
A Smarter Stupid Computer

Alexander Wasey

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2022

Abstract
This MInf part 2 project report covers my progress in enhancing the “stupid computer”
program. It is based on a technique taught to students taking Informatics 1-A at the
University of Edinburgh, which seeks to help them understand the structure and exe-
cution of Haskell functions. Given the expression map square [1,2,3] the program
outputs the following trace:

map square [1, 2, 3]

= (square 1) : (map square [2, 3])

= (1 * 1) : (map square [2, 3])

= 1 : (map square [2, 3])

= 1 : ((square 2) : (map square [3]))

= 1 : ((2 * 2) : (map square [3]))

= 1 : (4 : (map square [3]))

= 1 : (4 : ((square 3) : (map square [])))

= 1 : (4 : ((3 * 3) : (map square [])))

= 1 : (4 : (9 : (map square [])))

= 1 : (4 : (9 : []))

= 1 : (4 : ([9]))

= 1 : ([4, 9])

= [1, 4, 9]

This report covers adding support for lazy evaluation to the program, which included
support for let statements. Support has also been added for case statements and lambda
abstractions. Users can now define custom infix operators and their own data types.
These features required a new formal-actual mapping system, and improvements to
GHC interpretation. The program was then tested using 46 code examples, which
showed a large improvement over the original implementation. Feedback was sought
from the target user base, by issuing a survey to first-year students, which received 37
respondents. However the program is lacking support for where statements, and has
issues with operator precedence.

i

Acknowledgements

I’d like to thank my supervisor Philip Wadler for his feedback, guidance and support.
I would also like to thank Dylan Thinnes for his advice throughout.

ii

Contents

1 Introduction 1
1.1 The Stupid Computer . 1
1.2 Summary of results . 2
1.3 Report summary . 2

2 Previous work 3
2.1 Design . 3

2.1.1 Overview . 3
2.1.2 Reduction strategy . 3
2.1.3 How reductions work . 4

2.2 Implementation . 7
2.2.1 Overview of approach . 7
2.2.2 Parsing . 8
2.2.3 Input validity checking . 9
2.2.4 Reducing function applications 9
2.2.5 GHC interpretation . 10

3 Improvements to the stupid computer 11
3.1 Lazy evaluation . 11

3.1.1 call-by-name . 11
3.1.2 Sharing . 14
3.1.3 Implementation . 14

3.2 Improved user interface . 16
3.3 New formal-actual mapping system 18
3.4 Reparsing of GHC interpretation results 21
3.5 Improved feature support . 21

3.5.1 Let statements . 21
3.5.2 Lambda abstractions . 24
3.5.3 Case statement support . 25
3.5.4 Custom infix operator support 27
3.5.5 Support for user defined data types 27

3.6 Current system limitations . 28
3.6.1 Failure to evaluate guard values 28
3.6.2 Lack of support for where statements 29
3.6.3 Incorrect operator precedence 30

iii

4 Evaluation 32
4.1 Testing . 32
4.2 User Feedback . 32

4.2.1 Part one . 33
4.2.2 Part two . 33

5 Conclusions 35

Bibliography 36

A Additional survey documents 38
A.1 Stupid Computer Overview . 39
A.2 Installation guide . 40
A.3 Participant Information Sheet . 44

iv

Chapter 1

Introduction

1.1 The Stupid Computer

In the first half of this project I developed a program called the stupid computer, which
produces traces of Haskell programs [Wasey, 2021]. (This report assumes some fa-
miliarity with Haskell, if not the book “Learn You a Haskell” [Lipovaca, 2011] is an
excellent resource.) It is designed to help Informatics 1A students better understand
the behaviour of Haskell functions. This course introduces first year Informatics stu-
dents to programming at the University of Edinburgh, with around 450 students taking
the class each year [Wadler et al., 2022]. For example if a student is learning about the
map function they may first look at its definition:

map :: (a -> b) -> [a] -> [b]
map f (x:xs) = f x : map f xs
map f [] = []

For a student with limited programming experience, this definition may not be suffi-
cient for an understanding of how the function behaves in practice. The stupid com-
puter helps by producing an execution trace for the function, such as the following:

map square [1, 2, 3]
= (square 1) : (map square [2, 3])
= (1 * 1) : (map square [2, 3])
= 1 : (map square [2, 3])
= 1 : ((square 2) : (map square [3]))
= 1 : ((2 * 2) : (map square [3]))
= 1 : (4 : (map square [3]))
= 1 : (4 : ((square 3) : (map square [])))
= 1 : (4 : ((3 * 3) : (map square [])))
= 1 : (4 : (9 : (map square [])))
= 1 : (4 : (9 : []))
= 1 : (4 : ([9]))
= 1 : ([4, 9])
= [1, 4, 9]

1

Chapter 1. Introduction 2

The stupid computer is based upon an identically named technique used by students in
Informatics 1-A. This course teaches Haskell to first year students, and the technique
is used widely both within the course and its textbook “Introduction to Computation”
[Sannella et al., 2022]. The overall aim for the project is to produce a program which
can automate this technique, a basic implementation of this was achieved in the first
year of the project. The goal for this year of the project is to further enhance the stupid
computer, primarily by adding support for lazy evaluation [Friedman et al., 1976][Hen-
derson and Morris Jr, 1976].

1.2 Summary of results

The stupid computer has been extended to include support for lazy evaluation. This
has necessitated the implementation of a new formal-actual mapping system. The
new system is capable of mapping actuals which are not fully reduced, overcoming
a limitation from the first year of the project. This is implemented by comparing the
ASTs of arguments and patterns.

Adding lazy evaluation has also necessitated supporting let statements. The semantics
of these has been based on the call-by-need lambda calculus, with modifications for a
Haskell context [Maraist et al., 1998].

In addition to this support has been added for case statements, lambda abstractions and
custom infix operators. These have been implemented using the functionality devel-
oped for the implementation of lazy evaluation. There is also improved support for
using functions from the Haskell prelude. Results from these functions can now be
reused, as they are reparsed by GHC. Users can now make use of custom data types,
which has been enabled by improvements to GHC evaluation. A brand new user inter-
face has been added, which now allows users to use standard Haskell source files.

However there is still a lack of support for where statements and issues with operator
precedence.

1.3 Report summary

Chapter 2 provides an overview of the stupid computer, as it was implemented in the
first year of the project. Following this chapter 3 contains the improvements made to
the stupid computer, and details of their implementation. This includes support for
lazy evaluation, let statements, case statements, and lambda abstractions. These are
supported by a new formal-actual mapping system, and improvements to GHC inter-
pretation. This chapter also includes an overview of the system’s limitations. Chapter
4 describes how I evaluated the stupid computer. This included both written tests, and
user feedback. Chapter 5 concludes with a number of possible future improvements to
the system.

Chapter 2

Previous work

This chapter gives a brief overview of the design and implementation of the stupid
computer, as achieved in the first year of the project [Wasey, 2021].

2.1 Design

2.1.1 Overview

To use the original stupid computer the user would first provide it with a number of
function definitions, such as this definition for sum.

sum :: Num a => [a] -> a
sum (x:xs) = x + sum xs
sum [] = 0

The user would also provide a single Haskell expression, such as:

sum [1,2]

The program would then output a series of Haskell expressions:

= sum [1,2]
= 1 + sum [2]
= 1 + 2 + sum []
= 1 + 2 + 0
= 1 + 2
= 3

The first line is the expression the user originally provided, each following line repre-
sents a single reduction step. The trace finishes when no more reductions are possible.

2.1.2 Reduction strategy

The original stupid computer followed a mostly call-by-value reduction strategy, which
reduces the leftmost innermost redex at each step. This means that a function’s argu-

3

Chapter 2. Previous work 4

ments are always reduced before the function itself. For example given the multiply
function:

multiply x y = x * y

Then the reduction of multiply (1+2) (3+4) is:

multiply (1+2) (3+4)
= multiply 3 (3+4)
= multiply 3 7
= 3 * 7
= 21

2.1.3 How reductions work

This section gives an overview of how different types of expressions were reduced in
the original implementation. These approaches were designed with the following goals
in mind:

1. At each step of the reduction the output should be valid Haskell such that the
users could, if they wished, execute it with the Haskell compiler (GHC).

2. Identifiers should be kept the same, such that users can easily relate the output
to their own code.

3. The structure of the users code should be represented in the output, for example
don’t change an if-then-else statement to the guarded equivalent.

