Performance Characterization of
Serverless Computing

Theodor Amariucai

4th Year Project Report
Artificial Intelligence and Computer Science
School of Informatics
University of Edinburgh

2021

Abstract

Serverless computing has seen rapid adoption because of its instant scalability, flex-
ible billing model, and economies of scale. In serverless, developers structure their
applications as a collection of functions, sporadically invoked by various events like
clicks. The high variability in function image sizes, invocation inter-arrival times,
and request burst sizes motivates vendors to scrutinize their infrastructure to ensure a
seamless user experience across all of their services. To monitor serverless platform
performance, identify pitfalls, and compare different providers, the public attention has
turned to benchmarking, whereby measurement functions are deployed to the cloud to
gather insights regarding response latencies, transfer speeds, and vendor policies.

This work introduces our open-source framework for serverless performance evalua-
tion, intending to enable researchers and developers to benchmark multiple cloud plat-
forms. Using this framework, we conduct one of the biggest serverless measurements
to date, launching over 320,000 function instances to characterize system performance
in AWS Lambda and vHive - the Edinburgh Architecture and Systems (EASE) virtual
machine orchestrator system.

We find that server response times for cold function instances are, on average, ten
times slower and more unpredictable than for warm function instances. When requests
arrive in bursts of over 100, we show that while warm instances incur a penalty, AWS
optimizes cold instances by fetching resources in batches. We achieve this by incor-
porating tail latency into our studies, a metric that is often overlooked in the literature.
Our analysis further reveals that AWS allocates resources aggressively to avoid queue-
ing and that invocations do not share function instances even when receiving up to 500
concurrent requests. We also discover that inter-function transfer latencies are much
higher in AWS than in vHive and that AWS caps network bandwidth for low-memory
configurations and throttles it for larger payloads regardless of allocated memory.

Based on these insights, we stress the importance of regular platform performance
monitoring for improved customer satisfaction. Finally, to boost performance and eco-
nomic efficiency from a user’s perspective, we suggest that serverless applications are
designed with a trade-off in mind between the function image size and the transfer
chain length.

Acknowledgements

I would first like to thank Dmitrii Ustiugov for his commitment to the success of my
project. Without his expertise and judicious guidance, this endeavor would never have
been as elaborate and comprehensive as you find it today.

I would also like to thank my supervisor, Boris Grot, for all his much-valued feedback
and support offered throughout my journey.

Table of Contents

Introduction

1.1 Serverless Computing,

1.2 Motivation L

1.3 Project Aims
1.3.1 Sources of Tail Latency in Serverless
1.3.2 Benchmarking Framework

1.4 ReportStructure

Background

2.1 Server Performance L.
2.1.1 TailLatency.
212 ColdStarts

~N O\ Nt B =

2.2 Serverless Architecture Challenges
2.2.1 Startup Time Minimization
2.2.2 Scalability
2.2.3 Function Composition . .

Literature Review

3.1 Serverless Ecosystem
3.1.1 Application Characteristics
3.1.2 Workload Characteristics .
3.2 Benchmarking Tools
Methodology
4.1 Serverless Evaluation Framework
4.2 Benchmarking Principles
Experimental Analysis
5.1 CPUSlowdown
5.2 Bursty Behavior
5.2.1 Single Requests
5.2.2 Bursty Requests
5.3 Image FetchDelay
5.4 Request Queuing
5.5 Inter-function Transfer Speeds . .
5.5.1 [Inline Transfers

11
12
12
13

14
14
14
15
16

19
20
23

5.5.2 Storage Transfers

6 Conclusion

6.1 Achievements
6.2 Future Work

Bibliography

A Tool Configuration

5.6 DISCUSSION . . . v v v v v v e e e e e

Chapter 1

Introduction

Historically, in the traditional computing paradigm, application developers would buy
or lease dedicated machines, typically in data centers, to operate their systems. Those
machines required both significant initial capital expenditure and high ongoing opera-
tional costs. Moreover, as developers coped with peak computational loads in systems
with varying demand, they had to plan in advance, provision, and pay for underutilized
machines during periods of average load [5].

More recently, improvements in Internet connectivity and the rise of warehouse-scale
computing systems have enabled web services to develop at an unprecedented rate
[17]. An opportunity then presented itself to companies as they became able to out-
source increasingly more elements of their technology stack: servers, storage, network-
ing, virtualization (Infrastructure as a Service); runtime, middleware, operating system
(Platform as a Service); language-level dependencies, data (Function as a Service); or
even complete applications (Software as a Service).

As the cloud paradigm delegates increasingly more responsibilities to the provider, it
allows companies to allocate fewer human resources towards infrastructural operations
and more towards product development, quality assurance, and customer service. Be-
cause of this, cloud computing has become an essential part of every modern business
[13].

This chapter introduces serverless computing and its positioning in the cloud ecosys-
tem and describes how this novel paradigm brings value to the businesses that provide it
and their clients. We further explain how critically assessing serverless infrastructures
leads to an enhanced user experience and improved customer satisfaction. Finally,
we outline the aims of this project by explaining (1) the research questions explored,
which address the lack of quantitative serverless characterization data in the market,
and (2) the steps that we took in designing our serverless benchmarking framework.

1.1 Serverless Computing

The oxymoron known as serverless computing is a recent branch of the cloud comput-
ing industry defined by two distinct collaborating components: Function as a Service

Chapter 1. Introduction 2

(FaaS) and Backend as a Service (BaaS).

TRADITIONAL vs SERVERLESS

Traditional

------ F 998

Serverless

(using client side logic and third party services)

Front-end Logic

Back-end Logic

L®

Security

Database

WSO

Figure 1.1: Serverless changes the traditional computing paradigm [31]

Function as a Service, the first component of serverless, is a way of executing modular
pieces of code on demand. It allows developers to only focus on the function written
and abstract away most of the usual time-consuming system administration operations,
e.g., virtual machine management. With serverless offerings today, the developer spec-
ifies the cloud function memory size, execution time limit, language runtime, but not
any other resource needs [25]. Finally, the provider proportionally allocates CPU re-
sources (cores and computing time) to the amount of memory configured.

The lightweight nature of FaaS is then revealed: short run time, small memory foot-
print, straightforward configuration, and a stateless computation. Indeed, by itself, a
FaaS solution will most likely be used as an event trigger, a generic webhook, or a
scheduled maintenance operation. With such confined capabilities, use cases for this
technology might seem very limited at first: how can complex applications be devel-
oped with such simple, inflexible functions? To overcome those limitations, FaaS is
often paired with an ecosystem of BaaS offerings [25].

Backend as a Service, the second component of serverless, is a cloud service model in
which developers outsource most of the behind-the-scenes aspects of a web or mobile
application: hosting, authentication, database management, remote updating, push no-
tifications. For example, a serverless application on AWS might use Lambda (FaaS)
with S3 (object storage), DynamoDB (key-value database), and API Gateway (end-
point exposure). Step Functions can then glue these components together, centrally
organizing multiple Lambda functions in a state machine language. This language can
form a sequence of execution steps that allow the application to handle significantly
more complex business logic.

Chapter 1. Introduction 3

We can now see serverless computing as an attempt at unifying the short-lived compu-
tations of FaaS with the robust networking, long-term storage, and security of BaaS.
This combination brings a few advantages for consumers, most notably [4]:

1. Faster delivery to market. By eliminating operational overhead, teams can
release quickly, get feedback, and iterate.

2. Lower costs. With a pay-for-value billing model, clients do not pay for over-
provisioning, and their resource utilization is optimized on their behalf. For
example, when comparing raw serverless costs to serverful alternatives', cloud
providers report that customers see cost savings of up to 10x depending on the
type of application® [39].

3. Easier development. Serverless applications have built-in service integrations,
so developers can focus on building the application instead of configuring it.

4. Seamless scalability. With technologies that automatically scale from zero to
peak demands, companies can adapt to customer needs.

It is, therefore, necessary for competitive businesses to embrace and excel at serverless.
Alongside serverless consumers, providers also benefit from this new paradigm:

1. Economies of scale. Enormous data centers yield energy savings and reduce
operational costs for vendors by accommodating large customer pools.

2. Amplified optimizations. Security and performance adjustments apply to the
entire infrastructure and all the clients who actively rely on it. For example, for
a single security update to the microVM internal logic, improvements propagate
through the entire infrastructure and are shared among hundreds of companies.

3. Customer retention. By offering all necessary backend services for an appli-
cation, the potential to attract and keep customers increases, especially since
each vendor offers unique features and workflows [1]. Many customer retention
strategies involving innovative services thus become available.

The success story behind serverless computing stems from the computing research
community’s long-term efforts worldwide, which has received increasingly higher
amounts of funding [13].

Despite its advantages and already widespread adoption, serverless today is mostly
suited towards best-effort and latency non-critical services. Moreover, there is an un-
derwhelming amount of quantitative data in the market that can accurately describe
serverless systems on demand in a meaningful, structured way. As we transition into
the next computing era, this is bound to change: there will be an increased demand for
assessing and monitoring the quality of provider offerings as by 2026, over two-thirds
of all enterprises across the globe will be entirely run in the cloud [13].

I'For example, Amazon Elastic Compute Cloud (EC2).
2For example, web/mobile/IoT, streaming, or batch computations.

Chapter 1. Introduction 4

1.2 Motivation

Tail latency (Section 2.1.1) is the small percentage of responses from cloud systems
that take the longest compared to the bulk of the responses. As soon as services scale
up, tail latency inspection detects when responses slow down and quantifies the phe-
nomenon. For example, the percentage of slow requests can surge from 1% to 63% as
parallelism increases from 1 to 100 servers (Section 2.1.1). Companies aim to satisfy
99% of customers, not 37%, which is why we scrutinize tail latency in our studies.

Designing an efficient, scalable, and user-friendly serverless platform that exhibits low
tail latencies remains challenging for system software designers [42]. Firstly, clients
expect satisfying response times even when the system performs under stress condi-
tions during peak demands. Secondly, new difficulties arise as these innovative but
intricate serverless systems are developed:

* Functions have a small memory footprint. They now have to be tightly packed
onto servers for economic reasons, leading to performance hiccups [42].

* Functions are short-lived. A new instance is created for each incoming request
if there are no idle ones to reuse, leading to startup latency.

* Functions are stateless. They have to be efficiently chained together to accom-
modate complex business logic, leading to data transmission overhead.

To monitor serverless platform performance, the public attention has turned to bench-
marking, whereby measurement functions are deployed to the cloud to gather insights
regarding vendor policies and average response times. In time, the degradation of such
metrics can lead to a poor customer experience and low client satisfaction.

Many extensive attempts have already been made to characterize serverless systems
(Section 3). However, experiments conducted were generally either lacking tail la-
tency analysis, not broad enough, not configurable enough, no longer maintained, or
had a different focus: statistical soundness [27], user billing and expenses [23, 14].
Moreover, tail latency plays a critical role in online services’ responsiveness yet is
missing from many benchmarking endeavors in the literature (Table 3.1).

Another reason for developing a new serverless evaluation framework, apart from ad-
dressing deficiencies in the literature, is to compare multiple providers based on an
established set of criteria. Because of the current lack of quantitative data in the mar-
ket that can accurately describe some specific aspects of performance and workload
adaptability in serverless infrastructures (Section 1.3), it is currently hard for users to
decide on adopting any particular serverless provider [36].

