
Developing a New Web
Application for the Archive of

Formal Proofs

Carlin MacKenzie

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract
Formal proofs allow us to prove that a theorem is true over a domain. They can be built
from axioms or built on top of other theorems. Computers can mechanically verify
these proofs if they are written in a language such as Isar, which is the language of the
proof assistant Isabelle. As proofs can be built on top of other theorems, it is useful
to have a central repository which collects theorems that are free to use. Since 2004,
this service has been provided for Isabelle by the Archive of Formal Proofs (AFP). The
AFP is functional, however it is lacking in key areas such as navigation and search, as
it has not been significantly updated since its inception.

We first reimplement the site generation using Hugo, before evaluating the current AFP
with long term users. This helps us to understand what features matter to them and the
problems that they have. Using this information, the site is redesigned using paper pro-
totypes before being implemented with SCSS and Hugo templates. The functionality
of the site is also extended with the addition of reactive search, related items, author
pages and improved code navigation. Finally, the redesigned AFP is evaluated with
users to discover whether it meets their needs. We find that all participants agree that
the redesign is an improvement.

The result of this project is a website that is more useful to users, while being easy to
maintain, and a published formal evaluation of the current AFP.

i

Acknowledgements

I would like to thank Jacques Fleuriot and James Vaughan for their invaluable support
and guidance with this project.

I would also like to thank my friends for supporting me throughout my time at univer-
sity and my family for sowing the seeds that allowed me to be where I am today.

ii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Formalization of Mathematics . 3

2.1.1 QED Manifesto . 3
2.2 Formal Proof Assistants . 3

2.2.1 Mizar . 4
2.2.2 Isabelle . 4
2.2.3 Coq . 4
2.2.4 Lean . 5

2.3 The Archive of Formal Proofs . 5
2.3.1 Features . 5
2.3.2 Design . 6
2.3.3 Directory Structure . 7
2.3.4 Entry Information . 7

2.4 Previous Work Involving the AFP 7

3 Evaluation of the Current Archive 9
3.1 User Survey . 9

3.1.1 Pre-study . 9
3.1.2 Study . 9

3.2 Automated Audits . 11
3.2.1 W3C Validation . 12
3.2.2 Google Lighthouse . 12

3.3 Conclusion . 13

4 Design 14
4.1 Paper Prototypes . 14

4.1.1 Theme Colour . 14
4.1.2 Menu . 15
4.1.3 Home page . 15
4.1.4 Entry page . 16

4.2 Interactive Prototype . 17
4.3 Design Philosophy . 17

5 Implementation 18

iii

5.1 Site Generation . 18
5.1.1 Overview . 19
5.1.2 Python Scripts . 19
5.1.3 Directory Structure . 20
5.1.4 Entry Information . 21
5.1.5 URL Structure . 21

5.2 Search . 22
5.2.1 FlexSearch.js . 22
5.2.2 FindFacts Integration . 23
5.2.3 Autocomplete Suggestions 24
5.2.4 Search on Other Pages . 25

5.3 Navigation . 25
5.3.1 Taxonomies . 25
5.3.2 Related Entries . 26

5.4 Script Browsing . 26
5.4.1 SideKick . 27

5.5 Styling . 28
5.5.1 Validation . 28
5.5.2 Avoiding Tables for Layout 28
5.5.3 Redesign . 29
5.5.4 Fine-tuning Cohesion . 30

5.6 Hosting . 30
5.6.1 Autogeneration . 31

5.7 The AFP in Machine Readable Format 32
5.8 Conclusion . 32

6 Evaluation of the New Archive 33
6.1 User Evaluation . 33

6.1.1 Design . 33
6.1.2 Results . 34

6.2 Automated Audits . 35
6.3 Performance . 36
6.4 Maintenance . 36

6.4.1 Software . 37
6.4.2 Hugo . 37

6.5 Conclusion . 37

7 Conclusion 38
7.1 Suitability for Production . 38

7.1.1 Site Generation . 39
7.1.2 Continuous Integration . 39
7.1.3 Documentation . 39
7.1.4 Testing . 39

7.2 Future Work . 39

Bibliography 41

iv

A Screenshots of the Current AFP 44

B Evaluation of the Current Archive—Pre-study 48
B.1 Design . 48
B.2 Results . 49

C Evaluation of the Current Archive—Study Results 51

D Paper Prototypes 62

E Related Entry Graphs 66

F Screenshots of the Redesigned AFP 69

G Poster 73

H Script for the Second Evaluation 74

v

Chapter 1

Introduction

Isabelle [35] is an interactive proof assistant which allows users to write and prove
formal proofs. As proofs can build on top of other proofs, the value of a theorem prover
lies in the size of its library. Isabelle has a standard library1 as well as collecting user
submitted proofs in the Archive of Formal Proofs (AFP).

The entries of the AFP are reviewed similarly to a journal and there are annual releases
of the AFP (which correspond with new versions of Isabelle). To date over 375 authors
have contributed over 590 entries [10].

Motivation Unfortunately, the AFP has not been significantly updated since it first
appeared online in 2004. As such there are many areas such as search, navigation
and code browsing which we believed might require attention. Additionally, it has a
non-responsive table-based layout which is typical of early 2000s web design. Finally,
it uses a custom site generator which means that it is hard for outside contributors to
improve the site.

Objective The goal of this project was to redesign and improve the AFP, guided by
the priorities of the users. It should have feature parity with the current AFP, besides
from submission, which is outside the scope of this project, plus new features which
aid the users. The redesign should follow modern design conventions.

Contribution This project covers the following contributions:

• Evaluation: The current AFP was assessed with a structured survey by both pre-
study and study groups. The latter survey was formally written up and published
as a pre-print [22]. Additionally, the redesigned AFP was evaluated by a study
group to understand if it meets their needs.

• Site Generation: To provide a foundation for the redesign, the site generation
was recreated in Hugo by converting the site’s data and creating templates to
match the current website. On top of this, a continuous integration script was
created to update the site daily.

1https://isabelle.in.tum.de/library/

1

https://isabelle.in.tum.de/library/

Chapter 1. Introduction 2

• Redesign: The site was redesigned using paper prototypes, before being imple-
mented with Hugo templates and SCSS.

• Search: A new client-side search functionality was created which is responsive
and has autocomplete suggestions. The search was then integrated with an ex-
ternal service, FindFacts, which provides additional results from the code of the
AFP.

• Script Browsing: The script browsing experience was improved by allowing
users to view all scripts for an entry on one page. Navigation was further im-
proved with the addition of links to the lemmas.

• Machine Readable Format: The metadata of the entries was released so that it is
accessible for future researchers.

Organisation Chapter 2 introduces the background of the current AFP and it is eval-
uated in Chapter 3. Following this, the redesign of the AFP is described in Chapter 4.
Next, the implementation of the AFP is described in Chapter 5 and it is subsequently
evaluated in Chapter 6. Finally, Chapter 7 concludes this project by summarising the
results and providing an outline of future work.

Chapter 2

Background

This chapter contextualises my work by giving an overview of formal mathematics
and proof assistants. The corresponding archives for each proof assistant mentioned is
elaborated on. Finally the AFP is described, detailing its features and its site genera-
tion, as well as an overview of the existing literature.

2.1 Formalization of Mathematics

Humans have been reasoning about formal sciences, including mathematics, for thou-
sands of years [7]. This is the process of creating logical systems in which axioms
can be acted upon by rules. In this way, theorems can be guaranteed to be true based
upon the logic of the system, rather than relying on evidence from the world. As these
systems are based upon applying rules, it is possible for computers to validate these
theories by applying the same rules systematically.

2.1.1 QED Manifesto

The QED Manifesto [1] sketched out a project that aimed to formalise all of math-
ematics. This would mean that one could create new theorems which are rigorously
true, without having to understand the minutia of what they are building upon. The
resulting archive would be an open access and rigorously true set of all mathematical
lemmas and techniques. Unfortunately, the project only lasted for 3 years [36], but the
goals that it laid out live on in the AFP and other proof archives.

2.2 Formal Proof Assistants

Over the past 50 years, many formal proof assistants have been created in different
mathematical systems and styles [12]. This section provides an overview of four major
assistants that have large or rapidly growing proof libraries.

3

Chapter 2. Background 4

2.2.1 Mizar

The Mizar System [27] was one of the first proof assistants and was created in 1973.
Proofs are written in a single script file in the Mizar language which is based on set
theory. Proofs are mainly developed in MizarMode, an authoring environment for
Emacs.

Mizar proofs are collected in the Mizar Mathematical Library (MML)1 which was
the largest formal maths library, as of 2009. It currently features 1,357 articles by
263 authors. Submissions are reviewed by three experts in a double-blind process.
The MML is served as a downloadable archive and a quarterly journal, Formalized
Mathematics. Searching of the library is provided by MML Query2, but it is in beta and
currently seems to be broken. Each entry of the MML displays the author, summary,
and the script file.

2.2.2 Isabelle

Isabelle [34] is a theorem prover that was first released in 1986. It is written in Stan-
dard ML [26] and users write their proofs in the structured proof language Isar [35],
which is inspired by Mizar. Development of proofs is primarily executed through Is-
abelle/jEdit [33], and an extension is also available for VS Code. In comparison to
most proof assistants, Isabelle is generic and allows for many different object logics
such as Zermelo–Fraenkel (ZF) set theory or Higher Order Logic (HOL), the most
popular.

Entries are collected in the Archive of Formal Proofs3 and so far over 375 authors
have contributed 590 entries. Submission to the AFP is dependent on review from one
of the editors of the project. A thorough description of the Archive can be found in
Section 2.3

2.2.3 Coq

Coq is written in OCaml and was released in 1989. Users write proofs in the Gallina
language, which is based on the Calculus of Inductive Constructions [20], a type the-
ory. Creation of Coq proofs are performed through the CoqIDE which is a GTK based
editor.

Submission to the Coq Package Index4 (CPI) is performed through GitHub pull re-
quests and each package is reviewed by a developer of Coq before accepting. So far
308 people have contributed to 326 packages. The CPI has a responsive search in-
terface which can be filtered with categories and keywords. Each entry of Coq is an
independent GitHub repository owned by the “coq-community” organisation.

1http://mizar.org/library/
2http://mmlquery.mizar.org
3https://isa-afp.org
4https://coq.inria.fr/opam/www/

http://mizar.org/library/
http://mmlquery.mizar.org
https://isa-afp.org
https://coq.inria.fr/opam/www/

Chapter 2. Background 5

2.2.4 Lean

A new research project from Microsoft, Lean5 is a theorem prover that was created in
2013 and is based on the Calculus of Constructions [9], a predecessor to the calculus
used by Coq. It is written in C++ and the Lean language, which can be compiled to
JavaScript, is used to write proofs. Extensions to aid creating proofs are available for
Emacs and VS Code.

To date 157 people have contributed to the proof library, mathlib [24]. Contributing to
mathlib is also managed through GitHub pull requests and each proof must be approved
by a reviewer. Each entry is visible on the website as well as the GitHub repository
which holds the entire mathlib. Search is provided by a Google SiteSearch, with the
results rendered inline on the page.

2.3 The Archive of Formal Proofs

The Archive of Formal Proofs (AFP) is the online repository for Isabelle proofs. It
first appeared on the Internet in 2004, hosted as a static site on SourceForge at https:
//afp.sourceforge.net. Since then it has taken residence on its own domain at
https://www.isa-afp.org, however the visuals and functionality of the site have
not been significantly updated since.

