
ProtoGen-MLIR V2: An Optimizing Compiler for
Cache Coherence Protocols

Petr Vesely
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2022

Abstract
This report presents ProtoGen-MLIR v2, an optimizing compiler for cache coher-
ence protocols using MLIR compiler infrastructure. The compiler provides the user
with a Domain Specific Language to specify a cache coherence protocol with atomic
transactions and generates a optimized concurrent version of the protocol without this
requirement. This project builds upon the previous version presented in Part 1 of this
project, and implements new features that increase the overall optimization capability.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Petr Vesely)

ii

Acknowledgements
Firstly I would like to thank my supervisors Dr. Vijay Nagarajan & Dr. Tobias Grosser.
Thank you for your excellent mentorship, you wealth of knowledge and constant support,
guidance and encouragement throughout this project. Additionally, I would like to
thank Nicolai Oswald for sharing his detailed knowledge of ProtoGen to allow me
to complete this project. Finally I would like to thank my family and my friends for
supporting and motivating me to complete this project.

iii

Table of Contents

1 Introduction 1
1.1 Previous Work . 2

1.1.1 Circt . 2
1.1.2 ProtoGen . 2
1.1.3 ProtoGen-MLIR . 3
1.1.4 Teapot . 3

1.2 Aims . 4
1.3 Contributions . 4

2 Background 6
2.1 Cache Coherence . 6
2.2 Memory Consistency . 8
2.3 MOESI Protocols . 9
2.4 MLIR . 9
2.5 MurΦ . 10
2.6 PCC Language . 11

3 ProtoGen-MLIR v2 13
3.1 Defining the new FSM dialect . 13

3.1.1 Strong Types . 14
3.1.2 FSM abstraction . 16
3.1.3 Custom Assembly Format 18

3.2 Defining declarative optimizations 18
3.2.1 Stalling Optimizations . 19
3.2.2 Non-Stalling Optimizations 22
3.2.3 Optimizing the Directory Controller 23

3.3 Modularizing and Generalizing the CodeGen backend 25
3.4 Testing and Quality Assurance . 26

4 Testing 28
4.1 MI Protocol . 28
4.2 MSI Protocol . 30
4.3 MESI Protocol . 32
4.4 Summary . 35

5 Conclusions 36

iv

5.1 Summary . 36
5.2 Reflections . 37
5.3 Future Work . 37

Bibliography 39

A PCC Specification of MI Protocol 41

B PCC Specification of MSI Protocol 44

C PCC Specification of MESI Protocol 49

v

Chapter 1

Introduction

Designing custom silicon is hard. Hardware, unlike software, cannot be ’fixed’ or
’patched’ after it is produced. This results in a huge verification effort to ensure
hardware is verified on multiple fronts, including correctness, safety and security [12].
Due to the strictness in these requirements, it has been observed that verification of
hardware can often become the bottleneck in chip design [8]. Moreover, chips will
inevitably become more complex, which will likely exaggerate this problem further.
Hardware is verified in many ways, including simulation, testing on pre-production
chips and even some formal verification techniques are used [12]. Yet, bugs and defects
in hardware still occur regularly and sometimes with grave consequences. For example,
issues with the implementation of Intel’s speculative execution led to the Spectre and
Meltdown vulnerabilities [9]. The ’fix’ for the vulnerabilities was either to completely
disable Hyper-Threading or replace the CPU entirely, resulting in significantly degraded
performance or high cost respectively [4].

What is concerning, is that over the past two decades Dennard Scaling (the inability
for CPUs to continue increasing clock speeds due to power and thermal limits) and
the decline of Moore’s law in recent years has resulted in a move to ever more parallel
and heterogeneous architectures [19]. This means that specific problems will likely
require custom silicon or accelerators to achieve their desired performance. Moreover,
custom silicon for domain specific purposes will likely have very unique computing
requirements and might not be able to use the general purpose industry tooling available.
This could make it prohibitively expensive for small to medium sized companies to be
able to develop their own silicon chips and have to rely on off-the-shelf designs, which
may not yield the best performance possible.

The solution may however lie with compilers. A compiler is in effect a program which
transforms an input of one form to an output of another form. But this ability has proven
to be very powerful, not only in the classical sense of compiling static languages to
machine code, but also in other more specialised domains, including hardware [11].
Compilers have steadily moved forward in their capability over the past several decades.
In fact compiler technology has proved very effective in solving many challenges as the
community shift to parallel and heterogeneous systems. SYCL is a ISO C++ language
standard that allows a programmer to write code for heterogeneous architectures in

1

Chapter 1. Introduction 2

a single source file using standard C++ [3]. Previous attempts at this like OpenCL
required the programmer to explicitly write accelerated code in separate source file and
orchestrate their interactions using the required DSL. Another exciting development is
the Circt project [11], which uses MLIR for hardware synthesis, and implements many
industry standard backend targets such as Verilog and RTTL. This could prove essential
in reducing the development effort to engineer custom silicon.

This project attempts to use compiler development techniques to engineer a compiler
for cache coherence protocols. Cache coherence protocols are an essential component
of all multi-core shared memory multiprocessors. On the surface, a cache coherence
protocol can seem deceptively simple, their function can be described in a few states
and transitions, and their correctness and be easily reasoned about. However, such
specifications usually assume atomic transactions, where the caches and memory be-
have atomically. However, most hardware implementations relax this constraint for
performance and thus require many additional transient states and transitions to handle
all possible race conditions that can occur. As a result an MSI protocol with only three
stable states, results in a protocol with eighteen total states (including transient states)
when the atomic transaction requirement is relaxed [14].

1.1 Previous Work

1.1.1 Circt

Circt is an existing open-source project to address the lack of open source tooling for
electronics design, including processor architecture [11]. It’s popularity has grown
steadily in recent years and has moved to be part of the LLVM umbrella project,
which saw many new contributions from the industry, including from Chris Lattner
(the original creator of LLVM). Circt itself exposes a diverse, modular and reusable
library of intermediate representations for hardware synthesis. Then, through it’s
many sophisticated optimization pipelines, it can generate industry standard outputs
like Verilog or RTTL [11]. The key to it’s potential is that verification efforts can be
reduced, since the compiled outputs are correct-by-construction as a consequence. The
project uses MLIR’s compiler infrastructure for its internal representations as well as its
optimization pipelines. The success shown by this project was a big motivating factor
in attempting to use MLIR to model cache coherence protocols.

1.1.2 ProtoGen

ProtoGen is an existing tool developed by Nicolai Oswald at the University of Edinburgh
[16]. It’s purpose is to generate highly concurrent and optimized protocols with non-
atomic transactions from an atomic protocol specification. To achieve this ProtoGen
comes with a Domain Specific Language (DSL) named PCC, which allows the user to
specify a protocol’s function in code. ProtoGen then uses this protocol description, and
applies its sophisticated optimizations which allows the transaction atomicity constraint
to be relaxed. ProtoGen can relax this constraint by discovering when race conditions
occur in the protocol and adding additional transient states and transitions to handle

Chapter 1. Introduction 3

them. ProtoGen can also generate MurΦ (pronounced Murphy) from the generated
protocol, which is a verification tool that allows the protocol to be verified formally
for deadlocks and other constraints. This project is heavily influenced by this previous
work, in fact we borrow the DSL and reason about the optimizations in a similar
way in ProtoGen-MLIR, although we present an entirely novel architecture leveraging
compiling techniques.

1.1.3 ProtoGen-MLIR

ProtoGen-MLIR was presented in part 1 of this project and from now on we will refer to
it as ProtoGen-MLIR v1 to make the distinction between ProtoGen-MLIR v2 presented
in this report. ProtoGen-MLIR v1 was a full compiler implementation which success-
fully proved that MLIR and compiling techniques in general could be used to optimize
cache coherence protocols [20]. V1 presented a full frontend implementation for the
PCC DSL into a custom IR (declared using MLIR), which parsed in the input PCC
protocol description and generated the MLIR operations as input into the optimization
pipeline. V1 also included an optimization tool using MLIR pass infrastructure which
transformed the input IR by applying a small subset of the optimizations from ProtoGen.
Finally, it also included a full backend implementation which targeted MurΦ to verify
the generated protocols for correctness (similarly to ProtoGen).

ProtoGen-MLIR is fundamentally a re-implementation of the ProtoGen algorithm. How-
ever, ProtoGen implements its own internal representation as in-memory data structures,
which limit its development and interactions with other tools. ProtoGen-MLIR instead
focuses on bringing well established compiler development techniques, to develop a
well specified text-based internal representation. This effectively provides a generic
interface and allows for development of specific tools, which can interact together using
the IR. This improves the modularity and can allow for pipelined execution of the
compiler.

1.1.4 Teapot

Teapot is a domain specific language and compiler for specifying the behaviour of
cache coherence protocols [5]. However, unlike ProtoGen or ProtoGen-MLIR, Teapot
does not provide any optimizations in terms of additional concurrency. Teapot instead
provides a high level programming language to specify the behaviour of protocols using
functional programming concepts. Specifically, Teapot leverages continuations to track
the execution of a coherence transaction, by allowing cache or directory controllers to
yield their execution and be resumed later. This is particularly elegant in transactions
which send a request and await some response.

Teapot includes backend targets for C and MurΦ, which made it appealing to study
for parallels to ProtoGen and ProtoGen-MLIR. However, we found that its use of
functional programming did not fit into the model required for ProtoGen-MLIR. In
order to perform automatic optimization of protocols, we require additional information
about the execution of the protocol to discover race conditions, which proved difficult
using their model. Moreover, PCC uses its own await syntax which provides a similar

Chapter 1. Introduction 4

functionality to continuations, and we felt that there was no advantage in pursuing this
model.

1.2 Aims

The aim of this project was to build upon the previous work of ProtoGen-MLIR v1
and to develop an MLIR compiler for cache coherence protocols. We aim to address
the main challenges which plagued its original design and to extend the optimization
capability towards ProtoGen and support additional language features and protocols.

ProtoGen-MLIR v1 proved altogether unmaintainable for several reasons. Firstly, the
IR presented was basic and didn’t correctly encode the operation of the protocol. This
meant that the optimizations presented were limited in their capability and ad-hoc
techniques were used to manipulate the IR, which became difficult to implement and
reason about. In this project we aim to primarily address this main shortcoming, by
developing a more suitable IR, which correctly expresses the Finite State Machine
(FSM) nature of the cache and directory controllers.

From the challenges of implementing optimizations in ProtoGen-MLIR v1 we also aim
to develop a declarative specification of how optimizations are to be performed. This
specification is presented as a set of declarative steps, which can be reasoned about and
then guide the implementation. This means that we have a strong logical and reasoned
foundation that applies to all protocols, meaning we do not have to revert to ad-hoc
techniques.