4. Try and only show reductions which are informative to the user. For example if
sum is defined as:

sum xs = if (length xs >= 1)
then (head xs) + sum (tail xs)
else 0

In this case the user is unlikely to want to view the full reductions of length,
especially as for a list of length n it will take 2n+1 steps!

2.1.3.1 User defined functions

Function applications using user defined functions are expanded. The function ap-
plication is replaced with the function body, where the formal arguments have been
replaced by the actual arguments from the application. For example if the user evalu-
ates multiply 5 4 using the previous definition of multiply the first reduction step
will be:

multiply 5 4
= 5 * 4

Pattern matching ([Jones, 2003], Chapter 3.17) slightly complicates this. It requires
a more complex mapping between formal variables and actual parameters, and means

Chapter 2. Previous work 5

functions can have more than one body. Using the definition of sum as an example, in
the first body the formal x is mapped to the first item in the input list, and xs to the rest
of the items in that list.

sum :: Num a => [a] -> a
sum (x:xs) = x + sum xs
sum [] = 0

When pattern matching is encountered, the original stupid computer simply expands to
the correct body given the arguments. For example if sum is applied to the list [1,2,3]
the first body is expanded to:

sum [1,2,3]
= 1 + sum [2,3]

And if called with the empty list then the second body is expanded to:

sum []
= 0

Guards ([Jones, 2003], Chapter 4.4.3) are another way functions can have multiple
bodies. For example the factorial function can be defined with guards:

factorial :: Int -> Int
factorial n | n >= 2 = n * factorial (n-1)

| otherwise = 1

The first guard condition which is satisfied has its body selected, note that an
otherwise condition is treated as always being true. This series of evaluations are not
shown to the user, to do so would have broken the previously mentioned design goals.
I found that all the methods I considered would have either not been valid Haskell, or
changed the structure of the users code significantly. Therefore the stupid computer
simply expands directly to the correct body, for example with factorial 5:

factorial 5
= 5 * factorial (5-1)

However not showing the evaluation of the guard, even when the guard is complex and
requires many reduction steps, is a large disadvantage. In this case I believe it is better
to stick to the design goals, even if it results in reductions not being shown.

2.1.3.2 Prelude functions

When a function is not defined but the user, but by the Haskell standard library, the
application is reduced directly to its result. In Haskell the standard library is known as
the prelude [The GHC Team, 2001]. For example using the prelude function product
gives the following reduction step:

product [1,2,3,4,5]
= 120

Chapter 2. Previous work 6

The result of the function application is acquired with GHC interpretation, as described
in section 2.2.5.

It was decided to not produce full reductions for prelude functions as it could result in
very unwieldy traces. For example a full reduction of length requires 2n+1 reduction
steps, a user is unlikely to want to see this detail. In addition to this prelude functions
can be defined in unexpected ways, such as this definition of sum from the prelude [The
GHC Team, 2001].

sum :: Num a => t a -> a
sum = getSum #. foldMap Sum

This is because they are designed for performance and flexibility, not to be easily
understood. However this means using these definitions could be very confusing for
users.

2.1.3.3 If-then-else

In the case of if-then-else statements ([Jones, 2003], Chapter 3.6) only the condition is
evaluated before the if statement. This avoids unnecessary evaluation, given that one
of the two possible results will always be discarded. Such an example follows:

if (1 >= 2) then 1 * factorial (1-1) else 1
= if False then 1 * factorial (1-1) else 1
= 1

2.1.3.4 List comprehensions

List comprehensions [Turner, 2016] have three components: generators, guards, and
a body. For example in the comprehension [x*x | x <- [1,2], x > 1] the body
is x*x, which produces each element in the resulting list. x <- [1,2], is a generator
which feeds each value from its list into the body and guards. Multiple generators can
be used, in which case all combinations of values from their lists are fed into the body.
Finally x > 1 is a guard, which must be satisfied for the body to be kept.

At each reduction step, the left most generator or condition is evaluated. Generators
have their first value substituted into a copy of the comprehension. Guards are evalu-
ated, if they are true the comprehension is kept, else it is discarded. So a full reduction
of the comprehension is as follows:

= [x*x | x <- [1,2], x > 1]
= [1*1 | 1 > 1] ++ [x*x | x <- [2], x > 1]
= [1*1 | False] ++ [x*x | x <- [2], x > 1]
= [] ++ [x*x | x <- [2], x > 1]
= [] ++ [2*2 | 2 > 1]
= [] ++ [2*2 | True]
= [] ++ [2*2]
= [] ++ [4]
= [4]

Chapter 2. Previous work 7

2.1.3.5 Undefined functionality

When an expression has no defined reduction it is immediately reduced to its result. In
the following an unsupported lambda abstraction is reduced:

(\x -> x * x) 3
= 9

This gives users flexibility to use as-yet unsupported functionality, this is enabled by
evaluating the expression with GHC, see section 2.2.5.

2.2 Implementation

The stupid computer was implemented in Haskell, as it gives access to many tools for
working with Haskell source code.

2.2.1 Overview of approach

The approach is based on manipulating abstract syntax trees, the user’s input is parsed
into an AST, and each reduction step is a manipulation of this tree. Below are the first
three steps of reducing sum [1,2,3,4] and the corresponding series of ASTs (Figure
2.1).

= sum [1,2,3,4]
= 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]

Chapter 2. Previous work 8

HsApp

sum [1,2,3,4]

(a) sum [1,2,3,4]

1 +

OpApp

HsApp

sum [2,3,4]

(b) 1 + sum [2,3,4]

1

2

+

+

OpApp

OpApp

HsApp

sum [3,4]

(c) 1 + 2 + sum [3,4]

Figure 2.1: Series of (simplified) ASTs, each representing a reduction step.

At each reduction step the following occurs.

1. The appropriate redex is identified for reduction.

2. Its AST of its reduced form is constructed.

3. The reduced form is substituted into the AST in place of the redex.

4. The new AST is to converted back to readable Haskell source code by the pretty-
printer. This is then shown to the user.

5. If no more reductions are possible then the reduction is finished, else return to
step one.

2.2.2 Parsing

Before the reduction can begin the users input must be parsed into an AST. This is
done by GHC, which provides an API which gives access to its lexer and parser [The
GHC Team, 2002]. This avoided the development time associated with implementing
my own version. The API also gives access to a pretty-printer to convert the AST to
readable Haskell source code.

The main drawback of using the GHC AST is its relative complexity compared to
the semantics of Haskell. For example in Haskell lists and strings are semantically
identical, strings are just lists which contain characters. However in the GHC AST (as

Chapter 2. Previous work 9

generated by the parser) lists are represented by ExplicitList nodes, and strings by
a HsLit nodes. These extra cases were not a large issue in the first year of the project,
as I made heavy use of GHC interpretation. This meant I did not have to account for
these extra cases in my code, as it was handled by GHC. In this year of the project
this has become more of an issue, mainly when implementing the new formal-actual
mapping system in section 3.3.

2.2.3 Input validity checking

Before any reductions occur the user’s input is checked to ensure that it is valid Haskell.
The parsing stage (section 2.2.2) checks that the input follows Haskell syntax, however
it is also useful to know that the users code is semantically valid. To do this the users
input expression is run with GHC interpretation. If this fails then the user’s code is not
semantically valid, so the stupid computer exits, with a message telling the user that
their code is invalid.

2.2.4 Reducing function applications

The main changes made to the stupid computer this year involve the reduction of func-
tion applications, therefore this overview of their implementation is included for con-
text.

1. The function arguments are first identified, with a depth first search of the func-
tion application subtree.

2. If any of the function arguments are not fully reduced, then they undergo reduc-
tion until they are.

3. The function body to be substituted into the main tree is identified. As seen
previously this is complicated by pattern matching and guards. This is achieved
by creating and evaluating a new function, for example the gt function has three
possible bodies:

gt x [] = [] -- Body #0
gt x (y:ys) | y > x = y : gt x ys -- Body #1

| otherwise = gt x ys -- Body #2

A new function is then created which returns the index of the appropriate body:

gt x [] = 0
gt x (y:ys) | y > x = 1

| otherwise = 2

This can be evaluated by GHC (section 2.2.5) and the result mapped back to the
original body.

4. A mapping must be created between the function’s formal arguments and its
actuals. For example if the function application is gt 5 [1,2] then the formal

Chapter 2. Previous work 10

actual map is: x = 5, y = 1, ys = [2]. This mapping is also acquired by
creating a new function, for gt this is:

gt x [] = [("x",show x)]
gt x (y:ys) = [("x",show x),("y",show y),("ys",show ys)]

This function is evaluated with GHC and the result used as the formal-actual
map.

