
Sharing is Caring:
Throughput Fairness in Virtual

Wireless LANs

Simon Kaufmann

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2021

Abstract
Network virtualisation can be a useful tool for wireless network providers to share costs
for equipment and simplify deployment. Shared hardware costs can make a fair dis-
tribution of available throughput an important concern. C-VAP and AlphaAP are two
related algorithms providing a fairness guarantee for uplink throughput and optimizing
the total throughput using a dynamic control mechanism. This project provides the first
implementation of C-VAP and AlphaAP on wireless hardware, thereby demonstrating
the practical feasibility of the control-theoretic approach in making fairness guaran-
tees using standard commercially available hardware components. The algorithm’s
underlying system model is extended to show how it can be used in connection with
WLAN performance optimizations like frame aggregation and RTS handshakes. Fi-
nally, the implementation is thoroughly tested on a customisable, automated test bed,
specificially designed for the project, and shown to outperform the conventional uncon-
trolled medium access mechanism in several cases while deviating from the desired
fairness guarantee consistently by less than 2%. The project demonstrates how the
firmware of publicly largely undocumented modern wireless chipsets can be used to
provide low-level measurements of wireless channel conditions which form the basis
for a controller based optimization of the network operation.

i

Acknowledgements

I would like to offer special thanks to my supervisor Dr. Paul Patras for his continuous
guidance, feedback and support throughout the project and to Dr. Francesco Gringoli
and Marco Cominelli for supporting me with their technical expertise and for their
assistance with building up a large test setup to use during the project.

ii

Contents

1 Introduction 1

2 Background 3
2.1 WLANs and Medium Access . 3

2.1.1 Contention Mechanism (DCF) 4
2.1.2 Quality of Service Enhancement (EDCA) 5
2.1.3 RTS/CTS . 6

2.2 Frame Aggregation . 7
2.3 C-VAP Algorithm . 7
2.4 AlphaAP Algorithm . 7
2.5 Other WLAN Optimisation and Fairness Algorithms 8
2.6 Previous Prototyping Efforts . 8

3 System Model 9

4 Implementation 12
4.1 Algorithm Components . 12
4.2 Router Asus RT-AC86U . 13
4.3 Software Architecture . 13
4.4 Firmware . 15
4.5 uCode . 17
4.6 Userspace . 19

5 Test Setup 24
5.1 Router Configuration . 24
5.2 Automated Testing Scripts . 26
5.3 Control Parameter Estimation . 26

6 Evaluation 28
6.1 C-VAP Performance . 28
6.2 AlphaAP Performance . 29
6.3 Control Parameter Optimisation . 30
6.4 Unsaturated Case . 33
6.5 RTS/CTS and Frame Aggregation 35

7 Conclusion 39

iii

Chapter 1

Introduction

Global demand for mobile networking has more than tripled since 2017 and is expected
to grow further at a similar rate over the next few years [12]. New mobile networking
technologies like 5G can help to accommmodate the increased demand, but upgrades
are costly to install and maintain [7].

Mobile data offloading from cellular networks to alternative WLANs (wireless local
area networks) is an alternative which can help to lower costs for infrastructure pro-
viders and reduce the demand on cellular networks [14]. This is especially relevant
in particularly crowded locations like shopping centres, event locations, and indoor
venues.

Virtualisation is another technique which can be used to share WLAN equipment and
thus operating costs between operators. It offers logical separation of networks which
are operated on the same physical hardware and the virtual networks look to regu-
lar users indistinguishable from separated networks provided by physically different
devices [13]. Virtualisation can help with the technical challenges of deploying phys-
ical hardware, such as finding suitable placement for antennas and connecting access
points to the networking core etc.

One problem when operating virtualised WLANs is the distribution of the available
data throughput, since virtual networks are required to share the total available band-
width on a given channel. Especially when the network is operating under strain, a
fair distribution of the throughput can become important for network operators who
are sharing the operation costs.

Access points can use a modified queue management system to ensure that data traffic
coming from the internet (downlink) is distributed fairly between the different stations
or virtual networks, similar to the process described in [8]. For traffic originating
from the different virtual networks (uplink), it is more difficult for the access point
to guarantee a fair distribution of the available bandwidth. The decentralised access
mechanism of WLANs gives equal access to every station connected to any of the
virtual networks and therefore prioritises networks with more connected users.

1

Chapter 1. Introduction 2

C-VAP [3] and AlphaAP [21] are two related algorithms for solving this problem of
fair distribution of uplink throughput between virtual WLANs. Both algorithms oper-
ate by dynamically modifying the channel access parameters for each virtual network
based on the currently observed channel conditions. This allows the access point to
slow down networks using more than their allocated share of total throughput and to
increase traffic in networks using less throughput than allocated. Both algorithms are
implemented completely at the access point and do not require clients to be modified.

Previously, C-VAP and AlphaAP were tested in a simulation setting, but the practical
feasibility of deploying such a solution in real settings with off-the-shelf hardware has
not been verified [3] [21]. Additionally, both C-VAP and AlphaAP do not consider
different optimisations of the WLAN channel access mechanism.

This project starts by extending the system model of the C-VAP algorithm to account
for extensions of the WLAN standard, such as frame aggregation and the RTS/CTS
handshake mechanism, and to demonstrate how the algorithm can be used in scenarios
where these extensions are used. Next, the feasibility of both algorithms is demon-
strated by implementing it on standard commercially-available WLAN hardware (in
particular, on router Asus RT-AC86U with wireless chipset Broadcom BCM4366),
and finally the algorithm performance is evaluated in operation on a custom test bed
under a range of network conditions both with and without the mentioned extensions.

We find that both algorithms are able to maximise network performance and ensure
fairness between virtual networks under load, deviating less than 2% from the desired
throughput distribution. Whenever a virtual network is not under full load, its full
throughput demand will be served and the additional available bandwidth will be re-
distributed proportionally to the remaining virtual networks under full load. We further
find that while the undocumented nature of the used WLAN chip led to some unsolved
technical challenges regarding accurate measurements of the channel conditions when
using frame aggregation or the RTS/CTS mechanism, the algorithm is able to ensure
fair bandwidth distribution in these cases as well, though with a slightly lower total
performance than using conventional network operation.

This work is structured as follows: Chapter 2 gives some background information on
the WLAN technology and related work in the area, Chapter 3 outlines the changes to
the C-VAP system model made for this project, Chapter 4 discusses the implementation
of the algorithm on hardware followed by a description of the test bed used in Chapter
5. Finally, Chapter 6 ends with a discussion of the measured results of the algorithm
in a range of settings.

Chapter 2

Background

The work in this project is based on wireless local area networks (WLAN). The tech-
nology behind WLANs was standardised by the Institute of Electrical and Electronics
Engineers (IEEE) and released in the form of the IEEE 802.11 standard and its several
amendments [10]. This chapter introduces the relevant parts of the 802.11 standard
and concludes with a discussion of the C-VAP/AlphaAP algorithms for guaranteeing
throughput fairness, comparing them to other approaches.

2.1 WLANs and Medium Access

A WLAN is a local computer network in which participating devices use wireless
communication to exchange data. All WLANs in this project consist of an access
point (AP) and regular participating devices (station / STA). The access point comes
in the form of a WLAN router and is responsible for advertising the WLAN (using
beacon frames which include the network configuration and are transmitted in regular
intervals) and allowing stations to connect to the network [10].

It is possible for an access point to advertise several different logical/virtual networks.
Each virtual network has a different identifier (SSID) and can have different advertised
properties (like encryption etc.) but is operating at the same frequency as the other
virtual networks provided by the same access point [10]. We refer to a virtual network
as a virtual access point (VAP).

Medium access is an important consideration in wireless networking because all par-
ticipating devices are accessing the network through the same medium (radio waves
in the air at the same frequency) and cannot transmit data at the same time without
causing interference. This applies to devices in all VAPs and means that the total time
available for transmission has to be shared among all devices in all VAPs advertised
by a single AP.

When two devices start sending at the same time, the data cannot be received properly
by the access point or other stations. Such a failed transmission is called a collision. In
wireless networks it is technologically challenging for a transmitting device to detect a
collision during the transmission (which is different to, for example, a wired Ethernet

3

Chapter 2. Background 4

network). This means that during a collision the full duration of the intended trans-
mission is wasted. The resulting high cost of collisions is the reason why the WLAN
protocol was designed with avoidance of collisions in mind. CSMA/CA (Carrier-sense
multiple access with collision avoidance) is the mechanism used by the IEEE 802.11
standard that aims to reduce the number of collisions occurring on the medium.

The following section discusses how CSMA/CA is implemented in the 802.11 standard
and how stations determine when to transmit frames without causing a large number
of collisions.

2.1.1 Contention Mechanism (DCF)

The medium access control mechanism for 802.11 WLANs is called DCF (Distrib-
uted Coordination Function). Stations with pending data frames continuously check
whether the physical medium is occupied. After the medium is sensed free, stations
are required to wait for a duration referred to as DIFS (DCF Interframe Space) [10]. If
the medium is still free after DIFS has passed, the station starts a counting mechanism
(the so-called backoff process) which needs to be completed before a frame can be
sent.

The backoff process involves selecting a random integer from a uniform distribution of
values between [1, CW] where CW refers to the contention window currently selected
at this station. The station then runs a counter which decrements the randomly selected
number every time slot (the duration of this basic time slot is specified by the standard).
Once the number reaches zero, the station starts to transmit the next frame. If at any
point during the countdown, the medium is sensed busy again, the station will store
the current counter value and resume counting down once the medium has been sensed
free again for the duration of DIFS.

After a station has transmitted a frame, it will wait for an acknowledgement frame
(ACK) which is sent by the receiving station and confirms a successful transmission. A
missing ACK frame indicates that a problem has occurred (e.g. a collision), in which
case the frame has to be retransmitted. The station doubles the currently selected
contention window and then chooses a new random number for countdown from the
larger interval [1, CWdouble].

The doubling of the contention window after every failed transmission leads to an
automatic increase of the time that each station will wait on average before transmitting
the next frame, thereby decreasing the chance of another collision occurring and self-
regulating their behaviour to keep the number of collisions low. The standard defines a
maximum contention window (CWmax) and a minimum contention window (CWmin)
limiting the range of values that the selected CW can take. After having transmitted a
frame successfully, a station resets its contention window to CWmin.

Figure 2.1 illustrates the described contention process. In addition to duration DIFS,
the standard also defines SIFS (Short Interframe Space) which is (among other uses)
the time between the end of a frame transmission and the start of the corresponding
ACK frame.

