
Implementation and Analysis of
Approximation Algorithms For
One-Counter Markov Decision

Processes

Shreyas Saxena

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2021

3

Abstract
We implement and analyze several algorithms of some key analysis problems for One-
Counter Markov Decision Processes (OC-MDPs), a type of finitely-presented infinite
state MDPs.

One-Counter Markov Decision Processes are a mathematical model inspired from
Quasi Birth Death processes, a randomized model studied in stochastic modelling the-
ory and applied probability. OC-MDPs have probabilistic and control states, where
every probabilistic state defines a probability distribution over the set of its outgoing
transition, while in control states, the agent is required to choose a particular action
which dictates which probabilistic states he/she will visit. OC-MDPs also have an un-
bounded counter which can be interpreted at the total reward the player has achieved
at a given time step. At every control state, an agent must pick between its allowed
number of actions in order to achieve a certain objective. Examples of such objectives
include the long-run average reward obtained per transition, and covering very low
total reward values in the long-run.

In this study we implement algorithms in Python to approximate the optimal probabil-
ity of the agent “terminating” given that (s)he starts above a counter value N. That is,
if the agent starts with a given counter value j > N, our algorithms are able to approx-
imate the probability that the agent ensures that the counter value (the total reward)
will hit 0 upto a certain error ε. We also implement algorithms to compute an upper
bound on the counter value N and illustrate the challenges behind implementing these
algorithms.

We also empirically analyze the performance of these algorithms by experimenting
them on a well known subclass of OC-MDPs known as solvency games. Solvency
games are extremely relevant to mathematical finance as they can model the behaviour
of risk-averse investors. Our results show that the upper bound on the counter value
N is not tight enough and we provide a heuristic that allows one to calculate a tighter
bound on the counter value than currently implemented. We also show that some of the
subproblems used to approximate the optimal termination probabilities can be greatly
simplified for an average OC-MDP.

Our algorithms combine theory from linear programming, stochastic modelling, graph
theory, and MDP reward models.

4

Acknowledgements

I would like to thank my supervisor Professor Kousha Etessami for tremendous help
in this project and guidance in talking to the right people and reading the right papers.
I would also like to thank my friends and family for their continued support in writ-
ing this dissertation and providing valuable emotional advice during these tough and
uncertain times.

Table of Contents

1 Introduction 3
1.1 One-Counter Markov Decision Processes (OC-MDPs) 3
1.2 Termination Probabilities . 4
1.3 Aim of Project . 6

2 Definitions 7

3 Algorithms to Implement 11
3.1 Mean Payoff Algorithm . 11

3.1.1 Theoretical Complexity: Qual-MP 13
3.2 Qualitative Cover Negative Algorithm 13

3.2.1 Creating a Decreasing MDP 14
3.2.2 Theoretical Complexity: Qual-CN 15

3.3 Quantitative Cover Negative Algorithm 16
3.4 Finding a Bound for the Termination Value of the Game 16

3.4.1 Motivation . 16
3.4.2 Bounds . 17

4 Implementation Details 19
4.1 Overview of Technologies and Algorithms Used 19

4.1.1 Defining an MDP . 19
4.1.2 Relative Value Iteration vs. Modified Policy Iteration 21

4.2 Implementing Qual-MP . 21
4.2.1 Computing Steady-State Probabilities 23
4.2.2 Implementing Max-Reach 24

4.3 Implementing Qual-CN . 24
4.4 Implementing Solve-CN . 25
4.5 Implementing Bounds . 25

5 Experiments 27
5.1 Solvency Games . 27
5.2 Evaluating the Convergence of Termination Probabilities for varying

values of N . 28
5.2.1 Motivation . 28
5.2.2 Methodology (Finite State Approximation) 28
5.2.3 Results . 29

5

TABLE OF CONTENTS 1

5.3 Using the Mean Payoff problem to solve the Quantitative Cover Neg-
ative Problem . 31
5.3.1 Motivation . 31
5.3.2 Methodology . 31
5.3.3 Results . 31

6 Conclusion 33

Bibliography 35

Chapter 1

Introduction

1.1 One-Counter Markov Decision Processes (OC-MDPs)

Markov Decision Processes (MDPs) are discrete-time stochastic control processes,
where the outcome can either be random or in the control of a decision maker, or agent.
MDPs tend to begin in some state and then make a sequence of transitions. These tran-
sitions can either be made by the agent, or they can be purely random based on a pre-
defined probability distribution over possible transitions. The transition graphs of such
stochastic models arise from more familiar models such as context-free, counter, and
pushdown automaton (see [5]). Our concern with MDPs lies specifically with respect
to the agent’s objective, or goal. The agent’s goal is usually to optimize the expected
value of an objective function, which is usually the function of a trajectory. In order to
achieve this goal, one can fix a strategy for the controller which defines a Markov chain
defined by which actions to take at each control state, defining a probability space of
possible runs, or sequences of states visited. From a computational standpoint, the
biggest questions that arise are the computation complexities of problems concerning
the optimal value a controller can achieve for a fixed objective and the strategies that
can achieve this value. For finite-state MDPs, these problems have been extensively
studied for many objectives, and there are many papers that suggest methods that work
well.

In this study we focus on infinite state stochastic processes which are presented finitely
through the use of an unbounded counter. Examples include branching and birth-death
processes. There are several well-studied models that exhibit similar behaviour to these
types of processes. One most relevant to our study is Quasi-Birth-Death processes
(QBDs), which can be viewed as an unbounded queue that has a counter tracking the
number of “jobs” and can belong to an element in a bounded set of “states”. A stochas-
tic transition tends to involve adding or removing jobs from this queue or transitioning
the queue from one state to another.

A B C D

Figure 1.1: Example of a
Quasi Birth Death Process

A flavor of QBDs known as embedded discrete-time
QBDs are more relevant to our task. These discrete-
time QBDs can be equivalently viewed as a proba-
bilistic extension of counter automaton which are ex-

3

4 Chapter 1. Introduction

tensions of classic finite-state machines with an un-
bounded counter, which can be incremented, decre-
mented, or stay the same with each transition. Further-
more, transitions themselves can also be dependent upon a combination of the current
state and the counter value. Thus, combining QBDs with a counter with a controller
yields us to the main model of interest: One-Counter Markov Decision Processes
(OC-MDPs). OC-MDPs have a finite set of random states, where the next transition
is chosen subject to a defined probability distribution, and a finite set of controlled
states, where the next transition is chosen by the agent. OC-MDPs have “configura-
tions” which consists of a pair (s, j) where s is a state of the OC-MDP and j is the
current counter value. As with MDPs, OC-MDPs too give rise to different types of
computational problems and objectives, covered in Section 1.2.

To explain some of the applications of this project, we turn to an example of a subset of
OC-MDPs whose computational objectives have been studied called solvency games,
defined in [2] as a mathematical model of risk-averse investors. Solvency games are
a subclass of OC-MDPs with only one control state and a more complex transition
function. At every time step, there are multiple actions that can change the counter
value (or “wealth”), by at most 1 per transition. The goal in this game is to minimize
the probability of going bankrupt, starting with a given positive wealth. [2] shows that
if the solvency games meet certain assumptions then the best choice of an agent once
his/her wealth is above a certain threshold can be computed in exponential time through
linear programming. This strategy, however, is not always optimal, and [2] concedes
that the “results are at best a sketch of some elements of a larger theory”, which is
further discussed in [6] and Section 1.2. In Chapter 5, we experiment with a realistic
example of modified version of a solvency game to try to compute the investor’s (or
its adversary’s) best choice to ensure bankruptcy by rephrasing the problem as one of
termination starting from a given wealth.

1.2 Termination Probabilities

The computation problem and objective that we focus on is known as the termina-
tion objective and its associated “termination probabilities”. In OC-MDPs, the player
aims to maximize (minimize) the probability of eventually hitting counter value 0 (in
any control state), given that they start at a control state with a given counter value
j > 0. Current research is mostly concerned with trying to maximize the termination
probability for a “boundaryless” OC-MDP, where the counter value can take on both
positive and negative values. These kinds of analysis problems lend themselves into
two categories: quantitative and qualitative analysis. Both are concerned with if a
given probability p acts as a lower or upper bound for the probability of the objective
being achieved. While quantitative analysis considers p ∈ [0,1], qualitative analysis
is strictly concerned with p ∈ {0,1}. Research has also been made into the type of
strategies that achieve these outcomes for OC-MDPs.

