
Measure cookie setting behaviour of web
pages showing cookie privacy warnings

Daniel Kirkman
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2022

Abstract
Cookie dialogs are an increasingly common sight across the web but it can often be
unclear to users what their true purpose is. These dialogs are intended to allow users to
select the level of cookie enablement that matches their personal privacy preferences.
However, many cookie dialogs employ subtle design techniques to nudge users towards
accepting more cookies than they need to. These techniques are known as Dark Patterns.

The process of manually analysing a website to locate Dark Patterns is time-consuming
and can often lead to inconsistent results between researchers. This project will design
and implement an automated system that will locate cookie dialogs and then analyse
them for Dark Patterns.

The resulting system has been tested on over 10,000 websites and has successfully
collected over 2,000 cookie dialogs. The system is capable of detecting 10 different
types of Dark Patterns automatically and has found over 3,700 instances of Dark Patterns.
The automated system allows us to assess the prevalence of Dark Patterns across the
web, at a scale not possible with manual analysis.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Daniel Kirkman)

ii

Acknowledgements
I would first and foremost like to thank my supervisor, Kami Vaniea, for her support
and guidance throughout my project. I am also very grateful for our weekly meetings
that were essential to keep me on track and making consistent progress throughout the
year. Additionally, I would like to thank my friends and family for all their support and
encouragement during my very busy final year.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Cookies . 3

2.1.1 Cookie Attributes . 3
2.1.2 Types of Cookies . 4
2.1.3 Cookie Dialogs . 5

2.2 Legal Implications . 5
2.2.1 PECR . 5
2.2.2 GDPR . 6

2.3 Dark Patterns . 6
2.4 Related Work . 7

3 Design & Implementation 10
3.1 Requirements Elicitation . 10
3.2 Website Scraping . 11

3.2.1 Handling Website Connections 11
3.2.2 Cookie Collection . 12
3.2.3 iframes . 12
3.2.4 Google Translate API . 13

3.3 System Design . 13
3.3.1 Modes of Operation . 14
3.3.2 Dialog Collection . 15
3.3.3 Clickable Location & Classification 19
3.3.4 Measuring the Behaviour of the Dialog 21
3.3.5 Dark Pattern Detection . 22

4 Evaluation 28
4.1 Dialog Collection . 28
4.2 Clickable Location & Classification 30
4.3 Dark Pattern Detection . 30

5 Results 31
5.1 Cookie Dialogs . 31
5.2 Clickables . 32
5.3 Cookie Setting Behaviour . 33

iv

5.4 Dark Patterns . 35

6 Conclusion 39

Bibliography 41

A First appendix 45
A.1 Dark Pattern Examples . 45
A.2 Additional Data Set Details . 48
A.3 Database Schema . 49
A.4 Dialog Ngrams . 49
A.5 Custom Dialog CSS Selectors . 50
A.6 Custom Clickable CSS Selectors . 51

A.6.1 General Clickable Selectors 51
A.6.2 Close Button Clickable Selectors 52
A.6.3 Preference Slider Clickable Selectors 52

A.7 Clickable Keyword Combinations 53

v

Chapter 1

Introduction

Cookies have become a crucial part of the modern internet, they enable web pages to
remember information about a user. Without cookies, web pages would be unable to
retain state. This means that each time a web page is reloaded it will have forgotten
everything the user has done previously, causing frustration for users. They allow the
implementation of important functions such as logging in to an account or keeping track
of an online shopping basket. However, cookies can also be used to collect sensitive
personal data and track a user’s activity as they navigate across the web. This enables
online advertisers to use targeted advertising with the data collected from cookies which
has led to privacy concerns.

To address these concerns, legislation has been introduced to protect users’ data online.
The Privacy and Electronic Communications Regulations (PECR) was brought into law
in 2002 which states that user’s consent must be obtained before any cookie that is not
essential for the website’s basic functionality is set. To comply with this legalisation
many websites began to add cookie dialogs to their websites [12].

Cookie dialogs (or cookie privacy warnings) are popups on web pages that allow a user
to accept or refuse their consent to non-essential cookies. Ideally, cookie dialogs should
provide a range of options for users to choose from and there should be no bias towards
accepting more cookies. However, this is rarely the case and many cookie dialogs
employ subtle design techniques to nudge users towards accepting more cookies, these
techniques are known as Dark Patterns [3].

Previous studies by Soe et al. [21] and Fernandez et al. [11] which looked at Dark
Patterns on cookie dialogs have relied solely on manual analysis by researchers. The
process of manually analysing a website to locate Dark Patterns is time-consuming and
limits the number of websites that can be analysed. Using an automated approach we
aim to collect data about Dark Patterns at a scale not possible with manual analysis. In
addition, manual analysis relies on all researchers agreeing on and sticking to agreed
criteria about what constitutes each Dark Pattern. Inevitably, human error results in
mistakes and disagreement about the presence and prevalence of a Dark Pattern.

The main goal of this project is to design and implement a system that can automatically
detect Dark Patterns on cookie dialogs. To achieve this goal the system first must be able

1

Chapter 1. Introduction 2

to accurately collect cookie dialogs from the internet and save them for further analysis.
Once a cookie dialog has been collected, the system must determine what clickable
elements are present and the cookie setting behaviour of these elements. Using the
information collected from a cookie dialog, the system then uses a rule-based approach
to automatically infer the presence or absence of Dark Patterns.

The resulting system is capable of detecting 10 Dark Patterns automatically and op-
tionally an additional 5 Dark Patterns can be manually inputted by the user via a user
interface.

Despite its constraints, manual analysis is still essential to validate the accuracy of the
system. Manual validation of the system was conducted on two smaller data sets of
500 websites each. Manual validation shows that the system was able to collect cookie
dialogs with 98.8% accuracy. The system was then able to locate and classify clickable
elements with an accuracy of between 95.1%-97.4% depending on the set of websites
used. Finally, the system was able to detect Dark Patterns with an accuracy of between
99.0%-99.2%, again depending on the set of websites used.

After manual validation was completed, the system then automatically collected cookie
dialogs on over 10,000 websites. This collection yielded a data set of over 2,000 cookie
dialogs which we will use to answer the following questions:

• How common is it for websites to display a cookie dialog? What methods are the
most effective at locating cookie dialogs on a web page?

• What clickable elements are present on cookie dialogs? How much effort does it
take users to opt-out of cookies?

• What is the cookie setting behaviour of clickable elements on cookie dialogs such
as the opt-in, opt-out and close buttons?

• What are the most prevalent Dark Patterns found on cookie dialogs?

From a sample of 10,000 websites, this study found that 20.92% of websites displayed
a cookie dialog and that 89.5% of websites with a cookie dialog have at least one Dark
Pattern present.

In summary, the main contributions of this project are as follows:

• A new ranking-based approach to locate cookie dialogs, which shows improved
accuracy compared to previous studies.

• Design and implementation of a system that can automatically detect Dark Pat-
terns on a cookie dialog.

• A taxonomy of Dark Patterns commonly found on cookie dialogs.
• 3 data sets of cookie dialogs and Dark Patterns collected using the system:

1. A smaller set of the Top 500 most-visited websites of 2021 which have been
manually validated.

2. Another, smaller set of 500 randomly selected websites which have been
manually validated. This was collected to ensure the system is not biased
towards the most popular websites.

3. A larger set of 10,000 randomly selected websites.

Chapter 2

Background

2.1 Cookies

HTTP Cookies (or simply just Cookies) are small pieces of data created by web
browsers to allow websites to keep track of their user’s activity. Cookies were first added
in 1994 [50] into the Netscape Navigator browser and have since been implemented by
all major web browsers. The name is derived from the computing term ’Magic Cookie’
[29] which refers to a packet of data that is sent out and received back by your computer
without being altered.

Cookies are used as part of the Hypertext Transfer Protocol (HTTP) [38], an application
layer protocol that is the foundation of communication between users on the World
Wide Web. HTTP is by itself a stateless protocol, which means that the web browser
cannot retain any state from previous requests. Each time the user interacts with a web
page (and triggers an HTTP request to be sent) the connection to the server will be
terminated and the browser will create a new page without any knowledge of the user’s
previous activity. Cookies allow the web page to retain state by storing data locally in
the web browser. Cookies are stored as key-value pairs with a number of additional
attributes (see Cookie Attributes section for details).

Cookies have a wide range of applications, some are required by the websites to keep
track of state while others are used by third parties to track the activities of users on a
web page. For example, many online shopping websites use cookies to keep track of
what items you have in your shopping basket and without cookies, your basket would
reset each time you interacted with the web page. We will define more rigid categories
for classifying cookies in the Types of Cookies Section.

2.1.1 Cookie Attributes

An example of the Cookies that can be stored in the Chrome browser is shown in Figure
2.1. The implementation of cookies can vary slightly between web browsers but in most
implementations cookies contain the following attributes [39]:

• Name: the name of the cookie.

3

Chapter 2. Background 4

• Value: the value/content of the cookie.
• Domain: specifies which hosts are allowed to receive the cookie.
• Path: specifies a URL that must exist in the request in order to send the header.
• Expires/Max-Age: specifies a time for when when Persistent cookies are deleted.
• Size: stores the number of characters the Name and Value attributes.
• HTTPOnly: if set to true makes the cookie inaccessible to JavaScript.
• Secure: specifies that encryption should be used to send the cookie to the server.
• SameSite: lets servers specify if cookies can be sent in cross-origin requests.

Figure 2.1: Example of cookies stored on the Chrome Browser.

2.1.2 Types of Cookies

The common types of cookies are closely linked to the laws that cover them (see Legal
Implications). A good set of categories for defining cookies are laid out by the EU
guidance on how cookies are covered under GDPR [32]. This sets out three main ways
of classifying cookies: by Duration, by Provenance and by Purpose. Not all cookies will
fit into these three main categories and some cookies may fit into multiple categories at
the same time. These three categories should cover the vast majority of cookies.

By Duration: Using the Expires/Max-Age attribute of a cookie we can determine
its maximum lifetime, with this information cookies can be classified as one of the
following:

• Session cookies if the Expires/Max-Age attribute is not set these cookies are used
only while navigating a website. They are stored in memory and are never written
to the hard drive and when the session ends they are automatically deleted.

• Persistent/tracking cookies if the Expires/Max-Age is set, these cookies remain
on a computer until their expiration date is exceeded and are they are automatically
removed when that date is reached.

By Provenance: Using the domain attribute of a cookie we can determine its origin, in
terms of which website the cookie came from. We can then classify cookies as one of
the following:

• First-party cookies originate from the website the user is currently browsing.
• Third-party cookies are generated by websites that are different from the web

page the user is currently browsing. Analytics companies use Third-party cookies
to track a user’s activity across the web on any sites that contain their ads.

Chapter 2. Background 5

By Purpose: Cookies can also be classified by the purpose they are intended to serve.
It is harder to do this as cookies are used for a wide range of purposes and it is up to
each website on how to implement cookies. To allow legal constraints to be placed on
how cookies are stored, GDPR guidance [29] sets out 4 different categories allowing us
to effectively group cookies with similar purposes:

• Strictly necessary cookies are cookies that are essential in allowing users to
browse the website and use its basic features without issue.

• Preference/Functionality cookies are used by websites to store choices made
while browsing the website in the past.

• Analytics/Statistics cookies are cookies used by the website to record informa-
tion about how users interacted with the website. These cookies are not meant to
be able to identify a user and their purpose is to provide information to improve
the website.

• Marketing cookies are cookies used to track your browsing activities and are
used by advertising companies to help target users with more relevant ads. They
are often classified as being third-party in origin and being persistent in duration.

2.1.3 Cookie Dialogs

A cookie dialog (or cookie privacy warning) is a notice found on a website to inform
the user of the website’s cookie policy. The notice will state that cookies or tracking
tools are being used. The dialog may allow the user to accept, reject or select a level
of cookie preference. It may also prompt a user to view a more detailed version of
the website’s cookie policy. Cookie dialogs first began to appear in 2002 when the
EU’s ePrivacy directive came into force [12]. They have become increasingly common
following the introduction of the GDPR in 2018.

For the purposes of this project, we will define a Clickable as a web page element that
can be interacted with and can be clicked on by the user’s cursor. This element must be
present inside a cookie dialog. A full list of clickable types is provided in the Clickable
Location and Classification section.

2.2 Legal Implications

We will be considering the Privacy and Electronic Communications Regulations
(PECR) and the Data Protection Act 2018 (DPA) [43] as these UK legislations are
most relevant to cookies. If a website stores or accesses information stored on a user’s
device then it must comply with PECR first. The DPA then applies to any processing of
users’ personal information by websites outside of this storage.

2.2.1 PECR

PECR was brought into law to give people specific privacy rights in relation to electronic
communications [44]. It is derived from the European Directive 2002/58/EC (or ”the
e-privacy Directive”). The rules in PECR relating to cookies are that a website must:

Chapter 2. Background 6

• Inform users the cookies are present.
• Explain the purpose and necessity of each cookie.
• Obtain consent before storing a cookie on a user’s browser. This must involve

some form of ”unambiguous positive action” [42] such as ticking a box.