Chapter 2. Background 5

Data frame Ack

SIFS

Ack

DIFS

Backoff Slots

Slot time

Contention Window

Backoff Counter starts decreasing

SIFS

Busy

1 Frame Transmission

Counter = 0

Figure 2.1: 802.11 Contention Mechanism (DCF)

One drawback of the original DCF definition is that all traffic is handled in the same
way. In practice, it may be desirable to configure a WLAN to prioritise certain types
of transmissions, such as live video and audio streams, compared to less time-critical
data like regular file downloads. The next section describes the 802.11e Quality of
Service amendment to the 802.11 standard which allows the access point to define
different values for CWmin and CWmax depending on the type of data to be transmitted,
a mechanism which will be crucial for both C-VAP and AlphaAP.

2.1.2 Quality of Service Enhancement (EDCA)

IEEE 802.11e is an amendment to the WLAN standard introducing a mechanism for
Quality of Service and was published in 2005. The new mechanism allows WLANs to
be configured in a way that treats certain types of traffic preferentially.

The amendment defines three different access categories (ACs): Background (AC BK),
Best Effort (AC BE), Video (AC VI) and Voice (AC VO). Stations now maintain sep-
arate transmission queues and backoff counters for each AC and the access point adds
an additional section containing the EDCA (Enhanced Distributed Channel Access)
parameter set in the beacon frame of each VAP. This parameter set allows values for
CWmin and CWmax to be configured for each AC and gives the network operator the
opportunity to choose which ACs to prioritise and by how much. Smaller minimum
values for the contention window increase the throughput for data of a specific access
category, while larger values decrease it relative to other ACs.

Crucially, this mechanism also enables access points to prioritise some virtual net-
works over others by changing their respective contention parameters. C-VAP and
AlphaAP make use of this option in order to dynamically control throughput for VAPs.

The CWmin and CWmax cannot be set to any arbitrary value and are instead represented
in the beacon frame as two 4-bit values referred to as ECWmin and ECWmax. The
corresponding CW value can be calculated using the formula in equation 2.1

CWmin/max = 2ECWmin/max−1 (2.1)

The Quality of Service enhancement additionally defines the value AIFSN which in-
dicates the number of empty slots that stations have to wait for in a certain access
category before the backoff process starts. When using regular DCF, stations wait dur-
ation DIFS after the medium was sensed free. Instead when using EDCA, stations

Chapter 2. Background 6

Data frame Ack

SIFS

Ack

SIFS

Backoff Slots

Slot time

Contention Window

Backoff Counter starts decreasing

SIFS

Busy

1 Frame Transmission

Counter = 0

AIFSN

Figure 2.2: 802.11e QoS Contention Mechanism (EDCA)

Data frame Ack

SIFS

Ack

(SIFS+AIFSN)

 or DIFS

Backoff

SIFS

Busy

1 Frame Transmission

RTS

SIFS

CTS

SIFS

Figure 2.3: 802.11 RTS/CTS Mechanism

wait for the duration of SIFS+(AIFSN× duration time slot) thereby giving the net-
work operator another opportunity to prioritise data frames in certain access categories
over others. The full EDCA contention process is illustrated in Figure 2.2.

The next section discusses the RTS/CTS mechanism whereby stations explicitly ex-
change information about medium access using a handshake mechanism.

2.1.3 RTS/CTS

The RTS/CTS mechanism (Request To Send / Clear To Send) is an optional mech-
anism included in the 802.11 standard designed to improve performance in networks
where some stations cannot receive the transmissions of all other stations (hidden-node
problem). In such a scenario there is a higher chance of a collision occurring because
some stations cannot sense accurately whether the medium is free and might start a
transmission despite another station being in the transmission process.

When a station uses the RTS/CTS mechanism, it starts by contending for the medium
in the usual way (DCF or EDCA). Once the station is allowed to access the medium, it
transmits a short RTS frame (request to send) to which the access point responds with
a CTS frame (clear to send). The CTS frame informs the initiating station and all other
stations that the medium is now reserved for a certain duration. Any station missing
the original RTS frame due to being too far away will be able to receive the CTS frame
from the access point and learn that the medium has become busy. Following the
CTS frame, the initial station transmits the pending data frame. While the RTS/CTS
frames add additional overhead, the mechanism can be advantageous because of the
often significantly reduced duration of collisions. The described process is outlined in
Figure 2.3.

Chapter 2. Background 7

2.2 Frame Aggregation

RTS/CTS frames and the backoff process before every single transmissions add addi-
tional overhead to the network operation. Frame aggregation can help to reduce this
overhead by packing multiple data frames into a single transmission. Instead of a
regular ACK frame, the access point will then respond using a so-called Block ACK
acknowledging receipt of the aggregation of frames.

This concludes the discussion of the 802.11 standard. The following sections explore
different approaches for how the described contention parameters can be used to op-
timise the performance of a WLAN and to make various fairness guarantees.

2.3 C-VAP Algorithm

The C-VAP algorithm is, to our knowledge, the first proposed algorithm to provide a
fairness guarantee for different VAPs in terms of their uplink throughput and to use
the controller for throughput optimisation [3]. Additionally, it does not require any
software modifications or extensions on the client side.

The algorithm has two main goals: maximising the total throughput, and providing the
same throughput to all VAPs under full load. In operation, an access point running the
C-VAP algorithm will continuously measure the probability Pe of a time slot remaining
empty and the probability Si that a slot contains a successful transmission from VAP
number i.

These values are then used to compute an error signal for each VAP, taking into ac-
count the difference between the individual VAP throughput compared to the average
throughput for all other VAPs and the deviation of the measured Pe compared to an
ideal setpoint P∗e . Notably, the optimal value for Pe (in approximation) only depends
on the length of an empty slot and the average length of an occupied slot, but not on
the number VAPs or stations connected to VAPs [3]. Each error signal is used by the
corresponding PI controller to modify the advertised contention window parameter of
VAP. A visualisation of the control loop is provided in Section 4.1.

2.4 AlphaAP Algorithm

One limitation of the C-VAP algorithm is the fact that it only allows throughput to be
distributed equally between VAPs, but does not consider the case where some VAPs
should receive a larger share of the throughput than others. This issue was addressed in
[21] where the system model of the algorithm is extended by a set of weights αi which
represent the share of total throughput that VAP i should receive. Apart from this addi-
tion, the algorithm works in a very similar manner to C-VAP. The main difference lies
in the way the error signal for the PI controller is calculated (based on the introduced
weights).

Chapter 2. Background 8

2.5 Other WLAN Optimisation and Fairness Algorithms

In this section, we briefly visit a number of alternative and related projects concerned
with optimising throughput or providing fairness guarantees.

Generally, the minimum and maximum contention window are set statically and do not
change during operation. Several projects like [2] and [6] examine effects of statically-
defined EDCA contention parameter configuration on network performance and make
suggestions on how to tune parameters for optimised performance.

Other projects examine ways of changing the EDCA parameter set dynamically in or-
der to tune network operation. For example, the CAC algorithm proposed in [15] aims
to optimise network performance by updating the advertised contention parameters at
the access point based on the measured probability of a frame transmission colliding
with another one. The DAC algorithm [16], in contrast, tunes WLAN performance not
at the access point, but by calculating and selecting optimal contention parameters at
every client station individually.

SplitAP [5] is an algorithm to solve the problem of providing a fair share of uplink
airtime for groups of devices in virtual networks. In order to function correctly, the
algorithm requires a software extension to be installed on every device connected to
the wireless network.

2.6 Previous Prototyping Efforts

In [19] both the CAC and DAC algorithms were implemented and evaluated on hard-
ware. The entire control mechanism was run in userspace on an off-the-shelf device
and frames were captured using the wireless interface’s monitor mode and then used
to estimate the number of collisions occurring. Using these estimates, the optimal con-
tention parameters were calculated and transferred to the driver. Since capturing and
counting frames can be done at the userspace level, neither hardware nor firmware had
to be modified.

Important work for modifying the firmware of Broadcom wireless chipsets has been
set out in the Nexmon project [18]. Nexmon is a firmware patching framework for
Broadcom wireless chipsets. To achieve this, a plugin for the GCC compiler was
created which enables the programmer to create patches in the C language and inject
C code snippets in the required location of the firmware binary.

Besides Nexmon, the Open Firmware Project [9] provides an open-source firmware
for several older Broadcom wireless chips and was created using reverse-engineered
documentation special processor developed by Broadcom [4].

This concludes the analysis of related work. The next section introduces the system
model for C-VAP in more detail and extends the representation for use with RTS/CTS
and frame aggregation.

Chapter 3

System Model

In this section, we look at the C-VAP system model used as a basis for the algorithm
analysis in [3] and extend the model to account for an average duration of collisions
different to the average duration of successful transmissions. This extension will be
used to show how the algorithm can be used together with the RTS/CTS mechanism
and frame aggregation (both described in Chapter 2).

For the analysis, we assume ideal channel conditions where transmissions never fail
except if a collision occurs. This implies that all stations are close enough to receive
each other’s transmissions correctly and can therefore sense accurately whether the
medium is free. These assumptions were previously shown to approximate perform-
ance in experimental settings well [20].

We denote the duration of an empty slot as Te, the average duration of a slot containing
a collision as Tc, and the average duration of a slot containing a successful transmission
as Ts.

We assume that the access point is advertising N different VAPs and that ni stations
are connected to VAP i. Each station will only use a single transmission queue (cor-
responding to one 802.11e access category) and the contention window for this access
category will always be set to a single value CWi = CWi,min = CWi,max. By setting
minimum and maximum value for the contention window equal, we disable the expo-
nential backoff mechanism.

We define τi to be the probability that a station connected to VAP i starts transmission
during a randomly chosen slot and can express this probability using the contention
window as derived in [6] using

τi =
2

1+CWi
. (3.1)

Each slot can either be empty, contain a collision, or contain a successful transmission.
Similar to the derivation in [3], we define Pe to be the probability of a slot being empty
and write it as

Pe =
N

∏
k=1

(1− τk)
nk . (3.2)

9

Chapter 3. System Model 10

The probability of a slot containing a successful transmission from VAP i can be writ-
ten as

Si = niτi(1− τi)
ni−1

N

∏
k=1,k 6=i

(1− τk)
nk =

niτi

1− τi
Pe. (3.3)

Since we are now looking at a different average duration for collisions and transmis-
sions, we deviate from the analysis in [3] and split the probability of a slot not being
empty (1−Pe) into two separate cases: the probability of a slot containing a successful
transmission from any VAP, written as

Ps =
N

∑
k=1

Si = Pe

N

∑
k=1

nkτk

1− τk
, (3.4)

and the probability of a slot containing a collision, expressed as

Pc = 1−Pe−Ps. (3.5)

We then adjust the formula for the throughput from [3] taking into consideration the
new assumption Ts 6= Tc and obtain

Ri =
E[paylod VAPi/slot]

E[slot length]
=

SiL
PeTe +PsTs +PcTc

(3.6)

with L being the number of payload data bytes transmitted during a transmission.

