the MHC-I molecule that might present the peptide [4]. The pseudo sequence is a
sub-sequence of the MHC-I protein containing the amino acids that are physically close
to the peptide in the MHC-I/peptide complexes [16].

The data used for training and evaluating the ImmunoBERT model was collected with
the eluted ligand approach which gives the whole immunopeptidome of a cell and all
MHC alleles in the cell [4]. The consequences of eluted ligand are that the data only
contains positive/presented examples and that the peptide presentation is not mapped to
a specific MHC allele [4]. Negative examples, or decoys, are peptides which were not
presented by the MHC-I molecules. To address the first problem and create negative
examples, the author sampled 99 random decoy peptides per positive example from
the set of proteins that the observed peptides originated from [4]. The second problem
was handled during training, by adding deconvolution to associate each peptide to its
presenting MHC-I allele [4].

2.2 Explainable AI

More complex machine learning (ML) models such as deep neural networks act as a
black box: they are given an input and produce an output, but the reasoning behind the
decision is not clear [6]. Explainable AI aims to present the relationship between the
input instances and a machine learning model’s predictions, to make the decisions more
transparent [6, 17]. The ultimate goal of explanations is to increase the human’s trust in
the model and its decision-making [6, 7, 17]. The confidence, safety, security, privacy,
ethics, fairness and trust needed in medicine and medical research makes explainability
extra important in this domain [7].

While many explainable AI techniques are general and can be applied to different types
of data and ML models, most methods are developed with image or natural language
processing (NLP) tasks in mind. Techniques developed for either natural language
or image data can be beneficial for the other as well [18]. Proteins represented as a
sequence of amino acids have allowed for the use of NLP ML models to be applied to
protein tasks [19]. Ofer et al. [19] outlined strategies and pitfalls of using NLP ML
models on proteins. They recognise that NLP techniques have had great success in the
protein domain but do not extend their comparisons to explainability.

Explainable AI methods can be divided into categories to describe their applicability.
These categories include [6]:

• Origin of explanation: Intrinsic (model transparency) explainability describes
ML methods that are explainable by nature and include simple linear models (such
as linear or logistic regression) and example-based models such as K-nearest
neighbours. Post-hoc explanation techniques explain the ML model’s decision
without providing insight into the mechanisms by which the model reached it,
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much like an explanation of a human’s reasoning where the brain acts as a black
box.

• Application domain: Model-specific techniques are dependent on which ML
architecture they are explaining while model-agnostic techniques can be applied
to any ML model, in a post-hoc fashion.

• Scope of interpretability: The scope of interpretability defines whether the method
explains the prediction of a single input instance (local) or the behaviour of the
entire model (global).

2.3 Related work

Recent and common explainable AI research for images, natural language and biological
applications was surveyed and included in this section. Table 2.1 presents the techniques
and their classifications as outlined above. The focus of this section is on post hoc
methods as these can be applied in settings with an existing prediction model. The
techniques included are the most recent developments or the most common, measured
as the highest number of citations.

Table 2.1: Classifications of the presented Explainable AI methods.

Method Origin Application domain Scope Type of data
iRF [20]

Intrinsic Specific
Global

Biological data
iRF-LOOP [21] Biological data

ALPODS [22] Local
High dimensional
biological data

SP-LIME [9]

Post hoc

Agnostic

Global
Any

MMD-critic [23] Any
LIME [9]

Local

Any
STREAK [24] Images
DLIME [25] Any
LIMETREE [26] Any
Anchor [27] Any
MAPLE [28] Tabular
DICE [29] Any
DeepCover [8] Images
OLM [30] Natural language
SHAP [31]

Local/Global
Any

k-LIME [32] Any
PoSHAP [33] Biological sequences
Integrated gradients [34]

Specific

Local

Any
DeepLIFT [35] Any
Attention flow [36] Natural language
Attention rollout [36] Natural language
MICE [37] Natural language
LinearSHAP [31]

Local/Global

Any
DeepSHAP [31] Any
TransSHAP [38] Natural language
GradSHAP [39] Any
Representation erasure [40] Natural language/Any
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2.3.1 Common Explainable AI methods for images

Image tasks usually use black box ML models such as deep neural networks, so it is not
surprising that explainable AI has been focused on image inputs. While many of these
methods can be applied to any type of data, they were originally developed to explain
image data.

2.3.1.1 Local Interpretable Model-Agnostic Explanations (LIME)

LIME is a popular explainability technique which randomly samples inputs around the
instance being explained using post hoc perturbations of the original input instance. By
feeding these samples into the model, LIME creates a new, local and linear interpretable
model around the original input [9]. The authors provide a method called SP-LIME to
choose a set of representative explanations that cover a diverse set of globally important
features as their take on a global explanation [9].

Variations of LIME include DLIME [25], k-LIME [32] and LIMEtree [26]. LIME uses
random perturbations which can result in different explanations for the same input and
nonsensical instances. DLIME addresses the instability of the explanations created by
standard LIME and the risk of random perturbations resulting in nonsensical instances
[25]. DLIME uses agglomerative clustering to cluster similar samples in the training
data together [25]. The produced dendrogram is cut where the distance between two
successive clusters is the greatest [25]. A k-nearest neighbour classifier is used to assign
new data points to a cluster and an explanation is constructed as a linear regression
model fitted to all instances in the assigned cluster [25].

Similarly to DLIME, k-LIME clusters the training data points first, but using k-means
clustering [32]. The local linear model is then fitted to all the data points in the cluster,
unless the cluster is less than 20 instances in size [32]. In that case, k-LIME uses a
global linear surrogate model fitted to the entire training set [32]. The global surrogate
model is also used to provide a global explanation of the original model [32].

LIMEtree instead considers the case when the local behaviour cannot be modelled
with a linear substitute model and uses a regression tree as its surrogate model [26].
Because of the local regression tree, LIMEtree can consider multiple classes for the
local samples at the same time, rather than fitting a separate one-vs-rest linear model for
each class as standard LIME does [26]. Anchor [27] is another explainable AI method
developed from the concern of LIME’s linear nature. They use a set of if-then rules as
the surrogate model and explanation, which besides being able to capture non-linear
local behaviour also benefits from being more intuitive for users [27].

Another downside of LIME is that it has a high computational cost because of the many
perturbations necessary. STREAK [24] is an explainable AI method that is inspired by
LIME but reports a much faster runtime.

2.3.1.2 Shapley Additive Explanations (SHAP)

Shapley values are found in game theory to decide how to fairly distribute a payout
based on each person’s contribution to a coalitional game [41]. In the explanation
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technique SHAP, this is viewed as the input features’ contribution to the prediction [31].

The paper presenting SHAP [31] defines additive feature attribution models as models
where the sum of the feature’s contribution score matches the original prediction:

f (x)≃ g(x′) = φ0 +
M

∑
i=1

φiz′i, (2.1)

where f (x) is the prediction of the original input x, g(x′) is the local approximation
of the simplified input x′, φi is the contribution score of each simplified input feature
and φ0 a bias contribution, M the number of simplified input features and z′i ∈ {0,1}
indicates whether feature i is present (1) or absent (0) in the simplified input [31]. The
simplified input x′ is the interpretable input that the explanation should relate to, such
as a set of super pixels for an image where the input x to the prediction model is a
multidimensional array of three colour channels per pixel [9].

They note that some existing models like LIME [9] or DeepLIFT [35] (see Section
2.3.1.3) adhere to Definition 2.1 and so are additive feature attribution models. They
define SHAP as the unique additive feature attribution model that satisfies three desirable
properties: local accuracy, missingness and consistency. This results in explanations
consisting of the Shapley values. To find the explanations, SHAP perturbs the input
locally and observes how the model’s prediction changes, calculating the SHAP values
in the process. How the SHAP values are approximated depends on which SHAP model
is used [31]. The local explanation provided by SHAP can be summarised to a global
explanation [31].

SHAP exists as a model-agnostic version and in various model-specific versions in-
cluding LinearSHAP [31] for linear models, DeepSHAP [31] for neural networks,
TransSHAP [38] for transformer-based neural networks and GradSHAP [39] which is
based on integrated gradients.

2.3.1.3 Deep Learning Important FeaTures (DeepLIFT)

DeepLIFT [35] was designed for explaining neural networks. In DeepLIFT, a reference
input is chosen by the user to represent typical background values for the input features.
The reference state is defined as the prediction of the reference input. From the reference
state, the difference is backpropagated through all the neurons as the difference between
the original and reference activations back to the input layer, resulting in the contribution
scores of the input features [35].

2.3.1.4 Integrated Gradients

Integrated gradients [34] is a local explanation method for deep neural networks that
satisfies the two axioms defined in the paper: sensitivity and implementation invariance.
It is a generalisation of DeepLIFT designed to satisfy implementation invariance [34].
Integrated gradients are computed by first identifying the straight line path between
the baseline input (for instance, a black image or a zero vector) and the input to be
explained. The integral is then approximated by summing the gradients at sufficiently
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small steps along the straight line [34]. As this requires evaluating many inputs and
extracting many gradients, it is computationally expensive [42].

2.3.1.5 Example-based explanation techniques

Example-based explanation techniques select representative instances or produce new
instances that explain the model’s decisions, making it closely related to the global
explanation methods. The example instances that represent the model’s predictions are
called prototypes and some example-based methods also create criticisms, instances that
are poorly represented by the prototypes. Example-based methods include MMD-critic
[23], MAPLE [28] and DICE [29]. Example-based methods are not the focus of this
thesis as they make less sense for amino acid sequences.

