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Abstract

Euler’s Foundations of differential calculus [7] is an influential text in which Euler
builds the concepts of differentials and derivatives through reasoning with infinitely
small and infinitely large numbers. However, mathematical writing standards have
changed since Euler’s time, and modern mathematicians have criticised Euler’s lack of
rigour, specifically his handling of infinitesimal numbers and his occasional missing
step or assumption. We investigate Euler’s reasoning from Foundations of differen-
tial calculus [7] by reformalising Euler’s proofs for the differentials of trigonometric
functions in the rigorous framework of Isabelle [[13] with nonstandard analysis [14].
In this exploration, we aim to formalise Euler’s proofs as close as possible to their
original reasoning, while also upholding modern standards of rigour through the use
of nonstandard analysis.
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Chapter 1

Introduction

This project explores findings from Euler’s Foundations of differential calculus [T
in the proof assistant Isabelle [[13] using nonstandard analysis [14]. We formalise a
set of proofs of trigonometric differentials from Chapter 6, “On the Differentiation
of Transcendental Functions” [/, Chapter 6]. In this text, Euler derives proofs for
these differentials through reasoning with infinitely small numbers. Therefore, we use
nonstandard analysis in Isabelle [9] as a framework for formalising these proofs.

Nonstandard analysis [14] is a rigorous type of analysis that includes all theorems from
real analysis and also involves reasoning with the set of hyperreal numbers. The set
of hyperreal numbers is rigorously constructed from the set of real numbers, and ad-
ditionally includes infinitesimals (infinitely small) and infinite numbers. Nonstandard
analysis is well supported by Isabelle [9]], and the use of the two together allows us
to transform Euler’s proofs into a rigorous setting. In this project, we focus on proofs
of the differentials of trigonometric equations, whose identities and properties are also
well formulated in Isabelle [[13]].

Understanding Euler’s reasoning is a main motivation for this project. Modern math-
ematicians have often criticised Euler’s lack of rigour, specifically his treatment of
infinitesimal quantities. Thus, we analyse how we must deviate from his reasoning
in order to formalise his proofs rigorously. We discuss some examples of criticism in
section In the conclusion of this report (5), we evaluate the feasibility of for-
malising Euler’s proofs and to what extent the criticisms against Euler’s treatment of
infinitesimal quantities are justified.

Additionally, we have chosen to mechanize a set of Euler’s proofs which have not
yet been formalised. In combination with the mechanised proofs from Frankovksa’s
undergraduate project [10], this work encompasses the majority of the trigonometric
differential proofs that Euler presents in Chapter 6 [7], with the exceptions of the dif-
ferentials of secant and cotangent and some other higher differentials.

Our goal in this project is to replicate Euler’s proofs as close as possible while uphold-
ing modern standards of rigour, and to explore the following questions:

* How can we interpret Euler’s meaning in his proof derivations?
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» To what extent do we have to adapt Euler’s proofs in Isabelle with nonstandard
analysis to adhere to modern standards of rigour?

We keep these questions in mind throughout our project, and with each proof, we
must make choices about how we interpret and represent Euler’s reasoning in Isabelle,
especially when a proof is not entirely replicable.

In the next chapter, we provide some contextual background to Euler’s Foundations
of differential calculus [[7]. We also give a brief introduction to nonstandard analysis
[14] in section[2.2]and further discuss our motivations for using this theory of analysis.
In section we discuss technicalities of working with Isabelle and we provide an
example proof to familiarise the reader with Isabelle syntax.

In Chapter 3, we define Euler’s notion of a differential in Isabelle, and use this defini-
tion to mechanise a set of first differential proofs from Euler’s Foundations of differen-
tial calculus [[7]. These proofs follow from where Frankovska’s previous undergrad-
uate project [10] stopped in Euler’s text, and we use her theorems for the differential
of arcsine to move forward in two of our proofs (see section [3.5]and [3.6). Our set of
mechanised proofs includes:

* sine,

e cosine,

* tangent,

e arccosine,
* arctangent.

We walk through interesting parts of the mechanisation process, discuss how we can
interpret Euler’s reasoning, and highlight where our proofs differ. In Chapter 4, we
provide two Isabelle interpretations of Euler’s higher differentials of sine, which Euler
presented but did not prove. To mechanise these results, we formalise a definition for
higher differentials in Isabelle (section and build a general form for the higher
differentials of sine, which we prove by induction. In the conclusion, we summarise
our work and evaluate how our project answers the questions given above.



Chapter 2

Background

2.1 Euler’s Foundations of differential calculus

Published in 1755, Euler’s Foundations of differential calculus, or Institutiones calculi
differentialis [[1] offers a basis for differential calculus through reasoning with infinites-
imals.

In this text [7], Euler discusses infinitely large and small numbers, differences and dif-
ferentials, and other foundational concepts which build his definition of the derivative.
Euler also presents sets of algebraic and transcendental functions and proves their dif-
ferentials and derivatives using ratios of vanishing increments or decrements. In this
project, we focus specifically on the differentials of trigonometric equations.

Formal mathematical writing conventions have changed since Euler’s time, and it is
sometimes difficult to interpret Euler’s meaning, both because of his prose and the fact
that he often omits algebraic steps and assumptions. Occasionally, he omits an entire
proof. For example, he presents the higher differentials of sine, but he is not explicit
about how he proves these differentials. In Chapter 4 of this paper (see[d.2)), we provide
two possible interpretations and mechanisations for both, and we provide a discussion
about his presentation of these differentials in section#.2.3.3]

2.1.1 Concepts and definitions

In Chapter 4 of Foundations of differential calculus, "On the Nature of Differentials of
Each Order" [7], Euler presents his definitions for differentials and derivatives using
the notions of infinitely-small differences.

Euler defines a differential dy for a function y = f(x) in paragraph 118 [7, p. 65]. Euler
defines dx as the infinitely-small difference or increment by which x increases, and dy
denotes the increment that y increases by when x becomes x 4 dx. He writes, "if we
substitute x -+ dx for x in the function y and we let y/ be the result, then dy = y/ —y, and
this is understood to be the first differential” [7, p. 65]. Then,

dy = f(x+dx) — f(x). (2.1)
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He uses this definition of the differential to introduce the derivative, which he defines
as the ratio %, or the value of the differential divided by dx [[7, p. 66]:

dy _ f(x+dx)—f(x)
- = 0 : (2.2)

In comparison, the modern definition of the derivative uses limits. Because Euler’s
calculations and his definitions of the differential and derivative involve the infinitely-
small number dx, we use nonstandard analysis [[14]] as a framework to formalise Euler’s
proofs, since it provides a rigorous theory for working with these numbers. We discuss
nonstandard analysis in more detail in section [2.2]

2.1.2 Criticisms

Part of what makes Euler’s reasoning so interesting is how strongly Euler’s methods
have been criticised by other mathematicians. Common criticisms include lack of
rigour due to missed assumptions or unjustified proof steps, and lack of discussion of
the consequences of reasoning with infinitely small numbers.

“He wants to use infinite numbers... as well as infinitesimals... to take their ratios, add,
subtract and multiply them as if they matter, and then throw them away when it suits
his purposes. It is exactly the behavior that Berkeley was trying to discourage and that
Cauchy and Weierstrass eventually repaired” [16].

This quote from Sandifer briefly explains some of the negative sentiment towards
Euler’s Foundations of differential calculus [[7]. While there are higher standards of
rigour in mathematics today, some literature suggests that even before Euler’s text was
published, there existed certain standards that Foundations of differential calculus [
would have broke. Berkeley targeted Newton and Leibniz for their methods of calcu-
lus and their use of infinitesimals [1]]. Although Euler’s text was not published at the
time, Berkeley specifically criticised the concept of infinitesimals (or fluxions as New-
ton named them), calling them "ghosts of departed quantities” in his satirical book The
Analyst: A Discourse Addressed to an Infidel Mathematician [2l]. Berkeley also crit-
icised infinitesimals by claiming mathematicians treated them in contradictory ways,
"at one stage as finite and at another as zero as convenience dictated" [18]]. In our
project, we pay close attention to how Euler manipulates infinitesimal numbers, and
how we must adapt his proofs in nonstandard analysis to maintain rigour.

Modern mathematicians have specifically criticised the way that Euler manipulated
infinite numbers, infinitesimals and series. As Dunham argues in Journey Through
Genius,

“Today, we recognize that Euler was not so precise in his use of the infinite as he should
have been. His belief that finitely generated patterns and formulas automatically extend
to the infinite case was more a matter of faith than science” [4]].

However, some argue that Euler did indeed understand these concerns, and that it is
not at all a matter of carelessness [5]. While Euler is often criticised for his treatment
of infinitesimal quantities and his definition of derivative fll—)yc, Edwards argues that “he
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makes no claim that this ratio can always be evaluated,” and “we should not readily
believe that he faked his way through calculus with a poor grasp of its basic concepts
and a casual attitude towards mathematical reasoning” [3]].

Investigating these proofs provides insight on to what extent Euler’s understanding, his
proofs, and his manipulation of the infinitesimal are consistent after making the correct
assumptions.

2.2 Nonstandard Analysis

In this section, we discuss our motivations for using nonstandard analysis to formalise
Euler’s proofs, and we briefly cover some technicalities of nonstandard analysis.

2.2.1 Motivations for using nonstandard analysis

Nonstandard analysis [[14] was developed by Abraham Robinson in the 1960s in or-
der to provide a formal and rigorous framework for working with infinitesimals and
infinitely-large numbers. In nonstandard analysis, infinitesimals and infinitely-large
numbers are contained in the set of hyperreal numbers, which also includes real num-
bers.

We use nonstandard analysis [[14] in this project because it is necessary to represent
Euler’s differentials as infinitesimals and reason with these infinitesimals, or ‘vanishing
quantities’ as Euler calls them [7]. We choose the theory of nonstandard analysis
over other theories for a few main reasons. Euler’s reasoning has been investigated in
nonstandard analysis before in previous works, which we discuss in the related work
section (2.4). Additionally, nonstandard analysis is well supported by Isabelle, and the
majority of crucial theorems that we need in this project have already been proven and
are contained in the NSA library of Isabelle [9]. Lastly, nonstandard analysis relies on
use of the transfer principle, a theorem that allows us to use all theorems of real analysis
within nonstandard analysis. We discuss the transfer principle within this section, in

2224

Most importantly, nonstandard analysis provides a rigorous framework for which we
can attempt to reconstruct Euler’s proofs, while following his reasoning with infinites-
imals as close as possible. This allows us to explore how his proofs must be adapted
in order to adhere to modern standard of rigour.

2.2.2 Technical definitions

In this section, we present the nonstandard analysis definitions required to understand
this report.

2.2.2.1 The set of hyperreal numbers

In nonstandard analysis, the hyperreal number set, denoted *RR, is constructed from the
real number set using the ultrapower construction [11, Chapter 3]. In the ultrapower
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construction, the set of hyperreal numbers is represented as a set of equivalence classes
on RN, where RY is the set of all sequences of real numbers.

If we consider a constant sequence r = (r,r,...) of the real number r, we map this
sequence to its equivalence class [r] = [(r,r,...)] to obtain the hyperreal counterpart of
r, denoted *r. Using this construction, we can map any real number to its hyperreal
counterpart in *R. Following from this, R is encompassed within *R, and we also
identify real number 0 and 1 with their hyperreal counterparts [0] and [1]. More details
can be found in Goldblatt’s Lectures on the Hyperreals [11].

Euler claims that “the infinitely small vanishes in comparison with the finite and hence
can be neglected” [7, Chapter 3]. We use the nonstandard-analysis definition of in-
finitesimal to allow reasoning with Euler’s infinitely-small numbers.

A hyperreal, nonzero number € is infinitesimal if it is less than all positive numbers in
R:
le| < rforallr € Ry (2.3)

A hyperreal number  is an infinitely large number or infinite number if it is greater
than all positive numbers in R:

|@| > rforallr € Ry (2.4)

Infinitely-large numbers are reciprocals of infinitesimals and vice-versa: %, the recip-
rocal of €, would be infinitely large and similarly %, the reciprocal of ® would be
infinitely small. Intuitively, we can think of an infinitesimal as the equivalence class of
a sequence in R that converges to zero, and an infinitely-large number as the equiva-
lence class of a sequence in R that diverges to oo [[11]. We denote the set of infinitesimal
numbers as *R¢ and the set of infinitely-large numbers as *R...

2.2.2.2 The infinitely-close relation

Euler uses ‘=" both to represent equality and to show a relation between two quantities
which differ only by an infinitesimal. We distinguish between these two cases in non-
standard analysis and say two quantities are infinitely close if they differ only by an
infinitesimal.

Formally, let b,c € *R. Then, we say that b is infinitely close to ¢, denoted b = ¢, if
b — c is infinitesimal. Note that this means that the real parts of b and c¢ are equal, but
there is an infinitesimal difference between them.

2.2.2.3 The standard part function

Nonstandard analysis relies on using the standard part function to bridge a relationship
between hyperreal and real numbers. The standard part function associates every finite
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hyperreal number x with a unique real number x( that x is infinitely-close to. In formal
notation, we write the standard part principle as follows.

Vx € "R — *Re. Ixg € R. x = xp (2.5)

2.2.2.4 The transfer principle and nonstandard extension

The transfer principle is a principle that allows us to deduce that certain statements
which are known to be true over the reals have counterparts which are true over the
hyperreal numbers.

To explain the transfer principle, we must first introduce the nonstandard analysis con-
cept of a x-transform. Every function in R has a corresponding *-transform, which is
an extension from R to *R for that function, and we obtain the *-transform of a func-
tion f by replacing f with *f. All relations also have a corresponding *-transform,
for example, some relation P becomes *P. We often drop the star signs for the most
common relations (like <, >, =).

Properties of functions and sets in R are translated to properties of the extensions of
these functions and sets in *R using the transfer principle. For example, the set of natu-
ral numbers N is extended using the transfer principle to its corresponding nonstandard
extension, the set of hypernatural numbers, denoted *N [[11]. Since N is closed under
addition and multiplication, by the transfer principle, *N is also closed under addition
and multiplication. In this project, we often use the transfer principle to show that
trigonometric identities that hold for R also hold for *R.

The transfer principle can translate theorems both ways. All statements about the reals
can be x-transformed and translated to statements about the hyperreals. However, not
all statements about the hyperreals can be transformed back into the reals; they must be
well-formed. For example, we cannot translate an expression that uses the infinitely-
close relation back into standard analysis, as there is no real equivalent. Goldblatt’s
Lectures on the Hyperreals [11] provides a complete discussion and formal presenta-
tion of the transfer principle.

Nonstandard extension from functions in R to *R is written in Isabelle using *f* f
for a function f. Also, we map a real variable x to its hyperreal counterpart in Isabelle
using star_of x. We discuss nonstandard analysis in Isabelle in more depth in section

232

2.3 Isabelle

2.3.1 Introduction to Isabelle/HOL and motivations

In this project, we use the generic proof assistant Isabelle/HOL (higher-order logic)
[13]. Isabelle supports automated and interactive theorem proving [[13]], and allows
the user to write mathematically-structured higher-order logic proofs in a style called
Isar [[17], where each proof step must be justified by explicitly named theorems or
definitions.
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Proof assistants, or interactive theorem provers, are concerned with helping users write
formal proofs. They accomplish this by providing an interface for the user to search for
and apply theorems in the construction of a proof. As the name suggests, automated
theorem proving is a kind of computer-assisted theorem proving where the prover at-
tempts to construct a proof with little user input.