The algorithm objectives remain unchanged from [3]. We aim for all VAPs to have
the same throughput (Ri = R j ∀i, j), and for the total throughput to be maximised
(max∑Ri).

After rewriting the first objective as

niτi

1− τi
=

n jτ j

1− τ j
, (3.7)

and assuming (as in [3]) τi� 1 ∀ i, we find that the first objective is satisfied when

niτi = n jτ j. (3.8)

In order to address the second objective, we note that under the assumption of the
first objective being achieved, maximising total throughput is equal to maximising
throughput of an individual VAP.

To analyse how the throughput of an individual VAP can be maximised, we simplify
the expression for throughput Ri of VAP i using the simplification from equation 3.8
which gives

Ri ≈
niτiPeL

PeTe +PsTs +PcTc
=

niτiL

Te +
(
∑

N
k=1 niτi

)
Ts +

(
1
Pe
−1−∑

N
k=1 niτi

)
Tc

, (3.9)

Chapter 3. System Model 11

and obtain after some rearranging an expression for the throughput

Ri ≈
niτiL(

∏k (1− τk)
−nk
)

Tc−
((

1+∑
N
k=1 niτi

)
Tc−Te−

(
∑

N
k=1 niτi

)
Ts
) . (3.10)

Using the approximation Pe ≈ e−∑
N
k=1 niτi we obtain

Ri ≈
niτiL

e∑
N
k=1 niτiTc−

((
1+∑

N
k=1 niτi

)
Tc−Te−

(
∑

N
k=1 niτi

)
Ts
) . (3.11)

Taking into account the condition from the first objective, we can further substitute
∑

N
k=1 niτi = Nniτi to receive the following expression

Ri ≈
niτiL

eNniτiTc− ((1+Nniτi)Tc−Te− (Nniτi)Ts)
. (3.12)

To determine the value for τi maximising the throughput, we calculate the root of the
partial derivative

∂Ri

∂τi
= 0 (3.13)

which leads to the following non-linear equation

ni
[
TceNτini− (Tc−Te)

]
− (niτi)TceNτiniNni = 0. (3.14)

Notably, this is the same equation as obtained in [3] when To (duration of an occupied
slot containing either a collision or a successful transmission) is replaced by Tc. It
can be solved in a similar way by using a Taylor expansion and ignoring τi terms of a
higher than second order which leads to τ∗i for optimising the throughput

τ
∗
i =

1
Nni

√
2Te

Tc
, (3.15)

and to a corresponding optimal contention window of

CWi =
2
τ∗i
−1. (3.16)

This means that the same optimal value for Pe still applies as well:

P∗e ≈∏
k

e−
1
N

√
2Te
Tc . (3.17)

Following the further control theoretic analysis in [3], we conclude that the C-VAP
algorithm can be adapted for use in scenarios where Tc 6= Ts by replacing To from
the original System Model with Tc from the updated system model described in this
section.

Chapter 4

Implementation

This chapter starts with a high-level description of the different components for the im-
plementation of C-VAP and AlphaAP on a commercial WLAN router. We introduce
the software architecture and outline the choices made during the implementation fol-
lowed by a more detailed description of each individual part implemented.

4.1 Algorithm Components

Both C-VAP and AlphaAP consist of three basic components: a measurement system
sensing the channel conditions, a PI controller which transforms an error signal ei into
an output signal oi, and finally a mechanism to set the contention window based on
the controller output signal. An overview is shown in Figure 4.1. The main difference
between C-VAP and AlphaAP lies in the way the error signal is computed from the
channel measurements.

Both algorithms use one controller per VAP; the error signal for each controller is
calculated based on the goal state (P∗e) and the channel measurements (Pe, Si). At the
end, the output signal of the controller is converted to one of the 16 possible contention
window values (stored as a 4-bit number).

Each of these 3 components need to be implemented in software. In the next two
sections, we look at the chosen router for the implementation and discuss its different
software layers.

Controller

Set CWMeasure

-

Figure 4.1: C-VAP/AlphaAP Algorithm Control Loop

12

Chapter 4. Implementation 13

4.2 Router Asus RT-AC86U

In this project we choose the router Asus RT-AC86U as basis for the implementation.
The device is particularly suitable for the experiments carried out because the manu-
facturer published the usually proprietary firmware source code for the WLAN chipset
on its website [11].

The router was released in 2018 and is advertised as a Gigabit WiFi Gaming Router
[11]. It is compatible with IEEE 802.11a/b/g/n/ac standards and by default supports
both the 2.4GHz and 5GHz frequency bands with the option of creating up to three
guest networks in each band, which are internally implemented as VAPs. The main
CPU of the device is a Broadcom BCM4906 with a dual-core ARM Cortex-A53 pro-
cessor implementing the 64-bit ARMv8 instruction set. The router also contains two
wireless SoCs Broadcom BCM4366E (5GHz) and BCM4365E (2.4GHz) [1].

Public official documentation about the included chipset is very limited, but some
reverse-engineered resources are available online, for example the information listed
in [4] and the description of Broadcom WLAN chips in [18]. The default firmware of
the Asus RT-AC86U is called asuswrt and is used in most of the recent Asus routers.
Most of the asuswrt source code is published online which, importantly, also includes
the proprietary firmware code for the BCM4366/4365 wireless chipset.

4.3 Software Architecture

The router Asus RT-AC86U consists of several processors: the main processor is an
ARM core which runs a version of the Linux operating system and includes the hard-
ware driver for the Broadcom BCM4366/4365 wireless chipset. The wireless chipset
itself consists of another ARM core running what we refer to as firmware in this doc-
ument, and an additional proprietary processor known as D11 core. This D11 core is
responsible for the most time critical tasks and runs code written in a special purpose
assembly language often referred to as uCode [18], whereas the firmware is tasked
with higher level tasks like configuring the Beacon frame and communicating with the
Linux driver.

Implementation Layers

In summary, this means there are four different levels in the architecture for the al-
gorithm implementation: Linux userspace on the main processor, wireless driver also
on the main processor, firmware on the ARM core of the wireless chipset, and uCode
on the D11 core. The code for the wireless driver is not included in the source code
provided by Asus, the driver will therefore be left unmodified. Modifying the uCode is
relatively complicated as well because the code is only available in a raw disassembled
form of a custom assembly language without further documentation. Algorithm parts
will therefore only be implemented at the level of the uCode if no other layer is able to
perform the same task.

This leaves the Linux userspace layer and the firmware layer for implementing the
largest parts of the algorithm. Code at both of these layers is written in the C language.

Chapter 4. Implementation 14

Userspace programs are simply compiled to executable files which can be run at any
time. In contrast, the firmware code is compiled into a kernel object (packed together
with the driver) which can be loaded by the Linux operating system, but requires a
restart of the whole wireless system, making it less flexible. Firmware code can ex-
change data with the uCode through shared memory and with the main CPU through
a mechanism called ioctl (described in more detail in Section 4.4). Programs on the
main CPU can use floating point operation which are not supported for the firmware
code.

PI controller

The PI controller part (see Figure 4.1) requires a number of multiplications to be car-
ried out. While these could in principal be implemented using fixed point numbers at
the firmware level, access to floating point multiplications simplifies the program de-
velopment. The controller will therefore be implemented at the userspace level, which
leads to the additional benefit that various settings like controller parameters can be
changed more easily (e.g. using command line arguments) compared to the firmware.

Setting Contention Parameters

Contention window parameters are advertised in the beacon frame sent out by the
access point. These beacon frames are managed at the firmware level which means
that this component is best implemented at the firmware layer. Communication with
the controller running in userspace is done through the ioctl mechanism which will be
discussed in Section 4.4.

Measurement System

The measurement component is tasked with observing the channel conditions. This
is a time-critical task which requires, for example, the counting of WLAN time slots
with a duration of only a few microseconds. This is a major challenge and would be
very difficult to implement at the firmware layer. Instead, this task is best suited for the
uCode since time slot management is performed by the D11 processor.

As we will see in Section 4.5, the raw time slot counts need to be processed before they
can be used by the PI controller to apply different corrections. We want to minimize
any changes to the uCode and therefore any further processing will be done at the level
of the firmware (which can access the counted values from the uCode using shared
memory) and the userspace. This leaves the measurement system distributed over
multiple layers.

An overview of the different processors, software layers and the mapping of algorithm
components onto those layers is shown in the architecture diagram in Figure 4.2. This
concludes the general description of the architecture; the next few sections will discuss
the implementation of each subcomponent from Figure 4.2 in more detail.

Chapter 4. Implementation 15

Userspace

Driver

Firmware

uCode Empty Slot Counter Collision Counter

Set ECW Read uCode Counter Frame Counter

SHARED MEMORY

PI Controller Read ValuesApply Corrections

IOCTL ResponseIOCTL Request

D11 Core

ARM Core

ARM Core

Wi-Fi
Chipset

Main
CPU

Figure 4.2: Architecture Diagram of C-VAP/AlphaAP Implementation

4.4 Firmware

As outlined in the previous section, when talking about firmware, we are referring
to the code running on the ARM core in the wireless chipset BCM4366/4365 of the
Asus router. The firmware can communicate with the Linux WLAN driver on the
main processor using ioctl calls and with the D11 core by directly accessing the D11’s
special purpose registers and the shared memory.

Communication using ioctl

The term ioctl is short for input/output control and commonly refers to a mechanism
for configuring input/output devices using a system call provided by the operating
system. The ioctl system call allows programs to access functionality that is not well
represented by any of the standard Unix operations (write, read, open, close). Which
specific capabilities are offered is defined by the hardware driver of the device.

For network interfaces managed by the Broadcom wireless driver (BCMDHD), the
ioctl implementation usually passes a message from the driver on the main processor
to the firmware on the wireless chipset. The firmware will then execute the requested
command and has the option to respond with a return message.

For this project, several custom ioctl calls were defined in order to configure the con-
tention parameters, to retrieve the current measurements of the observed channel con-
ditions, and to print the contention parameters and measurements to the system console
for debugging purposes. The custom ioctl commands are listed in Table 4.1.

