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Abstract
A biased dataset is a dataset that generally has attributes with an uneven class distri-
bution. These biases have the tendency to propagate to the models that train on them,
often leading to a poor performance in the minority class. With the increasing presence
of Artificial Intelligence-based systems in our society, an unfair decision has the po-
tential to be more than just a nuisance. In truth, with systems such as facial recognition
for criminal identification and the AI-based recruiting pipeline, a prediction made by a
biased model can change a person’s life forever.

Unfortunately, fixing the bias problem is not as straightforward as collecting additional
data, due to a number of challenges and limitations. In this project, we will explore the
extent to which various data augmentation methods alleviate intrinsic biases within the
dataset. We will apply several augmentation techniques on a sample of the UTKFace
dataset, such as undersampling, geometric transformations, variational autoencoders
(VAEs), and generative adversarial networks (GANs). We then trained a classifier for
each of the augmented datasets and evaluated their performance on the native test set
and on external facial recognition datasets. We have also compared their performance
to the state-of-the-art attribute classifier trained on the FairFace dataset.

Through experimentation, we were able to find that training the model on StarGAN-
generated images led to the best overall performance. We also found that training on
geometrically transformed images lead to a similar performance with a much quicker
training time. Additionally, the best performing models also exhibit a uniform perfor-
mance across the classes within each attribute. This signifies that the model was also
able to mitigate the biases present in the baseline model that was trained on the original
training set. Finally, we were able to show that our model has a better overall perfor-
mance and consistency on age and ethnicity classification on multiple datasets when
compared with the FairFace model. Our final model has an accuracy on the UTKFace
test set of 91.75%, 91.30%, and 87.20% for the gender, age, and ethnicity attribute
respectively, with a standard deviation of less than 0.1 between the accuracies of the
classes of each attribute.
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Chapter 1

Introduction

In the past decade, we have observed the huge success of machine learning applica-
tions, from image recognition to online advertising. Along with the rapid increase in
the uses of these applications, reports on biased performance have also increased: from
voice assistants not recognizing minority accents, to automated employment screen-
ing systems rejecting applicants with ‘feminine’ names. A common source of biased
model performance is the intrinsic biases within the dataset that was used to train these
machine learning models. It is a well known fact that a majority of popular datasets,
particularly the ones used in the field of computer vision, have an imbalanced class
distribution. This often results in the model performing poorly on the minority class,
i.e. the class with the fewest number of instances.

Unfortunately, attempting to create a dataset that is perfectly balanced amongst all
classes is not a simple task due to the numerous limitations, namely cost and avail-
ability. In this project, we will take an imbalanced sample from the UTKFace dataset
and perform augmentation on the sample images in an attempt to have a dataset that is
balanced along the gender, age, and ethnicity attributes. We have experimented with
four popular augmentation techniques, namely undersampling, and image generation
through geometric transformations, variational autoencoders (VAEs), and generative
adversarial networks (GANs). We then train a state-of-the-art attribute classifier on the
augmented datasets and compare their performance against a model that was trained
on the original imbalanced dataset. We have also tested the performance of the models
on external facial recognition datasets, LFWA+ and CelebA. Finally, we compared our
best model to the state-of-the-art attribute classifier that was trained on the FairFace
dataset.

From our experiments, we were able to get an accuracy on the UTKFace test set of
91.75%, 91.30%, and 87.20% for the gender, age, and ethnicity attribute respectively.
We were also able to obtain a standard deviation of less than 0.1 between the classes
within each attribute. The model that performs best in most cases is trained on GAN-
generated images. Although, it is important to note that training on the geometrically
transformed dataset performs almost as well, with a much shorter training time. Fur-
thermore, we evaluated the performance of the models on the LFWA+ and CelebA
dataset, and found that even though there is a drop in overall performance, the drop in
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Chapter 1. Introduction 2

the models trained on the augmented datasets is not as much as the one in the baseline
model. From this, we were able to deduce that a balanced dataset obtained through data
augmentation improves the overall performance and generalizability of the model. It
also alleviates the biases that were present in the baseline model.

Additionally, our best models consistently outperform the FairFace model in age and
ethnicity classification, however still lag behind in gender classification. Our models
also exhibit a more uniform performance across the classes within each attribute. This
trend is also observed when running the classifiers on the external datasets.

1.1 Motivation

Automated systems employing the use of Artificial Intelligence are increasingly used
in a multitude of applications in our society, from novelties such as adding filters on
social media cameras to making more serious decisions such as recruiting. It is im-
portant to note that even though we have not reached a point where these machines
make decisions for us, these systems are being more and more commonly used in the
decision-making pipeline. In the criminal forensics field, for example, an intelligent
system has yet to be used to determine the length of a person’s sentence. However,
facial recognition systems are used to identify suspects earlier in the process. It is
difficult to design a facial recognition system to 100% accuracy due to the limitations
of 21st century technology, therefore one misclassification can actually have a huge
impact in the life of an innocent individual.

The regulation of systems involving Artificial Intelligence is inherently difficult, as it
is scientifically complex to define a fair and unbiased system. These systems employ
various machine learning models that were trained with labeled data on datasets that
might contain a variety of societal biases that are propagated to the algorithms. These
algorithms will then in result learn discriminating features which are biased towards
certain groups, particularly minorities.

One popular example is uncovered by Bolukbasi et al. [6] where they showed that word
embedding algorithms, even the state-of-the-art ones such as Word2Vec [51], are prone
to societal gender biases. When the algorithm is presented with a word analogy task,
“man is to computer programmer as woman is to x”, it outputs “homemaker”. This
shows that the system is propagating already existing societal biases and stereotypes.
In another paper, Buolamwini and Gebru [8] found that several facial recognition and
gender classification systems from recognizable entities such as IBM and Microsoft
are biased towards people with a lighter skin tone, which happens to be the majority
class in the dataset. Both accounts deduce that the main culprit for these discriminatory
performances lies within the intrinsic biases in the underlying dataset.

With automated systems being continuously integrated as a functional entity within
our society, biases within these systems are getting more than just raised eyebrows.
Over the past couple of years, the machine learning fairness field has been getting the
attention it deserves, leading to researchers prioritizing creating fairer algorithms and
successfully benchmarked discrimination in various contexts [39][29]. However, only
very few of these works are within the field of computer vision.



Chapter 1. Introduction 3

Only recently, a study was surfaced by Martim Brandão [7] that shows that there exists
an age and gender bias within state-of-the-art pedestrian detection algorithms, which
presents a variety of ethical implications. To evaluate the algorithm for biases, the
author had to hand-label images in the INRIA dataset manually, which is a very slow
and error-prone method. In healthcare applications, biased samples in medical classi-
fication systems can result in treatments that do not work well for minority segments
of the population, with an impact similar to the well documented detrimental effects
of biased clinical trials presented by Melloni et al. [50] and Popejoy and Fullerton
[56]. Even after Esteva et al. [22] successfully showed in 2017 that simple CNNs can
be used to identify melanoma with accuracies as high as experienced medical profes-
sionals, it is impossible to gauge just how fair the skin cancer detection system is on
different groups of people without additional information about the skin color.

The main difficulty of auditing existing computer vision systems is because of the
lack of labels for accompanying so-called soft facial biometric attributes such as gen-
der, age, and ethnicity in most recognition datasets. Obtaining these labels are not as
straightforward as one might think, as there are privacy issues concerned when ob-
taining protected attributes of a person. Therefore, it is preferable to solve annotation
issues at the algorithm level rather than dataset collection level.

Regardless, these particular attributes themselves have attracted the attention of the
pattern recognition community, which is hugely contributed by the amount of possible
applications in retail and video surveillance. Of course, designing fair and reliable al-
gorithms is challenging in real-world applications, however this is not stopping a lot
of researchers from attempting to build such algorithms for face recognition and ver-
ification [19], expression recognition [47], gender recognition [3], and age estimation
[10].

1.2 Project Goals

The primary goal of this project is to investigate the extent to which the various dataset
augmentation techniques are able to mitigate biases within an imbalanced dataset, par-
ticularly within the gender, age, and ethnicity attributes. The datasets that will be used
in the project are primarily facial recognition datasets, however we would expect that
our findings can be extended and applied to various computer vision datasets that are
used for other applications such as object detection. Additionally, we are also inter-
ested in investigating the generalizability of the models trained on the different aug-
mented datasets by performing cross-dataset generalization on other facial recognition
datasets.

As mentioned in the previous section, the observable lag in measuring the account-
ability of computer vision systems with respect to its fairness is caused by the unavail-
ability of protected attribute labels on most vision datasets. To this day, there are only
very few publicly-available datasets with all three labels - gender, age, and ethnicity -
available, such as UTKFace and LFWA+. This poses a challenge to those who wish
to evaluate how the performance of a model varies throughout the different classes in
each attribute.
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Since collecting these attributes is an arduous and possibly costly task, most ethical
AI researchers have resorted to manually annotating available datasets. In response to
the lack of widely-used and publicly-available automatic attribute annotators for facial
recognition datasets, this project will also aim to train a state-of-the-art deep neural
network on the augmented datasets and obtain a model that classifies each attribute
from a given image with consistent performance across the classes. To further gauge
the feasibility of using our final model as a potentially novel automatic attribute anno-
tator, we will evaluate the performance of the model on a variety of facial recognition
datasets.

We will also compare the performance of our final model on an attribute classifier
trained on a balanced dataset called FairFace [36], which claims to have high classi-
fication accuracies on both the majority and minority classes. The primary difference
between the FairFace dataset and the resulting dataset in this project is that FairFace is
balanced by collecting data externally, while our dataset is balanced through generat-
ing images internally through various augmentation techniques. The FairFace dataset
will be discussed more in-depth in the following chapters.

1.3 Summary of Results

We have trained an attribute classifier on various augmented versions of the UTKFace
dataset in an attempt to reduce the imbalance in the class distributions within the gen-
der, age, and ethnicity attributes. We have employed several augmentation techniques
such as undersampling, geometric transformations, variational autoencoders (VAEs)
and generative adversarial networks (GANs). We aim to produce an unbiased model
with a high overall accuracy and F1-score. An unbiased model typically has a uniform
performance across the different classes, shown by a low standard deviation between
the accuracies and F1-scores of the classes in each attribute.