Lastly we aim to develop a modular and maintainable compiler backend implementa-
tion. ProtoGen-MLIR v1 suffered from significant coupling between the IR and the
MurΦ CodeGen implementation, meaning that to support the new IR, this component
would have to be almost completely rewritten. As part of this report we also aim to
develop a generic implementation of this component, which will work for any cus-
tom IR developed in the future, and will make future contributions much simpler and
straightforward.

1.3 Contributions

This report presents ProtoGen-MLIR v2, which is a greatly improved (re)implementation
of the original ProtoGen-MLIR presented in Part 1 of this project.

Key Improvements:

• Improved overall optimization potential over v1, especially with the addition of
non-stalling optimizations.

• A new Intermediate Representation (IR) which abstracts a coherence protocol
as a Finite State Machine (FSM). The representation also includes a strong type
system and improved diagnostics.

Chapter 1. Introduction 5

• A detailed declarative specification for each class of coherence optimization
which is based on the sound reasoning of coherence protocols from ProtoGen.

• A generic MurΦ CodeGen backend component, designed for maintainability and
compatibility with any MLIR representation.

• Extended support for PCC language features, which allow us to express more
complex protocols than v1.

• Improved testing and verification of IR & optimization pipelines, which provides
confidence in the overall implementation of the compiler.

Chapter 2

Background

2.1 Cache Coherence

Most modern CPUs can best be described as shared-memory multiprocessors, which
consist of a number of discrete processor cores, each of which has direct access to the
full address space. This has the consequence, that any of the processors on the chip can
read and write data to addresses that may be being accessed by another processor. This
is sometimes also called a Uniform Memory Access (UMA) architecture, and enables
communication and synchronization between processes through the shared-memory
interface [18].

To complicate matters, such systems rely heavily on caching, which is a technique to
store frequently accessed memory addresses on a fast-access chip that is physically close
to the processor. Caching is crucial for performance as main memory is prohibitively
slow in comparison to the processor and access to memory locations are not randomly
distributed. A typical program execution will issue reads and writes to the memory
system which exhibit certain patterns, namely temporal locality (where a recently
accessed address is likely to accessed again) and spacial locality (addresses close to the
previously accessed address are likely to be accessed) [18]. Thus, by using a cache to
store blocks of recently accessed addresses we can expect a large percentage of requests
for an address can be fulfilled by accessing the cache instead of main memory. For
comparison, an access to the cache can be completed in a handful of CPU cycles, while
access to main memory will be more than a 100 cycles [13]. Thus having an effective
caching system is critical for performance. Other caching performance techniques such
as replacement policies or cache associativity are not considered as part of this report.

In Figure 2.1 we present the baseline system model used throughout this report. We
show that each core issues its read and write requests to a cache controller. Each cache
controller is then connected to a single private data cache which is only accessible by
the controller. Access to main memory is controlled by the LLC/Memory controller
(throughout this report we usually refer to this component as the directory) and it is
connected to the LLC which is shared by all cores. Each controller is then connected
together through an Interconnection Network (Interconnect for short) which allows
messages to be sent and received by different controllers. Note that we do not specify

6

Chapter 2. Background 7

Figure 2.1: Baseline system model used throughout this report [14]

any specific hardware implementation for any of these components. This is a deliberate
choice as reasoning about cache coherence protocols can be done at high-level without
considering hardware directly. However, some hardware elements can be specified
using PCC, such as the structure of messages and if the interconnect enforces ordering.

With the baseline architecture from Figure 2.1 we can quickly show how cache inco-
herence could arise. Suppose that a core C0 performs a load of address A. The cache
controller will issue a request to the directory to load the data and the directory will
fetch it from the LLC or main memory and sent it back to C0, where it will be stored
in its private cache. Next, another core C1 will perform the same action resulting that
both cores C0 & C1 having address A in their private data caches respectively. Now
suppose that C1 issues a write to address A (changing its value). Since the address A
is present in the cache, this request will be fulfilled locally and is not updated in C0’s
cache nor the LLC. Any future loads and stores to address A from C0 (or any other core
other than C1 for that matter) will not reflect the change made by C1.

For cache coherence to be maintained, meaning that every cache holds the most up-to-
date value in its private cache, it is required that a cache coherence protocol maintains
Write Propagation & Transaction Serialization [2]. Write Propagation means that when
a write is performed to an address by some core, the result of that write will eventually
become visible to all other cores. This requirement was violated in the previous example,
which clearly led to incoherence. Transaction Serialization states that there will exist
some ordering of read/write requests, but that order will be identical for every core. To

Chapter 2. Background 8

see why this is a requirement consider the following scenario. Suppose that C0 & C1
both hold address A in their private data cache and its value is 0. C0 issues a write to
change the value to 1, but C1 simultaneously issues a request to change the value to 2.
If the caches do not observe the ordering of writes happening in the same order, then
the caches will still remain incoherent, even if write propagation is maintained.

When designing real-world protocols, it is often easier to reason about if the protocol
maintains specific invariants during its execution, from which we can then infer that
Write Propagation and Transaction Serialization are enforced. Consider the following
invariants:

• Single-Writer, Multiple-Reader (SWMR)[14] - This invariant states
that at any point during the protocols execution, there either exists a
single core which can write (and also read) an address or there can
exist many cores that can read an address.

• Data Value Invariant[14] - states that the result of a write operation
will be reflected in the next read/write operation.

We can show that when these two invariants are maintained, Write Propagation and
Transaction Serialization are also enforced [14]. As a consequence, we need only to
consider enforcing the above two invariants to ensure that any protocol maintains cache
coherence. This is an important result, as it means that we can use a model checker like
MurΦ to explore every possible state in the protocol and ensure that these invariants are
enforced, and thus verify the protocol.

2.2 Memory Consistency

Memory consistency or consistency model is another important component in a shared-
memory multiprocessor. In essence a consistency model is a contract between the
processors as to what is allowed behaviour when executing multi-threaded programs.
This may seem like a non-issue, but in the endless quest for greater performance,
processor pipelines will re-order instructions and buffer writes to main memory in
order to improve throughput, which can cause unexpected problems when writing
multi-threaded programs.

When considering memory consistency we can divide coherence protocols into two
groups. A Consistency-agnostic coherence protocol is one where reads and writes are
completed synchronously, i.e. the value of the read or write is returned only after it has
been completed. This means that the processor pipeline can interact with the memory
system as if it is atomic and the protocol provides the illusion of making the caches
invisible. This is a nice property as the coherence protocol need not concern itself with
the consistency model and vice versa, which provides an elegant separation of concerns
[14]. A Consistency-directed coherence protocol is one where writes can return before
the value has been propagated to all other caches. These kinds of protocols must ensure
that when writes are performed their result will eventually become visible to all other
processors in accordance with the consistency model [14]. Throughout this report we
will only consider consistency agnostic coherence protocols.

Chapter 2. Background 9

2.3 MOESI Protocols

The MOESI protocols (pronounced ”MO-sey” or ”MO-EE-see”) are a standard group
of coherence protocols that use a combination of Modified, Owned, Exclusive, Shared
& Invalid states to encode the execution of the protocol. Each of these states has a
specific meaning, and the protocol is designed to transition between these states in order
to maintain the required invariants.

• Invalid - the address is either not present in the cache or the value is no longer
up-to-date

• Shared - the cache can read the address, and it may be shared by zero or more
other caches

• Modified - the cache can read and write the address, every other cache is in state
I.

• Exclusive - the first cache to issue a read request is issued with E state, and can
silently upgrade with write permissions without further communication with the
directory.

• Owned - a cache in this state holds the most up-to-date value of the address and
is responsible for fulfilling coherence requests when they arrive.

MOESI protocols are well understood and common in the literature. We will use a
subset of these protocols as input to ProtoGen-MLIR v2 to verify that it is functioning
correctly.

2.4 MLIR

MLIR (Multi-Level Intermediate Representation) is a novel approach to building
reusable and extensible compiler infrastructure and is part of the LLVM umbrella
project [10]. In the past, each programming language required their own full compiler
implementations. However, more recently, projects like LLVM provide modular and
reusable compiler infrastructure components. This significantly reduces the cost of
implementing programming languages since significant components of the compiler
pipeline are provided ’out-of-the-box’. However, these components rely on LLVM-IR
which is a very low-level representation and resembles a pseudo CPU instruction set.
The consequence of this is that many higher level languages cannot implement certain
optimizations once the program is transformed to LLVM-IR. Instead such compilers
will use custom frontend implementations, where the program is transformed through
higher-level representations before eventually targeting LLVM-IR. Rust for example is
a language with a very strong type system and has strong memory safety requirements.
Its compiler processes the language through two custom intermediate representations
before finally targeting LLVM-IR, in order to achieve its safety guarantees and perfor-
mance [17].

MLIR addresses this problem by allowing the programmer to declaratively specify cus-
tom representations. This allows different representations to be used for different levels

Chapter 2. Background 10

of abstraction and semantics, unlike the fixed instruction set of LLVM-IR. Programs can
then be compiled through multiple levels of IR, while reusing all the well implemented
validation, transformation and optimization components provided by MLIR in each
stage.

MLIR is particularly exciting in the context of Domain Specific Languages (DSLs),
which are still largely difficult to implement. DSLs tend to be niche and do not have
many users, which results in many aspects of their compiler implementations being
overlooked or performing inadequately. DSL compilers often suffer from slow compi-
lation times, bugs, poor debugging and error messages, and an overall disappointing
user experience. MLIR is designed to provide a robust supporting infrastructure, which
allows language designers to create high quality, efficient and maintainable domain
specific compilers. As computing architectures become ever more specialised, we
expect that highly optimized DSLs will become common. Thus, MLIR is an important
technology which will allow language designers to create high quality and efficient
optimizing compilers.

Representations in MLIR are all expressed in Single Static Assignment (SSA) form [10].
This means that the result of any variable is assigned only once and every variable must
be defined before it is used. Using this form has significant advantages in implementing
many compiler optimizations like constant propagation and register allocation, because
the origin of values and their use can be traced exactly due to the SSA properties.

ProtoGen-MLIR v2 is implemented using MLIR due to its advantages for creating
domain specific compilers. We use MLIR to define our custom representation, which
we can generate from our frontend. Once we have transformed the program into our
representation we use MLIR’s optimization infrastructure by modifying the IR in-place
through our declarative transformations. Once the optimized IR is obtained, we use it
to generate MurΦ code, which will verify our protocol for correctness.

2.5 MurΦ

MurΦ (also written as Murphi and pronounced Murphy) consists of the Murphi Com-
piler and the Murphi description language which was originally developed at the
University of Utah to evaluate cache coherence protocols [6].

A Murphi description is a high-level program which consists of declarations of constants,
types, global variables, procedures and rules. The Murphi Compiler then uses this to
generates a special purpose verifier. This special purpose verifier is then executed to
check properties of the system, such as error assertions, invariants and deadlocks. A
Murphi program is then executed using the following algorithm.