Next, we present this project’s goals, explaining how we address the shortage of tail
latency studies in the literature and describing the unique contributions that we bring
to the serverless profiling community in the form of our specialized framework.

Chapter 1. Introduction 5

1.3 Project Aims

A cold start (Section 2.1.2) occurs when the code has not been executed in a long time
(525 minutes) and has to be loaded from the disk. To boost response times, serverless
infrastructures keep function instances in memory for prolonged durations, allowing
them to reply to requests more quickly (warm start). As serverless workloads are often
bursty (e.g., popularity peaks and declines, breaking news emerge), deployments are
not over-provisioned but auto-scaled on demand (e.g., new instances are spawned);
hence cold starts are the first candidate for high tail latencies in serverless systems.

The high variability in function image sizes, data transfer payloads, invocation inter-
arrival times, and request burst sizes is another reason cloud providers experience high
tail latencies. As vendors often guarantee exceptional performance levels, they must
detect when performance drops below acceptable levels and quickly identify and fix
the problem [34] to ensure a seamless user experience across their services.

We next investigate four research directions that cause undesirably high tail latencies
by slowing down the auto-scaling process in serverless computing: bursty server be-
havior, function image fetch delay, active requests queuing, and inter-function transfer
speeds. As those dimensions have been understudied in the literature (Table 3.1), this
project brings new valuable contributions to the community’s characterization efforts.

1.3.1 Sources of Tail Latency in Serverless

1. Bursty Behavior. Under peak demand, the server experiences an unusually
high number of simultaneous incoming requests. Such large bursts could over-
whelm the receiving end’s physical resources (e.g., the load balancer) and cause
response delays or even loss. We show that when requests arrive in bursts of
over 100, while warm instances incur a penalty, AWS optimizes cold instances
by fetching resources in batches. We achieve this by incorporating tail latency
into our studies; a metric often overlooked in the literature.

2. Image Fetch Delay. In a cold start, the binaries have to be downloaded, con-
tainerized, booted, and primed to be run (Section 2.1.2). Depending on the bi-
naries’ size, this process can add significant delay to the system’s response time
(20-60 times worse performance) [30]. Indeed, our studies reveal that image size
plays a direct role in determining the cold start latency. We also find that server
response times for cold function instances are, on average, ten times slower and
more unpredictable than for warm instances.

3. Request Queuing. We seek to find whether providers queue incoming requests
for efficiency purposes and, if so, to discover the number of requests that trigger
this scenario. For example, for short service times, 500 concurrent requests
might be processed more efficiently by spinning up 250 instances and delivering
two requests to each, rather than cold-starting 500 instances. We discover that
AWS allocates resources aggressively to avoid queuing and that invocations do
not share function instances even when receiving up to 500 concurrent requests.

4. Inter-function Transfer Speeds. Serverless computations have to be efficiently

Chapter 1. Introduction 6

chained together to accommodate for more complex business logic. This chain
of communication takes the form of inter-function data transfers (inline or via
storage) and has to be efficient to prevent bottlenecks. Despite this, data trans-
mission in real-world serverless systems uses storage, which is radically slower
and more expensive than point-to-point networking [24]. Our analysis reveals
that inter-function transfer latencies are much higher in AWS than in vHive and
that AWS caps network bandwidth for low-memory configurations.

Next, we explain why the existing profiling tools cannot satisfy our research goals
by identifying their main limitations and introduce our benchmarking framework that
thoroughly evaluates each of the four research dimensions above.

1.3.2 Benchmarking Framework

After reviewing the serverless profiling literature (Section 3), we discovered that most
experiments conducted were generally either lacking tail latency analysis, not broad
enough, not configurable enough, no longer maintained, or had a different focus: sta-
tistical soundness [27], user billing and expenses [23, 14].

To reach our research goals, we contribute to the community’s serverless profiling ef-
forts by creating an open-source, parametrized benchmarking framework from scratch
(further detailed in Section 4.1). In its design, we consider all the essential require-
ments necessary for describing tail latency across multiple serverless platforms:

* Flexibility and preciseness. We use the Golang programming language, which
provides remarkably convenient features for our purposes, e.g., simple multi-
threading and concurrency using Goroutines and WaitGroups.

* Configurability. We wish to model warm, cold, and bursty invocations, as well
as data transfers (inline or via storage). Therefore, the tool must vary the work-
load characteristics (e.g., image size, service time) and alter the traffic shape
(e.g., inter-arrival times, burst sizes) according to the specifications.

* Speed. Even when modeling cold starts, the client must perform the benchmark-
ing in an acceptable amount of time. Furthermore, function deployments should
be automated to a high degree for an optimized turnaround speed.

* Reproducibility. All experiments have to be easily repeatable, and the results
between two runs must be similar, unless because of the instability of the system
under test.

* Robustness. The framework has to avoid technical pitfalls, e.g., client-side con-
tention caused by responses queuing at the network interface controller (NIC). It
also has to adopt a solid statistical approach, e.g., take sufficient samples.

* Independence from any provider. Multiple high-quality serverless providers
must be supported. Our tool currently covers AWS Lambda and vHive, the open-
source Edinburgh Architecture and Systems (EASE) VM orchestrator system.

Images are an essential tool for analyzing and describing tail latency in real-world sys-
tems. For this reason, we used the benchmarking client’s output to create visualizations

Chapter 1. Introduction 7

that help disseminate the enclosed information and lead to a better understanding of
the data. For this purpose, our custom-made plotting scripts can read latency records
from disk and generate summarizing graphs, as featured in Section 5.

We ensure our evaluation suite’s maintainability through a continuous integration pipeline
that regularly verifies the correctness of all framework aspects. It includes syntax
checks (source code is analyzed to flag programming errors, bugs, stylistic errors, and
suspicious constructs), unit tests, integration tests, and build checks for the measure-
ment function and the benchmarking client.

Apart from the checks mentioned above, we are interested in validating the data ob-
tained in our experiments. “Performance measurements often go wrong, reporting
surface-level results that are more marketing than science” [28]. To avoid this, we take
four precautionary steps (further detailed in Section 4.2) toward higher-quality perfor-
mance measurements [34]: we allow enough time, we measure one level deeper, we
consider additional detail, and we minimize statistical variability.

1.4 Report Structure

This project is situated at the intersection between serverless computing and perfor-
mance benchmarking. The report is structured as follows:

* Chapter 2 offers the technical background necessary for understanding our work.
It begins with an overview of server performance and how it leads to customer
satisfaction and continues with two phenomena linked to lower overall server-
less system performance: tail latency and cold starts. In the last section, we
investigate the common challenges present in a typical FaaS architecture.

 Chapter 3 is entirely dedicated to placing our work in the broad context of server-
less computing benchmarking. This topic has recently been receiving increas-
ingly more attention in the academic community, which is why we take this
opportunity to shed some light on our contributions. We present the challenges
we address and what differentiates our tool from others.

 Chapter 4 focuses on the methodology employed in our experimentation. We be-
gin with the inner workings of our tool: the benchmarking procedure and client
parameters (e.g., inter-arrival time, burst size), coordinator steps (flowchart),
and, finally, the measurement function and its workload parameters (e.g., ser-
vice time, transfer size). We then present the hardware used and explain the four
steps we took toward higher-quality performance measurements [34].

* Chapter 5 covers the five main experiments that we performed: we assessed CPU
slowdown (auxiliary), described the bursty server behavior, observed the image
fetch delay, found whether active requests are queued in AWS, and measured the
transfer speeds (inline and via storage). We then present and interpret the data.

 Chapter 6 reviews our main achievements and contributions, presents five direc-
tions for further work and concludes this report.

Chapter 2

Background

We begin this chapter by explaining why low overall tail latency is one of the most
desirable characteristics when assessing serverless systems’ performance.

To understand the tail latency phenomenon (Section 2.1.1), we define it, visually de-
scribe it (Figure 2.1), and assess the impact that it has on businesses. We then look at
cold starts (Section 2.1.2), one of the principal causes behind high tail latencies, and
explain why they often lead to decreased cloud system performance.

Finally, we analyze common challenges present in a typical FaaS architecture to com-
prehend its inner workings and better direct our performance characterization efforts
(Section 2.2).

2.1 Server Performance

Systems that respond to user actions quickly (within 100ms) feel more fluid and natural
to users than those that take longer [12]. Since user satisfaction directly translates into
revenue, current industry leaders in cloud infrastructure will find reliability in the form
of speed and fault tolerance guarantees highly desirable.

Indeed, latency requirements apply to most production workloads in the serverless
ecosystem. Among the applications analyzed by the Standard Performance Evaluation
Corporation research group (SPEC RG), 32% of them have latency requirements for
all functionality, 28% have partial requirements, and 2% have real-time requirements
[20]. Those requirements regard both the average and tail response latencies.

Nevertheless, technology providers have not traditionally pursued tail latency opti-
mization to the same extent because of its more subtle influence that significantly im-
pacts customer experience only as the applications scale up. This trend, however, is
about to change as tail-tolerant operations, an area still under research and exploration
[17], have attracted the attention of increasingly more businesses in recent times.

Chapter 2. Background 9

2.1.1 Tail Latency

Tail latency in the serverless scenario is the small percentage of response times from a
system that, out of all the responses serviced, take the longest compared to the bulk of
its response times. They are at the tail end of a system’s response time spectrum and
are often expressed as the 99th percentile response times [38].

We can observe the concept of tail latency visually through the empirical cumulative
distribution function (CDF) in Figure 2.1. Each hollow, black point in the image repre-
sents a response latency sampled from AWS Lambda during a run of our benchmarking
tool. The right-hand side of the plot, resembling a “tail” and situated to the right of the
red dotted line, displays much higher response latencies (74ms+) than the average ex-
pected value (47ms). To stress this contrast, we highlight the average response latency
with a black dotted line.

Burst size 1, IAT ~3s

1.0 A Q00— @O =& = == = ——— O ———O

0.8 1
]
)
S 0.6 A
(o
g
W
[e]
C
£ 0.4 1
S
o

74ms
0.2 1
= Average
0.0 = 99%ile

40 60 80 100 120 140 160
Latency (ms)

Figure 2.1: Empirical CDF of 3000 requests issued every 3 seconds

To assess the impact that tail latency has on businesses, let us once again consider the
example in Figure 2.1. The server typically responds within 47ms but with a 99th-
percentile latency of almost double the time (more than 74ms). In other words, if user
requests are handled on just one such server, 1 user request in 100 will be slow (take
double the time). We notice that service-level latency in this scenario is affected by a
very modest (1%) fraction of latency outliers [10].

At first glance, we can easily underestimate the importance of measuring tail latency
in serverless systems. Compared to the impact that average latency has on user expe-
rience, tail latency often fades away in significance. After all, it represents only 1% of
the responses. However, this is a severe mistake, and enterprises often pay the price
for overlooking this crucial measure when their services scale up.

Chapter 2. Background 10

If a user collects responses from 100 servers in parallel, 63% of requests will be slow.
Even for services with only 1 in 10,000 requests experiencing high latencies at the
single-server level, 2,000 servers responding to requests in parallel will see almost 1
in 5 responses take almost twice as much time as the rest [10]. We can see how the
impact of tail latency on performance is amplified as soon as the services scale up.

