
Simulation of Quantum Circuits on a Laptop

Pablo Rafael Miró Ruiz
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Physics

School of Informatics
University of Edinburgh

2022

Abstract
The field of quantum computing is growing at an incredible rate due to the promise that
quantum computers will execute tasks exponentially faster than a classical processor. In
2019, Google claimed that their Sycamore quantum processor takes several minutes to
perform a sampling task, while they estimated that the most powerful supercomputer
would take thousands of years to produce similar results. This project develops an
algorithm that can be used to generate samples from quantum circuits in a classical
computer. The presented algorithm is based on the analysis of Boolean functions, which
allows to limit the order of the Fourier coefficients used and to make the simulation
faster. In a reasonable time frame, a standard laptop can execute the implemented
algorithm to generate thousands of samples from random quantum circuits with less
than 20 qubits. The implementation of the algorithm allows it to be modified and
adapted for high-performance computing and to have the correlators computed more
efficiently. Three different approaches are discussed in this paper, with the one that
performed the best having a learning phase. Nevertheless, due to the exponential time
of such a learning procedure, it is recommended to use the hybrid approach when the
size of the circuit increases.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Pablo Rafael Miró Ruiz)

ii

Acknowledgements
I would like to thank my supervisor, Dr. Raúl García-Patrón, for his wholehearted
encouragement, for his continued support, flexibility and understanding in all the
meetings we have had, and specially for proposing a project that has made me more
interested in the topic of quantum computation. I want to thank my personal tutor, Dr.
Pavlos Andreadis, for having given me his sincere opinion on every topic I raised, for
making me be clearer when I want to expose my issues, and for being super responsive
any time I have wanted to talk to him.

Furthemore, I want to thank my parents, Rafael and Teresa, for providing me with moral
and financial support during these whole four years, and for being truly interested in
what I study; to my grandparents, Rafael, Julia and Teresa for asking me all the time
when I am coming back to Valencia, and to my uncle-grandfather, Rafael, who still
asked about me before passing away.

Lastly, I want to thank Laura for listening to my thoughts and complaints, even when I
get very annoying. Thanks to Orges, Alex, Samuel, Paula, Gabrijel, Marina, Despina,
Ferrán, Peto for their continuous love and support, specially during this last fourth year.
A peculiar mention to the baristas in Edinburgh, namely those who work in cafés close
to the library, for their kindness and providing me with caffeine to support my studies.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The big picture . 1
1.3 My project . 2
1.4 Completion of the project . 2
1.5 Report structure . 3

2 Background and Related Work 4
2.1 Quantum Computing . 4

2.1.1 Context . 4
2.1.2 On “Quantum Supremacy" 5

2.2 Google’s Experiment . 6
2.2.1 Overview . 6
2.2.2 Quantum Random Circuits 6
2.2.3 XEB Theory . 7
2.2.4 Results and criticism . 8
2.2.5 Further Experiments . 9

2.3 Classically simulating quantum circuits 10
2.3.1 Ideal circuit simulation . 10
2.3.2 Including noise in the simulation 11

2.4 Sampling from Fourier coefficients 11

3 Analysis of Boolean Functions 12
3.1 Overview . 12
3.2 Fourier analysis in Zn

2 . 12
3.2.1 Correlators . 13

3.3 Marginal probabilities . 14
3.4 Chain rule . 16
3.5 Sampling . 16

3.5.1 Restricting Fourier coefficients 17

4 Sampling Algorithm 18
4.1 Big Picture . 18
4.2 Programming Language . 18

4.2.1 Google Cirq’s .sample() method 19
4.3 Set up . 19

iv

4.3.1 Generating random quantum circuits 19
4.3.2 Simulating the circuit . 20
4.3.3 Obtaining probabilities . 21
4.3.4 Obtaining correlators . 21

4.4 On-the-fly algorithm . 22
4.4.1 Overview . 22
4.4.2 Procedures . 23

4.5 Hybrid algorithm . 25
4.5.1 Storing the marginals . 26
4.5.2 Limiting the order of correlators 26
4.5.3 Procedures . 26

4.6 Fast algorithm . 29

5 Testing 30
5.1 Correlators and negative probabilities 30
5.2 Changing the order of correlators . 32
5.3 Other tests . 32

6 Experiments and results 33
6.1 Fidelity decrease with order of correlators 33

6.1.1 Ideal distribution p . 33
6.1.2 Results with experimental distributions q 34

6.2 Increased accuracy with the number of samples 36
6.3 Running time of the algorithms . 37

7 Conclusion 39
7.1 Discussion . 39
7.2 Future work . 40

Bibliography 41

A Hardcoded example of 3 qubits 45

v

Chapter 1

Introduction

1.1 Motivation

The field of quantum computing is developing at an impressive pace, with governments
and private investors worldwide funding quantum research. IBM, Google, Amazon,
and Microsoft are only a few companies heavily invested in developing large-scale
quantum computing hardware and software. There are many well-based reasons for this
accelerated development: quantum computers are ideally suited for solving complex
optimisation tasks and performing fast searches of unsorted data [7, 51]. This could be
relevant for many applications, from sorting climate, health or financial data, to optimis-
ing supply chain logistics, workforce management or traffic flow. They could also help
in complex simulations that might guide us to drug discoveries and improvements in
medicine [53, 52, 40].

Furthermore, existing protocols such as quantum key distribution [15] show how much
can cryptography benefit from quantum technologies. Not only cryptography but our
communication systems will change through the introduction of quantum channels [11,
10, 6]. They will lay the groundwork for a potential quantum security-based global
communication network [31]. However, while small-scale quantum computers are
available today, scaling this technology requires advanced techniques to deal with the
errors they suffer [38].

1.2 The big picture

My dissertation takes part in a more extensive project from my supervisor, Raúl García-
Patrón, which deals with the complexity of simulating quantum circuits. The number
of qubits n and depth of the circuit m are usually used to determine the exponential
hardness of simulating a quantum circuit. Nevertheless, current quantum devices are
not fault-tolerant, they are subject to noise that affects their output. For example,
Google claimed in 2019 that their quantum processor performed a task that would take
thousands of years to the most powerful supercomputer [23]. This is a bold statement
to make. We might be able to reduce their classical estimation by designing simulations

1

Chapter 1. Introduction 2

more intelligently.

It seems that such noise could be included in the classical algorithms to make the
simulations faster. It would also be possible to obtain the same results as the experiments
performed on quantum devices. The insight is that deeper circuits might be easier to
simulate because of the accumulation of errors (quantum decoherence, errors in the
physical construction of the quantum circuit...). First by obtaining better exponents in
their time complexity, then by a transition to polynomial-time at some given depth [42].

The wider project will use Fourier decomposition of Boolean functions for simulating
circuits of size similar to Google’s. It intends for the classical simulation to provide
outputs similar to current quantum computers. To achieve this, we need to understand
that the output from the quantum circuit comes from a probability distribution, even if
it is unknown to us.

Indeed, with the Fourier coefficients of such distribution, one can generate many
outcomes from the quantum circuit, also known as sampling. The project will focus on
developing a sampling algorithm that uses Fourier coefficients, obtained with state-of-
the-art techniques such as tensor network (TN) contractions. This will be implemented
to limit the Fourier coefficients used so that the classical simulation could obtain a result
similar to the quantum one, and faster.

1.3 My project

My project focuses on developing a sampling algorithm for quantum circuits. To
sample a quantum circuit of size and complexity similar to the ones Google used in
their experiment, state-of-the-art techniques such as tensor network (TN) contractions
are needed alongside a modification for high-performance computing. This, however,
will be completed in Raúl’s project, and is out of the scope for complexity and timing
constraints.

In this report quantum circuits with a smaller number of qubits will be simulated, and
Fourier coefficients will be computed from the full wave function (and not by using
TN). This is by no means an efficient way to obtain the real probability distribution of
the quantum device, but it will be enough to test the sampling algorithm. The fact that
circuits with a smaller number of qubits are considered does not modify the algorithm
developed.

1.4 Completion of the project

In this report, I achieved the following goals:

• Gained a deep understanding of Google’s quantum advantage experiment in 2019,
and of recent literature to synthesise research conducted so far to discuss the
approaches taken for demonstrating quantum advantage.

• Acquired knowledge on the analysis of Boolean functions and derived the equa-
tions that used at the core of the sampling algorithm.

Chapter 1. Introduction 3

• Familiarised with Google Cirq, a Python library for quantum computing, and dug
into its source code to find a way of generating quantum circuits similar to those
used in Google’s experiment.

• Carried out the pre-processing needed to generate samples and obtained the
Fourier coefficients using a brute-force approach.

• Implemented three different approaches for the sampling algorithm and added a
learning phase that vastly improved the algorithm’s performance.

• Realised several experiments to obtain visible results to show how precise the
values obtained are and benchmarked the running time of the different approaches
for sampling.

• Tested the correctness of the algorithm and fixed potential bugs that did not
generate the correct outputs.

The implementation of the algorithms and some experiments can be found in this github
repository. There is a README.md file that explains how to install the dependencies
with conda. It also shows which file contains the experiments to try the different
sampling approaches, and produce different plots.

1.5 Report structure

Chapter 2 introduces the concept of "quantum advantage" and the difficulty of sampling
random quantum circuits with a classical computer. Google’s 2019 experiment is
thoroughly explained, detailing everything from their quantum circuits to performing
the benchmarking. Recent literature is discussed to put into context Google’s claim of
quantum advantage and its implications.

Chapter 3 develops the mathematical formulation of Boolean Functions. Moreover, it
presents the different approaches to generating samples from a quantum circuit; and how
we can restrict the Fourier spectrum of Boolean functions to obtain results similar to
Google’s in a classical device. The marginal probabilities and the equation implemented
at the core of the sampling algorithm are derived.

Chapter 4 describes the implementation of the sampling algorithm. Specifically,
it describes the three different approaches discussed in Chapter 3. In doing so, it
discusses the pre-processing of the algorithm, the programming language and the
different libraries used.

Chapter 5 details how testing was performed to ensure the outcomes from the sampling
algorithm are not wrong.

Chapter 6 motivates, describes, and presents the outcome of a set of experiments on
the algorithms. The goal is to analyse how the restriction of Fourier coefficients can
help us obtain similar results to those achieved by a quantum computer.

Chapter 7 draws conclusions from the results of previous experiments, provides sug-
gestions for future work, and summarises the accomplishments of the project.

https://github.com/Paramiru/Simulation-of-Quantum-Circuits

Chapter 2

Background and Related Work

2.1 Quantum Computing

2.1.1 Context

A classical computer is made up of logic gates. These are switches that receive electric
currents and let current flow depending on the specific input currents. We interpret
the flow and lack of flow of an electric current with the binary values 1 or 0, and the
operations a computer can perform are defined through Boolean Algebra.

Quantum computing is not based on binary operations, but it generalises classical
physics by harnessing the power of quantum mechanics. This is a probabilistic theory
developed in the 20th century thanks to the work done by Planck, Einstein, Bohr,
Heisenberg, Schrödinger. . . that provides a precise extension to Newtonian mechanics
in the microscopic world. In quantum computing, the analogue of the bit has been
identified as the qubit; the analogue of a logic gate is any linear operator that can act on
the system (also referred to as quantum gates) [39]. From the postulates of quantum
mechanics, all the information about the physical system and its properties is held by
the state vector |Ψ, t⟩ [1]. A quantum computer would modify and evolve the system by
manipulating its state vector so that it would extract helpful information for computing
purposes [9].

This new field started in 1980 when Paul Benioff proposed a quantum mechanical model
for standard Turing machines [3]. Soon after this Richard Feynman showed that it its
theoretically possible to create an adiabatic (i.e. heat does not enter or leave the system)
reversible computer. In 1982 he argued that an exponential amount of resources were
required to simulate quantum mechanical systems, an appreciation that was achieved a
bit earlier, in 1980, by Yu Manin in the Soviet Union [4]. It is important to add that not
all quantum mechanical systems are hard to simulate; in fact, we have exact solutions
of systems such as the hydrogen atom, the Morse potential or the quantum harmonic
oscillator. A general quantum system, especially with low temperatures (because of our
ability to control and manipulate systems in effective low-temperature settings) [18] or
from many-body physics, appears to be hard to simulate [36]. Feynman added the idea
of using a quantum computer to solve such computational problems [5].

4

Chapter 2. Background and Related Work 5

It has since been realised that the power of quantum computing will have a wide
range of applications. Our communication systems will be heavily influenced through
protocols that use quantum teleportation (e.g., quantum secure direct communication
or remote state preparation [11, 10]) and superdense coding [6]. Cryptography will
be greatly influenced from quantum algorithms and protocols such as quantum key
distribution. In fact, in 1994 Peter Shor developed a polynomial-time algorithm for
prime–factorisation and computing discrete logarithms using [8], providing a dramatic
decrease in the required computational time compared with its classical counterparts. A
perfect quantum computer would be able to decipher our encryption schemes, such as
the RSA encryption system or the Diffie-Hellman key exchange protocol. Nevertheless,
recent studies show that we are far from capable to perform these tasks [44] with the
available quantum error-correction techniques and hardware.