Repeat Forever:

a) Find all rules whose conditions are true in the current state. (i.e. condi-
tional expressions are true, given the current values of the global variables).

b) Choose one arbitrarily and execute the action, yielding a new state. [7]

Chapter 2. Background 11

Its important to note that Murphi descriptions are non-deterministic, because of the
arbitrary choice in step b). This is a good property, because a coherence protocol must
do the ’right thing’ regardless of which rule is chosen to be executed.

Due to the large number of states and execution paths that can exist in a coherence
protocol, Murphi uses symmetry reduction in order to reduce the state space search.
For example, a Murphi description that uses the scalarset type, allows it to consider
every element of the set as symmetrical. If for example we define the caches in the
system to be part of a scalarset then a large number of states can be eliminated due
to symmetry. If, for example, C1 was in state S1 & C2 was in state S2, Murphi would
consider this equivalent to the scenario C1 in S2 and C2 in S1.

2.6 PCC Language

The PCC Language is a DSL originally introduced as part of the original ProtoGen
project. Its purpose is to allow a coherence protocol designer to specify a protocol using
atomic transactions.

As part of the specification PCC requires some basic architectural descriptions such
as the networks required for the protocol, the structure of the cache controller and
the structure of the messages sent onto the networks. To specify the execution of the
protocol, PCC provides a Process block, which expresses a transaction between stable
states. In Listing 2.1 we show and example of the I→M transaction from the MSI
protocol. PCCs simple syntax and declarative style, makes following the execution of a
transaction straightforward, especially with the use of await syntax to halt execution
until a specific message arrives from the directory or another cache. From Listing 2.1 we
can still see that the protocol designer must still take care to handle some race conditions,
since we must handle Inv Ack messages arriving before the response from the directory.
However, only messages that relate to the currently executing transaction must be han-
dled by the protocol specification and the designer can still assume that the transaction
is occurring atomically i.e. without any other transaction executing simultaneously.

Chapter 2. Background 12

A r c h i t e c t u r e cache {
. . .

P r o c e s s (I , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;
a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;
S t a t e = M;
b r e a k ;

when GetM Ack AD :
a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}
}

when Inv Ack :
a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

/ / . . . a d d i t i o n a l t r a n s a c t i o n s
}

Listing 2.1: PCC Specification of I→M Transaction

Chapter 3

ProtoGen-MLIR v2

In this chapter we present the significant changes implemented as part of ProtoGen-
MLIR v2. In Section 3.1 we first present the new Intermediate Representation used in
v2 and outline many of its significant improvements compared to v1. In Section 3.2 we
present how we can optimize a cache coherence protocol from its atomic specification,
and present a declarative specification for each class of optimization. Lastly in Section
3.3 we present a new and improved CodeGen backend designed for modularity and
extensibility.

3.1 Defining the new FSM dialect

As mentioned previously one of the great shortcomings of v1 was the design of its
internal representation (IR). In MLIR we can specify a dialect which is a collection of
related operations, types and attributes that collectively form the IR. In v1 we presented
the PCC dialect, which was designed to express the language features of PCC in MLIR.
However, partly due to time constraints and relatively weak understanding of IR design
the resulting IR had many critical flaws. As a consequence, through several iterations,
we present a new FSM dialect, which is designed as a direct replacement for the PCC
dialect and implements the following key improvements.

• Strongly typed operations and interfaces (Section 3.1.1)

• Much more useful abstraction as an FSM (Section 3.1.2)

• Symbolic links to express transitions between states (Section 3.1.2)

• Custom assembly format for improved readability (Section 3.1.3)

To support this new dialect we had to re-implement the frontend tool which parses the
input PCC file and generates the correct operations in the FSM dialect. This tool is
broadly similar to the tool presented for the PCC dialect in v1, however it much more
capable in terms of diagnostics and error reporting. In Section 3.1.1 we show how the
much improved type system of the FSM dialect allows our new frontend to deduce
types of values used in PCC and report errors when values are used incorrectly.

13

Chapter 3. ProtoGen-MLIR v2 14

3.1.1 Strong Types

The original PCC dialect from v1 performed no type checking, and enforced no con-
straints on operands or arguments of operations. In Listing 3.2 we present an example
of the cache definition operation from the PCC dialect, which is used to specify the
internal storage of the cache controller from its definition in PCC shown in Listing 3.1.
From the definition we can see that the cache controller should have two internal state
variables: (1) a State variable with initial value I and (2) a cl variable of type Data and
no initial value, which represents a cache line stored in the cache. The operation in
Listing 3.2 simply maintains two string arrays of the field names and their types. Not
only does this encoding not preserve any real type information, it is actually incorrect
since the initial state ’I’ is not a type at all. Moreover, the operation does not return any
SSA results nor have any symbolic references, which means that operations which wish
to interact with the internal state cannot reference it directly.

Cache {
S t a t e I ;
Data c l ;

} s e t [NrCaches] cache ;

Listing 3.1: PCC language cache definition

” pcc . c a c h e d e f i n i t i o n ” ()
{ f i e l d s =[” S t a t e ” , ” c l ”] , t y p e s =[” I ” , ” Data ”]}

: () −> ()

Listing 3.2: PCC dialect cache definition

fsm . machine @cache{
%S t a t e = fsm . v a r i a b l e ” S t a t e ” { i n i t V a l u e =” I ”} : ! fsm . s t a t e
%c l = fsm . v a r i a b l e ” c l ” : ! fsm . d a t a
. . .

}

Listing 3.3: FSM dialect cache definition

In Listing 3.3 we present how the cache internal state is represented using the FSM
Dialect. Firstly observe that we define a generic operation called machine which is used
to specify any finite state machine in the system, in our case we will use this operation
to specify the controllers for the cache and directory. The operation is also declared as a
Symbol and assigned the symbolic name cache (indicated by the @ character), which
means that it can be referenced by future operations. The machine op contains a single
region (a list of operations nested within the parent operation) in which we specify the
internal state. Note that the prefix fsm is used to indicate which operations and types
belong to the FSM dialect.

Once within the region of the machine op we can specify the internal state of the
controller using the variable operation. This operation contains a reference to the
original variable name as well as allowing an optional initial value attribute. Each
variable operation also produces a single SSA value as a result, which is used as

Chapter 3. ProtoGen-MLIR v2 15

Figure 3.1: FSM Dialect Diagnostic Error

input to other operations which will update the state. Furthermore, the result is strongly
typed with custom types that are also specified as part of the representation. In this
case we use the fsm.state and fsm.data types which map directly to the types used
in PCC. The strong types used here become important when considering operations
that update the state, because we can enforce that the types match. This means that
if a PCC programmer attempts perform updates to the internal variable with invalid
values, our compiler will issue errors and show exactly where in the code the error is
occurring. This kind of diagnostic ability was simply not possible with the string based
representation used in v1. In Figure 3.1 we present an example of such an error, when
we attempt to assign and invalid value to the machine variable ”State”. This same style
of IR design was replicated in the other hardware specifications including the message
type interface and the network type interface.

With the success of this design we further pushed to improve other areas where the PCC
dialect suffered from weak or no type system. In Listing 3.4 we show in PCC code for
how a message is constructed. In this case were are creating a Request message and
the arguments to it represent that we constructing a GetM message, which has source
address ID (meaning the cache it was sent from) and destination address of the directory.
In Listing 3.5 we show how this construct is transformed into the PCC dialect in MLIR.
You can see that we again use string attributes to represent the data and arguments
passed to the message constructor. This means that even references to constructs within
the IR aren’t expressed, such as the reference to directory.ID is simply a string and
preserves no meaning. Although the operation does yield an SSA result, which can be
used by other operations, it is still however incorrectly typed. Since MLIR requires that
results have types, we chose to type this as i64 (even though its not an integer) just as a
placeholder since the PCC dialect had not types of its own. The consequence of this
decision meant that we lost all information about the context of what this result meant.

msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;

Listing 3.4: PCC message construction

%msg = ” murphi . m s g c o n s t r ” () {msgType=” Reques t ” , p a r a m e t e r s =[”
GetM ” , ” ID ” , ” d i r e c t o r y . ID ”]} : () −> i 6 4

Listing 3.5: PCC dialect message construction

%s r c = fsm . r e f @cache
%d s t = fsm . r e f @ d i r e c t o r y
%msg = fsm . message @Request ” GetS ” %s r c , %d s t : ! fsm . id , ! fsm . i d −> ! fsm . msg

Listing 3.6: FSM dialect message construction

In Listing 3.6 we show how the construct from Listing 3.4 is expressed in the FSM
dialect. Firstly, you can observe that the same construct is expressed with several

Chapter 3. ProtoGen-MLIR v2 16

operations. The two ref operations construct references to the source and destination
addresses that we will then use in the message constructor. This is possible because
our machine operations are symbols and can be referenced by other operations. The
ref operation is declared to always return an SSA result of the type id, hence why
the type definition is omitted here, but the result is still strongly typed (see Section
3.1.3). By having strongly typed SSA values for these references means that we can
use them as inputs (or operands) with the message constructor operation. The last
operation message (which constructs the message) has a symbolic reference to the type
definition of the message we are constructing (in this case Request), next is the string of
the message name followed by the remaining arguments to constructor. As a result we
obtain a strongly typed msg SSA value, which is then later used by other operations,
such as sending the message onto one of the interconnects. Leveraging this strong
typing, we can again provide diagnostic and error reporting capability to the user, in the
case when the message construction is written incorrectly, such as entering too many
arguments or of the wrong type.

This strong type system is enforced throughout the FSM dialect, with all the required
custom types implemented from PCC, however we felt that these two examples most
strongly highlight it benefits.

3.1.2 FSM abstraction

The PCC dialect had (rather crudely and naively) modeled its operations too closely
to the language structures of PCC and provided no useful abstractions to the problem
we were actually trying to solve. A cache or directory controller is effectively a finite
state machine (FSM): in each state it can receive messages from either the interconnect
sent by other controllers or from read/write requests issued by the processor pipeline.
The pair of (state, event) will always uniquely identify a transition in a FSM, and each
pair is also associated with a set of actions that will be performed when this transition is
triggered, and a destination state. Thus, we can reason about a transition in a FSM to be
a 4-tuple of the form (state, event, destination state, actions).