There are exceptions for cookies that are essential for the website to provide its services.
Such as remembering what items are in a user’s online shopping basket, or ensuring
security when logging in to an online bank.

2.2.2 GDPR

DPA is the UK’s implementation of the EU’s GDPR. It was brought into law in May
2018 and made sweeping changes to the previous version of the DPA 1998. It greatly
expanded requirements relating to the handling of personal information by websites. It
also focused on ensuring that users have access rights to their data [43].

The EU recommends that in order to comply with GDPR, websites must display a
cookie dialog to allow users to control their cookie preferences [32]. This dialog must:

• Ask users for consent before placing any cookies.
• Provide enough information and sufficient options to allow users to make an

informed choice.
• Allow users to decline the storing of non-essential cookies and then must allow

the user access to all features of the website unhindered.
• Enable users to later change or withdraw their consent.

In many instances, it could be argued that cookie dialogs do not meet the minimum
standards of GDPR. Some websites do not provide enough options for users to select a
suitable preference. Other websites use interface design choices on cookie dialogs to
push users towards accepting all cookies.

2.3 Dark Patterns

Dark Patterns are features of a website’s interface designed to deceive users into
accepting a choice that is not in their best interests [3]. The term was first proposed
by user interface expert Harry Brignull in 2010 [3]. Dark Patterns are more than just
bad design choices, they are deliberately crafted and maliciously designed to deceive
users. In the context of cookies, Dark Patterns are design choices present on cookie
dialogs intended to push users towards sharing more of their data [16]. They do not
necessarily have to be visual design features and can also include hidden features such
as the cookie setting behaviour of cookie dialogs.

Many of the examples provided by Brignull are specific to a particular user interface
type and many do not apply to cookie dialogs at all. Using the examples of Dark Patterns
provided by Brignull [3] as a baseline, Gray et al. [27] went on to refine these examples
into categories, which are summarised in Table 2.1. These new categories subsume the
examples by Brignull and each category attempts to group Dark Patterns with similar
design motivations. For example, a common Dark Pattern on cookie dialogs is ”Only

Chapter 2. Background 7

Opt-in option is present on initial Cookie Dialog”. This falls under the ”Forced Action”
category as the user is left with no choice but to accept all cookies.

To ensure that we cover a wide range of designer strategies, we will look for instances
of at least one Dark Pattern in each of these categories. In the Dark Pattern Detection
section we will go into detail on the Dark Patterns that the system supports. The reader
may find it helpful to see some examples of Dark Patterns on cookie dialogs these are
included in the appendix.

Category Description

Nagging

A minor redirection of expected functionality that may persist
over one or more interactions. Nagging often manifests as a
repeated intrusion during normal interaction, where the user’s
desired task is interrupted one or more times by other tasks not
directly related to the one the user is focusing on.

Obstruction

Impeding a task flow, making interaction more difficult than
it inherently needs to be with the intent to dissuade an action.
Obstruction often manifests as a major barrier to a particular
task that the user may want to accomplish.

Sneaking
An attempt to hide, disguise, or delay the divulging of information
that has relevance to the user. Sneaking often occurs in order to make
the user perform an action they may object to if they had knowledge of it.

Interface
Interference

Any manipulation of the user interface that privileges specific actions
over others, thereby confusing the user or limiting discoverability of
important action possibilities. Interface interference manifests as
numerous individual visual and interactive deceptions.

Forced
Action

Any situation in which users are required to perform a specific action
to access (or continue to access) specific functionality. This action may
manifest as a required step to complete a process or may appear
disguised as an option that the user will greatly benefit from.

Table 2.1: Dark Pattern Categories as defined by Gray et al. [27].

2.4 Related Work

There have been numerous studies [13][18] into the impact that the introduction of the
GDPR has had on the prevalence of cookie dialogs.

Degeling et al. [13] conducted a study in 2018 into the changes to the Top 500 websites
from each of the 28 EU member states (as of 2021, 27 member states and the UK). They
recorded the changes each month from January to October 2018. From January 2018
to May 2018 (when the GDPR was introduced) they observed a 16% increase in the
number of websites displaying cookie dialogs. They also observed a slight decline in the
number of websites using tracking cookie libraries and a small increase in the number
of websites asking for explicit consent before using these libraries. They also analysed
the cookie dialogs for the requirements set out by the GDPR. They found that many
websites do not offer their users much choice when it comes to cookies. They found
that the right to withdraw consent was limited by the same-origin policy which restricts
websites from being able to withdraw consent from third-party cookies. In terms of
which cookies require consent and those covered by ”legitimate interest”, they found

Chapter 2. Background 8

regulators needed to provide clearer guidelines. They concluded that overall the GDPR
has had a positive impact on web privacy and transparency but also acknowledged that
many websites still do not meet the minimum requirements set out by the GDPR.

Matte et al. [18] conducted their study using the Top 1000 websites for each EU country
and Top Level Domain from the Tranco rankings [19]. They noted the main benefit of
using Tranco rankings was that it used an aggregation of several rankings to overcome
flaws in the other lists such as the website being unreachable. They also excluded the
Cisco Umbrella list from the Tranco ranking as they noted this is based on DNS which
may not be representative of traffic to a website. It is definitely worth considering these
factors when deciding what website list to use for this project. In their study, Matte
et al. [18] looked to see if websites respected the option chosen by the user on the
cookie dialog and found that 54% of websites do not respect this choice to some extent.
They also studied each cookie dialog they collected finding that 10% of websites store
consent before a choice is made, 7% of websites provide no way to opt-out and 47% of
websites have a choice pre-selected.

Englehardt et al. [15] created an automated tool using the Open Web Privacy Measure-
ment Framework (OpenWPM). Using this framework they were able to analyse multiple
websites simultaneously which allowed them to conduct a study on over 1 million web-
sites. They found that just 123 of the 81,000 third-party cookie providers are present on
more than 1% of the websites. Meaning that a small number of companies make up the
majority of third-party tracking cookie providers with Google being the most prevalent
owning 12 of the top 20 third-party providers. Using categories of websites from the
Alexa ranking [1], they found that news websites have the highest average number of
tracking cookies present. Many studies [47][14][18][15] chose to use the Selenium
browser automation tool due to it being supported by multiple browsers. Englehardt et
al. [15] used Selenium as they found that many websites did not load sites correctly
when using a headless browser. A headless browser is a web browser that does not have
any graphical user interface, it is typically quite easy for websites to tell when they
are being visited from a headless browser. They also found that using a PhantomJS (a
headless browser) meant that many website technologies and browser extensions were
not supported.

Over the past few years, there have been a few studies [14][47] that have created tools
to automatically detect cookie dialogs on a website.

Eijik et al. [14] conducted a study using OpenWPM to automatically detect cookie
dialogs on 1800 websites using the ”I don’t care about cookies” CSS selector list. Using
manual validation to check their results, they found cookie dialogs present on 40.2% of
websites and were able to detect this correctly 91% of the time. However, the accuracy
of this approach however relies solely upon the CSS selector list itself. Many websites
regularly change the CSS selector of cookie dialogs to prevent CSS selector lists from
being accurate. So if the list is poorly maintained then it will likely not pick up many
cookie dialogs.

Petronyte [47] worked to create a tool to automatically detect cookie dialogs with
improved accuracy. They used the CSS Selector approach discussed above to detect
cookie dialogs and then checked that at least one n-gram was present on the cookie

Chapter 2. Background 9

dialog. They generated the n-grams from around 500 sample cookie dialogs. If the CSS
Selector method did not find any dialogs they added a keyword search to attempt to find
a cookie dialog in the page HTML. On the Top 1000 websites from the Tranco [19]
rankings, they found cookie dialogs present on 54.3% of websites and automatically
detected 98% of cookie dialogs.

Most research in the area of Dark Patterns has focused on other types of user interfaces
other than cookie dialogs. For the purposes of this project, it will be necessary to create
a list of Dark Pattern types based on those which appear commonly on cookie dialogs.
This will allow us to classify a cookie dialog based on the type(s) of Dark Pattern it
contains. In turn, this will allow us to get a good sense of the overall prevalence of the
different types of Dark Patterns on cookie dialogs across the internet. A good starting
point to create this list was to look at the original types of Dark patterns defined by
Brignull on his website [5]. They also have a Twitter page [4] that contains a huge
collection of examples of Dark Patterns from a wide range of user interfaces. There are
several papers [27][17] that use the original types of Dark Pattern from Brignull as an
inspiration for how to categorise Dark Patterns.

Gray et al. [27] manually collected a corpus of Dark Patterns from a broad range
of website interfaces and then provided an overview of the different categories that
these Dark Patterns typically fall into. They developed these categories based on the
original types of Dark Patterns provided by Brignull [5] and focused on explaining
these categories in depth. However, they had no focus on how prevalent Dark Patterns
were so it is impossible to get a sense of how common each category is on the web.
Their approach to locating these Dark Patterns was to employ two researchers to search
the web for Dark Patterns which took them a long period of time (two months) and they
also appear to have used no form of tools (except a web browser) to help them locate
these Dark Patterns. This meant their work relied solely on the skill of these researchers
and they provided little explanation on how exactly they found these examples beyond
simply browsing the web.

Machuletz et al. [17] conducted a user study with mock cookie dialogs used to see if
the presence of a Dark Pattern would cause users to consent to Cookies more often.
The first Dark Pattern they looked at was the ”highlighted default button that selects
all purposes”. They found that with this Dark Pattern present users are more likely to
consent, regret this decision more and perceive the website as more deceptive. They also
looked at the Dark Pattern ”multiple purposes given for the website to store cookies”
and found that users it took more time and effort for users to make a choice.

Krisam et al. [16] conducted research into the prevalence of Dark Patterns on cookie
dialogs on the top 500 German websites, ranked using the Alexa [1] rankings. They
developed a set of categories based on those original examples from Brignull [5] but
narrowed down the categories to be specific to cookie dialogs. They relied mainly on a
manual process to tag Dark Patterns present on cookie dialogs. The only automation
they added was to create a tool to screenshot cookie dialogs but they did not discuss
how this was achieved.

Chapter 3

Design & Implementation

Our overall goal is to build a system that can automatically detect Dark Patterns on
cookie dialogs. To detect Dark Patterns we must first collect information about the
cookie dialog itself. The two main types of information we need about a cookie dialog
are the clickable elements present and the cookie setting behaviour of these elements.
This introduces a chain of dependencies. First, to determine the cookie setting behaviour
of clickables, we need to locate clickables. Second, to locate these clickables, we must
first find a cookie dialog itself. Finally, to find a cookie dialog, we must be able to
automatically interact with a web page and locate elements.

3.1 Requirements Elicitation

Keeping the chain of dependencies in mind we can elicit each of the functional require-
ments our system must have and the order in which they must be developed. This gives
us the following functional requirements which specify that the system must:

1. Be able to automatically interact with a web browser and locate elements present
on a web page.

2. Be able to find cookie dialogs on a web page.
3. Be able to locate and classify any clickables.
4. Be able determine the cookie setting behaviour of the dialog.
5. Be able to infer the Dark Patterns present on a cookie dialog.
6. Have a UI to allow manual validation and accuracy to be calculated.

Breaking the system down into this chain of dependencies allows us to implement
each of the requirements in order. This allows us to thoroughly test each component
individually and with the components it requires. Breaking this system down into
manageable modules will help to reduce the complexity and improve the reliability
of the system. To judge the operation of the system it must also meet the following
non-functional requirements:

1. Accurate: the system must have a good level of accuracy for finding a dialog,
locating clickables and detecting Dark Patterns. We hope for an accuracy of 90%
for each aspect but strive to make the system as accurate as possible.

10

Chapter 3. Design & Implementation 11

2. Internationalisation: the system should be able to operate in a range of written
languages, not just English.

3. Portability: the system should be easy to install and compatible with different
operating systems. The data collected should also be stored in a format that can
be exported for further research.

4. Robust: the system must be able to cope with failures during execution, both
those caused by software faults and network connection issues. The software
should store all data on disk as soon as possible and be able to restart the process
if required.

5. Timely: the system must be able to analyse a website within a reasonable
timescale or it could be argued that there is no benefit over manual inspection. We
propose that 30 minutes is a good upper limit for the system to do a full analysis
of a website as anything above this a human would be consistently quicker.

3.2 Website Scraping

We use the Selenium web scraping library in python. Specifically, we used the
chromedriver (version 97.0.4692.71) in Selenium to allow us to interact with web-
sites in Chrome. We used the Chrome browser as it should get us the most realistic
representation of what the typical user’s browsing experience is like. This is because
Chrome is the most widely used browser [51] and has fewer default privacy settings
compared to other Browsers such as Firefox [40]. As websites can change based on
which country the user is in we also use a VPN to ensure a constant location. During all
operations of our system, a UK based VPN server was used.