After thorough experimentation and evaluation, we have observed that the augmen-
tation technique to obtain the best performing model highly depends on the attribute
that we are trying to balance. For the gender and ethnicity attribute, we have found
that training a model on StarGAN-generated images yields the best performance and
uniformity. However, for the age attribute, the best performance is obtained through
training on the geometrically transformed images. The summary of performance of
the best models for each attribute is shown in table 1.1. A more detailed performance
report on various datasets and comparison with the state-of-the-art attribute classifier
will be presented in chapter 4.

Feature
UTKFace LFWA+ CelebA

Accuracy Std. Dev. Accuracy Std. Dev. Accuracy Std. Dev.
Gender (StarGAN) 0.917 0.027 0.910 0.008 0.833 0.018
Age (Geometric) 0.913 0.023 0.822 0.069 0.745 0.030
Ethnicity (StarGAN) 0.872 0.018 0.741 0.143 N/A N/A

Table 1.1: Performance of best models on the different facial recognition datasets

An important point to note here is that the models trained on a geometrically trans-
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formed dataset also yields results that are similarly high-performing and uniform as
the models trained on StarGAN-generated images. The main discrepancy here is the
training time - while training and generating images from the StarGAN took around
40-50 hours, generating images through geometric transformations require no addi-
tional training and only took several minutes. Therefore, we can conclude that even
though data augmentation using StarGAN wins by a few accuracy points, using a tra-
ditional augmentation technique is the best compromise with respect to accuracy and
efficiency.

1.4 Structure of the Report

Chapter 1 is the introductory chapter, where we will present the motivation behind
the project and the respective goals and contribution. In chapter 2, we will explore
and discuss previous work and state-of-the-art solutions to mitigating dataset biases in
computer vision datasets and identify their potential usability for our project. After
exploring the limitations of existing methods, we will then introduce our own set of
techniques that will be used throughout the project in chapter 3. In chapter 4, these
methods will then be evaluated through a series of image classification experiments,
and we will compare and justify the results in chapter 5. Finally in the last chapter, we
will identify points of improvement for future work and provide a general summary
outlining the key takeaways of the project.



Chapter 2

Background and Literature Review

2.1 Types of Biases

The unfortunate fact is almost all big datasets generated by systems powered by Ma-
chine Learning models are known to be biased. In the past decade, we have observed
the skyrocketing success of machine learning applications, from online advertising to
image recognition, and have been adopted to daily life applications, from phones with
built-in voice assistants to smart homes. As these devices become more common in
society, there has been a disturbing rise in reports of gender, race, and other types of
bias in these systems - from ad ranking systems being accused of racial and gender
profiling [68] to Amazon having to shut down a model that scores candidates for em-
ployments due to its tendency to penalize women [16] - and oftentimes, these biases
can be traced back to the dataset being used.

Due to the visual nature of computer vision datasets, it is not surprising that predefined
image collections present easily recognizable biases. These primary causes have been
pointed out and comprehensively described by Torralba et al. [73] as the following:

• Selection bias is the tendency of datasets preferring kinds of images, such as
street scenes, nature scenes, or images retrieved via Internet keyword searches.
Selection bias occurs when a dataset does not reflect the realities of the envi-
ronment in which a model will run. For example, in a facial recognition task,
the model is trained primarily on images of white men. This model would have
a considerably lower level of accuracy when tested against the faces of women
and people of different ethnicities.

• Capture bias is related to how the images are acquired both in terms of the used
device and of the collector preferences for point of view, lighting conditions, ob-
ject positioning, angles, etc. It also takes into account the fact that photographers
tend to take pictures of objects in similar ways.

• Category/label bias comes from the fact that semantic categories are often
poorly defined, and different labelers may assign different labels of the same
type of object, e.g. ”grass” vs. ”lawn” and ”painting” vs. ”picture”. Sometimes,
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the converse is true, i.e. the same label can also be assigned to visually different
images.

• Negative set bias defines what the dataset considers to be ”the rest of the world”.
If we focus only on the classes shared by the different datasets, the ’rest of the
world’ will be defined differently depending on the collection.

The presence of any of the above may cause the object recognition dataset to be not
fully representative of the domain it is trying to represent, which in our case happens
to be the ’real’ world, and thus being biased. A biased dataset could produce classifiers
that are overconfident and not very discriminative, and it might, in the extremes, also
cause several ethical and legal issues. The following section will discuss previous work
that has attempted to perform critical evaluation and mitigate these biases.

2.2 Previous Work

This section introduces some related studies from the past decade and provides a brief
review of the methods attempted previously. This section is divided into two parts: the
first part will discuss previous methods used to evaluate biases within object recogni-
tion datasets, and the second part will discuss previous studies that are concerned with
alleviating biases within object recognition datasets.

2.2.1 Evaluation

The growth of the object recognition field can be attributed to the availability of vast
datasets. Not only do they provide a large amount of training data, but they also provide
means of measuring and comparing the performance of competing algorithms. How-
ever, Torralba and Efros [73] expressed their concern about how research surrounding
object recognition puts too much focus on breathing the latest benchmark numbers on
the latest dataset to the extent that they might have lost sight of the original purpose of
the field.

They conducted a study to compare popular object recognition datasets and evaluate
them based on several criteria. The paper is also the first to conduct cross-dataset
generalization to evaluate biases within the datasets, and more on the method will be
discussed further below. This paper served as a wake-up call to the computer vision
field to address the dataset bias issues as its applications are growing just as vast as the
field. The methods used in the paper, and later on in various studies in the following
years, to take stock of the current state of recognition datasets will be also be discussed.

2.2.1.1 Name That Dataset!

The goal of the ’game’ called Name That Dataset! is to guess which images came
from which dataset. Theoretically, this would be a challenging task considering that
the datasets contain thousandst to millions of images and that they were collected with
the goal of being as varied as possible, aiming to sample the visual world ’in the wild’.
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This evaluation method looks at the most discriminable images within each dataset, i.e.
the images placed furthest from the SVM’s decision boundary. The opposite method
is also possible: for a given dataset, look at the images placed closest to the decision
boundary separating it for another dataset. This shows how one dataset can ’imperson-
ate’ a different dataset.

From this, they have found that, despite the best efforts of the creators of the datasets,
they appear to have a strong built-in bias. However, most of the bias can be attributed
to the different goals of the different datasets. They have also concluded that even if
the capture biases are controlled by isolating specific objects of interest, the biases will
still be present in one form or the other.

2.2.1.2 Cross-Dataset Generalization

As mentioned previously, there has not been any paper demonstrating cross-dataset
generalization to assess an object recognition dataset. Theoretically, this task should
be easy if the datasets were truly representative of the real world, and would give access
to much more labelled data.

Previous methods discussed in various papers [21][25][77] involve transferring a model
learned on one dataset into another. However, Torralba and Efros [73] points out an
interesting issue: these methods consider the target dataset as a different domain, even
though the datasets are trying to represent the same domain - our visual world!

Cross-dataset generalization aims to answer the following question: how well does a
typical object detector trained on one dataset generalize when tested on a represen-
tative set of other datasets, compared with its performances on the ‘native’ test set?
They chose two classes that were common among all datasets, ‘car’ and ‘person’, and
performed detection and classification tasks. The evaluation results show that there is
a big performance drop, and that there is little generalization that happens beyond the
given dataset.

From this, they concluded that some popular vision datasets, like Caltech-101 [55], are
extremely biased and supported the idea that they should have been ‘retired’ long ago.
In addition to that, they also emphasized that this issue should be put at the forefront
of object recognition research if our goal is to build algorithms that can understand the
visual world.

2.2.2 Dealing with Dataset Bias

2.2.2.1 Domain Adaptation and Transfer Learning

Domain adaptation aims at solving the learning problem on a target domain (data from
real scenarios) by exploiting information from a source domain (data used to train the
model) when both the domains and the corresponding tasks are not the same. Transfer
learning focuses on the possibility to pass useful knowledge from a source task to a
target task with different label sets when the corresponding domains are not the same
but the marginal distributions of data are related. When used together, they are able to
address the problem of a mismatch between the joining distribution of inputs between
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source and target domains, also known as the domain shift [58]. One of the first studies
that proposed the idea of domain adaptation for object recognition by Saenko et al. [62]
involve the idea of learning a regularized transformation using information-theoretic
metric learning that maps data in the source domain to the target domain. A later study
by Kulis et al. [45] generalizes this further to handle asymmetric transformations in
which feature dimensionality in source and target domain can be different.

A study by Gopalan et al. [27] addresses the issue in [62] and [45] that requires labeled
data from target domain by proposing a domain adaptation technique for an unsuper-
vised setting where data from target domain is unlabeled. This method obtains domain
shift by generating intermediate subspaces between the source and target domain, and
then projecting both domains onto the subspaces for recognition.

2.2.2.2 Mathematical Frameworks for Multi-Task Learning

Multi-Task Learning aims at learning jointly over N available sets, leading to a sym-
metric share of information. Evgeniou and Pontil [23] and Ben-David and Schuller [5]
have proposed a mathematical framework for multi-task learning where solutions to
multiple tasks are tied through a common weight vector. This common weight vector
is used to share information among tasks but is not constrained to perform well on any
task on its own.

Although similar to [23] and [5], the method proposed by Khosla et al. [38] differs by
the fact that their goal is to learn a common weight vector that can be used indepen-
dently and is expected to perform well on a new dataset. Their model, which is based
on a discriminative framework, is also novel in the way that it provides a first step to
building models that explicitly include dataset bias in the mathematical formulation
with the goal of mitigating its effect. Under the assumption that the features used are
common for all images from all datasets and that bias between datasets can be iden-
tified in feature space (features are rich enough to capture the bias in the images), the
discriminative framework will jointly learn a weight vector corresponding to the visual
world object model, and a set of bias vectors for each dataset, that when combined
with the visual world weights result in an object model specific to the dataset. They
formulated the problem in a max-margin learning (SVM) framework similar to the one
proposed by Evgeniou and Pontil [23].