Chapter 3. ProtoGen-MLIR v2 17

fsm . machine @cache () {
%S t a t e = fsm . v a r i a b l e ” S t a t e ” { i n i t V a l u e = ” I ”} : ! fsm . s t a t e

%c l = fsm . v a r i a b l e ” c l ” : ! fsm . d a t a

%a c k s R e c e i v e d = fsm . v a r i a b l e ” a c k s R e c e i v e d ” { i n i t V a l u e = 0} : ! fsm . range <0, 3>

%a c k s E x p e c t e d = fsm . v a r i a b l e ” a c k s E x p e c t e d ” { i n i t V a l u e = 0} : ! fsm . range <0, 3>

fsm . s t a t e @I t r a n s i t i o n s {

fsm . t r a n s i t i o n @load () a t t r i b u t e s { n e x t S t a t e = @I load } {
%s r c = fsm . r e f @cache

%d s t = fsm . r e f @ d i r e c t o r y

%msg = fsm . message @Request ” GetS ” %s r c , %d s t : ! fsm . id , ! fsm . i d −> ! fsm . msg

fsm . send %r e q %msg

}

fsm . t r a n s i t i o n @store () a t t r i b u t e s { n e x t S t a t e = @ I s t o r e } {
%s r c = fsm . r e f @cache

%d s t = fsm . r e f @ d i r e c t o r y

%msg = fsm . message @Request ”GetM” %s r c , %d s t : ! fsm . id , ! fsm . i d −> ! fsm . msg

fsm . send %r e q %msg

%n c n t = fsm . c o n s t a n t { v a l u e = ”0”} : i 6 4

fsm . u p d a t e %acksRece ived , %n c n t : ! fsm . range <0, 3>, i 6 4

}
}
/ / . . . more s t a t e s and t r a n s i t i o n s . . . / /

}

Listing 3.7: Sample from the FSM dialect

In Listing 3.7 we show a snippet of IR in the FSM dialect obtained from a PCC definition
of the MSI protocol. We can again see the definitions of the internal state of the cache
controller, as well as a new range type which restricts integers between two limits. In
this example we show a single state operation, which has symbolic name I. Nested
within its region, we can then specify which events (as a symbolic reference) can take
place in this state with the transition operation. Inside the region of the transition
operation we have nested the actions that will be performed when this transition is
triggered. A transition operation is also assigned a symbolic nextState attribute,
which links to the destination state. This provides an elegant abstraction to the 4-tuple
model of an FSM. In the first level of hierarchy we can find the current state, within the
state region we can the find the specific event which is triggered, and lastly within the
transition we can find the actions that need to be performed. This allows us to elegantly
express the coherence protocol as a set of finite state machines.

Because every state and transition operation in the FSM dialect is a symbolic reference,
we can use these to specify the links between states. In each transition operation
we specify a symbolic reference to the new state of the cache after the transition is
completed. This may seem like an unimportant consequence of the IR, but is in fact
quite deliberate. When performing optimizations, it is necessary to trace part of the
previous execution of the state machine, which can now be naturally done by following
the path with the nextState attribute.

Chapter 3. ProtoGen-MLIR v2 18

Figure 3.2: S→M transaction converted to use transient states

3.1.3 Custom Assembly Format

One nice improvement that the new FSM dialect implements is a Custom Assembly
Format. MLIR has a built-in parser and printer which will work for any operation defined
in MLIR and is referred to as the generic syntax. This is useful for an IR designer as
they do not need to perform any additional work to parse and print operations. However,
since it is designed to work with any operation, all components of the operation are
printed, which makes them less readable and more verbose than is necessary. With the
FSM dialect we chose to define a custom assembly format for each operation, along
with the necessary parser and printer implementations which hook into MLIR to read
and write the representation correctly. This change is only syntactic and has no real
effect on the performance or expressiveness of the IR, but it makes the IR much more
readable than when using the generic syntax (See Listing 3.8).

%3 = fsm . add (%1 , %2) : (i64 , i 6 4) −> i 6 4 / / g e n e r i c s y n t a x
%3 = fsm . add %1, %2 / / custom assembly f o r m a t

Listing 3.8: Generic Syntax vs Custom Assembly Format

3.2 Defining declarative optimizations

Once we have successfully converted the PCC protocol specification into the FSM
dialect, we can begin performing transformations on the IR which implement our
optimizations. The first step in our optimization pipeline is to generate an equivalent
stable state protocol, which removes the await syntax. Protocols in PCC are designed
to be specified as a series of transactions between stable states, each of which are
executed atomically. However, a transaction between two stable states states sometimes
involves multiple steps. Consider the transaction from S→M in the MSI protocol:
(1) Send request to the directory, (2) wait for data from directory, (3) wait for all
invalidation acknowledgements to arrive before completing transaction. PCC provides a
nice abstraction for the protocol designer with the await statement, which is a blocking
operation that waits for another event to occur before continuing the execution of the
protocol. However, we can easily express this structure as an FSM by transitioning to an
appropriate transient state and introducing the appropriate transitions between them to
follow the execution of the protocol. In Figure 3.2 we show how the S→M transaction
is encoded into a FSM by introducing the appropriate transient states and transitions.
We consider this step as more of a pre-processing step rather than an optimization.

Chapter 3. ProtoGen-MLIR v2 19

3.2.1 Stalling Optimizations

Now that we have a FSM protocol without any awaits, we still however require that we
enforce atomic transactions. In order to correctly relax this constraint we must be able
to handle all race conditions that can occur. In essence, we must answer the question:
How should a cache controller respond when it receives a message from the directory
or another cache, which is unrelated to the currently executing transaction? To be able
to answer this question we must first understand which messages might be received in
any particular transient state and also to which ones we must respond immediately and
which ones we can delay.

In directory based protocols, the directory acts as the serialization point for all messages:
even if two messages arrive simultaneously, the directory will break the tie and order
them. What this means is that when two caches issue transactions simultaneously the
directory will chose a winner and a loser. However, since our protocol assumes atomic
transactions we do not currently handle any unexpected messages that will arrive due
to race conditions. The questions we must now answer are: ”How can I (as a cache)
determine that I have lost a race to the directory?” & ”If the race is lost, how should I
continue with the execution of the protocol?”.

To answer the first question, it may seem reasonable that any unexpected message
received from directory would indicate that the cache lost the race, but this is not
entirely true. Suppose that two caches C1 & C2, issue transaction requests for I→M
and they then both send GetM messages to the directory. The directory serializes the
requests such that C1 wins the race and responds to C1 with the data. Next suppose that
this message becomes delayed on the interconnect and in the meantime the directory
processes C2’s request. Since the directory has issued the data to C1, it forwards the
request to C1 to send the data to C2. But C1’s data message has been delayed, so it
receives the forwarded message from C2 first. This message is not expected by the
specification of the protocol, but C1 has still won the race.

Transactions within our protocol always occur between two stable state i.e. S→M, even
through they are executed by transitioning through transient states. What this means is
that any transient state always has a logical start state (the stable state from which the
transaction began) and a logical end state (the resulting stable state after the transaction
is completed). The directory will always see a cache as being in one of these two stable
states and will therefore issue messages to the cache which are related to these states.
Therefore, if a cache receives a message that is expected by its logical end state (like in
the previous example) it can deduce that it won the race, conversely if it is expected by
the logical start state then it lost the race.

If a cache receives a message from the directory and deduces that it won the race, it
can safely delay responding to this message. This is because it knows that the original
response from the directory must still be present on the interconnect and will eventually
arrive and thus will not result in a deadlock. Moreover, in some cases it is unable to
respond since it may have not yet received the data that needs to be forwarded. However,
if the cache deduces that it lost the race, it cannot delay its response as this could lead
to deadlock. For example, suppose that two caches C1 & C2 both currently is State S,
simultaneously initiate the S→M Transaction (see Figure 3.2), thereby issuing GetM

Chapter 3. ProtoGen-MLIR v2 20

requests to the directory. Suppose, that the directory breaks the tie by ordering C1’s
request before C2’s, therefore it sends an invalidate to C2, allowing C2 to determine
that it lost the race as this request is handled by its logical start state S. If C2 were to
delay this request and continue to wait for the original message, then once the directory
processes C2’s GetM request it will forward it to C1, the current owner. However, C1
cannot fulfil this request, since C2 has not yet responded with the invalidate message,
which causes a circular dependency and therefore a deadlock. Thus, to be able to
relax the atomic transactions constraint, caches must respond to messages when their
transaction lost the race and they can delay (or stall) all other unexpected messages. We
refer to protocols of this class as Stalling Coherence Protocols.

Now that we have this insight we present a declarative specification of how to perform
these necessary optimizations. In order to do this we will use the following notation.

FSM = {S,T}

Represents a FSM controller in the protocol, where S is a set of all states (including
transient states) in the controller, and T is a set of transitions.

In our specification we say that a transition t ∈ T is a 4-tuple of the form: t =
(Sstart ,e,Send,α). With this syntax Sstart & Send represents the start and end states,
e is the event i.e. (load/store/GetM ...) & α represents the set of actions to be performed.
Furthermore, we define some shorthand statements, which allow us to more clearly
express express how our optimizations are implemented.

Transient(s)s∈S : −returns true if s is a transient state
StableStart(s)s∈S : −returns the stable start state of s
StableEnd(s)s∈S : −returns the stable end state of s

Events(s)s∈S : −returns the set of all events handled in the state s

In Listing 3.9 we present a declarative specification of the function Optimize, which
implements the stalling optimizations described above. To optimize the entire protocol,
we simply repeatedly scan through every state in the protocol and execute the optimize
function with that state. We stop execution once no additional change is detected.

Op t imize (S) : −
i f T r a n s i e n t (S)

l e t s s = S t a b l e S t a r t (S)
∀t ′ ∈ ss∧ t ′.e ̸∈ Events(S)

H an d l e Ra ce C on d i t i o n (S , ss , t ′)

Listing 3.9: Specification of Optimize Function

Chapter 3. ProtoGen-MLIR v2 21

H an d l e Ra ce C on d i t i o n (S , ss , t ′) : −
l e t Snew = G e t N e x t S t a t e (S , ss , t ′)
l e t tnew = new T r a n s i t i o n (t . Sstart , t ′.e , Snew , t ′.α)
FSM

⋃
tnew

Listing 3.10: Specification of HandleRaceCondition Function

G e t N e x t S t a t e (S , ss , t ′) : −
l e t tprev = ∃e,α Transition(ss, e, S, α)
i f ∃Snew Transition(t ′.Send , tprev.e, Snew, tprev.α)

r e t u r n Snew
l e t Snew = new S t a t e ()
l e t tdir = ∃edir Transition(S, edir, t ′.Send , α)
l e t tnew = new T r a n s i t i o n (Snew , tdir.e , t ′.Send , {})
FSM

⋃
tnew

r e t u r n Snew

Listing 3.11: Specification of GetNextState Function

The Optimize function in Listing 3.9 first checks if the state we are considering is
transient (since stable states cannot be optimized). Next we obtain its logical start state,
and then, from our reasoning before, we know that any event that can be handled by the
logical start state must also be handled in our transient state. Once these conditions are
met we know we must handle this case and cannot simply stall. Therefore, we issue a
call to the HandleRaceCondition function defined in Listing 3.10.

To handle a race condition we first obtain a new state to which the cache will transition
to after handling the race condition (shown in Listing 3.11). Next we construct a new
transition from the original transient state to the newly discovered state which will occur
when the unexpected message arrives. Since the cache must behave as if being in the
stable state from where it originated, it uses the actions that are used by the unexpected
message in the stable state. This new transition is then added to the FSM.