3.2.1 Handling Website Connections

To avoid having multiple subdomains from a website, the system takes the domain of a
website in the format: domain.suffix (where the domain is the Second-Level domain
name and suffix is the Top-Level domain name). Conveniently this is the same format
used by the Tranco list. However, to connect to a Website using ChromeDriver we
must give it a complete URL. Not all websites use the HTTPS protocol or have URLs
starting with ’www.’, so we need to make multiple attempts to connect to a website in
the following order:

1. https://www.domain.suffix
2. http://www.domain.suffix
3. https://domain.suffix
4. http://domain.suffix

If we fail to connect to a website after all 4 attempts then the system considers the
website unreachable and the failure to connect is recorded in the database.

The Tranco list attempts to filter out websites that are not meant for humans. However, it
is not always successful. In these cases, if the website cannot be reached or entering the
domain takes us to a page that does not exist then it will be treated as an unsuccessful
connection. In some cases, a blank or error message can be displayed in the form of

Chapter 3. Design & Implementation 12

HTML. In this case, the page is considered a valid page and we will check for a cookie
dialog (it is very unlikely one will be found).

Some websites use CAPTCHA [52] tests to distinguish real users from robots. It would
be technically challenging and unethical to automate the process of bypassing this test.
No CAPTCHA tests were encountered during manual validation of the system so we
do not foresee this being a major issue during automated testing.

3.2.2 Cookie Collection

To assess the cookie setting behaviour of the dialog we must be able to collect all the
cookies set by the web page at a particular time.

As was discovered by Molar [36] in their study, Selenium provides an API to collect
cookies but it is not effective in retrieving all cookies. It misses out on many important
cookies including the majority of third-party cookies.

The best way to accurately retrieve all cookies is the Chrome DevTools Protocol
command Network.getAllCookies [24]. This returns all cookies currently stored by
the Chrome browser. It was observed during development that it took up to 30 seconds
for all cookies to be set. So to ensure all cookies have been set, the system waits 30
seconds. After 30 seconds, the system compares the cookies every 10 seconds until
there are no changes in the cookies set and only then do we collect cookies.

To ensure that there is no cross-contamination between cookie collections we must
ensure that the Chrome Browser cache is cleared after each cookie collection. The
system automatically navigates to the chrome://settings/clearBrowserData page
on the Chrome browser and clicks the ’Clear Data’ button. This is the same method a
user would take to clear their browsing history [25] so should be as effective as possible.

3.2.3 iframes

An Inline Frame or iframe is a special type of HTML element that allows you to
embed various types of interactive media within a web page [37], essentially allowing
us to have a web page within a web page. Selenium handles iframes different to other
elements and a context switch is required to interact with an iframe. Many websites
use iframes to store their cookie dialogs so we must ensure our system can handle the
interaction with them. It is important to note that there can be many instances of iframes
on a web page and that they can be used to store a wide range of media, not just cookie
dialogs, so we cannot simply infer that every iframe is a valid cookie dialog.

To locate all iframes on a web page we can simply search for all elements on the web
page with the HTML tag name iframe. This will return us a list of all iframes. Now
we can interact with each iframe individually. To do this we need to context switch to
the iframe through the switch to.frame API that Selenium provides [10]. Now we
can perform any required actions, such as retrieving HTML or taking a screenshot of
the iframe. Finally, to return to the main body of the web page, we need to context
switch again. This time we use the switch to.default content API that Selenium

Chapter 3. Design & Implementation 13

provides [10]. We will discuss the specific uses of iframes in our system further in the
following sections.

3.2.4 Google Translate API

To allow our system to be compatible with a range of different languages we use the
Python Google Translate API [28]. This provides the same translations as the Google
Translate website [26]. Google Translate was chosen as it supports a wide range of
languages and their Python API is well tested. Using this API allows us to detect the
language and translate any text into English. It should be acknowledged that using
any Online Translate API will not always give us the grammatically correct translation.
However, for this project, we are generally only interested in checking for the presence
of keywords in any translated text. So this accuracy of translation will suffice. We
will discuss the specific uses of the Google Translate API in our system further in the
following sections.

3.3 System Design

To achieve our goal of automatically detecting Dark Patterns, the system has been
decomposed into 4 modules that each provide a crucial piece of functionality. Figure
3.1 shows the main steps in each module and the workflow of the system. The rest of
this chapter will provide a breakdown of these modules which are as follows:

1. Cookie Dialog Collector: finds the cookie dialog (if one is present).
2. Clickable Locator: if a dialog was found then, this module locates any clickables

on the Dialog and classifies them into types.
3. Cookie Behaviour Analyser: this module analyses the Cookie Setting Behaviour

of the dialog to allow us to infer some further Dark Patterns.
4. Auto Dark Patterns: the module uses the data collected from the Dialog and

Clickables to detect any Dark Patterns present on the Dialog.

The Scrape Manager module is responsible for the initialisation of web pages and
the control of interactions between modules in the system, shown in Figure 3.1. This
module abstracts the process of analysing a cookie dialog for Dark Patterns and simply
allows the user to pass in a list of website domains which they want analysed. It allows
configuration options to be specified, the main option that needs to be specified is the
Mode of Operation.

All the data collected from the system will be stored in a SQLite database to ensure
it is not lost if there is a system failure. SQLite is a server-less database engine this
reduces the complexity and installation time of our system. The .db file format SQLite
provides can be easily exported which conforms with our Portability non-functional
requirement. Interactions with the database are shown in Figure 3.1 and these also act
as restart points should the system terminate unexpectedly. The database schema and
description of the exact data collected are included in the appendix.

Chapter 3. Design & Implementation 14

Figure 3.1: Diagram showing the main actions taken to analyse a single website.

3.3.1 Modes of Operation

Using manual validation to correct mistakes made by an automated system will lead to
a higher level of accuracy. However, manual inspection of websites is a time-consuming
process and conducting manual validation for a large set of websites would be infeasible.
Therefore, we require two modes of operation:

Auto Mode: is the fully autonomous version of the system that operates without user
interaction to analyse a website. This was developed to allow me to conduct a large
scale scrape of websites that would be infeasible with user interaction involved. The
process taken by this mode is shown in the Figure 3.1.

Manual Mode: is the version of the system that allows the user to validate the choices
that the system makes. This was the initial version of the system that was used to assess
the accuracy of the system during manual validation. This mode follows all the same
steps as shown in the Figure 3.1. Additionally, via a user interface, manual mode allows
the user to:

1. Validate that the highest-ranked dialog is correct.
2. Validate that all clickables have been found and classified correctly.
3. Validate that any automatically detected Dark Patterns are correct.
4. Prompts the user to reject cookies by interacting with the dialog. This allows a

comparison between the cookies before and after rejection. The number of clicks
the user makes is recorded.

5. Input any additional Manual Dark Patterns that they observed.

Although the central objective of this project is to develop an automated tool to detect
Dark Patterns (which is what Auto Mode provides), it was important to have the Manual
Mode as it allows the accuracy of the system to be tested. It also allows a further
set of Manual Dark Patterns to be inputted by a user. These are Dark Patterns that
were identified as being present on cookie dialogs but were deemed too complex to be
detected automatically within the scope of this project. We will discuss these further in
the Dark Pattern Detection section.

Chapter 3. Design & Implementation 15

3.3.2 Dialog Collection

Cookie dialogs come in all shapes and sizes, so there is no trivial approach to locating
all cookie dialogs. Many websites purposely make it difficult to automatically detect
cookie dialogs.This is likely to ensure that ad-blockers cannot effectively block cookie
dialogs.

It is important to note that websites can have more than one cookie dialog (an example
of this is shown for Dark Pattern 7). As we will explain further in the Dark Pattern
Detection section, the appearance of more than one cookie dialog is considered a Dark
Pattern. So for this project, we will assume that websites can have more than one cookie
dialog. However, for the Clickable Locator and Cookie Behaviour Analyser modules
to work correctly, we must select one of these dialogs to be valid. So we will consider
our system successful if it manages to locate both dialogs as candidate dialogs and the
ranking-process ranks either one of these dialogs first. This will allow us in the Auto
Dark Patterns module to consider if there is more than one cookie dialog.

CSS selectors are patterns used to specify which HTML elements on a web page we
want to select. In a previous study B. Molnar [36] identified a method to use Ad-Blocker
Cookie CSS Selectors Lists to identify cookie dialogs. These lists are publicly available
and updated regularly and contain CSS selectors which identify cookie dialog elements.
The website filterlists.com [7] provides an overview of the available CSS selector lists
and we can apply a filter to only view cookie-specific CSS selectors lists. From this
website we can see that the two most widely used and frequently updated lists are
EasyList [46] and I don’t care about cookies [31] so these lists were used to update
CSS selectors in the system. Both these lists are used by major ad-blockers including
Adblock Plus, AdBlock and uBlock Origin [46].

The most common tactic that websites use to make cookie dialog detection difficult
is the obfuscation of CSS selectors on cookie dialogs. This is when they use choose
CSS selectors on dialogs that have nothing to do with cookie dialogs. This makes it
harder to guess and reduces the chance that it will appear in a CSS Selector list. Even if
this CSS selector is then added to a Cookie CSS selector list, websites will frequently
regenerate a new pseudo-random CSS selector which will make the old one obsolete.
The updating of CSS selectors effectively creates a never-ending race for ad-blockers
lists to stay in sync with websites. This leads to the efficacy of ad-blocker lists being
based on how frequently they are updated.

An extreme case of updating CSS Selectors that we discovered was google.com.hk, the
landing page for Google Search in Hong Kong. This web page randomly regenerates
the CSS selector on their cookie dialog for each new user that visits the page. Meaning
there is no effective way for ad-blocker lists to be kept in sync with this web page.

For these reasons, we cannot solely rely on ad-blocker lists for accurate cookie dialog
detection and we must look at other features of web pages to correctly identify cookie
dialogs. We will discuss this more in the Ranking all the Candidate Dialogs section.

The process of finding a cookie dialog on a web page can be broken down further into
the following steps which we will discuss in details in the following sections:

https://filterlists.com
https://google.com.hk

Chapter 3. Design & Implementation 16

1. Find all Candidate Dialogs, all the potential elements on the web page that could
be cookie dialogs.

2. Rank all the Candidate Dialogs.
3. Select the highest-ranked Candidate Dialog as the correct cookie dialog.

3.3.2.1 Finding all Candidate Dialogs

In this stage we attempt to identify as many possible candidate cookie dialogs, this
allows the candidate ranking process to have a good range of elements to work with.
The objective of this stage is to have as high recall as possible and then allow the ranking
process to make a precise judgement if any candidates are suitable representations of a
cookie dialog.

The features captured for each candidate dialog are a screenshot (this also gives us the
size and position of the dialog), the text, the HTML content and the method used to
locate the dialog. All these features are vital in allowing the ranking process to assess
the suitability of each candidate. Taking a screenshot of each candidate is particularly
important as Selenium only allows you to screenshot elements that are visible to the
user. This allows us to filter out many invalid candidates during the ranking process.

To locate elements on a web page that could be cookie dialogs we use the following
methods:

1. Domain-Specific CSS Selectors: these are CSS selectors which are only valid
for identifying a cookie dialog on a particular domain.

2. iframes: are an HTML element tags that are used to embed an external element
in the current web page. Cookie dialogs are commonly contained within iframes.

3. General CSS Selectors: these are CSS selectors which are commonly found in
cookie dialogs.

4. Custom CSS selectors: these are additional CSS selectors developed as part of
the system implementation to search div tags containing common terms. The full
list of Custom CSS Selectors is included in the appendix.

Previous studies by Petronyte [47] and Molnar [36] considered elements found using
General CSS selectors only if they found no elements using Domain-Specific CSS
Selectors. By collecting candidates using Domain-Specific, General, iframes and
Custom CSS selectors first we aim to locate all possible candidates dialogs. This will
ensure our system has a very high recall, meaning our ranking process will have a large
number of candidates to assess. Then during the ranking process, we will use the range
of features collected about each candidate to precisely predict which candidate is the
best possible representation of a cookie dialog.

Our system contains around 19,000 general and 13,000 website-specific CSS selectors in
total. During implementation, we discovered that Selenium was very slow for searching
through such a large list of CSS selectors. Depending on the complexity of the web
page, we found it took up to 20 minutes to search the whole list which risks not being
acceptable per our Timely non-functional requirement. So instead we use the Python
Beautiful Soup [48] library to search the HTML content of the web page as it is
much more efficient and gave us a maximum search time of approximately 5 minutes.

Chapter 3. Design & Implementation 17

As we discussed in the iframes section, iframes are handled differently than other
candidate dialogs. So we first we must perform a context switch. Then we can collect a
screenshot, HTML content and text from the iframe body. To ensure that the Clickable
Locator and Cookie Behaviour Analyser modules can interact with any clickables
on this candidate, we also record the method used to locate the candidate was an iframe.
We will need to perform the same context switching to interact with any clickables on
an iframe.

3.3.2.2 Ranking all the Candidate Dialogs

During the early stages of development, we observed that CSS selectors alone were not
always able to accurately identify cookie dialogs and would often return false positives.
So to improve the accuracy of the system we designed a new ranking-based approach.
This ranking process considers a range of features collected about each candidate.
Features captured for each candidate dialog include collection method, text content,
outer HTML and a screenshot. Using a combination of factors derived from these
features we can assign a score to each candidate. All candidates start with a score of 0
and the higher the score the more suitable a candidate is. Candidates can gain scores,
lose scores or are removed from the ranking process completely based on a range of
factors summarised in Table 3.1. Candidates with a score of 0 or less are deemed to not
represent a cookie dialog and are disregarded after the ranking process is complete.