2.3.1.6 DeepCover

Sun et al. [8] developed the image explanation technique DeepCover that is the focus of
this thesis. They define their explanations as the minimum subset of features needed for
the model to make the same prediction as with the original input. To decide which input
features to include in the explanations, they first create a test suite by randomly masking
pixels in images by setting them to a background colour. The number of masked pixels
is dynamic and depends on whether the masking changed the model’s prediction. For
each pixel of the input, they calculate the number of times the pixel was masked or
not masked and whether the prediction of the image changed. Using these counts and
statistical fault localisation measures, they rank the pixels based on importance. The
minimal explanations are constructed by adding pixels to a blank image in the ranking
order until the model reaches the original prediction.

Images and Proteins as Sequences. When used as input for machine learning models,
pictures are often simplified to sequences of pixels. That is why some explanation
techniques used for image classification can be adapted for sequence domains such as
natural language or proteins. The goal of this project was to adapt the DeepCover tool
for peptide presentation prediction. Practical reasons why DeepCover was chosen for
this project are the accessibility of the tool, the code is available and a tutorial on how
to get started and run the tool was provided, the adaptions were feasible in the time
frame of the project, and because it is a recent and relevant technology.

Statistical Fault Localisation Measures. DeepCover uses Statistical Fault Localisation
(SFL) approaches to rank positions, pixels, of the input [8]. SFL is a technique from
software testing that ranks program elements such as statements or assignments by how
likely they are to contain a sought-after bug. It does this by using statistical measures
and how frequently each program element appears in passing or failing test executions.

The SFL measures listed below use the parameters (as
ep,a

s
e f ,a

s
np,a

s
n f ) which represent

the number of times a program element s was executed (e), not executed (n) in passing
(p) and failing (f) test executions [8]. In DeepCover, “passing” was instead defined as
the mutated instance being predicted as the original label, where original label was the
one predicted by the model for the original input instance and not necessarily the true
label. “Failing” means that the mutation caused the label to change. For executions,
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DeepCover instead considers whether the single pixel s of the input was mutated or
not. A pixel s of the test input was considered “not executed” if it was masked and
“executed” if the pixel was the same as in the original instance [8].

There are many options for SFL measure [43]. The SFL measures used for this project
were those that were already chosen and implemented for the DeepCover tool. These
were Tarantula, Ochiai, Wong-II and Zoltar [8]:
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Minimal Subset Explanations. Sun et al. [8] describe a good explanation as sufficient,
minimal and not obvious. The explanations of images and peptide presentation are both
not obvious as they are open problems and we can imagine multiple different possible
explanations. DeepCover returns a full explanation that consists of an importance score
for each position of the input. The minimal explanation algorithm proposed by Sun et al.
[8] attempts to reduce the full explanation to a minimal and sufficient explanation. The
algorithm works by first masking all input positions to the background colour. It then
unmasks pixels in the order of importance given by the full explanation until the original
prediction is achieved, fulfilling the sufficiency criterion. It is considered minimal
because it stops unmasking positions as soon as the original prediction is recovered.
Because the method does not try all possible combinations of minimal explanations,
it is not ensured to be the smallest possible explanation that satisfies the constraint of
resulting in the original prediction. However, it is likely close to minimal because the
positions are added in order of importance.

DC-Causal. The creators of DeepCover (DC) extended their work to create DC-Causal,
an explanation method based in causal theory which performs better on occluded images
[44]. The algorithm splits the image into rectangular super-pixels and calculates the
responsibility of each super-pixel. Mutants of the instances are created by masking
different combinations of super-pixels. The responsibility of a super-pixel Pi, j is defined
as the

‘minimum difference between a mutant image and the original image over
all mutant images xm that do not mask Pi, j , are classified the same as the
original image x, and masking Pi, j in xm changes the classification’ [44]

where the differences between the original images and its mutant is the number of
super-pixels that were masked in the making of the mutant. DC-Causal then iteratively
refines the super-pixels and calculates the responsibility for each further split until the
partitions are small enough or all partitions have the same responsibility.



Chapter 2. Background 11

2.3.2 Explainable AI for NLP

The concept of basing explanations on how the predictions change when masking
parts of the input has also been applied to natural language processing. Representation
Erasure [40] focuses on global explanations which can relate to an input dimension,
specific input words, or subphrases (the minimum subset of words that, if removed,
changes the model’s prediction). They compute the importance of a feature (word or
dimension) as the sum of the relative difference in output when simply removing parts
of the input representation.

Harbecke and Alt [30] argue that gradient-based explanations like Integrated Gradients
are unsuitable for NLP tasks, as natural language follows a discrete distribution. The
previous perturbation methods often delete an input feature (often a word) or mask it
with a nonsensical background value (such as [UNK]) which in the NLP domain results
in sentences that would not naturally occur. Their method, occlusion and language
models (OLM), substitutes input features with ones generated by a language model that
depends on the distribution of the data set the input was sampled from. The explanation
method then assigns a relevance score to each input feature as the difference between
the prediction of the original input and the inputs with the feature resampled using the
language model.

Minimal Contrastive Editing (MICE) [37] is a perturbation and example-based ex-
planation method especially developed for NLP models. They describe contrastive
explanations as answers to questions in the form ”Why p and not q?”, why event p
happened instead of another event q where p is the prediction and q is called the contrast
case. This produces for instance the contrastive explanation ”This movie is bad” which
is classified as the contrast case negative sentiment for the input ”This movie is great!”
classified as a positive sentiment. They aim for the edits and resulting explanations to
be fluent (meaning that they should be text natural for the domain) and minimal. In the
case of amino acid sequences, contrastive examples would be less meaningful than in
natural language tasks.

2.3.2.1 Attention-based Explanations

Attention plays an important role in transformers. Attention as explanations is a
controversial topic [45, 46], but they can still be used to interpret a model. Transformer
models pass the input through many layers, which combine the features of the previous
layer using self-attention. After repeatedly combining the features, the attention scores
at a given layer cannot be associated to specific features of the input, except for the
attention scores of the input layer. Abnar and Zuidema [36] propose two methods to
compute the attention scores of the input features from any layer by representing the
features at each layer as nodes in a directed acyclic graph where the edges are the
attention going between the features of each of the layers. They define attention rollout
as the sum of the scores given to each path between an input feature and the feature in
the layer of interest, where the score of a path is the product of its edges. They define a
second method, attention flow, as the sum of the minimum capacity of the links between
an input feature and the node/feature in the layer of interest.
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2.3.3 Explainable AI for biology

While there are plenty of explainable AI techniques for images and NLP tasks, the field
is not as advanced in the biological AI domain. A few recent attempts of developing
explainable AI methods include PoSHAP [33], ALPODS [22] and iRF-LOOP [21].

Dickinson and Meyer [33] applied SHAP to an MHC-I binding affinity prediction
LSTM model in a method they call Positional SHAP (PoSHAP) in an attempt to
produce explanations that show the impact of positions in the input sequences.

ALPODS is an explainable AI system for diagnosis based on flow cytometry results,
which has high dimensions with more than 100 000 cells and 10 or more features.
ALPODS clusters the data into subpopulations and creates rules for each subpopulation.
The rules for the subpopulations are combined (by fuzzy conjunction) to a decision for
the input which gives the diagnosis [22].

Iterative random forest (iRF) [20] builds on the idea that the location of a feature in
a decision tree describes its feature importance. They argue that the importance of
chosen features when building the decision trees are conditional on the previously
chosen features, which accounts for interconnected dependencies common in biological
settings. iRF iteratively creates weighted random forests after weighting the input
features by the feature importance from the previous forest [20]. iRF Leave One Out
Prediction (iRF-LOOP) [21] expands on the idea of iRF to create a matrix to represent
how the input features are related. iRF-LOOP applies iRF to get the importance of all
features for predicting an input feature. Doing this n times for the n features of the
input creates a n x n importance matrix which when normalised can be interpreted as a
directional adjacency matrix defining which features most implement each of the other
features. For instance, Garvin et al. applied iRF-LOOP and Random Intersection Trees
(RIT) to SARS-CoV-2 sequences to find the relationship between mutations in genetic
material [47].

Attention has also been considered as explanations in ML models applied to proteins
[48]. They look at the attention in transformer models applied to protein datasets. They
found that attention (1) captures the three-dimensional relationships as it connects amino
acids that are far apart in the amino acid sequence but close together in the protein’s
three-dimensional structure, (2) targets binding sites and (3) captures increasingly
complex representations of structure and function with increasing layer depth.

The papers presenting ImmunoBERT [4, 5] also put a focus on the interpretability of
their model. Because the model is a complex black-box transformer model, they apply
the common post hoc explanation methods LIME and SHAP.
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Methods

As mentioned in Section 1.1, the aim of this project was to use DeepCover to interpret
black-box presentation prediction model ImmunoBERT. This section outlines how
DeepCover was modified to create explanations for the ImmunoBERT model. Modified
aspects of DeepCover were:

• DeepCover was developed by the original authors for explaining image models
[8]. To adapt the explanation tool to ImmunoBERT, DeepCover was modified
in this project to handle the amino acid sequence input rather than the expected
images.

• The original DeepCover creates mutations by masking super-pixels with a given
background colour. As mutations occur naturally in genetic code, DeepCover
was adapted to simulate natural mutations when mutating the amino acid input.

• Parallelisation of the execution of DeepCover by adding options to split the input
instances into batches to run the batches in parallel.

Unchanged aspects of DeepCover that are explained in Section 2.3.1.6 include:

• The fault localisation metrics Tarantula, Zoltar, Ochiai and Wong-II implemented
in the DeepCover tool.

• The minimal subset explanation algorithm to use the full explanations produced
by DeepCover to select a minimal subset of the original input sequence as an
alternative explanation.