For OC-MDPs, [6] first devises algorithms for maximizing the termination probability
in a boundaryless OC-MDP, with the objective of optimizing the probability that the
lim inf counter value is −∞ (the paper describes this objective as “Cover Negative”

1.2. Termination Probabilities 5

(CN)). Notes that this model is related to that of finite-state MDPs with objectives con-
cerning the average reward, and [6] utilizes this connection to compute the optimal ter-
mination probabilities for the Cover Negative objective. More specifically, they show
that the probability that the lim inf of the counter value is −∞ for a boundaryless OC-
MDP is a rational value that can be computed in P-time, and that the optimal determin-
istic strategy is “counter oblivious” (same for every counter value) and “memoryless”
(doesn’t depend on the previous moves taken by the agent) and can be computed in
P-time. [6] shows this by first showing that the Cover Negative problem for MDPs can
be reduced to its qualitative version, and then showing that this qualitative version can
be further reduced to a qualitative average reward problem (this problem is formally
defined in Chapter 2 as a Mean Payoff problem) which can be solved in polynomial
time through an algorithm known as Qual-MP. With Qual-MP, [6] develops algorithms
to solve the Qualitative and Quantitative Cover Negative problem by implementing this
algorithm and other adjustments. Further explanations are detailed in future sections.
This paper is tantamount in laying the foundations of algorithmic OC-MDP theory and
the algorithms discussed in [6] will be the main focus of the algorithms that we will
implement in this project. However, the views discussed in [6] are still elementary at
best, and only draw a sketch of a larger, more complex problem.

An important notion for any objective is a game’s value, which is defined in [6] as
the number v such that for every ε > 0, the agent has a strategy that ensures that the
objective is satisfied with probability at least v− ε regardless of the outcomes of the
probabilistic states. In this paper we use optimal probability and value interchangeably.
The authors of [6] build on the theory of their previous paper in [4] where they state that
for both limit objectives, LimIn f (= −∞) = LimSup(= ∞) and LimIn f (= ∞), given a
finite-state OC-MDP D with rewards and a probability p such that p ∈ Q, deciding
whether the value of D with either limit objective is ≤ p or ≥ p can be solved in P-
time. The exact proof of these theorems is not relevant to this project. It is also shown
that if the value of the termination game is 1 then Max has an optimal memoryless
counter-oblivious, and pure strategy to ensure termination with probability converging
to 1 [4]. These strategies can be computed in P-time.

As shown earlier, [4] dealt with the qualitative termination problem of deciding if the
termination value is 1. The quantitative problem for OC-MDPs, however, had been left
open for investigation. This was resolved in [5], with a concession that the termination
value can only be approximated. This is due to several reasons. For maximizing OC-
MDPs, there doesn’t have to be any optimal strategy for maximizing the termination
probability, only ε-optimal ones. For minimizing OC-MDPs, the strategies do exist
but they are very complicated to compute. Thus, approximating the termination value
and computing ε-optimal strategies simplifies the problem significantly. The main
objective of [5] is to show that there exists an algorithm that takes the following as an
input: an OC-MDP, D , an initial control state s, an initial counter value j > 0 and a
rational threshold ε. Given these inputs the algorithm computes the following:

• a v′ ∈Q such that |v′−v∗|< ε, where v∗ is the value of the OC-MDP termination
game on D starting from state (s, j)

• ε-optimal strategies for the agent in the OC-MDP.

6 Chapter 1. Introduction

[5] shows that for OC-MDPs, said algorithm runs in exponential time in the encoding
size of the OC-MDP and polynomial time in log(ε−1) and log(j). What is important
to note from the derivation of this algorithm is that for maximizing OC-MDPs where
the player is trying to prevent ending up with a counter value of 0 , it is possible
to compute a bound N on the counter value such that for all counter values n > N,
the optimal termination probability starting at state (q,n) is at most ε away from the
optimal probability for the counter to have lim inf value = −∞. This bound allows
the problem to be reduced to a reachability problem for a much (exponentially) larger
finite-state MDP which can be solved through linear programming in exponential time.

1.3 Aim of Project

So far current literature has extensively discussed the theoretical foundations and out-
lined the generic instructions for some of these algorithms that compute the optimal
strategies, and termination values and probabilities for these objectives and stochastic
games. There is, however, no record of these algorithms being implemented and ana-
lyzed for their runtime yet. While there are probabilistic model checking tools such as
PRISM which may appear to simplify this analysis significantly, a conversation with
the creator of this application, Dave Parker, revealed that the software doesn’t support
analysis of infinite horizon average reward objectives which are central to this paper.
Outside of PRISM, there are tools available for the analysis of MDPs for data science
applications such as reinforcement learning, but there is not much publicly available
that allows for a game theoretic analysis of OC-MDPs. This paper aims to implement
some of the algorithms for qualitative analysis and approximation of termination value.
The theory used to develop these algorithms has also made several statements that have
complicated the problem to take care of pathological edge cases, and thus another aim
for this project is to look for potential points of inefficiencies, apply these algorithms
to a potential use case of Markov Decision Processes which illustrates the most usual
case of MDPs that will be used in the real world, and suggest the necessity to revisit
this theory to check for improvements.

Chapter 2

Definitions

This honours project focuses on the study of Markov Decision Processes, which in
itself is a rather complicated mathematical field. In this section, we shall formally
define their mathematical definitions and related concepts.

Definition 1. A Markov Decision Process (MDP) (with rewards) is a tuple M =
(S,∆,(SN ,Sp), p,r), where the following hold true:

• S is the state space, a finite, countable set of vertices

• ∆ is the action space, where ∆ ⊆ S× S which defines the transitions from one
state in S to another in the same set. Note that ∀v ∈V,∃u ∈V , where v→ u (i.e.
there are no states with no outgoing transitions).

• SN ,SP is the partition of S into control and probabilistic states.

• p is a probability assignment such that each probabilistic vertex v ∈ SP is as-
signed a rational probability distributions on its set of outgoing transitions.

• (only in an MDP with rewards) r is the reward function r : V → R.

As is the case with many stochastic models, we can also establish the following termi-
nology which may prove useful in the future. A path w in MDP M is a finite or infinite
sequence of vertices, i.e. w = w(0)w(1)w(2)...w(n−1), such that w(i−1)→ w(i) for
all 1 ≤ i ≤ len(w), where len(w) ∈ [0,∞] is the length of the sequence of vertices. A
run is simply an infinite path. The set of all runs in M is denoted by RunM , and the
set of all runs starting with some finite path w is denoted by RunM (w), and these sets
create the standard Borel Sigma Algebra on RunM [6].

Having defined MDPs, we now extend the definition to involve an unbounded counter,
leading us to the concept of One-Counter Markov Decision Processes.

Definition 2. A One-Counter Markov Decision Process (OC-MDP) is a tuple A =
(Q,δ=0,δ>0,δ=0,(QN ,QP),P>0,P=0) where the following hold true

• Q is a finite set of states partitioned into non-deterministic, control states QN
and probabilistic states QP

7

8 Chapter 2. Definitions

• δ=0 ⊆Q×{−1,0,1}×Q and δ=0 ⊆Q×{0,1}×Q are the sets of positive and
zero rules (transitions), respectively

• P>0 and P>0 are the probability assignments such that both assign a positive
rational probability distribution over outgoing transitions in δ>0 and δ=0 (re-
spectively) for each probabilistic state p.

For OC-MDPs, we are interested in computing some of their strategies. To define a
strategy we first note that a configuration is a pair (q,c) of control states q and integer
counter value c ∈ Z. Given this we can now define a strategy for the agent.

Definition 3. A policy (or strategy) for the agent is a function which, to each state,
assigns a probability distribution on the different actions available to the state. They
act as the optimal probability of the player picking each action at the given state.
A deterministic strategy is when the probability distribution on each state is a Dirac
delta function centered at a particular action. They are similar to the notion of pure
strategies in game theory.

For finite-state MDPs, we represent policies as tuples. So for example, in a 5-state
MDP with at most 3 actions in each state, an example policy for an objective can be:
(0,2,1,1,2) (if zero-based indexing is used). This means that at the 0th state, player
must take action 0 with probability 1, at the 1st state, player must take action 2 with
probability 1, and so on and so forth.

Finally, in order to devise a policy that can meet these objectives, we consider some-
thing known as a value function. The notion of such a function is central to our analysis
of MDPs as these policies are formed by attempting to optimize these value functions.

Definition 4. Given a policy π, and a state s∈V , the value function V π(s) for the state
s is defined as the expected return when starting in s and following π thereafter. For
our analysis of MDPs, we can define the value function formally as:

V π(s) = Eπ{Rt | st = s}

where Eπ denotes the expected value (or reward) given that the agent follows policy π

and t is any time step (including t = 0).

This definition is very important because it implies that when computational meth-
ods such as Linear Programming, Policy Iteration, and Value Iteration are applied
to MDPs, the values of the value function we get will detail the expected reward
of the policy starting from each given state. This is further echoed in [7], which
states that the optimal policy produced maximizes the value function for all states,
i.e. ∀s ∈ V,V σ(s) ≤ V π(s), where π is the optimal policy and σ is any other arbitrary
policy.

Note that these policies are aimed at achieving a certain objective. In this paper, we will
implement algorithms aimed at solving several objectives which are defined below.

Definition 5. Consider an infinite time horizon1. The mean payoff objective is the
objective where the agent seeks to minimize/maximize the expected average reward

1we are playing for an infinite duration of time

9

over this infinite time horizon. This is a way of describing the long-run limiting average
reward of a finite state MDP with a given reward function. Formally, we represent this
as

lim
x→∞

Eπ

[
1
n∑

n−1
t=0 [Rt | s0]

]
In this project we will not implement algorithms to maximize the mean payoff. Thus
for the rest of this paper, when we refer to mean payoff from here on we refer to
minimizing the expected average reward over the infinite time horizon.