Candidate Feature Ranking Factor Weight
Collection method Found using Domain-Specific CSS selector +10

Found using General CSS selector +5

Text Content Contains common cookie dialog N-grams
unigram = +1
bigram = +2
. . .

Length less than 5 -20
Length greater than average plus 100 -20
Contains no text -100

Outer HTML Substring of another candidate -1
Same as another candidate Removed

Screenshot Candidate could not been screenshotted Removed

Table 3.1: Table showing the factors and weights used to rank candidates.

Weights have been assigned to each factor based on their importance of indicating
whether a candidate is a valid cookie dialog or not. In the following paragraphs we will
go into more details about each factor and justify the weights assigned to them.

Firstly, we can look at the collection method of the candidate which allows us to
differentiate between the ways a candidate can be located. If the candidate was Found
using a Domain-Specific CSS Selector or Found using a General CSS selector this
is more likely (but not guaranteed) to identify a cookie dialog due to it being from a
publicly validated list. Since Domain-Specific CSS Selectors specify the exact website,
they were deemed to be more important than those found using General CSS selectors
and are assigned a higher weight. Elements found using our custom list of CSS selectors

Chapter 3. Design & Implementation 18

are not deemed to be any more important than other elements as they have not been
publicly validated. iframes are also not assessed to be any more important as there is a
wide range of content that can be contained within an iframe not just cookie dialogs.

Secondly, we can compare the text content of the candidate to text commonly found
cookie dialogs. A good way of doing this is to check whether or not the text contains
N-grams commonly found in a cookie dialog. From the text of 100 manually collected
cookie dialogs, a set of N-grams was generated up to the 5-gram level. These were
manually curated to ensure that they only contained N-grams which help identify a
cookie dialog from other elements. The full list is included in the appendix. For each
N-gram found in the candidate’s text, a score is added based on the length of the N-gram.
Longer N-grams are considered to be more important at identifying a cookie dialog.
For example, the uni-gram ’cookie’ is less important than the tri-gram ’we use cookies’
at identifying the dialog as the uni-gram is a sub-string of the tri-gram. Since all our
N-grams were generated in the English language we must first translate any non-English
text. We can detect the language of and translate any text using the method discussed in
the Google Translate API section. The performance of this factor could be increased by
generating N-grams from a larger set of cookie dialogs.

Another important aspect of the text content is the total number of words it contains.
Elements with text Length less than 5 words are generally found to be clickable
elements rather than cookie dialogs so are given a negative weighting to lower their
rank. Candidates which contain no text were very unlikely to be a cookie dialog so
were afforded a very large negative weighting. Looking at the average number of words
across all candidates allowed me to assess whether a dialog was exceptional long. We
initially tried lowering the score of candidates with more than the average number of
words but in many cases, the correct dialog was just above the average number of words.
So we decided to only lower the score if a candidate has a Length greater than average
plus 100. In many cases, candidates which had an exceptionally large number of words
did contain the cookie dialog but also included other non-relevant content.

Thirdly, another feature we can look at is the outer HTML content of the candidate. The
Outer HTML is a string made up of the HTML element itself, including its attributes,
start tag, and end tag. By checking this string we can assess the similarity of candidates
to each other in a more precise way than comparing the text content. If a candidate’s
Outer HTML is a sub-string of another candidate’s Outer HTML then the first
candidate is a child of the second candidate. Child candidates are more likely to be
clickable elements or incomplete parts of a cookie dialog. So to increase our chances of
locating the whole cookie dialog we want the parent candidate to be ranked higher than
any child candidates. To ensure that the parent element will be ranked higher than a
child then a small negative weight was added.

We can also look at whether a Candidate has the same HTML content as another
dialog. If this is the case, then we have likely selected the same element multiple times
using different CSS selectors. We remove any duplicate candidates, giving preference
to keeping candidates selected by Domain-Specific and General CSS selectors.

Finally, we look at whether a screenshot of the candidate using Selenium was possible.
Selenium only allows you to screenshot elements that are visible to the user. If a

Chapter 3. Design & Implementation 19

candidate is not visible to the user then this is not likely a cookie dialog. So if a
Candidate could not be screenshotted then we removed it from the list of possible
candidates.

3.3.2.3 Selecting the highest-ranked Candidate Dialog

Once the ranking process is complete, we can then select the highest-ranked dialog
with a positive score to become the valid dialog for this web page. The ranking process
will give candidates that are not likely to be cookie dialogs negative scores. So if there
were no positively ranked candidates then there should be no dialog present on the web
page and we can stop our analysis of the current web page at this point. Finding a valid
dialog will then allow us to begin the next phase of the process: Clickable Location &
Classification.

3.3.3 Clickable Location & Classification

Once, we have located a valid cookie dialog we then want to find the clickable elements
located on the cookie dialog. The process of locating clickables on a dialog can be
broken down further into the following steps:

1. Locate all Candidate Clickables, that is all elements on the dialog which the
user can interact with.

2. Classify the clickables into types, as specified in the list of clickables below.
3. Remove any duplicate clickables.

The list below contains types of clickables that a cookie dialog may contain:

1. Opt-in option: button which allows the user to consent to all Cookies. Usually
worded affirmatively using words such as ’Accept’, ’Yes’ or ’OK’. However,
depending on how the cookie dialog has phrased the wording of this button may
be inverted with the Opt-out button.

2. Opt-out option: button which allows the user to reject the collection of Cookies
depending on their preference. Usually worded negatively using words such as
’Reject’, ’No’ or ’Opt-Out’.

3. More options: button which redirects the user to another dialog where there are
more preference options available.

4. Preference Slider: a single element that allows users to consent or reject certain
types of cookies before confirming this choice using the Confirm Preferences but-
ton. We also distinguish between preference sliders that are enabled or disabled.

5. Confirm Preferences: a button used to confirm the cookies preference made
using sliders. In some cases, the Opt-out button may take its place.

6. Close option: button that allows the user to close the cookie dialog without
selecting an option.

7. Policy Link: link to the website’s Privacy or Cookie Policy page which does not
contain any options to select cookie preference.

8. Other: any other non-relevant clickable on the dialog.
9. Duplicate: type used to specify the clickable is a duplicate of another clickable.

Figure 3.2 shows examples of Clickables on a cookie dialog.

Chapter 3. Design & Implementation 20

Figure 3.2: Examples of Clickables (highlighted in red) on a cookie dialog (Source:
https://ico.org.uk/) Note: numbers correspond to the list of clickables.

In the following paragraphs, we will discuss each of the steps required to locate click-
ables in more depth.

Firstly, to locate all the possible clickables we use a custom set of CSS selectors (see
the appendix for the full set). By appending the CSS selector of the cookie dialog
to the start of the clickable CSS selectors, we ensure that we only select clickable
elements which are located on the cookie dialog itself. Otherwise, we risk selecting
every clickable on the web page which is not desirable. As we did with dialogs we can
filter out any clickables for which a screenshot cannot be taken. This is since Selenium
only allows elements visible to the user to be screenshotted. So if a clickable is not
visible to the user then this is not likely a valid clickable.

Secondly, we classify the type of each clickable based on its text content. After the
classification, each clickable will be assigned to exactly one type. To classify a clickable
into a type we check for the presence of keywords in its text. If a clickable does not fall
under any of these types then it is allocated to the ’other’ type and deemed not useful.
The keywords used for classification were derived from the study by Petronyte [47]
who in turn derived their set of words from Molnar [36]. They have been expanded
during the implementation of this system, the most notable difference is the inclusion of
preference sliders in our set of clickable types which required their own set of keywords.
The keywords for each type are shown in the appendix. Since all of our keywords
were generated in English we must first translate any non-English text, we can do this
by following the steps we discussed in the Google Translate API section. Clickables
usually contain a small amount of text, so if we find a clickable that contains more than
10 words then it is likely we have selected another element. In this case, we consider
the clickable invalid and assign it to the ’other’ type.

To improve the accuracy of our classification we apply case folding and stemming to

Chapter 3. Design & Implementation 21

any text before classification. Stemming is a form of normalisation which attempts to
reduce morphological variations of words to a common stem word. The system uses
the stemming.porter2 library [6]. This stemmer provides a good balance between
efficiency and aggressiveness, appearing to not be too aggressive when stemming words
and a good set of results are returned. Case folding is the replacement of all uppercase
letters in a string with their lowercase counterparts. This serves to ensure that all
instances of the same word are stored under a single entry in the index, regardless of
the case of the letters. This removes the capitalisation of letters which increases the
information retrieval performance and ensures that all relevant results are returned to
the user.

During the implementation, it was observed that keywords alone were not enough to
locate all of the ’close option’ elements. So for this element we must take additional
steps to locate all instances of this type. It is common for the close option to not contain
any text content. So we need to use CSS selectors to find button types and we created
custom set of CSS selectors based on close buttons observed during implementation,
this set is included in the appendix.

We also observed that not all preference sliders could be located using keywords also
due to many preference sliders not containing any text content. So we also added CSS
selectors to locate Preference sliders, we only observed one additional CSS selector is
used to identify preference sliders, which was input[type="checkbox"].

Finally, now that we have located all candidate clickables we want to remove any
duplicate clickables. Duplicates can occur when two CSS selectors locate the same
element on a web page. To filter out duplicates we compare the OuterHTML content
of candidate clickables. If any two clickables have the same HTML then we change
the type of one of them to ’duplicate’. The ’duplicate’ type is used to specify that the
clickable should not be used for Dark Pattern analysis. This type of clickable does not
serve us any further purpose during automatic analysis and is only kept for the purpose
of manual validation.

3.3.4 Measuring the Behaviour of the Dialog

To allow us to infer the presence or absence of Dark Patterns 9 and 11 (we will describe
these in the Dark Pattern Detection section) we need to conduct some additional cookie
captures. For Dark Pattern 9, we need to assess the cookie setting behaviour of the
’Close button’ clickable, only if this element is present on the dialog. For Dark Pattern
11 we need to assess ’Opt-in button’ and ’Opt-out button’ clickables, only if both of
these elements are present on the dialog.

To avoid cross-contamination between cookies we need to clear the Browser cache.
We can follow the same steps as described in the Cookie Collection section to achieve
this. We then need to reload the web page so that the cookie dialog appears again in
its original state. Once the website has loaded we can then interact with the desired
element on the validated dialog using the CSS selector we collected for the clickable
element. We do this by calling the Selenium click method [9] to simulate a user click
on the element. We can then collect cookies present after this click, again following the

Chapter 3. Design & Implementation 22

steps described in the Cookie Collection section.

There is always a small chance that the web page does not load the cookie dialog
correctly or that the web page may change CSS selectors dynamically between visits.
To ensure we are interacting with the same cookie dialog as before, we compare the
HTML content of the current dialog with the dialog stored in the database from the
Dialog Collection stage. Any failure during this stage is noted in the database and the
cookie interaction results are deemed invalid.

3.3.5 Dark Pattern Detection

Now that we have located a valid cookie dialog, found all clickables, and measured
the cookie setting behaviour we can proceed with our main objective of detecting Dark
patterns. The exact method of detection varies between each Dark Pattern. Examples of
Dark Patterns located by the system automatically are provided in the appendix.

The main goal of this project is to automatically detect as many Dark Patterns as
possible. However, it became clear that some of the Dark Patterns commonly found on
cookie dialogs were very difficult to detect automatically and human judgement was
sometimes required.

This left us with two detection types:

1. Automatic detection where our system will automatically infer the presence or
absence of the Dark Pattern based on the criteria.

2. Manual detection where the user must manually input the Dark Pattern.

Note that the detection types roughly correspond to the Modes of Operation the system
has. The Automated mode of operation only detects Automatic Dark Patterns, whereas
the Manual mode of operation allows both Manual and Automatic Dark Patterns to be
inputted by the user, via the user interface.

To ensure we could implement automatic detection for as many Dark Patterns as
possible, we ranked the set of Dark Patterns we had from easiest to hardest detect. This
allowed us to begin implementing the easiest Dark Patterns first and resulted in the
system being able to detect a total of 10 Dark Patterns automatically.

In the remainder of this chapter, we will provide a taxonomy of all the Dark Patterns that
the system supports. For each Dark Pattern, we will assign it to a category (matching
those by Gray et al. [27] that we discussed in the Dark Patterns section), give the
detection type, describe the impact it has on the user and the criteria used to detect the
presence of this Dark Pattern.

3.3.5.1 Dark Pattern 1: Only the Opt-in option is present on the initial Cookie
Dialog

Category: Forced Action Detection Type: Automatic

Impact on the user: This results in the user having no choice but to accept all cookies.

Criteria: Satisfies all of the following:

Chapter 3. Design & Implementation 23

1. There is an opt-in button present.
2. There is not a more options button present.
3. There is not an opt-out button present.

3.3.5.2 Dark Pattern 2: The background colour of the Opt-in button leads to it
being highlighted more compared to the Opt-out button.