5. The formals in the function body are substituted for the appropriate actual values.

6. The newly created subtree is substituted into the main AST in place of the func-
tion application.

2.2.5 GHC interpretation

As previously mentioned in section 2.1.3.5 the stupid computer can use GHC to evalu-
ate expressions directly. This is achieved by the hint library [The Hint Authors, 2007],
which uses the user’s installation of GHC to interpret Haskell expressions at run time.
The main limitation of this library is that the interpreter can only take expressions as
input, not definitions. In the initial version of the program I worked around this limita-
tion by placing user defined functions within a let expression. For example if evaluat-
ing gt 2 [1,2,3], using the definition of gt seen previously, then the expression to
be evaluated is:

let {gt x [] = []; gt x (y:ys) | y > x = y : gt x ys ;
| otherwise = gt x ys} in gt 2 [1,2,3]

This approach was limited, and did not allow for custom data types, therefore a new
approach has been taken in section 3.5.5.

Chapter 3

Improvements to the stupid computer

This chapter details the main changes that have been made to the stupid computer.
It covers both the changes in behaviour, and the implementation changes required to
enable them.

3.1 Lazy evaluation

Previously the stupid computer used a call-by-value strategy, however Haskell uses
lazy evaluation [Friedman et al., 1976; Henderson and Morris Jr, 1976]. This is treated
as a call-by-name strategy, with the addition of sharing. This allowed the design
and implementation of each element to be completed separately. The semantics for
lazy evaluation have been heavily based on the call-by-need lambda calculus, though
adapted for a Haskell context [Maraist et al., 1998].

3.1.1 call-by-name

Previously the stupid computer used call-by-value evaluation, where the arguments to
a function are reduced before the function application itself. For example the reduction
of multiply (2+3) (4+5) in call-by-value is:

multiply (2+3) (4+5)
= multiply 5 (4+5)
= multiply 5 9
= 5 * 9
= 45

Whereas with call-by-name evaluation function applications are evaluated before their
arguments, delaying evaluation of values until they are needed. The previous reduction
using call-by-name will be:

multiply (2+3) (4+5)
= (2+3) * (4+5)
= 5 * (4+5)
= 5 * 9

11

Chapter 3. Improvements to the stupid computer 12

= 45

While this is now the main evaluation order for the updated stupid computer, there are
several cases where function arguments must still be reduced before the function itself.

3.1.1.1 Pattern match ambiguity

One situation is where it is unclear from the function arguments which function body
should be selected. Using the isZero function as an example:

isZero 0 = True
isZero _ = False

If this is called as isZero (1+2) it is not possible to immediately determine which
definition it should be expanded to. This is because the result of 1+2 isn’t yet known,
and as such it could match with either or 0. Therefore the argument must be evaluated
until this ambiguity is removed.

Any ambiguities are detected by examining the definitions previous to the definition
that will be expanded to. Which definition will be expanded to is determined by the
system described in point 3 in section 2.2.4. if the pattern belonging to any of these
definitions have the potential to match against the arguments then there is an ambiguity.
In this example isZero is the definition to be expanded to, but isZero 0 has the
potential to match against 1+2. The pattern matching system described in section 3.3
can determine if an argument and pattern have the potential to match.

In this case only one reduction is required and therefore the full reduction is:

isZero (1+2)
= isZero 3
= False

3.1.1.2 Formal-actual mapping failure

Even when there is no ambiguity an argument may still need to be evaluated further.
For example the head function only has one definition:

head (x:_) = x

However if called with an argument which doesn’t directly match against the pattern
(x:), such as map square [1,2,3], then the function cannot be immediately re-
duced. Instead the argument must be reduced until it does match against the pattern.
Whether or not the argument matches against the pattern is checked by the formal-
actual mapping system, described later in section 3.3. Once the argument has been
reduced enough such that it matches against the pattern the reduction can continue. In
this case only one reduction is required, to ((square 1):(map square [2..])). At
this point x can be mapped to (square 1), as such the full reduction is:

head (map square [1..])
= head ((square 1):(map square [2..]))
= square 1

Chapter 3. Improvements to the stupid computer 13

= 1 * 1
= 1

3.1.1.3 Prelude defined functions

While the call-by-name strategy is followed for all functions which are user defined,
functions defined in the prelude still follow the call-by-value strategy. For example, if
the user had defined map and square, but used the definition of sum from the standard
prelude, then the reduction of sum (map square [1,2]) is:

sum (map square [1, 2])
= sum ((square 1) : (map square [2]))
= sum ((1 * 1) : (map square [2]))
= sum (1 : (map square [2]))
= sum (1 : ((square 2) : (map square [])))
= sum (1 : ((2 * 2) : (map square [])))
= sum (1 : (4 : (map square [])))
= sum (1 : (4 : []))
= sum (1 : ([4]))
= sum ([1, 4])
= 5

This can be contrasted to the reduction when sum has been defined by the user:

sum (map square [1, 2])
= sum ((square 1) : (map square [2]))
= (square 1) + sum (map square [2])
= (1 * 1) + sum (map square [2])
= 1 + sum (map square [2])
= 1 + sum ((square 2) : (map square []))
= 1 + (square 2) + sum (map square [])
= 1 + (2 * 2) + sum (map square [])
= 1 + 4 + sum (map square [])
= 1 + 4 + sum []
= 1 + 4 + 0
= 1 + 4
= 5

Call-by-value is used for prelude defined functions because otherwise the user would
not be able to see the reduction of the function arguments. This is because prelude
defined functions are not expanded, but instead reduced directly to their result, for
reasons outlined in section 2.1.3.2. Call-by-name would result in the following, where
the reduction of map square [1,2] is omitted: (In this case sum is defined in the
prelude.)

sum (map square [1,2])
= 5

Chapter 3. Improvements to the stupid computer 14

3.1.2 Sharing

Call-by-name alone is not efficient, and can result in the repeated computation of val-
ues, which wasn’t an issue with call-by-value. For example if reducing the expression
square (2 * 3) with call-by-name:

square (2 * 3)
= (2 * 3) * (2 * 3)
= 6 * (2 * 3)
= 6 * 6
= 36

Then the calculation of (2 * 3) is been repeated twice, which is not the case in call-
by-value. This can be addressed by adding sharing (giving us lazy evaluation). Here
the calculation of (2 * 3) will be placed within a let statement, allowing it to only be
calculated once. The full reduction using lazy evaluation is:

square (2 * 3)
= let x_0 = (2 * 3) in x_0 * x_0
= let x_0 = 6 in x_0 * x_0
= let x_0 = 6 in 6 * x_0
= let x_0 = 6 in 6 * 6
= 6 * 6
= 36

These let statements are only inserted when the following conditions are met.

1. The actual argument is not fully reduced.

2. The formal argument appears multiple times within the function definition.

The call-by-need lambda calculus[Maraist et al., 1998] does not have these conditions,
introducing let statements each time a function is reduced. However adding these
conditions reduces the number of unnecessary lets introduced, which helps keep the
traces as simple as possible.

3.1.3 Implementation

Implementing lazy evaluation required major changes to the reduction process for user
defined functions (see section 2.2.4).

3.1.3.1 Implementing call-by-name

Call-by-name was implemented by replacing step 2 of function application reduction.
Instead of reducing arguments completely, they are only reduced until the expansion is
possible. In order to do this the system needs to know which definition it is expanding
to, therefore the definition identification in step 3 now occurs before this process.

The first step of the new process is to reduce any arguments which are causing a pattern
matching ambiguity (section 3.1.1.1). Say that the application being reduced is
take (1+1) [square 1, square 2, square 3] where take is defined as:

Chapter 3. Improvements to the stupid computer 15

take :: Int -> [a] -> [a]
take _ [] = [] #Definition 1
take 0 (x:xs) = [] #Definition 2
take n (x:xs) = x : take (n-1) xs #Definition 3

The system has already determined which definition the function application will be
expanded to, in this case definition 3. The process for determining which (if any)
arguments need to be reduced is as follows:

1. The patterns belonging to the previous definitions are matched against the func-
tion arguments. In this case definitions 1 and 2 and the previous definitions.

2. If the arguments fail to match with all of the previous definition patterns then no
ambiguity exists. Therefore the process can stop, and the program continue to
dealing with any formal-actual mapping failures.

3. However if any of the patterns have the potential to match with the arguments
then reduction is needed. In this case the pattern associated with definition 2
causes the ambiguity, as it has the potential to match the arguments.