Companies aim to satisfy 99% of customers, not 37%. Cloud services set their stan-
dards similarly high, aspiring towards 99% satisfactory response times. Nevertheless,
there are no hard guarantees today: serverless is mostly suited towards best-effort and
latency non-critical services, and tail latency plays a direct role in this.

While eliminating all latency variability sources in large-scale systems is impractical,
tail-tolerant software techniques attempt to form a predictable whole out of less pre-
dictable parts [17]. To track their progress and impact, serverless benchmarking tools
can be used to plot latency distributions as in Figure 2.1 and to monitor changes.

Next, we look at cold starts - the principal cause behind high tail latencies and, conse-
quently, behind undesirable response times in serverless systems.

2.1.2 Cold Starts

A cold start happens when a function takes longer than usual to execute [29]. This
mostly occurs when the invocation is scheduled right after deployment or when the
function has not been used in a while, e.g., after 10 minutes without invocations. How-
ever, when the function is already in memory and can immediately serve requests, we
regard it as warm.

The cold start impact on FaaS performance is still a key obstacle of serverless adop-
tion today, especially for latency-sensitive workloads [37]. When a cold start occurs,
the function code must be downloaded, containerized, booted, and primed to be run.
An example of this process can be seen in Figure 2.2: multiple steps and components

AWS Side User side

Initialization

Downl '
ownload Container and start of

Code

the code setup W fods Execution

Cold Start Time

. ColdStartTime 2

Source : AWS re:Invent 2017 - Become a serverless Black Belt

Figure 2.2: Cold start overhead in a serverless system [33]

Chapter 2. Background 11

which ensure correct operation are involved, but they also slow the system down con-
siderably.

However, promising solutions in this space include reducing overhead through bet-
ter engineering, profiling function performance more accurately, or introducing more
sophisticated scheduling policies [37]. Serverless providers already take different ap-
proaches with the latter: on AWS and IBM, it usually takes around 10 minutes of no
activity for the computing instance to be recycled and re-inserted into the pool of avail-
able ones, and up to 20 minutes on Azure. On Google, this time varies from 10 minutes
up to 10 hours [29].

When given a chance, customers often replace non-responsive applications with faster
alternatives. This is why the technology industry has been so heavily focused on cold
starts: warm function instances dramatically improve average response times.

The direct connection between cold starts and tail latency can also be recognized: even
when invoking a function at short intervals to keep the instances warm, at least the first
invocation, which involves downloading and priming code, will be cold. In turn, this
manifests in the form of a tail on the application’s latency distribution (Figure 2.1).

In the next chapter, we cover some common serverless architecture challenges that
might aggravate tail latency and lead to poor system performance when not addressed.

2.2 Serverless Architecture Challenges

High tail latency in a service’s individual components can increase the variance in
the entire response time distribution. Moreover, component-level variability in cloud
systems is drastically amplified by scale. Some of the causes behind this phenomenon
include [17]:

* Machine resource sharing (CPU cores and caches, memory, network bandwidth)
* Global resource sharing (network switches and shared file systems)

* Maintenance activities (e.g., periodic garbage collection in some languages)

» Multiple layers of queuing in intermediate servers and network switches

The over-provisioning of resources and careful real-time software engineering can be
used at all levels and in all components to reduce the base causes of variability in cloud
infrastructures [17].

Serverless systems today, however, face a set of additional challenges at the Function
Management Layer and Workflow Composition Layer [37]. We next explore three par-
ticular examples that will guide both the design of our performance evaluation frame-
work and our experimental analysis in Section 5: startup time minimization, scalability,
and function composition.

Chapter 2. Background 12

2.2.1 Startup Time Minimization

Although cloud functions have a much lower startup latency than traditional VM-based
instances [25], the delays incurred when starting new instances can still be high for
some applications. As previously mentioned in the context of cold starts (Section
2.1.2), we identify four elements that make up most of a serverless function’s startup
time [25]:

1. Scheduling and provisioning resources

2. Downloading the application software environment (e.g., source code, operating
system as part of the container setup)

3. Performing application-specific startup tasks (e.g., loading and initializing the
libraries and data structures)

4. Executing the function code

The intermediate steps above can dwarf the others. While it usually takes less than
one second to start a cloud function, it can take tens of seconds to load all application
libraries [11]. Downloading the function source code (or image) often also incurs a
relatively significant delay, as the process relies on two critical factors: storage perfor-
mance and network bandwidth.

The location where the image is pulled from plays a role in determining the reply’s
speed: the sooner the code is available, the sooner the container can start. The func-
tion registry (Function Management Layer) serves as a local or remote repository for
serverless functions and keeps the function binaries in a store. The location of this
store, in turn, influences the startup time of cold function instances [37]. This also
hints at the negative influence that larger binaries can have on system performance: the
more code has to be fetched, the slower the responses will be.

To quantify the image fetch delay of an arbitrary serverless function, the image size
could be artificially altered and the change in response latency measured (Section 5.3).

2.2.2 Scalability

“Elastic, automatic scaling in response to changes in demand is a main advertised
benefit of the serverless model” [40]. Therefore, it comes as no surprise that most of
the use cases in serverless computing indeed experience bursty workload patterns [19].

A bursty workload follows a pattern that involves sudden and unexpected load spikes
or a significant amount of sustained noise and variation in intensity. This behavior
is mainly unpredictable for any scenario that involves a set of human users, as user
behavior can seldom be scheduled or reliably controlled [19].

For this reason, engineers that have been struggling with bursty workloads and face
constant performance issues are more likely to migrate their applications to the cloud
to ensure application consistency and to benefit from scalability guarantees [19].

Nonetheless, how is the cloud able to provide those guarantees and ensure seamless
application scalability? One of the mechanisms involved uses function routers at the

Chapter 2. Background 13

Function Management Layer. Their job is to route incoming requests or events to
the correct function instance. If no function instance is available, the function router
queues the events to await the termination of currently-running instances [37]. The
cloud provider can also set up policies that eliminate queuing times: the function router
would only wait for the booting of new function instances, which is often faster.

This queuing behavior can have negative consequences on an application’s response
times: the more requests are queued as they wait for data to be processed by the server,
the slower the response times.

Therefore, serverless performance evaluation suites should understand how bursty work-
loads affect scalability and application performance (Section 5.2). Moreover, they
should identify request queuing when it occurs and quantify it accordingly (Section
5.4).

2.2.3 Function Composition

The ability for a serverless application to grow in complexity relies on function com-
position and coordination. Platforms today, however, have no knowledge of the data
dependencies between serverless functions, let alone the volume of data they might
exchange [25]. This ignorance can lead to a sub-optimal placement at the Workflow
Composition Layer, causing inefficient communication patterns.

One such communication pattern uses a producer-consumer scenario to share states
between functions. In this case, consumers need to know as soon as the data is available
from the producers [25]. This process is often negatively impacted as the transfer
between cloud functions is usually done through slow object storage systems.

Object storage services such as AWS S3, Azure Blob Storage, and Google Cloud Stor-
age are highly scalable and provide inexpensive long-term object storage, but exhibit
high access costs and high access latencies [25]. According to recent tests, these ser-
vices take at least ten milliseconds to read or write small objects [6].

While capacity demands vary, all functions rely on slow storage to maintain and trans-
fer the application state during its lifetime. Once the application finishes, the state can
be discarded. This suggests the need for developing new, fast, ephemeral, and durable
serverless storage to ease some of the issues posed by current storage solutions [25].

To validate the implementation of fast ephemeral storage and other intermediate perfor-
mance adjustments made on serverless infrastructures, a baseline should be established
and regularly consulted - much like a snapshot of the system in time.

Serverless performance evaluation suites should therefore characterize inter-function
transfer speeds and monitor changes over time (Section 5.5).

Chapter 3

Literature Review

Serverless computing has seen a plethora of academic interest in recent years, and for a
good reason. With serverless computing, developers fully delegate server management
and are billed entirely based on usage with millisecond precision. Matters of availabil-
ity, resource allocation, and fault-tolerance become the cloud provider’s responsibility,
and developers can solely focus on the application logic.

In a survey by the SPEC research group, the main drivers of serverless adoption were
found to be the reduced operational cost (33%), reduced operational effort (24%), scal-
ability (24%), and, lastly, the performance gains (13%) [19]. However, the server-
less computing ecosystem is broad and diverse: use cases include machine learning
pipelines, video processing workflows, map-reduce workloads, HTML rendering.

To devise a relevant benchmarking framework, we need to identify, at an abstract level,
the composition of this novel ecosystem: use cases, characteristics, structure, and or-
ganization of applications.

3.1 Serverless Ecosystem

In one of their studies, SPEC RG compile and dissect 89 serverless use cases from
four unique sources: 32 from open-source projects, 23 from white literature, 28 from
grey literature, and 6 from the area of scientific computing [19]. This study is highly
relevant to us as we attempt to guide our benchmarking tool’s design by real-world in-
sights: out of all applications analyzed, at least 55% of them are already in production.

Next, we look at two sets of serverless function characteristics determined and formal-
ized by SPEC RG: application characteristics and workload characteristics.

3.1.1 Application Characteristics

Application characteristics describe the serverless application’s structure and proper-
ties and focus on characteristics such as "How many functions does the application
consist of?”” and "Which managed cloud services does the application use?” [19].

14

Chapter 3. Literature Review 15

The first observation is that the currently dominating platform for serverless applica-
tions on the market is AWS Lambda, with 80% adoption [19]. This fact motivated our
decision to make AWS Lambda the first serverless vendor supported by the framework.

The most popular function chaining patterns are also of interest because of the poten-
tial impact of inter-function transmission rates on overall application performance. The
granularity of serverless functions is still controversial: opinions range from wrapping
each programming function as a serverless function to full microservices as a server-
less function. On this matter, we find that 68% of the applications have at least two
different inter-communicating functions in their composition [19] and this motivates
our experiments in Section 5.5.

Serverless applications depend on a wide variety of cloud services, with the three most
used ones being cloud storage (used by 61% of the applications), cloud database (47%),
and cloud API gateway (18%) [19]. Given the ephemeral nature of FaaS functions, and
consistent with other survey results [28], it is unsurprising that persistency services are
the most popular external services [19].

In the following subsection, guided by the literature on the subject, we look at common
workload parameters in serverless functions.

3.1.2 Workload Characteristics

Workload characteristics aim to describe the traffic patterns of a serverless function,
e.g., "How long do functions usually run for?” ’Is the workload bursty?” and "What is
the data volume per request?” [19].

Most of the serverless functions surveyed (67%) are short-running, with running times
in the order of milliseconds or seconds [19]. Therefore, our measurements’ target
precision is in the order of milliseconds, as anything more granular adds little to no
introspective benefit. Most serverless providers bill as a multiple of 100 milliseconds,
with AWS being a recent exception: starting December 2020, they round up duration
to the nearest millisecond with no minimum execution time [21].

While the network and storage device load among most of the surveyed use cases is
low (44% of them exhibit less than 1MB), we notice that a significant amount of them
(37%) displace between 1IMB and upwards of 1GB of data [19]. This is why, in our
evaluation framework experiments, we cater for a wide spectrum of data volume loads:
code sizes of up to 230MB for image fetch delay (Section 5.3) and payloads of up to
1GB for network transfer bandwidth and latency (Section 5.5).