In this project, we choose how to structure our proofs with Isar, so we primarily use
interactive theorem proving. However, Isabelle also provides automated theorem prov-
ing with the tool sledgehammer [3]. When invoked on a goal statement, sledgehammer
connects to external automatic theorem provers and attempts to find a proof using ex-
isting lemmas [3]].

Although there exist many other kinds of theorem provers, we have decided to use
Isabelle/HOL in this project for a few reasons. Since our goal is to formalise and
explore Euler’s reasoning, we must be able to choose how we structure and construct
our proofs. Isar allows us to make these choices. Isabelle also contains a library for
trigonometric definitions and equations, and using this library (while extending these
lemmas to nonstandard analysis) will save the time it would otherwise take to formulate
them. Lastly, Isabelle supports nonstandard analysis [14], and many essential theorems
and definitions that we need have already been proven, and they are contained in the
HOL/Nonstandard-Analysis library in Isabelle [9].

2.3.2 Using nonstandard analysis in Isabelle

In this section, we briefly present some of the most common syntax we use in Isabelle
with nonstandard analysis.

Isabelle is simply typed, so we must be explicit with variable typing. The Isabelle types
that we use in this project are hypreal for the set of hyperreal numbers, real for set
of real numbers, and nat for the natural numbers. We assign the type of hyperreal
numbers to variable a with a: :hypreal, and we often fix the types of variables in
lemma statements like so:

fixes dx::hypreal and x::real

Other sets that we use in this project are the set of infinitesimal numbers, Infinitesimal
and HFinite, for the set of finite (not infinitely-large) quantites. We denote that a
variable x is infinitesimal in Isabelle using x € Infinitesimal.

Another piece of syntax that we use is *f£*, which converts a function to its corre-
sponding *-transform:

*f* 11 ('a ='b) ="'a star = 'b star
For example, we would use *f* and star_of to convert the function sinx to its hy-

perreal function counterpart with ( *f* sin) (star_of x), where if x is of type real,
star_of xis of type hyperreal.

A powerful Isabelle rule for nonstandard analysis is the transfer rule, which imple-
ments the transfer principle that we presented in[2.2] If we have an Isabelle lemma that
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holds for the reals, we prove the corresponding lemma in nonstandard analysis using
apply (transfer). An example of this is for the hyperreal counterpart of the cosine
addition formula, which we write in order to mechanise Euler’s proof of the differential
of cosx in section 3.3

lemma STAR_cos_add:
"A(a::hypreal) b. ( *f* cos) (a + b) =
( *f* cos) a *( *f* cos) b - ( *f* sin) a * ( *f* sin) b"
apply (transfer) by (simp add: cos_add)

The transfer translates the nonstandard goal statement into its standard analysis
counterpart, which it requires to be proven. Here, simp is a simplification proof method
that adds the lemma cos_add, the cosine addition formula in the reals, to the set of the-
orems used to complete the proof.

2.3.3 Structured Isar proofs

Isar [17] allows us to construct readable proofs that look structurally similar to pen
and paper proofs, where we can choose each step (and the methods to each step) of our
reasoning.

To illustrate both how we use Isar and how we use the syntax presented in the previous
section [2.3.2] we present an example proof, which shows that the differential of f(x)
is infinitely-close to zero, given that dx is infinitesimal and the function is continuous.

lemma differential_ infinitesimal:
fixes dx::hypreal
assumes "dx € Infinitesimal" "isNSCont f x"
shows "differential f x dx €Infinitesimal"

proof -
have "differential f x dx =
(*f* f) (star_of x + dx) - (*f* f) (star_of x)"
using differential_def by auto
also
have " (*f* f) (star_of x + dx) - (*f* f) (star_of x) =
(*f£* f) (star_of x) - (*f* £f) (star_of x)"
by (metis approx_diff approx_sym assms(l) assms(2) ... )
finally

show "differential f x dx € Infinitesimal"
by (simp add: mem_ infmal_ iff)
ged

The statement consists of the title of the lemma, the fixes keyword where we fix the
types of our variables, the assumes keyword that precedes the assumptions we have
made, and the shows keyword that defines what we aim to prove.

Here, we have assumed that dx is infinitesimal, and that the function f(x) is continuous
in nonstandard analysis, or isNSCont f x in Isabelle. The equivalent statement for
expressing that a function f(x) is continuous in the reals is isCont f x.
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The proof keyword signifies the start of a new Isar proof block. The have keywords
precede the expression that we have at that step in the proof, and each have statement
must be justified in order to move onto the next step. We can justify a have statement
with the using keyword followed by some facts or lemmas, and then a by keyword
followed by some proof method. An example of this is after the first have statement.
We prove that we have this expression using the definition differential (we attach
_def to a definition to use it), and by auto signifies that the method auto proves this
statement.

After this line, the keyword also signifies that we have started a transitive chain. This
proof pattern looks similar to many pen and paper proofs, where we have a = b [proof],
also have b = c [proof] and finally have a = d [proof] [[1/]. There are other proof
patterns and keywords aside from also, like then and moreover which are explained
in the Isar manual [[17].

Also, it is not always necessary to use the keyword using. In the second have state-
ment, we invoked automated proof tool sledgehammer [3]] which gave us keyword by
and long string of theorems in the parenthesis, which are the theorems that prove the
statement. In this sledgehammer proof, metis is the proof method. Lastly, the show
statement must match the goal statement that we are trying to prove, and ged signifies
the end of the completed proof.

This lemma shows that the differential of a function f(x) is infinitesimal, given that
the function is continuous and dx is infinitesimal. The proof follows from the fact
that since dx is infinitesimal, f(x -+ dx) is infinitely close to f(x) by (nonstandard)
continuity, therefore the definition of the differential f(x+ dx) — f(x) is infinitely close
to f(x) — f(x), and thus the differential is infinitesimal. Later, we use this result to show
that two differentials which are continuous on the same interval of x are infinitely close
in our mechanised proofs of the differential of arccosx and arctanx in[3.5]and [3.6]

2.4 Related work

In this section, we consider previous work in nonstandard analysis on Euler’s mathe-
matical works, specifically his pre-calculus text Introductio in analysin infinitorum [6]]
and our focus text Foundations of differential calculus (7).

2.4.1 Pen and paper proofs

In ‘Higher Trigonometry, Hyperreal Numbers, and Euler’s Analysis of Infinites’ [12],
McKinzie and Tuckey use nonstandard analysis to rehabilitate findings from Euler’s
Introductio in analysin infinitorum [6] in a rigourous setting, specifically the binomial
series and its various extensions to the series of the sine, cosine, and logarithm. Eu-
ler’s Introductio in analysin infinitorum [6]] was published prior to our text of focus,
Foundations of differential calculus (7], and Euler often references his results from this
previous text for his proofs in the latter text. In Introductio in analysin infinitorum (6],
Euler derives the series of sine and cosine, which he uses in Foundations of differential
calculus [[7] for his proofs of the differential of sine, cosine, and tangent.
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In McKinzie and Tuckey’s analysis of Euler’s calculations, they investigate his use of
infinitesimal and infinite quantities and explore whether “neglecting infinitely many
infinitesimals leads to a negligible difference in an infinite sum” using determinacy of
infinite sequences [12]. Overall, they find that Euler’s treatment of infinitesimals is
consistent when rehabilitated to a rigourous framework. They argue against criticisms
of Euler, and explain that by focusing on the "underlying mathematics", they find that
Euler’s calculations are "far from reckless and nonsensical” [[12]].

To compare our approaches, McKinzie and Tuckey [12] use pen and paper to replicate
Euler’s proofs in Introductio in analysin infinitorum [6], whereas we use Isabelle to
mechanise this process. Like McKinzie and Tuckey, we also use nonstandard analysis
to frame Euler’s work in a rigorous setting. On pen and paper, McKinzie and Tuckey
also rigorously prove a few results from Euler’s Introductio in analysin infinitorum,
specifically, that sin(6) ~ 6 and cos(8) ~ 1 when 6 is infinitesimal. We use previously
proven Isabelle lemmas [8]] for these results in our proof mechanisations of the differ-
entials of sinx, cosx, and tanx. McKinzie and Tuckey’s work suggests that we will
arrive at similar conclusions, and ultimately find that Euler’s treatment of infinitesimal
differentials is consistent when reformalised rigorously.

2.4.2 Other mechanisations of Euler’s work

Previous projects on Foundations of differential calculus [7]], such as the thesis ‘Ex-
ploring Euler’s Foundations of Differential Calculus in Isabelle/HOL using Nonstan-
dard Analysis’ by Rockel [[15] and an undergraduate project by Frankovska [[10] with
this same title have also investigated Euler’s reasoning and formalised a few of Euler’s
proofs using Isabelle [13] and nonstandard analysis [14].

Rockel’s exploration [[15] focuses on the set of logarithmic functions and their deriva-
tives, and Rockel succeeds for the most part in formalising Euler’s arguments rigor-
ously. She investigates paragraphs 180 to 183 [7]], Euler’s proofs for the differentials
of the logarithm function, and she finds that these proofs can indeed be reproduced
consistently in Isabelle with nonstandard analysis. In her exploration, Rockel finds
many ‘skipped steps’ and ‘hidden assumptions’ in Euler’s proofs [[15]], many of which
are similar to the missing assumptions that we find in our own project, specifically
assumptions of bounds on variable x to match domains of functions and ensure conti-
nuity. In her analysis of Euler’s higher differentials of the logarithm, she mechanises
Euler’s proof for the first derivative but is unable to directly follow Euler’s reasoning
for the higher derivatives of this function, possibly due to time constraints. In the case
of the first derivative, Rockel provides an Isabelle proof that is still within scope of
methods that Euler could have used at the time [[L5]].

Frankovska’s exploration [10] focuses on Euler’s proofs of geometric series and the
derivative of arcsin. Like Rockel and ourselves, she uses nonstandard analysis as a
rigourous framework for formalising Euler’s proofs. Using Isabelle and nonstandard
analysis, Frankovska provides a proof for the polynomial sum series for different case
values of x, with the exception of x < 1 and x ~ 1, which she showed may not be solv-
able. Frankovska also attempts to mechanise Euler’s proof of the derivative of arcsin,
but is unable to follow Euler’s approach or obtain his result as one of Euler’s steps
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involves dividing by an infinitesimal. She instead provides two alternative interpreta-
tions in Isabelle. Additionally, Frankovska provides a proof for the higher derivatives
of arcsin, which Euler presented in his text but did not prove. We find ourselves in a
similar situation in this project for the higher differentials of sinx (see[.2)), and we also
provide our own proof derivation. In this project, we directly build from Frankovska’s
exploration by importing her Isabelle proof scripts. We use her lemma for the differen-
tial of arcsin in two of our own proofs, the differentials of arccos and arctan, as Euler
proves these differentials using his previous result for the differential of arcsin.

In both Rockel’s thesis [[15] and Frankovska’s undergraduate project [10], the main
problem they face in formalising Euler’s reasoning occurs when Euler divides by an
infinitesimal quantity, which does not necessarily preserve the infinitely-close relation.
This implies that the main difficulties we might face in this project relate to preserving
the infinitely-close relation, which is indeed the case.



Chapter 3

Mechanisation of first differential
proofs

In this chapter, we present our Isabelle mechanisations for our first differential proofs
from Euler’s Foundations of differential calculus. Within these sections, we discuss
how we can interpret Euler’s prose, and what difficulties we face in doing so. We also
analyse where our Isabelle proof mechanisations differ from Euler’s pen and paper
proofs, and why this might be the case, specifically in the context of rigour and Euler’s
treatment of infinitesimal quantities.

3.1 Defining differentials in Isabelle

First, we formulate the general notion of a first differential in Isabelle. As we presented
in[2.1.1} Euler defines the differential for a function y = f(x) as dy = f(x+dx) — f(x),
where dx is an infinitesimal.

In Isabelle, we have formalisation choices on the kinds of types that we give our vari-
able x and function f, but otherwise our definition of the differential in Isabelle looks
similar to Euler’s definition. Due to the constraints of nonstandard analysis, the types
that we use in our lemma statements can affect the steps that we must take in our
proofs, since we cannot necessarily manipulate (divide and multiply) hyperreal num-
bers the same way that we can manipulate real numbers. We define the differential of
a function in Isabelle as follows:

definition differential ::
"(real = real) = real = hypreal = hypreal"
where
"differential f x dx =
(*f* f) (star_of x + dx) - (*f* f) (star_of x)"

This definition takes three inputs, a function f of type real = real, a variable x

of type real, and an infinitesimal dx of type hypreal. On the right-hand side, we
transfer f into *f£*, and map x to its hyperreal counterpart using star_of.

13
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In this chapter, we use this definition to mechanise the first differentials of sinx and
cosx, which follow similar proof structures. We follow with a mechanisation of Eu-
ler’s first proof of the differential of tanx. Then, we write Isabelle mechanisations for
Euler’s proofs of the differential of arccosx and arctanx, which both use Frankovska’s
proven lemma for the first differential of arcsinx. Lastly, we provide our mechanisa-
tion for Euler’s second proof of the differential of tanx, which Euler proves using the
differential of arctanx.

3.2 Mechanising the first differential of sinx

Euler presents a complete proof for the differential of sinx in paragraph 201 of Chapter
6, "On the Differentiation of Transcendental Functions" [7]. He writes, "let y = sinx
and replace x by x 4 dx so that y becomes y + dx." Then, y + dy = sin(x + dx) and

dy = sin(x + dx) — sinx. (3.1)

Next, Euler applies the sine angle addition formula to show
sin(x + dx) = sinx cosdx + cosx sindx. (3.2)

To simplify this expression further, Euler references his previous work, Introductio in
analysin infinitorum (6], where he proves that sindx = dx and cosdx = 1 when we
expand the series and "exclude the vanishing terms" [7]]. Euler uses the symbol for
equality, =, instead of the infinitely-close relation, ~. In our Isabelle proof, we must
make a distinction between the two relations, and from this point onward in our proof,
we use the infinitely-close relation to represent Euler’s ‘=". Using these results, Euler
simplifies to

sin(x + dx) = sinx+ dx cosx. (3.3)

Finally, Euler substitutes (3.3) into equation (3.1)) to obtain the final equation for the
differential of sine:
dy = dx cosx. (3.4)

Translating this proof into Isabelle is relatively straightforward, but there are a few
additional steps we must do in our Isabelle proof to follow Euler’s reasoning.

To follow obtain (3.2]), we import a theory file from Frankovska’s undergraduate project
[10] that provides a lemma for the nonstandard sine addition formula, which Frankovksa
used for her proof mechanisation of the derivatives of arcsinx [10].

Additionally, in nonstandard analysis we cannot use the equality symbol like Euler
does for sindx = dx and cosdx = 1. Euler uses the equality symbol both for equality
and when he wants to say that two expressions differ by an infinitesimal. The equalities
only hold in these two expressions when dx = 0, and in our case the differential dx is
a non-zero infinitesimal.

We use lemmas that prove sindx ~ dx and cosdx =~ 1, previously proven by Fleuriot
[8], titled STAR _sin_Infinitesimal and STAR_cos_Infinitesimal respectively.
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Once we apply these lemmas to simplify equation (3.2), we use the infinitely-close
relation for the remainder of the proof.

We must make these distinctions between the equality relation and the infinitely-close
relation in Isabelle, both because our goal is to follow Euler’s reasoning in a rigorous
setting and because Isabelle asserts correctness.