4. The system needs to determine which of the arguments do in fact cause the
ambiguity. An argument can only cause an ambiguity when its corresponding
sub-pattern differs between definitions. In this case the second argument doesn’t
cause the ambiguity, as its corresponding sub-pattern is identical for both defi-
nition 2 and 3. Meanwhile the sub-patterns 0 and n differ, so the first argument
(1+1) causes the ambiguity, and therefore needs to be reduced.

5. The first argument which needs to be reduced, is then reduced by a single step.
The system then returns to step one to check if the ambiguity has been removed.

In the example all ambiguities are removed after one reduction step, namely 1+1 be-
ing reduced to 2. Now all ambiguities has been removed any formal-actual mapping
failures must be dealt with (section 3.1.1.2).

1. Each sub-pattern and its respective argument are matched against one another.
The sub-patterns come from the definition that is being expanded to, in this case
definition 3. Here n is matched against 2, and x:xs is matched against [square
1, square 2, square 3].

2. If the match fails for any of the arguments, then that argument is reduced by a
single step, and the system returns to step one.

3. Otherwise the arguments and sub-patterns all successfully match, so any formal-
actual mapping failures have been dealt with. The formal-actual maps generated
by this process are combined, and can then be used in the next stages of the
reduction process.

Implementing this required a new formal-actual mapping system which can:

• Map arguments which are not fully reduced.

• Detect if an argument and pattern have the potential to match.

Chapter 3. Improvements to the stupid computer 16

A new system which has these abilities is described in section 3.3.

This implementation of call-by-name does have a limitation. It does not ensure that
arguments are reduced far enough such that any guards can be evaluated. This is further
discussed in section 3.6.1.

3.1.3.2 Implementing sharing

Implementing sharing required modification of step 5. Now shared formal-actual pairs
are introduced as let bindings instead of being substituted into the AST.

They are considered shared when:

• The actual is not fully reduced.

• The formal appears more than once in the function definition.

Functionality for checking if the actual is fully reduced was implemented in the origi-
nal stupid computer.

Counting occurrences of a formal is done by traversing the AST of the function defi-
nition. However, care has to be taken regarding scope, specifically in the cases of list
comprehensions, lambda abstractions and let statements. For example see the follow-
ing function:

f x y = (let x = y * y in x + x) * x

Due to the let statement, x should only be considered as occurring once, as the occur-
rences of x within the body of the let statement are out of scope.

If the formal-actual pair is shared then a let statement defining that value is inserted
around the function definition. As the variables defined by let statements are always
indexed, for example x becomes x 0, the original variable in the definition must be
substituted for the indexed version. This is to avoid the names of created variables
clashing with one another, as could happen when reducing a recursive function. The
implementation details for let statements are included in section 3.5.1. Formal-actual
pairs which are not shared are substituted into the definition as normal.

A full description of how let statements are defined in the stupid computer can be found
in section 3.5.1.

3.2 Improved user interface

In the original program the expression the user wanted to be evaluated had to be in-
cluded in the input file, as in figure 3.1. As Haskell source files cannot contain bare
expressions these input files were not valid Haskell, and so could not be loaded by
GHCi. It also made it harder for users to experiment with multiple input expressions,
as they would have to modify the input file for each.

Chapter 3. Improvements to the stupid computer 17

Figure 3.1: Example of previous input file. The expression being evaluated here is map
square [1..3]

Therefore the interface has been updated to be more similar to GHCi. The input file
now contains a Haskell module, and the user provides expressions to evaluate via the
interface. Once a reduction has finished the user can input a new expression to be
reduced, or the user can input “:q” to exit the program. An example input file, and a
screenshot of the system being used are in figure 3.2. Note that on line 3 the user has
excluded the definition of map from the prelude. This is required to stop name clashes
when redefining prelude functions, the reasons for this are explained further in section
3.5.5.

(a) Example of new input file.

(b) Evaluating map square [1..3] with the new inter-
face.

Figure 3.2: Example of new input file, and its usage.

Chapter 3. Improvements to the stupid computer 18

The system also provides error messages when the user gives an invalid expression,
for example in figure 3.3 the user is trying to evaluate foldr with arguments in the
incorrect order. As it was not possible to implement in-depth error messages the system
directs the user to test their code with GHCi.

Figure 3.3: Error message seen on bad input

3.3 New formal-actual mapping system

While the original formal-actual mapping system was suitable for an initial implemen-
tation it had a number of limitations.

1. It required GHC interpretation upon each use, as use of the evaluator is quite
expensive this slowed performance.

2. The system forced all arguments to be fully evaluated as they were mapped. For
example mapping (x:xs) against [square 1, square 2, square 3] would
ideally result in a mapping of [("x" : square 1), ("xs" : [square 2,
square 3])]. However due to the call to show in the created function the argu-
ments get fully evaluated, so the actual mapping created was [("x" : 1),
("xs" : [4,9])]. This specifically prevented the implementation of lazy
evaluation, as it forced function arguments to be reduced before function ap-
plications.

3. It was not possible to map against infinite data structures. Mapping x against
[0..] requires show [0..] to be evaluated, which takes an infinite amount of
time and memory.

4. Attempting to match against functions was not possible, as the call to show re-
quired all arguments to be showable, which Haskell functions are not.

To address these issues a new system has been implemented which does not involve
GHC interpretation. This system serves two purposes. Firstly the system can check to
which extent a pattern and argument match. If they fully match it can then generate
the formal-actual map for that pattern argument pair.

There are three possible outcomes when checking for a match:

Chapter 3. Improvements to the stupid computer 19

• Match : The pattern and argument currently match against one another. For
example (x:xs) and [1,2,3].

• Potential-Match : The pattern and argument do not currently match, but have
the potential to do so when the argument is further reduced. For example the
pattern (x:xs) and the argument map square [1,2,3].

• No-Match : The pattern and argument do not match, and cannot do so even if
the argument is further reduced. For example (x:xs) and [].

Both the checking and the map generation are achieved by recursively comparing the
AST of the pattern against the AST of the argument. Below is a summary of how this
works for each kind of pattern. Note that while literal, list, tuple and cons patterns are
semantically special cases of constructor patterns, in the GHC AST they have different
representations. Therefore they all need to be handled individually.

• Pure formal patterns. When the pattern is a pure formal, such as x, the pattern
and argument always match. The mapping between the argument and the pattern
can be simply added to the formal-actual map.

• Wildcard patterns. When a wildcard pattern is encountered (), the pattern and
argument again always match. However in this case there is nothing to add to
the formal-actual map.

• Literal patterns. Literal values, such as 2 or "Hello, World!" can only match
against fully reduced arguments. If the value of such a fully reduced argument
matches that in the pattern then there is a match. In this case there is nothing to
add to the formal-actual map.

If the argument is not fully reduced, then the system cannot yet know if it
matches, therefore it is considered a potential match.

• List patterns. This is the case where the pattern is a list of patterns, such as
[1, b, c]. These patterns can only match against arguments which have been
reduced to list form, such as [square 1, square 2, square 3] or [1,4,9].
The number of elements in the pattern and argument lists must be the same,
otherwise the match fails. If there is no discrepancy then the corresponding
items in the pattern and argument are matched against one another. If any don’t
match, the entire list is considered to not match. Similarly if any only potentially
match then the entire list is considered to be a potential match. But if all elements
do match then the produced formal-actual maps are combined and returned.

In the other case where the argument is not in list form, but could be with further
reduction, such as map square [1,2,3] then a potential-match is returned.

• Tuple patterns. Tuple patterns follow the same process as list patterns, however
no length checks are required. This is because the length of tuples is fixed, any
discrepancies will be caught by the validity checking stage (section 2.2.3).

• Constructor patterns. These are patterns such as Nothing or Just a. Again
these can only match against arguments which have been reduced to a construc-

Chapter 3. Improvements to the stupid computer 20

tor, such as Just (1+1). First it must be checked that the constructor in the
pattern and argument have the same name, otherwise no match is possible.

If the constructor has any arguments, then these are matched between the pattern
and argument, if any fail to match then the entire constructor fails to match. If all
these matches are successful then the produced formal-actual maps are combined
and returned.

When the argument is not in constructor form then a potential match is returned.

• As pattern. The as pattern, such as in x@(y:ys) binds the argument to the
identifier on the left hand side of the pattern, in this case x. It then matches the
entire argument against the pattern on the right hand side, in this case (y:ys).
These two mappings are combined and returned. If the right hand matching fails
the entire match fails.