Figure 2.1: Archive of Formal Proofs homepage

2.3.1 Features

The home page of the AFP, depicted in Figure 2.1, lists all the entries with their authors
in reverse chronological order. Each entry has its own page (as in Figure A.2) listing
the abstract, license, entries it depends on, etc. Additionally, there are links to PDFs

5https://leanprover.github.io

https://afp.sourceforge.net
https://afp.sourceforge.net
https://www.isa-afp.org
https://leanprover.github.io

Chapter 2. Background 6

of the lemmas and code, links to download the entry and its previous releases, as well
as a link to the HTML directory where the proof scripts can be browsed. These pages
display the scripts with syntax highlighting applied (Figure A.3). There are no links
on this page to other pages or back to its entry. No outline of the lemmas is available,
so navigation is performed by either manual scrolling or using the browser’s “Find”
feature.

Searching for entries, Figure A.4, is provided by a Google SiteSearch, which is a
Google search with “site:isa-afp.org” appended. This experience is functional but re-
lies on Google’s indexing of content which may be outdated or incomplete.

An index of topics is available which lists the entries in a hierarchy by topic. The topic
of each entry can have up to three levels, for example “Computer science/Algorithms/
Distributed”. Entries can be listed under multiple topics and so will appear multiple
times. Unfortunately, the topic of an entry is not listed on its page. This means that if
a user wanted to see other entries under the same topic as the one they are looking at,
they would need to remember its name and find it on the index page.

Submission to the Archive is simple. Information about the entry is documented in a
form, and the entry is attached as a .zip or .tar.gz archive. If review by an editor is suc-
cessful, the entry is added to the Archive. However, from the maintainer’s perspective,
the addition of an entry is a manual 11 step process.

2.3.2 Design

When the AFP was created, the only non-JavaScript way to create complex, structured
layouts was to use tables. These layouts feature intricate nested HTML to define the
structure of the page. For example, A very basic 2 row and 2 column table would have
the following mark up:

<table>
<tbody>

<tr>
<td>One</td>
<td>Two</td>

</tr>
<tr>
<td>Three</td>
<td>Four</td>

</tr>
</tbody>

</table>

Care must be taken when changing the layout of the table to ensure that the number
of columns are consistent across the rows. This means that it is not possible to make
these tables responsive to the available screen width. Fortunately, more responsive and
cleaner layouts are now achievable with CSS grid [32].

The structure of the site itself can also prevent users from engaging with the content
fully. It is not possible to see all the proofs by an author, other proofs in this topic
or the most frequently accessed proofs. Additionally, by directing users to search with

Chapter 2. Background 7

Google instead of a native solution, users cannot be sure that the results are complete—
if search results are missed duplicate work could be unnecessarily performed.

These issues are likely due to the prioritisation of development time going towards Is-
abelle, and so AFP development is kept to maintenance work. Additionally, as the site
is generated with custom Python scripts, it is difficult for people outside the develop-
ment team to contribute.

It is important that the features of the AFP are improved so that users can be more
productive and engage better with the contents of the Archive. Additionally, if the user
experience and interface were to be improved, it is hoped that engagement with the
Archive would increase, and so, encourage more proofs to be contributed.

2.3.3 Directory Structure

The Archive of Formal Proof follows the Unix directory structure and consists of the
following:

• admin Site generation scripts and continuous integration configs.

• doc Documentation for managing the AFP.

• etc Various data files.

• metadata Jinja templates and data files for entries, topics, and release dates.

• thys Directories containing the session for every entry of the AFP.

• tools Various tools for checking and building the AFP (non-site-generation).

• web The generated static AFP website.

Site generation is performed by admin/sitegen-lib/sitegen.py which is a hand-
written Python static site generator. It builds various Python objects for each page,
which is then rendered with Jinja6 templates.

2.3.4 Entry Information

The information about each entry can be found in metadata/metadata. This is an INI
file which has a simple format with only two elements, [sections] and key = value
pairs. Each entry of the AFP stores its information (apart from previous releases) in
this 10,500-line file, which is used to generate the site. Figure 2.2 shows an example
section of this file.

2.4 Previous Work Involving the AFP

This is the second undergraduate project from the University of Edinburgh which
aims to improve the AFP. Goodwin [13] outlined the development life cycle and
re-implementation of the Archive with modern frameworks. The project completely

6https://jinja.palletsprojects.com/

https://jinja.palletsprojects.com/

Chapter 2. Background 8

Figure 2.2: Example section of the metadata file

overhauled the functionality and created a single page application with a database, log
in and search. The final system is impressive and allows for entries to be submitted and
changed in the browser. This system was not used as the foundation for this project
as we did not want to use the client-server model they introduced because it would
increase the maintenance load of the AFP.

Elsewhere, Huch and Krauss [19] have tried to improve the search facilities of the
AFP (see Section 2.3.1). They recognised that searching for lemmas among all entries
was impractical and aimed to provide this functionality. Consequently, they created an
external website which allows users to query a search index of all code in the AFP.
Queries can have complex filters and additional facets which reduces the search space
of the query. As such, users can find specific lemmas of interest from the 2.9 million
lines of Isar code which comprises the AFP.

Blanchette et al. [4] analysed the metrics of the AFP in response to questions about
many areas such as entry reuse, composition of proofs and the impact of contributors.
They gave a thorough overview of the AFP through mining its data and answer the
aforementioned questions. For example, they discover 58% of the text of the AFP is
taken up by proofs, 19% by lemma statements and 8% by definitions.

Chapter 3

Evaluation of the Current Archive

The evaluation of the current AFP serves two purposes. First, it informs us of its users’
needs so that the redesign increases the sites utility. Second, it gives us a baseline to
evaluate any redesign against, so that we can tell if improvements were made. This
chapter covers both, the former in Section 3.1 and the latter in Section 3.2.

3.1 User Survey

There are many ways to elicit user feedback on an interface [16], however as we wanted
to create a design which is useful for most users, the aggregate experience was of
greater interest to us than the individual. Due to this, and the relatively large pool of
users that could be participants, questionnaires were chosen as the method of evalua-
tion.

3.1.1 Pre-study

The survey was designed and validated on a smaller group from the Artificial Intel-
ligence Modelling Lab in the School of Informatics. This group was chosen as the
members are familiar with Isabelle across a variety of use cases and workflows. A
full write up of this pre-study can be found in Appendix B. In summary, six people
responded to the survey and they were not satisfied with the current AFP. Their largest
problem was with searching for entries and theorems.

3.1.2 Study

This Isabelle Mailing List was chosen as its members were likely to be users of the
AFP, thereby increasing the likelihood of achieving a comprehensive evaluation of the
website. The survey was advertised on the mailing list as Survey on the AFP with an
estimated time of 10–20 minutes1. The time estimate was calculated based upon the
average completion time of the pre-study. No compensation was advertised, and the

1https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2020-November/msg00036.
html

9

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2020-November/msg00036.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2020-November/msg00036.html

Chapter 3. Evaluation of the Current Archive 10

main benefit of the study was to help guide my research in evaluating the AFP. The
survey was open from 10 to 30 November 2020.

This study was published as a pre-print on ArXiv [22].

3.1.2.1 Design

The first section in the survey was “Demographics” so that the rest of the survey could
be skipped if they were not eligible. The next two sections were “SUS” and “Pain
Point” as these questions help us understand the user’s general thoughts and the most
pressing issue that comes to mind. These were placed early in the survey so that
respondents were not prompted about any specific area before answering. However,
after reviewing the answers of the pre-study, several adjustments were made to address
limitations of the initial design and to account for the main audience. This meant
introducing the “Submission” questions which had to be asked immediately after the
“Demographics” questions, due to limitations in the distribution platform, Microsoft
Forms. Following this were several topics which had no constraint in ordering as they
were independent to each other. The “Ranking” question was placed at the end of the
survey as we wanted users to reflect on the areas which they had just considered. The
final iteration of the survey was organised as follows:

1. Demographics: 4 questions to filter users into different groups depending on
their experience with the AFP.

2. Submission: 2 questions to assess the submission process.

3. System Usability Scale (SUS): 9 SUS [5] questions to act as an indicator of the
usability of the AFP.

4. Biggest pain point: 1 long answer question asking users to identify their biggest
pain point.

5. Navigation: 4 questions related to the ease of finding pages and page visit fre-
quency.

6. Design: 2 questions on the user interface and user experience.

7. Browsing session scripts: 2 questions about the browsing experience and 1
short answer question about missing features.

8. Ranking priorities: 1 question asking users to rank several areas in order of
importance to guide development priorities.

3.1.2.2 Results

The survey was completed by 29 members of the mailing list who skewed towards
long term and active users of the AFP. They were satisfied with the AFP in general,
however they had specific criticisms about navigation, search, and theory browsing.
Most respondents were neutral or negative towards a redesign of the user interface and
user experience. Full results are available in Appendix C.

Chapter 3. Evaluation of the Current Archive 11

3.1.2.3 Analysis

It is likely that people who are subscribed to the Isabelle mailing list and willing to
answer the survey are active AFP users. This was reflected in the demographics and
the familiarity of the audience should be kept in mind when interpreting the results.

The survey was taken by 30 participants and 29 of them answered all the parts. From
Fleuriot et al. [11], there were around 600 contributing users on the mailing list in the
seven-year period of 2008 to 2015. We cannot tell whether the mailing list has grown
or shrunk in the years since, but the number of responses seems adequate for the order
of magnitude of the mailing list.

As the participants were mostly contributors to the AFP, their opinions are highly val-
ued. The SUS score of 72 implies that they are generally satisfied with the AFP, which
is a testament to the design decisions that have lasted almost 20 years. The pre-study
score was much lower, 46, which seems to imply that non-contributors of entries to
the AFP might be less satisfied. However a further study with a larger group would be
needed to confirm this.

Three respondents described difficulty in finding existing functionalities and seven re-
quested improvements to script search capabilities. Additionally, most participants
struggle to find specific content in the AFP. As it was the second highest priority for
users, the AFP would be more useful if the search capabilities were improved.

The most important thing for participants was navigation and the results of the survey
imply that it does not currently meet their needs. The sidebar is the main navigation
area and it is not ordered by frequency of use (Figure C.5), audience (contributor vs
non-contributor) or content (i.e., “Home” and “Index” are the only pages which list en-
tries and they are separate). Participants also report mis-clicking, which could suggest
link labelling is not clear or links are too small. It is also hard to find many differ-
ent types of content as shown in Figure C.4. Navigation is closely related to search,
however, and many of these issues could be solved in other ways.

Finally, navigation improvements to script browsing were requested frequently—over
half the respondents requested in-place links to entity definitions, i.e., to directly nav-
igate to specific content. Similarly having an outline of the theory file, as SideKick
provides in Isabelle/jEdit, was highly requested.

Whilst a significant minority of responses hold that a redesign is unnecessary, there
were many specific criticisms with the current design as well as a general sentiment
that several core features (specifically navigation, search, and theory browsing) could
be improved.

3.2 Automated Audits

Many structural website issues can be detected automatically by validators and auditors
[21]. They cannot detect all issues, nor large structural problems, however they are a
good bellwether for detecting if best practices are followed. For the following audits,

Chapter 3. Evaluation of the Current Archive 12

each will be tested on the home page and an entry page, as these are the most frequently
accessed pages. The entry used was Separata as MathJax is used in its abstract.