We also define the Cover Negative objective:

Definition 6. The cover negative (or limit) objective, is defined as the objective where
the agent seeks to make sure that the counter value during the run covers arbitrarily
low negative numbers in Z. If we define a sequence of vertices as a run, we formally
define the limit objective by stating that it is the set of runs where the following property
holds true:

LimInf(=−∞) = {w | w is a run in such that liminf
n→∞

∑
n
i=0 r(w(i)) = ∞}

[4]

This objective can be redefined for different variations such as LimIn f (=∞), LimSup(=
∞), LimSup(=−∞). We can say that a given policy meets the defined objective if the
policy-induced Markov Chain has some runs, or sequence of states, which belong to
this set.

The mean-payoff objective is necessary when trying to compute a strategy that meets
the cover negative objective. As we will show while explaining the algorithms imple-
mented in Section 3, we can modify the MDP in a certain way so as to ensure that a
strategy that meets the Mean Payoff objective also meets the Cover Negative Objec-
tive. Our main objective of interest, however, is the termination objective. By solving
the Cover Negative objective, we can develop ε-optimal strategies for this termination
objective for all initial counter values above a pre-computed N [5]:.

Definition 7. Given an initial counter value j, we say that a given a run, or sequence
of vertices, satisfies the termination objective if the run belongs to the set Term(j),
where Term(j) is defined as follows:

Term(j) = {w | w is a run in the OC-MDP such
that there exists a finite m > 0 such that ∑

n
i=0 r(w(i)) =− j}

Developing subroutines that allow us to compute the optimal strategy for termination
will be the focus of our next few sections, after which we will perform several experi-
ments to test its performance in a certain type of MDP.

Chapter 3

Algorithms to Implement

In this section, we explain the theoretical underpinnings of the algorithms which will
allow us to approximate the termination value for one-counter Markov Decision Pro-
cesses. For OC-MDPs, there exists a counter value N such that for all configurations
with counter value greater than or equal to N, the ε-optimal termination probabilities
are equivalent to those for the cover negative objective [5]. Solving the cover negative
objective itself, however, is a highly nontrivial task. We start by explaining how the
problem of the cover negative objective can be resolved to several subproblems, and
how those individual subproblems are satisfied. Then, we shall analyze how the cover
negative problem is used to solve the termination objective for OC-MDPs.

Recall from the previous chapter that we defined the cover negative problem to be the
objective where the agent wishes to ensure that the counter value covers arbitrarily
low negative numbers in Z. [6] shows that for any OC-MDP, there exists a optimal
counterless, memoryless, deterministic policy that is computable in polynomial time.
Furthermore, the value of the game with respect to this objective is also computable
in polynomial time. To prove the existence of such a policy, they make 4 key Turing
Reductions, reducing the problem of cover negative into the mean payoff problem for
finite state MDPs with rewards. This is achieved by modifying the OC-MDP. The
general idea behind these reductions is that the qualitative cover negative problem for
an MDP can be reduced to the qualitative mean payoff problem for a modified MDP.
From there, as this chapter will explain, we can make new MDPs off the current one to
solve the cover negative problem and make significant progress towards the termination
problem.

3.1 Mean Payoff Algorithm

The first algorithm implemented is referred to in [6] as Qual-MP. This algorithm solves
the qualitative mean-payoff problem for finite state MDPs with rewards. The target of
this algorithm is to find the set of vertices such that the value of the mean-payoff
objective is satisfied with probability 1 (as is implied by the definition of a qualitative
solution). For a given state s in the MDP, the algorithm first finds if there exists a
strategy such that the expected mean payoff of the strategy starting from state s is

11

12 Chapter 3. Algorithms to Implement

below 0. After that, if applies this strategy onto the MDP, resulting in a Markov Chain.
This Markov Chain has the remarkable property that there is always going to be a set
of states C such that any sequence of vertices starting from the states s that enters C
is almost surely going have a long-run average payoff less than or equal to 0. These
set of states C are also called the bottom strongly connected components, or the sink
states, of the Markov Chain. It is clear from here then, that any strategy τ that tries to
solve the problem of minimizing the mean payoff must try to maximize the probability
of reaching these vertices in the MDP (this can by solved by the method Max-Reach).
Furthermore, given such a strategy τ, we are only interested in the states such that τ

ensures that the probability of reaching that state u in the given strategy is 1. These
sets A are those which it is guaranteed that the probability that the mean payoff is less
than or equal to 1 almost surely.

Algorithm 1: Qual-MP Pseudo Code, algorithm taken from [6]
Data: Finite State MDP D , Reward function r : V →{0,1,−1}
Result: The set of of vertices such that the value of the minimizing mean payoff

objective is equal to 1 almost surely.
1 V? =V,A = /0,T = /0, r̂ = r
2 while V? 6= /0 do
3 s←− Extract(V?)
4 if ∃ a strategy ρ where the mean payoff starting from that state is less than 0

for MDP D with reward structure r̂ then
5 ρ←− get-MD-min(D,r,s)
6 D(ρ)←− a Markov Chain, fixed by strategy ρ

7 C←− a BSCC of D(ρ) that is not in A such that the probability of
reaching this set of states C is 1

8 (τ,(reachv)v∈V)←− Max-Reach(D,C∪A)
9 A′←− {u ∈V | reachu = 1}

10 add A′ to A
11 for every u ∈V do
12 if u ∈ A then
13 r̂(u)←− 0
14 end
15 if s /∈ A then
16 add s to V?

17 end
18 return A

In Algorithm 1, V? represents the unexplored vertices, A is the set of vertices that we are
looking for, and r̂ is a modified reward function which starts off identical to the MDPs
reward function, but then changes through modifications in line 13. The algorithm also
has several additional methods that we must implement. Extract is simply a random
removal of a vertex from the set of unexplored states V?, get-MD-min takes the original
MDP D with reward structure r and a starting state s and tries to find the optimal
policy (or set of actions) that minimizes the mean payoff starting from state s. Finally,
Max-Reach solves the reachability objective which amounts finding the optimal policy

3.2. Qualitative Cover Negative Algorithm 13

that maximizes the probability of reaching a vertex in C∪A. Furthermore, (reachv)v∈V
denotes the reachability probabilities that Max-Reach returns for the optimal strategy
τ that it computes.

3.1.1 Theoretical Complexity: Qual-MP

Outside of get-MD-min, and Max-Reach, the vast majority of the operations in this al-
gorithm are either reassignments of states, or finding bottom strongly connected com-
ponents. It is well known that finding the BSCCs of a Markov Chain are easily doable
in polynomial time, either through techniques such as Depth First Search or calculating
the steady state probabilities. Thus if get-MD-min and Max-Reach run in polynomial
time, then Qual-MP clearly should run in polynomial time. Both aforementioned pro-
cedures, however, have provably amounted to simple Linear Programming problems,
as proposed in [13] that can be solved in polynomial time through the interior point
method, implying that the average case runtime of these algorithms, and by extension
Qual-MP, is polynomial as well.

3.2 Qualitative Cover Negative Algorithm

A

(+0)

Figure 3.1:
Example of
an MDP that
satisfies the
Mean Payoff
Objective but
not the Cover
Negative

The Cover Negative and Mean Payoff problems, albeit similar, are not
entirely identical. That is, the set of strategies ΣCN that solve the cover
negative problem actually subsume the set of strategies ΣMP, and so
there exists MDPs and associated strategies that can solve the Mean
Payoff but don’t necessarily solve the Cover Negative. A good exam-
ple is the MDP in Figure 3.1. The long-run average reward here evi-
dently is equal to 0, satisfying the mean payoff objective that Qual-MP
seeks to solve. However, it fails to satisfy the cover negative objective
as the counter value (or the value of the reward) doesn’t cover arbi-
trarily low values in Z. Thus, we need to make modifications to any
MDP so as to ensure that ΣCN = ΣMP. To do this, we must convert
an arbitrary MDP into a decreasing MDP. A decreasing MDP D has
the property that any memory less deterministic strategy in D starting
from any state u has an associated finite path w such that the total re-
ward gained at the end of w =−1 [6]. This ensures that counter value
(or total reward value) is able to cover arbitrarily low negative values
and thus by extension, solve the Cover Negative problem.

Now, to solve the Quantitative Cover Negative Problem (i.e. get
the maximum probabilities that cover negative is satisfied starting

from each vertex), we must first solve the qualitative problem, i.e. find the set
A ⊆ V of vertices such that the maximum probability of satisfying the Cover Nega-
tive (LimIn f (= −∞)) objective is equal to 1. On paper this algorithm looks simple,
and is shown in Algorithm 2

14 Chapter 3. Algorithms to Implement

Algorithm 2: Qual-CN Pseudo Code, algorithm taken from [6]
Data: Finite State MDP D , Reward function r : V →{0,1,−1}
Result: The set of of vertices such that the value of the cover negative is equal to

1 almost surely.
1 D ′←− Decreasing(D)
2 A′←− Qual-MP(D ′,r)
3 A←− {v ∈V | (v,1,0) ∈ A′}
4 return A;

Evidently we see in Algorithm 2 that the most important part of the procedure is the
conversion on the original MDP D into the decreasing MDP D ′ discussed earlier.
From a cost perspective, this algorithm requires a polynomial time algorithm from
before (Qual-MP) and a new algorithm Decreasing, which allows us to equate the
Mean Payoff problem to Cover Negative. We now explain this procedure.