• Cons pattern. The cons pattern (x:xs) is used to decompose lists. The item
at the head of the list is matched against the left hand side of the cons (x in
this case), while the tail is matched against the right hand side (xs). How the
argument is decomposed differs slightly between arguments:

– Lists A match is only possible if the list has at least one argument. The left
hand side of the concatenation is matched against the head of the list, and
the right hand side against the tail of the list.

– Strings A match is only possible if the string is non-empty. The head of
the string is converted to a character and matched against the left hand side,
the rest of the string is matched against the right.

– Sequences A sequence such as [1..5] is split into its head value (1) and
a tail sequence ([2..5]). These are then matched against the left and right
hand side patterns respectively.

– Concatenation function Where the argument is an application of the con-
catenation function, such as square 1 : map square [2,3], then the
left hand side of the application is mapped against the left side of the pat-
tern, and the right side of the application mapped to the right of the pattern.

– Other function applications All other function applications, such as map
square [1,2,3] cannot yet be decomposed, and therefore return a poten-
tial match.

The results of matching the left and right hand sides are combined, if either
didn’t match then the concatenation as a whole is considered to not match.

This system works effectively and resolves the issues which affected the older solu-
tion, allowing lazy evaluation to be implemented. However this system was far more
complex to implement and test than the original system. This is because each individ-
ual case had to be accounted for, rather than relying on GHC. The relative complexity
of the GHC AST compared to Haskell syntax, as mentioned in section 2.2.2, further
complicated implementation.

Chapter 3. Improvements to the stupid computer 21

3.4 Reparsing of GHC interpretation results

The GHC interpretation ability mentioned in section 2.2.5 was flawed in its original
implementation. Because the type of the expression being evaluated is unknown at
compile time, then the result from hint [The Hint Authors, 2007] is always a string. In
the first version of the stupid computer this resulting string was placed within an HsVar
node in the AST. This caused issues when results were data structures, as they cannot
be properly dealt with by the rest of the stupid computer. This limited the ability of
users to make use of functions from the prelude within their code. Say for example
that sum has been user defined, but map has not, then when trying to reduce
sum (map (\x -> x*x) [1,2,3]) the reduction will fail.

sum (map (\x -> x*x) [1,2,3])
= sum [1,4,9]

The new pattern matching system expects lists to be held within ExplicitList nodes,
not HsVar nodes. Therefore it cannot pattern match against the list contents and the
reduction fails. Notably the old pattern matching system did not encounter this issue as
it used GHC interpretation, however there were still problems in other contexts such as
list comprehensions. To resolve this issue results from the interpreter are now reparsed
by GHC, giving a properly formed AST which can then be substituted into the main
expression tree. This has proved effective, allowing the previously failing trace to
finish successfully:

sum (map (\x -> x * x) [1, 2, 3])
= sum ([1, 4, 9])
= 1 + sum [4, 9]
= 1 + 4 + sum [9]
= 1 + 4 + 9 + sum []
= 1 + 4 + 9 + 0
= 1 + 4 + 9
= 1 + 13
= 14

This gives users full flexibility to use prelude functions within their code.

3.5 Improved feature support

This section covers the Haskell features which now have proper support in the stupid
computer.

3.5.1 Let statements

In section 3.1.2 let statements are inserted into to allow sharing. Let statements were
not previously supported by the stupid computer, so support has been added in this
iteration. It is important to note that Haskell let statements are equivalent to letrecs
in other languages [Turner et al., 1995], which means the values defined by a let are
visible when those values are being evaluated. For example when evaluating

Chapter 3. Improvements to the stupid computer 22

let x = 4 in let x = 2; y = 2 + x; in y the value of the second x is visible
when calculating y, giving a final result of 4.

The reduction semantics from the call-by-need lambda calculus have been adapted for
a Haskell context [Maraist et al., 1998]. These are as follows:

3.5.1.1 Value

When a bound value is needed by the body, and the value is fully reduced, it can be
substituted into the body of the let. For example:

let x = 4 in 2 + x
= let x = 4 in 2 + 4

Note that only one substitution happens upon each step, so in the case of let x = 4
in x * x:

let x = 4 in x * x
= let x = 4 in 4 * x
= let x = 4 in 4 * 4

3.5.1.2 Evaluate

When a value has not been fully reduced, but it is needed by the body then it will
undergo a reduction step. For example in the expression let x = sum [1,2,3] in
x * x:

let x = sum [1,2] in x * x
= let x = 1 + sum [2] in x * x
= let x = 1 + 2 + sum [] in x * x
= let x = 1 + 2 + 0 in x * x
= let x = 1 + 2 in x * x
= let x = 3 in x * x
...

This continues until the value is fully reduced, at which point it can be substituted into
the let body with a value step.

3.5.1.3 Split

Where the bound value is needed, and is a concatenation, it can be split into two new
variables. For example the expression let x = map square [1,2,3] in sum x is
reduced as follows:

let x = map square [1,2,3] in sum x
= let x = (square 1) : map square [2,3] in sum x
= let x_0 = (square 1) in

let x_1 = map square [2,3] in let x = (x_0:x_1) in sum x
...

Chapter 3. Improvements to the stupid computer 23

This rule is not included in the call-by-need calculus, but has been added to allow the
evaluation of lists to be shared, even if they are infinite.

3.5.1.4 Garbage Collection

When the variable being bound no longer appears in the body of the let expression it
can be removed. For example:

let x = 4 in 2 + x
= let x = 4 in 2 + 4
= 2 + 4
= 6

Garbage collection does not change the semantics of reduction, the intent is instead to
keep expressions as simple as possible for the user.

3.5.1.5 A value being ‘needed’

A value within a let expression is considered ‘needed’ when the body of the let expres-
sion cannot be further reduced without it. For example in the following reduction x
only becomes needed once nothing else in the expression can be reduced.

let x = 4 in x + (2 * 3)
= let x = 4 in x + 6
= let x = 4 in 4 + 6
= 4 + 6
= 10

This property delays the reduction of bound let values until the last possible moment,
this is especially important in circumstances where the bound value may never be used.
This can be illustrated with the example of let x = sum [1..] in if (2 < 3)
then 0 else x , if the bound value is evaluated when not needed then the resulting
reduction is:

let x = sum [1..] in if (2 < 3) then 0 else x
= let x = 1 + 2 + sum [3..] in if (2 < 3) then 0 else x
= let x = 1 + 2 + 3 + sum [4..] in if (2 < 3) then 0 else x
= let x = 1 + 2 + 3 + 4 + sum [5..] in if (2 < 3) then 0 else x
...

This will never halt, however with the proper semantics.

let x = sum [1..] in if (2 < 3) then 0 else x
= let x = sum [1..] in if (True) then 0 else x
= let x = sum [1..] in 0
= 0

The unnecessary calculation is avoided, and the reduction can complete.

Chapter 3. Improvements to the stupid computer 24

3.5.1.6 Let expression creation

When a let expression is created the values being bound by the let are given index
numbers. For example say that map is defined as follows:

map f (x:xs) = let y = f x in y : (map f xs)
map f [] = []

Then the expansion of map square [1,2,3] will result in:

map square [1,2,3]
= let y_0 = square 1 in y_0 : (map square [2,3])
= let y_0 = square 1 in

y_0 : (let y_1 = square 2 in y_1 : (map square [3]))
...

Here y is replaced with y 0 when the first let is created, and in the next step y 1
replaces y. This is primarily done to avoid name clashes when reducing recursively
defined functions, which is especially important as Haskell lets are letrecs [Turner
et al., 1995].

3.5.2 Lambda abstractions

Proper support for lambda abstractions, sometimes known as anonymous functions,
have been added to the stupid computer. Reducing the application of such an abstrac-
tion is as follows:

(\x -> x * x) 3
= 3 * 3
= 9

Full support for pattern matching is also included:

(\(x:_) -> x) [1,2,3]
= 1

Much like named functions lambda abstractions use lazy evaluation, however in the
case of a pattern matching failure arguments are still evaluated as far as needed:

(\(x:)) -> x) (map square [1,2,3])
= (\(x:_) -> x) (square 1) : (map square [2,3])
= square 1
= 1 * 1
= 1

This support for laziness also includes support for the sharing of values, much like
named functions.