3.1 Overview of Input

DeepCover was originally developed for image-based explanations and such the ex-
pected inputs were 2- or 3-dimensional arrays, depending on the number of colour
channels. The main changes implemented in this project were related to the format of
the input data and how the input was mutated. To understand the changes, it is helpful
to first look at the format of the amino-acid instances of the dataset.

13
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Figure 3.1: Example of the token embedding of an instance. The black array is the token
embedding part of the ImmunoBERT input and the red array below it shows the origin
amino acid sequences and special tokens <cls> for sentence-level representation and
<sep> to separate the sequences. The left-hand column shows the different parts of
the input, encoded in the segment embedding. “Positions” of an input instance refer to
the indices in the token embeddings.

The input instances consisted of multiple amino acid sequences to represent the peptide,
flanks (the context of the peptide in the origin protein) and MHC-I pseudo sequences.
The sequences were encoded as an array of integers representing the amino acids in the
sequences. To match the input format required by BERT models, the input sequences
started with a classification token [CLS] and the peptide, flanks and MHC pseudo
sequence were separated by [SEP] tokens, see Figure 3.1. The input was then embedded
as token, segment and positional embeddings, as is standard with BERT. The embedding
also contained the target label and an input mask to force the model to ignore some
parts of the input. A more detailed example of the input embeddings can be found in
the appendix of the ImmunoBERT paper [4].

3.2 Modifying DeepCover

DeepCover in the ImmunoBERT Context. The parameters (as
ep,a

s
e f ,a

s
np,a

s
n f ) used

in the fault localisation measures were gathered on an amino-acid level of each instance
to be explained, with one set of parameters produced for each position (in the token
embedding presented in Figure 3.1) of each input instance. The four parameters were all
counts of events which were counted over a test suite created by mutating the original
instance. Calculating the SFL measures was again done for each position of each input
instance, giving a full explanation consisting of importance scores for each instance of
the same size as the instance.

Parts of Input to Mutate. Some parts of the inputs should be excluded from the
mutations. For instance, the non-amino acid tokens [CLS] and [SEP] were excluded
from the mutations and flags were added to DeepCover to signal which parts of the
amino acid data to mutate, with options for the peptide, MHC pseudo sequence and the
flanks.

Shape of Mutations. Another change to how DeepCover handled the ImmunoBERT
input was the shape of the mutated regions. In the original DeepCover application, the
input images were perturbed by masking super-pixels. Practically, that translated to
masking rectangular subsets of pixels but ranking each individual pixel based on the
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SFLs and how many times each pixel was included in super-pixels. However, the input
to ImmunoBERT was one dimensional and short. Therefore, the mutated regions for
the ImmunoBERT input were non-continuous.

The upcoming sections further describe the modification to mutations using substitution
matrices and the parallelisation of DeepCover.

3.2.1 Domain-specific perturbations

A concern about LIME and random perturbations is the risk that the mutations result in
nonsensical instances. To minimise that concern, the mutations used by DeepCover to
explain the amino acid input was designed to simulate real substitution mutations that
happen in genetic code. This was done using BLOSUM (BLOcks SUbstitution Matrix),
which is a substitution matrix with scores of how likely a substitution mutation is in the
genetic code for each pair of amino acids.

Previous research investigating NetMHCpan, an established and popular MHC-peptide
binding model, has suggested that the choice of substitution mutation in the MHC
section of the input has a big effect on the set of peptides that are predicted as binding
to the MHC molecule [13]. They first evaluated the ability of NetMHCpan to predict a
peptide-binding repertoire (the set of peptides that bind to a given MHC protein) which
was already known from the literature to ensure that the model was reliable. They then
used BLOSUM to perform single substitution mutations. They found that the size of
the overlap between the original peptide-binding repertoire and that predicted after
mutations was larger for those mutated with amino acids with higher BLOSUM scores,
those being more similar to the amino acids in the position before mutating. They
concluded that this means that the substitutions that are less likely to occur, because
they involved amino acids that have different physiochemical properties, change the
peptide-binding repertoire the most.

In the original DeepCover tool for images, mutated images were created by masking
super-pixels with a background colour. Mutations happen naturally in genetic material
and proteins. The mutations of DeepCover can thus naturally be extended to peptides
using substitution matrices that reflect the rate of substitution mutations in proteins.
When mutating our protein inputs, the randomly chosen amino acids were therefore
replaced by the most similar amino acids from the BLOSUM substitution matrix. More
likely substitution mutations tend to be between physicochemically similar amino acids.
For instance, they might have similar size or polarity which affects how hydrophobic or
hydrophilic an amino acid is [13]. We used the highest scoring BLOSUM substitutions
to mutate the input to get as realistic mutations as possible.

3.2.2 Parallelisation

Command line arguments were added to DeepCover which specified batch number and
batch size. These flags were used to index into the set of input instances to select a
subset of instances to produce explanations for. A bash script with GNU parallel [49]
was then written to iterate over the input split up into batches using the flags and run the
batches in parallel.
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Experiments

The aim of the experiments was to establish how well the modified DeepCover could pro-
duce explanations for the ImmunoBERT model’s decisions. The following evaluations
were considered in the experiments:

Part 1: Performance of DeepCover in Isolation. The first evaluation concerned the
performance of DeepCover in isolation. The metrics considered were:

Coverage of Explanations. The coverage of explanations was interpreted as how
many instances DeepCover could produce explanations for.

Biological Quality of Explanations. The quality of the explanations produced by
DeepCover compared to known biological properties of the MHC molecules and
peptides. Biological properties include which positions are known to be important
for binding between the MHC molecule and peptide in general and for specific
alleles of the MHC molecule.

Agreement of Fault Localisation Metrics. Comparing the explanations DeepCover
produced when using the four different fault localisation measures included in the
tool: Tarantula, Ochiai, Wong-II and Zoltar.

Frequency and Size of Minimal Explanations How well the minimal explanations
worked for our protein application, evaluated by how often minimal explanations
could be produced, the size of the minimal explanations and whether the positions
included in the minimal explanations agreed with the full explanations.

Part 2: Comparison Against LIME and DC-Causal. The second evaluation was a
comparison of the explanations produced by DeepCover against two other perturbation-
based explanation methods. The other explanation methods were DC-Causal, which
is also a part of the DeepCover tool, and LIME. The comparison was performed on
two levels, comparing the rankings across instances and per instance:

Position Rankings Across Instances. Across instances, the rankings produced by
each explanation method were plotted and the trends in which positions were
deemed the most important by the different methods compared.

Position Rankings per Instance. All three explanation methods are local expla-
nation methods, producing one explanation per instance. The second level of

16
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comparisons focused on a statistical comparison of the instance-level explana-
tions. The instance-level comparison also included the explanation coverage of
DC-Causal and LIME.

Part 3: Runtime Efficiency. The third evaluation regarded efficiency and involved
measuring the runtime of DeepCover, comparing it to the runtime of LIME and eval-
uating the runtime improvement from the batch parallelisation applied to DeepCover.

The following sections describe the experiment setup to perform these evaluations.

4.1 Data

The explanation experiments were run for the 12 MHC-I alleles included in the test
set, provided and split by Gasser [4]. In the experiments, DeepCover was run on
500 positive instances and 500 decoy instances for each MHC allele to mirror the
explainability experiments performed by Gasser [4, 5]. The ImmunoBERT model was
built with peptides of length 7-15 amino acids [4]. To simplify creating aggregate
results, all instances chosen for this project had peptides of length 9 amino acids, which
is one of the preferred peptide lengths for binding to the MHC molecules [50]. All the
MHC pseudo sequences were of the same length in this set (34 amino acids), but the
flanks varied in existence and size. The varying size and existence of the flanks was
not a problem as they were included when the instances were given to the model for
prediction, but were not mutated during the experiments or included in the explanations.

4.2 ImmunoBERT Model

Hyperparameters. The ImmunoBERT model used for the experiments was fine-tuned
as part of the original ImmunoBERT paper [4]. No training or fine-tuning was performed
in this project. It was fine-tuned by Gasser [4] for 5 epochs with learning rate 1e-05, 19
decoys per positive instance and using the classification token’s output as the pooling,
all decided through Gasser’s experiments. No further hyperparameters were set for the
experiments, besides turning the presentation score into a classification.

Classification. ImmunoBERT predicts a presentation score, representing how likely
it was that the given MHC-I allele presented the given peptide. The score was passed
through a sigmoid function, as in Gasser’s code [51], to map the score to the range
[0,1]. Unlike LIME and SHAP used by Gasser [4, 5], DeepCover needed a class label
prediction, so the score was converted to a class label using a threshold of 0.5 to evenly
divide the range into the two classes. This made a presentation score of 0.5 or higher
the positive class “presented” and lower than 0.5 the negative class “not presented”.

4.3 DeepCover

DeepCover Parameters. DeepCover created one explanation per instance by generating
and computing the SFL measures on one test set per instance. The test set was created
by mutating the instance 2000 times, resulting in a test set of 2000 mutated instances.
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Only the peptide and MHC parts of the input were mutated as Gasser already concluded
that the flanks were the least important parts of the input [4, 5]. The number of
mutations were 1, 2 or 3 positions in non-continuous regions and randomly chosen. The
experiments were run for all four SFL measures, Tarantula, Ochiai, Wong-II and Zolta,
for 1000 instances for all 12 MHC-I alleles.