In any scenario that involves a set of human users, we consider the workload pattern to
be bursty, as user behavior can seldom be scheduled or reliably controlled [19]. With
this in mind, the SPEC research group found that 81% of the analyzed use cases exhibit
bursty workloads. For this reason, we look at burstiness in serverless platforms from
multiple angles: median latency, tail latency, and overall variability in conjunction with
the function image size (Sections 5.2 and 5.3).

Chapter 3. Literature Review 16

3.2 Benchmarking Tools

Studies show that serverless computing today might be far from ideal [24]: it is con-
strained (limited function lifetimes, no specialized hardware), it processes data ineffi-
ciently (I/O bottlenecks due to low network bandwidth and slow storage), and wrong
policies can work against it (e.g., inadequate request queuing). Many serverless appli-
cation developers have conducted their own experiments to measure cold start latency
[15], function instance lifetime [16], maximum idle time before shut down [41], and
CPU usage [7]. Unfortunately, their experiments were ad-hoc, and the results may be
misleading because of the lack of control over contention by other instances [40].

Another issue is that of breadth. For example, the cold start latency study in [15]
assesses function images of up to 15MB, while our study goes up to 230MB (Section
5.3) and finds contradictory results. Similarly, ServerlessBench evaluates the image
fetch delay for code sizes of up to only 70MB [42]. Inter-function transmission latency
analysis in ServerlessBench also lacks in depth: payloads of up to a maximum of
S50KB are considered as opposed to 1GB in our studies (Section 5.5). Such missed
opportunities can lead to insightful findings.

One notable paper featuring similar characterization goals to ours is Peeking behind
the curtains of serverless platforms [40]. They conduct experiments exploring cold-
start latency, CPU slowdown, and network throughput. We look at similar metrics
but focus on other areas as well: tail latency as observed through CDFs, variability in
the image sizes and transfer payloads, and bursty server behavior. Moreover, some of
our experiments are identical in scope yet report different results, e.g., CPU slowdown
in AWS seems to have increased since 2018 (Section 5.1). The most probable cause
for this is updated vendor policies. Other studies in the paper appear to be outdated
as well. For instance, the security study regarding VM tenant isolation is no longer
applicable because VM co-residency of cross-tenant function instances was excluded
by design: in AWS, only one function instance is now assigned to a microVM [3].

Another issue that permeates many serverless performance characterization endeavors
is rigid code used solely for research purposes and no longer maintained afterward.
Some examples include FunctionBench (5 pre-configured file sizes to measure S3
throughput) [26] and ServerlessBench (11 pre-configured, highly specific tests) [42].
In contrast, in our studies, we run all of our experiments with the same internal logic
for enhanced maintainability and configurability; the only elements that change are the
JSON configurations (more details in Appendix A).

Our methodology (and many others) focuses on platform-level or end-to-end issues
and the reverse engineering of commercial services’ behavior. Another approach is
taken by FaaSprofiler [36]: by benchmarking the open-source Apache OpenWhisk
FaaS platform, a higher degree of introspection is possible: branch mispredictions per
kilo-instruction, inter-function interference (Figure 3.1). Nevertheless, some of the
studies are remotely similar to ours, e.g., container slowdown, function cold starts.

We pay close attention to statistical accuracy (Section 4.2). Other serverless evalua-
tion frameworks, however, make statistical soundness one of their key priorities. Such
an example is LANCET, a microsecond-scale tool designed to measure open-loop tail

Chapter 3. Literature Review 17

Network €t =
£ g 5
Scheduli S$g:
chedulin] -
T g
Queueing % —
N T 35% decrease in IPC
Interference |~ .
J due to interference
bx variation due to
. . < Memory BW —_
invocation pattern 20x MPKI for 5
, Branch MPKI [~ : v 2
>10x exec time short functions 2 2
for short functions « Cold Start 3 _g
(500ms cold start) Up to 20x =
Container >
slowdown
Native
Execution

Figure 3.1: Server-level overhead of FaaS applications (FaaSProfiler) [36]

latency [27]. It leverages self-correcting statistical testing techniques such as Pearson
auto-correlation or the Anderson Darling Test and offers high precision using hard-
ware time-stamping at the NIC. They also automatically detect the optimal number of
samples to collect for statistically significant results.

Other serverless performance evaluation tools seek to provide economic insights for
the end-user, which is out of our project’s scope. For example, ServerlessBench [42)]
emphasizes how many resources should be provisioned for optimal savings, plots
billing statistics, and analyzes costs for three real-world applications involving Alexa
skills, image processing, and data analysis [42]. Another example is SeBS [14], where
some of the studies involve assessing the fairness and efficiency of pricing models and
finding how expensive offloading computations to FaaS platforms can be.

Our project is a micro-benchmark framework that evaluates single general aspects of
FaaS platforms. A more specialized, application-driven approach is taken by BeFaasS:
just like ServerlessBench, they focus on evaluating realistic use cases of FaaS applica-
tions. They include two built-in benchmarks (e-commerce and an 10T application) and
the option of importing your own application (not verified) [23]. Another example is
SeBS, where practical applications include web microservices, multimedia processing
pipelines, compression utilities, graph computations, and image recognition engines.

Other frameworks place their focus on sophisticated visuals' and the sheer number
of different regions and programming languages analyzed. Such an example is FaaS-
Dom, a platform profiling across seven languages and four providers spread over 39
regions [29]. However, they outsource their throughput/latency experiment infrastruc-
ture to wrk2 [2], which arguably compromises on precision: we measure in the order
of milliseconds, whereas wrk2 uses requests/seconds.

'For example, Graphana, the multi-platform, open-source, interactive visualization web application.

Chapter 3. Literature Review 18

Benchmarking Tool Tail Bursty Image Function
Latency Behavior Fetch Transfer
This Work v 500 reqgs. 230MB 1GB
ServerlessBench [42] v X 72.6MB 50KB
LANCET [27] v X X X
SeBS [14] X X X 6MB
FaaSprofiler [36] X 100 regs. X X
FaaSDom [29] X X X X
Pecking [40] X X X X
BeFaaS [23] X X X X
FunctionBench [26] X X X X

Table 3.1: Our micro-benchmarking contributions to the serverless ecosystem

We conclude our literature review by noting the lack of tail latency studies in most
examined papers. Furthermore, experiments conducted are generally either not broad
enough, not configurable enough, no longer maintained, or have a different focus:
statistical soundness [27], user billing and expenses [23, 14].

Table 3.1 summarizes the differences between our solution and other serverless bench-
marking tools. In order of priority, the criteria are as follows:

1.

A tail latency study analyzes the 99th percentile server latencies through cumu-
lative distribution functions or other visual or tabular means.

. A bursty behavior study (Section 5.2) explores how bursty workloads affect over-

all application latency. We do not consider the cases where concurrent requests
are used to analyze instance microVM placement (as in [40]), or where the unit
of measurement is too imprecise (e.g., requests/second, as in [29]).

. An image fetch delay study (Section 5.3) analyzes whether cold start perfor-

mance is affected by the function source code size (image size). Any measure-
ments where the image size is fixed (as in [40, 36]) are not considered.

A function transfer study (Section 5.5) evaluates data transfer speeds (either in-
line or via storage) between instances in a producer-consumer scenario. Any
measurements where the payload size is fixed or highly specific (as in [23]) are
not considered.

Chapter 4

Methodology

We propose a serverless evaluation framework written in Golang that can benchmark
multiple providers and offer performance insights along four research dimensions:
bursty server behavior, function image fetch delay, request queuing, and inter-function
transfer speeds. To achieve this, we model the incoming traffic accordingly: we vary
the incoming burst size, function image size, and transfer payload size (Figure 4.1).

~

\ Image Size.

Burst+ Size
=

TronsPer Size

Figure 4.1: Potential tail latency variability vectors in serverless computing

We take the viewpoint of a serverless user to characterize serverless platforms’ perfor-
mance and resource management efficiency. Vantage points are first set up in the same
cloud provider region to manage and invoke functions from one account via official
SDKs. We execute experiments under various settings by adjusting function config-
urations and workloads, and we interpret the key factors that impact measurement
results. From this perspective, our methodology is similar to that of [40].

We begin this chapter by explaining the inner workings of our tool: the benchmarking
procedure and client parameters (e.g., inter-arrival time, burst size), coordinator steps
(flowchart), the measurement function and its workload parameters (e.g., service time,
transfer size). We then present the hardware used and explain the four steps that we
took toward higher-quality performance measurements [34].

19

Chapter 4. Methodology 20

4.1 Serverless Evaluation Framework

To begin with, we provide an overview of our benchmarking solution and define the
main terms used throughout the rest of our studies:

Client

.

SON

Vendor Endpoints > ‘ Logs
Coordinator
150 EZ@ XY 5;@:3 >

Latencies Visualizations

Experiment Configuration Burst #1 Burst #N
1 1
j--T=====- l """" U
Y Y
EASE vHive Amazon AWS Microsoft Azure
|
{3 |
1 .
K8s Load Balancer API Gateway HTTP Triggers
" || | il PTAN
Firecracker uVM Function Lambda Function Azure Function

Figure 4.2: Benchmarking client overview

* The coordinator orchestrates the entire benchmarking procedure (Figure 4.4).

* The experiment configuration (Figure 4.2) is an input JSON file used to specify
and customize the experiments (example included in Appendix A).

* An endpoint is a URL used for locating the function instance over the Internet.
As seen in Figure 4.2, this URL most often points to resources such as AWS API
Gatewayl, Azure HTTP Triggers, vHive? Kubernetes Load Balancer, or similar.

* The vendor endpoints (Figure 4.2) input JSON file is only used for providers
such as vHive that do not currently support automated function management
(e.g., function listing, deployment, repurposing, or removal via SDKs or APIs).

e The inter-arrival time (IAT) is the time interval that the client waits for in-
between sending two bursts to the same endpoint. To add some variability and
simulate a more realistic scenario, we sample this from a shifted exponential dis-
tribution. For example, if we set the IAT to 10 minutes (modeling cold starts for
most vendors), generated values can be, e.g., 10m12s, 10m27s, 11m.

I'This uses the HTTP protocol, e.g., https://0js3gm31w5.execute-api.us-west-1.amazonaws.com/
2This uses the gRPC protocol, e.g., producer.default.192.168.1.240.xip.io:80

Chapter 4. Methodology 21

» Multiple endpoints can be used simultaneously by the same experiment to speed
up the benchmarking. The JSON configuration field parallelism defines this
number: the higher it is, the more endpoints will be allocated, and the more
bursts will be sent in short succession (speeding up the process for large 1ATS).

* The latencies CSV files (Figure 4.2) are the main output of the evaluation frame-
work. They are used in our custom Python plotting utility suite to produce in-
sightful visualizations (as seen throughout Section 5).

* The logs text file (Figure 4.2) is the final output of the benchmarking client. Log
records are useful for optimizing code and debugging problematic behavior.

We integrate all necessary server-side functionality into a single function that we call a
measurement function. This approach is similar to that taken in [40] and other server-
less performance evaluation frameworks. A measurement function can perform up to
three tasks, depending on the use case:

1. Tt always collects function instance runtime information?.

2. If applicable, the function will simulate work by incrementing a variable in a
busy-spin loop. This can be as simple as “for i := 0; i < incrementLimit; i++{}".