3.2.1 W3C Validation

The W3C Validator [31] is very basic and only checks whether the HTML syntax is
correct. It is maintained by the World Wide Web Consortium, which is responsible for
the HTML standard among many others.

3.2.1.1 HTML Results

The errors found by the validator can be seen in Table 3.2

Home Entry
3 4 Uses of obsolete font element
6 10 Obsolete attributes on the td element

20 3 Obsolete attributes on the table element
1 1 Use of obsolete align attribute on the div element
1 1 Use of obsolete border attribute on the img element
1 1 Lack of alt attribute on the img element
1 0 Extra unopened h1 tag

33 20 Total
Table 3.2: Issues with the AFP found by the W3C validator

The validator advised using CSS to fix all but the last two issues, which could instead
be solved by fixing the HTML.

3.2.1.2 CSS Results

All pages of the AFP use the same style sheet and the validator found 10 errors in it.
Of these:

• 2 value errors for the font property

• 8 for non-existent values on properties (vertical-alignment, text-

transformation, text-alignment, text-indentation)

All issues can be fixed by inferring the intent of the CSS and correcting it.

3.2.2 Google Lighthouse

Lighthouse [14] is a tool created by Google to help web developers assess their web
pages. It can be run from the Chrome developer tools, or the command line, and
generates a report for each URL that is provided. The report lists the result of five
categories of automated tests, giving an overall score for how the website performed.
In addition to this, it suggests several manual checks which should be performed to

Chapter 3. Evaluation of the Current Archive 13

cover aspects which cannot be automatically tested for. It should be noted that a perfect
lighthouse score does not indicate that the website is fully accessible.2 The Lighthouse
report for the AFP is as follows:

Home Entry
Desktop Mobile Desktop Mobile

Performance 80 73 80 78
Accessibility 70 70 87 87
Best Practices 93 93 87 87
SEO 70 58 70 58
Progressive Web App (PWA) – – – –

Table 3.4: Google Lighthouse metrics for the current AFP, out of 100

The high “Performance” score is coherent, as the page is very minimal with few exter-
nal libraries and no tracking or ads. The score is not 100 due to the large DOM size,
i.e., the page is very long and some nodes are deeply nested. The high “Best Practices”
score is surprising but, upon reviewing, we found that the checks are mainly for correct
HTML and for responsible JavaScript use, which the AFP conforms to.

The lower scores for Accessibility and SEO are less surprising due to many new guide-
lines being standardised for these in the years after the site’s creation.

The mobile scores are similar to the desktop scores despite there being no consideration
for mobile devices.

PWAs are websites which are designed to function like apps on mobile phones. There
is no score for this as the AFP cannot be installed, however this should not be seen as
a negative as this technology does not have wide adoption.

In all, the issues are relatively minor and are fixed as noted in Section 6.2, or not
relevant in the case of PWA.

3.3 Conclusion

From user and automated evaluation, we can see that there are flaws with the current
AFP. These issues range from relatively minor invalid CSS issues, to lacking adequate
search facilities which are crucial for user productivity and not duplicating work done
previously. In the next chapter, we redesign the AFP to match modern design conven-
tions before fixing these issues in the following implementation chapter.

2https://www.matuzo.at/blog/building-the-most-inaccessible-site-possible-
with-a-perfect-lighthouse-score/

https://www.matuzo.at/blog/building-the-most-inaccessible-site-possible-with-a-perfect-lighthouse-score/
https://www.matuzo.at/blog/building-the-most-inaccessible-site-possible-with-a-perfect-lighthouse-score/

Chapter 4

Design

As shown in Section 3.2 there are a number of structural flaws with the website, and
based upon our subjective evaluation of the interface as being outdated, we chose to
redesign the AFP. The survey results in Section 3.1.2.2 inform us that a complete re-
design would not be welcome by the users and therefore creating a new, but familiar,
interface would be more successful. Therefore we chose to create an interface which
is faithful to the current design while using modern design conventions.

4.1 Paper Prototypes

Paper prototyping was chosen to test designs as it allows for quick iterations and easy
modification. First, the original design was recreated in paper, and then the placement
and form of each component was considered in turn.

4.1.1 Theme Colour

(a) (b) (c)

Figure 4.1: Mock-ups showing the three options for theme colour placement

The AFP uses a dark navy blue as its main theme colour which is present as the back-
ground of the page title (Figure 2.1). While iterating, the placement and size of this
was considered.

At first, the banner was extended across to the left side of the page (Figure 4.1a),
however it would visually separate the logo from the sidebar. This would leave the
sidebar floating in space as it is currently. Hypothetically the sidebar could also have

14

Chapter 4. Design 15

the theme colour background (Figure 4.1b), however this would make the theme colour
overwhelming.

Thus the chosen placement for the theme colour was the background of the sidebar
(Figure 4.1c). This has several advantages as the dark colour ensures that your eyes
stay on the content of the page rather than the side bar. Also, it links the sidebar to the
logo ensuring that there is a strong connection between these items. One consideration
is that the logo will need to have white text instead, but this was easy to create.

4.1.2 Menu

The Archive of Formal Proofs has always featured side navigation. As users disagreed
with changing the user experience (Section 3.1.2.2), and to prevent users having to
relearn the interface, we chose to preserve it.

As the side bar is being kept, greater focus was placed on the order and placement of
the menu items. The current menu items and their attributes are shown in Table 4.1 and
it is clear that there is little logic in the order of these items, as none of the attributes are
grouped together. To resolve this, items relevant to contributors were separated from
the main group. Then the remaining items were grouped by their content, and then
arranged in descending order by their usage frequency, as people read menus from top
to bottom [6]. Finally, the search page was imagined as a direct input and separated
from the menu. The final menu groupings are shown in Table 4.2.

The labelling of the menu items was then considered. The “Index” page is the index
of the topics of the entries, and the label “Topics” was chosen to reflect this. “Submit-
ting” and “Updating Entries” are both items relating to “Contribution” so these were
combined into one page. This centralises the information and preserves the number of
clicks to reach either of these pages. Finally, “Using Entries” is descriptive, however
some long form survey feedback expressed that there is a lack of help and documenta-
tion. This was renamed to “Help” and the content of the page would now cover many
topics and link to external Isabelle resources.

Content Audience Use Frequency
Home List of entries Everyone Common
About Facts Everyone Rare
Submission Instructions Contributors Rare
Updating Entries Instructions Contributors Rare
Using Entries Instructions Everyone Sometimes
Search Tool Everyone Common
Statistics Facts Everyone Rare
Index List of entries Everyone Common
Download Links Everyone Sometimes

Table 4.1: Original menu

4.1.3 Home page

Most elements of the home page were preserved as it is functional. For example, the
lack of pagination allows for the use of the browsers “Find” functionality.

Chapter 4. Design 16

Content Audience Use Frequency
Home List of entries Everyone Common
Index List of entries Everyone Common
Download Links Everyone Sometimes
Using Entries Instructions Everyone Sometimes
Statistics Facts Everyone Rare
About Facts Everyone Rare

Search Tool Everyone Common

Submission Instructions Contributors Rare
Updating Entries Instructions Contributors Rare

Table 4.2: New menus

Most improvements to this page were in simplifying the elements and reducing the
visual clutter. For example, removing the table borders and the border around each
entry opens the design up, and makes it easier to scan. To ensure that entries were still
distinguishable without borders, white space was added. The date was simplified from
a 2001-02-03 format to a 03 Feb format so that the year is not duplicated for every
entry. Finally, the “Author: ” label was replaced with “by ” as this is more natural. The
result of this can be found in Figure 4.2

Figure 4.2: Final paper prototype of the home page

4.1.4 Entry page

In contrast with the home page, more changes needed to be made to the entry page.
The current interface is a very simple key-value table and all content has the same basic
styling. Emphasis is given to the page title, but it is duplicated in the table directly
beneath it. There are also associated links on this page however they are placed in a

Chapter 4. Design 17

table with a single column. The result is that a user cannot infer the content of the page
from the structure, and instead must read to find the information that is needed.

The first changes were unpacking the table information and placing it where users
would expect to find them. For example, the title is written in large bold text at the
top of the page with the authors just underneath. The abstract becomes the main body
text, and the license is written just below. The table of links is transformed into a bullet
point list, while cite and download are highlighted with large buttons, signalling they
are actions. The final design can be seen in Figure D.4.

4.2 Interactive Prototype

After the paper prototypes were satisfactory, we wanted to receive feedback on the
designs before implementation. Rather than sending a PDF and describing how to
use the interface, it was decided that an interactive prototype would be created which
would be easier to share and demonstrate.

Figma1 was used to create the prototype, as the main priority was speed of creation
and it was already familiar. The interactive prototype was evaluated internally with
my supervisors as the functionality of the new design was largely the same. A second
iteration was performed to fix the issues raised in their feedback.

4.3 Design Philosophy

In order to create a familiar but new interface, we must consider the qualities of the
current one which can be preserved—such as the tables. Table 4.4 shows how the
qualities of a table are persisted into the redesign.

Qualities of a table How they are preserved in the redesign

Horizontal lines

Horizontal lines underline
<h1> headings to emphasise them.
Em dashes “—” are used instead of
bullet points

Vertical lines
The sidebar creates a vertical line
which separates it from the content

Corners and intersections
Buttons and borders have sharp right
angle corners

Alignment of content
in rows and columns

All content is aligned on an underlying
grid

Table 4.4: Preserving the design philosophy of the current AFP in the redesign

1https://www.figma.com

https://www.figma.com

Chapter 5

Implementation

The redesigned AFP features a new site generator, user interface, search interface,
script browsing interface and new ways to navigate. This chapter describes how the
redesigned AFP was created in detail, justifying design decisions that were made.

5.1 Site Generation

As Goodwin [13] demonstrated, the client-server model can successfully distribute the
AFP. This architecture, however, would conflict with the goals of this project because
the introduction of a database and a web server would increase the maintenance load.
Consequently it was decided that the site generation for the redesign should continue
to be static.

Before the AFP could be redesigned, site generation must be understood so that changes
can be made. The publicly available codebase was briefly examined to see how exten-
sible and maintainable the current solution was. It was clear that the code, while well
structured, was not capable of competing with existing static site generators (SSGs).
Additionally, the AFP’s custom-based site generator is a likely source of overhead
when it comes to contributing to the project, as people would need to understand it
before they can contribute. This is especially exacerbated by the current generator in-
tegrating with Scala and Isabelle for dependency generation—however this was found
to be unnecessary, and the functionality was re-implemented without Isabelle in Sec-
tion 5.1.2. Thus, it was felt that migrating to a standard SSG would allow people to
bring their existing knowledge to the project more readily.

As of 2021, there are many competing static site generators which can be broken up
into two main categories. On the one hand, a popular paradigm resides in JavaScript
based site generators, such as Next.js1 and Gatsby2. These are powerful and are com-
monly combined with APIs, to allow for logins and payment, in what is known as the
JAMstack [3]. On the other hand, there are SSGs in other languages with more tradi-

1https://nextjs.org
2https://www.gatsbyjs.com

18

https://nextjs.org
https://www.gatsbyjs.com

Chapter 5. Implementation 19

tional support for templating, like Hugo (Go)3 and Jekyll (Ruby)4. These generators
take Markdown [15] content files and insert the content into templates. Jekyll is cham-
pioned for being easy to learn, whereas Hugo takes longer to learn but is more powerful
[23]. Additionally, Hugo excels in its speed due to being written and templated in Go,
which is statically typed and compiled. For these reasons Hugo was chosen as the SSG
to re-implement the AFP in.