2.1.2 On “Quantum Supremacy"

The idea of quantum supremacy or quantum advantage was coined by John Preskill 1 to
indicate “the moment that a quantum computer gains the ability to perform a task that a
classical computer never could”. This can be demonstrated through problems that do not
possess any practical application. Due to the technical difficulties of building a quantum
computer, and because qubits are more prone to error than classical bits, researchers are
focusing on problems such as sampling random quantum circuits which seem easier to
implement in current quantum hardware. Indeed, Google claimed quantum advantage
this way, as discussed in the next section.

However, quantum advantage cannot be perceived as a one-shot experimental proof.
Because of the improvements in classical simulations, we will require a long-term
competition between classical and quantum devices to show such an advantage with
random quantum circuits. Researchers are trying other experiments, such as boson
sampling, proposed by Aaronson and Arkhipov [14]. The hardness of this problem is
based on the difficulty of computing Permanents of matrices. Moreover, the Polynomial
Hierarchy would collapse at the third level because of an efficient algorithm for boson
sampling (or for an approximation, as discussed by García-Patrón and Leverrier in
[17]).This also makes boson sampling a strong candidate for demonstrating quantum
advantage. A team in China has already claimed quantum supremacy using Gaussian
boson sampling [37, 45, 30]. These claims have already been challenged more than
once [41, 49] with improved simulation algorithms. Moreover, Gil Kalai [33, 32] argues
that it will take several months to see whether we can take such a claim of quantum
advantage seriously 2.

1There is a very thought-provoking article in Quanta Magazine [28] where he comments on the
controversy around the naming. I will use the term quantum advantage from this report’s section onwards.

2He refers to a 2014 paper of his [16] that could be used to test a classical algorithm that “spoofs” the
results of [37] to achieve similar results.

Chapter 2. Background and Related Work 6

2.2 Google’s Experiment

2.2.1 Overview

In October 2019, Google published an article titled Quantum supremacy using a pro-
grammable superconducting processor. In their experiment, they used their Sycamore
processor to create quantum states on 53 qubits (hence corresponding to a Hilbert space
of dimension 253) and generate samples from random quantum circuits. According
to their results, it took their processor 200 seconds to generate a million samples of a
quantum circuit, while –according to their benchmarks– it would take around 10,000
years to perform the same computation on the Summit supercomputer at Oak Ridge
National Laboratories [23].

It is essential to highlight the differences in sampling methods between quantum and
classical computers. Quantum mechanics defines the collapse of the wavefunction after
a measurement [1]. As a consequence, a quantum computer runs the circuit for and
records its output for every sample. On the other hand, a classical computer does not
collapse the state of a system in a simulation, and there exist different approaches to
sampling. One method would be to simulate the state vector, obtain the probability
distribution and generate samples with such distribution. From Born’s rule, a key
postulate of quantum mechanics, the probability of measuring the quantum system in a
given state is p(i) = | ⟨i|Ψ, t⟩ |2.

For sampling, since the generated events are represented with binary strings, or bit-
strings, x ∈ {0,1}n, the probability p is a real-valued Boolean function. p : {0,1}n→R.

2.2.2 Quantum Random Circuits

It was crucial to generate quantum circuits which would be hard for a classical computer
to simulate. If the circuits had observable patterns, a classical algorithm could be
developed so that it would exploit them to run more efficiently. Moreover, recall the
limitations of current quantum processors: generated circuits cannot have a sufficiently
large depth. This is due to the logic gates not being perfectly implemented and because
the quantum states are sensitive to errors, which could make the output completely
random.

Consequently, Google generated random quantum circuits where the qubits were
entangled and without any observable pattern. This was the foremost candidate for
demonstrating quantum advantage, the so-called Random Circuit Sampling (RCS)
problem [21]. This states that for any classical computer, it is hard to produce samples
from a distribution that is close to the distribution of a local quantum circuit whose local
gates are randomly and independently drawn uniformly from the space of all gates.

The quantum circuits, also called Sycamore circuits, had m = 20 gate cycles of single-
qubit and two-qubit logical operations to obtain entanglement between all the qubits
in a complex manner. In figure 2.1, they follow an intractable sequence for a classical
computer according to their results (repeat ABCDCDAB). In their paper, they also men-
tion “verification circuits” using the ordering EFGHEFGH. As Craig Gidney discusses
in this blog post, they were intended to be supremacy circuits, but after collecting data

https://scottaaronson.blog/?p=4608#comments

Chapter 2. Background and Related Work 7

Figure 2.1: Example quantum circuit instance used in Google’s experiment. Every
cycle includes a layer each of single- and two-qubit gates. The single-qubit gates are
chosen randomly from {

√
X ,
√

Y ,
√

W}, where X and Y correspond to the Pauli-X and
Pauli-Y operators, W = (X +Y)/

√
2 and gates do not repeat sequentially. They were

chosen for being π/2 rotations around a specific axes lying on the equator of the Bloch
sphere. The sequence of two-qubit gates (also called “couplers”) is chosen according to
a tiling pattern, coupling each qubit sequentially to its four nearest-neighbour qubits. The
couplers are divided into four subsets (ABCD), each of which is executed simultaneously
across the entire array corresponding to shaded colours. Figure 3 from [23]

they had to change the ordering which proved to be very important for making the
simulation harder.

The X1/2 and Y 1/2 gates belong to the Clifford group, while W 1/2 does not. This was
probably chosen to avoid these circuits being efficiently simulated given the Gottesman-
Knill theorem [13]. On the other hand, the two-qubit gate used for quantum advantage
was the iSWAP. In the Supplementary Material they describe the “fSim” group (short
for fermionic simulation) to which iSWAP belongs, and describe other entangling gates
[24, pp 15–16].

2.2.3 XEB Theory

The method used to verify their quantum device worked adequately is known as cross-
entropy benchmarking. This method analyses the frequency of the possible quantum
states measured experimentally, compared to the ideal probability simulated on a
classical computer. For a given circuit, they generate a large number of samples {x}
and compute the linear cross-entropy benchmarking fidelity, which is the mean of the
simulated probabilities of the bitstrings they measured:

FXEB = 2n⟨P(x)⟩x−1, (2.1)

where n is the number of qubits, p(x) is the probability of bitstring x computed for
the ideal quantum circuit, and the average is over the observed bitstrings. FXEB is
proportional to the mean of the experimentally measured probabilities, also known as
High Output Generation (HOG), and intuitively it is correlated with the frequency of
sampling high-probability bitstrings. Letting p(x) be the distribution of the random

Chapter 2. Background and Related Work 8

quantum circuit, and q(x) the one corresponding to the classical simulation of the noisy
quantum computer, HOG is defined as:

HOG(p,q) = Eq(x)[p(x)] = ∑
x

q(x)p(x). (2.2)

We can express the fidelity in terms of the HOG as:

FXEB = 2nHOG−1. (2.3)

For the specific case of random quantum circuits, FXEB is bounded between 0 and 1.
A value of 0 is obtained when the outcomes sampled are noisy so that they follow the
uniform distribution and E[P(xi)] = 1/2n. On the other hand, if the random quantum
circuits include little to zero noise, they will follow the Porter-Thomas distribution.
This distribution gives E[P(xi)] = 2/2n and a corresponding FXEB = 1.

In quantum information science, fidelity is a term which denotes how close one quantum
state is from another. Given a general density operator ρ and a pure state |ψ⟩, it is
defined as:

F(ρ,σ) = | ⟨ψ|ρ|ψ⟩ |2. (2.4)

It is a surprising result that, for the specific case of random quantum circuits, XEB is
proven to be equivalent to the fidelity:

FXEB = 2nEq(x)[p(x)]−1 = | ⟨ψ|ρ|ψ⟩ |2 = F(ρ, |ψ⟩), (2.5)

On account of F ≡ FXEB for the specific case of RQC, I will use the word fidelity to
refer to the linear cross-entropy benchmarking fidelity, FXEB.

2.2.4 Results and criticism

Google performed a large number of experiments to verify their benchmarking methods.
They ran a series of experiments with three variations of the circuits that reduced their
complexity so that it could be simulated by a classical computer in a reasonable amount
of time. From Figure 2.2 a, they had:

• path circuits, where they reduced the number of two-qubit gates splitting the
circuit into two independent patches of qubits.

• elided circuits, where a fraction of the initial two-qubit gates is removed.
• full circuits, which only modified the sequence ordering to EFGHEFGH.

For each data point they typically collected 5×106 samples over ten circuit instances
which differed in the choices of single-qubit gates per cycle. The black line corresponds
to the predicted FXEB, and the close correspondence justifies that they used elided
circuits to estimate the fidelity in the supremacy regime. In Figure 2.1 b Google shows
their estimates for the FXEB in the quantum supremacy regime, where they use the
circuits mentioned in section 2.2.2 and the intractable sequence from Figure 2.1.

They estimated the computational cost in a classical supercomputer by using a hybrid
Schrödinger–Feynman algorithm [22]. They argued that such algorithm was the best
classical method for circuits with n > 43 qubits. This is because it is more memory

Chapter 2. Background and Related Work 9

Figure 2.2: a Google’s verification of benchmarking methods using circuits that can
be verified by a classical computer. They used three variations of the circuits to estimate
the fidelity in the supremacy regime. b Estimating XEB in the quantum supremacy
regime. With m = 20 cycles and n = 53 qubits obtaining a million samples on the
quantum processor takes 200 seconds with a FXEB = (2.24±0.21)×10−3. In contrast
a classical sampling with similar fidelity would take 10,000 years on a million cores, and
verifying the fidelity would take millions of years. Figure 4 from [23].

efficient than the Schrödinger algorithm which simulates the evolution of the full
quantum state, thus requiring a very large RAM to store it. As they show in 2.1 b, they
estimated it would take the Summit supercomputer 10,000 years to obtain a million
samples from the 53 qubit, 20 cycle circuits that only takes 200 seconds in their quantum
processor. This argument does not seem very convincing because of the small value of
FXEB obtained. Google’s Sycamore processor is not fault-tolerant and it also suffers
from errors that can be included in classical algorithms to spoof a similar fidelity.

In fact, their claim was very soon challenged by IBM [27], arguing that on the Summit
supercomputer such circuits can be simulated with the same fidelity to arbitrary depth
in a matter of days [26]. They proposed a method which combines in-memory methods
with solid-state disk, or more generally secondary storage for storing the large quantum
states. Moreover, they model the quantum circuits as tensor networks and use a
simulation strategy which relies on contraction deferral and tensor slicing. Their idea
is to partition the tensor network in sub-circuits, with smaller qubits than the original
circuit, so that they can perform the “Shcrödinger approach” [19].

2.2.5 Further Experiments

Another team in China presented a more powerful, two-dimensional programmable
superconducting quantum processor, Zuchongzhi, made up of 66 functional qubits in a
coupling architecture. They carried out a similar experiment to Google using random
quantum circuit sampling to evaluate the power of their processor. They used circuits

Chapter 2. Background and Related Work 10

up to 56 qubits and 20 cycles for benchmarking, and measured that for their most
complex circuit it took Zuchongzhi 1.2 hours to execute. Their estimation for running
such computational task is of at least 8 years in the most powerful supercomputer [50].
They recently published their results from a harder experiment using an upgrade to their
processor, Zuchongzhi 2.1. They sampled random circuits of 60 qubits and 24 cycles,
significantly increasing the estimation of a classical simulation to 4.8×104 years [54].

Nonetheless, even though these experiments have a larger size, they obtained a lower
fidelity value from 7.0×107 bitstrings, FXEB = 0.0366%. Therefore, it is not obvious
if this increase in the circuit’s size indicates whether the classical sampling is harder.
On the other hand, it is also non trivial to determine the cost of the tensor network
contraction that we require to obtain p(x) of the ideal circuit. Even so, we know that
the computational state space does increase exponentially, and it could be the case that
we achieve a similar value of FXEB by using tensor networks and restricting the number
of Fourier coefficients used to generate samples.

2.3 Classically simulating quantum circuits

2.3.1 Ideal circuit simulation

Perfect quantum computers are unarguably challenging to simulate because the quantum
state-space grows exponentially with the number of qubits N, but also with the depth D
of the circuit, i.e. how many layers of gates the quantum circuit has. In current research,
scientists come up with algorithms that use tensor network contractions to perform
classical simulations that compete with quantum devices.