3. If applicable, the function records invocation timing (Figure 4.3). This is partic-
ularly useful for our data transfer studies where we complement client-measured
round-trip time with internal function timestamps for validation purposes [34].

Request Nested Chain
Chain IDs
Payload Size Inline or Storage Transfer
: > Function 1 > Function 2 > Function 3
Timestamp 1 |« Timestamp 2 |« Timestamp 3
¢ Direct Return

Response
Timestamps 1, 2, 3

Figure 4.3: Transfer measurement for a chain of serverless functions

AWS Lambda supports two separate deployment packages for measurement functions:
zip files or container images. Both come with their advantages and disadvantages: zip
file packaging is the older and more mature method, while container image packag-
ing is the newer option (December 2020) [35]. The latter increases function image size
capacity from 250MB to a maximum of 10GB but still has some downsides. For exam-
ple, the online console in AWS does not report the image size for container-packaged
functions, making it impossible for the tool’s automated deployment mechanism to
work in experiments that vary the image size. For this reason, we still use zip pack-
aging in those scenarios and limit our image fetch delay experiments to sizes of up to
230MB (Section 5.5).

3For example, an internal request ID (e.g., 0db48eae-fu67-452a-895a-2e04649aaccf) can later be
used to search the provider’s logs for debugging purposes.

Chapter 4. Methodology 22

Finally, we look at the procedural steps adopted by the framework (Figure 4.4):

FOREACH Sub-Experiment

Read Find Busy-Spin Initialize Vendor
Configuration Increments Connection

Provision

Assign Endpoints

Re-purpose or
Deploy

Run (sequentially or in parallel)

Send # Bursts . . Generate
> [(Parallelism)])[erte Latencies H Visualizations]

leep for IA

Figure 4.4: Coordinator flowchart

1. The JSON configuration file is read and parsed, and any default field values are
assigned. If the configuration file is missing, the program throws a fatal error.

2. Experiment service times (e.g., 10 seconds) are translated on the client machine
into numbers representing busy-spin increment limits (e.g., 10,000,000). In turn,
those are used by the measurement function on the server machine to keep the
processor busy-spinning (Section 4.2).

3. A connection with the serverless vendor is established. This is abstracted away
behind a common interface having only four functions: ListAPIs, DeployFunc-
tion, RemoveFunction, and UpdateFunction. Used exclusively throughout the
codebase, this interface offers seamless integration functionality with any provider.

4. In the provisioning phase, existing endpoints are first queried either using official
provider APIs or from a local file. The corresponding serverless functions are
then updated, deployed or removed to match the specified configuration file*.

5. The last step runs all the experiments either sequentially or in parallel: bursts are
successively sent to each available endpoint, followed by a sleep duration spec-
ified by the IAT. The process is repeated until all responses have been recorded
to disk (Figure 4.2). Finally, statistics and visualizations are generated.

In the next section, we identify desirable characteristics in a robust and performant
benchmarking client implementation.

4 Parallelism, package type, function memory and function image size are the configuration fields that
are considered when provisioning for an experiment.

Chapter 4. Methodology 23

4.2 Benchmarking Principles

To better understand the latencies that we measure, we need to define a breakdown of
their underlying composition and how the comprising elements interact together. The
following equation, tailored to the serverless scenario, forms our initial assumption:

measuredLatency = infraConst 4+ slowdown X serviceTime + queuing + coldStart
4.1)

* infraConst is a constant that covers the minimum latency between the client and
the server in a situation in which the services are unloaded. In AWS Lambda, on
average, it can be as low as 47ms (Figure 5.2).

* slowdown (Section 5.1) is the factor of CPU sharing/allocation provided by the
vendor, and depends on the requested function memory.

* serviceTime defines the useful work performed by the measurement function as
timed on the client-side. Note that due to CPU slowdown, service time is often
amplified on the server-side for low-memory functions (Section 5.1).

* queuing (Section 5.4) is a hypothetical delay associated with the necessity for
requests to be queued on the server side due to constrained physical resources.
Alternatively, this can sometimes be employed for efficiency purposes.

* coldStart (Section 2.1.2) is the time required for the serverless infrastructure to
initialize a fresh new instance by pulling the function back into main memory.

Consistently monitoring the measured server latency plays a crucial role in serverless
systems: it ensures that standard requirements are regularly met, leading to increased
user satisfaction and revenue gains.

Making reliable performance measurements, however, takes time. Furthermore, as
those measurements tend to be run repeatedly, having a robust infrastructure becomes
even more valuable [34] in speeding up the benchmarking process. To this end, and
also to improve the maintainability of the codebase, we developed a continuous inte-
gration pipeline that regularly verifies the correctness of all framework aspects:

* Syntax (source code is analyzed to flag programming errors, bugs, stylistic er-
rors, and suspicious constructs)

* Successful build of client and measurement function
* Unit tests (external connections, endpoint provisioning logic, utilities)

* Integration tests (3 for AWS - zip packaging, image packaging, and inline data
transfers; 1 for vHive - inline data transfers)

Apart from the checks mentioned above, we are interested in validating the data ob-
tained in our experiments. “Performance measurements often go wrong, reporting
surface-level results that are more marketing than science” [34]. To avoid this, we take
four steps toward higher-quality performance measurements [34]:

Chapter 4. Methodology 24

1. We allow enough time. Since we measure non-trivial systems, we started
(November 2020) at least five months before the submission deadline.

2. We measure one level deeper. When quantifying the data transfer speeds in
Section 5.5, we break down the latency by using internal function timestamps
alongside the overall round-trip time. We then determine how much time is
spent in the network and how much time is spent in the actual transfer and check
whether they seem consistent with each other [34].

3. We consider more detail. Instead of just looking at average values, we graph
the entire distributions and analyze the shapes and tail latencies to examine if
they provide valuable additional information.

4. We minimize statistical variability. To avoid unexpected response times, e.g.,
caused by network congestion, we place the client and server in close proximity.
When benchmarking the AWS servers in northern California, we deploy our tool
to the closest CloudLab [18] node in Utah. When benchmarking vHive in our
data transfer experiments, we deploy it alongside our tool to the same physical
node. The CloudLab machine has a 10-core x86_64 CPU at 2.4GHz and 64GB
DDR4 memory in both scenarios. However, as often happens in serverless, AWS
Lambda provides no hardware specifications.

In addition to minimizing variability, we take a prudent overall approach when inter-
preting results to avoid outliers and exceptional deviations. We gather at least 3000
samples for most experiments and make two assumptions [27]: (1) system environ-
ment remains identical and stable during the entire experiment and (2) the latency
samples are independent and identically distributed.

One challenge we faced in this area was contention at the NIC on the client-side,
which deformed the latency distributions and rendered our results untrustworthy at
best. To fix this, we changed the program logic to sent bursts in sequence rather than
concurrently. As a result, NIC contention was reduced, benchmarking speeds remained
quick for long IATs, and the distributions were corrected.

Finally, we avoid issuing sleep-related commands to prevent the de-scheduling of mea-
surement functions on the server-side when simulating work. If sleep-related com-
mands were employed, the system could free resources and perform better than in
applications with realistic workloads, to the point where the service time parameter is
completely ignored. As this is unacceptable, we check for the absence of compiler
loop optimizations. Go’s scheduler is not preemptive in this scenario [8], which means
that busy-spinning will keep the processor busy when simulating work.

Chapter 5

Experimental Analysis

”A good performance evaluation provides a deep understanding of a system’s behavior,
quantifying not only the overall behavior but also its internal mechanisms and policies.
It explains why a system behaves the way it does, what limits that behavior, and what
problems must be addressed to improve the system.” [34]

From a research perspective, our experiments are concerned with three distinct server-
less architecture challenges (introduced in Section 2.2): startup time minimization,
scalability, and function composition. We investigate four corresponding research di-
rections that cause undesirably high tail latencies by slowing down the serverless com-
puting auto-scaling process: bursty server behavior, function image fetch delay, active
requests queuing, and inter-function transfer speeds. In turn, those dimensions are
mainly affected by the function image size (source code size on disk), the incoming
burst size (number of simultaneously serviced requests), and the transfer payload size
(size of the message transmitted between two function instances).

We propose an initial auxiliary experiment that analyzes CPU slowdown under various
memory and service time configurations to calibrate expectations regarding service
time differences between the client-side and the server-side.

5.1 CPU Slowdown

In the serverless computing paradigm, the user only specifies the amount of function
memory, and the cloud provider later allocates CPU resources proportionally to that.
For example, AWS allocates almost four times as much computing time for functions
when transitioning from 128MB to 480MB of RAM (Figure 5.1).

The allocated memory also determines the number of cores assigned to a function. For
applications that can leverage a higher degree of parallelism, this translates to signif-
icant performance gains. Nevertheless, a 10GB function is not always 5 times faster
than, e.g., a 2GB function (Figure 5.1). Not only is it improbable that the physical
machine processing the request has enough CPUs available for use, but most of the
commercially written code is not designed to use such a high degree of parallelism [7].

25

Chapter 5. Experimental Analysis 26

AWS CPU Slowdown

20000
—— Slowdown 15.52 (128MB)

17500 Slowdown 4.07 (480MB)
Slowdown 1.64 (1184MB)
Slowdown 1.10 (2304MB)
Slowdown 1.09 (10240MB)

15000 A

12500 A

10000 A

Latency (ms)

7500 A
5000 A

2500 A

—y————F——

0 200 400 600 800 1000 1200
Service Time (ms)

Figure 5.1: CPU slowdown in AWS Lambda for five different memory configurations

To define the CPU slowdown in AWS based on function memory, we vary the allo-
cated memory from 128MB to a maximum of 10GB. We then linearly increase service
time as measured on the CloudLab machine (/00ms, 500ms, 1000ms), establishing if
response latency is predictable and whether it shares a functional relationship with the
application service time for different memory configurations.

Figure 5.1 shows that lower memory functions are slowed down as much as 15 times
compared to when running natively on a full thread inside the client machine. The
functional relation between response latency and service time is linear regardless of al-
located memory, and an entire thread seems to be given to the instance only beyond the
2GB threshold. Our results are similar to those from other studies, e.g., FaasProfiler
reports up to 20x slowdown in Apache OpenWhisk (Figure 3.1) [36].

Let us now consider CPU utilization as the inverse of CPU slowdown: the less slow-
down a function experiences, the more CPU it must be using (in other words, the
bigger its processor time-share). Compared to an identical study from Peeking behind
the curtains of serverless platforms [40], we notice that CPU utilization has decreased
in AWS since 2018 for functions in the lower memory range: a full CPU thread is now
given at around 2GB instead of 1.5GB (Table 5.1).

Serverless systems that are less sensitive to allocated memory from a latency viewpoint
can be more attractive to customers: the code will run quicker for the same memory
and price ranges. Furthermore, should the developer ever need to allocate less memory

Memory 128MB 480MB 832MB 1184MB 1536MB 2304MB
CPU (2018) [40] 7% 28% 50% 71% 92% N/A
CPU (2021) 6% 24% 42% 60% T7% 92%

Table 5.1: Change in AWS Lambda CPU utilization rates from 2018 to 2021

Chapter 5. Experimental Analysis 27

to a function (e.g., after algorithm optimization), they would benefit the most from
contracting providers that offer the best slowdown-to-memory ratio.