The first step of the project was to re-implement the site generation in Hugo, in prepa-
ration for the redesign. An initial prototype with very few entries was first created as a
proof of concept to figure out the best structure for the site. Many of the Jinja templates
were partially reused as they have a similar syntax to Hugo templates. Subsequently,
Python scripts were created to generate the content files for each entry.

5.1.1 Overview

The original site generation is described in Section 2.3.3, and the following structure
is used to generate the new AFP:

1. Update the thys/ directory and metadata/metadata file—these are the only
files from the upstream repository that are needed to update the Hugo site.

2. Run exportMetadata.py to update the Hugo content files—Section 5.1.2.

3. Build the site using Hugo.

5.1.2 Python Scripts

Python was used to convert the original sites data into files suitable for Hugo genera-
tion. Most of the scripts iterate over the list of entries in the thys/ directory, and so,
they could be refactored into one script so that this iteration is not repeated multiple
times. This design was not chosen however, as we wanted to keep the scripts modular
so that they were self-contained and did not have side effects. As such, each script can
be run by itself if required. Brief details for each are given below:

exportMetadata.py The purpose of this script is to run the rest of the scripts in the
correct order and provide feedback in the form of a progress bar.

iniToJson.py This script primarily converts the metadata stored in an INI file into in-
dividual JSON files. The shortname, title, date and abstract are preserved as is, but the
other attributes are transformed into more appropriate formats like arrays and objects.
Author emails are extracted from the entry data and are collated into an authors.json
file.

addOlderReleases.py This script traverses the metadata/release-dates and meta
data/releases files and adds all the releases (except the most recent) of each entry
to its JSON file.

3https://gohugo.io
4https://jekyllrb.com

https://gohugo.io
https://jekyllrb.com

Chapter 5. Implementation 20

addDependencies.py The dependencies of an AFP entry are listed in the ROOT file,
and as it is regular [34], this script uses a regular expression to extract the dependencies
and adds them to the JSON file of the entry.

addRelatedEntries.py This script generates related entries, using three metrics as de-
scribed in Section 5.3.2, and adds these to the entries to improve site navigation.

generateKeywords.py This script generates the list of keywords for the search auto-
complete. Each entry’s abstract is sanitised and then the keywords are extracted with
the RAKE algorithm. This script is described in detail in Section 5.2.3

exportJsonMetadata.py metadata.json is a JSON release of the AFP’s metadata
which is generated by this script and is described in Section 5.7.

addStatistics.py Most of the statistics for the site, like number of authors and most
used entries, are generated by Hugo. However, some statistics like number of lines
in the AFP are generated by the scripts from the current AFP. This is because the
implementation of these is non-trivial and was not a priority in the time available.
Unlike the previously mentioned scripts which take 5–10 seconds to execute, this takes
60 seconds due to duplicate computation that is discarded.

Finally, getTheories.py is instead run rarely due to high network load on the upstream
site.

getTheories.py This script downloads and transforms the HTML documents for the
theory browsing, which is detailed in Section 5.4.1.

5.1.3 Directory Structure

The new Hugo site generator has the following structure:

• archetypes/default.md A file which describes the structure for pages cre-
ated with hugo new entry. This is optional and pages can be created manually.

• assets/theories/ HTML files for each entry which contain the concate-
nated theories.

• content/ Markdown files for the non-entry pages (home, about, search, etc.).

– entries/ Markdown files for each entry in the AFP, described in Sec-
tion 5.1.4.

– theories/ Markdown files which list the lemmas of each theory for gen-
erating the menu, described in Section 5.4.1.

• data/ JSON files which contain data about the authors, topics, and statistics.

• static/metadata.json The JSON release of the Archive’s metadata.

• themes/afp/ Where the site’s theme is stored. Hugo allows for multiple
themes, but we only use one for the redesign.

– assets/sass/main.scss The SASS for the website which is compiled
to CSS upon build.

Chapter 5. Implementation 21

– layouts/ HTML templates for each section and page type.

– static/ JavaScript, fonts and images for the website.

• config.json The Hugo config contains the site metadata add describes how
the site should be built.

5.1.4 Entry Information

Hugo has support for structured data to be associated with a Markdown file in the form
of frontmatter. This structured data is a dictionary of key-value pairs and can be one of
three formats: YAML, TOML, or JSON. When the site is generated, this metadata can
be referenced by key and rendered on the page. This is a natural choice for represent-
ing the entries of the AFP as it is already stored in a key-value format. This means that
while entries are stored in Markdown files, they only contain a JSON blob which con-
tains the information for the entry. For example, this entry from metadata/metadata
on the left is stored in the file content/AVL-Trees.md:

[AVL-Trees]
title = AVL Trees
author = Tobias Nipkow <http://www...
date = 2004-03-19
topic = Computer science/Data structures
abstract = Two formalizations of AVL t...
extra-history =

Change history:
[2011-04-11]: Ondrej Kuncar added ...

notify = kleing@cse.unsw.edu.au

{"title": "AVL Trees",
"authors": [

"Tobias Nipkow",
"Cornelia Pusch"

],
"date": "2004-03-19",
"topics": [

"Computer science/Data structures"
],
"abstract": "Two formalizations of A...",
"extra": {

"Change history": "[2011-04-11] ..."
},
"notify": [

"kleing@cse.unsw.edu.au"
],}

There are many advantages to this. Each entry is self-contained and can store all the
information related to that entry. We can extract author information to its own JSON
file reducing duplication and inconsistencies. The three formats available are more
powerful than the INI format that is currently used. This means we can store arrays
instead of strings which need to be parsed into lists. Of the three formats, JSON was
chosen as it is the only one of these which has a module in the Python Standard Library.

5.1.5 URL Structure

It is good practice to write URLs in such a way so that they never change [2]. For
instance, information that can change such as authorship, file name extension and sta-
tus should not be included in the URL. Most URLs in the current AFP violate the file
name extension rule, and other URLs are structured in unintuitive ways. An overview
of the current and redesigned AFP’s URLs is shown in Table 5.1

All the URLs in the new AFP have lowercase, hyphenated URLs without file exten-

Chapter 5. Implementation 22

Current Home Path /
New Home Path /
Current Entry Path /entries/AVL-Trees.html
New Entry Path /entries/avl-trees/
Current Browse Theories Path /browser info/current/AFP/AVL-Trees/
New Browse Theories Path /entries/avl-trees/theories/
Current Theory Path /browser info/current/AFP/AVL-Trees/AVL.html
New Theory Path /entries/avl-trees/theories/#AVL

Table 5.1: Comparison of the URL paths in the current and redesigned AFP.

sions as this is the default behaviour of Hugo5. File extensions are avoided by serving
all pages at page/index.html rather than page.html.

In comparison to the current AFP, the theory pages can be found at an obvious sub-
directory of the entry page. This was relatively complex to set up and a discussion was
made in the Hugo forum to figure out how this could be done6. In the end, the URL
for each theory page is set manually in the frontmatter by getTheories.py.

5.2 Search

The current search facility of the AFP relies on a Google SiteSearch, which, as men-
tioned previously, is a Google search for the phrase with “site:www.isa-afp.org” ap-
pended. This is an example of a server-side search as the user sends a request to the
server, the server searches the index, and returns the result. This is the most common
search paradigm as it enables searching large indices. This search is useful, however
could be incomplete or outdated depending on Google’s indexing. Due to this, a new
native search facility for the AFP was created.

In contrast, a client-side search will instead have the server send the index to the client
and searches are performed locally. The benefits of this are faster results due to the lack
of network requests, and this has become a popular method as smartphones and com-
puters have become more powerful. As the number of entries in the AFP is relatively
small, we chose to implement a search on the client that is responsive and fast.

5.2.1 FlexSearch.js

FlexSearch.js7 was the chosen search framework as it provided features such as tok-
enization, stemming, and autocomplete.

On page load, several JSON files containing the search index are fetched and then
loaded into their own individual FlexSearch instance, as shown below. This allows for

5https://gohugo.io/content-management/urls/#pretty-urls
6https://discourse.gohugo.io/t/complex-use-of-taxonomy-or-subpage-generation/

30692
7https://github.com/nextapps-de/flexsearch

https://gohugo.io/content-management/urls/#pretty-urls
https://discourse.gohugo.io/t/complex-use-of-taxonomy-or-subpage-generation/30692
https://discourse.gohugo.io/t/complex-use-of-taxonomy-or-subpage-generation/30692
https://github.com/nextapps-de/flexsearch

Chapter 5. Implementation 23

custom parameters to be set per index, as well as faster search as they can be searched
in parallel.

var entryIndex = new FlexSearch({
encode: "advanced",
tokenize: "forward",
doc: {

id: "id",
field: ["title", "abstract"],

},
});

var topicIndex = new FlexSearch({
encode: "icase",
tokenize: "forward",
doc: {

id: "id",
field: "name",

},
});

Highlighting Results Pre-attentiveness is the quality of being able to very rapidly
and accurately detect visual stimulus that “pops out” of the page [17]. By changing
the background colour of the search term in the results, we can use this effect to make
it easier to scan and check for relevant results (Figure 5.1). This is implemented using
mark.js8 which is an 18kb library which highlights matching text in a container.

5.2.2 FindFacts Integration

Huch and Krauss created the FindFacts service [19] which allows for searching defi-
nitions, lemmas, and constants across all 2.5 million lines of Isabelle code which form
the AFP. Logical operators can be used, as well as filters on the expected type, to
narrow the search.

This is very useful although it is not advertised anywhere on the current AFP. Rather
than just linking to it, it would be beneficial if this service were available on the AFP
itself. However as the current FindFacts implementation is satisfactory, we chose to
integrate it into the search results as another index—showing the number of results and
linking to them in the AFP interface.

A prototype was made to do this, but the FindFacts server initially responded with an
error due to its Cross Origin Request Security policy. Consequently, a request was
made to the developers to adjust this policy to allow queries from other websites. This
request was successful, and we subsequently implemented the search as shown in Fig-
ure 5.1.

Debouncing is applied to the search to prevent overloading the server with queries.
This means that the script waits for the user to stop typing for 300 milliseconds before
sending it. The trade-off is that the search appears slower due to the delay, however
this is not an inconvenience compared to accidentally overloading the server.

To further reduce server load, requests are cached client-side by memoising the query.
This means that every query is checked against the local cache before making a request
to the server. If it is not found, then the request is made, and the returned result is added
to the cache so that the same request is not made again in the future.

8https://markjs.io

https://markjs.io

Chapter 5. Implementation 24

Figure 5.1: Search page of the redesigned AFP

5.2.3 Autocomplete Suggestions

FlexSearch.js does provide autocomplete functionality however it does not work as
expected. It generates matches in the index up to a limit9 but does not guarantee that
these words will be keywords across many documents. Therefore, a novel solution had
to be created to generate a list of keywords to offer as suggestions.

Rapid Automatic Keyword Extraction (RAKE) [29] was used to extract keywords.
In comparison to other methods, which discard stop words, RAKE instead splits the
text on the stop words, as keywords often do not contain stop words themselves. The
algorithm then rates the words on how often they co-occur and favours keywords that
appear in longer phrases.