Once we have lemmas for the (nonstandard) sine addition formula and the results that
sindx ~ dx and cosdx ~ 1, we can follow Euler’s reasoning to build an Isabelle proof
for this differential. The lemma statement for our mechanisation of the differential of
sine is as follows:

lemma differential_sin:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows "differential sin x dx = (*f£* cos) (star_of x)*dx"

The rest of the proof can be found in appendix but we draw attention to some
details in this statement. We always explicitly assume that dx is infinitesimal in any
lemma statement for a differential proof. This is implicit in Euler’s reasoning through-
out all of his proofs, wherever he uses dx. When he defines the first differential of a
function in Chapter 6 "On the Nature of Differentials of Each Order", Euler states that
"from now on, dx will be the infinitely small difference by which x is understood to
increase" [[7, Chapter 6].

Overall, it is relatively simple to interpret Euler’s reasoning in his proof here. We do
not have to diverge from his reasoning at all to formalise this proof, though our Isabelle
proof does look different since we explicitly use the infinitely-close relation. The use
of the infinitely-close relation is implicit in Euler’s reasoning. He writes, "when we
exclude the vanishing terms" of the series of sindx and cosdx, "we have cosdx = 1
and sindx = dx" [7, p. 116]. This implies that he is aware that both cosdx and 1,
and sindx and dx differ by an infinitesimal, or in his words, "vanishing terms", and he
simply uses the same symbol for equality and the infinitely-close relation.

This lemma, differential_sin, completes our mechanisation of Euler’s proof of the
first differential of sine.

3.3 Mechanising the first differential of cosx

In paragraph 202 of Chapter 6, "On the Differentiation of Transcendental Functions"
[7], Euler proves the first differential of y = cosx. He follows the same steps from his
proof of the first differential of sinx, where he substitutes x with x + dx to obtain

y+dy = cos(x+dx). (3.5)
Next, Euler presents the cosine addition formula,

cos(x +dx) = cosx cosdx — sinx sindx. (3.6)
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Euler simplifies (3.5 using (3.6) and the results that cosdx ~ 1 and sindx = dx to
obtain
y+dy = cosx —dx sindx. (3.7)

Following from this,
dy = dx sinx. (3.8)

We follow the overall structure that Euler presents here in Isabelle, with the exception
that we subtract y, or cosx, from cos(x + dx) at the beginning of our proof mechanisa-
tion, since our differential definition does this for us, whereas Euler subtracts y in
the last step after equation (3.7). The process of mechanising this proof is similar to
the process we used previously for the first differential of sinx in

We construct a lemma for the nonstandard version of the cosine addition formula,
which has not been previously formulated, using the transfer rule along with the
pre-existing cosine addition formula for the reals. This is also the example lemma that

we gave in[2.3.2]

The rest of the proof in Isabelle follows the same reasoning as Euler’s proof, with
the exception that when we simplify the cosine addition expression using Fleuriot’s
lemmas [8] for sindx ~ dx and cosdx ~ 1, we switch to using the infinitely-close
relation.

Like with our mechanisation of Euler’s proof of the differential of sinx (3.2)), we do
not have to overly adapt Euler’s reasoning to maintain rigour. The only difference
between our proof and Euler’s is that we explicitly use the infinitely-close relation.
This concludes our mechanisation of the first differential of cosine, which can be found
in full in appendix

3.4 A first mechanisation of the first differential of tanx

In this section, we provide an Isabelle mechanisation of Euler’s first proof of the differ-
ential of tanx from paragraph 203 of Chapter 6, "On the Differentiation of Transcen-
dental Functions" [7]. Euler begins with y = tanx and thus dy = tan(x + dx) — tanx.
Then, he presents the tanx addition formula,

tandx + tandx
1 —tanx tandx’

tan(x +dx) = (3.9)
Since he is using the definition of the differential, dy = tan(x + dx) — tanx, Euler sub-
tracts tanx from this expression and skips the intermediate algebraic steps to obtain,

dy = tandx(1+ tanx tanx). (3.10)
1 —tanx tandx

To simplify this expression, Euler writes that "when dx vanishes, the tangent is equal
to the arc itself, so that tandx = dx, and the denominator 1 — dxtanx reduces to unity"
[7]. Then, dy = dx(1+tan?(x)), and since sec?(x) = —

cos2(x)’

dx
dy=——5—. 3.11
Y cos?(x) G-11)
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We begin our mechanisation in Isabelle with the following lemma:

lemma differential_tan:
fixes dx::hypreal
assumes "dx € Infinitesimal" "cos x # 0"
shows "differential tan x dx A dx / ((*f* cos) (star_of x))2"

It is important to note here that we have added the assumption that cosx # 0, which
Euler did not mention in his proof. We must add this assumption, since tanx and thus
its differential are undefined when cosx = 0.

3.4.1 Preliminary lemmas

There are a few lemmas that we must prove in order to follow Euler’s proof of the
differential of tanx. Firstly, we extend the tanx function to nonstandard analysis, which
was not already defined in the HOL/Nonstandard-Analysis library [9]. We also define
the (nonstandard) tangent angle addition formula in Isabelle.

lemma STAR_tan_def:
"(*f* tan) = (Ax. (*f* sin) x / (*f* cos) x)"

lemma STAR_tan_add:
"A(x::hypreal) y. [(*£* cos) x # 0, (*f* cos) y # 0,
(*f* cos) (x +y) # 0 | =
(*f* tan) (x + y) = ((*f* tan) x + (*f* tan) y) /
(1 - (*£* tan) x * (*f£* tan) y)"

In order to use our lemma STAR_tan_add, we must match the three assumptions that
cosx # 0, cosy # 0, and cos(x+y) # 0. In our subsequent proof, the y here becomes
our dx.

We have already assumed that cosx # 0, but we must also prove that cosdx # 0 and
cos(x 4+ dx) # 0. We know that cosdx # 0 holds as dx is a non-zero infinitesimal,
and we prove this in Isabelle using our assumption that dx € Infinitesimal and the
result that cosdx =~ 1. We prove the other assumption, cos(x+ dx) # 0, using the cosine
addition formula and the cosdx ~ 1 and sindx ~ dx rules.

Euler also writes that tandx = dx, though he means that they are infinitely close. We
know this equality cannot hold. The equality tandx = dx is only true when the numer-
ator sindx = dx and the denominator cosdx = 1, and the latter two equalities only hold
when dx = 0. Since dx is a non-zero infinitesimal, we have that tandx is infinitely-
close to dx, as sindx ~ dx and cosdx = 1. This fact, that tandx =~ dx, is also available
in Isabelle from the lemma STAR_tan_Infinitesimal [8].

Additionally, we prove that the denominator 1 — tanx tandx is non-zero, in order to
simplify fractions when we subtract tanx from tan(x + dx). This follows from our
assumption that cosx # 0 and tandx =~ dx.
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Lastly, we must prove the trigonometric identity,

1
1 +tan’(x) = ———.
+tan”(x) cos2(x)
We first prove that this holds in the reals, in a lemma titled tan_cos_squared. Then,
we apply the transfer rule to obtain the corresponding nonstandard lemma. Both
lemmas are included in appendix [C]

Although the number of preliminary lemmas we had to write makes our mechanised
proof look complicated in comparison to Euler’s short proof of this differential, we
argue this does not necessary imply negligence on Euler’s behalf. The necessary as-
sumption in this proof that Euler did not explicitly state is the assumption that cosx # 0,
which is implicit for continuity of tanx. The other assumption, cosdx # 0, follows
from his reasoning that cosdx ~ 1, and the last statement, cos(x + dx) # 0, follows
from both of these prior assumptions.

3.4.2 Continuing our first proof of the differential of tanx

We return to our differential of tanx proof mechanisation, where we apply the (nonstan-
dard) tangent angle addition formula and simplify to obtain equation (3.10) in Isabelle.

have "differential tan x dx =
(*£* tan) dx * (1 + (*f* tan) (star_of x)* (*f* tan) (star_of x)) /
(1 = (*£* tan) (star_of x)*(*f* tan) dx)"

At this point in his proof, Euler writes that the denominator "reduces to unity" since
"tandx = dx" [[7, p. 118]. Since we know that true equality does not hold here, and
that actually tandx ~ dx, we instead prove that the denominator is infinitely close to 1
using Isabelle’s sledgehammer tool for automatically discovering proofs:

have d_unity: "(1 - (*f* tan) (star_of x)* (*f* tan) (dx)) ~1"
by (metis ... )

Sledgehammer finds a proof using proof method metis with various NSA lemmas.

The next step in Euler’s proof is to show dy = dx(1 +tan?x). Since we have proven
the denominator is infinitely close to 1, we must now prove that the numerator, which
is currently tandx(1 4+ tan®x), can be rewritten as infinitely close to dx(1+tanx). We
cannot necessarily just substitute dx for tandx, as this would not preserve the infinitely-
close relation. We use the NSA lemma, approx_multl, which proves that if a ~ b and
c 1s finite, then we have axc ~ bx*c:

NSA.approx_multl: a ®b = ¢ € HFinite =—a * ¢ &= b * c

We apply this lemma to prove that the old numerator tandx(1 + tan? x) is infinitely-
close to the new numerator, dx (1 + tan®x), with use of the fact that tandx ~ dx and by
proving (1+tan?x) is HFinite.

Although we have now proven that the numerator can be rewritten as dx (1 + tan”x)
and that the denominator is infinitely-close to 1, we cannot directly substitute in these
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results like we would in a pen and paper proof. To preserve the infinitely-close relation,
we use another NSA theorem, approx_mult_HFinite, which proves that if a ~ b and
¢ ~ d, and both ¢ and d are finite, then we have axc ~ b *d.

NSA.approx_mult_HFinite: a ®b = ¢ =~ d =
b € HFinite =d €& HFinite =a *¢c = b * d

In our case, a = b is the proven statement that the old numerator is infinitely-close to
the new numerator,
tandx(1 +tan?x) ~ dx (1 + tan®x).

Then, the ¢ ~ d statement is,

inverse(1+ tanx tandx) = inversel.

In order to use this lemma, we prove that the inverse of our new numerator is HFinite
using sledgehammer, and the inverse of our new denominator 1, which is 1, is also
HFinite. Therefore, we have proven that

tandx(1 + tan® x) * inverse(1 + tanx tandx) ~ dx (1 + tan®x).

From this, it follows that the differential is infinitely-close to the new expression:

have
"differential tan x dx =
dx*(1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))"

We finish the proof by rewriting the left hand side of the above statement with our (non-

standard) trigonometric identity lemma from [3.4.1| that proves 1 + tan®(x) = m

This concludes our Isabelle proof.

Overall, we find that while we had to add extra steps in this proof to preserve the
infinitely-close relation, like proving that expressions are finite to apply NSA theorems
for multiplication and substitution, Euler’s reasoning still holds when reapplied in this
rigorous setting.

3.5 Mechanising the first differential of arccosx

In this section, we build from Frankovska’s project [10] by using her proof of the
differential of arcsinx in our proof mechanisation. In paragraph 196, Euler derives the
differential of y = arccosx [7, p. 111]. His reasoning is somewhat difficult to follow
due to his presentation of various trigonometric identities, and the fact that he uses
abstractions in this proof for dy and dp.

Euler writes "Suppose p is any function of x and that y is the arc whose sine is p, that
i1s, y = arcsinp [7, p. 111]. From his previous proof of the differential of arcsin, we
have the differential of y,
d
dy= 2L __ (3.12)
1—p?
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Euler writes that since "4/1 — p? expresses the cosine of that same arc, we can find the
differential of an arc whose cosine is given" [7, p. 195].

He continues with "if y = arccosx, then the sine of this arc is equal to v/1 — x2, so that
y = arcsin(v'1 —x2)" [, p. 195].

Then, Euler lets p = v/1 — x2, and therefore

—xdx
dp = ——. 3.13
P= (3.13)
Finally, from equations lb 1| and /1 — p~ = x, we have
—d.
dy = —= (3.14)

V1—x2

There are a few things we note in Euler’s proof here. Firstly, Euler obtains equation
(3.13), the differential of p, using his previous rules for differentiation of algebraic
quantities. We do not provide a proof for this differential dp as it is outside the scope
of this project.

Secondly, Euler uses the chain rule in equation (3.12)) when he differentiates y = arcsin p,
and he abstracts from what this differential of p is by referring to it simply as dp,
whereas, we write Euler’s dp as the full expression:

differential (Ax. sqgrt(l-x%)) x dx

Since we do not use the same abstractions that Euler uses for dp, this also means that
we write Euler’s dy, the differential of arcsin p as:

differential arcsin (sqrt(l-x%)) (differential (Ax. sqrt(l-x%)) x
dx)

Compared to Euler’s proof, where it is not very obvious that he is using the chain rule,
we can see the chain rule clearly in our mechanised proof, since the (non-abstracted)
differential dp is within the differential dy.

In our mechanised proof, it is necessary to first prove some results about continuity
and the bounds of functions. Although Euler does not explicitly discuss continuity
in these specific paragraphs, we assume that it is implicit in his reasoning: in order
to differentiate functions, these functions must be continuous where we differentiate
them. In Isabelle, we are explicit with all our assumptions. We limit the domain over
which we differentiate arcsiny/1 — x2, by restricting the bounds of x to be between 0
and 1 in our lemma statement for the differential of arccosx, which can be found in

appendix

We note that both arcsiny/1 — x2 and arccosx are actually continuous and defined on
the interval —1 < x < 1. However, we limit x to be positive, between 0 and 1. This is
because of the relationship between x and the function p of x. In our Isabelle proof,
we use the full expression Ax.\/1 — x2 in place of p. Then, instead of substituting x for
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/1 — p? into equation |b to obtain equation |b as Euler does, we must show in

Isabelle that v/ 1 —+/1 —x2 = x, and in order to show that this equality holds, x must
be positive. The code to prove this equality is available in appendix

In order to differentiate arcsiny/1 —x2, we must prove two facts. The first is that
V1 —x? is between by —1 and 1, as this is the domain where arcsin is defined. Is-
abelle’s sledgehammer finds a proof for —1 < v/1 —x? < 1 using our assumption that
0 < x < 1. The second fact we must prove is that Ax.v/1—x? is continuous within
the interval 0 < x < 1. Because we are using nonstandard analysis, we must prove in
Isabelle that the function is (nonstandard) continuous with NSA function isNSCont:

lemma arccos_sqrt_NSCont:"isNSCont (A x. sqrt(l—xz)) x"

We prove this lemma by proving that the individual functions (x> and the square root
function) of this composite function are continuous, or isCont in Isabelle. Then, we
use the NSA theorem isCont_1isNSCont, which proves that if a function isCont, then
it is also continuous in nonstandard analysis.

Once we have proven these facts, we obtain equation in Isabelle by using
Frankovska’s lemma [10] for the differential of arcsin. We simplify, following Eu-
ler’s reasoning, and sledgehammer proves these simplification steps with use of the
NSA theorems for multiplication and substitution. We obtain the Isabelle statement

that the differential of arcsin(v/1 —x?) is infinitely-close to \/ﬁ

have
"differential arcsin (sqrt(l—xz))
(differential (Ax. sqrt(1-x%)) x dx) ~
-dx / (*f* sqrt) (1 - (star_of x) )"

On the left-hand side, we have the differential of arcsin(v/1 —xz), which includes the
differential dp in full (un-abstracted).