5.2 Bursty Behavior

“Elastic, automatic scaling in response to changes in demand is the main advertised
benefit of the serverless model” [40].

To understand how bursty workloads affect scalability and thus application perfor-
mance, we devised experiments that place the serverless system under stress. We start
with an analysis of single requests (burst size /), after which we increase the request
burst sizes to 100, 300, and 500. We also explore whether idle resource reclamation
plays a role in shaping the latency distributions; in other words, whether cold or warm
function instances behave differently when exposed to the same traffic pattern.

All experiments in this sub-chapter were performed on AWS Lambda using measure-
ment functions of the same memory (2048MB) and programming language (Golang)
configuration.

5.2.1 Single Requests

We created 150 measurement functions and invoked each with a single request at a
time. All measurement functions returned immediately as the service time was set to
0 seconds. We paused for 10 minutes between invocations (cold starts) and repeated
the process. After 20 rounds of measurements for each function (3000 samples in
total), we concluded the experiment. We then repeated the entire procedure with an
inter-arrival time of 3 seconds to simulate warm starts.

Burst size 1

1 1

1.0 ! & — 8 ——— 809 —0————0
1 1
1 1
1 1
1 1
0.8 A ! !
1
1
Y] 1
i :
S 0.6 1
g i

()
- 47ms §
° i
S i
£ 0.4 i
‘6 1
e 1
74ms \ 1745ms

0.2 -
1 1
1 1

i i —e- Cold (IAT 600s)

0.0 1 - ' ! Warm (IAT 3s)
] 1

0 250 500 750 1000 1250 1500 1750
Latency (ms)

Figure 5.2: Average and tail latencies in warm and cold single requests

Chapter 5. Experimental Analysis 28

Although not surprising, the results we obtained (Figure 5.2) experimentally validate
some of the background knowledge presented in Section 2:

* AWS has two types of latencies for a minimal Golang measurement function:
warm (approx. 50ms) and cold (approx. 500ms).

* Cold function instances have a significantly longer tail (spanning 1050ms, from
745ms to 1795ms) than warm requests (spanning 86ms, from 74ms to 160ms).

* Cold function instances have a much larger standard deviation (75ms) than warm
requests (7ms).

As expected, responses are significantly faster when function instances are warm (up
to 10 times quicker). Furthermore, cold instance responses are more unpredictable:
they have a longer and sparser tail and a standard deviation that is more than ten times
larger. One potential explanation for this phenomenon could be system component
variability (Section 2.1.2): as more individual components are involved in a cold start
(function code has to be downloaded, containerized, booted, and primed), the entire
system behavior might inherit their compounded unpredictability.

5.2.2 Bursty Requests

We kept the conditions identical to the above experiments but only used a single mea-
surement function that we invoked with 500 concurrent requests at a time. After six
rounds of measurements and 3000 samples gathered for each of the two inter-arrival
times (cold - 10 minutes; warm - 3 seconds), we concluded our experiments.

Burst size 500

1
10 - : -P-O—— 00
1 1
1 1
1 1
1 1
0.8 1 i i
1 1
1 1
[1 |
i i i
S 0.6 1 T
o 1 1
o 1 1
- 82ms 33ms \
° 1
= 1
£ 0.4+ ! !
| ™4 1 1
o
a i i
1 1
1 1
0.2 1 1
1 1
1 1
i | '—e- Cold (IAT 600s)
0.0 - ' ' Warm (IAT 3s)
1 1
0 200 400 600 800 1000 1200 1400 1600

Latency (ms)

Figure 5.3: Average and tail latencies in warm and cold bursty requests

The results we obtained (Figure 5.3) offer some insights into how well the serverless
system behaves under stress conditions and whether idle resources reclamation plays a
role in shaping the tail latency:

Chapter 5. Experimental Analysis 29

» Compared to the previous experiments, warm instances are 43% slower on aver-
age (82ms vs. 47ms), and cold instances are 16% faster on average (433ms vs.
513ms).

* Warm instances exhibit a longer tail than before (62% longer), while cold in-
stances a shorter one (32% shorter). Both tails are more evenly distributed,
whereas before, they were denser towards the lower end.

e Both cold (159ms vs. 74ms) and warm (16ms vs. 7ms) instances have more than
doubled their standard deviation compared to the single-request experiments.

We conclude that bursty requests have an overall degrading effect on system perfor-
mance: unpredictability increases (standard deviations are significantly higher), and
tail latency is more evenly distributed (indicating an increased number of exception-
ally high latencies).

Nevertheless, we still notice a positive impact on the average and tail latencies of cold
function instances. One interpretation of this behavior could be related to the fact that
the system is now aware of the extensive amount of provisioning it has to do. As
the requests arrive within such a short time interval, the downloading and priming of
resources can be batched. This contrasts with the single-request case in which the
system had to perform those operations from the beginning for every single request.

Finally, we run two more experiments with intermediary burst sizes (/00 and 300 si-
multaneous requests) to discover any missed study opportunities and to confirm the
general trend (Figure 5.4). By measuring from four different angles, we provide a
deeper and more accurate understanding of the system under review [34].

AWS Bursty Behavior Analysis

Warm (IAT 3s) Cold (IAT 600s)
1.0 4 } : 1
1 1 /
1 1
1]
1]
081 LH
11
" 0 1 1
2 7 1
[[1 \
3 0.6 24 i
o o H
“— “— \
o o T 1
c < | f
2 0.4 2 T T
£ £ 1 1
L g 1 1
i i
]
0.2 } : —e- Burst Size 1
1 1 Burst Size 100
| H -~ Burst Size 300
0.0 1 [E —e~ Burst Size 500
0 50 100 150 200 250 0 200 400 600 800 1000 1200
Latency (ms) Latency (ms)

Figure 5.4: Latency distributions with averages across various burst sizes

As burst size increases, we notice how warm function instances become slower on av-
erage (distributions shift to the right), and their response times are more unpredictable
than before (increased standard deviation as observed in the flattening of the distribu-
tions).

Chapter 5. Experimental Analysis 30

Once again, we find that the opposite effect occurs for cold function instances: single
requests (burst size 1) are by far the slowest. As the burst size increases, distributions
are shifted to the left, towards lower latencies. However, beyond the threshold of at
least 100 requests per burst, performance starts to degrade again: there seems to be a
limit to the performance optimization gains obtainable through batching.

5.3 Image Fetch Delay

The cold start impact on FaaS performance is still a key obstacle of serverless adoption
today, especially for latency-sensitive workloads [37]. When a cold start occurs, the
function code must be downloaded, containerized, booted, and primed to be run. In
this sub-chapter, we explore whether the function source code size influences cold start
performance.

To experimentally deduce this, we deploy 615 distinct functions of the same memory
(2048MB) and language (Golang) configuration and equally split them across 5 differ-
ent image sizes: 9MB, 60MB, 120MB, 180MB, 230MB. We achieve this by automating
the deployment process: a new file is generated, filled with arbitrary bytes of the spec-
ified size, and bundled together with the binary in the deployment package for each
group of 123 functions (one group for each image size).

We also once again vary the request burst sizes (I, 100, 300, 500). In doing so, we
seek to find whether larger bursts impact the image fetch delay in any meaningful way.
We always invoke each function more than 10 minutes apart (IAT) to only collect cold
start latencies.

AWS Image Fetch Delay (Service Time 0ms)

99% percentile Median (50% percentile)
649

—8— Burst Size 1
| Burst Size 100
—8— Burst Size 300
P82 4 —e— Burst Size 500

3500 A
3000 A

2500 A

B6s

2005

Latency (ms)
N
o
o
o
‘Latenc‘y (ms)‘

1500 4

1000 4

500 A 1 SFQ

0 50 100 150 200 0 50 100 150 200
Image Size (MB) Image Size (MB)

Figure 5.5: Tail and median latency across various burst and image sizes

Some of the results we obtained (Figure 5.5) are not surprising given the insights from
Section 5.2. Others, however, experimentally validate our intuitive thoughts (Section
2.1.2) on the relation between cold starts and function image size:

Chapter 5. Experimental Analysis 31

* Asimage size increases, cold starts become slower (image pull delay). For single
requests, as we vary the image size from 9MB to 230MB, tail latency (99th
percentile) suffers the most with an increase of almost 380% (from 761ms to
3649ms) compared to 305% (from 498ms to 2005ms) for the median latency.

 For single requests, median latencies linearly increase by approx. 400ms for
every extra 60MB in image size. We can then approximate the image fetch
bandwidth to around 150 MB/s for functions with 2048MB allocated memory.

e Larger bursts (100, 300, 500 requests) maintain the median latencies constant at
around 400ms regardless of the function image size. They are also constantly
faster than single requests, regardless of percentile (50th or 99th). Those two
observations reinforce the takeaways from Section 5.2.

We conclude that image size is a key source of tail latency. This is in accordance
with the results of ServerlessBench: “Functions with larger code sizes suffer from
longer startup latency due to larger data transmission and package import overhead.
Serverless application developers should optimize the function codes to import the
minimal needed packages and pack only necessary dependencies.” [42]

Finally, we look at the same experiments in more detail. Instead of just plotting the
two percentiles (50th and 99th), we graph the entire distributions for burst sizes /
and /00 and analyze the obtained shapes and tail latencies. We seek to find whether
they provide any valuable additional information and gain a deeper and more accurate
understanding of the system under review [34].

Figure 5.6 shows the CDFs for single requests (burst size /) and for bursty requests
(burst size 100) corresponding to the same data as in Figure 5.5. In both scenarios, we
notice a predictable pattern in the latency distributions as the image size increases.

AWS Image Fetch Tail Latencies (Service Time Oms)

Burst Size 1

Burst Size 100

1.01

0.8

15

,_.
~

< 3

P Y

=

ms
2169ms

0.6 '

B649ms

Fraction
Fraction

0.4

—e- Image Size 9MB
Image Size 60MB
—e=- Image Size 120MB
—e- Image Size 180MB
—e=- Image Size 230MB

0.2

0.0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i

1 1 —1

0

0 500 1000 1500 2000 2500 3000 350 0 500 1000 1500 2000 2500 3000 3500
Latency (ms) Latency (ms)

Figure 5.6: Latency distributions with tail across various burst and image sizes

For single requests, larger image sizes lead to a rise in response time unpredictability
(higher standard deviations and flatter distributions) and to increasingly higher tail la-
tencies (from 761ms to 3469ms). Larger bursts, however, exhibit different behavior.

Chapter 5. Experimental Analysis 32

Tail latency still increases monotonically with image size, but the first half of the distri-
butions remains unchanged. This agrees with the data presented in Figure 5.5: median
latencies are unaltered regardless of the function image size.

This analysis seems to reveal why single requests are regularly slower than bursty re-
quests in the context of cold starts. As hypothesized in section 5.2, the downloading
and priming of resources is batched: more than half of the requests benefit from re-
sources freshly-fetched for the remaining requests.

In contrast, in the single-request scenario, the system cannot batch and re-use resources
and must repeat the same operations from the beginning for each new request. This
can also be observed in the bursty scenario by looking at the second half of the distri-
butions: the same flattening effect occurs as when the burst size is 1 (Figure 5.6).