Category: Interface Interference Detection Type: Automatic

Impact on the user: This makes the opt-in button stand out more to the user and means
they are more likely to click the opt-in button without considering other options.

Criteria: To detect if a clickable is ’light’ or ’dark’ we can calculate the average colour
of the grey-scale screenshot of the clickable. We use the grey-scale image as this allows
us to determine the brightness of an image. If the grey-scale pixel is black then the
colour of the pixel will be dark and hence not highlighted to the user. In contrast, if the
grey-scale pixel is white then the colour of the pixel will be light and hence highlighted
to the user. We can use the Python opencv Package [45] to convert the screenshot of
the clickable into grey-scale and then calculate the mean colour. For each pixel, we
will get a value between 0 (Dark) and 255 (Light). During testing, it was determined
that considering any average value over 170 be ’light’ and otherwise ’dark’ was a good
threshold. However, further work is needed to analyse the effectiveness of this threshold.
Thus, instances of this Dark Pattern satisfy all of the following:

1. There is an opt-in option present.
2. There is an opt-out option present or a more options button present.
3. The opt-in button grey-scale colour is dark.
4. The opt-out button grey-scale colour is light and the more options button grey-

scale colour is light.

3.3.5.3 Dark Pattern 3: Dialog Obstructs the window

Category: Obstruction Detection Type: Automatic

Impact on the user: This may hinder or entirely prevent the user from being able to
interact with the rest of the web page without first interacting with the cookie dialog.

Criteria: The area (length × width) of the dialog is greater than 60% of the area
of the web page. The measured screen pixels taken up by the web page will vary
depending on the resolution of the monitor the system is being run on (in our case this
was 1080x1920).

3.3.5.4 Dark Pattern 4: Text Content of the dialog is difficult to read

Category: Interface Interference Detection Type: Automatic

Impact on the user: text content of the dialog is difficult to understand to an extent
that the average user may struggle to comprehend it.

Criteria: The Flesch-Kincaid (FK) reading ease test is a metric used to evaluate
the readability of a passage of text. The FK test was originally developed for the US

Chapter 3. Design & Implementation 24

Navy [30] to assess the complexity of their technical manuals. It has been widely used
as a metric for automatically calculating readability, including in programs such as
Microsoft word [35]. FK scores are numeric values between 0 and 100, where a higher
score indicates simpler text and a lower score indicates more complex text. The FK
score for a passage of text can be calculated using the following equation [30] :

FK = 206.835−1.015(
Total words

Total sentences
)−84.6(

Total syllables
Total words

)

The process of accurately determining the number of syllables in a word automatically
is a challenging task so we use the Python textstat [2] module to calculate FK scores
in the system. The FK score defines any passage of text with a score of 50 or less as
being difficult to read and requiring a college-level education to be understood. Thus,
we define the text of any cookie dialog which has an FK score of 50 or less as being
difficult to read.

3.3.5.5 Dark Pattern 5: Multiple layers to a cookie dialog

Category: Obstruction Detection Type: Automatic

Impact on the user: The user is required to navigate through multiple layers of a
cookie dialog to select their preferences. This may push users to accept all cookies as it
requires substantially less effort.

Criteria: a more options button is present on the valid dialog.

3.3.5.6 Dark Pattern 6: Ambiguous Close button is present on the dialog

Category: Interface Interference Detection Type: Automatic

Impact on the user: The purpose of this button may be ambiguous to the user. They
may not know if clicking this button will opt-in, opt-out or make another cookie setting
choice on their behalf.

Criteria: a close option button is present on the valid dialog.

3.3.5.7 Dark Pattern 7: Multiple distinct Cookie Dialogs present on a page

Category: Interface Interference Detection Type: Automatic

Impact on the user: The user may be uncertain about which cookie dialog they should
interact with and different dialogs may have different options or instructions available.

Criteria: There is more than 1 distinct candidate dialogs which means the following
statements hold:

1. All candidate dialogs being considered all have a score greater than 0.
2. The HTML content of at least one candidate is not the same as or a sub-string of

another candidate’s HTML content.

Chapter 3. Design & Implementation 25

3.3.5.8 Dark Pattern 8: At least one Preference Slider is enabled by default.

Category: Sneaking Detection Type: Automatic

Impact on the user: There can be many preference sliders on a dialog so one or more
being enabled by default can be easily missed by the user. This also adds additional
effort for the user to reject all non-essential cookies.

Criteria: Selenium provides two useful functions to detect if a preference slider is
enabled or not. The is selected() [9] function can be used to check if a preference
slider has been selected, this allows us to check if a preference slider has been automati-
cally enabled by the website without the user’s consent. The is enabled() method [9]
allows us to check if an element can be interacted with by the user, this allows us to tell
if the user can disable this preference slider or not. Commonly, many dialogs have a
preference slider for ’necessary cookies’ which cannot be interacted with and is enabled
by default. If both of these functions return True then this means the Preference Slider
has been enabled by default and can be interacted with by the user. Thus, the criteria
for this Dark Pattern is that a preference slider is present and it satisfies the following:

1. The preference slider is enabled (is enabled function returns True).
2. The preference slider is selected (is selected function returns True).

3.3.5.9 Dark Pattern 9: Clicking the Close button leads to more cookies being
selected.

Category: Sneaking Detection Type: Automatic

Impact on the user: Without informing the user that clicking the close button will set
more cookies the dialog has selected more cookies without asking for informed consent
from the user.

Criteria: We use id-like cookies as they are more likely to be tracking cookies. In
many cases, it was observed that the website would set a cookie to indicate the user’s
cookie preference or for other reasons such as language. By just comparing id-like
cookies we hope to have a good way to detect if there is an increase in tracking cookies.
However, not all id-like cookies will be tracking cookies and there is no way to tell
the exact purpose of cookies for a website you did not develop yourself. In a study by
Sanchez-Rola et al. [20] they distinguish id-like cookies using the zxcvbn password
strength algorithm. This allows us to assess the uniqueness of a string thus allowing us
to gauge how suitable it is to be a unique identifier. We use this approach to determine
the strength of the cookie value attribute in being a unique identifier. The value attribute
of a cookie can contain multiple distinct sub-strings. To retrieve these sub-strings we
split the string using following the delimiters:

: , = , . , % , |

Additionally to allow tracking across websites, id-like cookies must also be persistent,
that is they must not deleted immediately after the browsing session is closed. In their
study Englehardt et al. [15] consider cookies with an expiry date of over 90 days to be
identifier cookies. Typically, tracking id-like cookies have a long expiration date set to

Chapter 3. Design & Implementation 26

allow a more complete user profile to be constructed. To determine if a cookie is id-like
it must meet the following criteria:

1. The cookie is set to expire more than 90 days after it was set.
2. The zxcvbn [20] score of any component of the value attribute of the cookie is

greater than 3 (this is equivalent to 100 million guesses).

Therefore the criteria for this Dark Pattern is:

1. An initial set of cookies was collected when the website was first opened.
2. There is a close button present on the cookie dialog.
3. A set of cookies was collected after the close button was interacted with.
4. The number of id-like cookies in the set of cookies collected after the close button

was clicked is greater than the number of id-like cookies in the initial set of
cookies.

3.3.5.10 Dark Pattern 10: Takes more clicks to Opt-out than Opt-in or Opt-out
option is not visible.

Category: Obstruction Detection Type: Manual

Impact on the user: Additional effort is required by the user to opt-out than to opt-in
which may make sway some users to simply opt-in rather than undergo the additional
effort.

Criteria: The number of clicks it took the user to opt-out is more than the number it
took them to opt-in during the manual interaction with the cookie dialog.

3.3.5.11 Dark Pattern 11: More cookies are set regardless of the Opt-out button
being clicked

Category: Sneaking Detection Type: Automatic

Impact on the user: Despite the user opting out to reject all non-essential cookies the
dialog has disregarded their choice and selected more cookies regardless.

Criteria: We take the same approach as we described for Dark Pattern 9 to detect
id-like cookies. Our criteria for this Dark Pattern is, there are more id-like cookies
stored after the opt-out option is clicked compared to before which means:

1. An initial set of cookies was collected when the website was first opened.
2. There is an opt-out option present on the cookie dialog.
3. A set of cookies was collected after the opt-out option was interacted with.
4. The number of id-like cookies stored in the set of cookies collected after the

opt-out option was clicked is greater than the number of id-like cookies in the
initial set of cookies.

3.3.5.12 Dark Pattern 12: Poorly Labelled preference sliders

Category: Sneaking Detection Type: Manual

Chapter 3. Design & Implementation 27

Impact on the user: The user may be unsure about what one or more preference sliders
do when enabled which may lead to them unintentionally opting in for more cookies
that they wish to.

Criteria: This is decided by the user during manual input of Dark Patterns. General
guidance is that the user believes that labels for one or more preference sliders are
unclear to the extent that their purpose is ambiguous.

3.3.5.13 Dark Pattern 13: In the context of the Cookie Dialog text the standard
meaning of the Opt-in and Opt-out buttons is inverted.

Category: Interface Interference Detection Type: Manual

Impact on the user: The typical layout of a cookie dialog has the opt-in button worded
affirmatively and the opt-out button worded negatively. Switching this standard ordering
may lead to the user unintentionally selecting more cookies than they wished to.

Criteria: This is decided by the user during manual input of Dark Patterns. General
guidance is that the user believes that the context of the opt-in button is worded neg-
atively and the opt-out button worded affirmatively to the extent that it may confuse
other users.

3.3.5.14 Dark Pattern 14: Opt-out button is named to guilt the user for selecting it

Category: Interface Interference Detection Type: Manual

Impact on the user: The user may feel guilty or that they are missing out on a feature
by opting out of non-essential cookies.

Criteria: This is decided by the user during manual input of Dark Patterns. General
guidance is that the user believes that they or other users would feel guilty for selecting
the opt-out button.

3.3.5.15 Dark Pattern 15: When the user clicks the Opt-out button they are asked
to confirm their choice

Category: Nagging Detection Type: Manual

Impact on the user: The user has to undergo additional effort when opting out of
non-essential cookies.

Criteria: The opt-out button should be followed by an additional action to confirm the
user’s choice and the opt-in button should not have this additional action.

Chapter 4

Evaluation

To evaluate the accuracy of our system manual validation was conducted on two sets of
websites and then a larger data set was used to automatically collect results.

Top 500 data set: the first set used to evaluate the system was the top 500 websites of
2021 from the Tranco list. This was chosen to allow us to assess the cookie dialogs
on popular websites. This data set was collected in Manual mode of the tool between
22/01/22 and 29/01/22 and all data were manually validated.

Random 500 data set: the second data set used to evaluate the system was a random
subset of 500 websites from the same Tranco list. This was chosen to avoid bias towards
the top 500 websites. This data set was collected in Manual mode of the tool on 14/02/22
and all data were manually validated.

Random 10k data set: the final data set was collected using another random subset
of 10,000 websites from the same Tranco list. This was chosen to allow us to assess
a larger collection of websites to gain a better idea of what Dark Patterns are present
across the web. This data set will overlap with the previous two data sets and was
collected in Automatic Mode between 15/02/22 and 24/02/22. This data set was not
manually validated so we cannot assess the accuracy of this data set.

The full details of each data set, including the full lists of domains used, can be found
in the appendix.

4.1 Dialog Collection

In the Top 500 data set there were 235 websites with a cookie dialog present, the system
was successful in finding the correct dialog for 233 websites, giving us an recall1 of
99.5 %. Of the 237 positive results by the system, only 4 of these were false positives,
giving us a precision 2 of 98.3 %. Overall for the Top 500 websites the system had a
cookie dialog collection accuracy3 of 98.8 %.

1Recall = TP
TP+FN

2Precision = TP
TP+TN

3Accuracy = TP+TN
TP+TN+FP+FN

28

Chapter 4. Evaluation 29

An interesting false positive case that was encountered during the collection of this data
set is shown in Figure 4.1. This website contains a dialog which at first glance appears
to be a cookie dialog. However, upon further inspection, this dialog and its attached
privacy policy do not mention cookies so this is not a cookie dialog.

Figure 4.1: An example of website dialog which is not a cookie dialog (Source: iden-
trust.com)

Actual
Positive Negative

Expected Positive 233 4
Negative 2 261

Table 4.1: Dialog detection confusion matrix for the Top 500 websites.

In the Random 500 websites data set there were 98 websites with a cookie dialog
present, the system was successful in finding the correct dialog for 97 websites, giving
us a recall of 99.0 %. Of the 102 positive results by the system, only 5 of these were
false positives, giving us a precision of 95.1 %. Overall for the Top 500 websites, the
system had a cookie dialog collection accuracy of 98.8 %.

An interesting false negative edge case was encountered on the website kaffee-partner.de
during the collection of the Random 500 websites. This website does have a cookie
dialog present but it is wrapped inside a shadow DOM. The shadow DOM allows a web
page to attach a hidden separated DOM to an element [41]. The shadow DOM is not
supported by Selenium so there is no way for our current system to handle this case.
This is the only instance of this edge case that was found during manual validation out
of 1000 websites.