3.2.1 Creating a Decreasing MDP

Earlier in this section we explained why exactly we want to create a decreasing MDP.
Now we discuss the mechanics behind creating said decreasing MDP. Given an MDP
D , nodes in the new MDP D ′ are responsible for storing information about the states,
counters, and individual transitions in D . In a decreasing MDP, we are essentially
going through every possible transition in the MDP and tracking some important in-
formation about the runs at each node. Every node in the new MDP is a list containing
three or four items, so every vertex is either of the form (u,n,m), or [u,n,m,v]. Further-
more, vertices of the form (u,1,0) for some vertex u in D are known as checkpoints.
For each of the vertices in D ′, the coordinates have the following meanings:

• First Coordinate (u): the current vertex in D

• Second Coordinate (n): the number by which the counter needs to be decreased
to make the sum of rewards since the last checkpoint

• Third Coordinate (m): the number of steps since the last checkpoint

• Fourth Coordinate (v): (if present) the next vertex of D through which a run
with decreasing counter value should continue.

Formally, we can define the decreasing MDP as D ′ = (S′, ↪→,S′N ,S
′
P,Prob′), where the

following is true [6]:

1. S′ = {(u,n,m), [u,n,m,v] | u ∈ S,u→ S,0≤ n,m≤ |S|2 +1}∪{div}

2. SP = {[u,n,m,v] ∈ S′|s ∈ Sp}

3. SN = S\Sp

4. ↪→ is the transition relation defined by the least set such that for every u,v ∈ S
such that u ↪→ v and 0≤ n,m≤ |S|2 +1:

• m = |S|2 +1,n > 0 =⇒ (u,n,m) ↪→ div

• m≤ |S|2 +1,n = 0 =⇒ (u,n,m) ↪→ [u,1,0,v]

3.2. Qualitative Cover Negative Algorithm 15

• m < |S|2 +1,n > 0 =⇒ (u,n,m) ↪→ [u,n,m,v]

• if u ∈ SP, [u,n,m,v] ↪→ (v,n+ r(u),m+1) and [u,n,m,v′] ↪→ (v,1,0) for all
v′ 6= v ∈ S such that [u,n,m,v] ∈ S′

• if u ∈ SN , [u,n,m,v] ↪→ (v,n+ r(u),m+1)

D ′ has an auxiliary state div. div is an absorbing state which “punishes” the agent
for picking a bad action/going along a bad transition through which the Mean Payoff
objective is not able to be satisfied. Thus, once the player gets stuck in div, there is
no way that the Mean Payoff objective can be satisfied. When any run in this MDP
starts at a checkpoint, the second counter starts with the value 1 because we are waiting
from the sum of rewards to be -1 and the counter value is initially set at value 0. As
the play proceeds and different states have different rewards, the counters get updated
accordingly. The moment counter value 0 is reached, we reach a checkpoint and the
counter values are reset to 1 and 0 respectively. As shown in [6] we can provably bound
n and m by |V |2 + 1. Decreasing MDPs are also central to the termination objective
that this project revolves around, because as proven in Lemma A.2 in [5], decreasing
MDPs are constructed in such a way that preserves the property of optimal termination
probability being equal to 1.

Another important aspect of this MDP is the new probability and reward matrices. For
any probabilistic state [u,n,m,v] we say that the probability of the transition [u,n,m,v] ↪→
(v′,n′,m′) = P(u→ v′) in the original MDP D . Also the reward at every 3 element
state (u,n,m) = 0, at [u,n,m,v] = r(u), where r(u) is the reward in the original MDP
of being at the state u and div is a sink state with reward 1.

3.2.1.1 Theoretical Complexity: Decreasing

A careful look at the exact procedure for creating a decreasing MDP reveals that the
procedure involves travelling across possible runs in the MDP and keeping a track of
certain variables along the way. Given that the MDP is equally represented as a set of
directed graphs, it is easy to see that this algorithm revolves around a slightly modified
implementation of a Depth First Search algorithm on the modified set of vertices,
which will run in polynomial time on the new state space. Since these new vertices are
keeping track of more information than the previous MDP, there is a significant blowup
in the size of the state space. However, this blowup is still polynomial, in the order of
approximately O(n3), and thus the algorithm still technically runs in polynomial time.

3.2.2 Theoretical Complexity: Qual-CN

In the previous section, we explained why Decreasing will run in polynomial time,
and we also explain earlier why Qual-MP also runs in polynomial time. The rest of
the procedure simply involves iterating through the output of Qual-MP on D ′ and ex-
tracting the checkpoints. This can be done fairly efficiently using sorting algorithms
that run in O(nlogn), which doesn’t change the overall polynomial complexity of the
algorithm which will still run in polynomial time.

16 Chapter 3. Algorithms to Implement

3.3 Quantitative Cover Negative Algorithm

Once the qualitative cover negative problem has been solved, i.e. we know which
vertices in D have the property that P(LimIn f =−∞)= 1, then solving the quantitative
cover negative problem, i.e. getting the probabilities of achieving cover negative at
each vertex boils down to simply maximizing the probability of reaching the subset
of vertices A that we computed in Algorithm 2. The algorithm for Solve-CN thus is
straightforward, and is shown below:

Algorithm 3: Solve-CN Pseudo Code, algorithm taken from [6]
Data: Finite State MDP D , Reward function r : V →{0,1,−1}
Result: The probabilities of satisfying the cover negative objective from each

vertex.
1 (A,τ)←− Qual-CN(D,r)
2 (valv)v∈V ←− Max-Reach(D,A)
3 return (valv)v∈V ;

Solve-CN uses methods that we have previously explained run in polynomial time,
and therefore, we can also say that Solve-CN runs in polynomial time.

3.4 Finding a Bound for the Termination Value of the
Game

A valid question to ask at this stage is how the above algorithms are related to our
ultimate objective of implementing algorithms that approximate the termination value
of a Markov Decision Process. The answer to this lies in the reductions made in [5].

3.4.1 Motivation

Denote the termination objective given a certain start state q and counter value i by the
combination Term(q, i). Then we can say that for any fixed state q and counter values
i≤ j,

Val(Term(q, i))≥ Val(Term(q, j))≥ 0

This makes intuitive sense because the higher up a counter value we go, the less likely
it is that we reach counter value 0, hence why the game values for lower counter values
are higher. So we have a monotonically decreasing sequence of game values, and so
if we define µq := limi→∞ Val(Term(q, i)), then we can find an arbitrarily large i such
that µq ≤ Val(Term(q, i)), which amounts to being able to decrease the counter by
an arbitrary value with probability at least µq. This amounts to the Cover Negative
Objective, and the associated value vq can be defined as follows:

vq := Val(LimIn f (=−∞),q)

where the additional q simply symbolizes the value of Cover Negative given that we
start from state q. One interesting point to note here is that while we start from the
termination problem which heavily depends on the initial counter value, we gradually

3.4. Finding a Bound for the Termination Value of the Game 17

reduce the problem into one that is independent of counter value which reduced the
difficulty of implementation significantly. Most importantly, [5] also show that µq = vq.

It can also be shown there there exists a large enough N such that for all states q and
counter values i≥ N,

Val(Term(q, i))−µq ≤ ε

for a given ε > 0. This means that we can use our previous implementations to ε-
approximate the termination value of the game for all counter values i above a certain
constant N. Computing this N itself, however, is nontrivial and will be the final algo-
rithm we will implement in this project.

3.4.2 Bounds

Let us call the algorithm that computes the bound N as Bounds. Now given a decreas-
ing MDP D ′, Lemma 3.6 in [5] states that given D ′, we can construct a system of linear
inequalities L such that there is a tuple of solutions (x̄,(z̄q)q∈Q) that solves L and is
polynomial in encoding size of D ′. While the specifics of this inequality L are irrele-
vant, note that we can get the singular number x̄ and the associated vector of values z̄q
by using the optimal values for minimizing the discounted total reward in D ′ using a
maximum discount factor Λ < 1 (the paper explains how to find this Λ but because we
don’t implement algorithms to compute the value of the discounted reward objective,
this is irrelevant to the project). After further mathematical manipulations with the
values of the discounted total reward we arrive at the vector of optimal solutions z̄q for
each state in the decreasing MDP and the number x̄. Given these solutions to the linear
program, [5] then show that N := max{h, logc(ε · (1− c))}, where

c = exp
(

−x̄2

2 · (¯zmax + x̄+1)

)
and h = d ¯zmaxe, where ¯zmax is the difference between the maximum and minimum
of the zq of each state q in the MDP. Now computing the exact value of c and h is
a slightly technically complex process to implement, and due to time constraints and
some difficulties in implementing the total discounted reward objective, we omit im-
plementing an exact version of this algorithm. Rather, through smart approximation,
we can nevertheless compute an exponential upper bound on the value N which is still
practical.