The trickiest part of specifying this optimization is deciding what state the cache should
transition to after handling the unexpected message. What’s important to understand
is that when a cache loses the race, the nature of its original transaction changes. For
example, if a cache initiates a S→M transaction, but while waiting for its response it
receives an invalidate. This means that another cache won the race at the directory
since invalidates are handled in the logical start state S. However, when this invalidate
arrives when the cache in state S it downgrades its permissions to I (since its been
invalidated). What this means is that when the directory processes the losing transaction
it will observe it to be an I→M transaction rather than a S→M one. In Listing 3.11 we
first attempt to find a transient state which is part of the now modified transaction i.e. in
the previous case it will transition to the transient state IM which is part of the I→M
transaction. However, sometimes there is no existing transaction which represents the
current execution. Consider the transient state in the M→I transaction: the cache has
sent an eviction request to the directory and is waiting for and acknowledgement that it
has been received before it can complete and transition to I. However, the cache can

Chapter 3. ProtoGen-MLIR v2 22

receive a forwarded request for the data to which it must respond causing itself to self
invalidate to state I. In the protocol there is no I→I transaction and so we must create a
new transient state to handle this case. Finally, since we know what state the directory
will be in when it eventually receives our message, we know which response will be
sent back. Once we receive this response we can then silently complete our transaction
without any further actions.

Having this declarative specification significantly affected to design of the FSM dialect
too. This is because in the specification we require a method of tracing specific executing
paths of the protocol to be able to find the logical start state or to discover a potential
end state to transition to. This requirement lead us to develop symbolic links between
states, which allowed for complete knowledge of the execution of the protocol and be
able to fulfil the requirements successfully. The PCC dialect was significantly limited
in this regard as links to previous states were encoded as simple strings, and to gain
complete knowledge required significant processing of the IR, which was error prone
and missing links between states were common.

3.2.2 Non-Stalling Optimizations

Once we have obtained a stalling version of the protocol, we can now safely remove the
atomic transactions constraint and verify the protocol for correctness. However, stalling
messages is not ideal since the incoming queue of messages is blocked, preventing the
cache controller from processing other forwarded messages that sit behind it in the
queue. In order to solve this we can remove the message from the queue and defer its
response until we have completed our original transaction, thereby unblocking the queue
of incoming messages and increasing the overall throughput of the cache controller. We
refer to protocols of this type as non-stalling cache coherence protocols.

The disadvantage to this technique is that it will introduce a large number of transient
states and additional transitions, as the coherence protocol must track (with these new
transient states) what actions have been deferred and when they can be responded to.
However, now that we have fully relaxed the atomic transaction constraint we can
slowly add these optimizations over time, since we can always fall back to stalling
incoming messages. This makes them much easier to test and verify, since we can verify
the protocol after each change.

With the success we observed in the stalling case we again wanted to provide a declara-
tive specification for performing non-stalling optimizations. In Listing 3.12 we show
the Optimize function, which is identical to Listing 3.9 except now we are considering
messages that can arrive in the logical end state instead.

Op t imize (S) :
i f T r a n s i e n t (S)

l e t se = S t a b l e E n d (S)
∀t ′ ∈ se∧ t ′.e ̸∈ Ev en t s (S)

N o n S t a l l (S , se , t ′)

Listing 3.12: Non-Stalling Optimization Specification

Chapter 3. ProtoGen-MLIR v2 23

N o n S t a l l (S , se , t ′) :
tnext = ∃e,α T r a n s i t i o n (S , e , se , α)
Snew = new S t a t e ()
trace = new T r a n s i t i o n (S , t ′.e , Snew , {})
teventual = new T r a n s i t i o n (Snew , tnext .e , t ′.Send , {tnext .α, t ′.α})
FSM

⋃
Snew, trace, teventual

Listing 3.13: Non-Stalling Specification

In Listing 3.13 we show how we can implement the non-stalling optimization, when
we receive an unexpected message which is handled by the logical end state. Firstly,
we must find the transition in the cache controller which resumes the execution of the
transaction when it receives the correct response from the directory (labeled here as
tnext). We then create a new transient state (Snew) and a new transition from the current
state S to the new state snew when we receive the unexpected message. Note, that we do
not perform any actions yet as part of this transition since we have not completed our
original transaction. In the new transient state Snew we need to add a new transition for
when our originally expected message arrives. This transition will perform its original
actions tnext , followed by the actions of the racing transition t ′. The protocol, functions
identically to the non-stalling one, except that we have increased the throughput of the
cache controller by not blocking the queue of incoming messages.

As an example, consider the I→S transition in Figure 3.3 where we show the imple-
mented non-stalling optimization. In the state ISA, instead of stalling the Inv message
(from the logical end state S), we instead transition to the newly created IIA state, where
we continue to wait for the original GetS Ack message. When this message arrives, we
then perform the actions as specified in Listing 3.13 and transition to state I, since when
the GetS Ack message arrives, we have effectively completed two transactions: I→S
immediately followed by S→I.

However, by implementing this optimization there is a possibility of livelock, meaning
that two caches can seemingly be able to execute their protocol correctly without
making any progress. In this example, if a cache initiates a I→S transaction, but when
waiting for the data from the directory it receives an Inv messages, causing it to yield
its transaction and return to I state and restart the transaction. If this situation happens
repeatedly, the cache will fail to make progress to transition to state S and fulfil its read
request. We can solve this problem, because when the GetS Ack response arrives in
state IIA we can allow the cache to complete a single read of the data before transitioning
back to I. In effect, the cache logically briefly transitions to state S to complete its read
request before immediately being invalidated. In this way, all caches will continue
to make progress and will not become livelocked by forwarded messages which are
handled by the logical end state.

3.2.3 Optimizing the Directory Controller

Up to now we have only been discussing optimizations in terms of the cache controllers.
However, we can optimize the directory controller in an almost identical way. In fact,
optimizing the directory is far simpler, since the directory controller has complete

Chapter 3. ProtoGen-MLIR v2 24

Figure 3.3: Non-Stalling I→S Transaction

knowledge of how requests have been serialized, and knows exactly what messages
can arrive. Although it is possible to generate a non-stalling directory controller, the
optimization potential is limited and introduces a large number of additional transient
states and transitions. We therefore, only perform non-stalling optimizations on the
directory for simplicity.

One technique we must perform at the directory is message reinterpretation. Consider
an MSI protocol that uses an Upgrade message when initiating the S→M transaction
instead of a GetM. The difference being that an Upgrade response does not require the
data being sent across the network, which is more efficient as it reduces the bandwidth
on the interconnect. Suppose that a cache initiates a S→M transaction and sends an
Upgrade message to the directory, but later receives an Invalidate and deduces that
it lost the race and transitions to the appropriate state according to our optimization
specification. However, after the directory has processed the winning transaction and
invalidated all sharers, it then attempts to processes the invalidated cache’s Upgrade
message, which is invalid as the directory only expects to receive this message from
caches in state S. Instead of discarding this message, we know that this message must
have been sent from a cache in state S, but has since been invalidated, so we can
reinterpret this message as a GetM. For us to be able to correctly reinterpret messages
at the directory, it is essential that a unique message is sent in each stable state, so we
can deduce from which state the cache originally sent the message. This requirement
however, is naturally fulfilled by most directory protocols.

At the directory there is an interesting consequence, that stale Put message (PutM, PutS,
...) can arrive in any state [16]. Consider the scenario where a cache issues a PutS
message to the directory, but loses the race to a GetM from another cache. The directory
processes the GetM by invalidating all sharers and sending back the data and transitions
to state M. However, now in state M the directory does not expect to receive a PutS

Chapter 3. ProtoGen-MLIR v2 25

because it cannot occur with atomic transactions and is thus not part of the protocol
specification. To be able to handle this scenario, we have to leverage domain knowledge
of directory based coherence protocols. We know that if a stale Put message is received,
it signals that the cache that initially sent the message lost the race to the directory.
Thus, we can safely acknowledge the message and allow the cache to complete its stale
transaction. Note, this approach only applies to MOESI protocols, other protocols that
use Nacks (Negative Acknowledgements) will need to be handled differently. However,
ProtoGen-MLIR is designed to work only with MOESI protocols, therefore this is the
correct solution.

3.3 Modularizing and Generalizing the CodeGen back-
end

Once we have performed all optimizations on the IR in the FSM dialect, we then
scan over the operations in the IR to generate a Murphi description, which we can
then compile (with the Murphi compiler) and validate that our protocol enforces cache
coherence correctly. V1 had a very simple implementation of this component, it scanned
through the operations and performed some basic string manipulations to generate the
Murphi description. This approach was flawed as it introduced deep coupling between
the IR and the CodeGen component. Therefore, since v2 uses the much improved FSM
dialect, the entire CodeGen component would require significant rework to function
with the new representation. Instead of this we chose to re-implement this component
entirely with a modular and general design, that eliminates the coupling between the IR
and the CodeGen backend component.

We were motivated in this decision too by the unimpressive performance of the v1
GodeGen implementation. Firstly, the generated code wasn’t particularly robust and
suffered from many bugs, which were influenced by the weak type system of the PCC
dialect, which meant ad-hoc techniques were used to deduce the correct types for use
in Murphi. Moreover, nice features like code indentation and code formatting we not
present and proved difficult to implement with the previous design. This made analyzing
and debugging the generated code difficult.

Instead, to address these problems, in Figure 3.4 we present the architecture of the
CodeGen component implemented in v2. To allow us to support any future or existing
dialect, we introduce the Dialect Interpreter abstract class. The interpreter provides has
a natural interface to the essential information required to produce a Murphi description
and does not rely on any features of a particular dialect. The CodeGen component then
interacts with the specific interpreter for the dialect in question and constructs the input
to the Inja template rending engine as a large JSON object.

To be able to produce a robust and readable Murphi description, we chose to use a
package called Inja [1], which is a C++ implementation of the Jinja templating engine
used in Python. A templating engine allows us to define a template for every structure
we wish to utilise in our Murphi description. A template can then be combined with
JSON data, which allows us to render out specific versions of our templates as we
require. Moreover, templates can also include other templates, which allows us to

Chapter 3. ProtoGen-MLIR v2 26

Figure 3.4: Murphi Backend Implementation in v2

construct our Murphi description from set of individual templates each of which will
render out the specific structure we desire. When the Inja component receives the data
from CodeGen, it verifies that it is of the correct format, parses the required templates
and renders them. The resulting output is a well formatted, correct and readable Murphi
description.

This component was difficult and time consuming to implement, however its design
proved invaluable due to the frequent changes made during the design of the FSM
dialect. When the IR was changed, only a few additional changes were required, all
contained within in the Dialect Interpreter class, to convert the dialect to Murphi.
Moreover, as the project progressed, we extended support for additional PCC language
features required for more complex protocols, and experiences very little friction when
implementing their translation.