(\x -> x * x) (1+2)
= let x_0 = (1+2) in x_0 * x_0
= let x_0 = 3 in x_0 * x_0
= let x_0 = 3 in 3 * x_0

Chapter 3. Improvements to the stupid computer 25

= let x_0 = 3 in 3 * 3
= 3 * 3
= 9

Adding this functionality was made simpler by utilising functionality implemented
earlier in the project. The process to reduce a lambda abstraction is as follows:

1. The system first determines if the argument needs any further reduction. It does
this by trying to match the argument against the pattern on the left hand side of
the abstraction. This is done with the formal-actual mapping system described
in section 3.3. If they do not match then the argument is reduced by a single step,
and the system tries the matching again. If they do match then the reduction of
the abstraction can continue, making use of the formal-actual map produced.

2. The formals in the abstraction body are substituted for the actuals in the formal-
actual map. This is done with the process described in section 3.1.3.2. This is to
ensure that the appropriate let statements are inserted, such that lazy evaluation
is utilised.

3. The body of the abstraction can then be substituted into the expression.

3.5.3 Case statement support

Support has been added for case statements. As an example if sum is defined as:

sum xs = case xs of
(y:ys) -> y + sum ys
[] -> 0

Then the full reduction of sum (map square [1,2]) is:

sum (map square [1, 2])
= case (map square [1, 2]) of

(y : ys) -> y + sum ys
[] -> 0

= case ((square 1) : (map square [2])) of
(y : ys) -> y + sum ys
[] -> 0

= (square 1) + sum (map square [2])
= (1 * 1) + sum (map square [2])
= 1 + sum (map square [2])
= 1 + case (map square [2]) of

(y : ys) -> y + sum ys
[] -> 0

= 1 + case ((square 2) : (map square [])) of
(y : ys) -> y + sum ys
[] -> 0

= 1 + (square 2) + sum (map square [])
= 1 + (2 * 2) + sum (map square [])
= 1 + 4 + sum (map square [])

Chapter 3. Improvements to the stupid computer 26

= 1 + 4 + case (map square []) of
(y : ys) -> y + sum ys
[] -> 0

= 1 + 4 + case [] of
(y : ys) -> y + sum ys
[] -> 0

= 1 + 4 + 0
= 1 + 4
= 5

Much like function applications the argument to the case statement is reduced until
there is no ambiguity or pattern matching failure. Case statements also make use of
lazy evaluation.

case [1*1, 2, 3] of
(y : ys) -> y + y
[] -> 0

= let y_0 = 1*1 in y_0 + y_0
= let y_0 = 1 in y_0 + y_0
= let y_0 = 1 in 1 + y_0
= let y_0 = 1 in 1 + 1
= 1 + 1
= 2

Fortunately it was relatively simple to implement support for case statements. This is
because I was able to leverage the functionality I implemented for function application
reductions. This implementation is as follows:

1. Firstly the definition to be reduced to must be determined. This is implemented
using the pattern matching system described in section 3.3. The program looks
at each possible definition in turn:

(a) If the argument and pattern do match, then this definition is selected. The
formal-actual mapping produced is retained.

(b) Otherwise if they only have the potential to match then there is an ambigu-
ity, therefore the definition to reduce to cannot yet be determined.

(c) If the argument and pattern do not match, or have the potential to match,
then move onto the next pattern and repeat from step one. However if no
more patterns remain then the correct definition cannot be determined.

2. If the definition to expand to cannot yet be determined, then there is an ambiguity
or pattern matching failure. Therefore the argument is reduced by a step, after
which this process beings again from step one.
Otherwise if the definition has been determined then the process can continue to
step three.

3. The formals in the definition are substituted for the actuals in the formal-actual
map (generated in step one). This is done with the new process described in

Chapter 3. Improvements to the stupid computer 27

section 3.1.3.2. This means that let expressions are inserted where needed, such
that lazy evaluation is used in this context.

3.5.4 Custom infix operator support

Support has been added for user defined infix functions, for example below is a possible
definition for the * function.

(*) :: Int -> Int -> Int
m * 0 = 0
m * n = (m * (n-1)) + m

The trace for 5 * 3 is therefore:

5 * 3
= (5 * (3 - 1)) + 5
= (5 * 2) + 5
= ((5 * (2 - 1)) + 5) + 5
= ((5 * 1) + 5) + 5
= (((5 * (1 - 1)) + 5) + 5) + 5
= (((5 * 0) + 5) + 5) + 5
= ((0 + 5) + 5) + 5
= (5 + 5) + 5
= 10 + 5
= 15

This has been implemented by converting infix function definitions to prefix definitions
at the initial parsing stage. When infix function applications are reduced they are first
converted to prefix applications, reduced, and then converted back to infix form. This
allowed the leveraging of existing functionality for reducing prefix functions, rather
than developing a separate implementation.

3.5.5 Support for user defined data types

Support has been added for user defined data types, these are treated semantically just
like inbuilt data types. As an example given the following definition of a new type, and
a function on it:

data Sometimes a = Contains a | Empty

getValue (Contains i) = i
getValue Empty = -1

Then the following reduction on this type (making use of pattern matching) work as
expected.

getValue Empty
= -1

getValue (Contains 3)

Chapter 3. Improvements to the stupid computer 28

= 3

Supporting user defined data types was not possible in the initial version of the stupid
computer, due to GHC interpretation. In some situations, such as when checking guard
conditions, Hint needs access to the user’s definitions. In the initial implementation
(section 2.2.5) of GHC interpretation let expressions were used to provide function
definitions to the interpreter. However it is not possible to place type definitions in let
expressions. This prevented GHC interpretation of any function which made use of a
user defined type.

I have fixed this issue for this version of the tool. Instead of providing the definitions
using a let expression, now the interpreter loads the users input file directly as a module.
The main challenge faced when implementing this was preventing clashes between a
users definitions and the prelude. For example if the users module contains a definition
of sum, then the interpreter does not know if uses of sum in the code refer to the prelude
definition or the users. Fortunately Hint allows functions in loaded modules to be
excluded from the prelude. This has allowed me to resolve the issue by providing Hint
with a list of functions which have been defined by the user. Hint then ignores the
versions of these functions in the prelude.

However this solution has two drawbacks for users.

• Users must format their input files as modules. However it should be relatively
simple for users to deal with this restriction.

• Users need to also exclude the prelude functions they redefine in their own source
files. For example if the user has redefined sum they must include the following
line in their source file:

import Prelude hiding (sum)

This is required because when Hint first loads the users module, it implicitly
loads Prelude without any exclusions. Therefore users must include this line to
allow the interpreter to load their source file. However as users already need to
include this line to compile files which redefine prelude functions it is not a large
issue.

3.6 Current system limitations

This section describes the current limitations to the system, and discusses some possi-
ble solutions.

3.6.1 Failure to evaluate guard values

Currently the system does not take into account how far arguments need to be reduced
for guards to be evaluated. Taking the following function definition as an example:

gt x (y:ys) | y > x = y : (gt x ys)
| otherwise = gt x ys

Chapter 3. Improvements to the stupid computer 29

gt _ [] = []

If gt 1 [1+1, 1+2, 1+3] is being reduced then the correct reduction would be:

gt 2 [1+1, 1+2]
= gt 2 [2, 1+2]
= gt 1 [1+2]
= gt 1 [3]
= 3 : gt 1 []
= 3 : []
= [3]

The additions in the list are reduced before the function, as their values are needed to
determine the outcome of the guards. However my implementation does not account
for this, therefore it gives the following trace:

gt 2 [1+1, 1+2]
= gt 2 [1+2]
= 1+2 : gt 1 []
= 3 : gt 1 []
= 3 : []
= [3]

Here the calculation of 1+1 is not shown to the user. This stems from the decision
to not show the calculation of guards in section 3.1.3.1. To deal with this issue the
system the stupid computer itself would need to evaluate guard conditions, instead of
leaving it to GHC. This could be done by evaluating each guard condition in turn, until
one evaluates as being true. This would force the reduction of the arguments up to the
point where the guard can be evaluated. unfortunately due to time constraints I have
not been able to implement this solution.

3.6.2 Lack of support for where statements

Support for where statements has not been included in this version of the stupid com-
puter. Adding support is complicated as Haskell does not support their use within
expressions, only within function definitions. This raises a couple of problems:

• A large aim of the project is to ensure that each output expression can be eval-
uated by the user with GHCi. However if the system were to include where
statements in expressions this would no longer be possible. For example if the
map function was defined using where :

map _ [] = []
map f (x:xs) = x’ : (map f xs)
where

x’ = f x

Then the trace would be:

map square [1,2,3]

Chapter 3. Improvements to the stupid computer 30

= x’ : (map square [2,3]) where x’ = square 1

Attempting to evaluate the second expression with GHCi will result in a compiler
error.