Through elementary linear programming principles, it can be shown that c≤ e−e−p(||D||)

and h≤ ep(||D||), where ||D || is the bit encoding size of the MDP before Decreasing,
and p is a positive polynomial. To find the correct polynomial we use a theorem from
insert reference that for any linear program with n variables, if R is the encoding size
of any inequality that forms any one of the constraints of the LP, then if there is a feasi-
ble optimal solution to the LP, the rational feasible optimal solutions to the LP require
at most 4Rn2 bits to encode any rational coefficient in this optimal feasible solution.
Now recall that L is a set of linear inequalities formulated on a decreasing MDP. Thus,
we can say that n is the higher number of states in D ′, which is a cubic blowup of the
number of states in D (of the order O(n3)), while the largest inequality is simply a

18 Chapter 3. Algorithms to Implement

linear combination of the states in D ′, which means that the size of the inequality has
an upper-bound of the encoding size of D ′. Hence, by this logic, we can formulate a
rough algorithm that approximates the upper bound N, which we will explicitly detail
in Section 4.5. Just like all other algorithms implemented, the theoretical complexity
of Bounds is also polynomial because at the end of the day we have reduced the prob-
lem to several simple mathematical computations that will always run in polynomial
time.

Chapter 4

Implementation Details

This honours project is concerned with the implementation of the algorithms detailed
in Chapter 3. In this Chapter, we will go through the specific problems behind imple-
menting some of these algorithms and how we have dealt with them.

4.1 Overview of Technologies and Algorithms Used

These algorithms have been implemented in Python for several reasons. Firstly, Python
is a widely used language that is easy to understand. For the sake of reproducibility of
our algorithms, the use of Python allows one to focus on capturing the mathematical
subtleties and provides access to a wide range of libraries that one can use. For the
analysis of Markov Decision Processes we use the MDPToolbox library, which pro-
vides a set of functions that solve a range of problems for MDPs [7]. These functions
“solve” a Markov Decision Process by finding the optimal deterministic policy for
a specific optimization criterion. These optimization criterion define value functions
V π : S→ R that provides the expected “performance” of a policy at a given state s.
The MDP Solver aims to find an optimal policy such that Value Function is maximized
or minimized. The two key objectives that we use are the average infinite reward and
the total reward. The former maximizes (or minimize) the long-run average expected
reward of the MDP while the latter is focused on maximizing the total reward of the re-
sultant MDP. The latter will prove to be necessary when trying to evaluate reachability
objectives, which will be defined in this section.

4.1.1 Defining an MDP

We define an MDP using the formluation described in [7], which is more often used
for reinforcement learning and stochastic optimization. Translating it to our game
theoretic definitions is, however, trivial. In our implementation, we define an MDP
based on its states and actions.

Definition 8. (Taken from [7]) A MDP is a tuple (S,A, p,r) where

• S is the finite set of states describing the possible configurations, or states of the

19

20 Chapter 4. Implementation Details

system

• A is the set of possible actions or decisions controlling the interaction between
states

• p is a probability state transition function that takes two states s,s′ ∈ S and an
action a′ ∈ A and returns the probability p(s | s′,a′) which is the probability of
moving from state s′ to s by taking action a′.

• r is the reward function on the possible outgoing transitions from each state
r(s|s′,a′).

Notice the difference in definitions of MDPs from those traditionally defined in the
game theoretic context previously defined versus this new definition. First, the state
space has not been partitioned into control and probabilistic states. Now, every state is
a probabilistic and control state at the same time. Second, the reward function is now
defined on transitions and actions instead of states. This is not a significant problem,
however, because we can just assign the same reward value for all transitions out of
the state for a particular action. The main problem is to write methods that are able to
convert take an MDP of this form and partition it into probabilistic and control states.
We achieve this by modifying our state space to include a track record of actions. For
example, if we have an MDP with n > 0 states and m > 0 actions, then we can create
a new MDP with the following state set Snew:

{0,(0,0),(0,1), ...(0,m−1),1,(1,0),(1,1), ...,(1,m−1), ...,n,(n,0), ...,(n,m−1)}

We can thus partition Snew into the control Sc and probabilistic Sp states, where the
control states are {0,1, ...n} and probabilistic states are all the tuples in the new state
set. Under each action 0 < k ≤ m, every control state c ∈ Sc has only one outgoing
transition to the probabilistic state (c,k). Now since each probabilistic state is a tuple
in the format (state, action), these states only have one nontrivial set of transitions in
the probability matrix corresponding to the right action. For the transition matrices
that do not correspond to the right action, we just loop the probabilistic state back
onto itself with probability 1. To ensure that any iteration algorithm does not map
a probabilistic state to the wrong action, we make some modifications to the reward
structure of the MDP. The original reward matrix has a structure of (|S|, |A|), mapping
each state to the reward of entering the state using that action. The new reward matrix
has a similar structure, (|Snew|, |A|), and we populate it in the following manner: For
every state in Snew, if the state is a control state, then we set the reward to 0 for all
actions because we want any algorithm to be neutral to entering a control state. If
the state is a probabilistic state (c,k), however, then for all actions but k, we set the
reward opposite to the objective of the iteration algorithm. That is, if the objective is
to maximize the value function, then we set the reward to -1. Otherwise, we set the
reward to +1 as a way of disincentivizing the algorithm to choose to map the wrong
action to these states. For action k, we set the reward equal to the reward of entering
state c using action k in the original MDP. While this is a rather inelegant solution to
the problem, we must note that MDPToolbox is heavily limited in its functionality and
that this is the only way we can ensure that we can correctly implement the algorithms
discussed in Chapter 3. Note that this results in a quadratic blowup of states, taking an

4.2. Implementing Qual-MP 21

MDP with n states and return one with n(m+ 1) states, while preserving the number
of actions.

4.1.2 Relative Value Iteration vs. Modified Policy Iteration

MDPToolbox provides a wide variety of algorithms that are crucial to implementing
some of the algorithms we previously discussed. In this section we shall look at some
of these algorithms, how they operate, and some of their complexities. This will be
useful when we empirically analyze our own algorithms which utilize some of these
tools. Some of the algorithms we utilize for our implementations include relative value
iteration, generic value iteration, and policy iteration.

Relative Value Iteration is useful in our implementation for Qual-MP, where we check
if there exists a strategy such that the Mean-Payoff starting from the state is less than 0
(check line 2 of Algorithm 1). This algorithm deals with the infinite-horizon discounted
cost case, which means we are looking at the behaviour of the cost in the long-run,
while the discounted cost implies that rewards can be discounted as the number of
time steps increase. In our situation, we do not consider the discounted case as it is
not relevant to our study. As with generic value iteration, relative value iteration relies
on finding fixed points of the Bellman operator. The basic idea of the algorithm is to
start with a given error ε, a set of possible values and a start state and dynamically
update the value vector and optimal policy along the way until either the change in
game value between iterations is less than ε, or the maximum number of iterations has
been reached (for further details on the mathematics of the algorithm, refer to [13]).

Note, however, that Relative Value Iteration is not the only algorithm useful for solving
average reward problems. MDPToolbox also allows for using Modified Policy Iteration
for this purpose ([7]). While Policy Iteration has been shown to converge faster than
generic value iteration but it must also solve more complex linear programs and require
more multiplications per iteration, as shown in [13].

The computational complexity of the infinite-horizon average cost problem has also
been analysed in literature. As mentioned in [12], the infinite horizon, average cost
deterministic problem been proved to lie in the complexity class NC, and it has been
proven before that NC ⊆ P. However, this doesn’t imply that the algorithms are effi-
cient. As a matter of fact, a critical flaw behind both of these algorithms is that it has
been shown that they both suffer from the “curse of dimensionality”, in that the com-
plexity increases exponentially with size, specifically because the algorithm requires
evaluating the expectation for every state-action pair. To remedy this, researchers have
invented algorithms such as the “Empirical Relative Value Iteration” method which
provide a crude estimate of the Bellman Operator which converges at significantly
lower iterations with less normalized error (see [8] for more).

4.2 Implementing Qual-MP

The implementation of Algorithm 1 is fairly straightforward. Consider a random state
in the MDP sr.

22 Chapter 4. Implementation Details

First, we use Relative Value Iteration through MDPToolbox to get the optimal pol-
icy that minimizes the mean expected payoff (while the Toolbox usually maximizes the
value function, we can instead change maximization to minimization by simply chang-
ing the sign of the objective function). One minor drawback with this implementation,
although it is the only one out there, is that it can only compute ε-optimal values and
strategies. If, however, we set ε very close to 1 (something like 0.99), then we can
somewhat say that these strategies are simply optimal. Through Bellman’s “principle
of optimality”, we know that the optimal policy computed for any state is the same for
all states, which saves us significant computational cost. Of course, if the value at a
certain state (i.e. the actual mean payoff) is not less than zero, this means that there
doesn’t exist a strategy for the MDP which has a mean payoff less than zero start-
ing from that state. The procedure get-MD-min is thus unnecessary, because we have
already computed it to check for the strategy ρ.