Minimal Subset Explanations. The minimal subset explanations for the ImmunoBERT
explanations were produced using the minimal subset explanation algorithm described
in Section 2.3.1.6 in the related work covering the DeepCover tool. When applying the
minimal explanation algorithm to ImmunoBERT, positions were masked by setting the
corresponding positions of the input mask to 0. The positions were then unmasked in
the order of the full explanation given by DeepCover using the Tarantula SFL until the
original prediction was recovered, producing an explanation that consisted of a subset
of the original input sequence.

4.3.1 Parallel Execution Setting

The experiments were parallelised with a GNU parallel bash script [49]. The new batch
arguments were used to split the instances into 25 batches of size 40 instances during
the experiments. Eight batches were run in parallel on a GPU server where they were
assigned one GPU per running DeepCover batch.

4.4 LIME

LIME is a commonly used explainable AI method. The objective of comparing the
explanations produced by DeepCover to those produced by LIME was to decide whether
they uncover the same positions as important. While complete agreement was not the
the goal, some similarity between the explanations from the two methods can indicate
truly important positions

Across-Instance Comparison. The comparison with LIME was done on two levels,
on an across-instance level per allele and on a local per-instance level. For the across-
instance view, the figures had already been created by Gasser [4]. They included
rankings of the positions of the peptide, the flanks of the peptide which were the 15
amino acids on either side of the peptides in the original protein, before it was sliced
into peptides, and the MHC pseudo sequence.

Instance-wise Comparison. For the local, instance-wise comparison, the LIME expla-
nations had to be recreated and so there was an opportunity to design the experiment
setup. As the flanks were deemed the least important in the original ImmunoBERT work
[4] and DeepCover was used to produce explanations for only the peptide and MHC part
of the input, the LIME explanations produced for the instance-wise comparison included
only the peptide and MHC parts of the input. LIME explanations were produced for
the same 1000 instances for each allele as DeepCover’s explanations and was based on
2000 mutations per instance.



Chapter 4. Experiments 19

4.5 DC-Causal

DC-Causal was developed by the authors of DeepCover [44] and is part of the Deep-
Cover tool. DC-Causal is a perturbation-based explanation technique which assigns
an importance to an iteratively refined subset of input positions, see the original paper
[44] or Section 2.3.1.6. The explanations produced by DC-Causal were obtained from
another student at the University of Edinburgh (Linda Mazánová) who modified DC-
Causal for explaining ImmunoBERT’s peptide presentation decisions. It was run on the
same 1000 instances per allele as DeepCover with SFL and LIME and the explanations
were included in the instance-wise comparison with DeepCover with SFL.

4.6 Rank Biased Overlap for Instance-wise Comparisons

Rank Biased Overlap (RBO) is a measure to compare ranked lists [52]. RBO scores
are in the range [0,1], where 0 means completely disjoint and 1 means identical ranked
lists. Items that are ranked higher contribute more to the RBO score and it allows us to
calculate how much weight was given to the top items.

The RBO score was used to compare the explanations produced by different methods
instance-wise. The instance-wise comparison was performed for the different SFL
measures implemented in DeepCover and to compare DeepCover to other explainable
AI techniques LIME and DC-Causal. The RBO score was computed where both
methods produced an explanation for the instance. The score was calculated on the full
explanation containing the peptide and MHC ranking but also on just the rankings of
the peptide positions, as these are the most important regions of the inputs [4, 5].

When computing the RBO score of the MHC and peptide combined, the parameter p,
which weights the top positions in the lists higher, was set to 0.9. This assigned 86% of
the score to the top 10 items of the MHC and peptide combined. This setup was chosen
because it assigned a clear majority of the weight to the number of top positions that
could accommodate the whole peptide, with a small margin, which tends to have the
most important positions. During the peptide-only comparison, p was set to 0.55 to
enable comparison between the scores: the same percentage of the weight was given
to the top 2 items, which makes up the same fraction as the top 10 positions for the
combined rankings.

4.7 Runtime

The final experiment measured the runtime of LIME and DeepCover when producing
explanations. Both explanation methods were run for 50 instances on an interactive
SLURM session with 4 CPUs and 1 GPU for performing the predictions. The per-
instance runtime was then computed as the average over the 50 input instance.

The execution of DeepCover was parallelised using GNU’s parallel [49] and batches, as
described in the methods (Chapter 3). To include this “real-life” use of DeepCover, a
runtime experiment with 8 parallel batches was run for the 50 instances. It was run as a
SLURM batch job with one CPU and one GPU per parallel batch.
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Results

This chapter presents the results of the experiments. The presentation starts with
evaluation part 1 concerning the coverage and biology of the explanations produced
by DeepCover. This is followed by part 2 evaluating how the explanations compare to
other explanation techniques and finally there is a short runtime evaluation for part 3.

5.1 Explanations Produced by DeepCover

The figures presenting the across-instance views of the explanations produced by
DeepCover were formatted to correspond to figures created by Gasser [4] to facilitate
comparison. DeepCover ranks the positions of the input for each instance. The figures
show how often each position of the peptide and MHC input was ranked in different
ranking positions. DeepCover was implemented with four fault localisation measures,
Tarantula, Ochiai, Wong-II and Zoltar. The analysis first focuses on Tarantula and then
compares the results against the other measures, because of their similarity.

5.1.1 Across-Instance View and Biological Interpretation

The evaluation of DeepCover using Tarantula SFL follows the first two parts of eval-
uation part 1 outlined in Chapter 4: the coverage of DeepCover explanations and the
quality of the produced explanations compared to biological properties. The biological
properties refer to the topics outlined in the biological background in Section 2.1.

Because changes in the MHC molecule largely impacts which peptides it will present,
the analysis and modelling of peptide presentation is customarily done on a per-allele
basis. The original project by Gasser [4] focused on the explanation of three representa-
tive alleles: HLA-A*33:01, HLA-B*54:01 and HLA-C*01:02 and presented the rest in
the appendix. Where there is not enough space to present the results from all alleles in
the main body of this report, the comparison will be presented in the same way here
and in upcoming sections of the results.
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5.1.1.1 Coverage

Coverage. Table 5.1 shows the coverage of the explanations produced by DeepCover.
DeepCover was given 1000 instances (500 positive and 500 negative) per allele to
explain. As presented in Table 5.1, DeepCover failed to explain the majority of instances
for all alleles except HLA-A*33:03 which had explanations for just over 50% of the
1000 instances. From Table 5.1, it is clear that most of the explained images were the
positive instances while very few of the decoys were explained. DeepCover relies on
the predicted label switching while mutating to be able to compute the SFL measures.
The imbalance between the number of positive and decoy instances that were explained
was likely caused by the positive instances being easier to switch to the opposite label
than negative instances.

Table 5.1: The coverage of DeepCover’s explanations, as a percentage of the 1000
instances per MHC-I allele and for the instances labelled positive and negative.

Allele
Explanations Produced

by DeepCover
Percentage
Explained

Presented Instances
Explained

Decoys
Explained

HLA-A*33:01 458 45.8% 452 6
HLA-A*33:03 505 50.5% 476 29
HLA-A*36:01 410 41.0% 384 26
HLA-A*74:01 495 49.5% 475 20
HLA-B*37:01 206 20.6% 188 18
HLA-B*46:01 246 24.6% 224 22
HLA-B*54:01 465 46.5% 426 39
HLA-B*58:01 382 38.2% 343 39
HLA-B*58:02 340 34.0% 319 21
HLA-C*01-02 445 44.5% 417 28
HLA-C*15-02 291 29.1% 269 22
HLA-C*17-01 467 46.7% 436 31

Binary Class Issue. The main causes of the difficulties of switching the labels through
mutations were the binary class nature of the model, an ill-chosen hard threshold and
ImmunoBERT being robust. ImmunoBERT being robust means that the model itself
was not swayed by perturbations in the input instances. The experiments performed
as part of the original DeepCover paper involved many classes [8]. When applied to a
binary class problem, there is less instability as there is only one other class to switch to
and switching the label becomes harder.

5.1.1.2 HLA-A*33:01

The across-instance results for allele HLA-A*33:01 are displayed in Figure 5.1. They
show that the positions of the peptide are generally ranked higher than the MHC
positions (beware of the colour difference between the peptide and MHC sections in the
figures). The most important positions were the 2nd and 9th position of the peptide and
the 63rd of the MHC pseudo sequence.

Peptide Importance. The most important position in the peptide and in the whole
input for MHC allele HLA-A*33:01 was position 9, being ranked as the most important
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Figure 5.1: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-A*33:01 for the peptide (top) and the MHC pseudo sequence (bottom).

position in almost half of the cases. There was also a spike at position 2 of the peptide.
These two positions are likely the anchor residues, the amino acids on either side of the
peptide that bind to the groove of the MHC molecules, discussed more thoroughly for
allele HLA-B*54:01 in Section 5.1.1.3.

MHC Importance. The most important position in the MHC input was position 63,
being ranked in the top 2 in almost 40% of the instances. In importance, this position is
comparable to position 2 of the peptide. Interestingly, position 63 in the MHC allele
was the position whose peptide-binding repertoire changed the most upon single-amino
acid substitution in previous experiments [13]. They concluded that this means that
position 63 is crucial for peptide binding according to their model, NetMHCpan, as
well [13]. Position 63 is located in pockets A and B [13], where pocket A likely houses
the N-terminus (start of the peptide, left-hand side in the figures) of the peptide.

Other slightly more important positions in the MHC pseudo sequence according to
DeepCover include positions 24 in pocket B, 66 in pockets A and B, 73 in pocket C
and 171 in pocket A [13]. Largely, being in the same pockets as position 63, they might
play a supporting role in binding the peptide. Pocket F usually houses the C-terminus
of the peptide. The most important position in pocket F is 77 but it does not stand out.
There is not enough clarity in these results to conclude where the C-terminus (end of
peptide, right-hand side in the figures) is housed in the MHC allele.