Khosla et al. [38] evaluated their model by performing two tasks: (1) object classi-
fication on seen and unseen datasets and (2) object detection on unseen datasets, and
performed in-data and cross-dataset generalization to evaluate their algorithm perfor-
mance against an SVM baseline. The results prove their algorithm successful as it con-
stantly outperforms the SVM at all occasions, and thus showing that their framework
is effective at reducing the effects of bias in both classification and detection tasks. As
they’ve compared their model to the common weight vector from [5], it made sense to
use an SVM as a baseline, however since most object detection and classification tasks
today are multi-class problems, a neural network model would be a more reasonable
baseline.
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2.2.2.3 Multi-Task Unaligned Shared Knowledge Transform (MUST)

The rather disappointing cross-dataset generalization results shown by Torralba and
Efros [73] led Tommasi et al. [72] to the following hypothesis: a classifier trained on a
specific dataset learns a model containing some generic knowledge about the semantic
categorical problem, and some specific knowledge about the bias contained into that
dataset. From this, they decided to propose an algorithm that focuses on improving
cross-dataset generalization performance when trying to mitigate dataset bias. Similar
to [73], their method exploits existing visual datasets preserving their multiclass struc-
ture and relying on the fact that each of them present specific characteristics, but all
together they cover different nuances of the real world.

Their Multi-Task Unaligned Shared Knowledge Transform (MUST) algorithm com-
bines the techniques that have been used so far - domain adaptation, transfer learning,
and multi-task learning. It aims to extract general information from all the sources in
multi-task fashion to use it when learning on a new target with a general advantage
both on the known categories (domain adaptation) and on new ones (transfer learning).
The algorithm learns a projection function based on the folk-wisdom principle: pulls
objects or data samples together if they are the same type and pushes them apart if they
are not. The algorithm decomposes multiple datasets into two orthogonal subspaces
- one is specific to each dataset and the other is shared between all of them, then the
common information is transferred to help on a new task.

The MUST algorithm is evaluated through the single-view setting, where the same
features were used for each dataset, and a multi-view setting, where different features
were used for each dataset. The multi-view setting is particularly useful as it retains
dataset-specific characteristics before inferring the shared knowledge in successive it-
erations. Khosla et al. [38] compared MUST with a set of baseline models through
a cross-dataset generalization evaluation and found that their algorithm outperformed
others for both settings on average. This provides evidence that they have achieved
their goal to show that datasets do carry a useful knowledge which is learnable and
exploitable regardless of the bias afflicting them, and significantly improving the gen-
eralization ability of a learning system. The MUST algorithm also overcomes the class
alignment limit of the SVM multiclass models. However, they did perform evaluation
on the target dataset they trained on instead of on a completely new unseen dataset,
which makes it unlawful to call it cross-dataset generalization as the model was gen-
eralizing on samples from the same domain. In addition to that, multi-task learning is
particularly useful when each task has few data thus the results from the experiments
cannot be generalized to the vast object recognition datasets available today.

2.2.2.4 Image Descriptors

Later on, the authors of MUST [72], explored the potential of DeCAF [71], a robust
feature representation learned by convolutional neural networks (CNNs), when facing
the dataset bias problem. Through this, they aim to answer the question of how we can
use available data to generalize new unseen training samples even when training and
test collections are different. They used existing debiasing methods and used a less
powerful image descriptor, BOWsift, as a baseline for comparison.
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When doing the Name the Dataset! test, they found that DECAF has better separation
among collections than BOWsift, and that there are high confusion levels to datasets
with large number of classes and images per class and low confusion levels for those
that are more specific. They also performed the cross-dataset generalization test on
two object classes that are shared among multiple datasets: ‘car’ and ‘cow’. They
found that non-rigid objects like cows are more challenging to classify compared to
rigid objects like cars due to its large in-class variability.

From their comprehensive experiments they performed, they concluded that DeCAF
not only does not solve the dataset bias problem in general, but in some cases (both
class- and dataset-dependent) they capture specific information that induce worse per-
formance than what obtained with less powerful features like BOWsift. In addition to
that, highly descriptive power of the features that determined much of their successes
makes the task of learning how to extract general information across different data
collection more difficult, and that a simple selection procedure based on self-labelling
over the test set leads to a significant increase in performance.

2.2.2.5 FairFace

While the previous methods aim to tackle the dataset bias through improving existing
algorithms, Karkkainen et al. decided to approach the problem from another angle.
The creators of the FairFace dataset [36] were primarily interested in how most face
datasets are strongly biased toward Caucasisan faces. They also investigated the impact
of an imbalanced dataset to the consistency of the model accuracy and applicability of
systems trained on these datasets on non-Caucasian users. To solve this problem, they
constructed a novel face image dataset containing over 100,000 images that prioritizes
a balanced ethnicity composition, containing images collected from the YFCC-100M
Flickr dataset. The labels in the FairFace dataset are race, gender, and age groups. This
dataset is notably one of the most complete dataset currently available for ethnicity
recognition. A random sample containing several images from the FairFace dataset
selected by the authors is shown in figure 2.1.

Furthermore, the authors of the FairFace dataset have evaluated the gender, age and
ethnicity classification performance of a ResNet-34 model trained using different train-
ing sets. The experiments involve evaluations on different test sets, in order to inves-
tigate the generalization capabilities achieved by the network trained with a specific
set. They were able to show that the ResNet-34 that was trained on the FairFace
dataset generalizes substantially better than the same model trained on UTKFace [80]
and LFWA+ [32]. This demonstrates the importance of using their balanced FairFace
dataset for training an attribute classifier.

Additionally, Greco et al. have benchmarked deep network architectures [28] namely
VGG-Face [52], ResNet-50 [30], and MobileNet v2 [31], for ethnicity recognition.
They have trained the models on a variety of facial recognition datasets with ethnicity
attributes such as UTKFace, LFWA+, MORPH-II [60], and FERET [54], that were
collected and labeled in numerous different ways. From a series of experiments, they
were able to show that FairFace is the only dataset that was able to provide the network
models with generalization capabilities, however the performance on different test sets
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Figure 2.1: Sample images from the FairFace dataset [36]

still show a certain degree of variation.

2.2.3 Generative Data Augmentation

Most imbalances are usually caused by the inability to collect additional data in order
to create a dataset with an even class distribution. Therefore, researchers have explored
the plausibility of generating new data by augmenting images from existing datasets.
Shorten et al. have surveyed and discussed the various state-of-the-art augmentation
techniques in their recent work [65]. The paper defines data augmentation as gener-
ative modeling, which often refers to the practice of creating artificial instances from
a dataset such that they retain similar (yet not identical) characteristics to the original
set. Amongst all the data augmentation techniques covered in their paper, they have
divided them into two general methods: traditional and CNN-based. The methods
described below will be more thoroughly discussed in the next chapter.

Traditional augmentation involves performing basic manipulations to the source im-
age. There are a variety of manipulations that can be done, namely flipping, cropping,
rotating, shearing, translation, noise injection, and more. Choosing which method
to use requires understanding the context of their ‘safety’ of application. The safety
of a data augmentation method refers to its likelihood of preserving the label post-
transformation. For example, rotations and flips are generally safe on facial recogni-
tion datasets, but not for digit recognition tasks as flipping a ‘9’ by 180 degrees will
lead to a different digit, ‘6’.

Another popular augmentation method is the use of autoencoders. They are especially
useful for performing feature space augmentations on data. The encoder and decoder
network work simultaneously to map images to a low-dimensional vector representa-
tion and reconstruct the vectors back into the original image respectively. By extrapo-
lating between the 3 nearest neighbors per sample, DeVries and Taylor [18] were able
to generate new data that are similar but not identical to the input source. It is also
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possible to do feature space representation by isolating vector representations from a
CNN using a CNN-based autoencoder. An improvement from the standard autoen-
coder is the variational autoencoder [20]. A variational autoencoder is an autoencoder
whose encodings distribution is regularised during the training to ensure that it has a
continuous latent space that allows us to generate some new data, thus making sure
that the generated image looks ‘realistic’ and resembles the input images.

Finally, with the recent growth in deep learning brought forth the possibility of using
adversarial training to generate images from an existing dataset. Adversarial training
is a framework for using two or more networks with contrasting objectives encoded for
their loss functions. A popular generative modeling framework based on the principles
of adversarial training is the Generative Adversarial Network, or GAN. First proposed
by Ian Goodfellow [26], the main idea behind a GAN is a generator network that tries
to generate realistic-looking images based on the input that can ‘fool’ a discriminator
network to think that the generated image comes from the input. The success factor
lies when the discriminator can no longer identify whether a generated image is from
the training set or created by the generator network. Since its introduction, a variety of
architectures have been proposed, from DCGAN [59], CycleGAN [82], to StarGAN
[13]. A recent survey conducted by Yi et al. [78] covers the use of GANs in image
reconstruction applications such as CT denoising [75] and accelerated magnetic reso-
nance imaging [64]. The survey also covers the use of GAN image synthesis in medical
imaging applications such as brain MRI synthesis [9] and lung cancer diagnosis [14].



Chapter 3

Methodology

Dataset imbalance is a problem inherent to even state-of-the-art datasets that are used
in the majority of our intelligent systems today. The distribution of a dataset can vary
from a slight bias to a severe imbalance where an occurrence of a particular class is
very scarce. This is troublesome for predictive modeling because most of the machine
learning algorithms used for tasks such as classification were designed around the as-
sumption that the dataset is balanced class-wise. As a result, we will have models with
poor predictive performance, especially for the minority class. This is problematic
as the minority class is often the important class, such as a positive label in a cancer
detection dataset. The model would be more sensitive to classification errors for the
minority class than the majority.

Due to the availability and cost limitations, it is almost impossible to solve the imbal-
ance problem by simply ‘adding new data’. Therefore, we have to look at techniques
that can be done to obtain a balanced dataset from an imbalance source. Following
the limitations of the methods from previous work which attempted to alleviate bi-
ases in object recognition datasets, we decided to introduce other popular methods that
have been employed to mitigate biases and address the imbalance problem in different
machine learning fields, such as undersampling and geometric transformations. We
will also be introducing the use of Variational Autoencoders (VAEs) and Generative
Adversarial Networks (GANs), even though their usage for alleviating biases in facial
recognition datasets has yet to be made conventional. Therefore, we are interested to
investigate their ability to address the dataset bias problem.

These aforementioned techniques come with their own set of benefits and drawbacks,
which is why we must critically evaluate each of them. It is important to note that all
the data augmentation methods used throughout this project are introduced and dis-
cussed in this chapter, while their detailed technical implementation will be elaborated
further in the following chapter.