5.4 Request Queuing

The design of the supporting components (e.g., load balancer, message queue) in
serverless platforms can influence the overall scalability performance of the entire in-
frastructure [42].

For example, 500 concurrent requests might be processed faster and with fewer re-
sources by spinning up 250 instances and delivering two requests to each, rather than
cold-starting 500 instances. This can happen when the system is aware of the typi-
cal instance runtime (e.g., 50ms) and when this runtime is lower than a cold start (e.g.,
450ms). Nevertheless, request queuing can add a layer of complexity to the system that
might not be worth considering given the usual workload diversity and the long-term
technical maintenance costs associated with these commercial platforms.

AWS Request Queueing Study

Median Latency (Service Time 0s) Median Latency (Service Time 1s)
1600 | odsti—gl358 o3850 oimp o130

1400 A

1200 -

1000 A

Latency (ms)
Latency (ms)

800 ~

600
—@— Burst Size 100

4
4001 m—ﬁ—. Fg | Burst Size 300

—8— Burst Size 500

0 50 100 150 200 0 50 100 150 200
Image Size (MB) Image Size (MB)

Figure 5.7: Median latency across two different function service times

In this study, we seek to find whether AWS queues incoming requests for efficiency
purposes and, if so, to discover the number of requests that triggers this scenario. For
this purpose, we run the same experiments as in Section 5.3 but with a service time

Chapter 5. Experimental Analysis 33

of 1 second. The reason behind this is to test whether any extra delays are incurred as
the much-slower instances (1 second service time), when part of a larger burst (100+
requests), wait for each other to terminate.

We plot the median latencies for both service times in Figure 5.7 (each of the 30 data
points is a median over 3000 samples). We then interpret the results:

* The latency shift remains unchanged at 1.1 seconds (from an average of 400ms
to an average of 1500ms), regardless of the request burst size or the function
image size.

Let us recall from the CPU studies in Section 5.1 that slowdown is approximately 1.1
for a function with around 2048MB allocated memory (Figure 5.1). If the system
employed an assertive queuing policy for bursts of less than 500 concurrent requests,
we would notice considerably higher latencies (because the service time is 1 second).

We conclude that AWS allocates resources aggressively to avoid queuing and that cold
invocations do not share function instances. However, this observation can be inaccu-
rate in the following scenarios:

1. Request forwarding is optimized to record the typical service times for instances
and consider them in its decision-making process. In this case, a cold start is
faster than waiting, and we would not detect queuing even if it was present.

2. Only a small percentage of requests are queued, in which case the median latency
does not capture the phenomenon.

5.5 Inter-function Transfer Speeds

Serverless computations have to be efficiently chained together to accommodate for
more complex business logic. This communication chain takes the form of inter-
function data transfers (inline or via storage) and has to be efficient to prevent bot-
tlenecks. Despite this, data transmission in real-world serverless systems uses storage,
which is radically slower and more expensive than point-to-point networking [24].

To understand how inter-function transfer size variability affects communication per-
formance in AWS and vHive, we devised experiments that vary the transmission pay-
loads between 1KB and 4MB in inline transfers and between 60MB and 1GB in storage
transfers.

For validation purposes, we measure one level deeper by breaking down the latency
using internal function timestamps alongside the overall round-trip time (as specified
in Section 4.2). We then determine how much time is spent in the network and how
much time is spent in the actual transfer and check whether they seem consistent with
each other [34].

5.5.1 Inline Transfers

We created 35 measurement functions in AWS with 128MB memory and equally
split them across 7 different transfer payload groups of 5 functions each (/KB, 10KB,

Chapter 5. Experimental Analysis 34

100KB, IMB, 2MB, 3MB, 4MB). We then invoked each function with a single request
at a time and a minimal IAT to keep the instances warm. All measurement functions
returned immediately after the transfer as the service time was set to 0 seconds. After
600 rounds of measurements for each function (3000 samples per group), we repeated
the process with allocated memories of 1.5GB and 10GB.

AWS Inline Transfer Latency

99% percentile Median (50% percentile)
17

1.5GB memory
-®- 10.0GB memory
= Round Trip Time g84
800 4 — Internal Timestamp 6

-®- 0.125GB memory ,‘L
]
1000 A
1

600 -

Latency (ms)
ILatencyl(ms))

400 1

1 10 100 1024 4096 1 10 100 1024 4096
Transfer Size (KB) Transfer Size (KB)

Figure 5.8: Inline transfer latencies in AWS Lambda across seven payload sizes

AWS Inline Transfer Bandwidth

-®- 0.125GB memory
1.5GB memory
-®- 10.0GB memory
=+ Round Trip Time
4 == Internal Timestamp

w
o
L
=W

N
&

N
o
L

Network Bandwidth (MB/s)

-
-

100 1024 4096
Transfer Size (KB)

Figure 5.9: Inline transfer bandwidth in AWS Lambda across five payload sizes

The results we obtained (Figure 5.8) offer some insights into the limitations of low-
memory serverless functions and their behavior as the payload size increases:

* Low-memory (128MB) function latencies are identical to those of higher-memory
functions for smaller payloads. However, beyond the 1MB threshold, the gap
widens considerably: tail latency is 302% higher in low-memory functions for
IMB transfers and 502% higher for 4MB transfers. Similarly, median latency is
333% higher for IMB transfers and 561% higher for 4MB transfers.

Chapter 5. Experimental Analysis 35

* There seem to be no dissimilarities in communication performance between
1.5GB functions and 10GB functions: they share almost the same tail and me-
dian latencies regardless of transfer payload size.

We conclude that AWS limits the transfer bandwidth based on the amount of allocated
function memory. Indeed, after plotting the bandwidth for payload sizes of over 100KB
(Figure 5.9) based on the median latencies in Figure 5.8, we notice how the 128MB
instances are limited to around 4MB/s, while 1.5GB+ instances are seemingly less
restricted and reach transfer speeds up to eight times faster (30+MB/s) depending on
the payload size.

vHive Inline Transfer Latency

99% percentile Median (50% percentile)

===+ Round Trip Time ,52
50 4 "
—— Internal Timestamp

40 A

30 A

Latency (ms)
Latencly (ms)

20 A

101

1 10 100 1024 4096 1 10 100 1024 4096
Transfer Size (KB) Transfer Size (KB)

Figure 5.10: Inline transfer latencies in vHive across seven payload sizes

vHive Inline Transfer Bandwidth

1201 + Round Trip Time

- |nternal Timestamp

100 A

80 A

60 -

401

Network Bandwidth (MB/s)

201

100 1024 4096
Transfer Size (KB)

Figure 5.11: Inline transfer bandwidth in vHive across five payload sizes

We then performed the same experiments in vHive (Figures 5.10, 5.11), where the
allocated memory for function instances was set to 256MB. We reveal some surprising
insights when comparing the two platforms:

Chapter 5. Experimental Analysis 36

* The transfer bandwidth in vHive is consistently above that of AWS, even for
function instances with maximal memory: speeds are 66% higher for 100KB
transfers, 152% higher for 1MB transfers, and 257% higher for 4MB transfers.

One of the reasons behind vHive’s superior function communication performance might
be explained by the fact that both the benchmarking framework and the platform itself
were deployed on the same CloudLab node [18], eliminating the infrastructure constant
in Equation 4.1.

We next look at inter-function transfers with significantly larger payloads that exceed
the maximum inline transfer limit and can only be executed through storage systems.

5.5.2 Storage Transfers

We created 89 measurement functions in AWS with 10GB memory and split them
across 7 different transfer payload groups (60MB, 125MB, 250MB, 375MB, 500MB,
750MB, 1GB). We then invoked each function with a single request at a time and a
minimal IAT to keep the instances warm. All measurement functions returned imme-
diately after the transfer as the service time was set to O seconds. After 1000 samples
gathered per group, we concluded the experiments.

The results we obtained (Figures 5.12, 5.13) offer some insights into the rate-limiting
behavior of serverless platforms:

* The median transfer bandwidth is non-monotonic. It steadily increases as the
payloads grow and peaks at 137MB/s for payloads of 250MB. Following that,
for larger payload sizes of up to 1GB, bandwidth sharply drops by 41%.

AWS Storage Transfer Latency

99% percentile Median (50% percentile)

-®- 10.0GB memory ,"8
17.5 4 ===+ Round Trip Time 7
—— Internal Timestamp /
15.0 4
12.5 1
10.0

7.5

Latency (seconds)
Latency (seconds)

5.0

2.5 1

0.0 -

62 125 250 375 500 750 1024 62 125 250 375 500 750 1024
Transfer Size (MB) Transfer Size (MB)

Figure 5.12: S3 transfer latencies in AWS Lambda across seven payload sizes

In its architecture, AWS Lambda uses Firecracker [3], a virtualization technology that
leverages KVM to launch lightweight micro-virtual machines (microVMs) in non-
virtualized environments in a fraction of a second. Firecracker implements bandwidth
throttling, the effects of which we observe in Figure 5.13. Based on its open-source

Chapter 5. Experimental Analysis

37

AWS Storage Transfer Bandwidth

100 A

90 A

80 A

Network Bandwidth (MB/s)

701

60

-®- 10.0GB memory

= Round Trip Time
= Internal Timestamp

62 125

250

375 500

Transfer Size (MB)

Figure 5.13: S3 transfer bandwidth in AWS Lambda across seven payload sizes

code [22], we find that the implementation involves replenishable buckets with support

for bytes/second mode of operation.

Furthermore, there are two I/O budgets: “Initial-burst” and ”Steady”. The former is
an initial extra credit that does not replenish and can be used for an opening burst of
data. When transfer sizes surpass the 250MB threshold, the two budgets are quickly
consumed, and performance suffers as the ”Steady” bucket has to recharge constantly.

vHive Storage Transfer Latency

99% percentile

Median (50% percentile)

= Round Trip Time 3

124 — Internal Timestamp

10 1

Latency (seconds)

) Latencly (secolnds)

250 375 500 750 1024

Transfer Size (MB)

62 125

250 375 500 750 1024

Transfer Size (MB)

62 125

Figure 5.14: Minio [32] transfer latencies in vHive across seven payload sizes

We then performed the same experiments in vHive (Figures 5.14, 5.15), where the
allocated memory for function instances was set to 6192MB. Once again, we reveal
surprising insights when comparing the two platforms:

* The transfer bandwidth in vHive is above that of AWS Lambda for larger pay-
load sizes: speeds are 6% higher for 375MB transfers, 35% higher for 5S00MB
transfers, and 41% higher for 1GB transfers.

Chapter 5. Experimental Analysis 38

vHive Storage Transfer Bandwidth

= Round Trip Time

1601 — Internal Timestamp

=
'S
o

Network Bandwidth (MB/s)
= =
o N
o o

80

62 125 250 375 500 750 1024
Transfer Size (MB)

Figure 5.15: Minio [32] transfer bandwidth in vHive across seven payload sizes

* However, AWS Lambda exhibits superior communication performance for smaller
payloads: bandwidth is 25% higher for 60MB transfers and 32% higher for
125MB transfers.

In its architecture, vHive also uses Firecracker [3] to take advantage of the same secu-
rity and workload isolation [9] benefits featured in AWS Lambda. This could explain
why we observe similar bandwidth throttling effects as in Figure 5.13, except now, this
occurs after the S00MB threshold rather than the 250MB threshold.