5.1.1.3 HLA-B*54:01

Peptide Importance. The rankings produced by DeepCover with Tarantula for allele
HLA-B*54:01 are shown in Figure 5.2. Again, positions 2 and 9 of the peptide were
the most important. However, in HLA-B*54:01, position 2 was more important than
position 9 with position 2 being the most important in 40% of the cases while position
9 was the most important position in about 30% of the instances.
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Figure 5.2: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-B*54:01 for the peptide (top) and the MHC pseudo sequence (bottom).

For a few variations of HLA-B alleles, it has been experimentally shown that the C-
terminus of the peptide was more conserved than the N-terminus, which was more
flexible and varied in anchor position and amino acids [50]. They found that the anchor
position of the C-terminus was mostly located at position 9 of the peptide and the amino
acid sequence was more conserved at that position [50]. They also showed that position
2 of the peptide was a common N-terminus anchor site and also tended to have a distinct
motif with less variation in amino acids than non-anchor positions of the peptide [50].

The rankings in Figure 5.2 agree that position 9 of the peptide was important. In terms
of ImmunoBERT mutations, this means that the conservation of the C-terminus anchor
residue has been captured by the model where mutating position 9 at the C-terminus
causes the peptide to no longer be predicted as presented. The most important position
in the N-terminus according to DeepCover was position 2, which was identified as
a common anchor position by Prilliman et al. [50]. For this specific allele, HLA-
B*54:01, the N-terminus housing pocket of the MHC molecule likely requires specific
properties of the peptide to bind it which seems to include an inflexible N-proximal
anchor residue. Similar properties were also present in HLA-A*33:01, which mainly
highlighted position 9 but also somewhat position 2, indicating a more flexible N-
terminus binding site.

MHC Importance. For the MHC pseudo sequence, the most important positions were
24, 95, 97 and 99. These positions are located in a variety of pockets. Position 24 is
located in pocket B, 95 in pocket F, position 97 in pockets C and E and position 99 in
pockets A, B and D [13].

The high importance of position 9 in the peptide is likely connected to position 95
which has the highest importance of the MHC molecule and is located in pocket F,
which commonly houses the C-terminus. The N-proximal anchor site (position 2) of
the peptide was also found to be very important. There have been indications that the
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N-terminus can bind to pocket B of the MHC molecule rather than pocket A [5, 53].
This means that there are possible interactions between position 2 of the peptide and
the important positions 24 and 99 of the MHC pseudo sequence, which are located in
pocket B.

5.1.1.4 HLA-C*01:02
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Figure 5.3: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-C*01:02 for the peptide (top) and the MHC pseudo sequence (bottom).

Peptide Importance. The across-instance view of the rankings for HLA-C*01:02
by importance is shown in Figure 5.3. In HLA-C*01:02, the most important position
of the peptide was position 3 with 40% of the highest rankings. Also position 9 was
slightly more important than the other positions. Although explored for HLA-B alleles,
Prilliman et al. [50] showed that position 3 can also be an N-proximal anchor position.
Considering the importance assigned to position 3 by DeepCover, it is likely the anchor
residue for HLA-C*01:02. The variation in most important position in the N-termini
across alleles further supports the hypothesis of Prilliman et al. [50] that the position of
the N-proximal anchor residue is flexible in these 9-length peptides. The slightly higher
importance assigned to position 9 indicates that it again was the C-terminus anchor
position, though it was more flexible to mutations than position 9 in the previous alleles.

MHC Importance. In the MHC part of the input, positions 9, 97 and 99 were the
most important but still less important than most of the peptide positions. Position 9
is located in pockets B and C, 97 in pockets C and E and position 99 in pockets A,
B and D [13]. The most important region was positions 97-99, which are adjacent in
the pseudo sequence but located in different pockets. These are likely important in the
binding as mutations in these locations led to changes in which peptides were predicted
as presented but, being in different pockets, it is hard to draw conclusions about how
they interact with the peptide. The flexibility of the C-terminus of the peptide might be
connected to the less defined important regions in the MHC allele.
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5.1.2 Comparison of Rankings Using Different Fault Localisation
Measures

DeepCover implemented four fault localisation measures, Tarantula, Ochiai, Wong-II
and Zoltar. The results from Tarantula have already been presented and this section will
look at how the results produced by Tarantula compare to those produced by the other
fault localisation measures.

5.1.2.1 Across-Instance Comparison

The aggregate figures produced using the other fault localisation measures for the first
allele, HLA-A*33:01 are shown in Figures 5.4 - 5.6. Comparing the figures between
themselves and to Tarantula in Figure 5.1, they produce very similar results with spikes
at positions 2 and 9 in the peptide, a large spike at position 63 of the MHC pseudo
sequence and smaller spikes at positions 24, 116 and 171. The other alleles (not included
in the report) also look very similar between fault localisation measures.
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Figure 5.4: The rankings produced by Ochiai SFL for allele HLA-A*33:01.

5.1.2.2 Instance-wise Comparison

To fully evaluate how much the different SFL measures agree, an instance-wise compar-
ison using RBO scores was performed. RBO is a measure that compares two ranked
lists where 0 is disjoint and 1 is identical lists. Table 5.2 shows the average RBO scores
for each pair of SFL measures.

Table 5.2: The average RBO scores between the four SFL measures across all 12
alleles.

Ochiai Zoltar Wong-II
Tarantula 0.911 0.897 0.644
Ochiai - 0.984 0.699
Zoltar - - 0.688
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Figure 5.5: The rankings produced by Zoltar SFL for allele HLA-A*33:01.
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Figure 5.6: The rankings produced by Wong-II SFL for allele HLA-A*33:01.

From the instance-wise comparison in Table 5.2, we can see that the agreement between
the measures varied between 0.644 and 0.984. Wong-II agreed the least with the other
measures. While the disagreement of Wong-II is not as clear in the aggregate figures, it
is apparent from the lower RBO scores. Wong-II is the only measure that does not scale
the counts, see Equations 2.2. Additionally, it only considers the cases where a position
was not mutated and simply subtracts the number of “passing” (where mutations in other
positions preserved the original label) from the number of “failing” (where mutations in
other positions caused the label to switch). The other SFL measures had a very high
agreement because they are based on the same statistics and are all a scaled measure
of as

e f , the number of times position s was not mutated but the predicted label was
switched by mutations elsewhere in the sequence.
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5.1.3 Minimal Subset Explanations

The final part of the evaluation of DeepCover in isolation was how well the minimal
subset explanations introduced by Sun et al. [8] apply to the peptide presentation
domain and the ImmunoBERT model. The idea of the minimal explanation is to use
the full explanation to choose a subset of the original input instance that is sufficient to
explain the original prediction.

Minimal Explanations for ImmunoBERT. The minimal explanations for ImmunoBERT
were created by masking the entire input and adding positions in the order that they
were ranked by DeepCover and Tarantula SFL in the full explanation until the original
label was recovered. When masking the whole input, the peptides were predicted as
not presenting by ImmunoBERT. As the minimal explanations depend on the label
changing from the starting label, minimal explanations could only be produced for
instances that were assigned the positive label, presented, in their original form. This is
a consequence of the a binary class problem, presented or not presented by the MHC
molecule. In the original DeepCover paper, it was intended for use on a multi-class
problem where minimal explanations can be produced for many more labels [8].

Coverage. Table 5.3 shows how many of the 1000 instances per allele could be
explained by DeepCover and how many of those resulted in a minimal explanation. The
column “Percentage Created” shows how many of the DeepCover explanations lead to a
minimal explanation, to clearly illustrate how many minimal explanation that could not
be created because of the constraint on predicted labels. The percentage ranges from
38% to 86% showing that the problem is severe for some alleles and acceptable for some.
The minimal explanations were produced for all of the instances that were predicted as
positive in their original form, because of the reasons outlined in the previous paragraph.
The table also presents the average size of the minimal explanations. This shows how
many amino acids, on average, were needed by ImmunoBERT to be able to predict the
original positive label and shows that the minimal explanations that were created were
smaller than the full explanations.

Table 5.3: The number of explanations and minimal explanations that were produced
by DeepCover for each allele. The column “Percentage Created” is the percentage of
explanations that led to a minimal explanation (based on the previous two columns).

Allele Explanations Produced
by DeepCover

Minimal Explanations
Produced

Percentage
Created

Average Size of Minimal
Explanations (out of 43)

HLA-A*33:01 458 289 63% 20.3
HLA-A*33:03 505 336 67% 20.8
HLA-A*36:01 410 349 85% 17.5
HLA-A*74:01 495 367 74% 25.9
HLA-B*37:01 206 78 38% 20.2
HLA-B*46:01 246 162 66% 23.7
HLA-B*54:01 465 335 72% 22.2
HLA-B*58:01 382 328 86% 21.6
HLA-B*58:02 340 277 81% 24.2
HLA-C*01-02 445 235 53% 22.7
HLA-C*15-02 291 115 40% 22.8
HLA-C*17-01 467 316 68% 19.7
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Summary View of Frequent Positions. Just like with the rankings, one minimal
explanation was produced per instance. Figures 5.7-5.9 summarise these minimal
explanations for the three representative alleles. These figures show how many times
each amino acid position in the peptide and MHC pseudo sequence was included in a
minimal explanation. Intuitively, we expect these figures to mirror the Tarantula ranking
figures as that is the order they were added to the minimal explanations.