Tensor network contraction [12] is a mathematical tool that has been undergoing rapid
developments for its use in statistical physics, atomic physics, condensed matter physics,
quantum information theory... We can think of tensors as multi-linear operators which
generalise vectors and matrices, with a tensor network being a collection of possibly
connected tensors. A quantum state can be expressed with tensors, and these can
be split up iteratively until each corresponds to a single qubit by means of Schmidt
decomposition [35]. The benefit of using this technique is that we can apply unitaries
and measurements fast on states with efficient networks (depending on their rank [25]).

Last year, in 2021, Feng Pan and Pan Zhang proposed a more general tensor net-
work method for simulating quantum circuits; and for the Sycamore circuits (with 53
qubits and 20 cycles) they achieved a linear cross-entropy benchmarking fidelity of
FXEB = 0.739 from one million correlated bitstrings [48]. This, however, is different
to Google’s experiment, where the samples have no correlation. In November 2021,
alongside Keyang Chen, they proposed another method using tensor networks for not
only passing the XEB test (obtaining a similar or higher value than Google), but also
obtaining uncorrelated samples, as in Google’s 2019 experiment. This time, for the
Sycamore circuits, their classical algorithm took 15 hours and achieved an approximate
fidelity of FXEB ≈ 0.0037; and they expect that (if implemented efficiently on a modern
supercomputer) it could run in a few dozens of seconds [47].

Furthermore, less than two weeks later, a different group developed a different algorithm

Chapter 2. Background and Related Work 11

to implement in the new Sunway supercomputer, and they reduced the simulation
sampling time of Sycamore circuits to 304 seconds [46].

2.3.2 Including noise in the simulation

The problem with these previous experiments on classical simulation do not exploit
the fact that current quantum devices are noisy. Real quantum devices, those used in
current experiments, suffer from quantum imperfections which could potentially make
them easier to simulate. They are characterized by an exponentially decaying fidelity
F ∼ (1− ε)ND with an error rate ε per operation is as small as ≈ 1%[38].

If the quantum device has many errors, this limits the degree of entanglement that can be
achieved, and the output could become random noise: similar to the output of random
coin flips. On the other hand, if the quantum device suffers from zero to few errors, it
will be very hard to simulate when N and/or D are sufficiently large [38]. Therefore,
there exists a transition which lets us cleverly exploit this quantum noise to run classical
simulations faster. The true issue is how to clearly identify this transition in order to run
more efficient simulations effectively.

2.4 Sampling from Fourier coefficients

One approach which can use noise for helping the classical simulations will be using
Fourier coefficients, and this is what I will show in chapter 4. In the next section, I will
first introduce the mathematics behind Fourier analysis of Boolean functions.

Sampling quantum circuits can be carried out with the Fourier spectrum of the probabil-
ity distribution from the quantum circuit. As shown by Ashley Montanaro in [20], “in
a quite general setting, if we can compute the marginals of an approximation p′ to a
probability distribution p, we can approximately sample from p”. We can use Fourier
analysis to obtain the marginal probabilities of the bitstring outcomes. This will be a
crucial step in my sampling algorithm to generate outcomes from a quantum circuit.

The benefit of using Fourier coefficients is that one can limit how many are included
in the computation, thus trading off the fidelity for a reduction in the computational
complexity. This greatly depends on the noise model, but if we assume the higher
order coefficients are concentrated, we could remove those that are more complicated
to compute and still obtain a high value of FXEB.

Chapter 3

Analysis of Boolean Functions

3.1 Overview

The analysis of Boolean functions refers to studying Boolean functions f : {0,1}n→
{0,1} via their Fourier expansion and other analytic means. We are interested on
knowing information about the probability distributions of random quantum circuits,
which can be represented by the unitaries U acting on an initial quantum state |Ψ⟩.
From Born’s rule, mentioned in the previous chapter, these belong to the more general
case of real-valued Boolean functions, p : {0,1}n → R. From a given bitstring x,
these distributions pU(x) return the probability of it being an output of the circuit.
The notation p is used since the functions of interest in this paper are probability
distributions.

3.2 Fourier analysis in Zn
2

We will consider functions defined on the domain {0,1}n. The Fourier expansion of a
Boolean function can be viewed as its representation as a real multilinear polynomial,
meaning that no variable occurs in a power of 2 or higher. Every real-valued Boolean
function has its unique expansion as a multilinear polynomial, given by:

p(x) = ∑
s∈{0,1}n

f̂ (s)χs(x). (3.1)

(Note that the sum is of real numbers, not a sum mod 2)

This expression is called the Hadamard transform or Fourier expansion of p, and the
real number p̂(s) is called the Fourier coefficient of p on s. Altogether, these coefficients
are called the Fourier spectrum of p. The functions χs are the parity functions, because
they compute the logical parity (XOR) of the bits from the bitstring x in s, i.e., from
(xi)i∈s. The parity functions are defined as:

χs(x) = (−1)s·x, (3.2)

12

Chapter 3. Analysis of Boolean Functions 13

where s ·x corresponds to the mod 2 sum of the bitwise AND between bitstrings s and x:

s · x =
n

∑
i=1

xisi (3.3)

The parity functions are orthogonal:

∑
x∈{0,1}n

χs(x)χs′(x) = 2n
δs,s′ (3.4)

and also symmetric
∑

s∈{0,1}n

χs(x)χs(x′) = 2n
δx,x′ (3.5)

These properties let us define the inner product on pairs of functions p,q : {0,1}n→ R,
which will let us show how to obtain the Fourier coefficients. The usual inner product on
R2n

would correspond to ∑x∈{0,1}n p(x)q(x), but it is convenient to scale this by a factor
of 2−n, thus making it an average rather than a sum. Therefore, given two real-valued
Boolean functions p and q, its inner product is defined by as:

⟨p(x),q(x)⟩= 1
2n ∑

x
p(x)q(x) (3.6)

Due to s ∈ {0,1}n, there are 2n parity functions. The Fourier expansion can then be
thought of a linear combination of them and, since they satisfy the orthogonality condi-
tion, they constitute a linearly independent basis which justifies the uniqueness of the
Fourier expansions. Because the parity functions constitute such linearly independent
basis, we can express the Fourier coefficients p̂(s) as the projection of the function p(x)
in their corresponding parity functions χs(x); and, similarly to 3.1, its unique multilinear
expansion follows from here:

p̂(s) = ⟨p(x),χs(x)⟩=
1
2n ∑

x∈{0,1}n

p(x)χs(x) (3.7)

3.2.1 Correlators

Boolean functions have had an effect in statistical physics, where physicists are more
used to the notion of correlators. They also study the correlation of probability distri-
butions, similar to what I do in the sampling algorithm. In fact, correlation functions
are used as a measure of the order in a system. These functions can describe how
microscopic variables, such as the magnetic spin quantum number and the density, are
related at different positions. Specifically, correlation functions let us quantify how
microscopic variables co-vary on average across space and time. Returning to the
example of the spin, the parity function χs(x) can be interpreted as the product of the
spins in a system, where the bitstring s indicates the spins selected and x their direction.

Pragmatically, these correlators are used in the project as rescaled Fourier coefficients
which will help write the marginal probabilities of the sub-bitstrings of a given bitstring
x.

C(p(x);s) = 2n p̂(s) = ∑
x∈{0,1}n

p(x) χs(x), (3.8)

Chapter 3. Analysis of Boolean Functions 14

where the notation C(p(x);s) refers to the correlator of a bitstring s given a Boolean
function p(x), which in our case will be the probability distribution. The Fourier
expansion with correlators just differs from 3.1 in the scaling factor:

p(x) =
1
2n ∑

s∈{0,1}n

C(p(x);s)χs(x). (3.9)

Having introduced the Fourier analysis of Boolean functions (and the notion of correla-
tors) we can show different definitions of the HOG and fidelity. These will be used in
chapter 6 when I discuss the results obtained by the algorithms. Let p(x) be the ideal
distribution of the random quantum circuit, while q(x) is the classical simulation of the
noisy quantum computer, and where we might limit the order of correlators. For such
q(x), the High Output Generation (HOG) is defined as:

HOG(p,q) = ∑
x

q(x)p(x) (3.10)

=
1

22n ∑
s

Cp(s)Cq(s)∑
x

χs(x)χs(x) (3.11)

=
1
2n ∑

s
Cp(s)Cq(s), (3.12)

where I expanded the distributions in terms of their correlators to obtain (3.11) and I
used the orthogonality of the parity functions, equation (3.4), for the last equality. Thus
the fidelity can be expressed as:

FXEB = 2nHOG−1 = ∑
s ̸=0

Cp(s)Cq(s) (3.13)

Before moving to the marginal probabilities I would like to mention what the order
of the correlator/Fourier coefficient is. As we have seen, we express a probability
distribution p(x) as a sum over all possible values x can take. In our specific case,
x ∈ {0,1}n so there are 2n correlators / Fourier coefficients. Their order corresponds to
the Hamming weight of their corresponding bitstring s (|s|). It is defined as the number
of ‘1’s it contains. For example, the correlator of bitstring 1101, C(1101), has order 3.

Overall, from basic combinatorics there are
(n

k

)
coefficients of order k. The degree

of p is defined as max{|s| : p̂(s) ̸= 0}, which is just the degree of p as a real n-variate
polynomial. This way we can interpret the order of a correlator/Fourier coefficient as
the degree to which it corresponds, or the number of spins which contribute to it.

3.3 Marginal probabilities

In simple terms a marginal probability is the probability of an event irrespective of
the outcome of another variable. Let x be expressed as x = (x1,x2, . . . ,xn). Thus,
we interpret by xz as the bitstring that contains the leftmost l bits of x, i.e., xz =
(x1,x2, . . . ,xl) where l < n and n is the size of our intended output x. The marginal p(y)
of p(x) over a sub-bitstring xz of size l is then given by:

p(y) = ∑
x:xz=y

p(x), (3.14)

Chapter 3. Analysis of Boolean Functions 15

where the set {x : xz = y} refers to all the bitstrings of size n that begin with sub-bitstring
xz = y. We now use the Fourier expansion of p(x) to obtain

p(y) = ∑
x:xz=y

p(x) (3.15)

= ∑
x:xz=y

∑
s

p̂(s)(−1)x·s (3.16)

= ∑
s

p̂(s) ∑
x:xz=y

(−1)x·s (3.17)

Let’s focus on the second sum from equation (3.17). We can divide the sum into two
parts: one focusing on the first l bits of x, i.e., on sub-bitstring xz; and the other focusing
on the remaining bits, on sub-bitstring xz∗ = (xl+1,xl+2, . . . ,xn), where z∗ is the vector
of size n− l containing the complementary indices to z. This way we are expressing
x as a concatenation of the two bitstrings x = xz||xz∗ (where || denotes concatenation).
Expressing s in a similar way, i.e., s = sz||sz∗ we obtain:

∑
x:xz=y

(−1)x·s = (−1)xz·sz ∑
xz∗
(−1)xz∗ ·sz∗ (3.18)

We can use the orthogonal property of the parity functions (3.4) (with s = sz∗ and
s′ = 0̄z∗) to obtain an expression for the second term: ∑xz∗ (−1)xz∗ ·sz∗ = 2n−lδsz∗ ,0̄z∗

.
Substituting into equation 3.18 we obtain:

∑
x:xz=y

(−1)x·s = 2n−l(−1)y·szδsz∗ ,0̄z∗
, (3.19)

where I used xz = y. Now we can continue equation 3.17 to give

p(y) = 2n−l
∑
s

p̂(s)(−1)y·szδsz∗ ,0̄z∗
(3.20)

= 2n−l
∑
sz

p̂(sz, 0̄z∗)(−1)y·sz, (3.21)

where the notation 0̄z∗ is explicitly used to indicate that vector s is zero at positions z∗.
At this point we can use the correlators as scaled Fourier coefficients to give

p(y) =
1
2l ∑

sz

C(p(x);sz, 0̄z∗)(−1)y·sz (3.22)

=
1
2l ∑

sz

C(p(x);sz)(−1)y·sz, (3.23)

where the notation was dropped to indicate that the last n− l positions are 0. Notice
that equation (3.24) is equivalent to equation (3.1) and reducing its size from n to l.

p(y) = ∑
sz∈{0,1}l

p̂(sz)χsz(y) (3.24)

Chapter 3. Analysis of Boolean Functions 16

3.4 Chain rule

It is very useful to obtain an expression for a marginal p(y,yw) of size l +1, where yw
is the single bit being added to bitstring y from which we already know its marginal.
This will be the core idea for the sampling. The chain rule is:

p(x1,x2, . . . ,xn) = p(x1)p(x2|x1) . . . p(xn|xn−1, . . . ,x1). (3.25)

To generate a sample, one needs to do a loop of size n, where at each step one decides
the value of xi (ideally with real random numbers, but later I use a pseudorandom
number generator for simplicity) according to the conditional probability:

p(xi|xi−1, . . . ,x1) =
p(xi,xi−1, . . . ,x1)

p(xi−1, . . . ,x1)
. (3.26)

We can modify equation (3.23) by adding a bit sw so that:

p(y,yw) =
1

2l+1 ∑
sz∈{0,1}l

∑
sw

C(p(x);sz,sw)(−1)y·sz+yw·sw (3.27)

Since sw can only take two values, 0 or 1, we can expand the first sum in equation (3.27)
to express the marginal of y||yw as:

p(y,yw) =
1

2l+1

[
∑
sz

C(p(x);sz,0)(−1)y·sz +∑
sz

C(p(x);sz,1)(−1)y·sz+yw

]
(3.28)

=
1
2

[
p(y)+(−1)yw

1
2l ∑

sz

C(p(x);sz,1)(−1)y·sz

]
, (3.29)

where I used equation (3.23) in the first sum of (3.28). As I will explain in the next
section, for my algorithm I computed the marginal probability resulting after adding a 0
to bitstring y of given size l. This is the most important equation, and the one that
will be implemented at the core of my algorithm:

p(y,0) =
1
2

[
p(y)+

1
2l ∑

sz

C(p(x);sz,1)(−1)y·sz

]
. (3.30)

3.5 Sampling

Having access to the correlators of a distribution p allows us to generate samples by
using the marginal probabilities [20]. To begin with, p(0) is computed and used to
sample the first bit of my outcome, which is either 0 or 1. Then, if the first bit turned out
to be a 0, p(00) is computed; otherwise we compute p(10), and continue subsequently
until a bitstring of size n is reached. Note that only equation (3.30) is used to compute
the marginals for adding a bit 0 to the current outcome. This is because p(y,1) can be
obtained via subtraction: p(y,1) = p(y)− p(y,0). Further, note that I read the notation
of p(10) from left to right. That is, p(10) corresponds to the marginal where the first
bit is 1, and the second is 0.