14
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3.1 Data Augmentation Techniques

3.1.1 Undersampling

Random undersampling [44] is a non-heuristic method that aims to balance class dis-
tribution through the random elimination of majority class examples. We chose this
method instead of oversampling as it has been shown that undersampling outperforms
oversampling [24] and oversampling can lead to overfitting [11]. Additionally, over-
sampling will lead to the minority class having a reduced variance, potentially leading
to poorer generalization performance. In undersampling, we keep all instances of the
minority class and randomly sample, without replacement, an equal proportion from
the majority class. The resulting dataset is then used to train the classifier. This aims
to balance out the dataset to overcome the idiosyncrasies of the machine learning al-
gorithm. Random undersampling can also be useful to remove variances within the
majority class, and thus the machine learning algorithm will only learn the most promi-
nent features of the class. One obvious drawback of random undersampling is that this
method might remove potentially useful features that are unique to a certain class.

In addition to that, when we train a machine learning classifier, we are essentially
teaching the classifier to estimate the probability distribution of the target population.
Since that distribution is intentionally left unknown, the classifier will try to estimate
the population distribution by using the sample distribution found in the training set.
Statistically speaking, as long as the sample is randomly drawn, the sample distribution
can be used to estimate the distribution of the target population as it is drawn from
the overall population. However, after undersampling the majority class, the overall
population distribution no longer corresponds to the target population, and thus the
sample cannot be considered random.

Regardless, a variety of undersampling methods have been shown to be effective when
it comes to dealing with a dataset with a minority class that is significantly smaller than
that of the majority class. Some of the successful applications involve credit card fraud
detection [79], estimating corporate bankruptcy [40], as well as balancing datasets used
in medical applications such as the thyroid and breast cancer dataset covered in [74].

3.1.2 Geometric Transformations

Geometric transformation is a form of traditional data augmentation technique that is
widely used to balance datasets containing images. Geometric transformation entails
cropping, rotating, flipping, zooming, shearing, and more. In addition to its effective-
ness in increasing the overall algorithm accuracy, geometric transformation techniques
are easily implemented through popular deep learning libraries such as TensorFlow [2]
and PyTorch [53].

There are certain cases where the application of geometric transformation on an image
dataset needs to be closely monitored. An example dataset that would be sensitive
to geometric distortions would be the MNIST dataset [15], where excessive flipping
and rotating might lead to inaccurate true labels, such as rotating a number ‘9’ by 180
degrees would turn it into the number ‘6’. However, this paper is primarily concerned
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with facial recognition datasets, so we do not need to worry too much about these
distortions.

One of the most obvious drawbacks of geometrically transforming a dataset is that
the resulting images are just very slightly modified versions of the original images,
and thus some might consider this method as a moderately ‘smarter’ oversampling
method. It can also potentially lead to homogenizing the data if we are planning to
generate a large transformed dataset from a relatively small sample. However, even
though the images may not look like a ‘new’ set of images to the human eye, subtle
spatial discrepancies such as horizontal flipping would be detected by deep learning
algorithms, leading them to think that it’s a completely new sample. This is why geo-
metric transformations seem to be effective in alleviating dataset biases and improving
the overall algorithm accuracy.

3.1.3 Autoencoders

Autoencoders [4] are essentially artificial neural networks that were built to recreate a
given input. It takes a set of unlabeled inputs and encodes them, then tries to extract
the most valuable information from them. Autoencoders are primarily used for feature
extraction, dimensionality reduction, and compression applications.

The general principle behind an autoencoder is to generate a low-dimensional repre-
sentation of a high-dimensional input, most commonly known as the latent represen-
tation. The process of mapping from input to the latent representation is commonly
known as representation learning. This is achieved by asking the model to simply
recreate the input, while imposing an information bottleneck upon the model so that it
is forced to lose a massive amount of information from the original input in the pro-
cess. In other words, we are forcing the model to learn only invariant features within
the input space. From this, we are encouraging the model to encode and retain as much
useful information as it passes the bottleneck, resulting in the development of two sub-
models: the encoder network that takes in an input and converts it into a smaller, dense
representation, and the decoder network that converts the dense representation back to
the original input. The overall structure of an autoencoder is shown in figure 3.1.

Figure 3.1: A standard autoencoder architecture
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Similar to other machine learning models, the autoencoder employs a loss function to
train the network. The loss function is usually either the mean squared error or cross-
entropy between the output and input, which is known as the reconstruction loss. The
reconstruction loss penalizes the network for creating outputs that are different from
the inputs.

Standard autoencoders are able to generate compact representations and reconstruct
their inputs well, however apart from applications such as denoising autoencoders,
they have a limited range of applications. Particularly, when we are aiming to use
autoencoders as a generative network, we are facing a fundamental problem: the latent
space that they convert their inputs to and where their encoded vectors lie might not
be continuous. This is completely fine if we simply would like to replicate the same
images, however not so much when we want to generate variations of the input image.

A discontinuous space is problematic for standard autoencoders because when attempt-
ing to generate a sample from that region, the decoder will generate an unrealistic out-
put as it does not know how to deal with that specific region of the latent space. One
of the main reasons for this occurring is that the model has never seen encoded vectors
coming from that region of the latent space during training. To solve this problem and
to make autoencoders as a useful generative model, Diederik Kingma and Max Welling
[43] came up with the variational autoencoder.

3.1.3.1 Variational Autoencoders

Variational autoencoders possess a unique property that sets them apart from standard
autoencoders: their latent space is continuous, allowing easy random sampling and
interpolation. This property is what makes them so useful for generative modeling.
This is done by representing the encoding output as two vectors, instead of directly
learning the latent representation from the input. The two vectors are the a vector of
means µ, and another vector of standard deviations σ. The vectors form the parameters
of a vector of random variables, which is where we obtain the sampled encoding to
be passed to the decoder. Aligned with their statistical definitions, the mean vector
controls where the encoding of an input should be centered around, while the standard
deviation vector controls how much from the mean the encoding can vary.

In a variational autoencoder, the decoder is able to decode encodings that slightly vary
from the original encodings from the latent space. This is because the decoder is
exposed to a range of variations of the encoding of the same input during training. After
training, the model is now exposed to a certain degree of local variation by varying the
encoding of one sample, resulting in a smooth latent space.

Ideally, we want encodings which are as close as possible to each other while still being
varied to a certain extent, allowing smooth interpolation and enabling the construction
of new samples. To make sure this is satisfied, a variational autoencoder employs the
Kullback-Leibler (KL) divergence [35] into its loss function. The KL divergence be-
tween two probability distributions measure how much they diverge from each other.
Thus, minimizing the KL divergence during training will optimize the probability dis-
tribution parameters (mean µ and standard deviation σ) to closely resemble that of the
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target distribution. The KL divergence is mathematically defined as follows:

i=1

∑
n

σ
2
i +µ2

i − log(σi)−1 (3.1)

In other words, this loss encourages the encoder to distribute all encodings evenly
around the center of the latent space. If the encoder clusters them apart into specific
regions away from the origin, it will be penalized. Optimizing the KL divergence
loss, combined with the reconstruction loss will allow the generation of a latent space
which maintains the similarity of nearby encodings on the local scale via clustering yet
is globally densely packed near the latent space origin. In short, this will ensure that the
model generates diverse images while maintaining a certain degree of resemblance to
the images in the original input. The overall architecture of a variational autoencoder
is shown in figure 3.2.

Figure 3.2: A variational autoencoder architecture [34]

Since its introduction, there has been an observable amount of uses of variational au-
toencoders, amongst them are to generate labels and captions to images [57], anomaly
detection in a variety of of applications [67][83][49], as well as applications in the nat-
ural language processing field, such as for semi-supervised text classification [76], text
generation [63] and fake news detection [37].

3.1.4 Generative Adversarial Networks (GANs)

A Generative Adversarial Network - or in short, GAN - is a framework for estimat-
ing generative models through an adversarial process where two models are trained
simultaneously [26]: a generative model that captures the data distribution, and a dis-
criminative model that estimates the probability that estimates the probability that a
sample came from the training data rather than from a generative model. During train-
ing, the generator will try to maximize the probability of the discriminator to make a
mistake, i.e. ‘thinking’ that an image comes from the training data instead of the gener-
ator, thus ‘fooling’ the discriminator. The training process closely mimics a two-player
minimax game.
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Since its introduction, a variety of GAN architectures have been proposed, each be-
ing state-of-the-art models for a multitude of applications. Amongst them are Cycle-
consistent GAN (CycleGAN) for unpaired image-to-image translation [82], deep con-
volutional GAN (DCGAN) for unsupervised representation learning [59], and unified
GAN (StarGAN) for multi-domain image-to-image translation [13]. For our project,
we chose to use the StarGAN architecture, primarily because of its ability to perform
image-to-image translations for multiple domains using only a single model.

3.1.4.1 StarGAN

A unified model architecture of StarGAN allows simultaneous training of multiple
datasets with different domains within a network. Since our project’s main aim is to
mitigate biases across three different domains - gender, age, and ethnicity - by gener-
ating new images from minority classes, we believe that this architecture is the most
appropriate to use.

Figure 3.3: Overview of the StarGAN architecture [13]

The multi-domain translation that is introduced in StarGAN involves using the domain
label information as a condition during training. This architecture is novel primarily
because its predecessor, CycleGAN, will require you to train n(n−1) generators if you
want to learn all mappings within k domains. This is highly inefficient and ineffective.

Like all GANs, the StarGAN model consists of two modules: a generator and a dis-
criminator. The difference is that StarGAN’s generator learns mappings among dif-
ferent domains. The discriminator will then try and distinguish between real and fake
images and classify real images to its corresponding real domain. During the training
phase, the generator G is trained to translate an input image x into an output image y
conditioned on the randomly generated target domain label c. This process is formally
defined as G(x,c)→ y.

Simultaneously, an auxiliary classifier is introduced on top of a discriminator D, whose
primary function is to classify the real images to its corresponding domain and to clas-
sify the fake images to the domain it was conditioned on. As shown in part (a) figure
3.3, the discriminator D will produce two distributions, D : x→{Dsrc(x),Dcls(x)}. So,
while G generates an image G(x,c), D will learn to distinguish between real and fake
images and produces Dsrc(x), which is the probability distribution over sources given
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by D. On the other hand, Dcls(x) represents the probability distribution over domain
labels computed by D.