Next, we take our computed strategy ρ and generate a Markov Chain, D(ρ) upon fixing
the strategy on the MDP. This is relatively simple because we simply create a transition
matrix consisting of rows for each state which are copied from the policy-suggested
action’s transition matrix. Thus, if the optimal policy that at state 2 we must choose
action 2, then our new probability matrix will replace its third row with the third row
from the second transition matrix from the MDP.

After that, we must extract the bottom strongly connected components of this resultant
Markov Chain. There are two ways to achieve this. One option is to find strongly
connected components using pre-existing algorithms such as Depth First Search, and
then verify that the probability of reaching these strongly connected components start-
ing from our state of choice is 1. While this strategy technically works, it is also
unnecessarily complicated. Finding all strongly connected components uses Depth
First Search, which runs on Big O Complexity of O(|V |), where |V | is the number
of states in the Markov Chain. Then we would check for each connected component
computed whether the probability of reaching that component in our Markov Chain is
one, which for larger state spaces, can require large amounts of multiplication. While
the DFS procedure is relatively efficient, we can skip altogether and instead compute
the steady-state probabilities of each state in the Markov Chain and from the list of
steady state probabilities, verify which ones are nonzero. Methods to calculate these
probabilities are discussed in Section 4.2.1. Once we have found the sink states/bottom
strongly connected components, then we try to maximize the probability of reaching
these states through our method Max-Reach which involves recreating a new MDP
and solving a different objective. We discuss the implementation of this procedure in
Section 4.2.2.

Once we have the reachability probabilities for each state, we extract the states that
have a probability greater than ε. While the algorithm in the paper asks to find the
states with probability = 1, since our method is not exact in nature (and no Python im-
plementations of an exact method exist), we stick to finding probabilities greater than
a given constant. This isn’t a major problem because if we set ε to be a number very
close to 1, then the method essentially works, although convergence of the iteration
method may take longer. This gives us set of states A′ which ensure that the mean
payoff objective is met starting from our initial state sr. To show the algorithm that

4.2. Implementing Qual-MP 23

we don’t have anymore interest in analyzing the behaviour of these states anymore and
so we set their reward to 0, and add s back into the set of unexplored vertices till we
encounter a configuration of rewards that puts s in its computed A′.

4.2.1 Computing Steady-State Probabilities

Since Python has no existing implementation, we devote this subsection on discussing
the theory of our implementation of computing steady state probabilities. There are
multiple ways of doing this, one of which involves calculating a system of equations.
This is formalized in [14]: Given a vector of steady state probabilities −→π and a transi-
tion matrix P we can provide the following constraints

−→
π =−→π P, and Σ

n
i=1πi = 1

and then solve a system of equations with these constraints and use the solution to
generate the steady state probabilities. Looking at the first constraint, it is easy to see
that we can reformulate the problem into one aimed at finding the eigenvalue of the
transition matrix, namely

0 =−→π P−−→π =⇒ −→π (P− I) =
−→
0 ,

where I is the identity matrix. Hence, this is a simple eigenvalue problem where 1 is
the eigenvalue. While a given transition matrix can have multiple eigenvalues, note
that it has been proved that every transition matrix will certainly have an eigenvalue of
1 (among others), and that all other eigenvalues will be less than 1. Those eigenvalues,
however, have no significant meaning. Hence, our algorithm to find the steady state
probabilities is formalized below:

Algorithm 4: Pseudo Code to Compute Steady State Probabilities of Transition
Matrix P
Data: Transition Matrix P
Result: Steady State Vector −→π

1 E,V = eig(PT)
2 E ′ = e | e ∈ E ∧ | e−1 |≤ 1×10−8

3 idx = E.index(E ′)
4
−→
π = V [idx]

5
−→
π = −→π /Σn

i=1πi

6 return −→π

Note that eig(M) is a predefined method which finds the eigenvalues E and eigenvec-
tors V of M. In the algorithm, we provided eig with the transpose of P because (why
is that). Furthermore, the additional property of lists called index is simply an inbuilt
property of lists which provides the index of E ′ in the list E. Finally note line 5, where
we normalize the steady state probability vector π because the eigenvector doesn’t tend
to sum to 1. Thus to force it to become probabilities, we simply divide it by its sum.

24 Chapter 4. Implementation Details

4.2.2 Implementing Max-Reach

There is much literature on the study of reachability, especially in works by Puterman
[13]. Puterman suggests a linear programming (LP) approach to Max-Reach, as well
as a computationally suitable approach using the Bellman Operator (what is known
today as Value Iteration). Value Iteration, however, can be very slow in the worst
case, requiring exponentially more iterations, and so instead we implement a linear
programming solution to this problem. This is achievable in Python using the PuLP
Library. PuLP is a high-level modelling Python library that provides users access to
commercial mixed integer linear programming solvers such as CPLEX and Gurobi
[11]. The solver can solve LPs involving 100s of variables and constraints in a matter
of seconds and is useful in our implementation of Max-Reach, especially in the face of
larger MDPs after the quadratic blowup in states discussed in earlier in this chapter. In
order to maximize the probability of reaching a set of target states A, we use what are
known as the Bellman Optimality Equations, which is an intuitive linear program that
resolves the objective of maximizing the probability to reach a target set of vertices
A. Consider an MDP G consisting of a set of vertices S = {s0,s1, ...,sn} which is
partitioned into mutually exclusive control and probabilistic state sets Sc and Sprob,
respectively. If we have one LP variable xi for each vertex si ∈ S, we can formulate the
following LP:

min
|S|

∑
i=0

xi

such that:

xk = 1 ∀k ∈ A
xi ≥ x j ∀i ∈ Sc∧ v j ∈ E(vi)

xi = ∑
v j∈E(vi)

qvi(v j) · x j ∀vi ∈ Sprob

xi ≥ 0 ∀i ∈ {1, ...,n}

where E(vi) denotes the outgoing edges from state vi and qvi(v j) denotes the prob-
ability of transitioning from vi to v j. This linear program is guaranteed to have an
optimal solution and the solution vector (x∗1,x

∗
2, ...,x

∗
n) is the vector of optimal reacha-

bility probabilities for the player in each state of the game.

4.3 Implementing Qual-CN

As can be seen from Algorithm 2, the most important sub-procedure in Qual-CN is to
implement Decreasing, which is meant to create a decreasing MDP that keep tracks
of the history of the counter values and other properties of runs in the MDP. The orig-
inal plan to create this decreasing MDP was create two procedure: a 4-Element and
5-Element procedure corresponding to tuples and lists respectively in the definition
of D ′ in Section 3.2.1. From there, we wished to use breadth first traversal to dynami-
cally add nodes and transitions for the directed graph corresponding to each action of

4.4. Implementing Solve-CN 25

the MDP. While such a plan is compatible with MDPToolbox, note that it is not com-
patible with the way we have defined MDPs earlier in this chapter. Since that is the
only way we can ensure that MDPToolbox is able to incorporate control and probabilis-
tic states, thus implementing Decreasing is a far too complex procedure that can be
accomplished in such a short space of time using the current Python Library. Thus, for
this project we will be unable to implement Decreasing, and by extension, Qual-CN.

Instead, what we propose is using Qual-MP to indirectly solve the Cover Negative
problem (qualitatively, of course). As discussed in Sec 3.2 there is a specific subclass
of MDPs for which strategies that satisfy the Mean Payoff Objective do not satisfy
the Cover Negative Objective. This is because the Mean Payoff only looks for states
which will have non-positive average rewards while Cover Negative is looking for
states which will almost surely encounter arbitrarily low counter values. So, one way
to solve this problem is to strengthen the inequality constraint we have in line 4 of
Algorithm 1. Instead of checking for a strategy with mean payoff being less than or
equal to 0 from a random state, we can instead check for a strategy with mean payoff
being stricly less than 0 from a random state. In the case of MDPs like that of Figure
??, this modified algorithm will return “A” as its average reward is simply 0. In order to
test the validity of this, we will run this modified version of Qual-MP on a well known
subclass of games represented as MDPs.

4.4 Implementing Solve-CN

Implementing Solve-CN is fairly straightforward. Since we haven’t been able to im-
plement Qual-CN, we simply execute Qual-MP first to find the set A of states that have
almost surely will have negative average rewards (over an infinite time horizon) and
then try to find the optimal policy that maximizes the probability of reaching A using
Max-Reach. We will test the accuracy of this modified method in Section 5.3.

4.5 Implementing Bounds

To implement the algorithm that calculates the bound for counter value above which
the termination values of the game are equivalent to those for the Cover Negative prob-
lem, we simply implement the mathematical expressions that were discussed in Section
3.4.2. Ideally the approach needed to get the exact value of the bounds would be to im-
plement the linear programs discussed in [5] and try to minimize the total discounted
reward problem for a fixed discount λ in the game, but we decide to opt for a simpler
approach of computing the upper bounds on the bound itself for sake of simplicity.
For an MDP D and an error value ε, it can be shown that the upper bound on N(ε) is
equivalent to the following expression:

N(ε)≤ 1+ exp(p(||D||)) · ln(ε−1)+(1+ p(||D||)) · exp(p(||D||))

Where p(·) is a polynomial upper bound on the solution of a linear program. Finding
this polynomial is easier due to to a theorem from [1]

26 Chapter 4. Implementation Details

Theorem 1. Consider an LP with n variables. If R is the maximum bit encoding size
of any inequality that forms any one of the constraints of the LP, then if there is as an
optimal solution to the LP, then there is a rational optimal feasible solution to the LP
such that the maximum number of bits needed to encode any rational coefficient in the
n-dimension vector of the optimal feasible solution is 4Rn2.