Chapter 3. Analysis of Boolean Functions 17

In order to sample a bitstring y of size l < n from the ideal distribution p(x), we need to
have ∑k

(l
k

)
= 2l correlators. It is straightforward to see that the number of terms grows

exponentially with the size of the qubits, which contributes to the fact that simulating
random quantum circuits takes exponential resources in space and time. There are three
approaches I will consider in the next chapter for generating samples:

1. Fast sampling If n is such that one can afford to store the 2n correlators, it is
possible to have a learning phase to compute the marginal probabilities in a tree
data structure before doing sampling. This will make the sampling exponentially
faster, because to obtain an outcome one only needs to traverse the tree from the
root to the leaves, going through the already computed marginal probabilities and
generating the sample qubit by qubit. Each sample will take log22n = n steps

2. On-the-fly sampling This method computes the marginal probabilities required
for a given sample during its generation. By not storing and reusing the marginals,
it will have to compute n different marginals using equation (3.30) for every
sample. Note that the sum of equation (3.30) contains 2l correlators, with l being
the size of the marginal, so each sample generated will take an exponential time.

3. Hybrid This approach computes the marginal probabilities while it generates a
sample, as in on-the-fly sampling, but it stores the probabilities in a data structure.
By keeping them, when sampling a large number of bitstrings, the marginals
that have been already computed can be reused for faster sampling. This avoids
having a learning phase, as in fast sampling, but benefits from accessing the
already computed marginals. Nevertheless, there exists the possibility of adding
a partial learning phase: instead of learning all the marginals, it can learn the
marginals up to a given number of qubits l, and then compute and store the rest
while sampling.

3.5.1 Restricting Fourier coefficients

The concentration of Fourier coefficient depends on the model of noise. It has been
shown that noise on detectors produce concentration [20], while local depolarising noise
does not [43]. Due to the connection between XEB and Fourier coefficients, one can
decide to “hack” Google’s XEB test by suppressing higher-order Fourier coefficients to
reach the required FXEB. It is a known fact that for random quantum circuits,

EU [Cp(s)Cp(s)] =
2n−1
4n−1

=
1

2n +1
≈ 1

2n , (3.31)

where the expectation is over the set of unitaries U(2n), which the random quantum
circuits are supposed to mimic. We see that each correlator contributes with a weight
≈ 1/2n, as the error is negligible. With the FXEB in terms of correlators (c.f. equation
(3.13)), the more correlators we make zero the lower the fidelity we will obtain.

This gives way to create an strategy to hack Google’s XEB test. Indeed, if one has the
goal of achieving a specific value of FXEB, it is not necessary to simulate the random
quantum circuit completely since we can determine which correlators are needed to
reach that value. To hack Google’s XEB test we could obtain the correlators needed to
get FXEB ≈ 0.2% for their Sycamore circuits, and only use those while sampling.

Chapter 4

Sampling Algorithm

4.1 Big Picture

As discussed in the introduction, I want to sample using the Fourier coefficients that
corresponds to the distribution of the quantum circuit. They could be obtained with TN
contractions or other techniques, but I artificially compute all the correlators using a
brute-force approach. This is because my project focuses on the sampling procedure,
which does not depend on how the correlators are computed.

The three different approaches for the sampling algorithm follow the same set up,
which is executed by the get_sampling_algorithm method in src/algorithms.py.
However, the on-the-fly and hybrid approaches are discussed before I mention the fast
algorithm. This is because the fast approach can be thought of as an extreme case of
the hybrid one, and the implementation has been designed so that the fast algorithm
comes up this way. The logic flow of the 3 approaches to sampling is shown in figure
4.1 below. Moreover, there are instructions in the README.md file to try the methods
discussed in this section. Before moving on to the main procedures for sampling, the
programming language and the set up required to start generating samples are discussed.

4.2 Programming Language

For the implementation of the algorithm, the programming language chosen was Python
3.9.7. Python is a free and open-source programming language that can be used
for web development, AI, and so on. It can also be used for quantum computing
because companies such as IBM, Google or Microsoft have developed their own
quantum libraries in Python (Qiskit, Cirq and Q#, respectively). Due to its object-
oriented features, the code for the simulation can be organised in objects for a better
representation and understanding.

several different libraries have been used throughout the whole project. The main
libraries for the quantum computing operations were cirq and cirq_google. Numpy
was very important to make the algorithm more efficient. It is based on well-optimized
C code and provides powerful methods for operating with large n-dimensional arrays.

18

Chapter 4. Sampling Algorithm 19

Obtain probabilities from
Born's rule

Compute correlators using
FWHT algorithm

Generate random quantum
circuit

Simulate state vector

Generate Samples using
Hybrid algorithm

Generate Samples using
On-the-fly algorithm

Generate Samples using
Fast algorithm

Set Up

Flow shared by the 3 approaches
to the sampling algorithm

The method
get_sampling_algorithm in

src/algorithms.py contains the code
for these 4 steps

Learning marginal
probabilities

Figure 4.1: Flow chart containing the logic of the algorithms

Moreover, numpy has a very good random library, which was used through their
generator numpy.random.default_rng(). The generator corresponds to PCG64,
which has a period of 2128 so during sampling a number is not generated twice. The
results of the simulations run were stored in .csv files with pandas. On the other hand,
matplotlib, specifically a sub-module called pyplot was used to do the graphs, whose
appearance was modified with seaborn. Lastly, the built-in Python libraries time and
timeit were used to obtain the running times of the algorithms and benchmark them.

4.2.1 Google Cirq’s .sample() method

The reader may ask what is the point on developing a sampling algorithm when cirq
already provides a sample method from its cirq.sim module. The reason behind
is obviously the implementation. After looking at Google’s documentation in their
github, cirq.sim.sample produces samples by calling numpy.random.choice. This
function takes an array and a probability distribution. It generates a given number
of samples from the array using the provided distribution. It is inefficient when the
number of qubits n and/or depth m increases because it needs the probabilities of all
outcomes. With large circuits this is not feasible. It would be more efficient to compute
the marginals and sample from the noisy distribution by, for example, obtaining the
Fourier spectrum without the most-expensive correlators and using TN contractions.

4.3 Set up

4.3.1 Generating random quantum circuits

Before starting the simulation we need to have the quantum random circuit for n
qubits. Google Cirq was chosen in order to perform similar experiments to those

https://github.com/quantumlib/Cirq/blob/v0.13.1/cirq-core/cirq/sim/mux.py#L48-L86

Chapter 4. Sampling Algorithm 20

Figure 4.2: Method declaration for creating random quantum circuit

Google did, and reproduce the Sycamore circuits with a smaller number of qubits,
n < 23. In the beginning, I thought that I would have to create the circuits manually
because their documentation guides were very limited to simple circuits. I checked the
module they use for testing and found methods that simulated random circuits such
as cirq.testing.random_circuit. However, after a long time I decided to ask a
question in “quantumcomputing.stackexchange.com” and a Google software engineer
recommended to use the method from Figure 4.2.

He added, however, that it might not be the circuits that one would expect. I therefore
proceeded to check examples with a small number of qubits and found that it produced
circuits similar to the ones Google used in 2019, except that they did not follow any
particular sequence as discussed in 2.2.2. As a default, it was using Control-Z gates as
the two-qubit gates. I modified it to use the ISWAP gate, which belongs to the fSim gate
family as Google’s team discussed in their Supplementary Material. This can be done
by using cirq.ops.ISwapPowerGate, whose default arguments turn it into a normal
ISWAP gate, as the method’s two_qubit_op_factory.

4.3.2 Simulating the circuit

In order to simulate the circuit, I use my method simulate_sycamore_circuit(N,
depth, num_extra_qubits) defined in src/simulations.py, where N is the num-
ber of qubits the circuit has. Because Google’s experiment is 2-dimensional, I need to
have a staggered grid for the qubits. Google provides the grids they use in different
devices through cirq_google. Specifically, I fetch the grid of their Sycamore23 de-
vice, which I can then truncate depending on the specific size N of my circuit. Then, it
generates a circuit following 4.3.1. Lastly, it simulates the circuit using a sparse matrix
simulator cirq.Simulator and returns a StateVectorTrialResult object.

https://quantumai.google/reference/python/cirq/testing/random_circuit

Chapter 4. Sampling Algorithm 21

4.3.3 Obtaining probabilities

Having the result from simulate_sycamore_circuit, the state vector can be obtained
by calling its .final_state_vector attribute. Expanding it in the computational basis:

|Ψ, t⟩= ∑
i

ci(t) |i⟩ , (4.1)

where ci(t) are the coefficients of the complete set of eigenstates {|i⟩}, also known as
probability amplitudes. If we use the representation with column vectors we will have:

|Ψ, t⟩ →

c1(t)
c2(t)

...
cn(t)

= c1(t)

1
0
...
0

+ c2(t)

0
1
...
0

+ · · ·+ cn(t)

0
0
...
1

Following Born’s rule [39], the absolute value of the wavefunction squared is the
probability density function. This means |ci(t)|2 is the probability of eigenstate |i⟩, and
it corresponds to the ideal distribution of the quantum device. Therefore, I obtain the
probability array by taking the square modulus. To obtain the probability of a bitstring
we need the coefficient to which it corresponds. For example, if we have a system of 3
qubits and want to know p(101), we have p(101) = |c5|2 because 1012 = 510.

4.3.4 Obtaining correlators

Having obtained the probability array by squaring the absolute value of the state vector,
we can now use our knowledge of Fourier analysis. It turns out that the Hadamard
transform is equivalent to a multidimensional Discrete Fourier Transform of size 2×
2×·· ·×2×2 [2]. It decomposes an arbitrary input vector into a superposition of Walsh
functions. Therefore, we will use such transform to obtain the Fourier spectrum of our
distribution p : {0,1}n→ R.

It is important to mention the implementation of such transform. A naive one will
require computing the matrix H⊗H⊗·· ·⊗H⊗H = H⊗n of size 2n×2n. Having n
qubits and defining N = 2n, the naive method will have a computational complexity
of O(N2). There are more efficient ways of acting with H⊗n in a vector of size 2n.
Similar to the Fast Fourier Transform algorithm, there exists a divide-and-conquer Fast
Walsch-Hadamard algorithm that has the same recurrence as Merge Sort, with only
O(N logN) additions or subtractions [29, Section 2.2].