3.4 Testing and Quality Assurance

When implementing v1, little consideration was spent on good design and coding
practices. As the project grew it proved increasingly difficult to maintain and implement
new features and changes would often have unforeseen affects throughout the project.
As part of this project we focused heavily on writing automated tests, especially on the
IR and optimization components of the compiler. Having high quality and reliable tests
proved essential in the long run, as it enabled us to iterate on the design of the FSM

Chapter 3. ProtoGen-MLIR v2 27

dialect and our optimization transformations, since many components relied on this
functionality to work correctly.

To address this v2 has over 200 automated unit tests, which extensively test all operations
of the IR and other important functions used throughout the project. Moreover, we also
incorporated FileCheck tests for our optimizations passes. FileCheck is a simple tool
provided with MLIR, which loads in a snipped of user supplier IR, and runs it through a
specified optimization pass. This allows us to check the result of each optimization pass
individually for a range of inputs and verify that optimization is functioning correctly.
Finally, we created a CI build for the project using GitHub actions, which built the
project from scratch and executed all unit and FileCheck tests. We believe that focusing
on this infrastructure in such a large and complex project increased productivity overall,
as it provided confidence in the implementation of new features.

Chapter 4

Testing

In order to thoroughly test our compiler implementation, we need to compile a variety
of different MOESI protocols (MI, MSI & MESI) with ProtoGen-MLIR. After each
successful compilation, we then compile the generate Murphi description (with the
Murphi compiler) to verify that the optimized protocol correctly enforces SWMR and
is free from deadlocks. For each protocol specification we can also compile it with
different options to verify each optimization level. Firstly, we can compile the protocol
without any any optimizations and enforcing atomic transactions, which ensures that the
high level specification is correct. Next we can compile with our stalling optimization
pipeline, which relaxes the atomic transactions constraint by handling all messages
related to the logical start state. Finally, we can compile with stalling & non-stalling
optimizations enabled and generate the most concurrent version of the protocol.

4.1 MI Protocol

The MI protocol is the most basic MOESI protocol, and incorporates only two stable
states: (M)odified for read/write & I(nvalid) for evicted or non-cached blocks. In
Figure 4.1 we present an FSM transition diagram of the atomic specification of the MI
protocol and the PCC protocol specification in Appendix A. With MI, in order to fulfil
any read/write request, the cache must first obtain M state and return back to I when
evicting or receiving a request from another cache. After pre-processing the protocol by
removing the await syntax we obtain the FSM cache controller presented in Figure 4.2
with the additional necessary transient states. From this specification we successfully
generated the Murphi description while enforcing atomic transactions and successfully
verified the protocol.

Now that we have shown that the protocol is correct as an atomic protocol, we can apply
stalling optimizations, which will allow us to relax this constraint. In Figure 4.3, we
show the generated protocol after applying the stalling optimization pipeline. We can
see that in the MI protocol, there is only a single transient state which requires us to
handle a race condition ’M evict’: the other states ’I load’ & ’I store’ have logical start
state I, which does not handle any messages. We can see that the state ’M evict’ has
logical start state M and thus must handle the forwarded message ’Fwd GetM’. We

28

Chapter 4. Testing 29

Figure 4.1: Stable MI Protocol

Figure 4.2: Pre-Processed MI Protocol

Chapter 4. Testing 30

Figure 4.3: MI Stalling Protocol

know that the state ’M evict’ is part of the M→I transaction, but when the ’Fwd GetM’
arrives the transaction changes to I→I. Therefore, since no state exists in the protocol
which is part of this transaction, we must create it (’I evict’) as discussed in Section
3.2. However, to complete the transaction the cache still requires a response from
the directory and we know that the directory will continue to acknowledge stale Put
messages. Thus, in state ’I evict’ the cache continues to wait for the PutM Ack before
exiting. We managed to successfully compile and verify the generated protocol with
Murphi for both deadlock freedom and the SWMR invariant.

Finally, we attempt to generate the most concurrent protocol by applying stalling
optimizations followed by non-stalling optimizations. The generated protocol contained
the optimization presented in Figure 4.4, with an identical optimization implemented
for the state ’I load’. In the state ’I store’ we handle the ’Fwd GetM’ message from
the logical end state M and transition to the new state ’I store Fwd GetM I’. In this
new state, we then continue to wait for our original message (since we know we won
the race) before completing both transactions simultaneously. We again compiled this
specification into a Murphi description and successfully verified it.

Its important to note that the newly generated transient states are then also passed
through the optimization pipeline, but because both ’I store Fwd GetM I’ & ’I evict’
both have logical start and end states I, there is no further optimization potential. Thus,
the generated protocol we obtained is an optimal non-stalling MI protocol and indeed
this result matches exactly with the output generated from ProtoGen.

4.2 MSI Protocol

The MSI protocol is an extension of the MI protocol which incorporates an additional
S(hared) stable state. The shared state allows for multiple caches to read simultaneously
and is issued to caches upon completion of a read request. We also use the version of
the MSI protocol with Upgrade messages to complete the S→M transaction to indicate
that we do not require a data response from the directory. We provide the full protocol
specification in Appendix B. We managed to successfully compile and verify the
protocol without any optimizations and enforcing atomic transactions, which indicates

Chapter 4. Testing 31

Figure 4.4: I→M non-stalling transaction

Figure 4.5: MSI Optimized S→M Transaction

that the protocol was functioning correctly.

Next we applied the stalling optimization pipeline to the MSI protocol and obtained a
successful compilation. In Figure 4.5 we show the stalling optimization generated to
the S→M transaction in the MSI protocol. In the diagram we present the transaction
using the state naming conventions from A Primer in Memory Consistency and Cache
Coherence[14] for clarity, but ProtoGen-MLIR generated an identical transaction albeit
with different (and much longer) names. We can see that in the state SMAD we
generated the transition to handle the Inv message from the logical start state S. When
an Inv message is received, the original transaction changes from S→M to I→M and it
correctly transitions to the existing state IMAD, which will resume the transaction from
state I. Interestingly however, we found the same transition from the state SMA. This
transition is not strictly necessary because once the cache has received the response
from the directory, the directory will begin issuing messages related to M state. This
means, that when the cache is in state SMA it will never receive an invalidate message.
The transition was added because ProtoGen-MLIR believes that the state SMA has
logical start state S (which is true), but is no longer seen as such in the context of the
protocol. However, the cache can continue to stall messages from the directory without
risk of deadlock because the directory has already issued all invalidation messages
and thus all acknowledgments of invalidation will eventually arrive and the cache can
complete the transaction safely. So although the transition is redundant it does not
negatively affect the operation of the protocol.

Next we present the remaining stalling optimizations generated in Figure 4.6, with

Chapter 4. Testing 32

Figure 4.6: S→ I & M→I stalling transactions

the existing states and transitions shown in blue and the newly generated states and
transitions shown in green. Firstly, we can see that the state MIA needs to respond to
messages handled by its logical start state M, which are Fwd GetS and Fwd GetM.
With a Fwd GetS the transaction is altered to S→I and therefore transitions to state
SIA, but with Fwd GetM a new state is generated (IIA) to accept the Put Ack message.
Also the SIA with logical start state S, still needs to handle Inv messages, upon which
it also transitions to IIA. With this resulting stalling protocol, we again generated
the corresponding Murphi description and verified it for both deadlock freedom and
SWMR.

Lastly we applied both stalling & non-stalling optimizations to the protocol and gener-
ated a correct and verifiable protocol specification. However, inspecting the generated
protocol, ProtoGen-MLIR failed to discover all potential optimizations. The only opti-
mization discovered was for the I→S transaction, which is functionally identical to the
case in MI (see Figure 4.4), except that we handle a racing Inv message. The reason
behind this is that from our non-stalling optimization specification (see Section 3.2.2)
we require that there is only a single intermediate transient state between the logical
start and logical end states. For transactions that go through multiple transient states i.e.
S→M & I→M our optimization specification does not consider this. ProtoGen uses a
different technique to optimize non-stalling protocols based on distributing states into
StateSets from which it can determine the logical start and end states, and is thus not
limited in this way.

4.3 MESI Protocol

The MESI protocol extends the MSI protocol with an additional E(xclusive) stable state,
which is issued when no other cache is currently reading the block (i.e. it becomes the
exclusive user). When a cache is issued with exclusive state from a read request, it can
complete a subsequent write request silently, without issuing coherence requests to the
directory or other caches. This reduces the overall latency of a coherence transaction,
but also reduces the bandwidth on the network as fewer messages are sent. Many
applications are single-threaded and do not require data being shared across cores,
therefore they are always issued with E state and do not require another coherence
transaction with the directory. We again provide a full PCC specification of MESI (see

Chapter 4. Testing 33

Figure 4.7: MESI: E→I Stalling Transaction

Appendix C), which we successfully compiled and verified without optimizations and
with atomic transactions, to ensure a working stable protocol.

When we attempted to compile the MESI protocol with stalling optimization we gen-
erated a nearly identical protocol to MSI. This is not surprising as the MESI protocol
introduces only a single additional transient state EIA, which is transitioned to during
the E→I transaction (see Figure 4.7). In this transient state, we see that it behaves
identically to the state MIA from MSI, which is expected as E state is essentially a
special case of M. We again generated the Murphi description for the generated MESI
protocol and successfully verified it for correctness.

We had perform a slight modification to the generated Murphi description to test the
MESI protocol, because we now have two possible states with write permissions (M &
E). By default, the Murphi code we generate checks (on each iteration) that when one
cache is in state M there is no other cache also in state M. However, we could encounter
a scenario where once cache is in state M and another in state E, which would violate
the SWMR invariant. ProtoGen handles protocols with multiple write states elegantly
by inspecting the protocol to determine which states have read and write permissions
[16]. It can then assign a permission to every state (including transient states) and
impose a generic invariant to assert that only a single cache can have write permissions.
We unfortunately did not have the time to implement this feature, and thus chose instead
to implemented it manually. However, with this manual change we were still able to
verify correctness of the generated protocol.

Finally we tested the MESI protocol with stalling and non-stalling optimizations. We
again experienced the same limitation like in MSI, however we did discover an interest-
ing optimization relating to the I→E transaction (see Figure 4.8). In state ISA, we can
optimize messages relating to the logical end states E and S(Fwd GetM & Fwd GetS).
When we receive a Fwd GetM we know that we must have been issued with E state

Chapter 4. Testing 34

from the directory and thus can transition to state ISAI and wait for the GetM Ack D.
Understanding the Fwd GetS is more complicated, because we don’t yet know if the
Fwd GetS is received from the directory from state S or E, thus in state ISAS we must
handle both responses from the directory GetS Ack and GetM AckD to transition to
state S. The transient state ISAS also has logical end state S, and thus we could poten-
tially handle racing Inv messages, but due to the limitation in the specification, we are
unable to realise this optimization. Yet, we still managed to successfully verify the
optimized non-stalling protocol with Murphi.