While we have shown that we can obtain the correct resulting differential from Euler’s
reasoning, we now must show that this differential of arcsin(v/'1 —x?) is infinitely-
close to the differential of arccosx. This follows from the fact that all differentials
of continuous functions are infinitesimal. Then, in general, any two differentials of
continuous functions must be infinitely close to one another. In this specific case, we
are only working with the domain of 0 < x < 1, and we know that both arctanx and
arcsiny/1 —x% are continuous over this domain. Therefore, we finish our proof by
writing a lemma that proves these two differentials are infinitely-close to one another:

lemma arccos_arcsin_relationship:
fixes dx::hypreal and x::real
assumes "dx € Infinitesimal"” "0 < x A x < 1"
shows
"differential arcsin (sqrt(l—xz))
(differential (Ax. sqgrt(l-x2)) x dx) ~
differential arccos x dx"
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This lemma (available in appendix [D.2) follows from the fact that both differentials
are continuous on the given interval of x. Therefore, they are both infinitesimal and
we can prove they are infinitely close to each-other, which concludes our mechanised
proof for the differential of arccosx.

To reflect upon Euler’s proof compared to our rigorous mechanised proof, we find
that overall, the missing steps and assumptions of Euler’s proof are implicit when we
consider continuity over arccos and arcsin. This does not necessary mean that Euler’s
proof is straightforward. Actually, we find that Euler’s proof looks deceptively simple
due to the abstractions of dp and dy. Our formalisation more explicitly shows the
mathematics behind Euler’s proof, such as the chain rule and our step that shows how
two differentials are infinitely close.

3.6 Mechanising the first differential of arctanx

We move forward to Euler’s next proof in paragraph 197 [/, p. 111], where Euler
presents his proof for the differential of arctanx. Euler’s proof for this differential is
similar to his proof of the differential of arccosx in that he also derives this result from
the differential of arcsin p, where p is a function of x. His reasoning in this paragraph
can be confusing at points, so we have adapted his writing in the following explanation
for clarity. Euler begins the proof by letting y = arctanx. From trigonometric identities,
we have that

X
= arcsin . (3.15)
Y V14x2
Then, we let p = ﬁ, and therefore
1
V1—p?= (3.16)

\/l—l—xz.
X

Since we have defined p = T e rewrite y as y = arcsin p. Now, Euler differenti-

ates both y and p to obtain,

dp
dy= 2P __ (3.17)
V1 —p?
dx

Lastly, Euler states that when we substitute (3.18) into the numerator of (3.17) and
(3.16) into the denominator of that same equation, we find that the differential dy of

arctanx is
dx

dy = .
Y 1+ x2

(3.19)

Though he does not explicitly mention this, Euler obtains the differential of p in equa-
tion (3.18) using his previous rules on algebraic differentials, which we do not prove
in this project. Similarly to Euler’s proof for the differential of arccosx (3.5)), he is also
using the chain rule in equation and abstracting the differential of p to dp in this
equation.



Chapter 3. Mechanisation of first differential proofs 23

In our proof mechanisation, as with our previous arccosx proof mechanisation, we do
not use any abstractions and we fully formalise dy and dp, so that we write dp as:

differential (Ax. x / sqrt (1 + xz)) X dx

And following from this, the full expression for dy using the chain rule is:

differential arcsin (x / sqrt(l + xz))
(differential (Ax. x / sqrt(l + x2)) x dx)

Our Isabelle proof mechanisation for this differential follows the same structure as our
previous mechanisation of the differential of arccosx (see [3.5). In this proof mechani-
sation, we also have to explicitly add assumptions, for the same reason why we had to
add assumptions in our proof mechanisation of arccosx: continuity.

Specifically, in order to differentiate arcsin p as Euler does in equation (3.17)), we prove
that —1 < p = ﬁ < 1, as this is the domain of arcsin. Since this statement is true
for all x, we do not have to restrict x as we did in the previous proof. We also prove
that p is continuous in nonstandard analysis, or 1sNSCont in Isabelle. This allows us
to obtain the equation in Isabelle, without Euler’s abstractions of p and dp:

have dy:
"differential arcsin (x / sqrt(l + xz))
(differential (Ax. x / sqrt(l + x?)) x dx) =
(differential (Ax. x / sqrt(l + x?)) x dx) /
(*f* sqrt) (1 - ((*£* (Ax. x / sqrt(l + x2))) (star_of x))2)"

Similarly to our previous mechanisation of the differential of arccos, Euler’s proof
for this differential of arctanx appears misleadingly simple compared to our Isabelle
mechanisation. Once again, we use a lambda function for p, which can be seen in the
denominator.

In order to use dp, we assume that the differential Euler presents for p in equation
(3.18) holds, as providing a proof for this differential is outside the scope of this
project, which focuses on trigonometric functions.

Despite the differences in presentation and extra steps we prove due to continuity and
bounds, we otherwise manage to follow Euler’s reasoning to the end of the proof, as
we did in the arccos x mechanisation. We have successfully proven that the differential

. X « . dx
of arcsin TS infinitely close to ; el

Then, we use the same process from our arccosx (3.5) proof mechanisation to show
that the differential of arcsinﬁ is infinitely close to the differential of arctanux,
where we prove they are both continuous, therefore infinitesimal and infinitely close

to each-other. This proof is available in appendix [E.2]

This concludes our mechanised proof of the differential of arctanx.
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3.7 A second mechanisation of the first differential of
tanx

Euler provides a second derivation of the differential of tanx in paragraph 204 of Chap-
ter 6, "On the Differentiation of Transcendental Functions" [[7]]. Similarly to how Euler
uses the differential of arcsin to derive the differentials of arccosx and arctanx, he uses
the differential of arctan to derive the differential of tanx. Euler writes that if we let
y = tanx, then x = arctan(y), and we can write the differential dx as,

dy

dx = .
x 112

(3.20)

The square root of the denominator 1+ y? can be rewritten using trigonometric identi-
ties as,

1
l1+y2=secx=——. (3.21)
cosx

Then, Euler substitutes 1+ y2 in the denominator of (2.18) with (
dy cos?(x), and he divides both sides by cos?(x) to isolate dy:

1
cosx

)% to obtain dx =

dx
dy=——-—.
Y cos2(x)

(3.22)
Once more, Euler makes an abstraction from the differential of x = arctany to dx,
whereas we use the full expression

differential arctan (tan x) (differential tan x dx)

for Euler’s dx, and Euler is using the chain rule again by differentiating x = arctany to
obtain equation in terms of dy, the goal differential of tanx. This expression, the
differential of arctan(tanx), is infinitely close to dx, which follows from the fact that
both the differential of arctan(tanx) and dx are infinitesimal, thus these expressions are
infinitely close.

There are a few ways in which our Isabelle proof looks different from Euler’s. Firstly,
since Euler is using the differential of arctan(tanx) to derive this differential, we restrict
the domain of x to —/2 < x < —x/2 in order for tanx to be defined and continuous.
This also implies that the cosx is non-zero. These assumptions allow us to differentiate
arctan(tanx).

Using our lemma from section for the differential of arctanx, we obtain equation
(3.20) in Isabelle, without Euler’s abstraction of dy (whichis differential tan x dx),
and dx (whichis differential arctan (tan x) (differential tan x dx)):

have
"differential arctan (tan x) (differential tan x dx) =
(differential tan x dx) / (1 + ((*f* tan) (star_of x))z)"
using arctan_function_p tan_NSCont assms by blast
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The lemma used to prove this statement, arctan_function_p, is a lemma that we
proved in order to apply our differential of arctan to a function p of x, and it can be
found in appendix [E.4]

To obtain our final differential expression in terms of dx as in Euler’s equation (3.22)),
we prove that the differential of arctan(tanx) is infinitely close to dx. This follows
from the fact that the differential of arctan(tanx) is continuous on our interval of x,
therefore this differential is infinitesimal and infinitely close to infinitesimal dx. The
proof of this relationship is included in appendix

Additionally, we are unable to directly follow the last step of Euler’s proof in our
mechanisation, where he divides infinitesimal dx by cos?(x), since division by an in-
finitesimal in nonstandard analysis does not necessarily preserve the infinitely-close
relation. However, we can still reach the same result as Euler by accomplishing this
‘division’ in a different way. In order to preserve the infinitely-close relation, we use
the nonstandard analysis lemma in Isabelle called approx_multl:

NSA.approx_multl: a =/ b = c € HFinite = a * ¢c = b * c

To accomplish division by cos?(x), we prove that the inverse of this expression, 1
COS

*(x)
is HFinite, and cos?(x) multiplied by its inverse is equal to 1:

have inverse_is_finite:
"inverse (((*f* cos) (star_of x))z) € HFinite"
using assms(2)
by (simp add: Infinitesimal_inverse_HFinite power2_eq_square
cos_zero_pi_bounds)
have inverse_is_1:
"((*f* cos) (star_of x))2 * inverse (((*f* cos) (star_of x))z) = 1"
using assms(2) cos_zero_pi_bounds by auto

We prove that the inverse is HFinite using an NSA theorem that states if an expres-
sion is not infinitesimal, then its inverse is HFinite. Our expression cos?(x) is not
infinitesimal on the domain that we have defined x, therefore we can apply this theo-
rem to prove that it is HFinite. Then, we prove that cos?(x) multiplied by its inverse
is equal to 1, which follows from the fact that cos # 0 from our assumptions.

Once we apply approx_multl and simplify, we obtain the statement:

have
"dx * inverse (((*f* cos) (star_of x))z) ~
differential tan x dx"

To finish the proof, we simplify using the theorem divide_inverse that proves di-
vision of an expression can be rewritten from multiplication of the inverse, and the
theorem approx_sym that proves the infinitely-close relation is symmetric, and we
obtain the goal statement:

show "differential tan x dx ~dx / (((*f* cos) (star_of x))z)"
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This concludes our mechanisation of Euler’s second proof of differential of tanx, and
we have successfully reformalised Euler’s proof rigorously, although we had to include
multiple extra lines to accomplish the last division step.



Chapter 4

Mechanisation of higher differential
proofs

4.1 A recursive definition for higher differentials

Euler introduces formulae for higher differentials in Chapter 4, "On the Nature of
Differentials of Each Order" of Foundations of differential calculus [7)]. First, Euler
assumes that x increases uniformly and thus dx is constant. Then, he states that we can
find the higher order differentials of a function y of x using the same process used to
find first differentials, by substituting x4 dx into the ' differential and subtracting the
n'" differential to find the n + 1" differential [[7].

In this section, we will follow this recursive process presented by Euler to prove the
general form of the higher differentials of sine. Using this recursive process is one
interpretation of how Euler might be suggesting we can find higher differentials of
sinx. Later in this chapter (see section [4.2.3), we present an alternative representation
and approach to finding higher differentials of sinx.

In Isabelle, we define a recursive function for higher order differentials as follows:

primrec n_dy :: "(hypreal = hypreal) = hypreal = hypreal = nat
= hypreal"
where
"n_dy £f x dx 0 = f x"
| "n_dy £ x dx (Suc n) = n_dy f (x + dx) dx n - n_dy £ x dx n"

In this definition, the keyword primrec signifies recursion over the primitive type nat,
which is the type of the variable n that determines the order of the higher differential.
Due to recursion, the definition for this function n_dy must take a function f with
type hypreal =- hypreal. Thus, our variable x must also be of type hypreal. It
is necessary here to give both function £ and variable x types involving hypreal -
when the definition recurs over n, the output fs and xs must be the same type as the
input fs and xs in order to continue recursion. The base case, where n = 0, is the first
line written under the where keyword and this outputs the 0/ differential, which is

27



Chapter 4. Mechanisation of higher differential proofs 28

simply the input function £ x. The second line underneath the where keyword defines
the recursive step from n to Suc n. The expression Suc n is the application of the
successor function to n, and on paper we would write this as n+ 1.

In the next section, we use this primitive recurisve definition to mechanise the higher
order differentials of sinx.

4.2 Mechanisation of the higher order differentials of
sinx
In paragraph 205 in Foundations of differential calculus [, p. 119], Euler writes, "we

let y = sin(x), z = cos(x) and we keep dx constant” [7]. Then, Euler presents the first
four higher order differentials of sinx and cosx as follows:

y = sin(x) Z = cos(x)
dy = dx*cos(x) dz = —dx*sin(x)
d*y = —dx* x sin(x) d*z = —dx* x cos(x)
d®y = —dx®  cos(x) d?z = dx> % sin(x)
d*y = dx* % sin(x) d*z = dx* * cos(x)

4.2.1 Building a general form for the higher order differentials of
sinx

Although Euler only provides the first four higher order differentials of sinx, we as-
sume that he suggesting that there exists some general form. We assume this since he
states in paragraph 205 that "in all of the cases in which some straight line is related to
a given arc, since it can always be expressed through a sine or a cosine, it can always
be differentiated without difficulty" [7, Chapter 6].

Euler does not provide an expression or proof for the n'” differential of sine, so in
the following sections we provide an expression and proof that cooperates with the
reasoning that we do have from Euler. Because our goal is to prove the general form,
we need to build an expression for the higher differential of sinx that refers to the order
of the higher differential, represented by the variable n in definition n_dy from section
M.1l Once we have this formalisation in Isabelle, we write a proof by induction to
shows that the general form holds for all n.

definition sin differential coeff
where "sin_differential_coeff n = (-1)"((n) div 2)"

definition sin_differential_n
where "sin_differential n n x dx = (sin_differential coeff n) *
dx"™ * (if even n then (*f* sin) (x) else (*f* cos) (x))"

The concept from the first definition, sin_differential_coeff, is used as a co-
efficient in the second definition and it returns values -1 or 1, determining whether
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the higher differential term is negative or positive. In Isabelle, the infix operator div
will always return a term of type nat when its first term is also of type nat. In our
definition n_dy, we restrict n to be of type nat, and so we know that we will never
obtain -1 to the power of some fractional value, which would potentially result in
sin_differential_coeff returning an imaginary number.

The second definition, sin_differential_n, formulates the general term using n, the
order of the higher differential. The resulting term consists of a positive or negative
sign that comes from the coefficient definition and the infinitesimal dx" multiplied by
sinx for even n and cosx for odd n.

Next, we prove by induction that our general form holds for all higher order differen-
tials of sinx.

4.2.2 Proof by Induction

We can now write a lemma that proves by induction that our general form holds for all
n using the recursive higher order differential definition n_dy.

lemma n_dy_sin:
fixes dx::hypreal and n::nat
assumes "dx € Infinitesimal" "x € HFinite"
shows "n_dy (*f* sin) x dx n = sin_differential_n n x dx"

One consequence of declaring x to be of type hypreal is that we now must also add the
assumption that x € HFinite, otherwise it will not necessarily always be possible
to multiply and rearrange terms that include x due to the constraints of nonstandard
analysis.

4.2.2.1 Induction step

We prove the base case n = 0 using our definitions for the general form from section
For the induction step, we need to show that the n 4 1’ differential of sine is
indeed the general form we have built for n+ 1, or Suc n in Isabelle.

Since the higher differentials of sine alternate between sinx and cosx depending on
whether n is odd or even, we must split the proof into the two possibilities and prove
both. When 7 is odd, the n'? differential will contain the cosx term and as n+ 1 will
be even, the n -+ 1" differential will contain the sinx term. Conversely, when 7 is even,
the n+ 1™ differential will contain the cosx term.