I used Python example code from this Wikipedia’s article which implements the FWHT
algorithm in-place and without adding the 1/

√
2 normalization factors. Therefore,

after applying such algorithm to my probability array, I obtain my array of correlators
and not of Fourier coefficients. This is a better choice to reduce the number of
multiplications and decrese the numerical error of the computations. I store these
values in a numpy array called correlators.

https://en.wikipedia.org/wiki/Fast_Walsh-Hadamard_transform

Chapter 4. Sampling Algorithm 22

Notation aside

Before going on explaining the algorithms, I want to discuss the notation used for the
correlators. When we developed the mathematical tools for the Fourier analysis of
Boolean functions, I added the definition of marginal probabilities and expressed them
in terms of correlators. Looking back at equation (3.17), it is very important to note that
if we are working with bitstrings of n qubits and want to obtain the marginal probability
of a bitstring with l qubits (where l < n), the remaining qubits are set to zero. For
example, imagine we have a circuit of n = 3 qubits and we want to obtain the marginal
probability of bitstring 11, hence l = 2. From equation (3.18) we will have:

p(11) =
1
22 [C(p(x);00,0)−C(p(x);01,0)−C(p(x);10,0)+C(p(x);11,0)]

=
1
22 [C(000)−C(010)−C(100)+C(110)] ,

where I dropped the notation in the second equation to explicitly show that the last
n− l = 1 qubits are set to 0. This is very important because the way of obtaining
these correlators is by indexing them from the array correlators. For example, the
correlators C(01) and C(010) are not the same. The former corresponds to the 1st

Fourier coefficient (because 01 = 110) while the latter corresponds to the 0102 =2nd.

4.4 On-the-fly algorithm

4.4.1 Overview

The main idea behind the sampling algorithm is to obtain outcome x by computing
the values of its positions from left to right. That is, given that bitstring x is made up
of n bits, i.e., x = (x1,x2, . . . ,xn), we would start computing the value of x1, x2 and
successively until we reach xn. To do so, we calculate the marginal probabilities with
the chain rule and use them to set xi equal to 0 or 1 in each step.

This will be similar to traversing a decision tree which contains the marginals in its
nodes. Figure 4.3 shows an example tree for a circuit with 3 qubits. An important thing
to note is that the probabilities of each level must add up to 1. The root node is the base
case and we let the probability of /0 be p(/0) = 1. Moving down to level 1 we must have
p(0)+ p(1) = 1 and similarly until level n.

In order to obtain a sample, we will follow this procedure:

1. Initialise outcome to the empty string. This is the variable where we will store
the sample step by step. Set current position to node /0.

2. Compute marginal of outcome + 0. In the first iteration, we will compute p(0)
because outcome will be the empty string.

3. Use a pseudo random number generator to obtain a number between 0 and the
marginal of our current position. For the first iteration, since we start in node /0,
we obtain a number between 0 and p(/0) = 1.

4. If the generated number < p(0) we add a 0 to outcome. Otherwise we add a 1.

Chapter 4. Sampling Algorithm 23

/0

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 4.3: Binary tree whose nodes contain the marginals of a circuit with 3 qubits.

5. Move to a child node depending on the outcome from the previous step. Repeat
this process from 2. until we reach the end of the tree.

An example with bitstrings of size n = 2 will be the following:

• Initialise outcome to the empty string: outcome = ‘’

• compute marginal of outcome + 0, i.e., compute marginal p(0). For this example
let’s set p(0) = 0.34.

• call pseudorandom number generator between 0 and p(/0) = 1. Assume it gives
0.45. Because 0.45 > p(0), we add a ‘1’ to outcome so that know outcome = 1.
Now we move our current position from node /0 to node 1.

• compute marginal of outcome + 0, i.e., compute marginal p(10). Let’s set
p(10) = 0.4 for this example.

• call pseudorandom number generator between 0 and p(1) = 1− p(0) = 0.66.
Assume it gives 0.2. Since 0.2 < 0.66, we add a ‘0’ to outcome. outcome = 10.

• We have reached the end of our tree (for n = 2). Our generated sample is 10.

4.4.2 Procedures

There are three main procedures used by the on-the-fly approach. Note that they have
the word slow to distinguish them from the –faster– ones described in the next section:

• Algorithm 1: get_correlators_for_marginal_slow(y)
• Algorithm 2: get_prob_add_zero_slow(y, prob_limit)

• Algorithm 3: sample_random_circuit_slow()

These methods belong to a Python class named OnTheFlySampler. An object of such
class is created by get_sampling_algorithm(num_qubits, seed, slow, VERBOSE)
given that slow = True. This class has num_qubits and correlators as class vari-
ables, which will be used in the pseudocode.

First of all we describe get_correlators_for_marginal_slow(y), where y is a
bitstring y ∈ {0,1}l with l < n. It returns an array with the necessary correlators to
compute the marginal p(y,0) following equation (3.24), which I show again to stress its

Chapter 4. Sampling Algorithm 24

importance. It is necessary to note that I am not retrieving the same correlators multiple
times, so avoiding being inefficient here. However, there is an implementation change
of Algorithm 1 that I show in section 4.5.

p(y,0) =
1
2

[
p(y)+

1
2l ∑

sz

C(p(x);sz,1)(−1)y·sz

]
,

The second procedure is get_prob_add_zero_slow(y, prob_limit). It calls get_
correlators_for_marginal(y) to get the needed correlators and signs from equation
(3.24), and it returns p(y,0). Note that prob_limit is the marginal p(y). Equation
(3.24) is divided into a sum of marginal p(y) and the correlators from Algorithm
1. Lastly, sample_random_circuit_slow() returns a sample on-the-fly using the
previous two procedures.

Algorithm 1 Obtaining correlators to compute marginal (y,0)
1: procedure GET_CORRELATORS_FOR_MARGINAL_SLOW(y)
2: l← length of y
3: y← Convert bitstring y to integer
4: marginal_correlators← new array
5: for i← 0 to 2l−1 do
6: sz← obtain bitstring from integer i
7: index← sz with 1 appended to the end
8: correlator← correlators[index]
9: sign← (−1)sz·y

10: marginal_correlators.append(correlator × sign)
11: end for
12: return marginal_correlators
13: end procedure

Algorithm 2 Get marginal of appending a 0 to bitstring y
1: procedure GET_PROB_ADD_ZERO_SLOW(y, prob_limit)
2: l← length of y+1
3: marginal_correlators← get_correlators_for_marginal_slow(y)
4: return 1

2(prob_limit + 1
2l sum(marginal_correlators))

5: end procedure

There are a few things from Algorithm 3 that might not seem obvious:

• In line 3 we initialise prob_limit to 1 because we start at the root node, so
p(/0) = 1. We will have to keep updating this value to generate random numbers
in the correct range. This is very important because the sum of marginals in
every level has to be equal to 1, therefore the value of the children will be getting
smaller, and we cannot keep generating random numbers in the [0,1) range.

• In line 5 we initialise prob_add_zero to keep track of the marginal probabilities.
Further, depending on whether xi is 0 or 1 , we update the prob_limit accord-
ingly, which contains p(y) and is used to compute p(y,0) following equation

Chapter 4. Sampling Algorithm 25

Algorithm 3 Generating one sample of the random quantum circuit
1: procedure SAMPLE_RANDOM_CIRCUIT_SLOW()
2: result← empty string
3: prob_limit← 1
4: idx0, idx1← indexes for correlators C(0) and C(1)
5: prob_add_zero← 1

2× (correlators[idx0] + correlators[idx1])
6: for step← 0 to num_qubits −1 do
7: flipped_coin← random number between 0 and prob_limit
8: if flipped_coin ≤ prob_add_zero then
9: outcome += 0

10: prob_limit = prob_add_zero
11: else
12: outcome += 1
13: prob_limit = prob_limit − prob_add_zero
14: end if
15: if step ̸= num_qubits −1 then
16: prob_add_zero ← get_prob_add_zero_slow(outcome,

prob_limit)
17: end if
18: end for
19: return (outcome)
20: end procedure

(3.24). That is, if we have bitstring y and we add a 1, then p(y,1) = p(y)− p(y,0)
which is done in line 13. Otherwise, if we add a 0, we just set prob_limit as
p(y,0), i.e., prob_add_zero.

• We need the if statement from line 15 to avoid an IndexError: when we reach
the end we cannot compute the marginal probability of adding an extra qubit: we
do not have the correlators for num_qubits+1 qubits.

The complexity of this last procedure is mainly determined by line 21 when we
compute the marginal probabilities. This is run num_qubits−1 times. Analysing
get_prob_add_zero_slow we see that for an outcome y of size l it takes O(2l) to run
get_correlators_for_marginal_slow(y). We call this method after obtaining the
value of the first bit until outcome has a size of n−1, i.e., for k← 1 to n−1. It takes

n−1

∑
k=1

2k =
n−1

∑
k=0

2k−1 =
1−2n

1−2
−1 =

−2n +2
−1

= 2n−2.

steps, hence the complexity scales exponentially with the number of qubits, O(2n).

4.5 Hybrid algorithm

When we compute the marginals on-the-fly, we do not store them. Hence, if we want to
generate another sample we need to compute them again. In this section I explain how I

Chapter 4. Sampling Algorithm 26

reused the marginals, modified the implementation so that we can limit the order of
the correlators used and made the code more efficient using numpy.

4.5.1 Storing the marginals

I add a class variable marginals to store the marginals after computing them during
the generation of a sample, as can be seen below in line 18 of Algorithm 5. marginals
is a defaultdict whose keys are bitstrings and its values are the probabilities. For
example, to retrieve the stored marginal p(011), I would call marginals[‘011’]. Once
the marginal has been computed, it will be reused for the next samples if they need it.

4.5.2 Limiting the order of correlators

Retrieving the correlators of a specific order is more involved. The first thing I do
is create an array, called order_arr, which contains the orders of the correlators
depending on their position. For example, if we have a circuit of 4 qubits, the cor-
relator for bitstring 1100 will be in position 11002 = 12 and we would extract it by
calling correlators[12]. Recalling our previous definition of order in section (3.2.1),
C(1100) has order 2. I obtain order_arr by mapping the function gmpy2.popcount,
which efficiently counts the number of 1s a number in binary has, to an array containing
numbers from 0 to 2n−1. For n = 2 it would do:

0
1
2
3

=

002
012
102
112

→

0
1
1
2

Having this order_arr, now I need some way of accessing the correlators with a
specific order. For this reason, I use zip in Python to create a 2-dimensional array,
orders_and_correlators, where every row has tuple containing its order (in the 1st

column) and its value (in the 2nd column). For an example with n = 2 qubits:

0
1
1
2

+

C(00)
C(01)
C(10)
C(11)

→

[0,C(00)]
[1,C(01)]
[1,C(10)]
[2,C(11)]

With this 2-dimensional array I can extract a 1-dimensional boolean array that contains
True if the correlator’s order is smaller than k, and False otherwise. This is done in
line 6 from Algorithm 4. I proceed to use it in line 7 for efficiently indexing the array
with masking.

4.5.3 Procedures

The hybrid approach is implemented in the HybridSampler class, and is based on
three methods and four class variables: marginals, num_qubits, correlators and

Chapter 4. Sampling Algorithm 27

orders_and_correlators. An object of such class is created by get_sampling_
algorithm(num_qubits,seed,slow,VERBOSE) given that slow = False.

• Algorithm 4: get_correlators_for_marginal_to_order(y, order),
• get_prob_add_zero(y, prob_limit, order)

• Algorithm 5: sample_random_circuit_hybrid(order)

Similarly to the on-the-fly approach, the first procedure obtains the correlators required
to compute p(y,0). The implementation here lets the user choose the maximum order
of the correlators used, and is coded more efficiently to avoid the for loop from lines
5→ 11 in Algorithm 1.

Algorithm 4 Obtaining correlators to compute marginal (y,0)
1: procedure GET_CORRELATORS_FOR_MARGINAL_TO_ORDER(y, order)
2: check order is ≤ the number of qubits
3: l← length of y
4: idxs← array of binary strings for integers from 0 to 2l−1
5: ▷ Obtain Boolean array. Positions of correlators we want have value True:
6: mask← ordes_and_correlators[:, 0] ≤ order
7: corr_idxs← idxs[mask]
8: parity_exp_products← array with product of exponent sz · y as in (3.3)
9: parity← Array of parities. ▷ If exponent is 0, parity is 1; if exponent is 1, -1.

10: marginal_correlators← element-wise multiplication of parity and correlators.
11: return marginal_correlators
12: end procedure

The second procedure is get_prob_add_zero(y, prob_limit, order). This method
computes p(y,0) as Algorithm 2, but modifies its line 3 to use get_correlators_for_
marginal_to_order(y,order), instead of the previous get_correlators_for_
marginal_slow(y), for a shorter runtime.

Lastly, sample_random_circuit_hybrid(order) is the procedure which generates
samples. While generating a sample, it computes the marginals on-the-fly, but it stores
them so that they can be reused for the next samples. Note that we only compute the
marginals of adding a ‘0’ to our bitstring outcome since I implement p(y,0). We can
then obtain p(y,1) simply by p(y,1) = p(y)− p(y,0).

On the other hand, as I mentioned in the last part of chapter 2 we can have a partial
learning phase with the hybrid algorithm. I show the procedures for learning marginals
in the next section, namely with Algorithm 7. The idea behind this is that, before
moving on generating samples with Algorithm 5, we can perform a small learning phase
where we compute a subset of the marginals. Due to my implementation, I can choose
the level of the tree (c.f. Figure 4.3 for the marginal tree corresponding to a circuit of 3
qubits) at which I want to stop learning, thereby allowing for a fast learning phase that
helps during sampling.