Actual
Positive Negative

Expected Positive 97 5
Negative 1 397

Table 4.2: Dialog detection confusion matrix for the Random 500 websites.

It should be noted that due to the fast-changing nature of website development and the
ability of CSS Selectors Lists to keep themselves updated will mean the accuracy varies
depending on the websites chosen and the date they were analysed.

Since we used the same Tranco list for all three data sets, the websites in Random 10k
data set overlaps with our two smaller data sets. The Random 10k data set was collected
around about the same date as our smaller data sets. For these reasons we can expect our
this data set to have similar accuracy to the two smaller data sets, giving us an accuracy
of roughly 98.8% dialog collection accuracy.

https://identrust.com
https://identrust.com
https://kaffee-partner

Chapter 4. Evaluation 30

This is an improvement on the previous study by Petronyte [47] who reported an
accuracy of 93.0% using the CSS selectors and keyword filtering only. This suggests
that our ranking based system (described in Ranking all the Candidate Dialogs section)
was successful in improving cookie dialog collection accuracy.

The average time our system took to analyse a website across all 3 data sets was 46.3
seconds. This is well within the 30-minute requirement specified by our non-functional
requirement for timeliness.

4.2 Clickable Location & Classification

In the Top 500 data set, 1211 of the 1273 total clickables were correctly classified,
meaning the system had a 95.1% clickable classification accuracy.

In the Random 500 data set, 639 of the 656 total clickables were correctly classified,
meaning the system had a 97.4% clickable classification accuracy.

Using the same logic as with dialog collection, we can surmise that the larger data set
will have an accuracy of roughly 95.1-97.4%.

Data Set Count Opt-in Opt-out More
Options

Preference
Slider

Confirm
Preference Close Policy

Link Other Duplicate

Top 500 Actual 242 57 232 45 10 44 281 231 131
Expected 232 60 211 37 9 39 283 262 140

Random 500 Actual 102 25 39 56 9 15 94 82 234
Expected 100 22 35 56 9 16 94 84 240

Table 4.3: Actual and expected values for each clickable type.

4.3 Dark Pattern Detection

In the Top 500 data set, 810 of 814 total Dark Patterns were detected and there were 3
false positives. Meaning the system had a 99.0% Dark Pattern detection accuracy.

In the Random 500 data set, 558 of 561 total Dark Patterns were detected and there was
1 false positive. Meaning the system had a 99.2% Dark Pattern detection accuracy.

Interestingly, in both data sets, all the false positives appeared for Dark Pattern 7
(Multiple distinct Cookie Dialogs present on a page), which may suggest that the
criteria for detecting duplicate dialogs was too relaxed. In future, more stringent criteria
could be applied for this Dark Pattern. For example, the size and position of a candidate
dialogs could also be compared to help reduce the false positive rate.

Data Set Count DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP11
Top 500 Actual 31 75 55 110 172 34 11 1 5 80

Expected 32 77 55 110 172 34 8 1 5 80
Random 500 Actual 36 18 17 45 30 11 11 1 1 21

Expected 36 20 17 45 30 11 10 1 1 21

Table 4.4: Actual and expected values for each Dark Pattern.

Chapter 5

Results

5.1 Cookie Dialogs

In the Top 500 data set, there were a total of 235 websites that displayed cookie dialogs,
meaning that 47% of websites displayed a cookie dialog. In the Random 500 data set,
there were a total of 98 websites that displayed a cookie dialog, meaning that 19.6%
of websites displayed a cookie dialog. In the Random 10k data set, there were a total
of 2092 websites that displayed a cookie dialog, meaning that 20.92% of websites
displayed a cookie dialog. These results show that websites in the Top 500 are more
than 2 times as likely to display a cookie dialog than those observed in the Random
500/ Random 10k websites.

In Finding all candidate dialogs section, we described the methods used to locate all
candidate dialogs. We will now explore which of these methods were the most effective
in locating the valid cookie dialog. In Figure 5.1 we can see a breakdown of the methods
used to locate the cookie dialogs in each data set. The ’User Input’ method is the method
used during manual validation by the user to specify the correct dialog if the detected
one is incorrect. It should be noted that since the Random 10k data set was collected in
Automatic mode that no dialogs were collected using this method.

(a) Top 500 data set (b) Random 500 data set (c) Random 10k data set

Figure 5.1: Graphs showing detection methods used to find dialogs in each data set.

In all 3 data sets, we can see that the General CSS Selectors were responsible for locating

31

Chapter 5. Results 32

more than half of all the final dialogs. This means that the system is still heavily reliant
on the ability of CSS selector lists to be kept updated. An important observation from
Figure 5.1 is the relatively large percentage (12.3%) of dialogs detected using Specific
CSS Selectors in the Top 500 data set and the small percentages in the Random 500
(1%)/Random 10k (1.3%) data sets. This is likely because CSS Selector lists are publicly
updated. This means that the more popular websites, particularly those in the Top 500
websites, are more frequently updated in CSS Selector lists.

5.2 Clickables

We will first explore our results to see what clickable elements were commonly found
on cookie dialogs. We will also comment on the effort it takes for users to opt-out
of cookies. During the manual validation process, the researcher manually rejected
cookies. The number of clicks and the time this took them was recorded. We can use
these two metrics as an approximation of the effort a typical user would have to go
through to reject cookies. Note that we can only do this for the two manually collected
data sets and not the automatically-collected data set.

In the Top 500 websites, there was a total of 830 clickables detected, with an average of
3.5 clickables per dialog. It took the user an average of 3.0 clicks and an average of 7.6
seconds to reject cookies.

In the Random 500 websites, there was a total of 328 clickables detected, with an
average of 3.3 clickables per dialog. It took the user an average of 2.4 clicks and an
average of 6.4 seconds to reject cookies.

Comparing the manually validated Top 500 and Random 500 data sets we can see that
on average it took the researcher more time and clicks to reject cookies for websites
in the Top 500 data set. These results are in line with our observation for Dark Pattern
11 that more websites in the Top 500 have multiple layers for users to go through to
opt-out from cookies.

In the Random 10k websites, there were a total of 7337 clickables detected, with an
average of 3.5 clickables per dialog.

Figure 5.2 shows a breakdown of the percentage of websites with at least one occurrence
of each clickable type. For all data sets, we can see the opt-in option appeared on a
higher percentage of websites compared to the opt-out button. This suggests that many
websites choose to make it easier for a user to opt-in to all cookies and harder for them
to opt-out from cookies.

A major difference between the data sets can be observed for the ’more options’ click-
able. 73.1 % of cookie dialogs in the Top 500 websites have a ’more options’ button
present whereas just 30.6% and 30.1% of websites in the Random 500 and Random 10k
data sets. Since there is no significant increase in the opt-out button for the Random
500 and Random 10k data sets it is likely that many cookie dialogs have no way for
users to opt-out.

Chapter 5. Results 33

Figure 5.2: Graph showing percentage of websites with at least one occurrence of each
clickable type.

5.3 Cookie Setting Behaviour

Figure 5.3 shows that the vast majority of websites set at least one cookie before getting
consent from the user. That is 94% of websites in the Top 500 data set, 96.9% in the
Random 500 data set and 95.1% in the Random 10k data set.

Figure 5.3: Graph showing the percentage of websites that set at least one cookie before
any interaction from the user.

The cookie setting behaviour observed for each data set is shown in Figure 5.4 for the
Top 500 data set, Figure 5.5 for the Random 500 data set and Figure 5.6 for the Random

Chapter 5. Results 34

10k data set. These figures show a comparison of the average number of cookies upon
initially loading the web page and after interaction with various types of clickable.

Figure 5.4: The average number of cookies after each interaction for the Top 500 data
set.

Figure 5.5: The average number of cookies after each interaction for the Random 500
data set.

Figure 5.6: The average number of cookies after each interaction for the Random 10k
data set.

Chapter 5. Results 35

From Figure 5.4, Figure 5.5 and Figure 5.6 we can make several interesting conclusions.
Firstly, we observe that for all data sets the average number of id-like cookies increases
after the opt-in option is clicked. This is expected as users are giving their consent for
websites to enable more cookies.

Secondly, we observe that for all data sets the average number of cookies increases
after the opt-out option is clicked. A slight increase in first-party cookies is expected as
these will likely be the necessary cookies that websites are allowed to set. However,
we also see an increase in third-party and id-like cookies. These are typically used for
non-essential purposes such as tracking. It is concerning to see that many websites
choose to set more of these types of cookies.

Finally, we observe that for all data sets that the average number of id-like cookies
decreases after the close button is clicked. The purpose of the close button is often
ambiguous to users. However, this cookie setting behaviour may suggest that the
purpose of the close button is often similar to that of the opt-out button.

5.4 Dark Patterns

Table 5.1 shows the total number of Dark Patterns found and their prevalence across
each data set. The prevalence is simply the percentage of cookie dialogs that contained
this Dark Pattern. Note that Dark Patterns 10 and 12-15 are not applicable for Random
10k data set since they require manual input and this data set was collected in automatic
mode.

From the 235 dialogs collected in the Top 500 data set, 227 dialogs or 96.6% of them
had at least one Dark pattern present. From the 98 dialogs collected in the Random 500
data set, 94 dialogs or 95.9% of them had at least one Dark pattern present. We can
compare the two manually collected data sets as they have the same number of Dark
Patterns collected for them. We can see that there were more Dark Patterns located in
the Top 500 websites than the Random 500.

We cannot compare the Random 10k data set to the other data sets as it only contains
automatically detected Dark Patterns. From the 2092 dialogs collected in the Random
10k data set, 1872 dialogs or 89.5% of them had at least one Dark pattern present.

Data Set # of
Dialogs Count DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP10 DP11 DP12 DP13 DP14 DP15

Top 500 235 Total 32 77 55 110 172 34 8 1 5 178 80 13 0 2 1
Prevalence 13.6% 32.8% 23.4% 46.8% 73.1% 14% 3.4% 0.4% 2.1% 75.7% 34.0% 5.5% 0.0% 0.9% 0.4%

Random 500 98 Total 36 20 17 45 30 11 10 1 1 80 21 2 0 1 1
Prevalence 36.7% 20.4% 17.3% 45.9% 30.6% 11.2% 10.2% 1.0% 1.0% 81.6% 21.4% 2.0% 0.0% 1.0% 1.0%

Random 10k 2092 Total 751 323 320 1006 619 379 169 55 59 - 93 - - - -
Prevalence 35.9% 15.4% 15.3% 48.6% 29.6% 18.1% 8.1% 2.6% 2.8% - 4.3% - - - -

Table 5.1: The total number and prevalence of Dark Patterns in each data set.

In the following paragraphs, we will individually analyse the results for each automat-
ically detected Dark Pattern. To allow us to compare the prevalence across all data
sets will do this for the automatically detected Dark Patterns only. So we will omit the
manually inputted Dark Patterns 10, 12, 13, 14 and 15.

Chapter 5. Results 36

Dark Pattern 1 is ’Only Opt-in option is present on initial Cookie Dialog’. This Dark
Pattern has a prevalence of 36.7% for Random 500 and 35.9% for Random 10k which
is much higher than the prevalence score of 13.6% for Top 500. This suggests that more
popular websites present more than just the basic opt-in option which is likely due to
the fact they will have larger design teams and possibly even legal teams which will
have helped them ensure their cookie dialog is compliant with relevant legislation.

Dark Pattern 2 is ’Background colour of the Opt-in button leads to it being highlighted
more compared to the Opt-out button. This Dark Pattern has a prevalence of 32.8% for
the Top 500, 20.4% for the Random 500 and 15.4% for the Random 10k. It is interesting
to see that websites in the Top 500 are more likely to have this Dark Pattern. A study
by Fernandez et al. [11] found that having a highlighted opt-in button had a significant
effect on user interactions. By highlighting the Opt-in button it is likely these websites
hope to subtly draw users towards accepting more cookies.

Dark Pattern 3 is ’Dialog Obstructs the window’. This Dark Pattern has a prevalence
of 23.4% for the Top 500, 17.3% for the Random 500 and 15.3% for the Random 10k.
These results suggest that the majority of websites do not place their cookie dialogs
in a position that stops users from interacting with the web page. This ties in with the
results in the study by Soe et al. [21] where during a manual collection they observed
the position of cookie dialogs was rarely seen to block users.

Dark Pattern 4 is ’Text Content of the dialog is difficult to read’. This Dark Pattern has
a prevalence of 46.8% for the Top 500, 45.9% for the Random 500 and 48.6% for the
Random 10k. Meaning these results are fairly similar across data sets. We described the
FK score in the Dark Patterns section and noted that dialogs with an FK score of 50 or
less as being difficult to read and requiring a college-level education to be understood.
The average FK scores for each data set were as follows: 47.2 for the Top 500 data
set, 49.2 for the Random 500 data set and 45.9 from the Random 10k data set. It is
concerning to see that nearly half of all cookie dialogs are considered difficult for the
average user to read.