Ioctl Command Description

ECW Set EDCA parameter set of specified VAP for
all access categories.

READ PID Return channel measurements and reset meas-
urement counters for next cycle.

PRINT PARAMETER Print EDCA parameter set and current channel
measurements to system console.

Table 4.1: Custom ioctl commands

Chapter 4. Implementation 16

Setting Contention Parameters

The EDCA parameter set (refer to Section 2.1.2) allows us to configure contention
parameters for every VAP and thereby control how aggressively stations are accessing
the channel. Since we do not want to make use of the different access categories, the
parameters for each access category of a VAP will be set to the same value. Further-
more, as described in Chapter 3, CWmin will be set to the same value as CWmax to
disable the exponential backoff mechanism.

The fact that the contention window is stored as a 4-bit value means that the PI con-
troller is not able to set each VAP to the optimal contention window value in most cir-
cumstances. Instead, we expect the selected contention window to oscillate between
the next-smallest and next-largest value around the optimal point.

When the firmware receives an ioctl command IOCTL ECW, the general handler func-
tion for ioctl commands wlc ioctl() will be called in the firmware. Another case
is added to this handler (see Listing 4.1) which will update the beacon with the new
contention window value. In order to do this, the new handler case uses the data struc-
ture of type wlc bsscfg t corresponding to the network interface for the requested
VAP. It updates the parameter set count in this data structure, which is important since
devices connected to the network may only be checking the beacon contention para-
meters when a change is detected in the parameter set count. Afterwards, the three
parameters ECW, TXOP and AIFSN are extracted from the ioctl request buffer and
used to update the same parameters in the wlc bsscfg t data structure for all access
categories. Finally, a call of wlc bss update beacon() instructs the firmware to up-
date the beacon with the new parameters.

Counting received frames

The purpose of the measurement system (Figure 4.1) is to obtain estimates for the
probability of a slot being empty (Pe) and the probability of a slot containing a suc-
cessful transmission from VAP i (Si). A slot can either be an empty slot, a collision, or
a successful transmission. Therefore, we calculate an estimate for Si using

Si =
Number of received frames for VAP i

Total number of slots
, (4.1)

where the total number of slots for a time period is given as

Total slots = Empty slots+

(
∑

i∈VAPs
Frames VAP i

)
+Collisions (4.2)

In the chipset, all received frames are sent from the D11 processor to the firmware and
processed in wlc.c and wlc rx.c. For counting frames, a function increment frame()
is added to the firmware which takes the VAP number as argument and is called inside
wlc rx.c and wlc.c where the received frames can be inspected to check the VAP
they belong to before incrementing the corresponding count.

Chapter 4. Implementation 17

1 case IOCTL_ECW:
2 {
3 uint8 *buffer = arg;
4

5 /* increment parameter set count */
6 uint8 parameter_set_count =
7 cfg->wme->wme_param_ie_ad ->qosinfo & 0x0f;
8 parameter_set_count = (parameter_set_count + 1) & 0x0f;
9 cfg->wme->wme_param_ie_ad ->qosinfo &= 0xf0;

10 cfg->wme->wme_param_ie_ad ->qosinfo |= parameter_set_count;
11

12 /* extract EDCA parameters from ioctl input */
13 uint8 ecw = buffer[IOCTL_ECW_BUFFER_ECW_INDEX];
14 uint16 txop = buffer[IOCTL_ECW_BUFFER_TXOP_INDEX] |
15 (buffer[IOCTL_ECW_BUFFER_TXOP_INDEX + 1] << 8);
16 uint16 aifsn = buffer[IOCTL_ECW_BUFFER_AIFSN_INDEX] & 0xf;
17

18 /* update internal data structure with EDCA parameters */
19 int i = 0;
20 for (i = 0; i < NUMBER_ACCESS_CATEGORIES; i++) {
21 cfg->wme->wme_param_ie_ad ->acparam[i].ECW = ecw;
22 cfg->wme->wme_param_ie_ad ->acparam[i].TXOP = txop;
23 cfg->wme->wme_param_ie_ad ->acparam[i].ACI =
24 (i << 4) | aifsn;
25 }
26

27 /* Update Beacon */
28 wlc_bss_update_beacon(wlc, cfg);
29

30 bcmerror = 0;
31 break;
32 }

Listing 4.1: Handler for ioctl to modify contention window

4.5 uCode

The proprietary D11 core manages the low-level and timing related tasks for receiv-
ing and transmitting frames on the medium. Since Broadcom has published no doc-
umentation about the D11’s instruction set and special registers, we instead refer to
reverse-engineered resources online [4]. As discussed in Section 4.3, the D11 core
will only be used to count the number of empty slots (because no other processor has
access to this time-critical information) and collisions (collisions lead to corrupted data
which is therefore not forwarded to the firmware). These counts are required to obtain
a measurement for the total number of slots in a certain time period.

Counting empty slots

The D11 core provides a special purpose register IFS IDLE COUNTER which counts
idle slots and starts counting two slots after the medium becomes free [4]. Analysis
of the disassembled uCode shows that the register is reset by the processor frequently,
but also shows that the reset always occurs at the same place in the code. This makes it

Chapter 4. Implementation 18

possible to add instructions at this position to accumulate the register count in a shared
memory cell before each reset. The firmware code can then read this shared memory
cell and obtain the accumulated count for the number of empty slots that have occurred.
Additionally, the firmware is able to reset the shared memory cell at any point to reset
the counter (this happens after each call of READ PARAMETER ioctl command).

The lines added to the uCode to accumulate the IFS IDLE COUNTER register are shown
in Listing 4.2. Instruction xadd is used to add the content of the 16-bit register
IFS IDLE COUNTER (referenced as SPR IFS 0x0e in the code) to the value stored in
shared memory location 0x1700. The second line additionally increments the content
of memory address 0x1702 in case the first add instructions leads to an overflow and
enables us to keep track of the accumulated count using 32-bit instead. This is import-
ant since a 16-bit counter would overflow in some scenarios after around 0.3 seconds.

1 xadd. [SHM(0x1700)], SPR_IFS_0x0e , [SHM(0x1700)]
2 xaddc [SHM(0x1702)], 0x0, [SHM(0x1702)]

Listing 4.2: Additional uCode instructions to accumulate IFS IDLE COUNTER

Lack of official documentation leads to some uncertainty around the precise behaviour
of the counter register. Therefore, experiments were carried out to verify the counted
values and compare them with an estimation based on the description of the contention
process in Section 2.1.2. For this experiment, only one device was connected to the
wireless network and the network was configured with a fixed contention window.

The tests, repeated for different contention window values, show that in contradiction
with the reverse-engineered documentation, the register counts all empty slots that are
part of the contention window plus approximately three additional slots for each frame
transmitted over the channel.

Therefore, in order to obtain a more accurate measure of the empty slots on the channel
the following correction mechanism will be applied:

Empty slots (corrected) = IFS IDLE COUNTER−3∗Received Frames (4.3)

Using this correction mechanism the measured empty slots during tests deviate con-
sistently by less than 2% from the estimated count of empty slots across all possible
contention windows between 3 (ECW = 2) and 32,767 (ECW = 15). This is compared
to a deviation from the estimate between 20% and 200% observed for small contention
windows without the correction mechanism.

Counting Collisions

Several approaches for measuring the number of collisions are explored:

1. Count how often the status register on D11 switches from idle to busy.

2. Use the IFS BUSY COUNTER to measure the total time the medium is busy.

3. Count the number of received frames with a wrong checksum.

Chapter 4. Implementation 19

For the first approach, we note that according to [4], there exists a status register which
indicates whether or not the medium is busy at the current moment. Since every suc-
cessful transmission and every collision start with a transition from an idle medium to
a busy medium, we can attempt to count the number of changes to the status register bit
indicating the idle status. Subtracting the number of correctly received frames would
then lead to an estimate for the number of collisions occurring. Experiments show that
this leads to unreliable results which are difficult to reproduce.

Possible explanations for this behaviour are problems in reliably tracking every change
of the register (which may be the case if the iterative loop in the uCode does not execute
the counting code frequently enough), or alternatively it might be the case that the
actual behaviour of the status register is different from the behaviour according to the
(unofficial) documentation [4].

The second approach is based upon the register IFS BUSY COUNTER, which counts the
number of microseconds the medium was busy. Similarly to the counter for empty
slots, this register is reset by the uCode frequently but the reset happens always at the
same position in the code. This means that the value can be accumulated in the shared
memory by adding a corresponding add instruction to this part of the uCode.

Under the assumptions that all successfully transmitted data frames and all collisions
occupy the medium for the same amount of time, we can estimate the number of colli-
sions using

Collisions =
Total busy time

Average duration of data frame
− ∑

i∈VAPs
Received frames VAP i. (4.4)

While this approach, according to experiments carried out for this project, leads to
more reproducible results with a clear correlation between the number of collisions
measured and the number of collisions estimated based on the theoretical model, the
approach is sensitive to an accurate estimate for the average duration of frames/col-
lisions. This means the approach will not be very reliable in practice and leads to
problems particularly when mechanisms like RTS/CTS or frame aggregation are used
(which changes the duration of collisions and successful transmissions).

The third mechanism links into the a check of the validity of the checksum carried out
in the uCode. We add code to increment a counter in the shared memory whenever the
checksum is invalid. This proved to be the most reliable way to estimate the number
of collisions based on the experience with RTS/CTS and Frame Aggregation since the
count does not depend the duration of any collision.

4.6 Userspace

As described in Section 4.3, two benefits for implementing functionality at the user-
space level are the simple access to floating point operations and easier adaptability of
the code (new programs can be compiled and executed without having to restart the en-
tire wireless system). For this reason, the PI controller and the logic for processing the

Chapter 4. Implementation 20

raw measurement values from firmware and uCode are implemented at the userspace
level. This section will describe the implemented functionality in more detail.

A good starting point in creating userspace programs for the Asus RT-AC86U can be
found in [17] under section bcm4366c0, which includes a description of the tools used
for compiling nexutil, a userspace program developed for the Nexmon project [18].
The userspace implementation for this project makes use of the libnexmon library for
sending ioctl requests to the wireless firmware.

PI Controller

C-VAP and AlphaAP are based on a separate PI controller run for each VAP. The PI
controller’s main loop is executed every 500ms. This time was chosen based on the fact
that beacon frames are sent out every 100ms and that the WLAN standard recommends
not to change the contention parameters for every new beacon frame in order to give
devices time to adjust to the new parameters.