• Secondly the GHC AST does not actually allow for where expressions to be
placed within expressions. Therefore to represent such expressions I would have
to modify GHC to allow them to be constructed. While this would be possible, it
would make it more difficult to keep the stupid computer up to date with newer
compiler versions.

One possible solution to this issue would be to replace where statements with let
expressions when expanding functions which use where. In the previous map example
a trace would be:

map square [1,2,3]
= let x’ = square 1 in x’ : (map square [2,3])
= let x’ = 1*1 in x’ : (map square [2,3])
...

This solution would allow the user to use where statements, while keeping each ex-
pression valid Haskell. However due to the complexity of the GHC AST this solution
would be fairly time consuming to implement. It is also possible I could encounter
further issues which may make this solution unworkable. As it is relatively easy for
students to convert their where statements to let statements I have decided to not add
support.

3.6.3 Incorrect operator precedence

Currently the system does not properly respect operator precedence. As an example
see the following trace:

2 + 3 * 4
= 5 * 4
= 20

In this example + has been given precedence over *. Of course * has precedence over
+, so therefore the correct trace should be:

2 + 3 * 4
= 2 + 12
= 14

This is caused because GHC parses all infix operators as being left-associative. This
means 2 + 3 * 4 is parsed as (2 + 3) * 4 rather than 2 + (3 * 4) as would be
correct. In GHC these precedence issues are resolved by the renamer [Marlow et al.,
2004], however the main purpose of the renamer is fully resolving identifiers, not deal-
ing with operator precedences. So for example sum becomes Data.Foldable.sum and
+ becomes GHC.Num.+. Based on my initial investigations applying the precedence re-

Chapter 3. Improvements to the stupid computer 31

association does not seem to be possible separately from the rest of the renaming stage.
I considered two approaches to resolve this issue.

• Applying the entire renaming step to the AST and then undoing the identifier
resolution. This would avoid having to implement and test an implementation
of the re-association functionality which already exists in GHC. However this
turned out to be infeasible, as the renamer makes large changes to the structure
of the AST. For example in the output of the parser each function is represented
by a ValD node, these are within a HsModule node. In comparison in the output
of the renamer these are within a HsGroup node. This would require modifying
large sections of my code which deal with this part of the AST. It is also possible
that other parts of the AST structure are modified, but further investigation is
needed to determine this. This makes it hard to predict how much work would
be required to modify my code to make use of the renamer.

• Therefore the better option is to implement my own version of this functionality,
possibly based on the approach GHC takes. While the functionality itself would
require implementation and testing, not having to modify the rest of the code
base makes it the better option. I estimated that this would take around a 10 hours
of work to implement and test, however it is likely I would encounter further
issues that would make this an underestimate. Therefore since it is relatively
easy to work around this issue by asking the user to add parenthesis I decided
not to tackle the issue.

Chapter 4

Evaluation

4.1 Testing

The stupid computer has been tested with a set of code samples, which were also
used to test the original implementation. These samples were taken from the slides
and quizzes of the course Informatics-1A [Wadler et al., 2022], to ensure they are
representative of code students are likely to write. It would have been impractical to
use all code samples from the course, therefore the set of cases used focus on samples
presented in the context of a stupid computer trace. Efforts have been made to avoid
repeating similar samples. Code samples have also been modified to avoid where
statements as they are not explicitly supported. However I have included one test
with a where statement, to test if the program manages to reduce such statements
directly to their results, as seen in section 2.1.3.5. Alongside these additional tests
have been written by myself to try and attain better coverage. Overall there were 46
code samples, of which 31 were taken from Informatics-1A. When previously tested 11
samples failed to run, and five ran but had incorrect results. This new version has seen
a large improvement, with one test which failed to run, and one ran but with incorrect
results. The failure was due to a lack of support for where statements, as discussed in
section 3.6.2. The incorrect result was caused by the incorrect operator precedences,
as seen in section 3.6.3.

The tests, alongside their stupid computer trace, can be found in tests/ in the project
directory. The traces from the first year version of the stupid computer are also included
for comparison.

4.2 User Feedback

To help inform development feedback has been sought from potential users. This was
done via a survey, sent to students who had recently completed the Inf1A course. It
was split into two parts, one asking their views on the concept, and the other ask-
ing them to install and use the tool. The second part was optional. This reduced
the time requirement to complete the survey, thus allowing for a larger number of re-

32

Chapter 4. Evaluation 33

sponses. This study was certified according to the Informatics Research Ethics Process
RT 2019/53817. The participant information sheet is included in appendix A.3.

4.2.1 Part one

Users were shown a summary of the stupid computer, as can be seen in appendix A.1,
then asked the following questions.

1. How often do you think you would use this tool? [Daily, Weekly, Never,
Other]

2. Do you have any further thoughts on the tool?

I received 37 responses to question one, and the results are summarised in figure 4.1.
There were five response of daily, 23 responses of weekly and 4 responses of never.
Of the five other responses 4 gave more specific times they would use it, such as when
debugging, and one user responded they didn’t use Haskell. This means that of the
37 respondents around 85% could foresee themselves using the program at least semi-
regularly. This shows a strong enthusiasm for the stupid computer concept among the
target user base.

Figure 4.1: Survey question one results.

Question two allowed open responses, of which I received 21. The majority of the
comments were positive in nature, with most saying that they thought the program
would be useful for novice programmers. There were also many comments stating that
the stupid computer needs to be easy to install and use, along with suggestions that it
could be a web application.

4.2.2 Part two

The second part of the survey involved asking users to download and run the stupid
computer on their own machines. They were provided installation instructions and
asked the following questions. See appendix A.2 for the full instructions.

• Were you able to install the stupid computer using these instructions?

• What, if any, difficulties did you face?

• Were you able to use the stupid computer?

Chapter 4. Evaluation 34

• What, if any, difficulties did you face?

• Do you think the tool is useful?

• Do you have any comments about using the tool?

Eight people continued to this section of the survey, and unfortunately only 50% of
them were able to install the stupid computer using the instructions provided. Issues
with the process included the instructions being hard to follow, users not having stack
installed, and a lack of dynamic compilation support on windows. This last issue
has been resolved by changing the project from dynamically to statically compiled
binaries. During early development of the stupid computer there was an issue with the
hint [The Hint Authors, 2007] library which prevented static builds, but this appears
to be resolved. The first two issues can be resolved by making prebuilt executables
available for each of the major operating systems, which students can then download
and run.

Of the four people able to complete the install process three were able to use the stupid
computer. In the case of the user unable to do so it appeared to be due to a zsh config-
uration issue, this should also be resolved by directly distributing the executables. All
users who were able to run the tool thought that it was useful, and there were no new
issues raised in response to the final question.

Overall I can conclude that while students consider the tool to be useful, its ease of use
will be necessary to its success.

Chapter 5

Conclusions

The main goal of this half of the project, implementing lazy evaluation, has been
achieved. Both aspects of laziness, call-by-name and sharing, are demonstrated to
users. Call-by-name evaluation properly delays evaluation of values until they are
needed. Meanwhile let statements are inserted where needed, to demonstrate the shar-
ing of values. However a limitation of this implementation is that the evaluation of
values needed by guards is not shown to the user. This issue, and a possible solution to
it, is discussed in section 3.6.1. Implementing lazy evaluation required adding support
for let expressions, a new formal-actual mapping system, and improvements to GHC
interpretation.

Proper support has been added for case statements and lambda abstractions. Users can
also define their own data types, and their own infix operators. However there is still
a lack of support for where statements, and issues with operator precedence. Fixing
these issues, as discussed in sections 3.6.2 and 3.6.3, would be my priority for future
work.

Testing of the final program has shown a reduction in the number of tests failed, from
16 with the original implementation, to two with this new implementation. Feedback
was also sought from students, with 37 responses, with a generally positive response.
However students raised concerns about how easily the program can be installed and
used. This showed that students were likely to use the stupid computer if it is made
available to them. Therefore making access to the program as easy as possible would
be another valuable future development.

35

Bibliography

Friedman, D. P., Wise, D. S., and Wand, M. (1976). Recursive programming through
table look-up. In Proceedings of the third ACM symposium on Symbolic and alge-
braic computation, pages 85–89.

Henderson, P. and Morris Jr, J. H. (1976). A lazy evaluator. In Proceedings of the 3rd
ACM SIGACT-SIGPLAN Symposium on Principles on Programming Languages,
pages 95–103.