The StarGAN model employs three main loss functions:

• Adversarial loss (Ladv) is a loss function that is present in all GANs. During
the training phase, the discriminator D will try and maximize the error while
the generator G will try to minimize this error, thus simulating the two-player
minimax game mentioned previously. This adversarial loss is formally defined
as:

Ladv = Ex[logDsrc(x)]+Ex,c[log(1−Dsrc(G(x,c)))] (3.2)

In the above equation, the generator G is trained to translate an input image x into
an output image y conditioned on the randomly generated target domain label c,
as described previously. This process is demonstrated by (b) in figure 3.3. The
discriminator D will then learn to distinguish between real and fake images and
produce the relevant distribution over source data, Dsrc(x).

• Domain classification loss (Lcls) is associated with classifying and generating
images specific to the domains provided from the input labels. The loss function
for the domain classification of real images is formally described as follows:

Lr
cls = Ex,c′[− logDcls(c′|x)] (3.3)

Here, Dcls(c′|x) refers to the probability distribution over domain labels com-
puted by D. By minimizing this, D will learn to classify a real image x to its
corresponding original domain c′. Similarly, G also tries to minimize the loss
function for the domain classification of fake images, denoted by the following
equation:

L f
cls = Ex,c[− logDcls(c|G(x,c))] (3.4)

Minimizing the above loss function will ensure that G generates images that can
be classified as the target domain c. The optimization of these loss functions are
done in (c) in figure 3.3.

• Reconstruction loss (Lrec), also known as the cycle-consistency loss, is used to
prevent reconstruction errors after changing specified domains. The reconstruc-
tion loss is formally described below:

Lrec = Ex,c,c′[
∥∥x−G(G(x,c),c′))

∥∥
1] (3.5)

This loss function is introduced to guarantee that the translated images preserve
the content of its input images while changing only its domain-related parts.
While the model reconstructs the original image from the generated image, it
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calculates the loss between the two. This enforces the model to generate ‘re-
alistic’ images. Formally, generator G translates input x to the specified target
domain c and translates it back to the source domain c′, as demonstrated in part
(d) in figure 3.3. An L1 norm is applied to calculate the loss between the original
image x and the translated image, G(G(x,c),c′).

The final loss function for StarGAN’s discriminator (LD) and generator (LG) is a com-
bination of losses described above, which is formally denoted as the following:

LD =−Ladv +λclsLr
cls (3.6)

LG = Ladv +λclsL
f
cls +λrecLrec (3.7)

In the equation 3.6 and 3.7, λcls and λrec are the model’s hyperparameters whose main
objective is to control the relative importance of the domain classification loss and
reconstruction loss.
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Experiments

This chapter introduces the data preprocessing procedure and some technical details
of each data augmentation method including implementation and application. We will
also visually display the result of each augmentation technique on the training images
in this chapter. Experiments in this project are performed on a subset of the UTKFace
dataset [80], and cross-evaluated on CelebA [48] and LFWA+ [32]. These datasets will
be thoroughly described within this chapter. We will also expound on the preprocessing
methods done to the facial recognition datasets and the evaluation procedure that we
adopted.

We pose several research questions (denoted as RQ) that we answer through experi-
ments within this chapter:

• RQ1: How does each augmentation technique affect the overall classification
performance of the model on a test data from the same dataset it was trained on?

• RQ2: How do the models perform on external facial recognition datasets?

• RQ3: How does the performance of each model fare against a state-of-the-art
attribute classifier?

We would expect that a truly unbiased or ‘ideal’ model will have a consistent perfor-
mance between the different classes in the source dataset as well as on external datasets
with the same domain. Through careful experimentation, we hope to obtain a model
that performs as closely as the ‘ideal’ model, while providing meaningful analysis
and answers to the above questions throughout the experimentation process. The next
chapter will contain the results and relevant discussions from the experiments in this
chapter.

4.1 Data Preprocessing

For the experiments in this chapter, we have collected a variety of frontal-facing fa-
cial images and their respective attributes from three widely-used facial recognition
datasets:

22
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• The UTKFace dataset [80] consists of 20K+ face images in the wild which are
readily cropped and aligned, with the respective age, gender, and ethnicity labels.
These labels are estimated through the DEX algorithm [61] and double checked
by a human annotator.

• The Labeled Faces in the Wild-aligned (LFWA+) dataset is the preprocessed
version of the Labeled Faces in the Wild dataset [32] which are aligned by [70],
and contains over 13K face photographs that were designed for studying the
problem of unconstrained face recognition, with over 70 attributes including age,
gender, and ethnicity. The attributes were externally labeled by Taigman et al.
[46] through the One-Shot Similarity measure. Positive attribute values indicate
the presence of the attribute, while the negative attribute values indicate its ab-
sence. The magnitude of the value signifies the degree to which the attribute is
present or absent.

• The CelebA dataset [48] comes with 200K+ celebrity images with a high di-
versity across the features. Each image annotated with 40 binary attributes, in-
cluding age and gender. Unlike the UTKFace and LFWA+ dataset, the CelebA
dataset does not come with ethnicity labels. The attributes were annotated using
a novel deep learning framework proposed by the authors, which cascades two
CNNs, LNet and ANet.

Below is a summary table on the available annotations within each dataset:

Dataset No. of Images
Annotations

Age Ethnicity Gender
UTKFace 13,000+

√ √ √

Labelled Faces in the Wild, aligned (LFWA+) 200,000+
√+ √ √

CelebA 20,000+
√∗ √

* Age labels are binary: young/old
+ Age labels are categorical: child, youth, middle-aged, senior

Table 4.1: Summary of the datasets

Given that the UTKFace dataset has the highest number of images and a complete
set of annotations, we will choose this dataset as the native dataset to train the model
on. We have used the LFWA+ and CelebA dataset for cross-dataset generalization
performance evaluation. For each of the images in the dataset, we have performed
minimal preprocessing as they are already aligned using dlib’s face recognition tool
for image alignment [41]. To minimize training time and memory consumption, we
have cropped them to only contain faces (removed neck and external background) and
resized them to 75 x 75 pixels each. Figure 4.1 shows a sample of preprocessed facial
images from each dataset.

Furthermore, to understand the degree of bias present, we have performed an initial
exploratory data analysis and statistical evaluation on each dataset. The overall class
distribution for the UTKFace, CelebA, and LFWA+ datasets can be observed by the
graphs on figure 4.2. From the graphs, it is apparent that the attributes in each dataset
is prone to class imbalance.
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Figure 4.1: Sample images from UTKFace, LFWA+ and CelebA

Figure 4.2: Class distributions per attribute for the UTKFace, LFWA+ and CelebA
dataset

For training the neural network, we used stratified splitting on the UTKFace dataset
to obtain the training, validation and test sets, with a respective split of 60/20/20. The
justification of the split is that we would like to train the model with as much data
as possible while retaining the original dataset variance in the test and validation sets.
The splits are reported in table 4.2.

Since the labels of each dataset do not agree with each other, we decided to prepro-
cess the attributes further. Unlike the binary and categorical labels in the CelebA and
UTKFace dataset, the LFWA+ dataset assigns a positive or negative numerical value
representing how present the attribute is in each image. Therefore, we took the attribute
with the highest positive value in each class and assigned a categorical value label to
that attribute. For example, the highest positive ethnicity label value is ‘white’, we will
assign the ethnicity attribute of that image to be 0, which is the respective categorical
label for that specific ethnicity. After preprocessing, the attributes within the LFWA+
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Attribute Class Train Validation Test

Gender
Male 7434 2456 2456
Female 6790 2286 2286

Age
Young (<65) 12944 4315 4315
Old (65+) 1280 427 427

Ethnicity

White 6044 2015 2015
Black 2718 906 906
Asian 2060 687 687
Indian 2385 795 795

Table 4.2: UTKFace dataset train/validation/test split statistics

dataset adopt a categorical labeling system.

Additionally, CelebA has adopted a binary labeling of ‘old’ and ‘young’, LFWA+ has
adopted a categorical labeling of ‘child’, ‘youth’, ‘middle-aged’, and ‘senior’, while
UTKFace has the exact numerical age value. For the purpose of this project, keeping in
mind efficiency and feasibility of the implementation, we decided to follow CelebA’s
binary labeling. Additionally, having two classes that are very diverse will allow a
more noticeable image-to-image translation by the StarGAN. Therefore, we have as-
signed the label ‘old’ for anyone over the age of 65 in UTKFace and for anyone with
the ‘senior’ label in LFWA+. We have labeled the remaining population as ‘young’.

Furthermore, there were five ethnicities available in the UTKFace dataset - white,
black, asian, indian, and other - however, we decided to remove the ‘other’ ethnic-
ity group mainly because it contains images of people with assorted ethnicities, thus
they do not share as many invariant features with each other as the other ethnicity
groups do. This also helps the ethnicity labels in the UTKFace dataset to agree with
the ones on the LFWA+ dataset, which do not have the ‘other’ group. In addition to
that, the removal of the ‘other’ ethnicity group is also done to reduce the training time.
After all the image and attribute preprocessing have been implemented, we calculated
an average face from all of the images within each class by taking the mean of the
vectorized images, visualized in figure 4.3.

Figure 4.3: Visualization of the mean face vector for each class

For external testing, we have randomly sampled a class-wise balanced set of prepro-
cessed images from the CelebA and LFWA+ datasets. This is done such that any dis-
crepancies in the evaluation metrics can be solely attributed to the model performance,
and not caused by other factors primarily the class imbalances within the dataset. Table
4.3 outlines the number of test images used in each class from each dataset.
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Attribute Class LFWA+ CelebA

Gender
Male 2000 4000
Female 2000 4000

Age
Young (<65) 4000 4000
Old (65+) 4000 4000

Ethnicity

White 800 -
Black 800 -
Asian 800 -
Indian 800 -

Table 4.3: Number of test images per class from each dataset

4.2 Data Augmentation

In this section, we will describe the implementation details of the different data aug-
mentation techniques described in chapter 3. All of the augmentation processes in this
section are done on a single 10 GB NVIDIA Tesla K40m GPU in a virtual environ-
ment under Scientific Linux version 7.8 (Nitrogen). All data augmentation methods
are solely performed on the training set, while the validation and test sets are kept
constant.