We start the proof block for the odd case as follows:

proof (auto simp add: sin_differential_n_def
sin_differential_coeff_def)
assume odd:
"Ax. x € HFinite —
n_dy (*f* sin) x dx n &~ (- 1)"(n div 2) * dx"*(*f* cos) x"
"odd n"
"y € HFinite"
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show
"n_dy (*f£* sin) (y + dx) dx n - n_dy (*f* sin) y dx n =
- ((=1) » (ndiv 2) * (dx * dx "~ n) * (*f* sin) y)"

The assumption statement odd n signifies that we are working on the odd n case. We
start with the assumption that the general form holds for n for any arbitrary x (denoted
by A x). Using these assumptions, we prove that the general form holds for Suc n by
proving this is true for the fixed y. In the show statement, we have already unfolded
the expression of n_dy for Suc n using the n_dy recursive definition.

The expression in the show statement was originally the expression for the general
formula for n+ 1 from show statement in the previous block:

"n_dy (*f* sin) y dx (Suc n) = sin_differential_n (Suc n) y dx"
Unfolding the expression with simp and our general form definitions from 4.2.1| with
n_dy gives us:

"n_dy ( *f* sin) (v + dx) dx n - n_dy ( *f* sin) y dx n =

- ((=1) » (ndiv 2) * (dx * dx "~ n) * (*f* sin) y)"

Our goal is to manipulate the left hand side of this term to ultimately show that it is
infinitely close to the general form for the odd case, which is on the right hand side.
Note that the right hand side of the expression includes the sinx term, as we are proving
the odd n case and hence the n+ 1 is even.

We present our proof reasoning as follows. We start with the left hand expression,
which is the unfolded definition of the n + 1™ higher differential of sinx.

n_dy sin (y+dx) dxn—n_dy sin ydxn 4.1)

Consider the left term in this expression, n_dy sin (y + dx) dx n. Since we have as-
sumed that the general form holds for n for arbitrary x in the inductive step, we can
rewrite this left term as follows:

n_dy sin (y+dx) dxn~ (—1)" 4" 2dx" cos(y + dx) (4.2)

It is important to note that rewriting this term relies on the assumption that the expres-
sion y + dx finite, since this is one of the assumptions from our inductive step (assume
for n). This follows from the fact that y is finite and the infinitesimal dx is also finite.
We can rewrite the right-side term in the equation from earlier, and substitute to
obtain:

(=1) 42y cos(y +dx) — (—1)" 4 2dx" cos y
From this point, we apply the cosine angle addition rule to the left-side term.

(—1)"9724x"cosycosdx — sinysindx] — (—1)" ¥ 2dx" cosy
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Then, we can simplify using the results, discussed in[3.1] that sindx ~ dx and cosdx ~
1, cancel out the terms, and regroup the dxs.

(—1)"4v24x"[cosy —siny dx] — (—1)" ¥ 2dx" cosy

— (—=1)" 24y cosy — (—1)" 9V 2dx" siny dx — (—1)" ¥ 2dx" cosy
(1) 2 iy

U

Thus, we have shown what we were trying to prove, that the expression (.1)) is in-
finitely close to the general form expression for n+ 1 (or Suc n).

We translate this proof into Isabelle, which can be found in full in appendix [G.1.3]
First, we apply our assumption that the general form holds for #n on the first term and
substitute in y + dx for the arbritrary x.

have "y + dx € HFinite"
using HFinite_add Infinitesimal_subset_HFinite assms odd(3)
by blast
have odd_dx: "n_dy (*f* sin) (y + dx) dx n =
(= 1) " (ndiv 2) * dx * n * (*f* cos) (y + dx)"
using "y + dx € HFinite" odd
by presburger
then
have "n_dy (*f* sin) (y + dx) dx n =
(= 1) » (ndiv 2) * dx " n

* ((*f* cos) y * (*f* cos) dx - (*f* sin) y *(*f* sin) dx)"
using STAR_cos_add
by simp

In order to substitute y + dx into the assumption for n, we need to make sure we match
the required assumption, that y 4 dx is finite. We use theorems from the NSA theory
files to prove that this is finite, which follows from the fact that the sum of two finite
quantities is finite. Once we have this missing assumption, we have the statement titled
odd_dx. From here, we can apply our (nonstandard) cosine angle addition formula to
right hand side term cos(y + dx).

Like with the pen and paper proof, at this point in the Isabelle proof we simplify the
resulting term from the cosine angle addition formula using the results that cosdx ~ 1
and sindx ~ dx. In order to do this, we apply Fleuriot’s theorems [8]] for these results
as we did previously in our first differential proof mechanisations (see[3.2)).

We also write two additional lemmas that prove when x is a finite hyperreal number,
its sine and cosine are also finite, which are available in appendix We prove
these lemmas by applying the transfer principle to the known fact that sinx and cosx
are both bounded by 1 and —1.

We also write another lemma to prove that the coefficient term, (—1)"4"2dx", is also
finite (see appendix [G.1.5). We must do this to preserve the infinitely-close relation.
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One we have proved these lemmas for finiteness, we complete the rest of our proof
mechanisation following our pen and paper proof that we presented previously.

The induction step for the even n case follows the same reasoning as for the odd n case.
There are a few slight differences. Our corresponding assume and show statements
appear as follows:

assume even:
"Ax. x € HFinite —
n_dy (*f* sin) x dx n ~(- 1)"(n div 2) * dx" * (*f* sin) x"
"even n"
"y € HFinite"
show
"n_dy (*f* sin) (y + dx) dx n - n_dy (*f* sin) y dx n =
(- 1) (n div 2) * (dx * dx") * (*f* cos) y "

Our inductive assumption in the assume even statement is slightly different as it in-
cludes the sinx term instead of the cosx term for the odd n case. Additionally, n+ 1
will be odd, and so the general form for n+ 1, or Suc n, will contain cosy. Therefore,
when we prove this using the same reasoning as we have done in the previous case, we
use the (nonstandard) sine addition formula instead. The code for the entirety of this
proof is contained within the appendix [G.1.3]

We note that the difficulties we have encountered with multiplying terms together in
these proofs relate to the infinitely-close relation. Although we assumed that x is finite
in our lemma statement for this proof by induction, we still must show at many steps
that terms involving this x are HF inite, in order to preserve the infinitely-close relation
when we multiply and make substitutions. This is a consequence of letting x be of type
hypreal in our n_dy definition from before. This problem is not quite as prevalent in
our first differentials mechanisations of Chapter (3), since we chose to let variable x be
of type real in our first differential mechanisations.

This concludes our mechanised proof by induction that our general form for the higher
differentials of sinx holds.

4.2.2.2 Analysis of our mechanised proof of the higher differentials of sine

Although Euler did not directly provide a proof by induction for these higher differ-
entials of sine, we have managed to use his reasoning to provide our own proof of the
general form of higher differentials of sinx. From examination of this process, we can
see that with the exception of the parts of the proof that are specific to working with
nonstandard analysis, it would be entirely possible to argue Euler could have provided
a similar proof himself. The methods we used, specifically the sine and cosine angle
addition formulas and the simplifications of sindx to dx and cosdx to 1, are all methods
that Euler used in his proofs for the first differentials of sinx and cosx from previous
paragraphs.

We know from our analysis of the first differential proofs in our Chapter (3)) that Euler
often skips steps or chooses not to further explain particular methods that he uses. From
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this, we could argue that the steps we have taken in building this proof are steps that
Euler could have taken himself, and chose not to, instead leaving it up to the reader
as many modern mathematics textbooks do. We could also argue that when Euler
presented these first four higher differentials of sinx without any notion of a general
form, he was simply making a statement that one could find these higher differentials.

Moreover, if we revisit what Euler has presented in paragraph 205 with the belief that
Euler was not making a statement about any general form of the n'* differential of
sine, we can find a slightly different way to approach this higher differentiation. We
will cover this next, in section

4.2.3 A different representation of higher differentiation of sinx

In our previous proof mechanisation, we proved the general form for higher order
differentials of sinx using our primitive recursive function n_dy, which follows Euler’s
formula for higher differentials from Chapter 4, "On the Nature of Differentials of Each
Order" [7]. However, we will show in this section that we can find any higher order
differential of sin only by using the first differentials of sinx and cosx.

Euler states, "in all of the cases in which some straight line is related to a given arc,
since it can always be expressed through a sine or a cosine, it can always be differ-
entiated without difficulty," suggesting that the differentials of sin can be used to find
the differentials of cos and vice versa [7, p. 119]. A clue towards the interpretation,
where we only use the first differentials of sinx and cosx to find higher order differ-
entials and without any notion of a general form, might be in his phrase, "we keep
dx constant". Using this assumption, we can differentiate continuously to find higher
differentials. If we alter our first differential proofs to handle such constant, we can
apply these lemmas to any sine higher order differential and find the successor higher
order differential.

We show this is true on paper. We start with the function y = sinx. Then, we take the
differential to obtain dy ~ cosxdx. Now, if we treat dx as a constant and differentiate
as normal, we obtain d2y ~ —sinxdxdx, since we know that the differential of cosx
1s —sinx dx. We differentiate once more using the first differential of sinx, treating
the term dx dx as a constant, and obtain the third differential, d3y ~ —cosx dx dx dx.
Thus, we have shown that we do not need any extra definition or function to find higher
differentials, as having a first differential representation suffices.

It is important to note here that when we use the definition of the first differential in this
manner, it performs the exact same function as n_dy from section Applying the
first differential n times to an expression is the same as applying n_dy to the expression
with value n. Additionally, they must be equivalent, otherwise one of them would not
suffice as a correct method for finding a higher differential.

4.2.3.1 Altering our first differential of sinx and cosx

We alter our lemma for the first differential of sinx to accommodate a constant, specif-
ically a finite constant of the type hyperreal, in order to treat dx as a constant when
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we differentiate. This also involves altering the types of our definition from [3.1]for the
first differential of a function. Our new definition of the first differential is as follows:

definition hypreal_differential
"(hypreal = hypreal) = hypreal = hypreal = hypreal"
where "hypreal differential f x dx = f(x + dx) - £ x "

The only difference between this definition and the definition differential from[3.]]
are the types that we give to input function f and input variable x. In this altered defini-
tion, their input types are hypreal =- hypreal and hypreal respectively, whereas in
the definition from [3.1] these terms only involve type real. We change these types to
hypreal in order to multiply a constant of type hyperreal with function £, as otherwise
Isabelle would prevent us from placing dx as a multiplying constant in front of a real
typed function f. Note that this definition is equivalent to applying n_dy with a value
of 1 for n.

We build a lemma for the differential of asinx, where a is some constant, as follows:

lemma sin_differential constant:
fixes dx::hypreal and a::hypreal
assumes "dx € Infinitesimal"™ "a € HFinite"
shows "hypreal_differential (7\.y. a*(*f* sin) y) (star_of x) dx =
a* (*f* cos) (star_of x)*dx "

In this lemma, we also add the assumption that constant a is finite in order to preserve
the infinitely-close relation. The goal is to apply this lemma to an expression with dx
in place of constant a. On paper, we could write the show statement as d(a sin(x)) ~
a cos(x) dx, where d represents taking the differential.

Proving this lemma is similar to how we proved the original first differential of sinx
lemma from section The proofs differ slightly. In this lemma, we must unpack
the lambda expression and we must also prove some intermediate statements about
finiteness due to types. We present the full mechanised proof in appendix|[G.2.2]

We also write and prove an altered lemma for the first differential of cosx, which can
be found in appendix [G.2.3]

lemma cos_differential constant:
fixes dx::hypreal and a::hypreal
assumes "dx € Infinitesimal" "a €HFinite"
shows "hypreal_ differential (Ay. a*(*f* cos) y) (star_of x) dx =
-a* (*f* sin) (star_of x)*dx "

Although we use the infinitely-close relation, overall, the mechanisations of these lem-
mas follow Euler’s reasoning from his own proofs of the first differentials of sinx and
cosx [[7, Chapter 6]. Therefore, we argue that it might be reasonable to assume that
the intuition behind these two lemmas corresponds to what Euler might have intended
when presented the higher differentials of sinx and cosx without any notion of a gen-
eral form.
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In the next section, we show how we can use these two lemmas, titled
sin_differential_constant and cos_differential_constant, to find higher dif-
ferentials of sinx.

4.2.3.2 Finding higher differentials of sin.x with this approach

In this section, we show examples of how we can apply lemmas
sin_differential constant and cos_differential constant with dx as con-
stant a to find higher differentials of sinx.

We consider the second differential of sine, d’y ~ —dx?sinx. We write a lemma to
show how we can apply our altered lemma for the first differential of cosx,
cos_differential_constant, to obtain the succeeding differential of sinx. We ap-
ply this lemma to the first differential of sinx, which is dy ~ —dxcosx.

lemma differential_sine_2:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows "hypreal_differential (Ay. dx* (*f* cos) y) (star_of x) dx =
- (*f* sin) (star_of x)*dxz"

We use a lambda expression to construct input function f as dxcosx. Here, we can see
that dx takes place of constant a. The rest of the proof is only a few lines:

have "hypreal_ differential (Ay. dx* (*f* cos) y) (star_of x) dx &
—-dx* (*£* sin) (star_of x)*dx"
using assms cos_differential_constant dx_x_HFinite
by blast
then
show "hypreal_differential (Ay. dx* (*f* cos) y) (star_of x) dx =~
-(*f* sin) (star_of x)*dxz"
by (simp add: mult.assoc mult.commute power2_eq_square)
ged

Note that we must have the fact that infinitesimal dx is finite, as we must match the as-
sumption that a € HFinite. We prove this in the lemma dx_x_HFinite, which we
apply in the first step, along with cos_differential_constant. Then, we arrange
the dx terms and we have shown how we can find the successor higher differential of
dy ~ —dxcosx using only this first differential mechanisation,
cos_differential_constant.

As an example, we provide the lemma statement for one order higher:

lemma differential_sine_3:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows
"hypreal_differential (Ay. —(dx?) * (*f* sin) y) (star_of x) dx =
—(*f* cos) (star_of x)*dx>"
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proof -
have
"hypreal_differential (Ay. —(dxz)*(*f* sin) y) (star_of x) dx =
—(dx3) * (*f* cos) (star_of x)*dx"
using assms sin_differential_constant [where a=" (- (dx?)) "]
by (simp add: dx_x HFinite HFinite_minus_iff hrealpow_HFinite)

When we apply the lemma sin_differential_constant, we specify that the con-
stant a is - (dx?) within the [where] clause. The rest of the proof only includes
rearranging the dx terms into dx>.

We do not provide any more proofs for other higher differentials of sinx in this report,
but these two lemmas sin_constant_differential and
cos_constant_differential could be used to find any higher differential of sinx or
cosx with repeated applications of hypreal_differential to cosx or sinx.

4.2.3.3 Analysis of this representation of Euler’s higher differentials of sine

This method and representation requires fewer lemmas than the previous mechanisa-
tion from Although we did not provide any proof for the higher differentials
of cosx, we could use the definitions we presented in this section to find any higher
differential of cosx without needing to formalise anything extra.

We revisit Euler’s prose in paragraph 205, where he presents the first four differentials
of both sinx and cosx, and he states that a given arc of cosine or sine "can always
be differentiated without difficulty... not only of the first differentials, but also of the
second and succeeding differentials by the given rules" [7, p. 119].

We cannot be certain what "given rules" he is referring to [7, p. 119]. Euler may be
referencing the recursive formula for higher differentials that he presents in Chapter
4, "On the Nature of Differentials of Each Order", as when he presents his formula
for higher order differentials in general he also assumes that x increases uniformly and
thus dx is constant [7]. Or, he may be referencing only the first differential proofs
he provides for sinx and cosx in Chapter 6, "On the Differentiation of Transcendental
Functions" [[7] since he does not provide any notion of a general form for the higher
differentials of sinx, which our proof by induction requires. In this project, we have
provided a mechanisation for both interpretations.