HLA-A*33:01. Looking at Figure 5.7, the positions that stand out for HLA-A*33:01
are mainly 9 in the peptide and 24, 62, 63, 66, 77 and 147 in the MHC input. In the
ranking plot, position 9 of the peptide and 63 of the MHC are clearly the most important.
However, the other positions highlighted here in the minimal explanation summary
have small but detectable higher importances than their neighbours in the Tarantula
ranking plot. Position 2 was quite important in the ranking plot being the 3rd most
important position overall. However, here in the minimal explanation summary plot,
it is a frequent position but does not stand out as much as in the ranking plot when
compared to the frequency of the other peptide positions.
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Figure 5.7: A summary of the minimal explanations produced for allele HLA-A*33:01
where the bars show how many times each position appeared in a minimal explanation.

HLA-B*54:01. As shown in Figure 5.8, HLA-B*54:01 has spikes at locations 2 and
9 of the peptide which were also clearly the most important positions in the allele’s
Tarantula ranking plot. As for the MHC molecule, the most frequent positions in
the minimal explanations were 24, 77, 95 and the neighbouring positions on its right,
creating a stair-like shape. Like before, the ranking plot shows the same patterns.

HLA-C*01:02. Figure 5.9 presents a summary of the minimal explanations for allele
HLA-C*01:02. The positions that stand out as the most frequent in this figure include
positions 3 and 9 of the peptide and 9, 45 and 99 of the MHC part. While the ranking
plot looks very similar in terms of spikes, they are quite different in terms of relative
size. For instance, position 3 of the peptide is much more highly ranked than peptide
position 9 but they appear in approximately the same number of minimal explanations
because of the size of the minimal explanations.

Generally, the relative differences between lowly and highly ranked positions is smaller
in the minimal explanation summary plots. This is likely because the minimal expla-
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Figure 5.8: A summary of the minimal explanations produced for allele HLA-B*54:01
where the bars show how many times each position appeared in a minimal explanation.
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Figure 5.9: A summary of the minimal explanations produced for allele HLA-C*01:02
where the bars show how many times each position appeared in a minimal explanation.

nations are quite large on average, as seen in Table 5.3. Large minimal explanations
mean that more weight is given to lower ranked positions which introduces more noise
in those lower ranked positions. Minimal explanations work better when used as a local
explanation method. DeepCover was made for images and their minimal explanations
were certain regions of an image, to show what the model paid the most attention to
in its decision-making. Here, we were more concerned with the overviews, such as
the per-allele view. In these situations, the minimal explanations provide a different
and less detailed way of viewing the importance rankings rather than providing a new
perspective on the model’s decision-making.

5.2 Comparison with LIME and DC-Causal

This section contains the second part of the evaluation, comparison against the other
explanation techniques LIME and DC-Causal. The evaluation starts with a qualitative
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comparison of the across-instance ranking figures based on the explanations produced by
the different explanation techniques. This is followed by an instance-wise comparison of
agreement between DeepCover with Tarantula SFL, LIME and DC-Causal. To simplify
the discussion about DeepCover with SFL modified in this project and the DeepCover
variant DC-Causal, they are referred to as DC-SFL and DC-Causal, respectively, when
comparing the two.

5.2.1 Across-Instance Comparisons

The first level of comparison between the explanation techniques is comparing them
across instances, per allele, in figures. The DC-SFL and DC-Causal figures have been
designed to look similar to the LIME-based ranking figures, produced for the MSc
project that developed ImmunoBERT [4], to simplify comparisons. As the LIME figures
included the flanks, the colours of the MHC pseudo sequences in the DC-SFL and
DC-Causal figures were adjusted to make the figures more comparable.

5.2.1.1 LIME
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Figure 5.10: Across-instance view of the rankings for the peptide (top center), flanks (top
left and right) and MHC pseudo sequence (bottom) of allele HLA-A*33:01 given by LIME.
Figure from Gasser [4].

HLA-A*33:01 Peptide Importance. The rankings produced by LIME for allele
HLA-A*33:01 are shown in Figure 5.10. Comparing this to Figure 5.1, produced by
DeepCover with Tarantula, the peptide rankings were very similar. Position 9 was by
far the most important position in the peptide in both figures, being ranked first in about
half of the instances by both DeepCover and LIME. Additionally, position 2 was the
second most important and position 4 was the lowest ranked in the peptide for both
explanation methods.

HLA-A*33:01 MHC Importance. Both techniques agreed that position 63 of the MHC
pseudo sequence was very important and highly ranked in many instances. However,
LIME assigned higher importance to additional positions, such as 73, 116 and 171.
These positions were slightly higher than their neighbours in DeepCover, creating a
similar overall shape in the MHC input, but did not stand out as much as in the LIME



Chapter 5. Results 31

figures. A few other positions, such as 24, had a similarly small spike among their
neighbours in DeepCover but no spike in the LIME plot.
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Figure 5.11: Across-instance view of the rankings for the peptide (top center), flanks (top
left and right) and MHC pseudo sequence (bottom) of allele HLA-B*54:01 given by LIME.
Figure from Gasser [4].

HLA-B*54:01 Peptide Importance. For allele HLA-B*54:01, the rankings produced
by LIME are shown in Figure 5.11. In the peptide, both methods agreed that the most
important positions were 2 and 9. LIME assigned a slightly higher importance to
position 8 of the peptide which DeepCover did not.

HLA-B*54:01 MHC Importance. In the MHC input, there was a clear agreement
around position 95. Both LIME and DeepCover highlighted position 95 as the most
important in the MHC input, had a stair-like shape in the three positions to the right and
a little spike again at position 116. They both picked up position 77 but position 66 was
only high in LIME and not in DeepCover. LIME again had larger relative differences in
the MHC part of the input.
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Figure 5.12: Across-instance view of the rankings for the peptide (top center), flanks
(top left and right) and MHC pseudo sequence (bottom) of allele HLA-AC*01:02 given by
LIME. Figure from Gasser [4].
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HLA-C*01:02 Peptide Importance. Figure 5.12 presents the results of LIME for allele
HLA-C*01:02. For this allele, there was less agreement between the two techniques. In
the peptide, position 3 was the most important in DeepCover, followed by position 9.
LIME instead set position 9 as the most important and position 3 as the second most
important, with a substantial difference between the sizes of the bars. However, the
methods did agree that these two positions were the most important part of the peptide.

HLA-C*01:02 MHC Importance. Position 156 was the most important in the MHC
input according to LIME while DeepCover ranked position 156 and its neighbour,
position 152, only slightly higher than their other neighbours. Following position 156,
LIME ranked position 114, 99 and 97, in decreasing order. While DeepCover did not
highlight position 114, it did rank the neighbours on the left, 97 and 99 as the highest
in the MHC input. Both methods also had a small spike for positions 9 and 24. While
there were some similarities to be found, they were much more subtle than observed for
the previous two alleles.

Conclusion. Overall, the two methods uncover similar important positions in the
peptides but LIME identified more highly ranked positions in the MHC input. The
agreement between LIME and DeepCover with Tarantula for these three alleles suggests
that DeepCover does work as an explanation method. As the methods agree about the
importance of the peptides, we can be fairly certain that these regions are important.
The figures for the rest of the alleles can be found in appendix A for DeepCover with
Tarantula and in the appendix of the original ImmunoBERT MSc project for the LIME
figures [4] for further comparison.

5.2.1.2 DC-Causal

Figures B.1-B.3 in Appendix B present the across-instance view of the rankings pro-
duced by DC-Causal for the three alleles HLA-A*33:01, HLA-B*54:01 and HLA-
C*01:02. They were again formatted to correspond to the figures created by Gasser [4]
to facilitate comparison.

HLA-A*33:01 Peptide Importance. Both DC-SFL and DC-Causal recognised position
2 and 9 as important but DC-Causal ranked position 1 highest more often than position
9. Moreover, DC-Causal placed a larger emphasis on the positions in the start of the
peptide.

HLA-A*33:01 MHC Importance. In the MHC section, both DC-SFL and DC-Causal
ranked position 63 the highest. Additionally, they both ranked positions 73 and 77
slightly higher than their neighbours but the other slight fluctuations between the
position importances were not the same between the two explanation methods. DC-
Causal again assigned higher importances to the start of the sequence.

HLA-B*54:01 Peptide Importance. Both methods agreed that position 2 was impor-
tant but DC-SFL ranked position 9 very high while DC-Causal found position 9 one
of the least important position of the peptide. This is a significant disagreement as the
magnitudes are substantial.

HLA-B*54:01 MHC Importance. Both methods highlighted positions 95, 97 and
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99 in a stair-like shape but did not highlight the same positions of the MHC pseudo
sequence otherwise. DC-Causal again assigned higher importances to the start of both
sequences.

HLA-C*01:02 Peptide Importance. Both methods highlighted peptide position 3
as the most important. However, they disagreed on the other peptide positions where
DC-Causal placed a higher emphasis on the earlier positions 1 and 2 while DC-SFL
highlighted position 9 as the second most important.

HLA-C*01:02 MHC Importance. In the MHC pseudo sequence of HLA-C*01:02,
positions 24, 99 and 156 were assigned a slightly above average importance ranking but
the differences between the ranking of the positions of the MHC inputs were so slight
that it is hard to draw any conclusions about similarity.

Total order. DC-Causal is a top-down explanation method which can lead to coarse
explanations. In DC-Causal, the positions are iteratively partitioned and the whole
partition is given the same importance score when the stopping conditions are met.
For instance, consider a peptide of length 9 that is partitioned once into partitions of
size 4 and 5. If those partitions cannot be further partitioned, the 4 positions in the
first partition will receive the same importance score and the 5 positions in the second
partition will receive the same importance score. When assigning a total ordering to the
positions, a level of arbitrary ordering was introduced which was likely alphabetically
skewed, resulting in early positions being given higher rankings. The coarse-grained
explanations are a limitation of DC-Causal but the arbitrary ordering problem is only
introduced when ranking the positions based on the given importance scores. While the
plotting method allows for multiple positions to have the same ranking, only the total
order rankings were available when creating the figures.