To better understand how we can use this to code Bounds let us look at the LP in
question, that was described in [5]:

zq ≤−x+ k+ zr ∀q ∈ Sc∧ (q,k,r) ∈ ∆

zq ≤−x+ ∑
(q,k,r)∈∆

P(q,k,r) · (k+ zr) ∀zq ∈ Sprob

x > 0

Looking at the second inequality which is basically a dot product of probabilities with
the vector of states, we can see there that the maximum size of this inequality would
be the number of probabilistic states in the MDP, which in the worst case would be at
least equal to the number of control states in the MDP based on the definition we have
created in Section 4.1.1. Thus an upper bound on the maximum bit encoding size of an
inequality can be R < ||D|| , and thus our polynomial is evidently p(||D||) = 4||D||n2,
thus N(ε) has been implemented as:

N(ε)≤ 1+ exp(4||D||n2) · ln(ε−1)+(1+4||D||n2) · exp(4||D||n2)

Implementing this is trivial through Python’s math operators and the getsizeof method
which returns the size of any object in bytes (which is ||D||). More interestingly, we
will investigate the effectiveness of this bound in Section 5.2.

Chapter 5

Experiments

5.1 Solvency Games

To illustrate the applications of the code implemented thus far and to experiment with
some of the algorithms implemented, we use a modified version of a well known model
of MDPs with widespread applications in mathematical finance known as a solvency
game. Solvency games are an extension of the classic gambler’s ruin problem. The
gambler’s ruin problem is defined as follows: consider a gambler who starts gambling
with some initial wealth i and then proceeds to make a sequence of bets. For each bet
the gambler wins with probability p and loses $1 with probability 1− p. The gambler
must quit when (s)he is broke [10] (wealth of 0). Plenty of analysis has been done
into this subfield of Markov Chains, specifically in optimal strategies and the expected
time taken for the player to go broke. Berger and Vazirani introduce an extension of
this model to incorporate Markov Decision Processes in something known as solvency
games. At every round of this game, the player has the ability to chose between playing
two different games each with different payoffs and chances of winning. While they
suggest using an infinite state MDP, with states corresponding to the gambler’s wealth
at each point, we can represent an infinite state MDP as a finite state OC-MDP, and
represent the wealth gained of the player at a certain time t as the total reward gained
at that time step. Such a style has been used before when investigating solvency games
with discounted reward structures [3]. Thus, we propose a slightly unique structure of
solvency games. As shown in Figure 5.1, the MDP we experiment with has 1 control
state (Play) represented by the blue box, and probabilistic states simulating the Games,
Outcomes, cashing-in, and one auxiliary state to increase the payoff of winning Game
A.

27

28 Chapter 5. Experiments

Play

Game
A

Game
B

aux

Exit

1

(+0)

(+0)

(+1)

(+1)

(-1)

(+0)
(+0)

1

1

Play Game A

Play Game B

Exit the Casino

Win

Lose

1

1/6

9/10

5/6

1/10

Figure 5.1: Variation on the standard model of solvency games that we use for our
experiments.

5.2 Evaluating the Convergence of Termination Proba-
bilities for varying values of N

5.2.1 Motivation

Consider the MDP from Figure 5.1. Regardless of the value of ε, notice that n = 7, and
even when we ignore the encoding size of n, this means that N(ε) will be impossible
to calculate as 4n2 alone is equal to 196 which is far too high an index to raise e to
the power of. Thus, we must come up with a heuristic, also known as a finite state
“approximation”, to empirically calculate the termination probabilities that is heavily
inspired from [9].

5.2.2 Methodology (Finite State Approximation)

Recall from Chapter 2 that termination probabilities are expressed in terms of config-
urations of the form (s, j) where s ∈ Sc is a control state and j ∈ Z is a counter value.
Note that the idea of a termination objective is to compute the maximal probability
of getting the counter value to go below 0 starting from a given configuration (s, j).
According to theory presented in [5], this can happen in one of two ways: either the
counter value hits 0 by enough transitions with rewards of -1, or we hit a counter value
N above which the probabilities are already defined through Solve-CN for each state
s. Thus, to maximize the termination probability for any configuration (s, j) we create
a new MDP which provides the option of terminating in both ways and then imple-
menting Max-Reach which will either try to get the counter value below 0 or reach N,
whichever is closer. Formally, we achieve this through the following:

Given an MDP D with probabilistic and control state sets Sp and Sc respectively and a

5.2. Evaluating the Convergence of Termination Probabilities for varying values of N29

transition set ∆. We can create a new MDP G by using configurations as states in G .
For a fixed value N we define a new MDP D ′ that simulates finding the termination
value for an MDP with states as configurations of the form (s, j) for each control state
s ∈ Sc and j ∈ {0, ...,N}. Formally this MDP is defined as follows:

D ′ = (S′, ↪→,(S′c,S
′
p),Prob′,N) where:

• S′c := (s, j) such that s ∈ Sc and j ∈ [0,N]

• S′p := (s, j) such that s ∈ Sp and j ∈ [0,N]∪ “TARGET”

• S′ := S′c∪S′p

The transition relation ↪→ is defined as follows:

• ∀(s, j) such that s ∈ Sc∧ (j = 0∨ j = N),

– (s,0) ↪→ “TARGET” if ∃v : s ↪→ v and r(v) =−1

– (s,N−1) ↪→ “TARGET” if ∃v : s ↪→ v and r(v) = 1

• ∀(s, j) such that s ∈ S∧ j ∈ [0,N)

– ∀s ∈ Sc,(s, j) ↪→ (v, j+ r(v)) ∀s ↪→ v and r(v)> 0

– ∀s ∈ Sp, rules above for ↪→ still apply, and also, Prob′((s, j) ↪→ (v, j+
r(v))) = Prob(s ↪→ v)

Note that we did not define the reward structure of D ′ as it is irrelevant to our study.
In order to find a suitable bound N for the problem such that for all counter values
j ≥ N, |Val(Term,(s, j))− vs| < ε, we create the MDP just described for increasing
values of N until we see the termination probabilities for the configurations beginning
to converge, as at that point we would have already visited the correct bound N for
this particular MDP and error ε. Recall from Section 4.5 that the key problem of
exponential bound N(ε) was that the index was far too high. Thus, for ε = 0.001, we
experiment with potential values of N following an exponential pattern and checking
for a value a coutner value j such that the variation in the termination probabilities for
control state “PLAY” for higher and higher counter values j is less than ε, because
by definition of an ε-optimal value, this will mean that we will have found said value.
According to the formula for N(ε) in Section 4.5, this should be an incredibly high
number and we verify this through our experiment.

5.2.3 Results

Table 5.1: ε-Optimal Probability of Termination for (“PLAY” ,1) after constructing an MDP
D ′ from the modified solvency game and cutting off configurations above N

N 1 2 7 20 54 148 203
P(Term) 0.565 0.652 0.825 0.909 0.981 0.991 0.99

For the purposes of this study, we chose to experiment with values of N = bexp(x)c for

30 Chapter 5. Experiments

x ∈ {0,1,2, ...,} till we notice convergence in the probability of termination starting
from control state “PLAY” with counter value 0 for increasingly higher counter values
till convergence is achieved (i.e. variation in ε-optimal probability is less then ε). This
means that we cutoff the MDP for values N ∈ {1,2,7,20,54, ...}. Figure 5.2 shows the
change in the ε-Optimal Probability of Termination starting from “PLAY” with counter
value 1 when we cut off the MDP for varying values of N, and Table 5.1 shows the
ε-optimal probabilities of termination themselves for varying values of N.

N

C
ha

ng
e

in
 P

ro
ba

bi
lit

y

0.01

0.05

0.1

0.5

0 100 200 300 400

P(Term("PLAY", 1)) Epsilon

Change in Ɛ-Optimal Termination Probability Starting from "PLAY" with
Counter Value 1 vs. N

Figure 5.2: ε-Optimal Probability of Termination vs. N

The results from Figure 5.2 and Table 5.1 show something rather interesting. We
see that after bounding D ′ with counter value N = e6 = 403, the variation in the ε-
optimal probability of termination rapidly decreases below ε = 0.01, indicating that
convergence has been achieved. This means that by the time the player’s wealth has
increased by approximately $403, they are able to play the cover negative strategy, im-
plying that the ε-optimal probability of termination is equivalent to the probability of
starting from “PLAY” from any total wealth and cover arbitrarily low counter values
(this is the “Cover Negative” Objective we have referred to earlier), and the probability
of termination is equivalent to that of Cover Negative being achieved. Compared to the
bound we devised in Section 4.5 this is drastically low implying that further investiga-
tion needs to be done into tightening the bound or implementing the appropriate linear
programming tools to solve the large system of inequalities discussed in [5] to find the
appropriate bound for N.