In each iteration, the current counts for empty slots, collisions and received frames
are requested from the firmware, and used to calculate the error signal for each VAP.
The control loop then generates an output signal per VAP which will be converted
and rounded to the nearest possible contention window for the VAP. These calculated
contention window values are then transferred to the firmware via additional ioctl calls.

The operation of the controller program can be configured using the command line
arguments described in Table 4.2. The controller parameters (KP, KI and P∗e) can be
configured. Note that also the number of devices connected to each VAP has to be
set. While this information could be extracted from the firmware by keeping track of
association and disassociation information, this feature was omitted due to time con-
straints. The program offers output in JSON format to allow for machine processing of
the measured data. It is also possible to configure a minimum value for the ECW set at
VAPs. Very low contention window values led to unreliable behaviour during experi-
ments for this project (a minimum value of ECW = 2 avoids most unreliable behaviour
while giving the controller a large enough range to operate; similar assumptions have
been made in [3]).

Listing 4.3 shows the function used to transfer the EDCA parameters to the firm-
ware. Values ECW, TXOP and AIFSN are copied into a buffer array and function
nex ioctl() from libnexmon is used to call the custom ioctl command for setting
the ECW. The nex ioctl() function expects a nexio data structure which can be
obtained using the nex init ioctl() function (also part of libnexmon). Internally,
this init function opens a socket for the corresponding VAP interface and any ioctl
commands will then be called with reference to this socket.

The general functionality of the PI controller will be demonstrated using pseudo code,
in order to focus on what the code does while removing some distractions based on the
specifics of the C language.

Listing 4.4 shows the general structure of the program: at the start, the integral error
signals will be set to zero for all VAPs; then the program enters an infinite loop to read

Chapter 4. Implementation 21

Option Description

--time Set time interval of one control loop iteration
(in ms)

--devices[1-4] Flags for setting number of devices connected
to each VAP

--alpha[1-4] Flags for setting AlphaAP throughput weights
for each VAP

--kp Configure controller parameter KP

--ki Configure controller parameter KI

--pe star Configure desired probability of time slot being
empty (P∗e)

-–json Enable output in JSON format for better auto-
mated machine-readability

--duration Set duration (in seconds) until controller auto-
matically terminates

--min ecw Set minimum value for ECW. Contention para-
meters will never be set below this value. Use-
ful in order to prevent very small ECW values
that easily block any network access through
constant collisions

Table 4.2: Command Line Options for PI controller tool

the measurement (read values()), to apply certain corrections to the raw measure-
ments (process values()), to run the control loop (either run controller cvap()
or run controller alpha ap()), and finally to set the contention window parameter
for all VAPs (set contention window()).

Raw measurements are provided by the firmware through an ioctl call as described in
Section 4.4. To obtain the latest measurements, the function read values() (Listing
4.5) calls the ioctl in userspace which will be forwarded through the Linux driver to
the wireless chip firmware. The firmware will send a response message containing the
number of empty slots, collisions and frames per VAP counted since the last time the
values were read by the controller program.

1 function read_values():
2 call_ioctl()
3 extract_values_from_response_buffer()
4 return empty_slots , collisions , frame_counts

Listing 4.5: Pseudo code for read values()

C-VAP and AlphaAP require probability values Pe and Si (for every VAP) as input.
Function process values() (Listing 4.6) calculates these probabilities using the raw
measurements obtained through read values(). As described in Section 4.5, the

Chapter 4. Implementation 22

1 void set_ecw_value(struct nexio *nexio , uint8_t ecw) {
2 uint8_t buffer[BUFFER_SIZE];
3

4 uint16_t txop = 0x00;
5 uint8_t aifsn = 0x02; // Minimum allowed value according to ←↩

standard
6

7 memset(buffer , 0, BUFFER_SIZE);
8 buffer[0] = ecw;
9 buffer[1] = txop & 0xff;

10 buffer[2] = (txop >> 8) & 0xff;
11 buffer[3] = aifsn;
12 nex_ioctl(nexio , IOCTL_ECW , buffer , BUFFER_SIZE , true);
13 }

Listing 4.3: Function for setting EDCA parameters of a VAP

1 for i in 1 to N:
2 error_integral[i] = 0
3 while True:
4 read_values()
5 process_values()
6 run_controller_cvap() # for AlphaAP: run_controller_alpha_ap()
7 set_contention_window()

Listing 4.4: Pseudo code for PI controller

measured number of empty slots is not completely accurate and three slots need to be
subtracted for each frame received to obtain a more precise measurement.

The function calculates the total number of slots (empty slots together with one slot
per received frame and one slot per collision). This number is then used together with
count for empty slots and for frames received to obtain an estimate for Pe and Si.

1 function process_values():
2 total_frames = sum(frame_counts)
3 empty_slots_corrected =
4 empty_slots + CORRECTION_FACTOR * total_frames
5 total_slots =
6 empty_slots_corrected + total_frames + collisions
7 Pe = empty_slots / total_slots
8 for i in 1 to N:
9 S[i] = frame_counts[i] / total_slots

10 return Pe, S

Listing 4.6: Pseudo code for process values()

The control loop for the C-VAP and AlphaAP algorithms requires the processed meas-
urements calculated by process values() in addition to the goal state P∗e . For each
VAP, the control loop function run controller cvap() (Listing 4.7) is calculating
an error signal based on the deviation of the measured Pe from the aim P∗e and based
on the measured share of the throughput for a VAP compared to its allocated share.

Chapter 4. Implementation 23

The obtained error signal is then added to the integral of the error signal and both error
and integral together with controller parameters KP and KI are used to obtain an output
value. Finally, the output value multiplied by the number of devices connected to the
VAP gives the contention window.

1 function run_controller_cvap():
2 error_optimal = Pe* - Pe
3 for i in 1 to N:
4 error_fair[i] = (N - 1) * S[i] - (sum(S) - S[i])
5 error[i] = error_optimal + error_fair[i]
6 error_integral[i] += error_integral[i]
7 output[i] = Kp * error[i] + Ki * error_integral[i]
8 CW[i] = output[i] * connected_devices[i]
9 return CW

Listing 4.7: Pseudo code for run controller cvap()

Function run controller alpha ap() (Listing 4.8) is operating in a similar way as
run controller cvap(). Again, an error signal is calculated for each VAP, but this
time the weight αi is taken into consideration as well. The error signal is again used to
calculate an output signal and the contention window value for every VAP.

1 function run_controller_cvap():
2 error_optimal = Pe* - Pe
3 for i in 1 to N:
4 error_fair[i] = S[i] / alpha[i] - sum(S)
5 error[i] = error_optimal + error_fair[i]
6 error_integral[i] += error[i]
7 output[i] = Kp * error[i] + Ki * error_integral[i]
8 CW[i] = output[i] * connected_devices[i] / alpha[i]
9 return CW

Listing 4.8: Pseudo code for run controller alpha ap()

Finally, the value for the contention window needs to be transferred to the wireless
chipset. Ultimately, the contention window can only be set to 16 different values
(ECW). Function set contention window() (Listing 4.9) receives the contention
window calculated by the control loop and rounds it to the closest ECW value. The
ECW value for each VAP is transferred to the wireless chip using the corresponding
ioctl call.

1 function set_contention_window():
2 for i in 1 to N:
3 ECW = round_to_integer(log2(CW[i] + 1))
4 ECW = clamp(ECW)
5 send_ioctl(ECW)

Listing 4.9: Pseudo code for set contention window()

Chapter 5

Test Setup

The test setup for evaluating the algorithm performance consists of a router Asus RT-
AC86U, a server to receive data, and a number of clients (8 Raspberry Pi devices) to
send data. The router advertises several VAPs (up to four) and the Raspberry Pi clients
(mix of models 3B+ and 4) are each connected to one of the VAPs using their default
internal wireless interface. The server is connected to the router using a wired Ethernet
connection. An overview of the test setup is given in Figure 5.1.

Raspberry Pi devices are used for the throughput measurements because of their com-
mon availability and low price which enables the creation of a test bed with a larger
number of devices of the same type than would otherwise be possible. Using the same
device type makes it more likely that all devices have the same behaviour and that any
measured differences are not the result of a different implementation of the WLAN
standard.

Throughput measurements are done using the network bandwidth measurement tool
iperf3. The program is started on the server in server mode to receive data from differ-
ent clients (using different ports). Each Raspberry Pi then runs iperf3 in client mode,
continuously transferring data to the server at the highest speed possible. After the test
has finished, the average throughput per device can be calculated from the reported
number of received data frames at the server.

Tests are run for 100 seconds with 10 iterations each time; the mean throughput over
these 10 iterations is ultimately reported. A test duration of 100 seconds is chosen
to provide a balance between giving the algorithm enough time to work properly and
keeping the total time required to collect results manageable. Tests show that the results
after a duration of 100 seconds are very similar compared to results obtained after a
test duration of 300 seconds. Before each test, the Raspberry Pi devices are connected
to the correct VAP depending on the desired network configuration.

5.1 Router Configuration

The router is configured to operate in AP (Access Point) with three Guest Networks
set up in the 5GHz frequency band.

24

Chapter 5. Test Setup 25

VAP 1 VAP 2 VAP 3

Server
Router
Asus RT-AC86U

Figure 5.1: Test Setup for Throughput Measurements

Before running tests, a configuration script (shown in Listing 5.1) is executed which
loads the custom firmware (from file dhd.ko) and limits allowed bitrates to 54Mbps
only to ensure that all frames are being sent at the same bitrate. If this was not limited,
the network devices can vary the bitrate over time depending on the channel conditions,
which makes it difficult to compare throughput measurements. The guest networks are
separated into different data link layer bridges. This is required in order to ensure
proper separation between different VAPs.