Dark Pattern 5 is ’Multiple layers to a cookie dialog’. This Dark Pattern has a prevalence
of 73.1% for the Top 500, 30.6% for the Random 500 and 29.6% for the Random 10k.
This ties in with our observation in the Clickables Results section that the Top 500 data
set contains the ’more options’ clickable much more than the Random 500 and Random
10k data sets.

Dark Pattern 6 is the ’Ambiguous Close button is present on the dialog’. This Dark
Pattern has a prevalence of 14% for the Top 500, 11.2% for the Random 500 and 18.1%
for the Random 10k. The majority of websites do not have this clickable which is good
as its purpose is often ambiguous. We will discuss the observed behaviour of this button
in the Dark Pattern 9 discussion.

Dark Pattern 7 is ’Multiple distinct Cookie Dialogs present on a page’. This Dark
Pattern has a prevalence of 3.4% for the Top 500, 10.2% for the Random 500 and 8.1%
for the Random 10k. Meaning this Dark pattern appears much less in the Top 500 data
set. The presence of multiple cookie dialogs is likely a mistake by the website designer,
as it is very confusing to users. It is likely on popular websites, such as those in the Top

Chapter 5. Results 37

500, that this issue would be spotted very quickly and removed.

Dark Pattern 8 is ’At least one Preference Slider is enabled by default’. To truly assess
the prevalence of this Dark Pattern we must compare it to the number of preference
sliders that were present. For the Top 500, there were 9 dialogs with preference sliders
present and just 1 of them or 11.1% had one of these enabled by default. It was the same
case for the Random 500 and Random 10k, where 7.7% and 21.5% of preference sliders
respectively had a cookie setting behaviour which set more id-like cookies. Overall,
for all data sets the vast majority of cookie dialogs with preference sliders do not have
them enabled by default.

Dark Pattern 9 is ’Clicking the Close button leads to more cookies being selected’. To
truly assess the prevalence of this Dark Pattern we must compare it to the number of
close buttons which were present. For the Top 500, there were 34 dialogs with close
buttons present and 5 of them or 14.7% had a cookie setting behaviour that set more
id-like cookies. It was the same case for the Random 500 and Random 10k where 9.1%
and 15.2% of close buttons respectively had a cookie setting behaviour which set more
id-like cookies. Overall, for all data sets the vast majority of close buttons do not set
more cookies. This suggests that for many websites the ambiguous behaviour of the
close button is to opt-out which is good from a privacy perspective.

Dark Pattern 11 is ’More cookies are set regardless of Opt-out button being clicked’.
To truly assess the prevalence of this Dark Pattern we must compare it to the number of
cookie dialogs where there was an option to opt-out. Note that for Top 500 and Random
500 data sets the user manually rejected cookies so there will be more occurrences than
there are opt-out buttons in these data sets. For the automatically collected Random 10k
data set cookies were only collected if an opt-out button is present. For the Top 500
data set, there were 232 dialogs with a way to opt-out and 80 of them or 34.5% set more
id-like cookies after the user rejected consent. For the Random 500 data set, there were
98 dialogs with a way to opt-out and 21 of them or 21.4% set more id-like cookies after
the user rejected consent. For the Random 10k data set there were 368 dialogs with
an opt-out button present and 93 of them or 25.2% set more id-like cookies after the
user rejected consent. It is concerning to see that the Top 500 websites have the highest
prevalence of Dark Patterns among our data sets. This means that around one-third of
the Top 500 websites ignore the user’s request to refuse any more non-essential cookies
which is a damning indictment.

Figure 5.7 provides a breakdown of the total number of Dark Patterns detected on
individual websites. Overall, the Top 500 data set had an average of 3.2 Dark Patterns
on each cookie dialog, the Random 500 data set had an average of 2.8 and the Random
10k data set had an average of 1.8. It is important to note that the Random 10k data set
did not include the manually assessed Dark Patterns which is likely why fewer Dark
Patterns were detected. It is interesting to see that the more popular websites in the
Top 500 have a higher number of Dark Patterns which may suggest that they have been
designed specifically to include more Dark Patterns.

Chapter 5. Results 38

Figure 5.7: The number of Dark Patterns per website across all data sets.

To assess if particular categories of websites have more Dark Patterns than others we
used the Web Filtering service by FortiGuard [33]. This service is used to provide a
registry for malicious domains but also gives the category of web pages hosted on the
domain. For example, the domain ’google.com’ falls under the ’Search Engines and
Portals’ category. We used this service to assign all the websites in our 3 data sets to a
category.

Table 5.2 shows the Top 10 categories of websites with the most Dark Patterns on
websites. The only category common in the Top 10’s of all 3 data sets is ’Personal
Websites and Blogs’. Across all data sets, we analysed websites from 82 different
categories which demonstrates that we have covered a wide range of websites. However,
some of the categories provided by FortiGuard were quite niche and only a few instances
of these categories were found within our data sets. To truly assess if certain categories
of websites had more Dark Patterns than others we would need to to have a similar
number of websites in each category. We could achieve this by collecting a larger data
set or selecting an equal number of websites in each category.

Top 500 Random 500 Random 10k
Category Average # of Category Average # of Category Average # of

Dark Patterns Dark Patterns Dark Patterns
Internet Radio and TV 6 Society and Lifestyles 8 Auction 3
Search Engines and Portals 5.2 Internet Radio and TV 6 File Sharing and Storage 2.7
Remote Access 5 Personal Websites and Blogs 6 Web 2.7
Travel 5 Advertising 5 Child Education 2.5
Instant Messaging 4.3 Other Adult Materials 5 Information and Computer Security 2.5
Finance and Banking 4.2 Shopping 3.5 Real Estate 2.5
Social Networking 3.7 Finance and Banking 3 Malicious Websites 2.3
Personal Websites and Blogs 3.7 General Organizations 3 Personal Websites and Blogs 2.1
Auction 3.5 Global Religion 3 Travel 2.1
Health and Wellness 3.5 Government and Legal Organizations 3 Restaurant and Dining 2.1

Table 5.2: Top 10 Categories of websites with the most Dark Patterns in each data set.

Chapter 6

Conclusion

Overall, we have achieved our main goal of designing and implementing a system that
can automatically detect Dark Patterns on a cookie dialog. To enable this our system can
collect cookie dialogs, locate their clickables and analyse the cookie setting behaviour
of the dialog.

We have improved the accuracy of collecting cookie dialogs over previous studies
[36][47] using a new ranking-based approach. We could further improve the dialog
collection accuracy of our system by re-generating the N-grams from a larger set of
clickables, such as those collected in the Random 10k data set. This process could be
further improved by expanding the number of factors included in the ranking process.
One possible additional factor is the size of dialog which may help to reduce false
positives. Another factor that may improve accuracy would be to locate clickable
elements on each candidate dialog, although this would certainly be extremely time-
consuming. Finally, the weights assigned to each factor could be more finely tuned
through further experimentation.

We have also extended the set of clickables that our system can locate and classify to
include preference sliders. The results of this project show that the majority of cookie
dialogs with preference sliders do not have them enabled by default. We observed that
in the majority of cases the behaviour of the opt-in and opt-out buttons was as expected.
We also observed that interaction with the ambiguous close button often led to less
id-like cookies being set. This suggests that the purpose of the close button is often
similar to that of the opt-out button. Further improvements to the clickable classification
accuracy of our system could be made by re-generating the list of keywords from a
larger set of clickables, such as the set clickables we collected in the Random 10k data
set.

A limitation of the system is that we cannot automatically opt-out from cookies if
it involves us having to navigate through several layers of options. This is due to
complexity and variation in the layout of cookie dialogs which means there is no trivial
way to opt-out from all cookies. Ideally, we would want to find a way to automate
this process as it would allow us to fully assess the cookie setting behaviour of cookie
dialogs automatically. However, we could not identify any possible way for this to be

39

Chapter 6. Conclusion 40

achieved as in some cases human judgement is required to opt-out from cookies.

Our system can detect a total of 10 Dark Patterns automatically with an accuracy of
99.0-99.2%. A further 5 Dark Patterns can be inputted manually. Ideally, we would
want to detect all of these Dark Patterns automatically to allow them to be assessed on a
large number of websites. However, this was not possible within the timescale of this
project. From a sample of 10,000 websites our study has shown that 89.5% of cookie
dialogs have at least one Dark Pattern present.

The resulting system has allowed us to analyse Dark Patterns on over 10,000 websites,
a scale that would have been very difficult without our automated tool. This has enabled
us to collect over 2000 cookie dialogs which we intend to make publicly available for
usage in future research. To give us an even better understanding of the prevalence of
Dark Patterns across the web it would be interesting to scale up the system to allow
millions of websites to be analysed. The current bottleneck in the system is waiting for
cookies to be set. To resolve this bottleneck we would have to run multiple concurrent
instances of the system, with each instance analysing a different domain at once. To
provide enough compute power and network bandwidth for scaling up the system we
would need to use a cloud computing provider. The system could work well if deployed
using containerisation technologies such as Docker [8] which would allow us to truly
ensure there was no cross-contamination between instances and scale the system almost
infinitely.

By defining the types of Dark Patterns commonly found on cookie dialogs, this research
has shown the common design techniques used by web designers to nudge users towards
accepting more cookies. It is hoped that the results of this study will help future research
into the better enforcement of laws such as the PECR and GDPR [43]. Furthermore,
by pointing out and providing examples of Dark Patterns we hope this study will help
users to be aware of Dark Patterns and make more informed consent choices.

This results of this project have shown the fluctuation in the number of Dark Patterns
between websites. This highlights the huge variance in cookie dialog designs across
the web. The internet is currently in a situation where the variance in cookie dialogs
designs has made user interaction with cookie dialogs difficult. This is because users
have to carefully consider their cookie consent choices separately at each website which
can be detrimental to user experience. An ideal scenario would allow users to specify
their privacy settings for all websites rather than just for individual websites. Several
technologies such as the Platform for Privacy Preferences Project (P3P) [53] and the
Transparency & Consent Framework (TCF) [22] have attempted to provide a single
way for users to specify their consent preferences. P3P is no longer supported by any
web browsers [34] and was deemed far to complex for users [49]. Although TCF has
been adopted by many EU websites, it was recently ruled to not comply with EU law
[23]. Until a technology exists which provides compliance with the relevant legislation
and is easily accessible for users, we will have to contend with cookie dialogs and the
Dark Patterns present on them.

Bibliography

[1] Alexa. The top 500 sites on the web. https://www.alexa.com/topsites/, 2021. Last
accessed 17 October 2021.

[2] Shivam Bansal and Chaitanya Aggarwal. pypi textstat.
https://pypi.org/project/textstat/, 2022. Last accessed 27 March 2022.

[3] Harry Brignull. Dark patterns: dirty tricks designers use to make people do
stuff. https://90percentofeverything.com/2010/07/08/dark-patterns-dirty-tricks-
designers-use-to-make-people-do-stuff/, 2010. Last accessed 16 October 2021.

[4] Harry Brignull. Twitter: Dark pattern. https://twitter.com/darkpatterns, 2010. Last
accessed 19 October 2021.

[5] Harry Brignull. Types of dark pattern. https://www.darkpatterns.org/types-of-
dark-pattern, 2010. Last accessed 17 October 2021.

[6] Matt Chaput. pypi stemming 1.0. https://pypi.org/project/stemming/1.0/, 2010.
Last accessed 27 March 2022.

[7] collin M. Barrett. Filterlists. https://filterlists.com/, 2022. Last accessed 30 March
2022.

[8] Docker. Docker inc. https://www.docker.com/, 2022. Last accessed 27 March
2022.

[9] Selenium Docs. Interacting with web elements.
https://www.selenium.dev/documentation/webdriver/elements/interactions/#click,
2022. Last accessed 27 March 2022.

[10] Selenium Docs. Working with iframes and frames.
https://www.selenium.dev/documentation/webdriver/browser/frames/, 2022. Last
accessed 27 March 2022.

[11] Bermejo Fernandez et al. ”this website uses nudging: Mturk workers’ behaviour
on cookie consent notices.”. In Proceedings of the ACM on Human-Computer
Interaction 5, no. CSCW2, pages 1–22, 2021.

[12] Christine Utz et al. (un)informed consent: Studying gdpr consent notices in the
field. In CM SIGSAC Conference on Computer and Communications Security
(CCS ’19),, https://doi.org/10.1145/3319535.3354212, 2019.

41

Bibliography 42

[13] Dageling et al. We value your privacy ... now take some cookies: Measuring the
gdpr’s impact on web privacy. In arXiv preprint arXiv:1808.05096., 2018.

[14] Eijk et al. The impact of user location on cookie notices (inside and outside
of the european union). In Workshop on Technology and Consumer Protection
(ConPro’19) IEEE, 2019.

[15] Englehardt et al. Online tracking: A 1-million-site measurement and analysis. In
Proceedings of the 2016 ACM SIGSAC confer- ence on computer and communica-
tions security., page 1388–1401, 2016.

[16] Krisham et al. Dark patterns in the wild: Review of cookie disclaimer designs
on top 500 german websites. In European Symposium on Usable Security 2021
(EuroUSEC ’21),, page 8, https://doi.org/10.1145/3481357.3481516, 2021.