Jones, S. P. (2003). Haskell 98 language and libraries: the revised report. Cambridge
University Press.

Lipovaca, M. (2011). Learn you a haskell for great good!: a beginner’s guide. no
starch press.

Maraist, J., Osersky, M., and Wadler, P. (1998). The call-by-need lambda calculus.
Journal of Functional Programming, 8(3):275–317.

Marlow, S., Jones, S. P., et al. (2004). The glasgow haskell compiler.

Sannella, D., Fourman, M., Peng, H., and Wadler, P. (2022). Introduction to Compu-
tation: Haskell, Logic and Automata. Undergraduate Topics in Computer Science.
Springer International Publishing, 1 edition.

The GHC Team (2001). Prelude. https://hackage.haskell.org/package/
base-4.14.1.0/docs/Prelude.html. Accessed on 09.03.2021.

The GHC Team (2002). The ghc api. https://hackage.haskell.org/package/
ghc. Accessed on 05.10.2020.

The Hint Authors (2007). hint. https://hackage.haskell.org/package/hint.
Accessed on 05.10.2020.

Turner, D. A. (2016). Recursion equations as a programming language. In Lindley,
S., McBride, C., Trinder, P., and Sannella, D., editors, A List of Successes That Can
Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday, pages 459–478. Springer International Publishing, Cham.

Turner, D. N., Wadler, P., and Mossin, C. (1995). Once upon a type. In Proceedings
of the seventh international conference on Functional programming languages and
computer architecture, pages 1–11.

36

https://hackage.haskell.org/package/base-4.14.1.0/docs/Prelude.html
https://hackage.haskell.org/package/base-4.14.1.0/docs/Prelude.html
https://hackage.haskell.org/package/ghc
https://hackage.haskell.org/package/ghc
https://hackage.haskell.org/package/hint

Bibliography 37

Wadler, P., Bradfield, J., and Fourman, M. (2022). Informatics 1a - university of edin-
burgh. http://www.drps.ed.ac.uk/21-22/dpt/cxinfr08025.htm. Accessed
on 21.09.2020.

Wasey, A. (2021). Bringing the stupid computer to life.

http://www.drps.ed.ac.uk/21-22/dpt/cxinfr08025.htm

38

Appendix A. Additional survey documents 39

Appendix A

Additional survey documents

A.1 Stupid Computer Overview

The stupid computer is a tool emulating the Haskell traces you saw in lectures. In operation a
trace of the sum function looks like this:

Where sum.hs looks like this

As another example the evaluation of a list comprehension works like this:

Figure A.1: Stupid computer summary given to students.

Appendix A. Additional survey documents 40

A.2 Installation guide

Installing the stupid computer
First open the terminal, and navigate to a suitable directory (for example your inf1a directory)

Then run the following command:

	
	 git clone https://github.com/alexanderwasey/stupid-computer.git

This will download the source code for the stupid computer to a new directory, sensibly called
`stupid-computer`

Navigate to this directory with the command

	

	 cd stupid-computer

You can now install the tool with the following command. This may take a while!

	 stack install

This output may look quite different on your machine, don’t panic!

You should now be able to run the stupid computer, some sample input files can be seen in the
examples/ directory. We will run the sum example in this case. First launch the tool with the right
file with the following command.

	 stupid-computer examples/sumpattern.hs

The tool should launch and look like this.

From here we can see the evaluation of the sum function, simply by giving an input expression. In
this case we will input

	 sum [1,2,3,4]

And we can see the evaluation

Remember you must define in the input file the functions you want to see the evaluation for.
Modifying the files in examples/ is a good place to start!

Uninstalling the Stupid Computer

To uninstall the tool you must first run

	 stack path —local-bin

This will tell you where cabal installed the tool, in my case

	 /Users/alexw/.local/bin

Calling this result X the stupid computer can be removed by running

	 rm X/stupid-computer

Appendix A. Additional survey documents 44

A.3 Participant Information Sheet

Page of 1 3

Participant Information Sheet

This study was certified according to the Informatics Research Ethics Process, RT number
2021/53817. Please take time to read the following information carefully. You should keep
this page for your records.

Who are the researchers?

Alexander Wasey and Philip Wadler

What is the purpose of the study?

To evaluate the utility of the Stupid Computer tool to undergraduate students, to

inform its future development.

Why have I been asked to take part?

You have taken part in Inf1A - Functional Programming

Do I have to take part?
No – participation in this study is entirely up to you. You can withdraw from the study at any
time, up until February 2022 without giving a reason. After this point, personal data will be
deleted and anonymised data will be combined such that it is impossible to remove
individual information from the analysis. Your rights will not be affected. If you wish to
withdraw, contact the PI. We will keep copies of your original consent, and of your
withdrawal request.

What will happen if I decide to take part?

In the first part of the survey you will see be shown images of a tool designed to help
students with understanding of functional programming concepts. You will then be asked to
give your thoughts about the concept.

There is an optional second part of the survey, where you will be asked to download and run
this tool, and then asked about your experiences.

You may be contacted for a follow up interview if you consent.

Are there any risks associated with taking part?

Project title: Bringing the Stupid Computer to life

Principal investigator: Phillip Wadler

Researcher collecting data: Alexander Wasey

Page of 2 3

There are no significant risks associated with participation.

Are there any benefits associated with taking part?

You will be entered in draw to receive a £15 gift voucher for the Lighthouse Bookshop.
(Redeemable in store or online)

What will happen to the results of this study?
The results of this study may be summarised in published articles, reports and
presentations. Quotes or key findings will be anonymized: We will remove any
information that could, in our assessment, allow anyone to identify you. With your
consent, information can also be used for future research. Your data may be
archived for a maximum of 4 years. All potentially identifiable data will be deleted
within this timeframe if it has not already been deleted as part of anonymization.

Data protection and confidentiality.
Your data will be processed in accordance with Data Protection Law. All information

collected about you will be kept strictly confidential. Your data will be referred to by a

unique participant number rather than by name. Your data will only be viewed by the

research team.

All electronic data will be stored on a password-protected encrypted computer, on

the School of Informatics’ secure file servers, or on the University’s secure encrypted

cloud storage services (DataShare, ownCloud, or Sharepoint) and all paper records

will be stored in a locked filing cabinet in the PI’s office. Your consent information will

be kept separately from your responses in order to minimise risk.

What are my data protection rights?
Alexander Wasey is a Data Controller for the information you provide. You have the

right to access information held about you. Your right of access can be exercised in

accordance Data Protection Law. You also have other rights including rights of

correction, erasure and objection. For more details, including the right to lodge a

complaint with the Information Commissioner’s Office, please visit www.ico.org.uk.

Questions, comments and requests about your personal data can also be sent to the

University Data Protection Officer at dpo@ed.ac.uk.

Who can I contact?

Page of 3 3

If you have any further questions about the study, please contact the lead

researcher, Philip Wadler : philip.Wadler@ed.ac.uk

If you wish to make a complaint about the study, please contact

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and

detail the nature of your complaint.

Updated information.
If the research project changes in any way, an updated Participant Information Sheet

will be made available on http://web.inf.ed.ac.uk/infweb/research/study-updates.

Alternative formats.
To request this document in an alternative format, such as large print or on coloured

paper, please contact Alexander Wasey - s1711767@ed.ac.uk .

General information.
For general information about how we use your data, go to: edin.ac/privacy-research

Consent
By proceeding with the study, I agree to all of the following statements:

• I have read and understood the above information.
• I understand that my participation is voluntary, and I can withdraw at any time.
• I consent to my anonymised data being used in academic publications and

presentations.
• I allow my data to be used in future ethically approved research.

	Introduction
	The Stupid Computer
	Summary of results
	Report summary

	Previous work
	Design
	Overview
	Reduction strategy
	How reductions work

	Implementation
	Overview of approach
	Parsing
	Input validity checking
	Reducing function applications
	GHC interpretation

	Improvements to the stupid computer
	Lazy evaluation
	call-by-name
	Sharing
	Implementation

	Improved user interface
	New formal-actual mapping system
	Reparsing of GHC interpretation results
	Improved feature support
	Let statements
	Lambda abstractions
	Case statement support
	Custom infix operator support
	Support for user defined data types

	Current system limitations
	Failure to evaluate guard values
	Lack of support for where statements
	Incorrect operator precedence

	Evaluation
	Testing
	User Feedback
	Part one
	Part two

	Conclusions
	Bibliography
	Additional survey documents
	Stupid Computer Overview
	Installation guide
	Participant Information Sheet