1 #!/bin/bash
2

3 # Load modified firmware driver
4 /sbin/rmmod /jffs/dhd.ko
5 /sbin/insmod /jffs/dhd.ko
6

7 /sbin/restart_wireless
8

9 # VAP 1
10 /usr/sbin/wl -i wl1.1 down
11 /usr/sbin/wl -i wl1.1 rateset 54b # Limit to OFDM rate 54
12 /usr/sbin/wl -i wl1.1 rateset -v 0 # Turn off VHT
13 /usr/sbin/wl -i wl1.1 rateset -m 0 # Turn off HT
14 /usr/sbin/wl -i wl1.1 up
15

16 # VAP 2
17 /usr/sbin/wl -i wl1.2 down
18 /usr/sbin/wl -i wl1.2 rateset 54b # Limit to OFDM rate 54
19 /usr/sbin/wl -i wl1.2 rateset -v 0 # Turn off VHT
20 /usr/sbin/wl -i wl1.2 rateset -m 0 # Turn off HT
21 /usr/sbin/wl -i wl1.2 up
22

23 # VAP 3
24 /usr/sbin/wl -i wl1.2 down
25 /usr/sbin/wl -i wl1.2 rateset 54b # Limit to OFDM rate 54

Chapter 5. Test Setup 26

26 /usr/sbin/wl -i wl1.2 rateset -v 0 # Turn off VHT
27 /usr/sbin/wl -i wl1.2 rateset -m 0 # Turn off HT
28 /usr/sbin/wl -i wl1.2 up
29

30 # Separate bridge for VAP 1
31 brctl addbr br1
32 brctl delif br0 wl1.1
33 brctl addif br1 wl1.1
34

35 /sbin/ifconfig br1 10.0.1.1 netmask 255.255.255.0 up
36

37 # Separate bridge for VAP 2
38 brctl addbr br2
39 brctl delif br0 wl1.2
40 brctl addif br2 wl1.2
41

42 /sbin/ifconfig br2 10.0.2.1 netmask 255.255.255.0 up
43

44 # Separate bridge for VAP 3
45 brctl addbr br3
46 brctl delif br0 wl1.3
47 brctl addif br3 wl1.3
48

49 /sbin/ifconfig br3 10.0.3.1 netmask 255.255.255.0 up
50

51 # Disable hardware switching between VAPs
52 ethswctl -c hw-switching -o disable
53

54 # Enable routing between LANs
55 echo 1 > /proc/sys/net/ipv4/ip_forward

Listing 5.1: Router configuration script

5.2 Automated Testing Scripts

In order to simplify data collection, a set of Python scripts was created to automatically
connect to all devices (server, router, clients) via SSH, connect the clients to the right
VAP and start the required programs for throughput measurement. At the end of each
test the resulting data is collected and stored (in JSON format) for further processing
and visualisation.

The scripts are able to read an input file containing the test parameter information about
the tests to be carried out. In the case of an error (for example if a device was unable to
connect to the wireless network and is unavailable), the test scripts can independently
restart the entire test setup and continue at the last successfully completed test.

5.3 Control Parameter Estimation

Running a test requires us to specify values for the controller parameters P∗e , KP and KI .
The analysis in [3] comes with formulas depending on Te and To (which we substitute

Chapter 5. Test Setup 27

here by Tc as discussed in Chapter 3). For tests in this project, we use the UDP transport
layer protocol, which is particularly suitable because of its simplicity and its lack of
any sophisticated throughput regulation mechanisms, which could interfere with C-
VAP or AlphAP. The payload size is 1000 Bytes; together with UDP Header (8 bytes),
IP Header (20 bytes) and Ethernet header and tail (total 40 bytes), we obtain a total
frame size of 1066 bytes. For OFDM data rate of 54Mbps, the required transmission
time is 180us.

The duration of an average collision (Tc) is calculated, according to the standard, using
the duration of the frame and the ACK timeout value [10]. The ACK timeout value
is calculated using SIFS (16us), plus a single slot time (9us), plus a start delay (20us)
[10]. This leads to an average duration of a collision of Tc = 225us.

The results in the estimated control parameters for C-VAP (and AlphaAP, since the
analysis in [21] is equivalent) are:

P∗e ≈ e−
√

2Te
To ≈ 0.75

KP = 0.4
To

P∗e Te
≈ 13.3

KI =
0.2

0.85
To

P∗e Te
≈ 7.8

RTS/CTS

When RTS/CTS or frame aggregation is enabled, the average duration for a collision
changes substantially compared to the non RTS/CTS case and is calculated using the
duration of an RTS frame together with the CTS timeout value. An RTS frame consists
of 20 bytes which corresponds to a duration of 24us at a data rate of 54Mbps. Usually,
RTS frames would be transmitted at a maximum data rate of 24Mbps, but here, due
to the limitation of the router to only accept 54Mbps frames, RTS frames are also
transmitted at 54Mbps. The CTS timeout value is defined in the same way as the ACK
timeout value and is calculated using SIFS (16us), plus a single slot time (9us), plus a
start delay (20us). This leads to an average duration of a collision of Tc,RT S = 69us.

The resulting estimated control parameters for RTS/CTS are:

P∗e,RT S ≈ e−
√

2Te
To ≈ 0.60

KP,RT S = 0.4
To

P∗e Te
≈ 5.1

KI,RT S =
0.2
0.85

To

P∗e Te
≈ 3.0

Chapter 6

Evaluation

This chapter provides results and interpretation for a range of experiments using the
C-VAP and AlphaAP implementation on the test bed described in Chapter 5.

6.1 C-VAP Performance

First, we evaluate the performance of the C-VAP algorithm without RTS/CTS and
frame aggregation. This corresponds to a similar scenario as the one simulated in [3].
The test parameters are outlined in Table 6.1 with each test having a duration of 100
seconds and the results given as the mean over a sample size of 10.

Transport Layer Protocol UDP

Bitrate 54 Mbps

Payload per frame 1000 Bytes

Test duration 100s

Sample Size 10

KP 13.27

KI 7.81

P∗e 0.75

Table 6.1: Test Parameters C-VAP Performance Measurement

We obtain the result visualised in Figure 6.1, with the first row showing the experiments
run using the C-VAP algorithm for different numbers of devices and the second row
showing the same experiment using the default EDCA contention mechanism using
the default static contention window of CWmin = 15 and CWmax = 1023.

As we expect from the theoretical analysis, the results confirm that the EDCA mech-
anism distributes throughput approximately equal between devices, leading to very
unequal results on a per-VAP basis. In contrast, the C-VAP algorithm consistently
achieves as similar throughput and in some cases outperforms regular EDCA, while

28

Chapter 6. Evaluation 29

VAP 1 VAP 2
0

5

10

15

B
an

dw
id

th
[M

bp
s]

11.5 Mbps
49.3%

11.9 Mbps
50.7%

Devices: [1, 7], R = 23.4 Mbps

VAP 1 VAP 2
0

5

10

15

B
an

dw
id

th
[M

bp
s] 11.2 Mbps

49.7%
11.3 Mbps

50.3%

Devices: [2, 5], R = 22.5 Mbps

C-VAP

VAP 1 VAP 2 VAP 3
0

5

10

15

B
an

dw
id

th
[M

bp
s]

7.6 Mbps
33.7%

7.5 Mbps
33.0%

7.5 Mbps
33.3%

Devices: [1, 2, 4], R = 22.6 Mbps

VAP 1 VAP 2
0

10

20

B
an

dw
id

th
[M

bp
s]

2.9 Mbps
13.0%

19.7 Mbps
87.0%

Devices: [1, 7], R = 22.6 Mbps

VAP 1 VAP 2
0

10

20

B
an

dw
id

th
[M

bp
s]

6.9 Mbps
30.1%

16.0 Mbps
69.9%

Devices: [2, 5], R = 22.8 Mbps

EDCA

VAP 1 VAP 2 VAP 3
0

10

20

B
an

dw
id

th
[M

bp
s]

3.4 Mbps
14.9%

6.6 Mbps
28.7%

12.9 Mbps
56.4%

Devices: [1, 2, 4], R = 22.8 Mbps

Figure 6.1: Throughput of EDCA contention and C-VAP algorithm in comparison

also distributing the total throughput equally across different VAPs with a deviation of
less than 1.5%.

While in [3] the C-VAP algorithm always provides a higher total throughput than
EDCA, this is only the case here in one out of three settings. One possible reason
for this difference is the fact that in this project the contention window is limited to
only 16 different values (4-bit number) whereas [3] allowed a more fine-grained se-
lection of the contention window. Depending on the number of devices in each VAP,
this means that the optimal contention window value cannot be set directly, but that the
algorithm has to oscillate between the two closest possible contention windows and
therefore not operate at the optimal point.

6.2 AlphaAP Performance

Next, we evaluate the performance of the AlphaAP algorithm and compare it to EDCA
and C-VAP. We run a similar set of experiments as in the previous section and choose
the AlphaAP weights to allocate a larger proportion of the throughput to the VAPs with
a smaller number of devices in order to demonstrate the algorithm’s effect compared
to regular EDCA operation most clearly.

The results are shown in Figure 6.2 and demonstrate that, compared to C-VAP and
EDCA, the AlphaAP algorithm achieves a similar and, in two out of three experiments,
higher total throughput. It manages to distribute total bandwidth on a per-VAP basis
according to the weights set in the algorithm with again a deviation of less then 1.5%
compared to the desired weights.

Chapter 6. Evaluation 30

ED
CA

CVAP

Devices: [1, 7]
Weights: [0.8, 0.2]

Alph
aA

P
ED

CA
CVAP

Devices: [2, 5]
Weights: [0.8, 0.2]

Alph
aA

P
ED

CA
CVAP

Devices [1, 2, 4]
Weights: [0.66, 0.17, 0.17]

Alph
aA

P
0

5

10

15

20

25

Ba
nd

wi
dt

h
[M

bp
s]

22.6

13.2 %

86.8 %

23.2

49.3 %

50.7 %

25.4

78.9 %

21.1 % 22.8

30.1 %

69.9 %

22.3

49.7 %

50.3 %

22.2

79.8 %

20.2 %

22.8

14.9 %

28.7 %

56.4 %

22.1

33.7 %

33.0 %

33.3 %

24.8

64.1 %

17.2 %

18.6 %

VAP 1
VAP 2
VAP 3

Figure 6.2: Throughput of AlphaAP, C-VAP and EDCA in comparison

6.3 Control Parameter Optimisation

In this section, we examine the impact of the controller parameters on the performance
of the C-VAP algorithm. Again, samples are taken with a test of duration 100 seconds,
the remaining parameters that are not modified for the current graph are set to the
estimated optimum from Section 5.3.

Controller Setpoint: P∗e
The P∗e parameter represents the point of operation that the controller is aiming to
achieve. It should be set to a well-balanced value in order to achieve a high total
throughput. If the value is too high, the channel is mostly empty, and if it is too low, too
many collisions will occur on the channel. Somewhat surprisingly, the derivation in [3]
shows that the approximation of P∗e is (at least in its approximated form) independent
of the number of devices connected to the network and only depends on the average
duration of a collision and the duration of an empty slot.