Fundamentally, both interpretations can be seen as the same method. If we simplify
n_dy, it accomplishes same task as repeatedly applying hypreal_differential,
which is to substitute x + dx into the expression and subtract the original expression.

This concludes our exploratory Chapter on Euler’s presentation of the higher differen-
tials of sinx.



Chapter 5

Conclusions

5.1 Summary

We successfully mechanised all of the first differential proofs that we investigated from
Euler’s Foundations of differential calculus [7]]:

» the differential of sine (paragraph 201) in[3.2]

» the differential of cosine (paragraph 202) in[3.3]

» a first derivation of the differential of tan (paragraph 203) in[3.4]

» the differential of arccosine (paragraph 196) in[3.5]

« the differential of arctan (paragraph 197) in

« a second derivation of the differential of tan (paragraph 204) in

We also provided a mechanised proof of the higher differentials of sine, which Euler
presented but did not prove, and this mechanisation process included deriving a general
form for the higher differentials of sine in providing a pen and paper proof which
we discussed in 4.2.2] and proving this by induction. We presented an alternative
interpretation of Euler’s reasoning for these differentials in 4.2.3] and we provided
examples of how this mechanisation can be used to find higher differentials of sine.

5.2 Reflections and future work

In this section, we return to our questions from the Introduction (1)) to reflect upon our
work and discuss how it may be extended upon in the future.

5.2.1 |Interpreting Euler’s meaning
Firstly, how far were we able to interpret Euler’s meaning in his proof derivations?

Interpreting Euler’s reasoning in Foundations of differential calculus [7] ranged from
straightforward to complex, depending on the proof. His proofs for the differential of
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sine, cosine and tangent are relatively straightforward to interpret, especially since he
proves these differentials using his definition of the first differential, dy = f(x+dx) +
f(x) (see Euler’s definitions in[2.1.1]).

It is more difficult to follow and understand his proofs for the differentials of arc-
cos (section [3.5) and arctan (section [3.6). Euler makes these proofs look deceptively
simple due to his abstraction of dp and dy, and they involve many intermediate, un-
presented steps. But overall, his reasoning in these proofs can still be interpreted with
consideration.

We found it most difficult to interpret Euler’s reasoning for the higher differentials of
sine in paragraph 205 [[7, p. 119], since he does not provide a proof for these differ-
entials at all. We are uncertain whether Euler meant that we could find these higher
differentials using his recursive definition for orders of differentials (section [{4.1)), or
whether he meant that we could find higher differentials by using just the first differen-
tials of sine and cosine (section 4.2.3). Regardless, although he has omitted the proofs
for these higher differentials of sine, we are still able to find two interpretations through
analysis of his prose, and we formalise mechanisations for these interpretations using
only the definitions that he provided in previous paragraphs.

If we consider the specific criticisms presented against Euler (which we discussed
in section that Euler skips steps, or fails to mention assumptions, we argue in
response that we have found it is entirely possible to interpret Euler’s meaning and
move forward in our proofs from what he has given us. The only missing assumptions
we faced involved the domains of functions, or where functions are continuous, and
these are implicit from our knowledge of the functions themselves. Additionally, we
have shown that even though Euler omits the proofs of the higher differentials of sine,
we can still prove his results by using only the reasoning he provides elsewhere in the
text.

5.2.2 Euler’s intuition and modern standards of rigour

Secondly, to what extent do we have to adapt Euler’s proofs in Isabelle with nonstan-
dard analysis to adhere to modern standards of rigour?

Overall, we find that Euler’s reasoning in his proofs is consistent with our rigorous
mechanised proofs in Isabelle. The steps of Euler’s proofs that we were not able to
directly follow relate to division and multiplication with infinitesimals. For multi-
plication of infinitesimals, we address this problem of preserving the infinitely-close
relation by proving expressions are finite, or HFinite in Isabelle, and using the non-
standard analysis theorems to ‘multiply’ and rewrite equations.

We did not face same problem that Rockel [15] and Frankovska [[10] faced in their
projects, where Euler divides by an infinitesimal, but we did discover an example of
division of an infinitesimal, when Euler divides infinitesimal dx by cos®(x) in In
this case, we also found a workaround by using the NSA multiplication theorems and
’manipulating’ division into multiplication of the inverse.

To address criticisms against Euler’s treatment of infinitesimals, we argue in response
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that although we have to adapt Euler’s reasoning to adhere to the rules of nonstan-
dard analysis (and thus, adhere to modern standards of rigour), Euler’s intuition is still
consistent, since we arrive at the same result as Euler when rehabilitating his steps
with rigour. Moreover, although we cannot necessarily follow the exact step (division
of an infinitesimal) as Euler in our rigorous framework, since we must preserve the
infinitely-close relation, we have still shown that this given step can be reformalised
rigorously to provide the same result. Our workaround can be applied to the general
case of division of an infinitesimal, but this also requires finiteness of the expression
that we are dividing the infinitesimal by.

5.2.3 Future work

In our section for our mechanisations of the higher differentials of sinx (section |4.2)),
we provided two different interpretations of how Euler might have intended the reader
to find these higher differentials. Both interpretations only use Euler’s reasoning from
previous chapters, and we showed how both mechanisations can find a higher differ-
ential of sinx. However, we only produced and proved a general form for the higher
differentials of sinx, whereas Euler presents higher differentials for both sinx and cos x.
A possible continuation of the work in this section (section #.2) might be to formalise
a general form for the higher order differentials of cosx, and prove this by induction.

Other future work might include completing proof mechanisations for the other trigono-
metric differentials in Euler’s Foundations of differential calculus [7, Chapter 6], such
as the differential of cotangent in paragraph 198, the differential of secant in para-
graph 205, and the higher differentials of cosine and tangent, presented in paragraph
207. This would complete the set of mechanisations of trigonometric differentials from
Chapter 6 of Euler’s Foundations of differential calculus |7, Chapter 6].

5.2.4 Concluding remarks

In conclusion, our exploration shows that we can indeed rigourously reformulate Eu-
ler’s proofs of trigonometric functions using our rigorous framework of Isabelle with
nonstandard analysis. Although we found that Euler did occasionally omit steps and
assumptions, we argue that overall, this does not prevent us from following his proofs.
Likewise, we find that Euler’s reasoning is consistent when adapted to this rigorous
framework. Our exploration has provided useful insights on understanding Euler’s
reasoning and his implicit assumptions, and our mechanisations provide groundwork
for future research on this influential mathematician and his Foundations of differential
calculus [[7]).
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Appendix A

Paragraph 201 - sinx

A.1 The first differential of sinx

lemma differential_sin:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows "differential sin x dx = (*f* cos) (star_of x)*dx"
proof -
have sindx: " (*f* cos) (star_of x)* (*f* sin) (dx) =
(*£* cos) (star_of x)*(dx)"
using STAR_sin_infinitesimal
by (simp add: approx_mult2 assms)
have cosdx: " (*f* sin) (star_of x)*(*f* cos) (dx) =
(*f* sin) (star_of x)"
using STAR_cos_infinitesimal
by (metis HFinite_star of mult.right_neutral starfun_star_of
approx_mult2 assms)
have "differential sin x dx = (*f* sin) (star_of x + dx) -
(*f* sin) (star_of x)"
using differential_def by auto
also
have "... = (*f* sin) (star_of x)*(*f* cos) (dx) +
(*£* cos) (star_of x)*(*f* sin) (dx)
- (*f* sin) (star_of x)"
using STAR_sin_add by simp
also
have "... &= (*f* sin) (star_of x) + (*f* cos) (star_of x)*(dx) -
(*£* sin) (star_of x)"
using sindx cosdx approx_diff approx_add by blast
finally
show "differential sin x dx = (*f* cos) (star_of x)*dx"
by simp
ged
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Appendix B

Paragraph 202 - cosx

B.1 The first differential of cosx

lemma differential_cos:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows "differential cos x dx =-dx* (*f* sin) (star_of x)"
proof -
have sindx: " (*f* sin) (star_of x) * (*f* sin) dx =
dx* (*£f* sin) (star_of x)"
using STAR_sin_Infinitesimal
by (metis (full_types) approx_mult_subst_star of approx_refl
assms mult.commute starfun_eq)
have cosdx: " (*f* cos) (star_of x) * (*f* cos) dx =
(*£* cos) (star_of x)"
using STAR_cos_Infinitesimal
by (metis HFinite_star_ of mult.right_neutral starfun_star_of
approx_mult2 assms)
have "differential cos x dx = (*f* cos) (star_of x + dx) -
(*f* cos) (star_of x)"
using differential_ def by auto

also
have "... = (*f* cos) (star_of x)* (*f* cos) (dx) -
(*f* sin) (star_of x)*(*f* sin) (dx) - (*f* cos) (star_of x)"
using STAR_cos_add by simp
also
have "... &= (*f* cos) (star_of x) - dx*(*f* sin) (star_of x) -

(*£* cos) (star_of x)"
using sindx cosdx approx_diff by blast
finally
show "differential cos x dx ~-dx* (*f* sin) (star_of x)"
by auto
ged
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Appendix C

Paragraph 203 - tanx v1

C.1 Tan and cos identity

C.1.1 Tan and cos identity in the reals

lemma tan_cos_squared:
assumes "cos x # 0"
shows "1 + (tan x)2 =1/ (cos x)2"
proof -
have sin_cos_squared: "(sin x)2 + (cos x)2 = 1"
by simp
also
have "(sin x)2 / (cos x)%2 + (cos x)%2 / (cos x)%2 =1 / (cos x)2"
by (metis add_divide_distrib calculation)

then
have "((sin x)/(cos x))%2 + 1 =1 / (cos x)2"
by (simp add: assms power_divide)
then
show "1 + (tan x)2 =1/ (cos x)>2"
by (simp add: add.commute tan_def)
ged

C.1.2 Tan and cos identity in nonstandard analysis

lemma STAR_tan_cos_squared:
"A(x::hypreal). (*f* cos) (x) # 0 =
1 + ((*f* tan)(x))2 =1 / ((*f* cos) (x))>"
apply (transfer) by (simp add: tan_cos_squared)
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C.2 The first differential of tanx

lemma differential tan:
fixes dx::hypreal
assumes "dx € Infinitesimal" "cos x # 0"
shows "differential tan x dx ~dx / ((*f* cos) (star_of x))z"

proof -
have tan_add_assumptionA: " (*f* cos) (star_of x) #* 0"
by (simp add: assms(2))
have tan_add_assumptionB: " (*f* cos) (dx) # 0"
using STAR_cos_Infinitesimal assms(1) by fastforce
have tan_add_assumptionC: " (*f* cos) (star_of x + dx) # 0"
proof -
have cos_dx: " (*f* cos) (star_of x)*(*f* cos) (dx) =~

(*£* cos) (star_of x)"
using STAR_cos_infinitesimal
by (metis HFinite_star_ of approx_mult2 assms(1)
mult.right_neutral starfun_star_of)
have sin_dx: "(*f* sin) (star_of x)*(*f* sin) (dx) =~
(*f* sin) (star_of x)*(dx)"
by (simp add: approx_mult2 assms (1))
have " (*f* cos) (star_of x + dx) =
(*£* cos) (star_of x)* (*f* cos) (dx) -
(*£* sin) (star_of x)* (*f* sin) (dx)"
using STAR_cos_add by auto

also

have "... &= (*f* cos) (star_of x) - (*f* sin) (star_of x)*dx"
using cos_dx sin_dx approx_diff by blast

also

have "... & (*f* cos) (star_of x)"

using Infinitesimal_approx_minus Infinitesimal_star_of_mult2
assms (1) by fastforce
finally
show " (*f* cos) (star_of x + dx) # 0"
using assms(2) by auto
ged
have tan_dx:" (*f* tan) (dx) ~dx"
by (simp add: assms(1l))
have tan_dx_zero: "(1 - (*f* tan) (star_of x)*(*f* tan) (dx))
by (metis Infinitesimal_star_of_mult approx_trans assms (1)
mem_infmal_iff mult.commute one_not_Infinitesimal
right_minus_eq starfun_star_of tan_dx)
have "differential tan x dx = (*f* tan) (star_of x + dx) -
(*£* tan) (star_of x)"
using differential_def by simp
also

% o"
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have "... = (((*f* tan) (star_of x) + (*f* tan) (dx)) /
(1 = (*£* tan) (star_of x)*(*f* tan) (dx))) -
(*£* tan) (star_of x)"
using STAR tan_add tan_add_assumptionA tan_add_assumptionB
tan_add_assumptionC
by simp
finally
have A: "differential tan x dx =
(*f* tan) (dx)* (1 + (*f* tan) (star_of x)* (*f* tan) (star_of x)) /

(1 = (*f£* tan) (star_of x)*(*f* tan) (dx))"
using tan_dx_zero by (simp add: field_simps)
have d_unity: "(1 - (*f* tan) (star_of x)* (*f* tan) (dx)) ~1"

by (metis Infinitesimal HFinite_mult HFinite_star_of
Infinitesimal_add_approx_self approx_trans
assms (1) diff_add_cancel mem_infmal iff
mult.commute starfun_star_of tan_dx)
have numerator:
"(*f* tan) (dx)* (1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))
~ dx*(1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))"
proof -
have "(1 + (*f* tan) (star_of x)*(*f* tan) (star_of x)) €HFinite"
by (simp add: HFinite_add)
then
show
"(*f* tan) (dx)* (1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))
~ dx*(1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))"
using approx_multl tan_dx by blast
ged
have "differential tan x dx =~
dx* (1 + (*f£* tan) (star_of x)*(*f* tan) (star_of x))"

proof -
have d2_unity:
"inverse (1 - (*f* tan) (star_of x)*(*f* tan) (dx)) =1"

using d_unity
by (metis hypreal_ of_real_approx_inverse inverse_1l
one_neq_zero star_one_def)
have n_finite:
"dx* (1 + (*f* tan) (star_of x)*(*f* tan) (star_of x)) €HFinite"
by (metis HFinite_1 HFinite_add HFinite_mult HFinite_star_of
approx_star_of_HFinite assms (1)
mem_infmal_ iff star_zero_def starfun_star_of)
have
"(*f* tan) (dx)* (1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))

inverse (1 - (*f* tan) (star_of x)*(*f* tan) (dx)) =
dx* (1 + (*£* tan) (star_of x)*(*f* tan) (star_of x))*1"
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using numerator n_finite d2_unity HFinite_1
approx_mult_HFinite

by blast
then
show

"differential tan x dx =

dx* (1 + (*f* tan) (star_of x)*(*f* tan) (star_of x))"

using A

by (simp add: divide_inverse)
ged
then
show

"differential tan x dx =
dx / ((*f* cos) (star_of x))2"
using STAR_tan_cos_squared tan_add_assumptionA

by (metis divide_inverse inverse_eq divide power2_eq_square)
ged
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Paragraph 196 - arccosx