For each entry in the AFP, the abstract is sanitised and then RAKE is used to get a list of
keywords. The parameters used with RAKE were a 3-letter minimum character length
and a 2-word maximum for keywords. These were chosen as 1–2 letter keywords are
faster to type than to read from a suggestion, and keywords with more than 2 words
will match few documents. The top 8 keywords from the abstract are added to a list
of keywords—8 was chosen as it preserved infrequent words like “Godel” but rejected
keywords like “accompanying paper”. After this we have a list of 3,741 keywords
from all abstracts. We then filter this list and remove all keywords that only appear
once, as we do not want to suggest a term with only one result. This reduces the list
to 460 keywords. Finally, we remove plural keywords where we also have the singular
version, as the singular will return the plural. The final list has 435 keywords.

The list of generated keywords was added as a search index to FlexSearch. The results

9https://github.com/nextapps-de/flexsearch#suggestions

https://github.com/nextapps-de/flexsearch#suggestions

Chapter 5. Implementation 25

from searching this are then added to a <div> which appears below the search box and
supports keyboard interaction.

5.2.4 Search on Other Pages

The paper prototypes included a search bar on every page of the AFP to make searching
easier (Section 4.1.2). As such, a trimmed down version of the search script was
created. This script would only give autocomplete suggestions and redirect users to the
search results when they pressed enter. Thus, there are two search scripts search.js
and header-search.js, the former being loaded only on the search page, and the
latter being loaded on every other page.

5.3 Navigation

The current ways to navigate the Archive are as follows:

• List of entries on the homepage.

• List of entries by topic on the “Index” page.

• Links in the sidebar to several single pages.

• Authors will be linked to their website if they have one.

• Entries will link to entries they depend on or entries which depend on them.

The redesign preserves all of these, however adds several new ways to navigate via
Hugo taxonomies and related entries.

5.3.1 Taxonomies

In Hugo, taxonomies generate pages which are indexed on a value for a key in the
frontmatter. In other words, for a list of entries as on the left, we can set authors to be
a taxonomy and additionally generate pages which list the entries like on the right:

entries/
entry-1.html

authors: author-1, author-2
entry-2.html

authors: author-1

authors/
author-1.html
entries: entry-1, entry-2

author-2.html
entries: entry-1

The redesigned AFP adds three taxonomies: authors, topics, and dependencies. Each
one of these lists all the entries that have the same author, topic, or dependency. Links
to these pages can be found on the entry pages, as well as the home page in the case of
authors. Author pages also link to the author’s website if they have provided it.

The root of the taxonomy (i.e., /authors/index.html) lists all items in the taxonomy,
i.e., a list of authors, topics, or dependencies. It is using this list of authors that the
number of authors in the statistics is generated.

Chapter 5. Implementation 26

5.3.2 Related Entries

As well as the taxonomies, the redesigned AFP can be navigated via related entries.
We see entries as related if they share dependencies, topics, or keywords.

To generate the related entries, each entry of the AFP is iterated over to create three
dictionaries as follows:

dependencies = {"dependency": [list-of-entries, ...], ...}
keywords = {"keyword": [list-of-entries, ...], ...}
topics = {"topic": [list-of-entries, ...], ...}

All keywords which feature in more than 10 entries are dropped as these keywords are
seen as too general for this purpose. For the next step, each dictionary is assigned a
weighting of how strongly it indicates relatedness. These scores were chosen based
upon the specificity of the category—dependencies are highly specific to an entry,
keywords are limited to 10 entries, and topics have no limit.

dependencyModifier = 1.5
keywordModifier = 1
topicModifier = 0.5

Next a dictionary is created with the structure shown below. For each of the categories,
the list of entries associated with each key is iterated over twice and, if the entries are
not the same, the modifier of that category is added to the relatedness score between the
two entries in the dictionary. As the loop iterates twice over the value set, the resulting
dictionary is bijective—i.e., the scoreValues below will be the equal.

relatedEntries = {
"entry-1" : {"entry-2": scoreValue, ...},
"entry-2" : {"entry-1": scoreValue, ...},
...

}

Once this dictionary is created, all the relations which have score less than or equal 2.5
are dropped. This means that for entries to be considered related, they must at least
have 2 shared dependencies; a dependency, keyword, and topic; etc.

Finally, the top three highest scoring relations for each entry are chosen to be its related
entries and these are written to each entry file. The result of this is 194 relations
between entries, and a selection of these are visualised as a graph in Figure 5.2

5.4 Script Browsing

The current script browsing experience, shown in Figure A.3, is basic and consists of
a directory page and pages for each script. If a user is to find something specific in the
files, they must open each one individually and use the browsers “Find” feature.

The new script browsing experience instead concatenates the theory files together so
that they can be displayed on one page. The code which does this downloads each
theory page for each entry from the live website, as the HTML pages are not stored in
a public repository.

Chapter 5. Implementation 27

Figure 5.2: A selection of four related entry clusters. They are all visible in Appendix E

5.4.1 SideKick

One of the most highly requested features of the AFP is the addition of “SideKick”.
This is a plugin for Isabelle/JEdit which surfaces the outline of the currently open script
file for navigation, visible in Figure 5.3.

Figure 5.3: The SideKick available in Isabelle/JEdit

To recreate this functionality, a script was created which attaches unique IDs to the
lemma elements of the theory.

For every entry, the script downloads the “Browse theories” page to get a list of theo-
ries. The theories are then downloaded, transformed, and concatenated together. The
first transformation is to keep the <body> and change it to be a <div>, as there can
only be one body tag in a document. The next transformation is to select all lemmas
in the document and add unique IDs to them. The resulting HTML and lemma names
are returned to be added to the theory’s front matter.

Consequently, Hugo generates the menu with theories and lemmas from the theory
front matter, and users can scroll to them by clicking the links. This is visible in
Figure 5.4.

Chapter 5. Implementation 28

Figure 5.4: Example theory page showing the new SideKick style navigation

5.5 Styling

This section discusses the approach taken when implementing the design created in
Chapter 4. First, structural issues with the CSS were resolved, then the HTML ta-
bles were swapped out for CSS grid. At this point, the website was redesigned one
component at a time, before final design tweaks were made to improve cohesion.

5.5.1 Validation

As mentioned in Section 3.2.1.2, there were many errors in the CSS syntax itself, hence
the first priority was to correct these. When this was being fixed, it was realised that
a lot of the styling was overly verbose and unnecessary—i.e., explicitly setting values
to their default. These were removed or simplified, but it required full concentration to
ensure that the rules were preserved correctly.

It was at this point that it was realised this could be automated with a CSS preprocessor,
which could standardise and minify the CSS [28]. After some research, the cssnano
module of the PostCSS10 tool was used to produce valid CSS which was simplified
and standardised.

5.5.2 Avoiding Tables for Layout

The current AFP is composed of nested tables. There is a table which holds the sidebar
and the content, and they are themselves composed of tables. This was a very common
design pattern11 before CSS3 introduced flexbox (2014) and grid (2018).

Thus, as grid allows for greater flexibility than tables, the current table-based design
was converted to use grid instead. This was easy and provided many benefits, like
simplifying the HTML markup and making maintenance easier.

10https://postcss.org/
11https://en.wikipedia.org/wiki/Holy_grail_(web_design)

https://postcss.org/
https://en.wikipedia.org/wiki/Holy_grail_(web_design)

Chapter 5. Implementation 29

Both this and the previous section would be recommended, simple improvements to
the AFP even if a redesign were rejected by the maintainers.

5.5.3 Redesign

After finalising the paper prototypes from Section 4.1, each component of the website
was implemented in turn, in the same way as the paper prototypes had been iterated.
The HTML was simplified to match the semantics of the layout, as this results in more
accessible pages by default [8]. The CSS was altered to style the components to match
the prototype. An early example of the home page can be seen in Figure 5.5 and the
final version can be seen in Figure 5.6.

Figure 5.5: First iteration of the home page redesign

Figure 5.6: Final iteration of the home page redesign

5.5.3.1 Font

When testing the AFP across browsers and systems, it was realised that the font choice
was platform dependent. The AFP only specifies a sans-serif font, so the default
sans-serif for that browser/operating system is used. Cross-platform inconsistencies
can lead to hard to diagnose problems and degraded design depending on the fonts

Chapter 5. Implementation 30

available. Therefore, it is best to define one font so that the experience is the same
everywhere.

The font was chosen to be kept similar to the current neutral style that operating sys-
tems’ default fonts have. Fonts that were heavily associated with a brand were dis-
carded, such as Roboto by Google or Fira Sans by Mozilla. In the end, Open Sans was
chosen as it is a neutral and easy to read font which is commonly used as a default on
the web [30].

5.5.4 Fine-tuning Cohesion

After the redesign, there were some outstanding inconsistencies in the look of buttons
and headings. For example, download links, buttons with images and buttons with text
should have looked similar but did not.

Test pages were created with these elements so they could be styled more cohesively.
However, the CSS became hard to work with as these elements shared styles, but it
was tedious to compose them while preserving a coherent source order in the CSS.

5.5.4.1 SASS

SASS12 is a preprocessor language for CSS which enables developers to write succinct
and powerful CSS [25]. There are two syntaxes available, SASS and SCSS, the former
removing the need for parentheses and semi-colons and the latter being most like CSS,
which is why it was chosen. The extra utility provided by the language is that it allows
for nested CSS rules, which keeps all the styling of each element, and its children, in
one place.

To ease the transition from CSS, css2scss13 was used to convert it into SCSS. It was
chosen as it allowed for customisation of the output, especially creating variables for
colours and formatting them. The result was a SCSS file which compiled to the same
CSS but was easier to reason about. For example:

• It reduced the number of colours by combining similar colours under one intu-
itive name.

• It becomes obvious that some properties only need to be set in one place, like
text-decoration

• Source order is preserved, but rules are grouped by the first selector—i.e., header h1
is grouped with the header rules rather than the h1 rules.

5.6 Hosting

Originally, an early version of the website was hosted on a sub-domain of my own
website14 as this sub-domain was configured, not being used and a way to demonstrate

12https://sass-lang.com
13https://sebastianpontow.de/css2compass/
14https://beta.carlinmack.com

https://sass-lang.com
https://sebastianpontow.de/css2compass/
https://beta.carlinmack.com

Chapter 5. Implementation 31

my progress was needed. However, as more and more content was added, worries
arose about the cost of hosting and it became harder to upload to my server.

GitHub pages give free hosting for any public repository which has it enabled, so it was
a natural choice for my project as it was already hosted on GitHub. Originally a reposi-
tory was created, afp-alpha, but unfortunately the URL of the index page would then be
https://carlinmack.github.io/afp-alpha/index.html. This would mean that
absolute links could not be used unless they were prefixed with /afp-alpha/. The site
root can be set to a path in Hugo, however we did not want to add more complexity that
would have to be undone if the site was hosted on its own domain. Fortunately, GitHub
allows for users to have a repository that serves pages from the root rather than a path.
Thus the website of the new redesign is simply https://carlinmack.github.io/.

5.6.1 Autogeneration

To keep the site up to date, an automated workflow was created to monitor the upstream
repository and generate the new site as appropriate. This was implemented as a GitHub
Action and is triggered daily as follows:

1. Check out the static site repository, set up Python and install dependencies.

2. Get the SHA of the metadata/metadata file of the upstream repository. If this
is different to the stored SHA, continue, else exit.