Figure 4.8: MESI: I→E non-stalling transaction

Chapter 4. Testing 35

4.4 Summary

Although ProtoGen-MLIR v2 continues to lack some optimization potential when
compared to ProtoGen, it remains a significant step forward when compared to v1. In
Figure 4.9 we present a comparison of the optimization capability of v1 with v2, which
highlights v2’s significant advance in its optimization capability. With v2, we can now
compile any MOESI protocol into an equivalent stalling protocol without the need of
atomic transactions, while v1 was only capable of this with MI & partially with MSI.
But by far the greatest improvement to v2 is the addition of non-stalling optimizations,
which were completely absent in v1. However, our specification and implementation of
non-stalling optimizations in v2 is still not as capable as the optimizations in ProtoGen,
hence we have marked them as Partial Compilation.

Figure 4.9: Comparison of ProtoGen-MLIR v1 to v2

Lastly we also compared compilation times of ProtoGen-MLIR with ProtoGen and
observed a significant performance improvement. With all protocols compiled with
ProtoGen-MLIR we observed compilation times of <100ms, while ProtoGen executes
in approximately 1-2s. With ProtoGen-MLIR we actually do much more processing and
manipulation of the IR than ProtoGen, but since our implementation is written in C++
compared to Python we see as significant speed increase. Although our performance is
better, the compiling performance of ProtoGen is more than adequate, thus the increase
in our performance is largely inconsequential.

Chapter 5

Conclusions

5.1 Summary

This report presents ProtoGen-MLIR v2 which is a significantly improved (re)implementation
of ProtoGen-MLIR v1 that we presented in Part 1 of this project. We aimed to signifi-
cantly extend the optimization capability of v1 by fully completing stalling optimizations
and by implementing additional non-stalling optimizations. During this process, we
encountered many critical challenges which led us to re-implement several key com-
ponents of the compiler in order to proceed, including the IR, frontend & CodeGen
components.

In Chapter 3 we outlined the significant changes that were implemented as part of
ProtoGen-MLIR v2 to allow us to optimize cache coherence protocols. In Section
3.1 we discussed the new FSM dialect and its significantly improved type system,
expressiveness and abstractions. We further go on to explain how these features assists
us in implementing optimizations. In Section 3.2 we detailed our reasoning for how
we can implement protocol optimizations by understanding how a cache can deduce
the ordering of requests based on what messages it receives. We then applied this
reasoning to produce a declarative specification for each class of optimization (stalling
& non-stalling), which we then used to assist our implementation for each optimization.
Finally, in Section 3.3 we presented a generic implementation for our Murphi backend,
which is designed to be generic, modular and easily extensible which allows us easily
support additional dialects and language features.

In Chapter 4 we evaluated the implementation of our compiler using a subset of MOESI
protocols (MI, MSI & MESI). For each protocol, we compiled it through three different
levels of optimization (atomic, stalling & non-stalling) and for each compilation we
successfully verified the optimized protocol with the generated Murphi description.
Our results showed that when compiled as an atomic or as a stalling protocol, we
were functionally identical to ProtoGen. However, our non-stalling optimizations were
limited to transactions with only a single intermediate transient state, and thus we did
not obtain the most optimal non-stalling protocol when compared to ProtoGen.

36

Chapter 5. Conclusions 37

5.2 Reflections

As it turns out, implementing a compiler is a difficult task. While completing this project
we encountered many significant challenges and delays that influenced its completion.
In this section we outline the areas which were particularly challenging or complex and
reflect on how we could have planned better to complete the project in time.

The primary challenge of this project, was designing and implementing a suitable
representation with MLIR. MLIR has grown into an extremely large and complex
project, yet it lacks advanced developer guides or ’best practices’ from which to learn.
Instead, to gain an understanding of the project we analyzed other MLIR compiler
implementations (Circt & Tensorflow) to discover how to design and implement a
suitable IR. Moreover, this project was written entirely using C++, which is a language
we had not used previously and proved to be uniquely challenging to work with. We
often struggled with building and linking issues, which would sometimes take days to
resolve.

Much of the delays encountered while implementing this project stemmed from poor
decisions taken during the development of v1. In order to have a working version of the
project ready in time for the deadline many shortcuts were taken, such as the design of
the IR. However, when we resumed the project it was clear that many aspects of the
previous implementation were inadequate and which resulted in an almost complete
rewrite of the entire ProtoGen-MLIR compiler. Some components, such as the frontend,
were broadly similar and weren’t challenging to implement. However, significant time
was spent on the optimization and CodeGen components, which were entirely novel to
ProtoGen-MLIR v2.

In reality it would have been difficult to predict and plan for these delays, since we only
realised the problem until (at least partly) the project had been implemented. Yet we
still feel that the project could have been planned better if we:

• Spent more time familiarizing ourselves with MLIR and good IR design principles,
instead of creating an ad-hoc representation.

• Planed for extensibility and maintenance initially, rather than have to re-design or
re-implement components to accommodate new features.

• Worked on components of the compiler in a more logical order. For example, we
began implementing the CodeGen component before the IR was finished resulting
in many further changes.

5.3 Future Work

ProtoGen-MLIR v2 has taken a big step forward compared to v1 and we believe has
conclusively proved that using compiling techniques paired with MLIR are capable of
optimizing cache coherence protocols from stable state definitions. We also believe
strongly that we have laid significant and strong foundations upon which we can
develop and extend the potential of ProtoGen-MLIR further. The key areas for future
development are:

Chapter 5. Conclusions 38

Completing Non-Stalling Optimizations. As discussed earlier, ProtoGen-MLIR does
not implement the full non-stalling optimization potential shown in ProtoGen and is
limited to just transactions with a single transient state. As future work, we aim to
develop a new optimization specification, which accounts for multi-hop transactions
and implement this optimization into the compiler.

Support for consistency directed protocols. ProtoGen-MLIR is designed exclusively
to work with consistency agnostic MOESI protocols, which need not consider the
consistency model of the CPU. However, heterogeneous architectures typically use con-
sistency directed protocols, that do not necessarily maintain SWMR, but will propagate
writes based on the consistency model. These kinds of protocols can also be specified
atomically, and optimized similarly to MOESI protocols, although the reasoning will
be different. Since adoption of heterogeneous architectures is rapidly expanding, it is
important to support this class of protocol.

Implement additional backend targets. ProtoGen-MLIR supports only a single
backend (Murphi), which is used to verify the correctness of the generated protocol.
However, other backends could be added to evaluate the performance of the generated
protocol. Gem5 is a processor simulator, which can simulate the execution of a protocol
and measure valuable metrics about a protocol’s performance, such as latency, band-
width, throughput etc. Theo Olausson successfully implemented a Gem5 backend for
ProtoGen [15] and gained significant insight into the characteristics of cache coherence
protocols. Thus, the addition of such a backend would greatly improve the usability of
ProtoGen-MLIR.

Bibliography

[1] Inja: A template engine for modern c++.

[2] A general introduction to cache coherence, Oct 2020.

[3] Alexey Bader, James Brodman, and Michael Kinsner. A sycl compiler and runtime
architecture. Proceedings of the International Workshop on OpenCL, 2019.

[4] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, and et al.
Fallout. Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[5] S. Chandra, B. Richards, and J.R. Larus. Teapot: A domain-specific language for
writing cache coherence protocols. IEEE Transactions on Software Engineering,
25(3):317–333, 1999.

[6] David L. Dill. The murφ verification system. Computer Aided Verification, page
390–393, 1996.

[7] David L Dill and Ralph Melton. Murphi annotated reference manual, Jul 1996.

[8] Aarti Gupta, Malay K. Ganai, and Chao Wang. Sat-based verification methods and
applications in hardware verification. Formal Methods for Hardware Verification,
page 108–143, 2006.

[9] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, and et al. Spectre
attacks: Exploiting speculative execution. 2019 IEEE Symposium on Security and
Privacy (SP), 2019.

[10] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. Mlir: A compiler infrastructure for the end of moore’s law, 2020.

[11] Llvm. llvm/circt.

[12] Sharad Malik. Hardware verification: Techniques, methodology and solutions.
Tools and Algorithms for the Construction and Analysis of Systems, page 1–1.

[13] Atif Memon. Advances in computers. Academic Press, 2013.

39

Bibliography 40

[14] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David Allen Wood. A Primer
on memory consistency and cache coherence. Morgan & Claypool Publishers,
2020.

[15] Theo Olausson. Generating gem5 cache coherence controllers with protogen,
2021.

[16] Nicolai Oswald, Vijay Nagarajan, and Daniel J. Sorin. Protogen: Automatically
generating directory cache coherence protocols from atomic specifications. 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), 2018.

[17] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. Understand-
ing memory and thread safety practices and issues in real-world rust programs.
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2020.

[18] Thomas Sterling, Matthew Anderson, and Maciej Brodowicz. High performance
computing: Modern systems and practices. Morgan Kaufmann, 2018.

[19] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. C/C++ Users Journal, 2005.

[20] Petr Vesely. Protogen-mlir: an mlir compiler for cache coherence protocols, 2021.

Appendix A

PCC Specification of MI Protocol

NrCaches 3

Network { Ordered fwd ; / / FwdGetS , FwdGetM , Inv , PutAck

Unordered r e s p ; / / Data , InvAck

Unordered r e q ; / / GetS , GetM , PutM

} ;

Cache {
S t a t e I ;

Data c l ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;

Data c l ;

ID owner ;

} d i r e c t o r y ;

Message Reques t {} ;

Message Ack {} ;

Message Resp{
Data c l ;

} ;

Message RespAck{
Data c l ;

} ;

A r c h i t e c t u r e cache {

S t a b l e { I , M}

/ / I /

P r o c e s s (I , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;

41

Appendix A. PCC Specification of MI Protocol 42

S t a t e = M;

b r e a k ;

}
}

P r o c e s s (I , load , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;

S t a t e = M;

b r e a k ;

}
}

/ / M /

P r o c e s s (M, load , M) {
}

P r o c e s s (M, s t o r e , M) {}

P r o c e s s (M, Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (M, e v i c t , S t a t e) {
msg = Resp (PutM , ID , d i r e c t o r y . ID , c l) ;

r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;

b r e a k ;

}
}

}

A r c h i t e c t u r e d i r e c t o r y {

S t a b l e { I , M}

/ / I /

P r o c e s s (I , GetM , M) {
msg = Resp (GetM Ack D , ID , GetM . s r c , c l) ;

r e s p . send (msg) ;

owner = GetM . s r c ;

}

/ / M /

P r o c e s s (M, GetM , M) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;

fwd . send (msg) ;

owner = GetM . s r c ;

}

Appendix A. PCC Specification of MI Protocol 43

P r o c e s s (M, PutM , S t a t e) {
msg = Ack (Put Ack , ID , PutM . s r c) ;

fwd . send (msg) ;

i f owner == PutM . s r c {
c l = PutM . c l ;

S t a t e = I ;