We measure throughput across a range of values for P∗e and present the results in Figure
6.3. Maximum throughput achieved was 23.1 Mbps for P∗e = 0.8 compared to 22.4
Mbps achieved for the estimated optimal value of P∗e = 0.75. A possible reason for the
disparity could either lie in an imperfect measurement of empty slots and collisions
(both of which impact the measured Pe) or in the fact that some of the mathematical

Chapter 6. Evaluation 31

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
P ∗e

0

5

10

15

20
B

an
dw

id
th

[M
bp

s]

2.4 2.4 2.4

4.1

7.3

10.6

13.9

17.9

21.0

22.4
23.1 22.9

22.1

20.2

18.0

Devices: [3, 5]

Total Throughput for different values of P ∗e (C-VAP)

VAP 1

VAP 2

Figure 6.3: Throughput achieved for different P∗e values

simplifications made in [3] are less accurate for a smaller number of devices.

Controller Integration Part: KI

Similarly to the optimization of P∗e , we carry out experiments using different values for
the integral part of the PI controller KI . The results shown in Figure 6.4 indicate that
a throughput close to the optimum can be achieved in the range of around KI = 5 up
to KI = 50. Outside this range the performance begins to deteriorate. The estimated
value of KI = 7.81 lies within the optimal range, but is located more closely towards
the lower end of the range and a slightly higher value might enable the controller to
adjust to changes faster while still maintaining stable behaviour.

Additionally, we examine the behaviour of the algorithm using a timing diagram. For
the estimated optimal value (KI = 7.81) we observe a reasonably quick introduction
phase of around 5 to 10 seconds until the controller operations reaches the operating
point. From this point on the contention window values keeps oscillating around the
optimal value, causing the ECW values to flip frequently (Figure 6.5).

When choosing a value for KI 10 times smaller than the estimate, the controller reacts
much more slowly to any deviations in channel state from the setpoint. The final point
of operation is only reached after around 60 seconds and it takes a similar amount of
time until the total throughput reaches the desired optimum. This is demonstrated in
Figure 6.6.

Chapter 6. Evaluation 32

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500

KI (log)

0

5

10

15

20

B
an

dw
id

th
[M

bp
s]

12.7

15.8

18.9

20.4

21.4
22.0 22.2 22.0 22.2

20.6

14.6

10.0

Devices: [3, 5]

Total Throughput for different values of KI (C-VAP)

VAP 1

VAP 2

Figure 6.4: Throughput for different values of KI

0 20 40 60 80 100
0

2

4

6

E
C

W

Controller Timing Diagram (Devices: [3, 5], KI : 7.81)

0 20 40 60 80 100

−25

0

25

50

C
on

te
nt

io
n

W
in

do
w

0 20 40 60 80 100
Time (s)

10

20

B
an

dw
id

th
[M

bp
s]

VAP 1

VAP 2

Sum

Figure 6.5: Timing diagram for estimated KI

Chapter 6. Evaluation 33

0 20 40 60 80 100
0

2

4

6

E
C

W

Controller Timing Diagram (Devices: [3, 5], KI : 0.781)

0 20 40 60 80 100
−20

0

20

40

C
on

te
nt

io
n

W
in

do
w

0 20 40 60 80 100
Time (s)

0

10

20

B
an

dw
id

th
[M

bp
s]

VAP 1

VAP 2

Sum

Figure 6.6: Timing diagram for KI/10

Controller Proportional Part: KP

We now repeat a similar experiment for the controller parameter KP with the results
shown in Figure 6.7. Interestingly, while high values for KP, starting at around 50, lead
to unstable behaviour and a deterioration of the total throughput, very low values of
KP do not seem to have a large impact on the performance. In those cases the integral
part of the controller will ensure a good point of operation is reached eventually.

In terms of timing diagrams, we see a relatively stable behaviour for the estimate of
KP = 13.27 (see Figure 6.8). Again, the contention window values oscillate around
the optimal values for each VAP. In contrast, increasing KP by a factor of 10 causes
unstable behaviour. The magnitude of oscillation in the contention window values
increases and the ECW stops flipping between the two values closest to the optimum,
instead oscillating more widely. This causes the throughput to degrade significantly.

6.4 Unsaturated Case

Up to this point, all stations in the experiments used saturated transmission queues and
made use of the full throughput available to them. Next, we examine the behaviour of
C-VAP and AlphaAP based on the unsaturated case where the station connected to VAP
1 has limits on the maximum transmission throughput used. In this case, we would like
the algorithm to ensure that the requested traffic is served for all unsaturated VAPs and
that the remaining throughput is divided proportionally between the remaining stations.

Chapter 6. Evaluation 34

0.1 0.2 0.5 1 2 5 10 20 50 100 200 500

KP (log)

0

5

10

15

20
B

an
dw

id
th

[M
bp

s]

22.1 22.1 22.2 22.1 22.2 22.1 22.2 22.0
21.3

17.1

10.8

8.2

Devices: [3, 5]

Total Throughput for different values of KP (C-VAP)

VAP 1

VAP 2

Figure 6.7: Throughput for different values of KP

0 20 40 60 80 100
0

2

4

6

E
C

W

Controller Timing Diagram (Devices: [3, 5], KP : 13.27)

0 20 40 60 80 100

−25

0

25

50

C
on

te
nt

io
n

W
in

do
w

0 20 40 60 80 100
Time (s)

10

20

B
an

dw
id

th
[M

bp
s]

VAP 1

VAP 2

Sum

Figure 6.8: Timing Diagram for estimated KP

Chapter 6. Evaluation 35

0 20 40 60 80 100

0

5

E
C

W

Controller Timing Diagram (Devices: [3, 5], KP : 132.7)

0 20 40 60 80 100
−200

0

200

400

C
on

te
nt

io
n

W
in

do
w

0 20 40 60 80 100
Time (s)

10

20

B
an

dw
id

th
[M

bp
s]

VAP 1

VAP 2

Sum

Figure 6.9: Timing Diagram for 10∗KP

The results are shown in Figure 6.10. The first experiment on the left side includes no
throughput limitations and we observe a regular 50% split between both VAPs. The
other experiments limit the throughput for VAP 1 to 2 Mbps. We see that the total
throughput deviates slightly depending on the exact scenario (up and down) but stays
in the same range as in the saturated case. The remaining throughput is indeed taken
up by the saturated VAPs as desired and fairness guarantee is maintained except for a
small deviation of less than 1%. In comparison, the EDCA experiments shown in the
bottom row lead to slightly higher total throughputs and do not provide any fairness
guarantees between the VAPs.

6.5 RTS/CTS and Frame Aggregation

In Chapter 3, we extend the C-VAP system model to support scenarios in which the
duration of an average transmission is different from the duration of an average colli-
sion. For all experiments so far, stations did not make use of the RTS/CTS transmission
mechanism (described in Section 2.1.3) which allows stations to reserve the channel
using a special handshake mechanism.

In this section, we test the conclusion from Chapter 3 that the C-VAP algorithm would
also perform well in cases where the average duration of a collision differs significantly
from the average duration of a successful transmission.

For the experiment, we configure stations to make use of the RTS/CTS process by

Chapter 6. Evaluation 36

Devices: [1, 2]
No Limit

Devices: [1, 2]
VAP 1 Limit: 2 Mbps

Devices [1, 1, 2]
VAP 1 Limit: 2 Mbps

Devices [1, 1, 2, 3]
VAP 1 Limit: 2 Mbps

0

5

10

15

20

25

Ba
nd

wi
dt

h
[M

bp
s]

22.4

49.9 %

50.1 %

22.7

8.7 %

91.3 %

23.3

8.4 %

45.4 %

46.2 %

22.8

8.6 %

30.3 %

30.6 %

30.6 %

CVAP
VAP 1
VAP 2
VAP 3
VAP 4

Devices: [1, 2]
No Limit

Devices: [1, 2]
VAP 1 Limit: 2 Mbps

Devices [1, 1, 2]
VAP 1 Limit: 2 Mbps

Devices [1, 1, 2, 3]
VAP 1 Limit: 2 Mbps

0

5

10

15

20

25

Ba
nd

wi
dt

h
[M

bp
s]

23.9

33.5 %

66.5 %

24.2

8.3 %

91.7 %

23.8

8.4 %

30.4 %

61.2 %

22.9

8.7 %
15.0 %

30.9 %

45.4 %

EDCA

Figure 6.10: EDCA and C-VAP throughput in experiment with unsaturated stations

modifying their RTS threshold using the Linux iw command and repeat an experiment
similar to the one carried out in Section 6.2.

A closer examination of the measured data in this case demonstrated a problem with
the implemented empty slot counting in the case of RTS/CTS. Additional experiments
using two devices and a low, fixed contention window value show that around 10 times
more empty slots are counted in the case with RTS/CTS compared to the case without.
This unexpected effect only occurs when the number of collisions is high and it appears
that the Raspberry Pi devices are not starting the backoff process as fast as the router
expects them to after a collision of two RTS frames.

This is a problem for the algorithm because it makes it impossible to obtain an accurate
measurement of Pe and, despite a very low contention window value, the measured Pe
ends up being far too high. This in turn causes the algorithm to try and further lower
the contention window and prevents it from operating correctly.

The algorithm starts to work when around 9-15 empty slots are subtracted from the
total count of empty slots per collision, but it remains unclear why this intervention is
necessary. The results shown in Figure 6.11 are collected using a correction -12 empty
slots per collision. This demonstrates that the algorithm works in principal also for
activated RTS/CTS, but it is more difficult to draw further conclusions since we are
less confident that the measured values for P∗e are fully accurate. Further investigation
needs to be done to identify the cause for the large additional number of empty slots

Chapter 6. Evaluation 37

ED
CA

CVAP

Devices: [1, 7]
Weights: [0.8, 0.2]

Alph
aA

P
ED

CA
CVAP

Devices: [2, 5]
Weights: [0.8, 0.2]

Alph
aA

P
ED

CA
CVAP

Devices [1, 2, 4]
Weights: [0.66, 0.17, 0.17]

Alph
aA

P
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ba
nd

wi
dt

h
[M

bp
s]

19.7

13.7 %

86.3 %

20.0

49.8 %

50.2 %

20.7

79.2 %

20.8 %

20.0

29.5 %

70.5 %

19.5

49.7 %

50.3 %

17.5

79.8 %

20.2 %

20.0

15.7 %

28.3 %

56.1 %

19.6

33.3 %

32.7 %

34.0 %

20.3

65.8 %

16.8 %

17.4 %

VAP 1
VAP 2
VAP 3

Figure 6.11: Throughput AlphaAP, C-VAP and EDCA in comparison using RTS/CTS

counted. Note that the maximum total performance is lower for EDCA, C-VAP and
AlphaAP because RTS/CTS frames add additional overhead to the transmission.