Incomplete rankings. Another consequence of the coarse-grained explanations is that
the rankings produced by DC-Causal do not always include all positions of the input
sequences. All positions not included in the DC-Causal rankings were assigned ranking
200 when creating the figures, setting them to the least important as mutations in their
partition did not lead to sufficient label switches to be assigned an importance score.
This does not contribute to the problem of earlier parts of the sequences being ranked
higher.

Conclusion. DC-SFL and DC-Causal agreed that the peptide was the most important
part of the input overall. Somewhat similar patterns could be found in the MHC rankings
but the explanations produced by the two methods differed on the rankings of a few key
peptide positions. The DC-Causal figures assigned higher rankings to the start of the
sequences for all three alleles because of a bias introduces by the total ordering.

5.2.2 Instance-Wise comparison

While presenting the explanations as global explanations gives more intuitive presenta-
tions of the results, DeepCover with Tarantula SFL, LIME and DC-Causal are all local
explanation methods. Therefore, this section contains an instance-wise comparisons of
the explanations produced by the three techniques.
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5.2.2.1 Coverage

Coverage. Table 5.4 shows how many of the 1000 instances each of the three expla-
nation methods, LIME, DC-SFL and DC-Causal, managed to explain. As discussed
in Section 5.1.1.1, the coverage of DC-SFL was mostly less than 50% and Table 5.4
shows that the coverage of DC-Causal was even lower. Both DeepCover variants rely
on mutations of the input changing the predicted class label to produce explanations.
DC-Causal is even further restricted than DC-SFL as it splits the input into partitions
and masks subsets of these rather than mutating any subset of positions. LIME does not
rely on switching the predicted class label. It instead uses the difference between the
original and mutated instances’ presentation scores to produce explanations and could
therefore explain all instances.

Table 5.4: The coverage (instances that the methods could produce explanations for) of
the three explanation methods for the same 1000 instances per allele. The overlap in
the final column is the number of instances out of the 1000 that were explained by both
DC-SFL and DC-Causal. DC-SFL refers to DeepCover with the Tarantula SFL measure.

Allele LIME
Coverage

DC-SFL
Coverage

DC-Causal
Coverage

Overlap DC-SFL
and DC-Causal

HLA-A*33:01 100% 45.8% 39.5% 395
HLA-A*33:03 100% 50.5% 43.8% 438
HLA-A*36:01 100% 41.0% 32.3% 323
HLA-A*74:01 100% 49.5% 42.7% 427
HLA-B*37:01 100% 20.6% 14.2% 142
HLA-B*46:01 100% 24.6% 21.3% 213
HLA-B*54:01 100% 46.5% 42.8% 428
HLA-B*58:01 100% 38.2% 35.5% 355
HLA-B*58:02 100% 34.0% 29.3% 293
HLA-C*01-02 100% 44.5% 35.2% 352
HLA-C*15-02 100% 29.1% 22.9% 229
HLA-C*17-01 100% 46.7% 41.2% 412

Relationship Between Coverage of DC-SFL and DC-Causal. The last column of
Table 5.4 shows how many of the 1000 instances were explained by both DC-SFL and
DC-Causal. Comparing these numbers to the coverage of DC-Causal, it shows that
all instances that were explained by DC-Causal were also explained by DC-SFL. In
other words, the set of instances that DC-Causal could produce explanations for was a
subset of the instances that DC-SFL could produce explanations for. This highlights that
DC-Causal ran into difficulties for the same instances as DC-SFL because the predicted
labels of these instances did not change upon mutations.

5.2.2.2 Instance-Level Agreement

Instance-wise Comparison of Explanations. Table 5.5 shows the results of instance-
wise comparisons as the average RBO score per allele. Considering that an RBO score
of 0 means that the lists are disjoint and 1 means that they are identical, we see that
there is some agreement between DC-SFL and the other methods, especially LIME.
Like the aggregate comparisons, this shows that the different methods agree on the
trends but not on the details. Most importantly, it shows that DC-SFL has the potential
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to uncover positions deemed important by other explanation methods as well.

Table 5.5: Average RBO scores per allele. For the combined comparisons of peptide
and MHC pseudo sequence, 85% of the scores was assigned to the top 10 positions.
For the peptide-only scores, 85% of the weight was assigned to the top two positions.
DC-SFL refers to DeepCover with the Tarantula SFL measure.

Allele LIME vs DC-SFL LIME vs DC-SFL
peptide only DC-Causal vs DC-SFL DC-Causal vs DC-SFL

peptide only
HLA-A*33:01 0.432 0.510 0.395 0.407
HLA-A*33:03 0.436 0.549 0.386 0.396
HLA-A*36:01 0.515 0.647 0.316 0.283
HLA-A*74:01 0.427 0.452 0.317 0.274
HLA-B*37:01 0.332 0.260 0.382 0.361
HLA-B*46:01 0.376 0.306 0.348 0.305
HLA-B*54:01 0.458 0.472 0.401 0.442
HLA-B*58:01 0.414 0.516 0.340 0.344
HLA-B*58:02 0.386 0.346 0.325 0.308
HLA-C*01-02 0.393 0.383 0.393 0.409
HLA-C*15-02 0.335 0.291 0.405 0.443
HLA-C*17-01 0.429 0.422 0.407 0.439

Comparison of RBO Scores and Across-Instance Rankings for LIME and DC-SFL.
The highest RBO score between LIME and DC-SFL was 0.647 for HLA-A*36:01 and
the lowest were 0.260 for HLA-B*37:01 and 0.291 for HLA-C*15-02. The across-
instance figures produced by DC-SFL for these alleles can be found in appendix A and
those produced by LIME are included in the appendix of the original ImmunoBERT
report [4]. DC-SFL and LIME showed moderate across-instance agreement in the MHC
sequence. Where the alleles with high and low RBO scores differed was in the peptide
sequence. For the low RBO alleles, LIME highlighted the latter parts of the peptide,
like C-terminal positions 8 and 9, while DC-SFL put a larger emphasis on the start
of the peptide, like N-terminal positions 2 and 3, or had a more uniform distribution.
Meanwhile, for the highest scored allele, HLA-A*36:01, peptide position 9 was clearly
the most important position according to both methods. In conclusion, the alleles with
lower agreement, identified by a lower RBO score, also had lower quality agreement on
the across-instance level.

DC-Causal RBO scores and Comparison to Across-Instance Rankings. For most
alleles, the RBO scores of DC-SFL compared to LIME were higher than DC-SFL
compared to DC-Causal. As discussed in Section 5.2.1.2, DC-Causal produces coarse-
grained explanations that had a level of arbitrary ordering when assigning a total order
to the positions based on the importance scores. To apply RBO, the positions cannot
share the same rank so total ordering was necessary. Looking back at the across-
instance comparison of DC-SFL and DC-Causal, they both ranked the peptide positions
as containing the most important positions compared to the MHC positions but they
disagreed on the importance of a few key peptide positions, partially skewed by the bias
introduced by the total ordering.

Peptide-Only RBO Scores. The ranking of the peptide is particularly important as
RBO assigned 86% of the weight to the top 10 items and 52% to the top 3. To have
a high RBO score it is therefore important that the explanation methods agree on the
most important positions, which tend to be in the peptide. The peptide-only comparison
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also shown in Table 5.5 lead to a higher score in only about half of the alleles and in
the other half it led to a lower score. This shows that the methods did not agree more
on the peptide parts of the inputs overall. Out of the three alleles with the highest and
lowest RBO scores between LIME and DC-SFL discussed previously, HLA-A*36:01,
scored the by far highest peptide-only RBO score between LIME and DC-DFL while
the lowest ranked alleles, HLA-B*37:01 and HLA-C*15-02, showed a decrease in
peptide-only RBO score. This reflects the analysis of the across-instance figures.

Viability of Evaluation by Agreement. Neely et al. [10] performed a study where they
compared an array of explanation methods presented in the related work section (Section
2.3) of this report: LIME, Integrated Gradients, DeepLIFT, GradSHAP, DeepSHAP
and attention-based explanations. They produced explanations for 500 instances for an
LSTM model and a light-weight BERT model for natural language applications. To
compare the explanations, they computed Kendall’s τ between each pair of explanation
methods for the two models. They found that the explainable AI methods rarely
correlated with each other which means that the method of evaluating a new explanation
method by comparing the correlation with explanations produced by other explanation
methods is likely not ideal.

5.3 Runtime

DeepCover vs LIME. Table 5.6 shows the per-instance runtimes of LIME and Deep-
Cover computed by explaining 50 instances and averaging the runtime. Both DeepCover
and LIME are perturbation-based explanation techniques, meaning that they perturb the
input to create mutations and observe how that affects the predictions of a model. They
were both run with 2000 mutations per instance and so both ran the ImmunoBERT in-
ference 2000 times per given instance. DeepCover was substantially slower than LIME.
This shows that the way perturbation-based explanation methods are implemented
largely affects the runtime.

Table 5.6: Runtime per instance computed as the runtime averaged over the number of
instances when explaining 50 instances.