3. Checkout the site generator repository.

4. Download the thys/ and the metadata/metadata file. This is all the files re-
quired to update the site, so the repository does not need to be cloned.

5. Overwrite thys/ and metadata/metadata in the site generator repository.

6. Install dependencies for site generation script.

7. Run site generator.

8. Commit changes to the site generator repository.

9. Set up Hugo.

10. Build static site and output in the static site directory from step 1.

11. Commit changes to the static site repository.

12. Clean up files.

When the upstream repository has been updated, the workflow takes around 3.5 min-
utes, and the largest proportion of this time (1.5 minutes) is the unavoidable wait to
download the thys/ directory. If the new site generation were merged into the up-
stream repository these files would already be available, and thus large time savings
could be made. Exporting the metadata takes roughly 7 seconds and building the site
takes 50 seconds. The performance of the AFP is compared to the original in Sec-
tion 6.3.

https://carlinmack.github.io/

Chapter 5. Implementation 32

5.7 The AFP in Machine Readable Format

The content of the AFP can be downloaded wholesale from the website, however the
metadata is only available in the HTML pages. To fix this discrepancy, a JSON release
of the metadata was created. This is an array of JSON objects with the authors’ emails
removed for privacy and the related entries removed as they are not found in the orig-
inal data. A static version of the metadata, which corresponds to Isabelle2021, will
soon be released on Zenodo. Additionally, the most recent version of the dataset can
be downloaded from the downloads page. Consequently, the data can be used more
readily for research or other use cases.

5.8 Conclusion

This chapter presented the implementation of the redesign and new features such as
search, navigation and code browsing. In the next chapter we evaluate this implemen-
tation to ascertain whether it is an improvement over the current AFP, and if it meets
the needs of the users.

Chapter 6

Evaluation of the New Archive

The success of this project is gauged upon whether it meets the original goal set out:
To create a website that is easier to use, guided by the priorities of the users. This
chapter evaluates the usability with users, structural issues with automated audits, per-
formance compared to the current Archive and, finally, an overview of what needs to
be maintained.

6.1 User Evaluation

The success of the redesign can only be evaluated by users of the AFP. Due to the short
time available we could not distribute the original survey from Chapter 3 with a new
focus on the redesign. Instead, we chose to perform a lab study with a small number
of people from the Artificial Intelligence Modelling Lab.

6.1.1 Design

A mixed approach was used to get a variety of information. The first part of the study
was a think-aloud as it allowed the participants to get acquainted with the AFP and
allowed me to see how users naturally used the new design. It contained 6 tasks which
each asked the participant to use a different facet of the AFP. For example, the first
task was “Visit the “Ordinal Partitions” entry and copy its BibTeX citation.”. This
entry was chosen as it was not published recently and we wanted to see if they would
use the browsers “Find” functionality or if they would use the search. The second part
of the survey was a 7-question multiple-choice to gain quantitative feedback about
whether the design is successful. Finally, open ended questions were asked to prompt
a discussion of the new design, regarding whether it is an improvement and if there is
anything missing.

A script (Appendix H), questionnaire, participant information sheet and consent form
were prepared and reviewed by my supervisor. A quick pre-study was performed with
a fellow undergraduate student to ensure that the study would go smoothly. Although
they were unfamiliar with the AFP and the redesign, they were able to easily complete
all the tasks. This is not generalisable, however it is a good indicator of clear design.

33

Chapter 6. Evaluation of the New Archive 34

6.1.2 Results

Five people were individually asked to take part, four responded and were subsequently
interviewed. The interviews were performed on 17–18 March 2021 and lasted 21, 12,
28 and 26 minutes in order.

No participant struggled with the think-aloud tasks and they almost always completed
the tasks in the way they were designed to be completed—i.e., by using the search
feature instead of the browsers “Find” feature; by using the download button in the
search results rather than on the entries page. All participants were comfortable using
the top search box. There were a few things of note during the think-aloud:

• One participant was pleasantly surprised that the search was responsive.

• One participant tried using the prefix “author:” to search for the author, which is
assumed to be learned behaviour from similar sites.

• Three of four participants did not notice the FindFacts search results in the side-
bar on the right at first.

• One participant was confused that all the theories were on the same page, and
wanted to be able to pop the theories out into their own page. This is because
they are used to using the keyboard navigation keys, like “Home”, to navigate in
the theory files.

Figure 6.1: Short survey results

The short survey was answered during the call and participants stopped sharing their
screen before filling it in. As shown in Figure 6.1, the participants agree or strongly
agree with all the questions asked. Of note, all participants agree that it is easy to adapt
to the new interface and it is quick to learn to use it.

Finally, the participants answered the long answer questions. The first question was:

Chapter 6. Evaluation of the New Archive 35

Is this an improvement over the current AFP? How so or how not?

All participants thought the redesign was an improvement.

Participant 1 They particularly highlighted the prominence of the search in the re-
design and that it was good to not rely on Google. They felt the redesign was more
“streamlined” and that the cite and download buttons “pop out”.

Participant 2 They enjoyed the search bar on the landing page and that it is interac-
tive. Additionally, they appreciated the ability to click through to theories.

Participant 3 They felt that the redesign was a “massive improvement” and “fan-
tastic”. They commented that there is “no background pollution”, the interface is
“friendlier” and “a bit more professional”.

Participant 4 They felt it was “undoubtedly” an improvement and expressed that
searching is a “pain” in the current AFP.

Does this redesign meet your needs? Is there anything lacking or missing?

All participants thought their needs were met overall. There were several features
related to search which would be appreciated in future work.

Participant 1 Their main need was to find entries on a specific topic, and felt that
Google may provide better results for things which were not exact text matches, but
still related.

Participant 2 Overall their needs are met, as they mainly use the search to do liter-
ature reviews. They like the new author pages, but would like to search within theory
files.

Participant 3 They felt that their needs were met as they mostly just use the search
and it is “good”. They would like for entries to also match on the author name, rather
than just showing the authors in the sidebar.

Participant 4 Their main need is search and this is mostly met, however they recog-
nised that searching for lemmas is beyond the scope of this project.

6.2 Automated Audits

To ensure that there is no degradation of the website, the same automated audits from
Section 3.2 were performed on the redesign.

W3C Validation Both the home and entry pages have valid HTML and CSS.

Google Lighthouse The Lighthouse results for the redesigned AFP are shown in
Table 6.2 and there is no degradation in the scores compared to the current AFP. .

The accessibility score is just off perfect due to having many heading elements with
the same level. This is because all the entry titles have h5 elements for the title, as this
is recommended by the W3C.

Chapter 6. Evaluation of the New Archive 36

Home Entry
Desktop Mobile Desktop Mobile

Performance 82 73 100 98
Accessibility 98 98 99 99
Best Practices 100 100 100 100
SEO 100 100 100 98
Progressive Web App (PWA) – – – –

Table 6.2: Google Lighthouse metrics for the redesigned AFP, out of 100

The performance score stays low due to the large size of the home page, listing every
entry in the AFP. As the search function is lacking in the current website, the exhaus-
tive listing is beneficial so that the browsers “Find” function can be used. However, as
the redesign features the search input prominently on the front page, it may be possible
to introduce pagination in the future.

The redesigned AFP is still not a PWA, so this score is still blank.

6.3 Performance

The performance of the current and redesigned AFP can be seen in Table 6.4. It is
a better comparison of performance when the theory pages are not generated, as the
current generator does not output them. Significant time is added by generating these
pages as 143 of them are greater than 2MB. The metrics show that generation with
Hugo is at least 4 times faster.

Time (sec) # Pages Pages/sec Size (MB) MB/sec
Current AFP 48–79 602 8–13 4 0.05–0.09
Redesigned AFP 44–53 2,506 47–57 951 17.9–26.1
without theories 20–22 1,913 80–96 26 1.2–1.3

Table 6.4: Comparison of the performance of site generation in the current and re-
designed AFP.

The file size of the pages of the AFP are also generally smaller. The current homepage
is 191KB versus 168KB for the redesign. This is due to the move away from table-
based layouts and Hugo generating minified HTML files.

6.4 Maintenance

If the redesign replaces the current design, it is important that someone will be able
to fix the site if it breaks. In this section, we outline the amount of work the redesign
requires to be maintained.

Chapter 6. Evaluation of the New Archive 37

6.4.1 Software

The redesigned AFP depends on the following programming languages and libraries.

• Hugo ≥ 0.81

• Python ≥ 3.3: requests, tqdm, bs4, unidecode

• JavaScript: mark.js, FlexSearch.js

All these requirements are easy to satisfy as none require compilation or version man-
agement.

6.4.2 Hugo

In comparison to the previous site generator, Hugo brings several benefits to maintain-
ability. First, the template syntax is very similar to Jinja which is used in the current
AFP. Second, people can bring their outside knowledge to help improve the site, as it is
a common tool which uses familiar paradigms. Finally, the generator itself is unlikely
to break, as maintenance is handled by the Hugo developers.

One caveat with Hugo is that there is a history of updates with substantial breaking
changes. For example, the 0.60.0 update changed the default behaviour of Markdown
pages to omit included HTML instead of rendering it1. They made this change to
close a potential security liability, and you could disable the new behaviour by adding
a line in the config file. Unfortunately, this caused ire in the community as the new
behaviour was not made clear enough. This means that maintainers should be aware
when upgrading Hugo and read the changelog if any warnings or errors appear on the
first build.

6.5 Conclusion

From our evaluation with users and automated audits, we can see that the redesign of
the AFP has been successful. All participants agree that the redesign is an improvement
and there is no regression in the scores of any automated audit. The performance of
site generation has also been improved and the maintenance load is not greater than the
current AFP. In the next chapter we conclude the project, summarising and evaluating
our contributions and outlining the scope of future work.

1https://discourse.gohugo.io/t/raw-html-getting-omitted-in-0-60-0/22032/11

https://discourse.gohugo.io/t/raw-html-getting-omitted-in-0-60-0/22032/11

Chapter 7

Conclusion

In this report a new design of the AFP has been created in response to user feedback.
This involved re-implementing the site generation, paper prototyping and redesigning
the website. In addition, several features were added such as improved code navigation
and responsive search. These features increase the utility of the website for users.
Furthermore, the site auto-updates with each change to the AFP and thus can replace
the existing website.

As Hugo is used to generate the site, the maintenance of the generator is off-loaded to
the Hugo community. This site generator is performant and builds the 2,500 pages of
the site in 50 seconds—which is 4–12x faster than the current generator (Section 6.3).
Upon evaluation, it was found that this new design met the needs of the users and was
a major improvement upon the current website. As such, this project met the goal set
out.

This project helped me to improve as a software developer, especially regarding man-
agement of workload, delivering on time and in communicating the outcome of my
work. Since this project was started from scratch, it required knowledge in many areas
and helped me to develop my skills and learn new ones. In particular, Hugo is now
something which I am proficient in and I feel comfortable using the most advanced
features which it has to offer.

Finally, this project was presented at the Honours Project Day and the poster that was
created for it can be found in Appendix G.

7.1 Suitability for Production

While it is hoped that the redesign will one day replace the current AFP (as users
suggest that it is an improvement, Section 6.1.2) there are several areas which need
attention before it can be released.