To perform undersampling, we have picked the classes with the lowest number of
training images in each attribute to obtain a balanced training set. Thus, each class
within the same attribute would have an equal number of instances to the class with
the least number of instances. After undersampling, the gender, age, and ethnicity
attribute has 6790, 1280, and 2060 instances per class respectively.

For geometric transformations, we have used a rotation with a maximum rotation de-
gree of 10, zooming with a factor between 1.1 and 1.2, and horizontal flipping. These
values were chosen to preserve the natural properties of the facial recognition dataset,
namely maintaining a roughly vertical facial alignment, not cropping out essential fea-
tures such as eyebrows and bottom lip through excessive zooming, etc. The effects of
applying geometric transformation on an image from the UTKFace dataset is shown in
figure 4.4.

Figure 4.4: Geometrically transformed image from the UTKFace dataset

For the next augmentation technique, we have implemented a simple variational au-
toencoder using PyTorch [53] resembling the architecture shown in figure 4.5. The
encoder and decoder model contains a single fully-connected layer each. The encoder
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network turns the input samples into two parameters in a latent space: the vector of
means µ and the vector of standard deviations σ. In the sampling layer, we will use
these vectors and a random normal tensor ε to randomly sample similar points z, math-
ematically denoted as the following equation:

z = µ+ eσ× ε (4.1)

Then, we built a decoder network that maps these randomly sampled latent space points
back to the original input data.

Figure 4.5: The variational autoencoder architecture used in this project

The parameters of the variational autoencoder model are trained via two loss functions:
the reconstruction loss and the KL divergence [35]. The reconstruction loss is the mean
squared error between the output and input, and it ensures that the decoded samples
match the initial inputs. The KL divergence between the learned latent distribution
and the prior distribution acts as a regularization term. Optimizing the KL divergence
helps learning well-formed continuous latent spaces as well as reducing overfitting to
the training data.

Finally, we were able to train our variational autoencoder model on the preprocessed
facial images in the UTKFace dataset for over 20 epochs with a batch size of 128.
We have used the Adam optimizer [42] with a learning rate of 0.001. The primary
reason for this configuration is to optimize accuracy while also keeping training time
at a minimum. We computed the latent vector for each class in each attribute within the
UTKFace dataset and mapped an image onto each latent vector. The generated images
obtained through the use of our variational autoencoder across multiple domains is
shown in figure 4.6.

The final augmentation technique to be evaluated in this project is image generation
through a Generative Adversarial Network (GAN). To be able to obtain a GAN that
generates good quality images, a large amount of data is required. For the ‘old’ class in
the ‘age’ attribute, we have less than 2000 training data. Therefore, we used the previ-
ous geometric transformation method to generate the remaining 720 images. As men-
tioned previously, we have chosen StarGAN because of its ability to perform image-to-
image translations for multiple domains by training only a single model. This model
allows simultaneous training of multiple datasets with different domains within a net-
work. We made use of the implementation provided by the authors of the original
paper [12].
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Figure 4.6: Images generated by the variational autoencoder

We train our StarGAN on all three attributes with a total of eight different classes:
male, female, young, old, white, black, asian, and indian. We have used 2000 images
for each class during training. Due to hardware limitations, we only managed to train
the network for 20,000 iterations with a batch size of 16. We have kept the images to
a size of 75 x 75 pixels. To be able to visually monitor the performance of the model
during training, we have set the model to save a checkpoint after every 1000 iterations
and display a sample of translated images from a single reference image to its respec-
tive domains. The training process took about 50 hours for the specified parameter
settings. The final model is able to generate realistic images from a single source im-
age across eight different domains through latent-guided synthesis, as shown in figure
4.7. Through quick visual examination, we can observe that the images generated by
the StarGAN are of high perceptual quality and resemble realistic human faces.

Figure 4.7: Images generated by the StarGAN through latent-guided synthesis

It is also important to note that due to the random nature of the image generation,
diversifying a particular domain will also unintentionally lead to diversifying multi-
ple domains. For example, generating a ‘female’ image will generate an image that
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belongs to a different ‘ethnicity’ group than the original source image. This helps
prevent homogenization of a particular class and the loss of in-class variance.

Contrary to undersampling, every class in each attribute will have the same number of
instances as the majority class after generating new training images through geometric
transformations, the variational autencoder and the StarGAN. Each class within the
gender, age, and ethnicity attribute will now have 7434, 12944, and 6044 instances
respectively.

4.3 Experimental Setup

4.3.1 Network Architecture

For each of the dataset obtained as a result of the aforementioned augmentation tech-
niques, we have built an InceptionV3 model [69] using TensorFlow [2] to train them
on. Choosing a state-of-the-art pretrained model is favored above building our own
neural network so that any performance discrepancies within the result can solely be
attributed by the dataset being biased, and not the model’s capability of classification.

Furthermore, Zebin Jiang [33] has compared three state-of-the-art network architec-
tures for gender classification, namely VGG16 [66], InceptionV3 [69] and ResNet50
[30]. In the paper, it was found that VGG16 performs gender classification the best,
with an accuracy of 95%. However, training a VGG16 takes around 37 seconds per
epoch. Therefore, to reduce the training time, we decided to use InceptionV3, which
takes 2 seconds per epoch to train and has an accuracy of 91%. This choice is made to
make a compromise between accuracy and efficiency.

The structure of the InceptionV3 model is shown below:

Figure 4.8: InceptionV3 architecture [1]

In short, InceptionV3 is a state-of-the-art 42-layer deep convolutional neural network
architecture from the Inception family that makes several improvements such as using
Label Smoothing, Factorized 7 x 7 convolutions, and the use of an auxiliary classifier to
propagate label information lower down the network. It also uses batch normalization
for layers in the sidehead.
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For this project, we have used an InceptionV3 network that was pre-trained on the
ImageNet dataset [17]. To train the network as an attribute classifier on our dataset, we
have replaced the top layers by the following trainable layers:

1. 2D Global Average Pooling
2. Fully connected layer with output dimension 1024 and ReLU activation
3. Dropout with probability 0.5
4. Fully connected layer with output dimension 512 and ReLU activation
5. Fully connected layer with output dimension x and softmax activation

The x above signifies the number of classes within each attribute, which is 2 for gender
(male, female), 2 for age (young, old), and 4 for ethnicity (white, black, asian, indian).
These top layers will be trained on the augmented images.

We have trained each model on the preprocessed augmented images with a batch size
of 64 for 25 epochs to avoid overfitting, while monitoring the validation loss (cate-
gorical cross-entropy) and accuracy at every iteration. We have used the Stochastic
Gradient Descent optimizer with a learning rate of 0.0001 and a momentum of 0.9.
These parameters were chosen to maximize accuracy however still maintain a rela-
tively efficient training process.

4.3.2 Performance Evaluation

It is critical to evaluate the performance of the models trained on the augmented ver-
sions of the UTKFace dataset using metrics such as F1-score, as classification accuracy
is known to fail on classification problems with a skewed class distribution. This is be-
cause classification accuracy is initially designed by practitioners on datasets with an
equal class distribution. Nevertheless, we will report the per-class accuracy within
each attribute for the ease of comparison with the state-of-the-art attribute classifica-
tion model. We aim to investigate to what extent each augmentation method improves
the model’s performance on minority classes and on external datasets. To do this, we
ran the classifier on a test set from the original UTKFace dataset and used the resulting
performance as the baseline comparison. The complete results of the experiment will
be reported and discussed in the next chapter.

4.3.2.1 Evaluation on Native Dataset

To answer RQ1, we would evaluate the performance of each model on the test set from
the native dataset, i.e. the dataset that the model was trained on, which was UTKFace.
As highlighted in the previous section, we moved 20% of the images from the original
unaugmented dataset for testing. The detailed statistics of the split can be found in table
4.2. We then ran the classifiers on this test set. From the results of this experiment, we
hope to see whether or not the model performs uniformly on the majority and minority
classes. This will be shown by any discrepancies in per-class accuracies and F1-scores
within a particular attribute.
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4.3.2.2 Cross-Dataset Generalization

Similarly, we evaluated the performance of the classifiers on other facial recognition
datasets that were not used for training, CelebA and LFWA+, to answer RQ2. A truly
balanced and unbiased model should be able to generalize on external datasets of the
same domain. In figure 4.3 in the previous section, we have calculated and visualized
the average faces in the UTKFace dataset. We have also calculated the average faces
for the CelebA and LFWA+ datasets and calculated the difference from each average
face vector to the UTKFace average face vector. This is done by calculating the mean
squared error and the structural similarity index (SSIM) [81] between the vectors. The
mean squared error measures the difference between each pixel within the images,
while the structural similarity index attempts to model the perceived change in the
structural information of the image. If two images are identical, the mean squared
error between them will be 0 and the structural similarity index will be 1. From this,
we aim to be able to investigate the correlation between the similarity of the average
images between the native and external test dataset has an effect on the generalizability
of a model to the test dataset.

Finally, from the results of the cross-dataset performance evaluation, we will be able
to gauge a model’s ability to generalize. A high performance on the native dataset and
a low performance on the external dataset may signify that the model has learned the
intrinsic biases within the training dataset. We will also be able to see whether or not
the model is biased towards the majority class by examining the per-class accuracies
and F1-scores.

4.3.2.3 Comparison with State-Of-The-Art

Lastly, we will compare the best model for each attribute on a state-of-the-art attribute
classifier trained on the FairFace dataset [36] discussed in chapter 2. The results of
this evaluation will help us answer RQ3. We want to be able to investigate how a
model trained on our augmented datasets will fare against the current state-of-the-art
balanced dataset. The authors of the FairFace dataset have trained a simple classifier
based on ResNet-34 and have successfully shown that the model trained from the Fair-
Face dataset is significantly more accurate on various face recognition datasets and the
accuracy is consistent between race and gender groups.