}
}

}

Appendix B

PCC Specification of MSI Protocol

NrCaches 3

Network { Ordered fwd ; / / FwdGetS , FwdGetM , Inv , PutAck

Unordered r e s p ; / / Data , InvAck

Unordered r e q ; / / GetS , GetM , PutM

} ;

Cache {
S t a t e I ;

Data c l ;

i n t [0 . . NrCaches] a c k s R e c e i v e d = 0 ;

i n t [0 . . NrCaches] a c k s E x p e c t e d = 0 ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;

Data c l ;

s e t [NrCaches] ID cache ;

ID owner ;

} d i r e c t o r y ;

Message Reques t {} ;

Message Ack {} ;

Message Resp{
Data c l ;

} ;

Message RespAck{
Data c l ;

i n t [0 . . NrCaches] a c k s E x p e c t e d ;

} ;

A r c h i t e c t u r e cache {

S t a b l e { I , S , M}

/ / I /

P r o c e s s (I , load , S t a t e) {
msg = Reques t (GetS , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

44

Appendix B. PCC Specification of MSI Protocol 45

a w a i t {
when GetS Ack :

c l =GetS Ack . c l ;

S t a t e = S ;

b r e a k ;

}
}

P r o c e s s (I , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;

S t a t e = M;

b r e a k ;

when GetM Ack AD :

a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}
}

when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

/ / S /

P r o c e s s (S , load , S) {}

P r o c e s s (S , s t o r e , S t a t e) {
msg = Reques t (Upgrade , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

S t a t e = M;

b r e a k ;

when GetM Ack AD :

a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

Appendix B. PCC Specification of MSI Protocol 46

b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}
}

when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

P r o c e s s (S , e v i c t , S t a t e) {
msg = Reques t (PutS , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;

b r e a k ;

}
}

P r o c e s s (S , Inv , I) {
msg = Resp (Inv Ack , ID , Inv . s r c , c l) ;

r e s p . send (msg) ;

}

/ / M /

P r o c e s s (M, l o a d) {
}

P r o c e s s (M, s t o r e , M) {}

P r o c e s s (M, Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (M, Fwd GetS , S) {
msg = Resp (GetS Ack , ID , Fwd GetS . s r c , c l) ;

r e s p . send (msg) ;

msg = Resp (WB, ID , d i r e c t o r y . ID , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (M, e v i c t , S t a t e) {
msg = Resp (PutM , ID , d i r e c t o r y . ID , c l) ;

r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;

b r e a k ;

Appendix B. PCC Specification of MSI Protocol 47

}
}

}

A r c h i t e c t u r e d i r e c t o r y {

S t a b l e { I , S , M}

/ / I /

P r o c e s s (I , GetS , S) {
cache . add (GetS . s r c) ;

msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (I , GetM , M) {
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;

r e s p . send (msg) ;

owner = GetM . s r c ;

}

/ / S /

P r o c e s s (S , GetS) {
cache . add (GetS . s r c) ;

msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (S , Upgrade) {
i f cache . c o n t a i n s (Upgrade . s r c) {

cache . d e l (Upgrade . s r c) ;

msg = RespAck (GetM Ack AD , ID , Upgrade . s r c , c l , cache . c o u n t ()) ;

r e s p . send (msg) ;

S t a t e =M;

b r e a k ;

} e l s e {
msg = RespAck (GetM Ack AD , ID , Upgrade . s r c , c l , cache . c o u n t ()) ;

r e s p . send (msg) ;

S t a t e =M;

b r e a k ;

}
msg = Ack (Inv , Upgrade . s r c , Upgrade . s r c) ;

fwd . mcas t (msg , cache) ;

owner = Upgrade . s r c ;

cache . c l e a r () ;

}

P r o c e s s (S , PutS) {
msg = Ack (Put Ack , ID , PutS . s r c) ;

fwd . send (msg) ;

cache . d e l (PutS . s r c) ;

i f cache . c o u n t () == 0{
S t a t e = I ;

b r e a k ;

}
}

/ / M /

P r o c e s s (M, GetS) {

Appendix B. PCC Specification of MSI Protocol 48

msg = Reques t (Fwd GetS , GetS . s r c , owner) ;

fwd . send (msg) ;

cache . add (GetS . s r c) ;

cache . add (owner) ;

a w a i t {
when WB:

i f WB. s r c == owner{
c l = WB. c l ;

S t a t e =S ;

}
}

}

P r o c e s s (M, GetM) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;

fwd . send (msg) ;

owner = GetM . s r c ;

}

P r o c e s s (M, PutM) {
msg = Ack (Put Ack , ID , PutM . s r c) ;

fwd . send (msg) ;

cache . d e l (PutM . s r c) ;

i f owner == PutM . s r c {
c l = PutM . c l ;

S t a t e = I ;

}
}

}

Appendix C

PCC Specification of MESI Protocol

NrCaches 3

Network { Ordered fwd ; / / FwdGetS , FwdGetM , Inv , PutAck

Unordered r e s p ; / / Data , InvAck

Unordered r e q ; / / GetS , GetM , PutM

} ;

Cache {
S t a t e I ;

Data c l ;

i n t [0 . . NrCaches] a c k s R e c e i v e d = 0 ;

i n t [0 . . NrCaches] a c k s E x p e c t e d = 0 ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;

Data c l ;

s e t [NrCaches] ID cache ;

ID owner ;

} d i r e c t o r y ;

Message Reques t {} ;

Message Ack {} ;

Message Resp{
Data c l ;

} ;

Message RespAck{
Data c l ;

i n t [0 . . NrCaches] a c k s E x p e c t e d ;

} ;

A r c h i t e c t u r e cache {

S t a b l e { I , S , E , M}

/ / I /

P r o c e s s (I , load , S t a t e) {
msg = Reques t (GetS , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

49

Appendix C. PCC Specification of MESI Protocol 50

a w a i t {
when GetS Ack :

c l =GetS Ack . c l ;

S t a t e = S ;

b r e a k ;

when GetM Ack D :

c l =GetM Ack D . c l ;

S t a t e = E ;

b r e a k ;

}
}

P r o c e s s (I , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;

S t a t e = M;

b r e a k ;

when GetM Ack AD :

a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}
}

when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

/ / S /

P r o c e s s (S , l o a d) {}

P r o c e s s (S , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

S t a t e = M;

b r e a k ;

Appendix C. PCC Specification of MESI Protocol 51

when GetM Ack AD :

a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;

b r e a k ;

}
}

when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

P r o c e s s (S , e v i c t , S t a t e) {
msg = Reques t (PutS , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;

b r e a k ;

}
}

P r o c e s s (S , Inv , I) {
msg = Resp (Inv Ack , ID , Inv . s r c , c l) ;

r e s p . send (msg) ;

}

/ / M /

P r o c e s s (M, l o a d) {
}

P r o c e s s (M, s t o r e) {}

P r o c e s s (M, Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (M, Fwd GetS , S) {
msg = Resp (GetS Ack , ID , Fwd GetS . s r c , c l) ;

r e s p . send (msg) ;

msg = Resp (WB, ID , d i r e c t o r y . ID , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (M, e v i c t , S t a t e) {
msg = Resp (PutM , ID , d i r e c t o r y . ID , c l) ;

r e q . send (msg) ;

Appendix C. PCC Specification of MESI Protocol 52

a w a i t {
when Put Ack :

S t a t e = I ;

b r e a k ;

}
}

/ / E /

P r o c e s s (E , l o a d) {
}

P r o c e s s (E , s t o r e , M) {}

P r o c e s s (E , Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (E , Fwd GetS , S) {
msg = Resp (GetS Ack , ID , Fwd GetS . s r c , c l) ;

r e s p . send (msg) ;

msg = Resp (WB, ID , d i r e c t o r y . ID , c l) ;

r e s p . send (msg) ;

}

P r o c e s s (E , e v i c t , S t a t e) {
msg = Ack (PutE , ID , d i r e c t o r y . ID) ;

r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;

b r e a k ;

}
}

}

A r c h i t e c t u r e d i r e c t o r y {

S t a b l e { I , S , E , M}

/ / I /

P r o c e s s (I , GetS , E) {
msg = Resp (GetM Ack D , ID , GetS . s r c , c l) ;

r e s p . send (msg) ;

owner = GetS . s r c ;

}

P r o c e s s (I , GetM , M) {
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;

r e s p . send (msg) ;

owner = GetM . s r c ;

}

/ / S /

P r o c e s s (S , GetS) {
msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;

r e s p . send (msg) ;

cache . add (GetS . s r c) ;

Appendix C. PCC Specification of MESI Protocol 53

}

P r o c e s s (S , GetM) {
i f cache . c o n t a i n s (GetM . s r c) {

cache . d e l (GetM . s r c) ;

msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;

r e s p . send (msg) ;

S t a t e =M;

} e l s e {
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;

r e s p . send (msg) ;

S t a t e =M;

}
msg = Ack (Inv , GetM . s r c , GetM . s r c) ;

fwd . mcas t (msg , cache) ;

owner = GetM . s r c ;

cache . c l e a r () ;

}

P r o c e s s (S , PutS) {
msg = Resp (Put Ack , ID , PutS . s r c , c l) ;

fwd . send (msg) ;

cache . d e l (PutS . s r c) ;

i f cache . c o u n t () == 0{
S t a t e = I ;

b r e a k ;

}
}

/ / M /

P r o c e s s (M, GetS) {
msg = Reques t (Fwd GetS , GetS . s r c , owner) ;

fwd . send (msg) ;

cache . add (GetS . s r c) ;

cache . add (owner) ;

a w a i t {
when WB:

i f WB. s r c == owner{
c l = WB. c l ;

S t a t e = S ;

}
}

}

P r o c e s s (M, GetM) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;

fwd . send (msg) ;

owner = GetM . s r c ;

}

P r o c e s s (M, PutM) {
msg = Ack (Put Ack , ID , PutM . s r c) ;

fwd . send (msg) ;

cache . d e l (PutM . s r c) ;

i f owner == PutM . s r c {
c l = PutM . c l ;

S t a t e = I ;

Appendix C. PCC Specification of MESI Protocol 54

}
}

/ / E /

P r o c e s s (E , GetS) {
msg = Reques t (Fwd GetS , GetS . s r c , owner) ;

fwd . send (msg) ;

cache . add (GetS . s r c) ;

cache . add (owner) ;

a w a i t {
when WB:

i f WB. s r c == owner{
c l = WB. c l ;

S t a t e =S ;

}
}

}

P r o c e s s (E , GetM) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;

fwd . send (msg) ;

owner = GetM . s r c ;

S t a t e =M;

}

P r o c e s s (E , PutE) {
msg = Ack (Put Ack , ID , PutE . s r c) ;

fwd . send (msg) ;

cache . d e l (PutE . s r c) ;

i f owner == PutE . s r c {
S t a t e = I ;

}
}

}