5.6 Discussion

Results so far suggest that the function image size, the transfer payload size, and the
request burst size can all significantly influence tail, average and median latencies in
serverless systems and, consequently, their overall performance.

We find that server response times for cold function instances are, on average, ten
times slower and more unpredictable than for warm function instances. When requests
arrive in bursts of over 100, we show that while warm instances incur a penalty, AWS
optimizes cold instances by fetching resources in batches. We achieve this by incor-
porating tail latency into our studies, a metric that is often overlooked in the literature.
Our analysis further reveals that AWS allocates resources aggressively to avoid queue-
ing and that invocations do not share function instances even when receiving up to 500
concurrent requests. We also discover that inter-function transfer latencies are much
higher in AWS than in vHive and that AWS caps network bandwidth for low-memory
configurations and throttles it for larger payloads regardless of allocated memory.

Based on these insights, we stress the importance of regular platform performance
monitoring for improved customer satisfaction. Finally, to boost the economic effi-
ciency from a user’s perspective, we suggest that serverless applications are designed
with a trade-off in mind between the function image size and the transfer chain length.

Chapter 6

Conclusion

Serverless computing has seen rapid adoption because of its instant scalability, flex-
ible billing model, and economies of scale. In serverless, developers structure their
applications as a collection of functions, sporadically invoked by various events like
clicks. The high variability in function image sizes, invocation inter-arrival times,
and request burst sizes motivates vendors to scrutinize their infrastructure to ensure a
seamless user experience across all of their services. To monitor serverless platform
performance, identify pitfalls, and compare different providers, the public attention has
turned to benchmarking, whereby measurement functions are deployed to the cloud to
gather insights regarding response latencies, transfer speeds, and vendor policies.

Many extensive attempts have already been made to characterize serverless systems
(Section 3). However, experiments conducted were generally either not broad enough,
not configurable enough, no longer maintained, or had a different focus: statistical
soundness [27], user billing and expenses [23, 14]. Moreover, tail latency plays a
critical role in online services’ responsiveness yet is missing from many benchmarking
endeavors in the literature (Table 3.1). For this reason, we systematically scrutinize tail
latency in our studies, incorporating it into almost every analysis performed.

6.1 Achievements

This work introduces our open-source framework for serverless performance evalua-
tion, intending to enable researchers and developers to benchmark multiple cloud plat-
forms. Using this framework, we conduct one of the biggest serverless measurements
to date, launching over 320,000 function instances to characterize system performance
in AWS Lambda and vHive - the Edinburgh Architecture and Systems (EASE) virtual
machine orchestrator system.

Throughout our research, we investigated four dimensions that affect serverless system
performance and which have been understudied or entirely overlooked in the commu-
nity: image fetch delay, bursty behavior, request queuing, and inter-function transfer
speeds. The last experiments (Section 5.5) were carried out across both serverless
platforms, leading to the qualitative and quantitative comparison between them.

39

Chapter 6. Conclusion 40

Our research reveals that server response times for cold function instances are, on
average, ten times slower and more unpredictable than for warm function instances.
When requests arrive in bursts of over 100, we show that while warm instances incur
a penalty, AWS optimizes cold instances by fetching resources in batches. We achieve
this by incorporating tail latency into our studies, a metric that is often overlooked in
the literature. Our analysis further reveals that AWS allocates resources aggressively
to avoid queueing and that invocations do not share function instances even when re-
ceiving up to 500 concurrent requests. We also discover that inter-function transfer
latencies are much higher in AWS than in vHive and that AWS caps network band-
width for low-memory configurations and throttles it for larger payloads regardless of
allocated memory.

We conclude that regularly monitoring serverless platforms’ performance is key to
maintaining an exceptional client experience while keeping serverless computing up
to standards in terms of speed and resiliency. To boost performance and economic ef-
ficiency from a user’s perspective, we suggest that serverless applications are designed
with a trade-off in mind between the function image size and the transfer chain length.

6.2 Future Work

We envision extending our framework along the following directions:

* Supporting more serverless providers, such as Microsoft Azure Functions and
Google Cloud Functions, would allow for more comparisons to be constructed
along the four existing research dimensions at minimal extra operational cost.

* Including more measurement function runtimes would provide more relevant
insights for users and vendors alike. For instance, JavaScript and Python are the
most used programming languages for cloud functions, each used by 32% of the
cases as found in a SPEC RG survey [19].

* Incorporating realistic workloads (e.g., HTML rendering, machine learning in-
ference, video processing) would enable developers to gain a more holistic un-
derstanding of their specialized application’s behavior in the cloud.

* Extending the continuous integration pipeline with additional tests would in-
crease the robustness of the framework. For instance, vHive inline transfers are
already automated, but the vHive storage transfer tests require additional config-
uration on the GitHub runner when setting up Minio [32].

* Performing additional experiments on vHive would foster a deeper understand-
ing of the open-source platform, leading to an increased awareness in the server-
less community. For example, similar to the AWS Lambda studies, its bursty
behavior or image fetch delays could be assessed and quantified.

Bibliography

[1] Why use serverless computing? Accessed 21 February 2020.
[2] giltene/wrk2, March 2012.

[3] firecracker-microvm/firecracker, October 2018.

[4] Build and run applications without thinking about servers, 2019.
[

5] Gojko Adzic and Robert Chatley. Serverless computing: Economic and archi-
tectural impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, page 884—-889, New York, NY, USA,
2017. Association for Computing Machinery.

[6] Sachin Agarwal. Public cloud object-store performance is very unequal across
aws s3, google cloud storage, and azure blob storage, June 2018.

[7] Mustafa Akin. How does proportional cpu allocation work with aws lambda?,
January 2018.

[8] Go Authors. Source file src/runtime/preempt.go, 2019.
[9] Jeff Barr. Blogs, November 2018.

[10] L.A. Barroso, U. Holzle, and P. Ranganathan. The Datacenter as a Computer:
Designing Warehouse-Scale Machines, Third Edition. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2018.

[11] Eric A. Brewer. Kubernetes and the path to cloud native. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, page 167, New York,
NY, USA, 2015. Association for Computing Machinery.

[12] Stuart Card, George Robertson, and Jock Mackinlay. The information visualizer,
an information workspace. pages 181-186, 01 1991.

[13] Sanjay Chaudhary, Gaurav Somani, and Rajkumar Buyya. Research advances in
cloud computing. Springer, 2017.

[14] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. Sebs: A serverless benchmark suite for function-as-a-service
computing, 2020.

[15] Yan Cui. How does language, memory and package size affect cold starts of aws
lambda?, June 2017.

41

Bibliography 42

[16] Yan Cui. How long does aws lambda keep your idle functions around before a
cold start?, June 2017.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM,
56(2):74-80, February 2013.

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 1-14, July 2019.

[19] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru losup. A review of
serverless use cases and their characteristics, 2021.

[20] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. Serverless
applications: Why, when, and how? IEEE Software, 38(1):32-39, January 2021.

[21] Sylvia Engdahl. Blogs, December 2020.
[22] Firecracker-Microvm. firecracker-microvm/firecracker, 2018.

[23] Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert, Max
Zhao, and David Bermbach. Befaas: An application-centric benchmarking
framework for faas platforms, 2021.

[24] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back, 2018.

[25] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and
David A. Patterson. Cloud programming simplified: A berkeley view on server-
less computing. Technical Report UCB/EECS-2019-3, EECS Department, Uni-
versity of California, Berkeley, February 2019.

[26] Jeongchul Kim and Kyungyong Lee. Functionbench: A suite of workloads for
serverless cloud function service. pages 502-504, 07 2019.

[27] Marios Kogias, Stephen Mallon, and Edouard Bugnion. Lancet: A self-correcting
latency measuring tool. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 881-896, Renton, WA, July 2019. USENIX Association.

[28] Philipp Leitner, Erik Wittern, Josef Spillner, and Waldemar Hummer. A mixed-
method empirical study of function-as-a-service software development in indus-
trial practice. Journal of Systems and Software, 149:340-359, 2019.

[29] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. Faasdom.

Bibliography 43

Proceedings of the 14th ACM International Conference on Distributed and Event-
based Systems, July 2020.

[30] Nathan Malishev. Aws lambda cold start language comparisons, 2019 edition,
September 2019.

[31] Shah Meena. What is Serverless Computing? View Labs, January 2020.
[32] MinlO. High performance, kubernetes native object storage.

[33] Chris Munns. Aws re:invent 2017: Getting started with serverless architectures
(cmp211), November 2017.

[34] John Ousterhout. Always measure one level deeper. Commun. ACM,
61(7):74-83, June 2018.

[35] Danilo Poccia. New for aws lambda — container image support, December 2020.

[36] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architectural im-
plications of function-as-a-service computing. 10 2019.

[37] Erwin van Eyk, Alexandru Iosup, Johannes Grohmann, Simon Eismann, André
Bauer, Laurens Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, and
Cristina L. Abad. The spec-rg reference architecture for faas: From microservices
and containers to serverless platforms. 23(6):7—-18, November 2019.

[38] Henry He Virtual Instruments. Storage: How ’tail latency’ impacts customer-
facing applications, August 2019.

[39] Timothy A. Wagner. Debunking serverless myths. page 30, 07 2018.

[40] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. Peeking behind the curtains of serverless platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 133—-146, Boston, MA,
July 2018. USENIX Association.

[41] Frederik Willaert. Aws lambda container lifetime and config refresh, April 2016.

[42] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqgian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. Characterizing serverless platforms
with serverlessbench. In Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC ’20, page 30—44, New York, NY, USA, 2020. Association for
Computing Machinery.

Appendix A

Tool Configuration

A

2 "Sequential": false,

3 "Provider": "aws",

4 "SubExperiments": |

5 {

6 "Title": "transfer",

7 "Bursts": 3000,

8 "BurstSizes": [1],

9 "PayloadLengthBytes": 0,

10 "IATSeconds": 600,

11 "IATType": "stochastic",

12 "PackageType": "Zip",

13 "Visualization": "all",

14 "DesiredServiceTimes": ["Oms"],
15 "Parallelism": 5,

16 "FunctionMemoryMB": 128,

17 "FunctionImageSizeMB": 50.8,
18 "DataTransferChainLength": 2,
19 "StorageTransfer": true

20 I

21 {

22 "Title": "burstiness",

23 "Bursts": 30,

24 "BurstSizes": [100],

25 "DesiredServiceTimes": ["Oms"]
26 }

27]

8 |

This JSON configuration example could be used as input for our benchmarking tool.

It specifies that the sub-experiments should run in parallel (Sequential is false) and
that the provider used is AWS. There are two sub-experiments included: the first one

44

Appendix A. Tool Configuration 45

specifies all possible configurable fields, while the second one uses all possible default
values. Both sub-experiments collect 3000 samples, but in different ways: the first
one sends one request at a time to 5 endpoints in parallel and gathers, using storage,
data transfer latencies from a chain of 2 functions. The second one uses only one
endpoint (by default), models warm starts (default IAT is Os), and, most probably, tests
burstiness (as the burst size is 100).

For a full explanation of each parameter used, the project wiki page is available at:

* hitps://github.com/ease-lab/vhive-bench/wiki/Customize-Experiments