D.1 The first differential of arccosx

lemma differential_arccos:
fixes dx::hypreal and x::real
assumes "dx € Infinitesimal™ "0 < x A x < 1"

shows "differential arccos x dx =
- dx / (*f* sqgrt) (1 - (star_of x)Z)m

proof -
that is, y = arcsin p.'... Let p = sqrt(l—xz) *)
let ?y = "arcsin(sqrt(l—xz))"
have assumptl: "-1 < (sqgrt(1-x2)) A(sqrt(l-x?)) < 1"

by (smt assms(2) one_min_sqg positive real_sqrt_ge_0_iff
real_sqrt_lt_1_iff zero_less_power2)
have assumpt2: "isNSCont (Ax. sqrt(l—xZ)) x"
using arccos_sqgrt_NSCont by simp
from assumptl assms assumpt?2
have "differential arcsin (sqrt(l—xz))
(differential (Ax. sqgrt(l-x2)) x dx) ~
(differential (Ax. sqrt(l-x2)) x dx) /
(*f* sqrt) ((1 - ((*f* (Ax. sqrt(l—xz))) (star_of x))%))"

by (rule_tac arcsin_function_p)

moreover
have p:
m((*f* sqrt) ((1 - ((*f* (Ax. sqrt(l-x?))) (star_of x))?))) =
((*f* sqrt) (1 - ((*£* sqrt) (1 - (star_of x)2))%))"

by (metis (no_types, lifting) star_of diff star_of power

star_one_def starfun_eq)
ultimately
have dy:
"differential arcsin (sqrt(l—xz))
(differential (Ax. sqrt(1-x2)) x dx) ~
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(differential (Ax. sqrt(1-x?)) x dx) /
(*f* sqgrt) (1 - ((*f* sqrt) (1 - (star_of x)2))%)"
by simp
have dp: "differential (Ax. sqrt(l—xz)) x dx =~
—(star_of x)*dx / (*f* sqrt) (1 - (star_of x)2)"
by (smt Infinitesimal_approx Infinitesimal_star_of mult2
assms (1) assumpt2 differential_infinitesimal
divide_inverse inverse_eq_divide mem_infmal_ iff
mult.commute star_of_ diff star_of_divide
star_of_minus star_of_power star_one_def starfun_star_of)
have p_x: "(*f* sqrt) (1 - ((*f* sqrt) (1 - (star_of x)2))?)
star_of x"
using arccos_sqgrt_simplify assms(2) by blast
have "differential arcsin (sqrt(l—xz))
(differential (Ax. sqrt(l—xz)) x dx) =
- (star_of x)*dx / (*f* sqgrt) (1 - (star_of x)2) /
(*f* sqrt) (1 - ((*f* sqrt) (1 - (star_of x)2))%)n"
by (smt Infinitesimal HFinite_mult dy dp p approx_sym
approx_trans arcsin_deriv_finite assms(1)
assumptl assumpt?2 differential_infinitesimal
divide_inverse mem_infmal_ iff starfun_star_ of)
then
have "differential arcsin (sqrt(l—xz))
(differential (Ax. sqgrt(l-x%)) x dx) ~
-dx / (*f* sqrt) (1 - (star_of x)2)"
using assumptl p_x by auto
then
show "differential arccos x dx =
- dx / (*f* sqrt) (1 - (star_of x)2)m
using approx_trans3 arccos_arcsin_relationship
assms (1) assms (2) by blast
ged
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D.2 The differential of arcsin(+/1 — x?) is infinitely-close
to the differential of arccosx

lemma arccos_arcsin_relationship:
fixes dx::hypreal and x::real
assumes "dx € Infinitesimal”™ "0 < x Ax < 1"
shows
"differential arcsin (sqrt(l—xz))
(differential (Ax. sqrt(l-x%)) x dx) ~
differential arccos x dx"
proof -
have A: "differential arcsin (sqrt(l—xz))
(differential (Ax. sqrt(1-x?)) x dx) ~0"
by (smt arccos_sqgrt_NSCont assms (1) assms(2)
differential_infinitesimal isNSCont_arcsin mem_infmal_iff
one_min_sq positive real_sqrt_le_0_iff
real_sqgrt_1t_1_iff zero_less_power2)
have "isCont (Ax. arccos x) x"
using assms(2) isCont_arccos by auto
then
have "isNSCont (Ax. arccos x) x"
using isCont_isNSCont by blast
then
have B: "differential arccos x dx ~ Q"
using assms (1) differential_infinitesimal mem_infmal_iff
by blast
then
show "differential arcsin (sqrt(l—xz))
(differential (Ax. sqrt(1-x%)) x dx) =~
differential arccos x dx"
using A approx_trans?2
by blast
ged

D.3 1—p?2=xwhen p=+1—x?

lemma arccos_sqrt_simplify:
fixes x::real
assumes "0 < x A x < 1"

shows

m(xfx sqrt) (1 - ((*f* sqrt) (1 - (star_of x)2%))?) = star_of x"
proof -

have "(*f* sqrt) (1 - (star_of x)2)%2 = (1 - (star_of x)%)"

by (smt assms diff_ge_0_iff ge hypreal_sqrt_powz_iff
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one_power2 powerZ_le_imp_le
power2_minus star_of_le_1 star_of_ power)

then

have "1 - (*f* sqrt) (1 - (star_of x)z)2 = (star_of x)z"
by simp

then

have "(1 - (*f* sqrt) (1 - (star_of x)2)%) >Q"
using assms by auto

then
show
m(xfx sqrt) (1 - ((*f* sqrt) (1 - (star_of x)2%))?) = star_of x"
using <1 - (( *f* sqrt) (1 - (hypreal_of_real x)2))? =
(hypreal_of_real x)2> assms
by auto

ged
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E.1 The first differential of arctanx

lemma differential_arctan:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows "differential arctan x dx ~dx / (1 + (star_of x)z)"
proof -
let ?y = "arctan(x)"
have sin_y: "?y = arcsin(x / sqrt(l + xz))"
by (simp add: arctan_arcsin)
have cos_y: "cos(?y) =1 / sqrt(l + xZ)m
by (metis cos_arctan)
let ?p = "x / sqrt(l + x
have sqrt_p_value: "sqrt(l - ?p%) = 1 / sqrt(l + x%)"
using arctan_p_sqrt by blast
have assml: "-1 < ?p A?p < 1"
using p_bounds by blast
have assm2: "isNSCont (Ax. x / sqrt (1 + x%)) x"
using arcsin_arctan_sqrt_NSCont by simp

2)"

have dy: "differential arcsin (x / sqrt(l + x2))
(differential (Ax. x / sqrt(l + x%)) x dx) =~
(differential (Ax. x / sqrt(l + xz)) x dx) /

)

(*f* sqrt) (1 - ((*f* (Ax. x / sqrt(l + x%))) (star_of x))2)"
using assml assm2 assms arcsin_function_p
by meson

have dp: "differential (Ax. x / sqrt(l + x%)) x dx =
dx / ((*f* sqrt) (1 + (star_of x)2))3n

sorry
have STAR_sqrt_p_value:
m(xfx sqrt) (1 - ((*f* (Ax. ?p)) (star_of x))?) =

1 / (*f* sqrt) (1 + (star_of x)2)"
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by (metis STAR_cos_arctan cos_y sqrt_p_value star_of_diff
star_of_power star_one_def starfun_star_of)
have "differential arcsin (x / sqrt(l + xz))
(differential (Ax. x / sqrt(l + x?)) x dx) =
dx / ((*f* sqrt) (1 + (star_of x)2))3 /

(*£* sqrt) (1 - ((*f£* (Ax. x / sqrt(l + x%))) (star_of x))2)"
using "dy" dp by auto
then

have "differential arcsin (x / sqgrt(l + x2))
(differential (Ax. x / sqrt (1 + xz)) x dx) =
dx / ((*f* sqrt) (1 + (star_of x)2))? /
(1 / (*f* sqgrt) (1 + (star_of x)2))"
using STAR_sqrt_p_value by auto
then
have "differential arcsin (x / sqrt(l + xz))
(differential (Ax. x / sgrt(l + x?)) x dx) =~
((*f* sqgrt) (1 + (star_of x)2) * dx) /
((*f* sqrt) (1 + (star_of x)2))3n"
by (simp add: mult.commute)
then
have "differential arcsin (x / sqgrt(l + x2))
(differential (Ax. x / sqrt(l + x?)) x dx) =
dx / ((*f* sqrt) (1 + (star_of x)2))2n
by (smt Infinitesimal_approx Infinitesimal_star_of mult2
STAR_cos_arctan assml assm2 assms differential_infinitesimal
divide_inverse inverse_eq_divide isNSCont_arcsin
mem_infmal_iff mult.commute power_divide power_one
star_of_power starfun_star_of)
then
have final: "differential arcsin (x / sqrt(l + x2))
(differential (Ax. x / sqrt(l + x?)) x dx) =
dx / (1 + (star_of x)2)"
by (smt hypreal_sqrt_gt_zero_pow2 star_of_add star_of_less
star_of_power star_one_def star_zero_def zero_le_power2)
have "differential arcsin (x / sqrt(l + xz))
(differential (Ax. x / sqrt(l + x%)) x dx) ~
differential arctan x dx"
using approx_sym assml assms differential arcsin_arctan by
blast
then show "differential arctan x dx ~dx / (1 + (star_of x)
using final approx_trans3 by blast
ged

2) n
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E.2 The differential of arcsinﬁ is infinitely-close to

the differential of arctanx

lemma differential_arcsin_arctan:
fixes dx::hypreal
assumes "dx € Infinitesimal"
shows "differential arctan x dx =
differential arcsin (x / sqrt(l + x2))
(differential (Ax. x / sqrt(l + x%)) x dx)"
proof -
have A: "differential arcsin (x / sqgrt(l + x2))
(differential (Ax. x / sqrt(l + xz)) x dx) ~0"
by (metis (no_types, lifting) arcsin_arctan_sqrt_NSCont
assms (1) p_bounds differential_infinitesimal
1sNSCont_arcsin mem _infmal iff)
have B: "isNSCont (Ax. arctan x) x"
proof -
have "isCont (Ax. arctan x) x"
by (simp add: isCont_arctan)
then
show "isNSCont (Ax. arctan x) x"
by (simp add: isCont_isNSCont)
ged
have B': "differential arctan x dx =0"
by (simp add: B Infinitesimal_approx assms (1)
differential_infinitesimal)
show "differential arctan x dx =~
differential arcsin (x / sqgrt(l + x2))
(differential (Ax. x / sqrt(l + x2)) X dx)"
using A B' approx_trans2
by blast
ged

E.3 The relationship between pand x: /1 — p==

when ;7::';7%i§§

lemma arctan_p_sqrt:

"sqrt (1 - (x / sqrt(l + x%))%) =1 / sqrt(l + x%)"
proof -

1
\/1r+x2

have sin_y: "sin(arctan(x)) = x / sqrt(l + xz)"
by (metis sin_arctan)

have cos_y: "cos(arctan(x)) = 1 / sqrt(l + x2)"
by (metis cos_arctan)
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have cos_zero: "cos(arctan(x)) >0"

using cos_y hypreal_ _sqrt_ge_zero by auto
2

) -

have "x / sqrt(l + x°) = sin(arctan(x))"

by (metis sin_y)

then

have "(cos(arctan(x)))? = 1 - (x / sqrt(l + x2))2"
by (simp add: cos_squared_eq)

then

have "cos(arctan(x)) = sqrt(l - (x / sqrt(l + x2))2yn

using cos_sin_sqrt cos_zero
by (metis sin_y)
then
show "sqrt(l - (x / sqgrt(l + 2% =1/ sqrt (1 + x2) "
using cos_y
by metis
ged

E.4 The differential of arctan of a function p of x

lemma arctan_function_p:
fixes dx::hypreal and x::real
assumes "dx € Infinitesimal" "isNSCont p x"
shows "differential arctan (p x) (differential p x dx) =
(differential p x dx) / (1 + ((*f* p) (star_of x))z)"
by (simp add: assms(l) assms(2) differential_arctan
differential_infinitesimal)

E.5 Helper lemmas: bounds and continuity

X

E.5.1 (Nonstandard) Continuity of p, where p = Tia

lemma arcsin_arctan_sqgrt_NSCont:
"isNSCont (Ax. x / sqrt (1 + x%)) x"
proof -
have "isCont (Ax. x2) x"
using isCont_power [where f="Ax. x" and n=2]
continuous_ident
by blast
then
have "isCont (Ax. 1 + x2) x"
by auto
then
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have denominator: "isCont (Ax. sqrt(l + x2)) x"
using continuous_real_sqgrt by blast
have "sqrt(l+x2):# o"
by (metis numeral_One power_one real_sqrt_eq zero_cancel_ iff
sum_power2_eq_zero_1iff zero_neq_numeral)
then
have "isCont (Ax. x / sqrt(l + x%)) x"
using isCont_divide [where f="Ax. x" and g="Ax. sqrt (1+x2)"]
continuous_ident denominator by blast
moreover
show "isNSCont (Ax. x / sqrt(l + x2)) x"
by (simp add: calculation isCont_isNSCont)
ged

X

E.5.2 Bounds of p, or A

lemma p_bounds: "-1 < x / sqrt(l + x?) Ax / sqrt(l + x%) < 1"
by (smt arsinh_real_aux divide_less_eq 1 pos divide_minus_left
real_ less_rsqrt)
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F.1 Helper lemmas

F.1.1 Bounds implies cosine non-zero

lemma cos_zero_pi_bounds: "x < pi/2 Ax > -(pi/2) =-cos x # 0"
using cos_gt_zero_pi by fastforce

F.1.2 The differential of arctan(tanx) is infinitely-close to dx

lemma differential_arctan_of_tan:
assumes "dx € Infinitesimal" "x < pi/2 A x > —(pi/2)"
shows
"differential arctan (tan x) (differential tan x dx) = dx"
proof -
have
"differential arctan (tan x) (differential tan x dx) €
Infinitesimal™"
using differential_infinitesimal
by (metis assms(l) assms(2) cos_gt_zero_pi isCont_arctan
isCont_1isNSCont isCont_tanless_irrefl)
then
show
"differential arctan (tan x) (differential tan x dx) =~ dx"
using assms
by (simp add: Infinitesimal_approx)
ged

F.1.3 Tan and cos identity in nonstandard analysis adapted

lemma STAR_tan_cos_squared?2:
"x < pi/2 AN x> -(pi/2) =

57
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(1 + ((*f* tan) (star_of x))z) =1/ ((*f£* cos) (star_of X))z"
proof -
assume "x < pi / 2 A - (pi / 2) < x"

then have " (*f* cos) (hypreal_of_real x) # 0"
using cos_gt_zero_pi by force
then show ?thesis
by (metis (no_types) STAR_tan_cos_squared)
ged