5.3. Using the Mean Payoff problem to solve the Quantitative Cover Negative Problem31

5.3 Using the Mean Payoff problem to solve the Quan-
titative Cover Negative Problem

5.3.1 Motivation

Recall from Section 3.2 that the set of strategies that satisfy the mean payoff problem
are not equivalent to the set of strategies that satisfy the cover negative problem because
there exist situations where an MDP satisfies the Mean Payoff objective even though
it doesn’t satisfy Cover Negative (an example is given in the relevant Section). That
situation, however, is unlikely to occur in usual scenarios. If in the general case it turns
out that the probabilities of the mean payoff problem are accurate, then that reduces the
difficulty of this problem significantly as Decreasing results in a quadratic blowup of
states which can cause significant memory problems for larger MDPs.

5.3.2 Methodology

In order to evaluate the accuracy of using Mean Payoff instead of Qual-CN for our
problem, we reconsider the modified version of the solvency games. Note that because
we were unable to implement Qual-CN we decided to implement Solve-CN by first
finding the states that satisfy the Mean Payoff problem with probability 1 and then
trying to maximize the probability of reaching those states through Max-Reach. If we
refer to Table 5.1, we see that the termination probabilities of the game are starting
to tend towards 1. Since [5] stipulates that for values above N ≥ e6, the ε-optimal
probabilities of satisfying the termination objective are equivalent to those of the Cover
Negative objective, this should mean that the values of the Cover Negative game should
be 1.

5.3.3 Results

Indeed, when we run our modified version of Solve-CN on the original MDP D , we
find that all of the states of the Solvency Game apart from “EXIT” are guaranteed to
satisfy the Mean Payoff outcome with probability 1 (that is, the average payoff per turn
on each state is guaranteed to be strictly lower than 0). Implementing Max-Reach on
this, of course, is trivial, as it tells us that each state (except “EXIT”) is guaranteed to
reach the subset consisting of itself with probability 1 (note that our converged termina-
tion probabilities are within ε= 0.01 of this, which further validates our methodology).
Furthermore, an interesting aspect to note is the lowered computational cost of running
this modified version of Qual-CN has on the MDP. Note that due to the number of states
here with net reward 0, imposing the strict requirement to have a negative mean payoff
meant that after the first iteration where the algorithm classed all states but “EXIT”
in the output set A, the rest of the iterations simply involved a trivial elimination of
the unexplored vertices as the new reward matrix was full of zeroes, implying that the
mean reward would have been 0 for every single state. If the requirement in Line 4
of Algorithm 1 required the mean payoff to be non-positive, then would have required
creating linear programs and computing steady state probabilities for 6 more iterations.
More importantly, the computed set A would also include the state “EXIT”” which is

32 Chapter 5. Experiments

not consistent with the termination problem because there is no way for the player to
start with Wealth 1, Exit the Game, and go broke. Thus, our implemented algorithm
for Solve-CN which uses a slightly modified version of Qual-MP is good enough to
approximate the optimal termination probability for a high enough counter value for
any commonly occurring MDP.

Chapter 6

Conclusion

This project offers the first known implementation of One Counter Markov Decision
Processes (OC-MDPs), and is the first to implement algorithms in Python that can pro-
vide ε-optimal approximations of the termination value (ε-optimal termination prob-
ability) of OC-MDPs. While the original objective was to implement algorithms that
can compute the termination probabilities for a given MDP and error ε for all counter
values and control states, due to the lack of fundamental methods needed to solve this
problem, we have had to develop most tools from ground up which has made the prob-
lem significantly more complicated than previously expected. This includes offering
the first known implementation of a One-Counter Markov Decision Process in Python,
computing steady state probabilities for a Markov Chain, solving the reachability prob-
lem for generic MDPs, and developing the first implementation for solving the Quali-
tative Mean Payoff problem1 (see Chapter 4 for full details). Thus we have computed
the ε-optimal termination probabilities for most MDPs (with the exception of a specific
type of MDP) and any configuration with a counter value above a number N. Since the
method for computing this bound N uses algorithms that are currently not supported
by the leading library for MDP analysis, we instead implement an approximation from
[5] that provides a crude upper bound for this counter value N using linear program-
ming concepts. For counter values lower than N, we implement a heuristic known
as a “finite state approximation” that borrows techniques used to analyze Quasi Birth
Death Processes (this is formally defined in Section 5.2.2). In Chapter 5, we justify
the minimal impact of the limited scope of our project and our heuristic for termina-
tion by experimenting our code on a known subclass of OC-MDPs known as Solvency
Games which has applications to mathematical finance and modelling the behaviour
of risk-averse investors. Our results show that crude upper bound that we devised in
Section 4.5 is not good enough according to our finite state approximation and that
further work must be done to implement the exact value N for a given error ε and finite
state MDP. Furthermore, we notice that the polynomial blowup of states to create the
a new MDP that tracks certain properties detailed in Section 3.2.1 is not necessary for
the average MDP (such as Solvency Games).

1Remember that this requires finding the set of vertices in the MDP for which the optimal probability
for the agent to have a non-positive average reward is 1.

33

34 Chapter 6. Conclusion

Nevertheless, this project leaves several open problems. An obvious open investigation
(and continuation of this project) is to successfully convert an MDP into a decreasing
MDP where every state has a finite path such that the total reward across that path is at
least -1. The intention behind this is to ensure that Solve-CN can be used on any MDP
to find the set of states that almost surely satisfy the Cover Negative Objective for any
initial counter value. Implementing and experimenting with some of the bounds on
the length of the finite path is another potential avenue for investigation. Furthermore,
as the experiments in Section 5.3.3 have shown, for a given error ε, the MDP’s bound
N(ε) such that the value of the termination and cover negative objectives are equivalent
is significantly lower compared to the upper bound computed in the Appendix of [5].
Thus, a potential extension of this project is to implement the required algorithms using
the discounted reward objective to solve the LPs, get the exact solution, and using that
to get the exact bound N(ε). Alternatively, further research can be done into exploring
if the polynomial used as an upper-bound for the encoding size of a solution to the
Linear Program can be lowered to dramatically lower the size of N(ε) and improve the
bound without having to implement algorithms for discounted total reward. Finally, to
complete implementation of the approximation algorithm, it is important to implement
the correct algorithm detailed in [5] to compute the termination values of the game for
configurations lower than counter value N. The algorithm requires constructing a MDP
D ′ slightly similar to what we have made for our Finite State Approximation; however,
there are some key modifications that could have been made, time permitting.

Bibliography

[1] Computational complexity. Linear Programming and its Applications, page
31–44.

[2] N. Berger, Nevin Kapur, L. Schulman, and V. Vazirani. Solvency Games. Elec-
tron. Colloquium Comput. Complex., 2008.

[3] Tomas Brazdil, Taolue Chen, Vojtěch Forejt, Petr Novotný, and Aistis Simaitis.
Solvency markov decision processes with interest. Foundations of Software Tech-
nology and Theoretical Computer Science, 2013.

[4] Tomáš Brázdil, Václav Brožek, and Kousha Etessami. One-Counter Stochastic
Games. arXiv:1009.5636 [cs], September 2010. arXiv: 1009.5636.

[5] Tomáš Brázdil, Václav Brožek, Kousha Etessami, and Antonı́n Kučera. Approx-
imating the Termination Value of One-Counter MDPs and Stochastic Games.
arXiv:1104.4978 [cs], July 2011. arXiv: 1104.4978.

[6] Tomáš Brázdil, Václav Brožek, Kousha Etessami, Antonı́n Kučera, and Dominik
Wojtczak. One-Counter Markov Decision Processes. arXiv:0904.2511 [cs],
September 2009. arXiv: 0904.2511.

[7] Iadine Chadès, Guillaume Chapron, Marie-Josée Cros, Frédérick Garcia, and
Régis Sabbadin. MDPtoolbox: a multi-platform toolbox to solve stochastic
dynamic programming problems. Ecography, 37(9):916–920, 2014. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ecog.00888.

[8] Abhishek Gupta, Rahul Jain, and Peter W. Glynn. An empirical algorithm for
relative value iteration for average-cost mdps. 2015 54th IEEE Conference on
Decision and Control (CDC), 2015.

[9] J. Lambert, B. Van Houdt, and C. Blondia. A policy iteration algorithm for
markov decision processes skip-free in one direction. Proceedings of the 2nd
International ICST Conference on Performance Evaluation Methodologies and
Tools, 2007.

[10] Tom Leighton and Ronitt Rubinfeld. Lecture notes in mathematics for computer
science, December 2006.

[11] Stuart Mitchell, Stuart Mitchell Consulting, and Iain Dunning. Pulp: A linear
programming toolkit for python, 2011.

35

36 Bibliography

[12] Christos H Papadimitrou and John N Tsitsiklis. The complexity of markov deci-
sion processes. Mathematics of Operations Research, 12(3), Aug 1987.

[13] Martin L. Puterman. The average reward criterion - multichain
and communicating models. In Markov Decision Processes, pages
441–491. John Wiley & Sons, Ltd, 1994. Section: 9 eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316887.ch9.

[14] Hamdy A. Taha. Operations research: an introduction. Pearson/Prentice Hall,
2011.