Chapter 4. Sampling Algorithm 28

Algorithm 5 Generating one sample of the random quantum circuit
1: procedure SAMPLE_RANDOM_CIRCUIT_HYBRID(ORDER)
2: outcome← empty string
3: prob_limit← 1
4: idx0, idx1← indexes for correlators C(0) and C(1)
5: marginals[‘0’] = 1

2× (correlators[idx0] + correlators[idx1])
6: for step← 0 to num_qubits −1 do
7: prob_add_zero← marginals[outcome + ‘0’]
8: flipped_coin← random number between 0 and prob_limit
9: if flipped_coin ≤ prob_add_zero then

10: outcome += 0
11: prob_limit = prob_add_zero
12: else
13: outcome += 1
14: prob_limit = prob_limit - prob_add_zero
15: end if
16: if step ̸= num_qubits −1 then
17: if marginals[outcome + ‘0’] not computed before then
18: marginals[outcome + ‘0’] ← get_prob_add_zero(outcome,

prob_limit, order)
19: if marginals[outcome + ‘0’] > prob_limit then
20: marginals[outcome + ‘0’]← prob_limit
21: end if
22: end if
23: end if
24: end for
25: if last value of outcome is ‘1’ then
26: marginals[outcome]← prob_limit
27: end if
28: return (outcome)
29: end procedure

Chapter 4. Sampling Algorithm 29

4.6 Fast algorithm

The fast algorithm begins with learning phase where it computes and stores all the
marginal probabilities so they can be reused. It is also implemented in the subclass
of Sampler called HybridSampler. This is because it uses the same methods as the
hybrid approach for computing p(y,0) (get_prob_add_zero and get_correlators_
for_marginal_to_order), but it does so during the learning phase. The fast approach
can be interpreted as an extreme case of the hybrid one, where we do not store, but
reuse the marginals because they have been computed before the sampling started. In
total, we have the following:

• Algorithm 6, add_marginal(outcome,pruning_depth,order,prob_limit):
Helper method to recursively store all the marginals of bitstrings that start with
outcome. If pruning_depth is smaller than num_qubits, the method stops after
it has achieved level pruning_depth in the tree.

• Algorithm 7, learning_marginals(pruning_depth, order): Carries out
the learning of the marginals. Due to the implementation, one can choose a
pruning_depth to stop the learning at some level of the tree (prune the tree).

• sample_random_circuit_fast: It is identical to Algorithm 5, but is modified
to assume all the marginals have been stored by removing lines 16→ 27 from
such Algorithm. This way, it avoids storing or checking whether they have been
computed, because this has been done in the learning phase.

Algorithm 6 Adds marginals recursively
1: procedure ADD_MARGINAL(outcome, pruning_depth, order, prob_limit)
2: if length of outcome > pruning_depth then return
3: end if
4: marginal← get_prob_add_zero(outcome, prob_limit, order)
5: if marginal > prob_limit then
6: marginal← prob_limit
7: end if
8: marginals[outcome + ‘1’]← prob_limt - marginals[outcome + ‘0’]
9: add_marginal(outcome + ‘0’, pruning_depth, order, marginal)

10: add_marginal(outcome + ‘1’, pruning_depth, order, marginals[outcome + ‘1’])
11: end procedure

Algorithm 7 Learns marginals up to a given level of the tree
1: procedure ADD_MARGINAL(outcome, pruning_depth, order, prob_limit)
2: marginals[‘0’]← 1

2× (correlators[idx0] + correlators[idx1])
3: marginals[‘1’]← 1− marginals[‘0’]
4: add_marginal(‘0’, pruning_depth, order, marginals[‘0’])
5: add_marginal(‘1’, pruning_depth, order, marginals[‘1’])
6: end procedure

Chapter 5

Testing

5.1 Correlators and negative probabilities

Obtaining the precise correlators for a marginal p(y) was more difficult than I thought
at first. In 4.3.4 I mention that we have to be careful indexing the correlators, and my
efficient implementation for obtaining the correlators to compute p(y,0) was index-
ing the wrong correlators. Specifically, get_correlators_for_marginal_to_order
was indexing the correlators from bitstrings of size l ̸= n and thus retrieving correlators
that did not correspond to the marginal I wanted to compute. I needed to pad the
bitstrings with zeros in the end to make them of size n,

I did not realised about this problem until my implementation of the learning algorithm.
With the learning phase, I could compute all the marginals and see whether there was
any value that did not make sense. Indeed, I found out that some of the probabilities
had negative values. Therefore, I decided to check with a hardcoded example whether
the correlators that I was using to compute such marginals were correct; and I found that
neither the values nor the parities were the appropriate ones. I also obtained negative
probabilities by limiting the order of the correlators, but I discuss that in 5.2.

Fixing the issue

To fix the indexing problem, I defined a method get_index(y, x, num_qubits)
which gives the correct index for a specific correlator. It takes a bitstring y of size
l < n from which we want to compute p(y,0); x is an integer index x ∈

[
0,2l) and

num_qubits is the number of qubits of the circuit, n.

Assume we have a circuit of 6 qubits and we want to compute the probability of
adding a 0 to our bitstring y, p(y,0), where y = 101. From equation (3.24) we need
correlators C(sz,1) with sz ∈ {0,1}3. However, we cannot index our class variable
correlators with the corresponding integer values (sz,1). The reason for this is that
our correlators array has size 2n and not 2l , so those indexes would not correspond
to the values we need. For instance, say we want to access correlator C(011, 1), i.e.,
when sz = 011. We would need to call correlators with the value 0111002 = 28,
correlators[12]. Revisiting equation (3.18), we know that we need to pad the

30

Chapter 5. Testing 31

bitstring with n− l zeros to the right:

p(y) =
1
2l ∑

sz

C(p(x);sz, 0̄z∗)(−1)y·sz

On the other hand, I also implemented more efficiently the calculation of the parity
functions in get_correlators_for_marginal_to_order to avoid looping over the
bitstrings y and sz. My idea was to compute the parities of all correlators at once,
(−1)sz·y, and store them in a single array parity. The problem with numpy is that
one cannot perform operations in arrays of characters, so I had to look for a different
solution. I created a 2d array whose rows contain the bitstrings sz & y, where & is the
bitwise AND operator. This way it is possible to do a mod 2 sum over all the rows at
once, and turn the resulting values (either 0 or 1) into 1 or -1, which are the results of the
parity function. With such an array, I can return the Hadamard product correlators
⊙ parity so that the parities are included with the correlators.

Testing

The best way I found to test whether the correlators were computed correctly was to
do an example of 3 qubits by hand, and verify whether I obtain the same results. I
generated a random quantum circuit and with the resulting state vector I obtained the
following:

probabilities= [0.19,0.07,0.09,0.23,0.06,0.13,0.22,0.01]

correlators= [1,0.12,−0.1,−0.02,0.16,−0.16,−0.02,0.54]

We can easily check that probabilities sum up to 1. correlators was obtained by
applying the FWHT algorithm. Using equation (3.23), the marginals of size 1 are:

p(0) = p̂(0)+ p̂(1) =
1
2
(C(000)+C(100)) =

1
2
(1+0.16) = 0.58 (5.1)

p(1) = p̂(0)− p̂(1) =
1
2
(C(000)−C(100)) =

1
2
(1−0.16) = 0.42 (5.2)

And it is easily verifiable that p(0)+ p(1) = p(/0) = 1. Moving on to the marginals of
2 qubits we have:

p(00) = p̂(00)+ p̂(01)+ p̂(10)+ p̂(11) (5.3)

=
1
22 [C(000)+C(010)+C(100)+C(110)] (5.4)

= (1−0.1+0.16−0.02)/4 = 0.26 (5.5)

Similarly, we obtain p(01) = 0.32, p(10) = 0.19 and p(11) = 0.23. We can verify
again that ∑y∈{0,1}2 p(y) = 1. Following the same procedure with bitstrings of size 3
we will obtain the same exact values as vector probabilities, see appendix A. This
is what we expect, since the example is for a circuit of 3 qubits.

I also checked that this method was working by comparing it against get_correlators_
for_marginal_slow(y) since that method was working correctly. After I fixed the
problem before, both methods agreed with their outputs.

Chapter 5. Testing 32

5.2 Changing the order of correlators

In 4.5.2 I explain how I use the array order_and_correlators to efficiently retrieve
the correlators of a specific order. I do so with numpy by indexing the correlators with
a Boolean array that tells me which satisfy the condition order ≤ k. This can be done
in every step of the sampling process so the correlators always have order ≤ k.

Similarly as in section 5.1, I sometimes found negative marginals when I limited the
order of the correlators, which I noticed thanks to using my learning algorithm while
setting different maximum orders k. However, after my fix from the previous section
I found that I was indeed computing the correlators correctly. In fact, I checked my
algorithm by learning the marginals for different arrays of correlators. I obtained those
correlators by applying the FWHT procedure to several arrays of probabilities (which
summed up to one) that I came up with. I could verify that the algorithm was limiting
the order of the correlators correctly, because I obtained the same results by hand.

Nevertheless, I realized that only when I computed the marginals with the distribution
from the quantum circuits I was obtaining negative probabilities. By examining the
correlators, I understood that it could be a problem of numerical error, because I am
computing an approximation to the correlators, and not the exact values. Specifically,
from Fourier analysis we know the correlator of order 0 is C(0̄) = ∑s p(s)(−1)s·0̄ =

∑s p(s) = 1, but it always has small fluctuations that make it a bit bigger or smaller.
This variation, and errors in other correlators seem to be what caused the issue.

This is a standard problem with a defined solution, and not because of my code. I
solved it by following the solution discussed by Ashley in [20, Section 3.2]. To avoid
having negative marginals I modified the sampling algorithm through lines 19 and 20
of Algorithm 5. If I compute p(y,0) and it turns out to be p(y,0) > p(y), then I set
p(y,0) = p(y) and p(y,1) = 0 so that p(y,0)+ p(y,1) = p(y) is still satisfied.

5.3 Other tests

There have been more parts of the projects that I tested differently. I checked the circuits
which the laptop was generating through the method recommended by the Google
engineer (c.f. Figure 4.2). It turned out that they were using CZ gates as two-qubit
gates, so I modified them to use the ISWAP gate. Moreover, I found out that they do
not take the sequence ABCDCDAB into account, as Google does for their intractable
circuits. Even without using the intractable sequence, my laptop struggles to simulate
circuits with n > 23. Because the sampling algorithm is the same irrespective of this
ordering, I decided to keep generating the circuits with that method.

Other parts of the code such as the FWHT algorithm, obtaining the order_arr and
order_and_correlators, checking whether sampling worked and so forth were
easier to test because I had the specific outputs/results of what I needed to obtain.
For example, applying the FWHT algorithm to [1,0,1,0,0,1,1,0] should give me
[4,2,0,−2,0,2,0,2]. Similarly for the class variables, I could check they behaved as I
expected. Lastly, I kept track of the random numbers by using the generator PCG64,
whose period is of 2128 so it did not repeat the same numbers during sampling.

Chapter 6

Experiments and results

6.1 Fidelity decrease with order of correlators

6.1.1 Ideal distribution p

In chapter 3, I discussed different noise models one can consider in experiments with a
quantum device. If there is noise during the measurement in a quantum circuit, we would
expect the fidelity (and therefore XEB) of the quantum state to decay exponentially with
the number of gates m, i.e., (1− p)m with p being the probability of error in a gate [20].
This happens because measurement noise concentrates the Fourier coefficients. If there
is not a great deal of such noise, it could be possible to obtain high fidelity values when
the higher-order correlators are suppressed. The number of gates is linearly related to
the number of qubits n and depth of circuit D, hence the exponential decay of XEB can
be related to the size and depth of the quantum device.

On the other hand, there are other types of noise where the concentration of the Fourier
coefficients is not found. This can happen, for example, when one encounters local
depolarising noise in the experiment with the quantum device. For these cases, however,
it is not obvious how the XEB decays with the size of the circuits.

In Figure 6.1 I show a plot of the FXEB versus the maximum order of correlators that
were used in the calculation. To compute such values of the fidelity, I obtained the ideal
probability distribution from the state vector of a random quantum circuit with n qubits.
Then, I obtained the correlators with the FWHT algorithm which I used to compute
the FXEB. In fact, since we are using the ideal probability distribution, we can reduce
equation (3.13) to:

FXEB = ∑
s ̸=0

Cp(s)Cq(s) = ∑
s ̸=0
|Cp(s)|2. (6.1)

As we can see in Figure 6.1, FXEB increases from a value of 0, when I only use the first
correlator, C(0̄), up to a value of 1 when considering correlators of all possible orders.
This is expected because we are computing the fidelity using the ideal distribution p,
and not a distribution q obtained experimentally on my laptop.