F.2 The first differential of tanx

lemma differential tan_2:
fixes dx::hypreal
assumes "dx € Infinitesimal" "x < pi/2 A x > —(pi/2)"
shows
"differential tan x dx = dx / ((*f* cos) (star_of x))2"
proof -
have tan_NSCont: "isNSCont (Ax. tan x) x"
using isCont_1isNSCont assms(2) isCont_tan cos_zero_pi_bounds
by blast

have y: "arctan(tan x) = x"
using arctan_tan cos_zero_pi_bounds assms
by blast
have inverse_is_1: "((*f* cos) (star_of x))2 *
inverse (((*f* cos) (star_of x))z) = 1"
using assms(2) cos_zero_pi_bounds by auto
have "sqrt(l + (tan x)%) = 1 / cos x"

using y by (metis cos_arctan div_by_1 inverse_divide)
have inverse_is_finite:
"inverse (((*f* cos) (star_of x))z) EHFinite"
using assms(2)
by (simp add: Infinitesimal_inverse_HFinite powerZ_eq_square
cos_zero_pi_bounds)
have "differential arctan (tan x) (differential tan x dx) =
(differential tan x dx) / (1 + ((*f* tan) (star_of x))z)"
using arctan_function_p tan_NSCont assms by blast
also
have "differential arctan (tan x) (differential tan x dx) =
(differential tan x dx) * ((*f* cos) (star_of x))z"
using STAR_tan_cos_squared? assms calculation by auto
then
have "dx =~ (differential tan x dx) * ((*f* cos) (star_of X))z"
using differential arctan_of_ tan approx_trans3 assms (1)
assms (2)
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by blast
then
have "dx * inverse (((*f* cos) (star_of x))z) ~
differential tan x dx * ((*f* cos) (star_of x))2 *
inverse (((*f* cos) (star_of x))z)“
using inverse_is_finite approx_multl
by blast
then
have "dx * inverse (((*f* cos) (star_of x))z) ~

differential tan x dx"
using inverse_is_1
by (simp add: mult.assoc)
then
have "dx / (((*f* cos) (star_of x))?) =~
differential tan x dx"
by (simp add: divide_inverse)

then
show "differential tan x dx =
dx / (((*£* cos) (star_of x))2)"

using approx_sym by blast
ged
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sinx

G.1 First Approach

G.1.1 Recursive definition of higher differentials

primrec n_dy ::
" (hypreal = hypreal) = hypreal = hypreal = nat = hypreal"
where
"ndy £ xdx 0=¢£f x"
| "n_dy f x dx (Suc n) = n_dy f (x + dx) dx n - n_dy f x dx n"

G.1.2 General forms for higher differentials of sinx

G.1.2.1 The sinx differential coefficient

definition sin_differential coeff
where "sin_differential_coeff n = (-1)"((n) div 2)"

G.1.2.2 The sinx differential general form

definition sin_differential_ n

where "sin_differential n n x dx = (sin_differential coeff n) *dx"
*

(1f even n then (*f* sin) (x) else (*f* cos) (x))"

60
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G.1.3 Proof by Induction

lemma n_dy_sin:
fixes dx::hypreal and n::nat
assumes "dx € Infinitesimal" "x €HFinite"
shows "n_dy (*f* sin) x dx n = sin_differential n n x dx"
proof (insert assms(2), induct n arbitrary: x)
case 0
then show ?case by (simp add: sin_differential n_def
sin_differential_coeff_def)
next
fix n
fix y::hypreal
assume odd: "Ax. x €HFinite ==n_dy (*f* sin) x dx n =
sin_differential_n n x dx" "y €HFinite"
then show "n_dy (*f* sin) y dx (Suc n) =
sin_differential n (Suc n) y dx"
proof (auto simp add: sin_differential_n_def
sin_differential_coeff_def)
assume odd: "Ax. x EHFinite = n_dy (*f* sin) x dx n =
(- 1) » (ndiv 2) * dx ~ n * (*f* cos) (x)"
"odd n"
"y € HFinite"
have cos_addition:
"(xf* cos) (y)*(*f* cos) (dx) - (*f* sin) (y)* (*f* sin) (dx) =
(*f* cos) (y) - (*f£* sin) (y)*dx"
using STAR_sin_infinitesimal STAR_cos_infinitesimal
sine_HFinite cosine_HFinite
by (metis approx_diff approx_mult2 assms(l) mult.right_neutral
odd (3))
have "y + dx € HFinite"
using HFinite_add Infinitesimal_subset_HFinite assms odd(3)
by blast
have odd_dx:
"n_dy (*f* sin) (y + dx) dx n =(- 1) * (n div 2) * dx" *
(*f* cos) (y + dx)"
using \<open>y + dx €HFinite\<close> odd
by presburger

then

have
"n_dy (*f* sin) (y + dx) dx n =(- 1) * (n div 2) * dx" *

((*f£* cos) (y) * (*f* cos) (dx) - (*f* sin) (y)*(*£* sin) (dx))"

using STAR_cos_add
by simp

also

have "... = (- 1) * (n div 2) * dx " n

* ((*f* cos) (y) - (*f* sin) (y)*dx)"
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using cos_addition approx_mult_subst assms (1)
sine_coefficient_HFinite by blast
also
have "... = (- 1) » (n div 2) * dx ~ n
* (*f* cos) (y) - ((= 1) *» (n div 2) * dx " n
* (*f* sin) (y)*dx)"
by (simp add: algebra_simps)
then
have "n_dy (*f* sin) (y + dx) dx n - n_dy (*f* sin) (y) dx n =
((=1) » (ndiv 2) * dx " n
* (*f* cos)(y)) - ((= 1) » (ndiv 2) * dx " n
*(*f* gin) (y)*dx) - ((- 1) * (n div 2) * dx "~ n) *
(*f* cos) (y)"
using approx_diff approx_trans calculation odd(1l) odd(3)
by blast
then
show "n_dy (*f* sin) (y + dx) dx n - n_dy (*f* sin) (y) dx n =~
- ((= 1) » (ndiv 2) * (dx * dx "~ n) * (*f* sin) (y))"
by (smt add_diff_cancel_left' diff_add_cancel minus_diff_eq
mult.commute mult.left_commute)
next
assume even:
"Ax. x € HFinite = n_dy (*f* sin) x dx n =
(- 1) » (n div 2) * dx" * (*f* sin) (x) "
"even n"
"y € HFinite"
have sin_addition:
"(*f* sin) (y)*(*f£* cos) (dx) + (*f* cos) (y)* (*£* sin) (dx) =
(*f* sin) (y) + (*£* cos) (y) *dx"
using STAR_sin_Infinitesimal STAR_cos_Infinitesimal
sine_HFinite cosine_HFinite
by (metis approx_add approx_mult2 assms(1l) mult.right_neutral
odd(2))
have "n_dy (*f* sin) (y + dx) dx n =
(= 1) » (ndiv 2) * dx " n * (*f* sin) (y + dx)"
using HFinite_add Infinitesimal_subset_HFinite
assms (1) even(l) even(3) by blast
also
have "... = (- 1) » (ndiv 2) * dx ~ n *
((*f* sin) (y) * (*£* cos) (dx) + (*f* cos) (y)* (*f* sin) (dx))"
using STAR_sin_add by simp
also
have "... = (- 1) *~ (ndiv 2) * dx ~ n *
((*f* sin) (y) + (*f* cos) (y)*dx) "
using approx_mult2 assms(l) sin_addition
sine_coefficient_HFinite by blast
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finally
have "n_dy (*f* sin) (y + dx) dx n =
(= 1) ® (ndiv 2) * dx * n * (*f* sin) (y) +
(= 1) " (ndiv 2) * dx * n * (*f* cos) (y) *(
by (simp add: algebra_simps)
then
have "n_dy (*f* sin) (y + dx) dx n - n_dy (*f* sin) (y) dx n =
(= 1) ®» (ndiv 2) * dx * n * (*f* sin) (y
(= 1) » (ndiv 2) * dx * n * (*f* cos) (y
(- 1) " (ndiv 2) * dx * n * (*f* sin) (
using approx_diff even(l) even(3) by blast
then
show "n_dy (*f* sin) (v + dx) dx n - n_dy (*f* sin) y dx n =
(- 1) " (ndiv 2) * (dx * dx * n) * (*f* cos) (y) "
by (metis (no_types, lifting) add_diff_cancel_left'
mult.commute mult.left_commute)
ged
ged

G.1.4 Finiteness: sinx and cosx are finite

G.1.4.1 sinx is finite

lemma sine_HFinite:
assumes "x € HFinite"
shows " ((*f* sin) (x) ::hypreal) &€ HFinite"
proof -
have "Ax. (*f* sin) (x) <(l::hypreal) A
(*£* sin) (x) > (-1::hypreal)"
apply (transfer)
by auto
then
show " ((*f* sin) (x)::hypreal) € HFinite"
by (meson HFinite_1 HFinite_HInfinite_iff
HInfinite_ge_HInfinite HInfinite_minus_iff linear
minus_le_iff neg_0_le_iff_1le)
ged

G.1.4.2 cosxis finite

lemma cosine_ HFinite:
fixes x::hypreal
shows " ((*f* cos) (x) ::hypreal) € HFinite"
proof -
have "Ax. (*f* cos) (x) <(l::hypreal) A
(*£* cos) (x) > (-1::hypreal)"
apply (transfer)
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by auto
then
show " ((*f* cos) (x)::hypreal) € HFinite"

by (meson HFinite_1 HFinite_HInfinite_iff
HInfinite_ge_HInfinite HInfinite_minus_iff linear
minus_le_iff neg_0_le_iff_le)
ged

G.1.5 Finiteness: the coefficient term is finite

lemma sine_coefficient HFinite:
fixes dx::hypreal and n::nat
assumes "dx € Infinitesimal"
shows "(- 1) » (n div 2) * dx *~ n € HFinite"
proof -
have "-1 &€ HFinite"
by (simp add: HFinite_minus_iff)

then

have "((- 1) * (n div 2)::hypreal) € HFinite"
using hrealpow_HFinite by blast

also

have "dx * n € HFinite"
by (metis hrealpow_HFinite approx_star_of_ HFinite
assms mem_infmal_iff star_of_simps(9))
then
show "(- 1) » (n div 2)* dx " n € HFinite"
using HFinite_mult calculation by blast
ged

G.2 Second Approach

G.2.1 Altered definition of the differential

definition hypreal_differential

" (hypreal = hypreal) = hypreal = hypreal = hypreal"
where "hypreal_differential f x dx = f(x + dx) - f x "

G.2.2 The hyperreal definition for the first differential of sinx

lemma sin_differential constant:
fixes dx::hypreal and a::hypreal
assumes "dx € Infinitesimal" "a €HFinite"
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shows "hypreal_differential (Ay. a*(*f* sin) y) (star_of x) dx =
a* (*f* cos) (star_of x)*dx "
proof-
have substitution: "a* ((*f* sin) (star_of x)* (*f* cos) (dx) +
(*f* sin) (dx)* (*f* cos) (star_of x)) -
a* (*f* sin) (star_of x) =~
a* ((*f* sin) (star_of x) + dx*(*f* cos) (star_of x)) -
a* (*f* sin) (star_of x)"
proof -
have " (*f* sin) (star_of x) +
dx* (*f* cos) (star_of x) € HFinite"
by (metis HFinite_add HFinite_mult HFinite_star_of
Infinitesimal_subset HFinite assms (1)
basic_trans_rules(31) starfun_star_of)
then
have " (*f* sin) (star_of x)*(*f* cos) (dx) +
(*f* sin) (dx)* (*f* cos) (star_of x) =~
(*£* sin) (star_of x) + dx*(*f* cos) (star_of x) "
using STAR_sin_Infinitesimal STAR_cos_Infinitesimal
by (metis approx_add approx_mult2 approx_star_of_HFinite
assms (1) mult.commute mult.right_neutral starfun_approx)
then
show "a* ((*f* sin) (star_of x)*(*f* cos) (dx) +
(*£* sin) (dx) * (*f£* cos) (star_of x)) -
a* (*f* sin) (star_of x) =
a* ((*f* sin) (star_of x) + dx*(*f* cos) (star_of x)) -
a* (*f* sin) (star_of x)"
using assms approx_diff approx_mult2
by blast
ged
have "hypreal_ differential (Ay. a*(*f* sin) y) (star_of x) dx
(Ay. a* (*f* sin) y) (star_of x + dx) -
(Ay. a*(*f* sin) y) (star_of x)"
using hypreal_ differential_def

by blast
then
have "hypreal differential (Ay. a*(*f* sin) y) (star_of x) dx =
a* (*f* sin) (star_of x + dx) - a*(*f* sin) (star_of x)"
by blast
then

have "hypreal_ differential (Ay. a*(*f* sin) y) (star_of x) dx =
a* ((*f* sin) (star_of x)* (*f* cos) (dx) +
(*f£* sin) (dx)* (*f£* cos) (star_of x)) - a*(*f* sin) (star_of x)"
by (simp add: STAR sin_add)
then
have "hypreal_ differential (Ay. a*(*f* sin) y) (star_of x) dx =



Appendix G. Paragraph 205 - Higher differentials of sin x

a*((*f* sin) (star_of x) +
dx* (*f* cos) (star_of x)) - a*(*f* sin) (star_of x)"
using substitution by auto
then
show "hypreal_differential (Ay. a*(*f* sin) y) (star_of x) dx =
a*(*f* cos) (star_of x)*dx"
by (simp add: algebra_simps)
ged

G.2.3 The hyperreal definition for the first differential of cosx

lemma cos_differential_constant:
fixes dx::hypreal
assumes "dx € Infinitesimal"™ "a €HFinite"
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shows "hypreal_differential (Ay. a*(*f* cos) y) (star_of x) dx =

-a* (*f* sin) (star_of x)*dx "
proof -
have substitution: "a* ((*f* cos) (star_of x)*(*f* cos) (dx) -
(*f£* sin) (dx)* (*f* sin) (star_of x)) -
a* (*f* cos) (star_of x) =

a*((*f* cos) (star_of x) - dx*(*f* sin) (star_of x)) -
a* (*f* cos) (star_of x)"
proof -
have " (*f* cos) (star_of x) -
dx* (*f* sin) (star_of x) €& HFinite"

by (metis HFinite_add HFinite_minus_iff HFinite_mult
HFinite_star_of Infinitesimal_ subset_HFinite
assms (1) cosine_HFinite diff_conv_add_uminus
sine_HFinite subset_eq)
then
have " (*f* cos) (star_of x)*(*f* cos) (dx) -
(*£* sin) (dx) * (*f£* sin) (star_of x) =
(*f* cos) (star_of x) - dx*(*f* sin) (star_of x)"
using STAR_sin_Infinitesimal STAR_cos_Infinitesimal
by (metis approx_diff approx_mult2 approx_star_of HFinite
assms (1) mult.commute mult.right_neutral starfun_approx)
then
show "a* ((*£f* cos) (star_of x)*(*f* cos) (dx) -
(*£* sin) (dx) * (*f£* sin) (star_of x)) -
a* (*f* cos) (star_of x) &~
a* ((*f* cos) (star_of x) - dx*(*f* sin) (star_of x)) -
a* (*f* cos) (star_of x)"
using assms approx_diff approx_mult2
by blast
ged



Appendix G. Paragraph 205 - Higher differentials of sin x

have "hypreal differential (Ay. a*(*f* cos) y) (star_of x)
(Ay. a* (*f* cos) y) (star_of x + dx) -
(Ay. a* (*f* cos) y) (star_of x)"
using hypreal_differential_def

by blast
then
have "hypreal_differential (Ay. a* (*f* cos) y) (star_of x)
a* (*f* cos) (star_of x + dx) - a*(*f* cos) (star_of x)"
by blast
then

have "hypreal differential (Ay. a*(*f* cos) y) (star_of x)
ar* ((*f* cos) (star_of x)*(*f* cos) (dx) -
(*£* sin) (dx) * (*£* sin) (star_of x)) -
a*(*f* cos) (star_of x)"
by (simp add: STAR_cos_add)
then
have "hypreal differential (Ay. a*(*f* cos) y) (star_of x)
a*((*f* cos) (star_of x) - dx*(*f* sin) (star_of x)) -
a* (*f* cos) (star_of x)"
using substitution
by auto
then
show "hypreal_differential (Ay. a* (*f* cos) y) (star_of x)
-a* (*f* sin) (star_of x)*dx"
by (simp add: algebra_simps)
ged

dx

dx

dx

dx

dx

Q

Q
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