38

Chapter 7. Conclusion 39

7.1.1 Site Generation

Due to backwards compatibility, the site is generated from the previous structure of
the AFP as detailed in Section 5.1.2. This is so that the site can be updated as needed,
however it means that there are several pre-processing steps which are unnecessary. If
the new site were to replace the current AFP, users would still have to edit the previous
metadata files to update their entries—negating the value of having separate JSON
files.

Before deployment, we would need to check that the browsers of the target audience
are still supported. If this is a problem, build scripts can be used to replace the new
features with backwards compatible and prefixed versions for older browsers.

7.1.2 Continuous Integration

The site is currently generated with a build script that checks out the various reposito-
ries and generates the new site. This script is brittle, due to the specificity of generating
the site, but is functional for demonstration purposes. In a production scenario, the gen-
eration should be integrated with the upstream repository. This would allow it to be
less vulnerable to errors, as checks could be added to ensure that site generation is not
broken by any commit.

7.1.3 Documentation

Currently there is not enough documentation to hand off maintenance confidently.

7.1.4 Testing

Unfortunately, there is currently minimal testing of the software. If the Python scripts
are continued to be used, it would be good to introduce unit testing to ensure they
are working correctly. In terms of JavaScript, it would be beneficial to convert it to
TypeScript so that automatic verification can surface errors that would otherwise go
unnoticed.

7.2 Future Work

The redesigned AFP has feature parity with the current AFP, however there are notable
extensions that would elevate this project. In order of increasing complexity we have:

Design Improvements As the current AFP only has a desktop design, mobile was
not accounted for in the redesign. It will be quite natural to convert the sidebar into a
“hamburger” menu on mobile.

Similarly, the current AFP has one colour mode and so there is only one colour scheme
in the redesign. It would be preferable to many people to add a dark mode to the site,
including script browsing pages.

Chapter 7. Conclusion 40

The page which lists the topics should be redesigned to be clearer by decreasing the
density of the information and making the hierarchy clearer.

Web Feeds RSS and Atom feeds allow users to subscribe to updates for a page on
the web. Regarding the AFP, these could allow an academic to subscribe to a feed of
new entries under a topic, or an author could subscribe to a feed to be notified when
someone uses their theorem.

Accessibility Accessibility is necessary for any professional website [18] and it was
considered during implementation. For example, semantic HTML was chosen so that
the website is more accessible by default, and background colours were chosen to
have enough contrast. Unfortunately, an accessibility audit was not completed on the
website so there are most likely outstanding accessibility issues.

Functional Improvements The code browsing feature currently lists all theories and
lemmas in the side bar, however it becomes less useful as the number of lemmas in-
creases. Instead, it would be helpful if the lemmas were initially collapsed under the
theories and could be toggled when needed.

The search experience could be made more useful by providing search results which
do not match the input exactly. For example, adding to the search will currently always
decrease the number of returned results. This is beneficial for highly specific searches,
but less so for finding related content. Surfacing the FindFacts results in a more obvi-
ous or useful way would also be appreciated, as the participants in the evaluation did
not seem to be aware of its function.

Improving Entry Maintenance One of the benefits of using JSON as the entry for-
mat, is that it opens the door to editing metadata through a form in the browser. This
should not be too difficult, however users would need to sign in and authenticate them-
selves before they receive editing permissions for current entries. This necessitates
a web server to receive requests, and access control to define different categories of
users. This extension would therefore be a substantial undertaking.

Bibliography

[1] Anon. The QED manifesto. In Alan Bundy, editor, Automated Deduction
- CADE-12, 12th International Conference on Automated Deduction, Nancy,
France, June 26 - July 1, 1994, Proceedings, volume 814 of Lecture Notes in
Computer Science, pages 238–251. Springer, 1994.

[2] Tim Berners-Lee. Cool URIs don’t change.
http://www.w3.org/Provider/Style/URI, 1998. Accessed: 2021-04-05.

[3] Mathias Biilmann. The new front-end stack. Javascript, APIs and markup.
SmashingConf San Francisco 2016, 2016.

[4] Jasmin Christian Blanchette, Max W. Haslbeck, Daniel Matichuk, and Tobias
Nipkow. Mining the archive of formal proofs. In Manfred Kerber, Jacques
Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent
Computer Mathematics - International Conference, CICM 2015, Washington,
DC, USA, July 13-17, 2015, Proceedings, volume 9150 of Lecture Notes in Com-
puter Science, pages 3–17. Springer, 2015.

[5] John Brooke. SUS: A quick and dirty usability scale. Usability evaluation in
industry, page 189, 1996.

[6] Michael D. Byrne, John R. Anderson, Scott Douglass, and Michael Matessa.
Eye tracking the visual search of click-down menus. In Marian G. Williams
and Mark W. Altom, editors, Proceeding of the CHI ’99 Conference on Human
Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA, USA, May
15-20, 1999, pages 402–409. ACM, 1999.

[7] Karine Chemla, editor. The history of mathematical proof in ancient traditions.
Cambridge University Press, Cambridge, 2012. OCLC: ocn779264820.

[8] MDN contributors. HTML: A good basis for accessibility. Available at https://
developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML, March
2021. Accessed: 2021-04-10.

[9] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf. Comput.,
76(2/3):95–120, 1988.

[10] Manuel Eberl, Gerwin Klein, Tobias Nipkow, Lawrence Paulson, and René Thie-
mann. Archive of Formal Proofs - statistics. Available at https://www.isa-
afp.org/statistics.html. Accessed: 2021-01-12.

41

https://developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/HTML
https://www.isa-afp.org/statistics.html
https://www.isa-afp.org/statistics.html

Bibliography 42

[11] Jacques Fleuriot, Steven Obua, and Phil Scott. Social network processes in the
isabelle and coq theorem proving communities, 2016.

[12] Herman Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–
25, February 2009.

[13] Jaydn Goodwin. Developing a New Web Application for the Archive of Formal
Proofs. UG4 dissertation, School of Informatics, University of Edinburgh, 2020.

[14] Google. Lighthouse | Tools for Web Developers. Available at https://
developers.google.com/web/tools/lighthouse, 2021. Accessed: 2021-
04-10.

[15] John Gruber. Markdown Syntax Documentation. Available at https://
daringfireball.net/projects/markdown/syntax, March 2004. Accessed:
2021-04-10.

[16] Bruce Hanington and Bella Martin. Universal Methods of Design: 100 Ways
to Research Complex Problems, Develop Innovative Ideas, and Design Effective
Solutions. Rockport Publishers, 2012.

[17] Christophe G. Healey and James T. Enns. Attention and visual memory in visu-
alization and computer graphics. IEEE Transactions on Visualization and Com-
puter Graphics, 18(7):1170–1188, 2012.

[18] Shawn Lawton Henry and Liam McGee. Accessibility - W3C. Avail-
able at https://www.w3.org/standards/webdesign/accessibility, Jan-
uary 2021. Accessed: 2021-04-10.

[19] Fabian Huch and Alexander Krauss. FindFacts: A scalable theorem search, June
2020. Isabelle Workshop 2020.

[20] Gérard P. Huet. Induction principles formalized in the calculus of constructions.
In Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors,
TAPSOFT’87: Proceedings of the International Joint Conference on Theory and
Practice of Software Development, Pisa, Italy, March 23-27, 1987, Volume 1:
Advanced Seminar on Foundations of Innovative Software Development I and
Colloquium on Trees in Algebra and Programming (CAAP’87), volume 249 of
Lecture Notes in Computer Science, pages 276–286. Springer, 1987.

[21] M.Y. Ivory. Automated Web Site Evaluation: Researchers’ and Practioners’ Per-
spectives. Human–Computer Interaction Series. Springer Netherlands, 2013.

[22] Carlin MacKenzie, Jacques Fleuriot, and James Vaughan. An evaluation of the
Archive of Formal Proofs. Available at https://arxiv.org/abs/2104.01052,
2021.

[23] Chris Macrae. Hugo or Jekyll? Available at https://forestry.io/blog/
hugo-and-jekyll-compared, April 2018. Accessed: 2021-04-08.

[24] The mathlib Community. The lean mathematical library. Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, Jan
2020.

https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://www.w3.org/standards/webdesign/accessibility
https://arxiv.org/abs/2104.01052
https://forestry.io/blog/hugo-and-jekyll-compared
https://forestry.io/blog/hugo-and-jekyll-compared

Bibliography 43

[25] Davood Mazinanian and Nikolaos Tsantalis. An empirical study on the use of css
preprocessors. In 2016 IEEE 23rd international conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 1, pages 168–178. IEEE, 2016.

[26] Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT
Press, 1990.

[27] Adam Naumowicz and Artur Korniłowicz. A brief overview of mizar. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, The-
orem Proving in Higher Order Logics, pages 67–72, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[28] Ricardo Queirós. A survey on CSS preprocessors. In Ricardo Queirós, Mário
Pinto, Alberto Simões, José Paulo Leal, and Maria João Varanda Pereira, editors,
6th Symposium on Languages, Applications and Technologies, SLATE 2017, June
26-27, 2017, Vila do Conde, Portugal, volume 56 of OASICS, pages 8:1–8:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[29] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. Automatic Keyword
Extraction from Individual Documents, chapter 1, pages 1–20. John Wiley &
Sons, Ltd, 2010.

[30] Krista Stevens. Open Sans, how do we love thee? — wordpress.
Available at https://wordpress.com/blog/2012/10/09/open-sans-how-
do-we-love-thee-let-us-count-the-ways/, October 2012. Accessed:
2021-04-08.

[31] W3C. The W3C Markup Validation Service. Available at http://validator.
w3.org/. Accessed: 2021-03-09.

[32] W3C. CSS Grid Layout Module Level 1. Available at https://www.w3.org/
TR/2020/CRD-css-grid-1-20201218/, December 2020. Accessed: 2021-04-
09.

[33] Makarius Wenzel. Isabelle/jEdit–a prover IDE within the PIDE framework. In
International Conference on Intelligent Computer Mathematics, pages 468–471.
Springer, 2012.

[34] Makarius Wenzel. The Isabelle System Manual. Available at https://
isabelle.in.tum.de/doc/system.pdf, February 2021. Accessed: 2020-11-
18.

[35] Makarius Wenzel. The Isabelle/Isar Reference Manual. Available at https:
//isabelle.in.tum.de/dist/Isabelle2021/doc/isar-ref.pdf, February
2021. Accessed: 2020-11-18.

[36] Freek Wiedijk. The QED manifesto revisited. Studies in Logic, Grammar and
Rhetoric, 10(23):121–133, 2007.

https://wordpress.com/blog/2012/10/09/open-sans-how-do-we-love-thee-let-us-count-the-ways/
https://wordpress.com/blog/2012/10/09/open-sans-how-do-we-love-thee-let-us-count-the-ways/
http://validator.w3.org/
http://validator.w3.org/
https://www.w3.org/TR/2020/CRD-css-grid-1-20201218/
https://www.w3.org/TR/2020/CRD-css-grid-1-20201218/
https://isabelle.in.tum.de/doc/system.pdf
https://isabelle.in.tum.de/doc/system.pdf
https://isabelle.in.tum.de/dist/Isabelle2021/doc/isar-ref.pdf
https://isabelle.in.tum.de/dist/Isabelle2021/doc/isar-ref.pdf

Appendix A

Screenshots of the Current AFP

At time of submission, the current AFP shown below can be viewed at https://www.
isa-afp.org/

Figure A.1: Current home page of the AFP

44

https://www.isa-afp.org/
https://www.isa-afp.org/

Appendix A. Screenshots of the Current AFP 45

Figure A.2: Example entry page from the current AFP

Figure A.3: Example theory page from the current AFP

Appendix A. Screenshots of the Current AFP 46

Figure A.4: Current search page of the AFP

Figure A.5: Current help page of the AFP

Appendix A. Screenshots of the Current AFP 47

Figure A.6: Current contribution page of the AFP

Appendix B

Evaluation of the Current
Archive—Pre-study

To understand users and their requirements, a structured survey was created to poll
the Artificial Intelligence Modelling Lab at the University of Edinburgh. This group
was chosen as the members are familiar with Isabelle across a variety of use cases and
workflows.