[17] Machuletz et al. Multiple purposes, multiple problems: A user study of consent
dialogs after gdpr. In arXiv preprint arXiv:1908.10048., 2019.

[18] Matte et al. Do cookie banners respect my choice? measuring legal compliance of
banners from iab europe’s transparency and consent framework. In In2020 IEEE
Symposium on Security and Privacy (SP) 2020, pages 791–809, 2020.

[19] Pochat et al. Tranco a research-oriented top sites ranking hardened against manip-
ulation. https://tranco-list.eu/, 2021. Last accessed 19 October 2021.

[20] Sanchez-Rola et al. ”can i opt out yet? gdpr and the global illusion of cookie
control.”. In In Proceedings of the 2019 ACM Asia conference on computer and
communications security, pages 340–351, 2019.

[21] Soe et al. ”circumvention by design-dark patterns in cookie consent for online news
outlets.”. In In Proceedings of the 11th nordic conference on human-computer
interaction: Shaping experiences, shaping societyy, pages 1–12, 2020.

[22] IAB Eurppe. What is the transparency & consent framework (tcf)?
https://iabeurope.eu/transparency-consent-framework/, 2019. Last accessed 26
March 2022.

[23] Irish Council for Civil Liberties. Gdpr enforcer rules that iab europe’s consent pop-
ups are unlawful. https://www.iccl.ie/news/gdpr-enforcer-rules-that-iab-europes-
consent-popups-are-unlawful/, 2022. Last accessed 27 March 2022.

[24] Google. Chrome devtools protocol - network domain - #method-getallcookies.
https://chromedevtools.github.io/devtools-protocol/tot/Network/#method-
getAllCookies, 2022. Last accessed 27 March 2022.

[25] Google. Clear browsing data. https://support.google.com/chrome/answer/2392709?
hl=en&co=GENIE.Platform=Desktop, 2022. Last accessed 27 March 2022.

[26] Google. Google translate. https://translate.google.com/, 2022. Last accessed 27
March 2022.

Bibliography 43

[27] C.M. et al Gray. The dark (patterns) side of ux design. In In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (pp. 1-14)., pages
1–14, 2018.

[28] SuHun Han. pypi googletrans 3.0.0. https://pypi.org/project/googletrans/, 2020.
Last accessed 27 March 2022.

[29] Kaspersky. What are cookies? https://www.kaspersky.com/resource-
center/definitions/cookies, 2021. Last accessed 15 October 2021.

[30] et al. Kincaid, J. Peter. Derivation of new readability formulas (automated readabil-
ity index, fog count and flesch reading ease formula) for navy enlisted personnel.
In Naval Technical Training Command Millington TN Research Branch, 1975.

[31] Daniel Kladnik. I don’t care about cookies 3.3.8 get rid of cookie warnings
from almost all websites! https://www.i-dont-care-about-cookies.eu/, 2021. Last
accessed 27 March 2022.

[32] Richie Koch. Cookies, the gdpr, and the eprivacy directive. https://gdpr.eu/cookies/,
2019. Last accessed 15 October 2021.

[33] FortiGuard Labs. Web filter lookup. https://www.fortiguard.com/webfilter, 2022.
Last accessed 27 March 2022.

[34] Microsoft. P3p is no longer supported. https://docs.microsoft.com/en-
us/previous-versions/windows/internet-explorer/ie-
developer/compatibility/mt146424(v=vs.85), 2016. Last accessed 30 March
2022.

[35] Microsoft. Get your document’s readability and level statistics.
https://support.microsoft.com/en-us/office/get-your-document-s-readability-and-
level-statistics-85b4969e-e80a-4777-8dd3-f7fc3c8b3fd2, 2021. Last accessed 8
Mat 2022.

[36] B. Molnar. Measuring the cookie-setting behaviour of web pages showing privacy
warnings). 2020.

[37] Mozilla. ¡iframe¿: The inline frame element. https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/iframe, 2021. Last accessed 27 March 2022.

[38] Mozilla. Same-origin policy. https://developer.mozilla.org/en-
US/docs/Web/Security/Same-origin policy, 2021. Last accessed 15 October
2021.

[39] Mozilla. Using http cookies. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Cookies, 2021. Last accessed 15 October 2021.

[40] Mozilla. Comparing firefox browser with google chrome.
https://www.mozilla.org/en-US/firefox/browsers/compare/chrome/, 2022.
Last accessed 27 March 2022.

Bibliography 44

[41] Mozilla. Using shadow dom. https://developer.mozilla.org/en-
US/docs/Web/Web Components/Using shadow DOM, 2022. Last accessed 26
March 2022.

[42] Information Commissioners Office. Cookies and similar technolo-
gies. https://ico.org.uk/for-organisations/guide-to-pecr/cookies-and-similar-
technologies/, 2021. Last accessed 15 October 2021.

[43] Information Commissioners Office. How do the cookie rules relate to the
gdpr? https://ico.org.uk/for-organisations/guide-to-pecr/guidance-on-the-use-of-
cookies-and-similar-technologies/how-do-the-cookie-rules-relate-to-the-gdpr/,
2021. Last accessed 15 October 2021.

[44] Information Commissioners Office. What are pecr? https://ico.org.uk/for-
organisations/guide-to-pecr/what-are-pecr/, 2021. Last accessed 15 October 2021.

[45] OpenCV. pypi opencv. https://pypi.org/project/opencv-python/, 2022. Last
accessed 27 March 2022.

[46] Rick Petnel. Easylist. https://easylist.to/, 2022. Last accessed 27 March 2022.

[47] Smilte Petronyte. Measure the cookie setting behavior of web pages showing
cookie privacy warnings. 2021.

[48] Leonard Richardson. pypi beautifulsoup4 4.10.0.
https://pypi.org/project/beautifulsoup4, 2021. Last accessed 27 March
2022.

[49] Ari Schwartz. Looking back at p3p: Lessons for the future. https://cdt.org/wp-
content/uploads/pdfs/P3P Retro Final 0.pdf, 2009. Last accessed 30 March 2022.

[50] Simon Sharwood. Netscape navigator - the browser that started it all - turns 20.
https://www.theregister.com/2014/10/14/netscape navigator the browser that started
it all turns 20/, 2014. Last accessed 15 October 2021.

[51] Steven Vaughan-Nichols. What’s the most popular web browser in 2021?
https://www.zdnet.com/article/most-popular-web-browser-in-2021/, 2021. Last
accessed 27 March 2022.

[52] Luis von Ahn et al. Captcha: Using hard ai problems for security. In International
conference on the theory and applications of cryptographic techniques, pages
294–311, Springer, Berlin, Heidelberg., 2003.

[53] W3. Platform for privacy preferences (p3p) project. https://www.w3.org/P3P/,
2002. Last accessed 30 March 2022.

Appendix A

First appendix

A.1 Dark Pattern Examples

Figure A.1: Example of Dark Pattern 1: Only Opt-in option is present on initial Cookie
Dialog (Source: itv.com)

Figure A.2: Example of Dark Pattern 2: Background colour of Opt-in button leads to it
being highlighted more compared to Opt-out button (Source: independent.co.uk)

45

itv.com
independent.co.uk

Appendix A. First appendix 46

Figure A.3: Example of Dark Pattern 3: Dialog Obstructs the window (Source:
webstaqram.com)

Figure A.4: Example of Dark Pattern 4: Text Content of the dialog is difficult to read, this
has an FK score of 47.62 (Source: dailycivil.com)

Figure A.5: Example of Dark Pattern 5: Multiple layers to a cookie dialog (Source:
ipsos.com)

webstaqram.com
dailycivil.com
ipsos.com

Appendix A. First appendix 47

Figure A.6: Example of Dark Pattern 6: Ambiguous Close button is present on the dialog
(Source: investopedia.com)

Figure A.7: Example of Dark Pattern 7: Multiple distinct Cookie Dialogs present on a
page (Source: dealnews.com)

investopedia.com
dealnews.com

Appendix A. First appendix 48

Figure A.8: Example of Dark Pattern 8: At least one Preference Slider is enabled by
default (Source patreon.com).

Figure A.9: Example of Dark Pattern 15: When a user clicks Opt-out button they are
asked to confirm their choice (Source castlefest.nl).

A.2 Additional Data Set Details

The full list of domains used in the Random 500 and Random 10k data sets will be
included as part of my submission of this report.

patreon.com
castlefest.nl

Appendix A. First appendix 49

A.3 Database Schema

Figure A.10: Schema of the SQLite database used to store results from the system.

A.4 Dialog Ngrams

Uni-grams:

cookies
cookie
track
tracking

Bi-grams:

use cookies
cookies and
cookies to
we use
accept all
any time
at any
you agree
learn more
manage preferences

Tri-grams:

we use cookies
at any time
use cookies and
use cookies to

Appendix A. First appendix 50

cookies and similar
use of cookies
learn more about
and our partners
and similar technologies
our cookie policy

4-grams:

we use cookies to
use cookies and similar
cookies and similar technologies
you can change your
access information on a
and or access information
at any time by
information on a device
or access information on
store and or access

5-grams:

access information on a device
and or access information on
store and or access information
use cookies and similar technologies
ad and content measurement audience
and content measurement audience insights
audience insights and product development
content measurement audience insights and
improve your experience on our
measurement audience insights and product

A.5 Custom Dialog CSS Selectors

div[class*="gdpr"]
div[class*="Cookie"]
div[class*="cookie"]
div[class*="Privacy"]
div[class*="privacy"]
div[class*="Policy"]
div[class*="policy"]
div[class*="Consent"]
div[class*="consent"]
div[class*="Notice"]
div[class*="notice"]
div[class*="Dialog"]
div[class*="dialog"]

Appendix A. First appendix 51

div[id*="gdpr"]
div[id*="Cookie"]
div[id*="cookie"]
div[id*="Privacy"]
div[id*="privacy"]
div[id*="Policy"]
div[id*="policy"]
div[id*="Consent"]
div[id*="consent"]
div[id*="Notice"]
div[id*="notice"]
div[id*="Dialog"]
div[id*="dialog"]
div[data-project*="cmp"]
div[id*="privacy"]
div[id*="Privacy"]
div[id*="cmp"]

A.6 Custom Clickable CSS Selectors

A.6.1 General Clickable Selectors

button
a
[role=’button’]
input[type=’submit’]
input[type="checkbox"]
span[class*="button"]
span[class*="Button"]
span[class*="btn"]
span[class*="btn"]
[class*="close"]
[class*="Close"]
[class*="button"]
[class*="Button"]
[data-tracking-opt-in-learn-more]
[data-tracking-opt-in-accept]
[class*="settings"]
[id*="custom"]
[id*="accept"]
[class*="settings"]
[class*="custom"]
[class*="accept"]

Appendix A. First appendix 52

A.6.2 Close Button Clickable Selectors

[class*="close"]
[class*="Close"]
[aria-label*="close"]
[aria-label*="Close"]
svg

A.6.3 Preference Slider Clickable Selectors

input[type="checkbox"]

Appendix A. First appendix 53

A.7 Clickable Keyword Combinations

Opt-in Opt-out more options
accept essenti adjust
activ Opt-in keyword ∧ necessari advanc
agre requir choic
allow essenti configur
assent necessari ∨ cooki onli custom
confirm requir customis
consent accept manag

¬ (no ∨ no ∨ don’t) ∧ continu (not ∨ no ∨ don’t) ∧ consent option
enabl track personali
enter disagre prefer
fine reject purpos
ok declin set
okay refus tool
opt-in deactiv let me choos
proceed continu without accept select cooki
understand
understood
yes

got it
i am happi with all cooki

Table A.1: keyword Combinations for Opt-in, Opt-out and more options clickables.

Preference Slider Confirm Preferences Close Option Policy Link
on save close privaci
off submit dismiss polici

select exit notic
Opt-in keyword ∧ choic x here

custom × cooki
prefer hide vendor

partner
use of cooki
data protect
terms servic
read more
learn more
tell me more
more inform
see detail
more detail

Table A.2: keyword Combinations for Preference Slider, Confirm Preferences, Close
Option and Policy Link clickables.

	Introduction
	Background
	Cookies
	Cookie Attributes
	Types of Cookies
	Cookie Dialogs

	Legal Implications
	PECR
	GDPR

	Dark Patterns
	Related Work

	Design & Implementation
	Requirements Elicitation
	Website Scraping
	Handling Website Connections
	Cookie Collection
	iframes
	Google Translate API

	System Design
	Modes of Operation
	Dialog Collection
	Clickable Location & Classification
	Measuring the Behaviour of the Dialog
	Dark Pattern Detection

	Evaluation
	Dialog Collection
	Clickable Location & Classification
	Dark Pattern Detection

	Results
	Cookie Dialogs
	Clickables
	Cookie Setting Behaviour
	Dark Patterns

	Conclusion
	Bibliography
	First appendix
	Dark Pattern Examples
	Additional Data Set Details
	Database Schema
	Dialog Ngrams
	Custom Dialog CSS Selectors
	Custom Clickable CSS Selectors
	General Clickable Selectors
	Close Button Clickable Selectors
	Preference Slider Clickable Selectors

	Clickable Keyword Combinations