33

Chapter 6. Experiments and results 34

0 2 4 6 8 10 12 14 16 18 20
Order of Correlators

0.0

0.2

0.4

0.6

0.8

1.0

X
E

B

ideal XEB

XEB vs order of correlators

Figure 6.1: Ideal XEB vs maximum order of correlators. The graph shows the different
XEB values computed for a random quantum circuit of 20 qubits, where the correlators
from its ideal probability distribution have been limited to have a maximum order k,
which is shown in the x-axis. The blue line corresponds to an interpolation of the XEB
values. We can see how the XEB is bounded by 0 and 1, as discussed before in section
2.2.3, and there is a very small variation in its value when we consider the higher-order
correlators. Remark that, from combinatorics, when the maximum order k is closer to the
number of qubits n we add very few correlators, so these could be avoided to increase
the performance of the computation. It is important to notice the steep decrease in XEB
when the order of the correlators is close to half of the number of qubits.

6.1.2 Results with experimental distributions q

I designed a more interesting experiment by computing the XEB not with the ideal
probability distribution, but with a distribution q(x) which corresponds to the classical
simulation of the quantum device. I obtained the XEB values by generating a large
number of samples, and using the probability of each generated sample. From our first
definition of FXEB in chapter 2, and by using the definition of HOG(p,q) in equation
(2.2), we express the fidelity as:

FXEB = 2nHOG−1 = 2n
(

1
n ∑

x
q(x)

)
, (6.2)

where n is the number of samples generated, and in the last equality I substituted the
expected value Ep[q(x)] of the HOG, to the mean of the batch of generated samples
{x}, which is what we measure experimentally.

The method get_experimental_Hog(order, events=int(1e4)) returns the exper-
imental HOG obtained after sampling the number of events given as an argument. After
generating a single outcome, I store its probability in an array that gets returned after all
the samples have been generated. This is a good way to obtain the HOG since we only
have to take the mean value of such an array.

Chapter 6. Experiments and results 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Order of correlators

0.0

0.2

0.4

0.6

0.8

1.0

XE
B

Ideal XEB
Mean of experimental XEB
Experiment 1
Experiment 2
Experiment 3
Experiment 4
Experiment 5

XEB vs order of correlators

Figure 6.2: Experimental XEB versus maximum order of correlators. The blue line
shows the ideal XEB for a random quantum circuit for n = 15 qubits. On the other hand,
the plotted orange line is the mean of the experimental XEB obtained in 5 different
experiments. Each experiment was run with a different random quantum circuit of 15
qubits, and their corresponding XEB values can be identified as the colour dots (green,
red, orange, blue, purple). The magenta cross shows the mean of these 5 different
experiments, with an error bar showing the standard error on the mean. We can see
that there are fluctuations when increasing the number of correlators, as the standard
errors increase

In order to obtain a good estimate, I computed the experimental XEB for 5 different
random quantum circuits of 15 qubits and limited the order of correlators from 0 to 15,
as can be seen in the x-axis of Figure 6.2. I obtained 1000 different samples whose
probabilities were used to compute the corresponding XEB. I show plotted the mean of
the experimental values and the standard error on the mean. Moreover, I plot in blue
the fidelity values of a different random quantum circuit using its ideal distribution
for comparison. We can see that the errors increase with the maximum order of the
correlators, because there are more values from which to choose from, and I only ran 5
different experiments.

It can be seen, however, that the fidelity sometimes surpasses the value of 1 when we
use the correlators of all orders. The expectation value of the fidelity is 1 because
random quantum circuits follow the Porter-Thomas distribution very closely when the
number of qubits is n > 5 [34]. The fluctuations are not very big and they could come
from small error in the quantum circuits, or from statistical fluctuations. The proof of
the bound of 1 is only on the limit of infinite generated samples, when HOG = 2/2n so
that FXEB = 1.

There is a very valuable observation that can be retrieved from a detailed analysis of the
graph. Due to our assumption of the noise model (measurement noise), the high-order
coefficients could be exponentially suppressed by the noise. Therefore, we can avoid

Chapter 6. Experiments and results 36

Figure 6.3: Experimental XEB vs number of samples generated per experiment.
This figure shows the experimental XEB obtained for a quantum quantum circuit of 15
qubits with different number of samples. For each number of samples per experiment,
N, I computed the XEB 10 different times. The values plotted are grouped in different
colours depending on the number of outcomes generated to obtain them: from left to
right I used 10, 100, 250, 500, 750, 1000 and 1500 samples to obtain the XEB. They are
plotted together with their mean and the standard error on the mean. On the other hand,
the red dotted line indicates the XEB’s expected value using the ideal distribution p. The
standard error on the mean and the dispersion of the points decreases very rapidly with
the increase of samples taken per XEB, and we get a good estimate when the number
of experiments surpasses the 1000 samples.

computing these higher order coefficients and make faster simulations with a reasonable
fidelity. Looking at Figure 6.2 we can see that restricting the correlators to an order of
k = 9 will give us a fidelity of ≈ 0.8, still a high value.

6.2 Increased accuracy with the number of samples

The value of the experimental XEB fluctuates with the number of outcomes sampled,
because the ideal XEB corresponds to the expected value over all possible random
quantum circuits. It is interesting to see how the experimental fidelity fluctuates with
the number of samples, so that we can suggest how many samples are required to obtain
a good estimate.

To compute the XEB values from Figure 6.3, I first obtain the probability distribution

Chapter 6. Experiments and results 37

Number of qubits Fast sampling Hybrid sampling On-the-fly sampling
3 2.39 ms ± 215 µs 2.22 ms ± 369 µs 8.11 ms ± 980 µs
6 3.8 ms ± 333 µs 7.68 ms ± 555 µs 53.9 ms ± 16.4 ms
9 5.6 ms ± 1.45 ms 51.3 ms ± 1.42 ms 302 ms ± 40.9 ms

12 6.87 ms ± 722 µs 415 ms ± 5.16 ms 2.5 s ± 802 ms
15 7.75 ms ± 968 µs 3.32 s ± 136 ms 27.4 s ± 8.14 s

Table 6.1: Running time of the different implementations of the sampling algorithm

and the correlators from the simulation of a random quantum circuit of 15 qubits.
Having this computed, I proceed to obtain the experimental XEB value N different
generated samples, variable that changes in the x-axis. For each N, I generate N samples
using the hybrid sampling algorithm, I get the experimental XEB and then I show a
scatter plot with the different XEBs obtained. I also show the mean of the experimental
XEB for the number of samples and the standard error on the mean. The red dotted line
shows the XEB obtained from the ideal distribution, i.e., computed with the correlators
from the simulation of another random quantum circuit of 15 qubits.

As Figure 6.3 shows, when we have less than 100 samples per computed XEB the
values seem very dispersed, and the fluctuation is very high compared to the expected
value. This is because in total we can have 2n samples, but we will be generating a
very small subset of those. Therefore, the events generated with the sampling algorithm
will mainly be those with higher probability and we will be missing most of the other
possible outcomes. On the other hand, when the number of samples N becomes greater
than 1000, the experimental XEB becomes much closer to its true value.

6.3 Running time of the algorithms

This last section will be devoted to a comparison between the different implementations,
which I performed on my laptop. I am using a Macbook Pro (13 inch, 2018) with a 2.7
GHz Quad-Core Intel Core i7 processor.

In table 6.1 I show the running time that it takes the different sampling approaches
discussed in chapter 4. For the fast sampling, I did a learning phase to store all the 2n

different marginal probabilities, and then I generated samples. The results shown come
from generating 100 samples 100 different times for a total of 10000 samples. I then
repeated the experiment 7 times and obtained the mean and standard deviation of those
executions, which is what I show in the table, with the format mean ± std. dev.

For the times that correspond to the hybrid and on-the-fly I ran the experiment a bit
differently. First of all, I did not do a learning phase before generating samples, because
this is part of what I consider the fast approach. Furthermore, after generating 100
samples for a given circuit, I cleared the marginals so that there are no values cached
which will make the next sampling faster. I repeated this 100 different times, as I did for
the fast approach, and repeated the experiment 7 times to obtain the mean and std. dev.

I did some of the experiments using the longjob command in DICE, so that I can run

Chapter 6. Experiments and results 38

the code for a long period of time without it stopping executing. Nevertheless, because
more people have started to put jobs in the queue, the experiments took longer than
usual and I had to repeat them in my laptop to be consistent and obtain the values above.
In the future it would be useful to set up the experiments in a cloud platform such as
Google Cloud. This way the values obtained could be easier to benchmark and more
reliable than performing them on my own laptop. Moreover, I must say that to obtaining
all the values using the on-the-fly approach took a whooping 906 minutes and 41.8
seconds. The hybrid sampling managed to give all the values from the table in only 44
minutes and 16.1 seconds, and the fast sampling took only 20 seconds to generate all
the samples (without considering the learning phase). If we consider the time it took for
executing the learning phase, the fast approach performed the experiment in 6 minutes
and 54 seconds.

In conclusion, we easily see that the fast sampling algorithm is much faster than the
other two approaches, and that the on-the-fly approach is the least performing one,
which is also due to the fact that get_correlators_for_marginal_slow does not
retrieve the correlators through indexing. Nevertheless, the learning phase in the fast
sampling takes a sheer amount of time with increasing number of qubits. For 12 qubits
it could learn the whole marginal tree in around 7 seconds. For 15 qubits, however,
it took almost 6 minutes. Consequently, the fast algorithm should be used when the
circuits do not have many qubits. In case the circuits are bigger, it seems a better option
to consider the hybrid approach. In fact, we can do as discussed in chapter 4 and
incorporate a partial learning phase to this approach where we do not learn all the
marginal probabilities, but a fraction of them.

Chapter 7

Conclusion

7.1 Discussion

I considered three different approaches to generate samples from a quantum circuit. All
three require knowledge of the Fourier spectrum, or correlators, of the corresponding
distribution to the quantum circuit. As explained, I used the chain rule to obtain the
outcomes bit by bit using the corresponding conditional probabilities. To simplify the
project, I considered the correlators as given by a “black- box”, so that the report can
focus entirely on the sampling algorithm. Specifically, I obtained all the correlators at
once through the Fast Walsh-Hadamard transform, letting me access them on demand.

I gave the notion of sampling on-the-fly, where the required marginal probabilities were
computed whenever needed for choosing a bit xi. Later, I showed in the hybrid approach
how reusing the marginals, and potentially adding a partial learning phase, would make
the simulation faster. Lastly, with the fast approach I showed that generating a sample
takes linear time in the number of qubits, with all the marginals pre-computed.

From the analysis and experiments of the algorithms, it was easy to see that pre-
computing the marginals gave a significant speedup to generate samples. Nevertheless,
due to the exponential time required for computing such values, it was concluded that
a complete learning phase would not be feasible with bigger-size circuits. Instead,
the learning could be performed partially, and the sampling executed with the hybrid
algorithm.

The sampling algorithm, however, was more complicated to test. After finding a bug
to obtain the necessary correlators for the marginals, I changed the implementation to
index the correct values. The problem persisted when the order of these coefficients
was limited, but this was a standard issue whose solution I implemented.

On balance, the three different approaches of the sampling algorithm were success-
fully implemented using Fourier decomposition. This allowed to simulate quantum
circuits on a laptop, and to limit the order of the coefficients. Because of how the
correlators were obtained, the algorithm cannot simulate bigger (n > 23), more complex
circuits. Nevertheless, it can be adapted for computing the Fourier coefficients with
TN contractions, and to execute in parallel to run the Sycamore circuits. With those

39

Chapter 7. Conclusion 40

improvements, the sampling algorithm will be able to show whether Google’s XEB test
can be “hacked” by computing, in a timely manner, a fidelity FXEB ≈ 0.2% through
limiting the order of the correlators.

7.2 Future work

There are numerous ways in which the ideas discussed in this report can be modified
and improved. Undoubtedly, the most critical change that can be performed is the
computation of the correlators. The current method requires us to store all the correlators,
which will not be possible as the space complexity increases exponentially with the
number of qubits. Moreover, the time complexity of computing a marginal does not
change, even if the order of the correlators is limited. There are several techniques to
obtain these correlators more efficiently, but using tensor network contractions will
probably be the best approach. TN contractions let us compute only the correlators
that we are interested in, and it will also be possible to limit their order. The next
step would be to determine the correlators needed to reach a certain fidelity with such
implementation. Then, it would be exciting to see whether we can “hack” the sampling
of the intractable Sycamore circuits.