For a fair comparison with our models and to obtain meaningful results, we have ob-
tained the model trained on FairFace that was published by the original authors and
ran the classifier on the same test set we have used for our native and cross-dataset
evaluation. We will report the similar metrics as the previous experiments in order to
gauge the consistency and generalizability of the FairFace model on our test set. We
also made sure not to change any image or attribute preprocessing method.
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Results

In the previous chapter, we have thoroughly described the technical implementation
details of the various data augmentation techniques as well as the evaluation methods
we have chosen. In this chapter, we will report in detail and analyze the results of the
experiments. We will also aim to answer the questions defined in the previous chapter.

5.1 Evaluation and Discussion

5.1.1 RQ1: Performance Evaluation on Native Dataset

The detailed results of performing classification on the UTKFace test set on each of the
different models are shown in table 5.1. The highest average accuracy and F1-score
for each class is shown in bold. From a quick evaluation of the table, we can notice
that almost all of the augmentation techniques performed on the UTKFace training set
increase the overall performance of the model. Furthermore, we can also notice that the
best models trained on augmented data also leads to a more consistent performance,
with a standard deviation of no more than 0.02 between the accuracies and F1-scores
of the classes within each attribute. This is a significant drop from the baseline that
has an average standard deviation of almost 0.1. This shows that the augmentation
techniques more or less alleviates the bias problem in the baseline model.

Attribute Class
Baseline Undersampling Geometric Var. Autoencoder StarGAN

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Gender
Male 0.910 0.900 0.916 0.900 0.882 0.880 0.932 0.880 0.944 0.910
Female 0.870 0.900 0.888 0.900 0.873 0.880 0.825 0.870 0.891 0.900

Age
Old 0.604 0.740 0.913 0.850 0.936 0.920 0.555 0.710 0.801 0.880
Young 0.981 0.830 0.766 0.830 0.890 0.910 0.983 0.810 0.975 0.900

Ethnicity

White 0.838 0.810 0.634 0.650 0.846 0.820 0.892 0.770 0.854 0.840
Black 0.862 0.870 0.818 0.810 0.894 0.900 0.862 0.790 0.886 0.900
Asian 0.752 0.800 0.746 0.760 0.824 0.880 0.670 0.730 0.892 0.890
Indian 0.800 0.770 0.708 0.690 0.846 0.830 0.462 0.560 0.854 0.860

* the models with the best performance (average accuracy and F1-score) are highlighted in bold

Table 5.1: Classification performance statistics of each model on the UTKFace test set

32
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However, this trend is not observed on the models trained on the dataset augmented
through variational autoencoders. In fact, all these models have a relatively poor per-
formance, yielding lower accuracies than the baseline and increasing the disparity be-
tween the performance of the majority class and the minority class. This is probably
because the images generated by variational autoencoders are less realistic and far
more blurry with softer edges, thus diminishing the appearance of key features. To
highlight this observation, we have presented a comparison between the images gener-
ated by the variational autoencoder and the images generated by the StarGAN in figure
5.1.

Figure 5.1: Comparison between the images generated by the variational autoencoder
and StarGAN

Another common trend that can be observed is that the models trained on undersam-
pled data notably reduces the performance of the majority class. This can be attributed
to the fact that undersampling based on the least class will discard a significant portion
of the majority class, removing the in-class variance and potentially throwing away
potentially useful information.

For the gender attribute, we can see that using trained StarGAN to generate additional
training images yields the highest performance with respect to accuracy and F1-score,
with an average accuracy of 91.75%. However, training on the geometrically trans-
formed dataset leads to a more uniform performance across the classes within the
gender attribute, with an accuracy standard deviation of 0.006 comapred to the Star-
GAN model’s 0.038. Regardless, for the majority of the augmentation techniques, the
F1-scores for the classification of the gender attribute show a consistent performance
across the classes, even the baseline model. From this, we can deduce that the class
imbalance in the gender attribute is not severe enough to cause the model to be biased.

Furthermore, we have noticed that training our model on the geometrically transformed
training set produces the best classification performance on the age attribute, with an
accuracy of 91.30%. This model also notably improved the performance consistency
between the classes, dropping the accuracy standard deviation from 0.189 in the base-
line to 0.023. Training on the StarGAN-generated images does increase the classifi-
cation performance of the minority class, however it still lags far behind the majority
class. Additionally, we get to observe how undersampling significantly reduces the
performance of the majority class particularly in this attribute, from 98.1% in the base-
line to 76.6%. If we recall from the statistical evaluation of the UTKFace dataset, there
is a huge difference in the number of instances in the majority class and the minority
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class. Removing thousands of instances in the ‘young’ class in undersampling will
reduce the variance in the class, and variance is particularly important in this class
because a ‘young’ person covers anyone from birth to someone who is middle-aged.

Amongst the augmented variants of the UTKFace dataset, training an ethnicity classi-
fier on the StarGAN-generated images yield the best overall performance. This model
has a classification accuracy of 87.2% and shows a consistent performance across the
different classes within the attribute, with an accuracy standard deviation of only 0.017.
Furthermore, the model also increases the accuracies for each class from the baseline.
This trend can also be observed for the model trained on the geometrically transformed
dataset. Similarly to the age attribute, undersampling reduces the accuracy of the ma-
jority class by a notable amount, from around 83.6% to 63.4%. There is also a sizable
class imbalance in this attribute, with the ‘white’ class containing around 6000 in-
stances while the remaining classes contain only about 2000 instances each. Thus,
removing over half of the instances in the ‘white’ class in training deteriorates the
model’s ability to distinguish ‘white’ faces within the test set.

Overall, we can conclude that training an attribute classifier on a balanced training
set through augmentation more or less improves the overall performance of the model
and also leads to a more consistent performance across the different classes within the
attribute. For most of the attributes, StarGAN proves to be the most effective in im-
proving the performance as well as mitigating the performance discrepancies between
the majority and minority classes. However, it is also important to note that the model
trained on the geometrically transformed images performs very closely. In fact, it pro-
duced the best performing classifier on the age attribute. Considering that training a
StarGAN and generating the images take a total of almost 50 hours while geometrically
transforming images take only a few minutes, augmenting the dataset using geometric
transformations can be the best compromise between accuracy and efficiency.

5.1.2 RQ2: Cross-Dataset Generalization

In the previous chapter, we have mentioned briefly about measuring the similarity be-
tween the average face vector of the UTKFace dataset and the LFWA+ and CelebA
dataset. This was done by calculating the mean squared error and structural similarity
index between the vectors. If two datasets contain similar images, they will have a
mean squared error close to 0 and a structural similarity index close to 1. The values
are reported in table 5.2.

Mean Squared Error Structural Similarity Index (SSIM)
LFWA+ 0.0108 0.8050
CelebA 0.0258 0.7172

Table 5.2: Similarity comparison of the average face vector of LFWA+ and CelebA to
the average face vector of UTKFace

From table 5.2, we can observe that the average face vector of the training dataset,
UTKFace, is more similar to the LFWA+ dataset than CelebA. However, the differ-
ences in the mean squared error and structural similarity index is not too huge, signi-
fying that the model has the potential to generalize over both datasets.
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5.1.2.1 Performance on the LFWA+ Dataset

Attribute Class
Baseline Undersampling Geometric Var. Autoencoder StarGAN

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Gender
Male 0.887 0.850 0.882 0.840 0.866 0.880 0.896 0.820 0.902 0.900
Female 0.808 0.840 0.776 0.820 0.888 0.880 0.708 0.780 0.917 0.900

Age
Old 0.400 0.330 0.710 0.760 0.753 0.810 0.158 0.270 0.577 0.710
Young 0.990 0.710 0.848 0.790 0.890 0.830 0.977 0.690 0.942 0.800

Ethnicity

White 0.936 0.640 0.800 0.640 0.984 0.680 0.892 0.610 0.950 0.700
Black 0.776 0.780 0.788 0.740 0.624 0.730 0.784 0.680 0.790 0.810
Asian 0.384 0.530 0.888 0.610 0.392 0.550 0.208 0.320 0.650 0.700
Indian 0.356 0.440 0.424 0.480 0.544 0.550 0.172 0.240 0.575 0.540

* the models with the best performance (average accuracy and F1-score) are highlighted in bold

Table 5.3: Classification performance statistics of each model on the LFWA+ test set

Based on the structural similarity between the average face vector of the UTKFace
and LFWA+, we would expect that the performance of our models on the LFWA+
dataset will be quite similar to the performance on the UTKFace dataset. By looking
at the detailed model classification performance statistics in table 5.3, we can observe
that the best models for each attribute in the LFWA+ dataset correspond to the ones
in the UTKFace dataset. However, the performance is slightly worse overall and less
balanced, especially for the age and ethnicity attribute. This is as expected, because
the models have not seen a single instance from this dataset.

Nevertheless, the overall performance and consistency between the classes increase
from the baseline as we apply most of the augmentation techniques on the training set.
This shows that the models that successfully alleviate biases in their source dataset
also generalizes better. Similar to the results of the classifier obtained on the UTK-
Face dataset, we observe a trend where undersampling reduces the performance of the
majority class, however the effect is not as severe. Training on images generated by
variational autoencoders also leads to the worst performance, reducing the accuracy of
each class within the attributes and increasing the gap between the performance of the
majority and minority classes.

For the gender attribute, the best performing model is obtained through training the
model on the StarGAN-generated images, with an accuracy of 91%. The performance
of the model on the LFWA+ dataset is not too far behind when compared to the perfor-
mance on the UTKFace dataset, which had an accuracy of 91.7%. In addition to that,
a standard deviation of less than 0.1 between the class accuracies and F1-scores shows
that the performance is consistent among the classes within the attribute. Training
the model on the geometrically transformed images also yields a similar performance,
differing by only a few points at 87.7%.

Just like the UTKFace dataset, the best performing model for the age attribute is ob-
tained through training the model on geometrically transformed images, with an ac-
curacy of 82.2%. This is quite a significant drop from the accuracy on the UTKFace
dataset, which was 91.30%. Additionally, although the model obtained through this
method reduces the performance of the majority class from the baseline, it increases
the accuracy of the minority class by almost two-fold, from around 40% to 75%. The
standard deviation of the accuracies also reduced from the baseline, from 0.42 to less
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than 0.1. Furthermore, the model obtained by training the on undersampled data and
on StarGAN-generated images also improves the performance of the minority class
from the baseline, however there are still some noticeable discrepancies between the
performances of each class.