Explanation method Time per instance
LIME 13 seconds
DeepCover 85 seconds
DeepCover Parallel 16 seconds

Parallelisation. The DeepCover implementation provided by Sun et al. [8] was
completely serial with nested for-loops that looped over the instances and each mutant
of each instance. When computing the SFL scores, it looped over each SFL measure and
then over each position of the input to compute the score per position. The internals of
the DeepCover tool were not parallelised or vectorised by either the original authors or
as part of the current project. However, batch options were added to allow for external
parallelisation in a bash script. The last row in Table 5.6 shows that parallelisation
resulted in a significant runtime improvement over the un-parallelised DeepCover and
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made the runtime per instance comparable to LIME. The runtime could be further
improved by optimising the DeepCover code.

5.4 Threats to Validity

The main threats to validity of the experiments relate to the data generation, threshold
choice, and lack of gold standard.

Subset of Alleles Explained. MHC alleles vary a lot across the population, as discussed
in Section 2.1.1. Only a small subset of these were explained as part of the project.
These were the subset consisting of 12 alleles chosen by Gasser [4] with a focus on
the analysis of three of them. The subset of alleles that were chosen may not be
representative of the varied nature of the alleles.

Decoy Generation. The decoys (negative instances) were generated by Gasser [4] by
randomly sampling non-presented peptides from the set of proteins that the presented
peptides originated from. This method of decoy generation has not been validated
and the decoys may not always be biologically possible. This might have affected the
low number of explanations that were created for the negative instances but likely did
not skew the quality of the across-instance as few negative instances were included
in these results. If more negative explanations were available, the presentation of the
across-instance results should be split into negative and positive to explain the instances
on a per-class basis.

Explaining the Absence of a Label. The next threat is an abstract point where the
binary class problem that we are explaining can be viewed as the presence and absence
of some characteristics that makes the peptide presented or not. Explaining the negative
instances is useful as that can tell us what to avoid when aiming to create presented
peptides but conceptually, DeepCover was designed to explain the inclusion in a class,
rather than the exclusion from, or absence of, a class. This makes DeepCover more
suitable to multi-class models. The problem of explaining an absence of class was
particularly clear in the minimal explanation experiments where masking the whole
input led to a negative class prediction, as the characteristics that make an MHC
molecule present the peptide were missing.

ImmunoBERT Threshold. The choice of threshold for turning ImmunoBERT into a
classification from a presentation score was arbitrarily set to 0.5. This likely contributed
to the difficulties of explaining negative instances by being too high. A possible solution
to setting the threshold to a biologically motivated value is discussed in Section 6.1.

Lack of Explanation Gold Standard. Lastly, the lack of gold standard for explana-
tions means that the evaluation focused on motivating the produced explanations and
comparing to explanations produced by other methods. Other explanation methods are
not a gold standard, and the pitfalls of evaluation by agreement is discussed in Section
5.2.2.2. However, the input space of the explanations should be considered for the
lack of gold standard as there likely exists no single true explanation because peptide
presentation is a complex problem.
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Discussion

Summary of Results. The evaluation focused on three parts:

Part 1: Performance of DeepCover in Isolation. The maximum explanation cover-
age was 50%, because of the restriction on mutations causing label switches. Deep-
Cover was mostly able to explain positive instances. For the explanations that were
produced, the across-instance view highlighted positions that could be biologically
motivated as important for peptide binding and presentation. The explanations
produced by the different fault localisation measures mostly agreed very well. The
minimal explanations could be produced only for the instances predicted as positive
but where they were produced, they were smaller than the full explanations and
included the important positions.

Part 2: Comparison Against LIME and DC-Causal. The explanation coverage of
LIME was better while the coverage of DC-Causal was worse than for DeepCover.
There was some agreement and some disagreement on important positions in both
across-instance and per-instance comparisons.

Part 3: Runtime Efficiency. Data parallelisation of DeepCover greatly improved the
runtime and made it competitive with LIME. Further optimisation is possible within
the DeepCover code.

In conclusion, DeepCover was successfully modified to explain the amino acid input.
The biological motivation of explanations and partial agreement with other explanation
methods indicate that DeepCover uncovered valuable insights into the decisions made
by the prediction model.

6.1 Limitations

The main limitations of the project and explanation method include the coverage of the
full explanations, the coverage of the minimal subset explanations and the threshold
used to convert ImmunoBERT’s presentation score into a classification.

Binary Class Problem. DeepCover was originally developed for multi-class problems
and relies on mutations in the input changing the predictions. The peptide presentation

38
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application discussed in this report is a binary class problem, where a peptide can be
presented or not presented. In many cases, DeepCover could not produce explanations
because the mutation did not lead to changes in predicted labels as frequently in the
binary-class application as in the original multi-class application. This problem was
especially clear in the decoys that were clearly under-represented in the produced
explanations, as seen in Table 5.1. Adjusting the model threshold would improve
the coverage of explanations but, conceptually, mutation-based methods explanation
methods that require label switches fit better to multi-class problems.

Binary Class Problem for Minimal Subset Explanations. DeepCover could not
create minimal explanations for instances with a predicted negative label. The problem
was that masking all positions resulted in a negative label and adding positions in order
of importance could not cause the label to switch from negative to negative. This
was again a consequence of the binary class problem. The application in the minimal
explanation experiments in the original DeepCover paper [8] was image classification
with many classes meaning that masking all pixels changed the label and adding pixels
in order of importance did cause the label to change back to the original label.

A possible way to adjust the minimal explanations to work better with negative instances
is to start with a synthetic positive instance where all positions of the input have been
mutated rather than masked. The minimal explanation would be created by “unmutating”
the amino acids in the positions following the ranked order until the label changes
back to negative. A possible downside of this alternative method is that the minimal
explanation produced might depend too much on the mutated starting instance and
it might require finding an agreement between minimal explanations produced from
different starting points for each instance.

ImmunoBERT Threshold. The threshold used for ImmunoBERT to distinguish
between predicted or not was arbitrarily set to 0.5 for the (sigmoid) presentation score
which was in the range [0,1]. To demonstrate how the threshold could be selected in a
more theoretically motivated way, we can compare to other models.

Binding affinity models predict only the most restrictive step of the peptide presentation
pathway: the binding step when the MHC-I/peptide complexes are created [54]. Binding
affinity models commonly predict the IC50 score, a measure of binding affinity. As the
scale of the binding affinity score compares to a real concept and measurement, the
threshold of the predicted IC50 score is often set to 500nM which is the value that has
been experimentally decided as the threshold for peptide presentation through in vivo
and in vitro experiments [55].

The creators of the well-known MHC class I-peptide binding model NetMHCpan
re-evaluated the hard IC50 threshold as the fraction of positive predictions varied
substantially for different alleles [56]. They found that ranking the predicted binding
scores within each allele and assigning a percentile ranking score resulted in higher
sensitivity and specificity in the receiver operating characteristic curve when varying
the percentile rank compared to the binding affinity score.

A similar approach applied to ImmunoBERT would help by not being arbitrary and
being fairer across alleles. It could involve scaling the score, activation function or
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threshold to make the predictions match the distribution of peptides that are presented
in nature. For instance, 1/200 of random peptides bind to a given MHC-I molecule [57].
As binding is the most restrictive step for peptide presentation [54], it could be used as
an approximation of the ratio of peptide presentation.

6.2 Further Work

Other Peptide Presentation Models. The first suggestion for future work concerns
generalising the performance evaluation of DeepCover with SFL for the peptide presen-
tation problem. Practically, that would involve performing similar experiments to the
ones presented in this project for other peptide presentation models like NetMHCPan
with the aim of evaluating how well DeepCover works in the problem domain, rather
than for ImmunoBERT specifically.

Agreement Between Explanation Methods. It is not uncommon for different explain-
able AI techniques to disagree. To further investigate the effect of different explainable
AI methods, a possible future avenue is to combine a collection of explainable AI
methods for the peptide presentation problem, compare the agreement between them
and produce scores of how much each method agrees with the other techniques or
highlights unique positions. This would not produce the true explanations as there are
likely many possible explanations for peptide presentation outcomes. However, having
multiple explanations could cover a larger part of the explanation input space and where
they agree we would be more confident of the importance. Additionally, knowing
how the methods agree and relate to each other would be valuable to understand their
performance.

Biological Gold Standard. To truly evaluate whether the explanations were useful,
a biologically motivated gold standard dataset is needed. This could for instance be
the results of in vitro experiments from vaccine development exploring which mutated
peptides are presented by the MHC-I alleles. Such a dataset would allow us to see the
impact of mutating certain positions, identify the truly biologically important positions
of a few instances to compare to the explanations and assess the predictability of peptide
presentation using ImmunoBERT.
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Appendix A

The Other Across-Instance Figures
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Figure A.1: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-A33-03for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure A.2: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-A36-01for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure A.3: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-A74-01for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure A.4: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-B37-01for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure A.5: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-B46-01for the peptide (top) and the MHC pseudo sequence (bottom).
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A.6 HLA-B58-01
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Figure A.6: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-B58-01for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure A.7: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-B58-02for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure A.8: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-C15-02for the peptide (top) and the MHC pseudo sequence (bottom).
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A.9 HLA-C17-01
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Figure A.9: Across-instance view of the rankings produced by DeepCover with Tarantula
SFL for allele HLA-C17-01for the peptide (top) and the MHC pseudo sequence (bottom).
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Across-Instance DC-Causal Figures
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Figure B.1: Across-instance view of the rankings produced by Dc-Causal for allele
HLA-A33-01for the peptide (top) and the MHC pseudo sequence (bottom).

B.2 HLA-B54-01
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Figure B.2: Across-instance view of the rankings produced by Dc-Causal for allele
HLA-B54-01for the peptide (top) and the MHC pseudo sequence (bottom).
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Figure B.3: Across-instance view of the rankings produced by Dc-Causal for allele
HLA-C01-02for the peptide (top) and the MHC pseudo sequence (bottom).