This is incredibly non-trivial, and the implementation will have to change to perform
computations on circuits with n > 50. Ideally, after implementing TN contractions,
it should be modified so that it can be executed in the EPCC, the Edinburgh Parallel
Computing Centre. This will require parallelising the code and migrating it from Python
to C++. Moreover, the generation of Sycamore circuits should be adapted to include the
intractable sequence ABCDCDAB, as discussed in chapter 2. With the computational
power of the EPCC, it could be possible to simulate these Sycamore circuits and try to
hack Google’s XEB test.

Last but not least, it would be interesting to see a detailed analysis of how a partial
learning phase affects the running time of the sampling algorithm. Specifically, the level
at which the marginal tree can be pruned so that sampling is faster, but the learning
phase does not require a large amount of time.

Bibliography

[1] Claude Cohen-Tannoudji, Bernard. Diu, and Franck. Laloe. Quantum mechanics
Vol.1. Wiley, 1978.

[2] Henry O. Kunz. “On the Equivalence Between One-Dimensional Discrete Walsh-
Hadamard and Multidimensional Discrete Fourier Transforms”. In: IEEE Trans-
actions on Computers C-28 (1979), pp. 267–268.

[3] Paul Benioff. “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing machines”.
In: Journal of Statistical Physics 22.5 (1980), pp. 563–591.

[4] Yuri Manin. “Computable and Uncomputable”. In: Sovetskoye Radio (1980).

[5] “Simulating physics with computers”. In: International Journal of Theoretical
Physics 21.6/7 (1981).

[6] Charles H. Bennett and Stephen J. Wiesner. “Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states”. In: Phys. Rev. Lett. 69 (20
Nov. 1992), pp. 2881–2884.

[7] Lov K. Grover. “A fast quantum mechanical algorithm for database search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
Computing. Association for Computing Machinery, July 1, 1996.

[8] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”. In: SIAM Journal on Computing
26.5 (Oct. 1997), pp. 1484–1509.

[9] Michael A. Nielsen and Isaac L. Chuang. “Quantum Computation and Quantum
Information”. In: Cambridge University Press, Oct. 2000, p. 13.

[10] Charles H. Bennett et al. “Remote State Preparation”. In: Phys. Rev. Lett. 87 (7
July 2001), p. 077902.

[11] F. L. Yan and X. Q. Zhang. “A scheme for secure direct communication using
EPR pairs and teleportation”. In: The European Physical Journal B - Condensed
Matter and Complex Systems 41.1 (Sept. 1, 2004), pp. 75–78.

[12] Igor L. Markov and Yaoyun Shi. “Simulating Quantum Computation by Contract-
ing Tensor Networks”. In: SIAM Journal on Computing 38.3 (2008), pp. 963–
981.

41

BIBLIOGRAPHY 42

[13] M. Van den Nest. Classical simulation of quantum computation, the Gottesman-
Knill theorem, and slightly beyond. 2009.

[14] S Aaronson and A Arkhipov. Proceedings of the forty-third annual ACM sympo-
sium on Theory of computing. 2011.

[15] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key
distribution and coin tossing”. In: Theoretical Computer Science 560 (Dec. 2014),
pp. 7–11.

[16] Gil Kalai and Guy Kindler. “Gaussian Noise Sensitivity and BosonSampling”.
In: arXiv:1409.3093 [quant-ph] (Nov. 8, 2014).

[17] Anthony Leverrier and Raúl García-Patrón. “Analysis of circuit imperfections in
BosonSampling”. In: arXiv:1309.4687 [quant-ph] (Nov. 5, 2014).

[18] Varun Narasimhachar and Gilad Gour. “Low-temperature thermodynamics with
quantum coherence”. In: Nature Communications 6.1 (July 2015), p. 7689.

[19] Scott Aaronson and Lijie Chen. “Complexity-Theoretic Foundations of Quantum
Supremacy Experiments”. In: arXiv:1612.05903 [quant-ph] (Dec. 26, 2016).

[20] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. “Achieving quan-
tum supremacy with sparse and noisy commuting quantum computations”. In:
Quantum 1 (Apr. 2017), p. 8.

[21] Sergio Boixo et al. “Characterizing quantum supremacy in near-term devices”.
In: Nature Physics 14.6 (Apr. 2018), pp. 595–600.

[22] Igor L. Markov et al. Quantum Supremacy Is Both Closer and Farther than It
Appears. 2018.

[23] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574.7779 (Oct. 24, 2019), pp. 505–510.

[24] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574.7779 (Oct. 2019), pp. 505–510.

[25] Román Orús. “Tensor networks for complex quantum systems”. In: Nature
Reviews Physics 1.9 (Sept. 2019), pp. 538–550.

[26] Edwin Pednault et al. “Leveraging Secondary Storage to Simulate Deep 54-qubit
Sycamore Circuits”. In: arXiv:1910.09534 [quant-ph] (Oct. 22, 2019).

[27] Edwin Pednault et al. On “Quantum Supremacy”. IBM. Oct. 2019.

[28] John Preskill. Why I Called It ‘Quantum Supremacy’. Quanta Magazine. Feb. 10,
2019.

[29] Emanuele Viola. “Algorithms and Complexity”. In: (2019), p. 20.

[30] Philip Ball. “Physicists in China challenge Google’s ‘quantum advantage’”. In:
Nature 588.7838 (Dec. 3, 2020), pp. 380–380.

BIBLIOGRAPHY 43

[31] Ivan B. Djordjevic. “Secure, Global Quantum Communications Networks”. In:
2020 22nd International Conference on Transparent Optical Networks (ICTON).
2020, pp. 1–5.

[32] Gil Kalai. Photonic Huge Quantum Advantage ??? Dec. 5, 2020. (Visited on
10/22/2021).

[33] Gil Kalai. “The argument against quantum computers, a very short introduction”.
In: (2020).

[34] Sean Mullane. Sampling random quantum circuits: a pedestrian’s guide. 2020.

[35] Shi-Ju Ran et al. “Tensor Network Contractions”. In: Lecture Notes in Physics
(2020).

[36] J. Tangpanitanon and D. G. Angelakis. “Many-body physics and quantum simu-
lations with strongly interacting photons”. In: (2020), pp. 169–215.

[37] Han-Sen Zhong et al. “Quantum computational advantage using photons”. In:
Science 370.6523 (2020), pp. 1460–1463.

[38] Yiqing Zhou, E. Miles Stoudenmire, and Xavier Waintal. “What limits the simu-
lation of quantum computers?” In: Physical Review X 10.4 (Nov. 23, 2020).

[39] Arjun Berera and Luigi Del Debbio. Quantum Mechanics. Cambridge University
Press, 2021.

[40] Francesco Bova, Avi Goldfarb, and Roger Melko. “Quantum Computing Is
Coming. What Can It Do?” In: (July 2021).

[41] Jacob Bulmer et al. “The Boundary for Quantum Advantage in Gaussian Boson
Sampling”. In: (Aug. 2021).

[42] Song Cheng et al. “Simulating noisy quantum circuits with matrix product density
operators”. In: Physical Review Research 3.2 (Apr. 2021).

[43] Alexander M. Dalzell, Nicholas Hunter-Jones, and Fernando G. S. L. Brandão.
“Random quantum circuits transform local noise into global white noise”. In:
(2021).

[44] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits”. In: Quantum 5 (Apr. 15, 2021), p. 433.

[45] “Light on quantum advantage”. In: Nature Materials 20.3 (Mar. 2021), pp. 273–
273.

[46] Yong (Alexander) Liu et al. “Closing the "Quantum Supremacy" Gap: Achieving
Real-Time Simulation of a Random Quantum Circuit Using a New Sunway
Supercomputer”. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. SC ’21. New York, NY,
USA, 2021.

[47] Feng Pan, Keyang Chen, and Pan Zhang. Solving the sampling problem of the
Sycamore quantum supremacy circuits. 2021.

BIBLIOGRAPHY 44

[48] Feng Pan and Pan Zhang. Simulating the Sycamore quantum supremacy circuits.
2021.

[49] A. S. Popova and A. N. Rubtsov. “Cracking the Quantum Advantage threshold for
Gaussian Boson Sampling”. In: arXiv:2106.01445 [quant-ph] (Dec. 21, 2021).

[50] Yulin Wu et al. “Strong quantum computational advantage using a superconduct-
ing quantum processor”. In: arXiv:2106.14734 [quant-ph] (June 28, 2021).

[51] David Amaro et al. “Filtering variational quantum algorithms for combinatorial
optimization”. In: Quantum Science and Technology 7.1 (Jan. 2022), p. 015021.

[52] Dylan Herman et al. “A Survey of Quantum Computing for Finance”. In:
arXiv:2201.02773 [quant-ph, q-fin] (Jan. 18, 2022).

[53] Sanjay Rout. 12 Ways Quantum Computing Can Radically Change The World.
Openexo. Mar. 2022.

[54] Qingling Zhu et al. “Quantum computational advantage via 60-qubit 24-cycle
random circuit sampling”. In: Science Bulletin 67.3 (2022), pp. 240–245.

Appendix A

Hardcoded example of 3 qubits

Following section 5.1, I showed the calculation of the marginal probabilities up to 2
qubits for an example with:

probabilities= [0.19,0.07,0.09,0.23,0.06,0.13,0.22,0.01]

correlators= [1,0.12,−0.1,−0.02,0.16,−0.16,−0.02,0.54] .

In this appendix, I continue the computation of the marginals for 3 qubits. We will
see that they are equivalent to the probabilities array because I am not limiting the
order of the correlators.

p(000) = p̂(000)+ p̂(001)+ p̂(010)+ p̂(011)
+ p̂(100)+ p̂(101)+ p̂(110)+ p̂(111)

=
1
8
[C(000)+C(001)+C(010)+C(011)

+C(100)+C(101)+C(110)+C(111)]

=
1
8
[1+0.12−0.1−0.02+0.16−0.16−0.02+0.54]

= 0.19

p(001) =
1
8
[C(000)−C(001)+C(010)−C(011)

+C(100)−C(101)+C(110)−C(111)]

=
1
8
[1−0.12−0.1+0.02+0.16+0.16−0.02−0.54]

= 0.07

p(010) =
1
8
[C(000)+C(001)−C(010)−C(011)

+C(100)+C(101)−C(110)−C(111)]

=
1
8
[1+0.12+0.1+0.02+0.16−0.16+0.02−0.54]

= 0.09

45

Appendix A. Hardcoded example of 3 qubits 46

p(011) =
1
8
[C(000)−C(001)−C(010)+C(011)

+C(100)−C(101)−C(110)+C(111)]

=
1
8
[1−0.12+0.1−0.02+0.16+0.16+0.02+0.54]

= 0.23

p(100) =
1
8
[C(000)+C(001)+C(010)+C(011)

−C(100)−C(101)−C(110)−C(111)]

=
1
8
[1+0.12−0.1−0.02−0.16+0.16+0.02−0.54]

= 0.06

p(101) =
1
8
[C(000)−C(001)+C(010)−C(011)

−C(100)+C(101)−C(110)+C(111)]

=
1
8
[1−0.12−0.1+0.02−0.16−0.16+0.02+0.54]

= 0.13

p(110) =
1
8
[C(000)+C(001)−C(010)−C(011)

−C(100)−C(101)+C(110)+C(111)]

=
1
8
[1+0.12+0.1+0.02−0.16+0.16−0.02+0.54]

= 0.22

p(111) =
1
8
[C(000)−C(001)−C(010)+C(011)

−C(100)+C(101)+C(110)−C(111)]

=
1
8
[1−0.12+0.1−0.02−0.16−0.16−0.02−0.54]

= 0.01

Now we can easily see that the values computed are the same as with the initial
distribution.

	Introduction
	Motivation
	The big picture
	My project
	Completion of the project
	Report structure

	Background and Related Work
	Quantum Computing
	Context
	On ``Quantum Supremacy"

	Google's Experiment
	Overview
	Quantum Random Circuits
	XEB Theory
	Results and criticism
	Further Experiments

	Classically simulating quantum circuits
	Ideal circuit simulation
	Including noise in the simulation

	Sampling from Fourier coefficients

	Analysis of Boolean Functions
	Overview
	Fourier analysis in TEXT
	Correlators

	Marginal probabilities
	Chain rule
	Sampling
	Restricting Fourier coefficients

	Sampling Algorithm
	Big Picture
	Programming Language
	Google Cirq's .sample() method

	Set up
	Generating random quantum circuits
	Simulating the circuit
	Obtaining probabilities
	Obtaining correlators

	On-the-fly algorithm
	Overview
	Procedures

	Hybrid algorithm
	Storing the marginals
	Limiting the order of correlators
	Procedures

	Fast algorithm

	Testing
	Correlators and negative probabilities
	Changing the order of correlators
	Other tests

	Experiments and results
	Fidelity decrease with order of correlators
	Ideal distribution p
	Results with experimental distributions q

	Increased accuracy with the number of samples
	Running time of the algorithms

	Conclusion
	Discussion
	Future work

	Bibliography
	Hardcoded example of 3 qubits