Finally, the model that has the highest classification performance on the ethnicity at-
tribute is the model that was trained on images generated by the StarGAN, with an
overall accuracy of 74.1%. Out of all the attributes, this is the highest drop in perfor-
mance when compared to the model’s performance on the UTKFace dataset, which
was 87.2%. We also noticed that the performance consistency between the classes are
arguably poor, showing favor towards the majority class. This is statistically confirmed
by a standard deviation of the accuracies of 0.143 in the best model. Regardless, this
is a significant improvement from the baseline standard deviation of 0.288. Addition-
ally, training on undersampled data and geometrically transformed images increase the
overall performance and consistency from the baseline, however the performance on
the minority classes are still very poor, with accuracies of only 40-50%.

Thus, we can deduce that training the model on an augmented version of the source
dataset yields a better overall performance and generalization capability on the LFWA+
dataset. In addition to that, it also leads to a model that is less biased towards the
majority class. Therefore, we can conclude that training the model on a balanced
dataset obtained through augmentation mitigates the effect of intrinsic biases within
the source dataset to a notable extent.

5.1.2.2 Performance on the CelebA Dataset

Attribute Class
Baseline Undersampling Geometric Var. Autoencoder StarGAN

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Gender
Male 0.762 0.770 0.815 0.770 0.680 0.760 0.759 0.750 0.850 0.820
Female 0.773 0.770 0.693 0.740 0.880 0.800 0.723 0.740 0.815 0.800

Age
Old 0.152 0.260 0.674 0.630 0.465 0.590 0.109 0.190 0.715 0.750
Young 0.978 0.690 0.533 0.570 0.885 0.730 0.960 0.670 0.774 0.780

* the models with the best performance (average accuracy and F1-score) are highlighted in bold

Table 5.4: Classification performance statistics of each model on the CelebA test set

According to the mean squared error and structural similarity index, the CelebA dataset
is less similar to the UTKFace dataset compared to the LFWA+ dataset. Therefore, we
would expect the overall performance to be quite low, as the model was trained on
augmented versions of the UTKFace dataset. From a quick observation of table 5.4,
we can confirm that this is the case. The gender and age accuracies of the best model
tested on the UTKFace dataset is within the 85-95% range, while the accuracies of the
best model tested on the CelebA dataset ranges between 75-85%. The performance
also seems to be less balanced across the classes. Nevertheless, we can observe similar
patterns in the performance, such as how training on images generated through varia-
tional autoencoders reduces the overall performance and consistency of the model.

For the gender attribute, training a model on the StarGAN-generated images yields
the best performance and consistency, with an overall accuracy of 83.3% and standard
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deviation of 0.02 between the classes within the attribute. This is an improvement
from the baseline accuracy of 0.768, although the baseline standard deviation is much
lower at 0.008. However, the overall performance has dropped accuracy-wise when
compared to the gender attribute classifier performance on the UTKFace dataset, which
scored over 90%. Other augmentation methods lead to a model that performs worse
than the model and emphasizes the performance gap between the majority and minority
classes. One interesting observation is that unlike what was observed from testing our
model on the UTKFace and LFWA+ dataset, training on undersampled data actually
increases the majority accuracy and reduces the minority accuracy for this particular
attribute. Furthermore, we found that training on geometrically transformed images
reduces the accuracy of the majority class while the accuracy of the minority class
increases. This is a trend that was not present when running our classifier on the
UTKFace and LFWA+ dataset.

Similarly, training on images generated by the StarGAN also yields the best perform-
ing model on the age attribute, although the accuracy is still quite low at an average
of 74.5%. However, since the baseline performance is very low with an accuracy of
56.5%, this is considered as a substantial improvement. Furthermore, the performance
disparity between the classes is quite significant in the baseline, and the best perform-
ing model was able to reduce the standard deviation between the classes in the attribute
from 0.58 to 0.03. Therefore, in addition to improving the overall performance, train-
ing the model on the StarGAN-generated images also increases the model’s ability to
make unbiased decisions. All of the other augmentation techniques aside from using
variational autoencoders increase the performance of the minority class and reduce the
gap between the performance of the majority and minority class.

From the above, we can conclude that even though there is a slight decline in perfor-
mance, augmenting the dataset helps the generalization capability of the model on the
CelebA dataset. Additionally, training on augmented data also consistently improves
the performance of both the majority and minority class, as well as reducing the dis-
parity between the performance of each class to a certain extent. Furthermore, we can
also deduce that the similarity between an external dataset and the dataset a model is
trained on affects the generalizability of the model on the external dataset.

5.1.3 RQ3: Comparison with the FairFace Model

In the previous section, we were able to identify which augmentation technique pro-
duces the best model. To get a general idea on how our model would compare in the
object recognition field, we have made a comparison with the FairFace model. Due
to the fact that the FairFace model was collected with an aim to have a dataset bal-
anced across ethnicity, we would expect for it to perform the best when classifying the
ethnicity attribute in the UTKFace and LFWA+ dataset.

It is important to note that there are a few key differences between the model, namely
the dataset it was trained on and the model that was trained. The FairFace model
was trained on the FairFace dataset containing over 100,000 labeled images, while our
model was trained on an augmented version of the UTKFace dataset. The FairFace
model is based on the ResNet-34 architecture while our model is based on Inception
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v3. Although these factors might not allow us to make a direct comparison between
the performance, we can still check how well our best model performs when compared
to the state-of-the-art.

Attribute Class
UTKFace LFWA+ CelebA

Our model FairFace Our model FairFace Our model FairFace
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Gender
Male 0.944 0.910 0.951 0.950 0.902 0.905 0.954 0.980 0.850 0.820 0.969 0.970
Female 0.891 0.900 0.949 0.950 0.917 0.903 0.999 0.980 0.815 0.800 0.975 0.980

Age
Old 0.936 0.920 0.670 0.700 0.753 0.810 0.572 0.720 0.715 0.750 0.139 0.240
Young 0.890 0.910 0.976 0.970 0.890 0.830 0.983 0.820 0.774 0.780 0.999 0.890

Ethnicity

White 0.854 0.840 0.952 0.920 0.950 0.700 0.967 0.840 - - - -
Black 0.886 0.900 0.859 0.900 0.790 0.810 0.658 0.730 - - - -
Asian 0.892 0.890 0.916 0.900 0.650 0.700 0.788 0.260 - - - -
Indian 0.854 0.860 0.739 0.790 0.575 0.540 0.158 0.640 - - - -

* the models with the best performance (average accuracy and F1-score) are highlighted in bold

Table 5.5: Classification performance comparison between our best model and the
FairFace model

The results shown in table 5.5 are quite contradictory to our hypothesis. Given that
the FairFace model was trained on data that was collected with the primary objective
of having a dataset that was balanced ethnicity-wise, we would expect that our best
models would perform consistently worse. Interestingly, the converse is true - our
model outperforms ethnicity classification in both the UTKFace and LFWA+ dataset -
with an overall accuracy of 80.6%. Our model also exhibits a consistent performance
between the different classes within the ethnicity attribute, with an overall accuracy
standard deviation of 0.12. On the other hand, the FairFace model has an overall
accuracy of 75.5% and a standard deviation of 0.24. This shows that the most accurate
model also tends to be the least biased.

Additionally, our model also consistently outperforms the FairFace model for age clas-
sification on all datasets, with an accuracy of 82.6%. The overall accuracy of the Fair-
Face model is quite low compared to ours, with an overall accuracy of 72.3%. Our
model’s performance is also more uniform across the various classes within each at-
tribute, with an accuracy standard deviation of only 0.08, compared to the FairFace
model’s standard deviation of 0.31. This shows that the FairFace model is more bi-
ased, and by looking at the table, it looks like the model constantly favors the majority
class.

However, the gender classification performance by the FairFace model is unmatched
across all the datasets, reaching accuracies which are constantly above 95% on average,
compared to our model’s 88.6%. The FairFace model is also arguably more balanced
with a standard deviation across the classes of 0.02, though our model is also fairly
balanced with a standard deviation of 0.04.

As said previously, we need to keep in mind that our models and the FairFace model
have a different architecture, making the comparisons less meaningful. However, it is
interesting to see how our model performs against the state-of-the-art annotator with
respect to classification accuracy, generalizability across various datasets, and bias mit-
igation.
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Conclusions

In this project, we have successfully evaluated the performance of several methods on
alleviating the effect of dataset biases on the final model, primarily caused by imbal-
ances within classes. We have implemented the various data augmentation techniques
and trained a multi-class classification model on the augmented data. From our thor-
ough experimentation and analysis of the result, as well as comparison with existing
state-of-the-art models, we were able to show how some of our techniques can aid the
dataset imbalance problem and create an unbiased model that matches the performance
of current state-of-the-art.

In summary, we have taken the UTKFace dataset and extracted the gender, age, and
ethnicity attributes for our experiments. We apply each balancing technique - under-
sampling, geometric transformations, variational autoencoders and generative adver-
sarial networks - on the training data and train a classifier to classify the different
attributes on the held-out test set. We evaluated their performance by analyzing the
per-class accuracy and F1-score and identifying any inconsistencies. We have also
performed cross-dataset evaluation to understand the generalizability performance of
our model on external datasets with the same domain. Furthermore, we also found
that there is a positive correlation between the generalizability of the model on an ex-
ternal dataset and the similarity between the external dataset and the dataset that the
model was trained on. Finally, we have discussed the key observations from the vari-
ous experiments and critically evaluate each balancing method and data augmentation
technique on their capability to be used to obtain a fair and unbiased model.

Through rigorous experimentation, we were able to show that some of our data aug-
mentation techniques were able to mitigate the biases in the model caused by class
imbalances within the training dataset. From the dataset, we were then able to train a
multi-attribute classifier with a better generalization performance than our initial base-
line. It is also important to note that our classifier performs consistently better on the
binary age attribute than the state-of-the-art ResNet-based attribute classifier trained
on the FairFace dataset. One key observation is that although most of the best models
were obtained by training a model on a dataset containing StarGAN-generated images,
the models trained on geometrically-transformed images do not fare too far behind.
However, geometrically transforming images and adding them to the training set do
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not take as much time as training a StarGAN and then generating images from the
model. Therefore, keeping in mind the trade-off between accuracy and training speed,
we found that training a model on a dataset augmented through geometric transforma-
tions can provide you with an unbiased high-performing classifier in a short amount of
time.
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