To reduce the RTS/CTS overhead, every RTS/CTS handshake can be followed by
transmission of more than a single data frame. Devices will not use frame aggrega-
tion when transmitting using the 54Mbps OFDM data rate. Therefore, for this exper-
iment, we allow the use of the MCS data rate (MCS index 2). The changed data rate
is the reason why the total performance for this experiment differs significantly from
previous experiments for EDCA, C-VAP and AlphaAP.

Results are shown in Figure 6.12. The same problem regarding overcounting of empty
slots applies here and we subtract 12 empty slots per collision, as done previously. C-
VAP and AlphaAP appear to perform worse than the corresponding EDCA mechanism.

Chapter 6. Evaluation 38

ED
CA

CVAP

Devices: [1, 7]
Weights: [0.8, 0.2]

Alph
aA

P
ED

CA
CVAP

Devices: [2, 5]
Weights: [0.8, 0.2]

Alph
aA

P
ED

CA
CVAP

Devices [1, 2, 4]
Weights: [0.66, 0.17, 0.17]

Alph
aA

P
0

2

4

6

8

10

12

Ba
nd

wi
dt

h
[M

bp
s]

12.6

14.1 %

85.9 %

12.1

49.6 %

50.4 %

12.1

80.1 %

19.9 %

12.6

31.1 %

68.9 %

12.1

47.1 %

52.9 %

12.1

80.1 %

19.9 %

12.6

16.8 %

30.8 %

52.4 %

12.2

32.8 %

33.2 %

34.0 %

12.1

64.4 %

17.6 %

18.0 %

VAP 1
VAP 2
VAP 3

Figure 6.12: Throughput for AlphaAP, C-VAP and EDCA (using Frame Aggregation)

Chapter 7

Conclusion

For this project, we were able to make use of a largely undocumented, low-level
firmware system to provide time-critical measurements, in the range of a few micro-
seconds, in order to implement and demonstrate the feasibility of a control-theoretic
approach to providing fairness guarantee in virtualised wireless networks.

We were able to achieve the desired fairness guarantee up to a deviation of less than
2 percentage points. This was demonstrated using a range of different experiments
with a varying number of devices, both saturated and unsaturated, and making use of
different optimisations to the WLAN standard, like frame aggregation and handshake
mechanisms. Furthermore, we showed the effect of varying controller parameters on
the operations. A submission for publication of the findings presented in this project is
in preparation.

Major challenges in the implementation include the lack of documentation of the
Broadcom firmware, especially given the complexity and volume of the code involved.
Due to the missing documentation, available reverse-engineered information was used
and carefully verified using a range of experiments designed to reveal and correct dis-
parities in the measurements used. Additionally, the complexity of the WLAN stand-
ard, especially given the several amendments and adjustments throughout time, made
it challenging to verify whether a certain type of behaviour is desired, or in fact a
violation of the standard. We believe that one such violation was found during the
project due to a bug in the firmware of the used Raspberry Pi wireless clients which
causes them to send out bursts of a number of frames without going through the full
contention process in between.

Future explorations, following up from the contributions provided in this project, in-
clude additional optimization of the algorithm controller parameters when used with
handshake and frame aggregation mechanism. To date, the algorithm is less stable in
operation with RTS/CTS and frame aggregation compared to scenarios without the use
of these mechanisms. Additional evaluations can be carried out to test the performance
in scenarios likely to be encountered in authentic real-world operation, such as, for ex-
ample, allowing differing bitrates, testing a mix of UDP and TCP traffic and examining
controller behaviour on more fluctuating traffic.

39

Bibliography

[1] ASUS RT-AC86U Dual Band AC2900 Wireless Router Reviewed. URL: https:
//www.smallnetbuilder.com/wireless/wireless- reviews/33158-
asus-rt-ac86u-dual-band-ac2900-wireless-router-reviewed (visited
on 12/04/2021).

[2] Albert Banchs and Luca Vollero. “Throughput analysis and optimal configura-
tion of 802.11e EDCA”. In: Computer Networks 50.11 (Aug. 2006), pp. 1749–
1768.

[3] Albert Banchs et al. “Providing Throughput and Fairness Guarantees in Virtual-
ized WLANs Through Control Theory”. In: Mobile Networks and Applications
17 (Aug. 2012), pp. 435–446.

[4] BCM43xx Specification. URL: https://bcm-v4.sipsolutions.net/ (visited
on 12/04/2021).

[5] Gautam Bhanage et al. “SplitAP: Leveraging Wireless Network Virtualization
for Flexible Sharing of WLANs”. In: IEEE Global Telecommunications Confer-
ence GLOBECOM (2010), pp. 1–6.

[6] Giuseppe Bianchi. “Performance analysis of the IEEE 802.11 distributed co-
ordination function”. In: IEEE journal on selected areas in communications
18.3 (2000), pp. 535–547.

[7] McKinsey Company. The road to 5G: The inevitable growth of infrastructure
cost. URL: https://www.mckinsey.com/industries/technology-media-
and - telecommunications / our - insights / the - road - to - 5g - the -
inevitable-growth-of-infrastructure-cost (visited on 12/04/2021).

[8] Rosario G Garroppo et al. “Providing air-time usage fairness in IEEE 802.11
networks with the deficit transmission time (DTT) scheduler”. In: Wireless net-
works 13.4 (2007), pp. 481–495.

[9] Francesco Gringoli and Lorenzo Nava. OpenFWWF website. URL: http://
netweb.ing.unibs.it/˜openfwwf/ (visited on 12/04/2021).

[10] “IEEE Standard for Information technology—Telecommunications and inform-
ation exchange between systems Local and metropolitan area networks—Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications”. In: IEEE Std 802.11-2016 (Revision of
IEEE Std 802.11-2012) (2016), pp. 1–3534.

[11] AsusTek Computer Inc. AC2900 Dual Band Gigabit WiFi Gaming Router with
MU-MIMO, AiMesh for mesh wifi system, AiProtection network security by
Trend Micro, WTFast game accelerator and Adaptive QoS. URL: https://
www.asus.com/uk/Networking/RT-AC86U/ (visited on 12/04/2021).

40

https://www.smallnetbuilder.com/wireless/wireless-reviews/33158-asus-rt-ac86u-dual-band-ac2900-wireless-router-reviewed
https://www.smallnetbuilder.com/wireless/wireless-reviews/33158-asus-rt-ac86u-dual-band-ac2900-wireless-router-reviewed
https://www.smallnetbuilder.com/wireless/wireless-reviews/33158-asus-rt-ac86u-dual-band-ac2900-wireless-router-reviewed
https://bcm-v4.sipsolutions.net/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-road-to-5g-the-inevitable-growth-of-infrastructure-cost
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-road-to-5g-the-inevitable-growth-of-infrastructure-cost
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-road-to-5g-the-inevitable-growth-of-infrastructure-cost
http://netweb.ing.unibs.it/~openfwwf/
http://netweb.ing.unibs.it/~openfwwf/
https://www.asus.com/uk/Networking/RT-AC86U/
https://www.asus.com/uk/Networking/RT-AC86U/

BIBLIOGRAPHY 41

[12] Cisco Systems Inc. Cisco Visual Networking Index (VNI) Global and Amer-
icas/EMEAR Mobile Data Traffic Forecast. 2019. URL: https://www.cisco.
com / c / dam / m / en _ us / network - intelligence / service - provider /
digital-transformation/knowledge-network-webinars/pdfs/190320-
mobility-ckn.pdf (visited on 12/04/2021).

[13] Jong-Seo Lee and Il-Young Moon. “Research on Virtual Network for Virtual
Mobile Network”. In: International Conference on Computer and Network Tech-
nology (2010), pp. 98–101.

[14] Aptilo Networks. Aptilo Mobile Data Offloading Solution. May 2017. URL:
https://www.aptilo.com/wp- content/uploads/2017/05/Aptilo_
Mobile_Data_Offloading_v17-02-17.pdf (visited on 12/04/2021).

[15] Paul Patras, Albert Banchs and Pablo Serrano. “A control theoretic approach for
throughput optimization in IEEE 802.11e EDCA WLANs”. In: Mobile networks
and applications 14.6 (2009), pp. 697–708.

[16] Paul Patras et al. “A Control-Theoretic Approach to Distributed Optimal Con-
figuration of 802.11 WLANs”. In: IEEE Transactions on Mobile Computing
10.6 (2011), pp. 897–910. ISSN: 1536-1233.

[17] Matthias Schulz and Jakob Link. Nexmon Channel State Information Extractor.
URL: https://github.com/seemoo-lab/nexmon_csi (visited on 12/04/2021).

[18] Matthias Schulz, Daniel Wegemer and Matthias Hollick. “The Nexmon Firm-
ware Analysis and Modification Framework: Empowering Researchers to En-
hance Wi-Fi Devices”. In: Computer Communications 129 (May 2018).

[19] Pablo Serrano et al. “Control theoretic optimization of 802.11 WLANs: Imple-
mentation and experimental evaluation”. In: Computer networks (Amsterdam,
Netherlands : 1999) 57.1 (2013), pp. 258–272. ISSN: 1389-1286.

[20] Pablo Serrano et al. “Control theoretic optimization of 802.11 WLANs: Im-
plementation and experimental evaluation”. In: Computer Networks 57.1 (Jan.
2013), pp. 258–272.

[21] Ronan Turner. “AlphaAP: Achieving Proportional Fairness in Virtualised WLANs”.
4th Year Project Report. B.S. Thesis. University of Edinburgh, 2016.

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/190320-mobility-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/190320-mobility-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/190320-mobility-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/190320-mobility-ckn.pdf
https://www.aptilo.com/wp-content/uploads/2017/05/Aptilo_Mobile_Data_Offloading_v17-02-17.pdf
https://www.aptilo.com/wp-content/uploads/2017/05/Aptilo_Mobile_Data_Offloading_v17-02-17.pdf
https://github.com/seemoo-lab/nexmon_csi

	Introduction
	Background
	WLANs and Medium Access
	Contention Mechanism (DCF)
	Quality of Service Enhancement (EDCA)
	RTS/CTS

	Frame Aggregation
	C-VAP Algorithm
	AlphaAP Algorithm
	Other WLAN Optimisation and Fairness Algorithms
	Previous Prototyping Efforts

	System Model
	Implementation
	Algorithm Components
	Router Asus RT-AC86U
	Software Architecture
	Firmware
	uCode
	Userspace

	Test Setup
	Router Configuration
	Automated Testing Scripts
	Control Parameter Estimation

	Evaluation
	C-VAP Performance
	AlphaAP Performance
	Control Parameter Optimisation
	Unsaturated Case
	RTS/CTS and Frame Aggregation

	Conclusion