B.1 Design

The survey had the following six sections in order:

• Familiarity questions

– The first five questions of the survey filter users into different groups de-
pending on their experience with the AFP.

• SUS questions

– The 10 standard SUS questions were asked as an indicator of the usability
of the current AFP.

• Navigation questions

– Investigate how easy it is to find pages and which pages are accessed most.

• Design questions

– Simple ratings of the look and feel and if it is intuitive.

• Browsing code within theories questions

– Rating the experience and a short answer question about features.

• Ranking priorities question

– Ranking which areas are most important to the user.

48

Appendix B. Evaluation of the Current Archive—Pre-study 49

The survey was distributed via Microsoft Forms as it allows for complex surveys to be
created and answered easily.

B.2 Results

The survey had 10 total respondents, and 6 respondents who use the Archive. Of them,
most were long term users of the AFP. However, only a third of them access the AFP
frequently but almost all of them have downloaded an entry from the Archive.

The SUS score for the AFP is 46, which is below the average SUS score of 68 and
suggests the AFP needs serious usability improvements.

Next respondents answered the first of two long answer questions:

What is your biggest pain point with the Archive? This could be with
browsing entries, browsing code within entries, or any other feature of the
AFP.

Five of six responded to this question with problems searching for entries or theorems.
They described difficulty of not being sure of what to search for, or not being sure
that they have found all the relevant entries. The remaining participant mainly had
difficulty with the documentation for using entries and feel like some of the steps could
be automated in some way. Interestingly, one user finds the AFP so painful to use that
they download the entire Archive and manually search for things in jEdit as it provides
more functionality.

Responses were split over whether it was easy to find specific entries in the AFP. On
the other hand, everyone agreed that it was not easy to find entries on a topic or entries
related to a topic.

The most accessed pages in order were: Search, Index (list of entries and topics),
Citing Entries, Home, Using Entries and Download. The other five pages were never
or rarely accessed.

All the other links were accessed at least sometimes, except for the Older Releases.
Surprisingly, the only link which everyone accessed at least sometimes was the Proof
Document page which is a PDF of the Isabelle code. This is interesting as it was
assumed that people would prefer to access the syntax highlighted HTML version of
the Isabelle content. It may be so frequently accessed as this is the only listing of all
the code of an entry on one page.

In general, people did not mis-click when navigating, which suggests that the text is
clear for links that people access.

The look and feel of the AFP received a 2.3 star rating out of 5. The intuitiveness of
the layout received a higher score at 2.7, however this is still lacking.

Everyone who took the survey browses entry code and they rated the experience a 2.8.
However they rated finding specific entries 1.3 out of 5, which is very poor. They then
answered the second long answer question:

Appendix B. Evaluation of the Current Archive—Pre-study 50

What feature would make browsing this code better for you?

Half of the respondents wanted functionality which would allow them to search by ap-
proximate/fuzzy statement, such as provided by the FindFacts tool [19]. Other features
that were suggested were being able to click to go to the definition of an item, being
able to see an outline of sections, searching across all theories and intra-page links
between lemmas and others they are used in.

The final question of the survey was a ranking question of priorities. The results are
very consistent, everyone ranked the same 3 in the top 3 priorities and the same for the
bottom 3. In order:

1. Searching the archive.

2. Navigation, like finding related entries on a topic.

2. Browsing code within theories.

3. Submitting entries to the archive.

4. Look and feel.

5. Statistics about the archive.

Therefore, the most important priority is searching the archive.

Appendix C

Evaluation of the Current
Archive—Study Results

51

Appendix C. Evaluation of the Current Archive—Study Results 52

6. What is your biggest pain point when submitting entries to the Archive?

Sometimes you get some errors from the system after submitting. And if I remember correctly, one
time an entry didn’t arrive because of a non-ASCII letter n an author name, but AFAIK this has been
fixed now.

Whether the entry will be accepted or not.

In 2017, there was no “preview” feature for the entry description.

Converting apply-style proofs to Isar (not necessarily required by the AFP, but recommended)

Forgetting to update something about a theorem before submission.

Compared to a pull request on Github it is a bit more tedious and less transparent.

Building of submission failing due to LaTeX issues without helpful error messages.

Need to make sure the LaTeX part compile.

To bring a submission into format. Sometimes this needs 5–6 times to make a submission attempt
and to finally complete it.

Having to run the new entry with the Isabelle development version if the new entry imports an entry
which has been updated since the last release.

Checking the Isabelle style rules.

Getting the ROOT file right.

Table C.2: Submission. Six of the comments were related to formatting of the ROOT
file and script files. The most actionable feedback from this section was that error
messages are often unhelpful and that there is no preview for the abstract section.
Three participants had no discernible pain point with submission and are not included
in the table

Appendix C. Evaluation of the Current Archive—Study Results 53

Figure C.1: Demographics. The demographics of the respondents is skewed towards
very active and long-term users.

Appendix C. Evaluation of the Current Archive—Study Results 54

Figure C.2: Submission. The vast majority of people who have submitted find the
process clear and straightforward.

Figure C.3: SUS Questions. The SUS score for the AFP is 72, which is above the
average SUS score of 68 and suggests that the participants are satisfied by the AFP.

Appendix C. Evaluation of the Current Archive—Study Results 55

8. What is your biggest pain point with the Archive? This could be with browsing
entries, browsing scripts within entries, or any other feature of the AFP.

I think the biggest problem is that https://www.isa-afp.org/using.html is not explained well for Mi-
crosoft Windows.

Use downloaded entries (e.g.integrate in a new development). (This might be more an issue with
Isabelle itself than AFP, I do not use Isabelle frequently.)

Finding the correct Theory to import in Isabelle for a given Entry.

I cannot online download and integrate the libs of AFP into Isabelle/HOL in the Isabelle/jedit UI.

A lot of redundant formalizations (like graphs), making it non-obvious which to use.

Problems with installing and using the new AFP version with every new Isabelle release.

Rather weak HTML presentation.

It’s sometimes hard to find what you’re looking for when you’re just in search of “a development that
does X”.

Learning what is there. As it grows, I do not know if my contributions are reinventing the wheel or
if any theory for an entry in a different topic can help with my developments.

The Proof Document contains all the proof, but the research value of the entry is usually in the
published paper. A direct link would be useful.

The scope could be clearer. In particular: What do I do with work in progress? Are many small
libraries or one big library preferred? What about new tools, i.e. new tactics implemented in ML
without any new proofs? How do I add a library from the AFP as a dependency to my project? (The
method described at https://www.isa-afp.org/using.html lacks basic functionalities like versioning or
automatic downloading of dependencies and is a system wide setting instead of a per-project setting.)

Searching if a theory already does something I need.

Table C.4: Biggest Pain Point. The most common response was problems using AFP
entries with Isabelle/jEdit [33]. In total, 6 people had this problem, from lacking instruc-
tions for Windows to finding the correct theory to import from an entry. The next largest
area was search, with 3 respondents describing issues relating to finding whether there
is an entry which does what they need. There were four specific asks: one would like
a direct link to the corresponding paper about the entry if applicable; another finds the
HTML presentation weak; yet another finds it difficult to choose between many simi-
lar entries; finally, one user is confused of the scope of the project and what entries
are worthy of entering. Three respondents had no pain point with the AFP and their
responses are not included in the table.

Appendix C. Evaluation of the Current Archive—Study Results 56

Figure C.4: Navigating to Specific Content. Most content is easy to navigate to,
except for specific content in entries. Notably, there is no category in which everyone is
neutral or agrees implying that navigation can be improved in all areas.

Appendix C. Evaluation of the Current Archive—Study Results 57

Figure C.5: Navigating to Pages. There are very different access requirements for
pages of the AFP even though all but two of the eleven pages feature in the sidebar.

Appendix C. Evaluation of the Current Archive—Study Results 58

Figure C.6: Navigating to Pages Related to the Entry. Each entry of the AFP has
several links to pages related to it. “Browse Theories” and “Download” are the most
accessed while “Older Releases” is rarely accessed.

Figure C.7: Clarity of Link Text. Over half the participants mis-click rarely or some-
times.

Appendix C. Evaluation of the Current Archive—Study Results 59

Figure C.8: Design and User Experience. Most users are satisfied with the UI and UX
but are neutral towards a redesign of either.

Figure C.9: Browsing Theories. Almost all participants browse theories and are mostly
satisfied with the experience. However, they are largely unsatisfied with finding contents
within theories.

Appendix C. Evaluation of the Current Archive—Study Results 60

16. What feature would improve browsing theory scripts?

The ctrl-click/cmd-click option of JEdit to find theorems and constants available in the online version.

If I could navigate to the definition of a type or a constant by clicking on it.

Summary/Outline Feature. Goto Definition/Usage Statistics about frequently used theorems.

Search for a lemma and a definition. Click & jump like in jEdit when navigating theory Maybe
something like “sidekick” from Isabelle/jEdit. Maybe a better search.

Linking https://search.isabelle.in.tum.de/ would improve the search experience.

More structure and links in the HTML output.

Links from entities to where they are defined or proved.

Index of lemmas.

A proper search function.

A Sidekick of the theory.

Semantic search.

Ontology and ontology based search.

I don’t know

Maybe something like ”sidekick” from Isabelle/jEdit. Maybe a better search.

Clickable terms with a link that leads to the definition!!! that would be awesome!; Crossreferences;
overlays that show information about terms.

Add some features from jEdit: highlighting of inner syntax, go to definition hyperlinks, search theo-
rems and search constants functionality, text search across all files. Also: option to find all uses of a
constant or lemma.

Table C.6: Browsing Theory Scripts. 16 people responded to this question and half
of them requested the ability to be able to click on links to definitions, as available in
Isabelle/jEdit. Following this was 7 requests for better search capabilities and 5 requests
for SideKick functionality (an outline of the sections, lemmas, etc). One respondent
suggested usage statistics of frequently used theorems.

Appendix C. Evaluation of the Current Archive—Study Results 61

Figure C.10: Ranking Priorities. The ordering of priorities is consistent across the par-
ticipants. Look and feel is a low priority which is congruous with the neutrality towards
a redesign.

Appendix D

Paper Prototypes

Figure D.1: First paper prototype of the AFP home page

62

Appendix D. Paper Prototypes 63

Figure D.2: Final paper prototype of the AFP home page

Figure D.3: First paper prototype of an AFP entry page

Appendix D. Paper Prototypes 64

Figure D.4: Final paper prototype of an AFP entry page

Figure D.5: First paper prototype of an AFP theory page

Appendix D. Paper Prototypes 65

Figure D.6: Final paper prototype of an AFP theory page

Appendix E

Related Entry Graphs

Graphs which visualise the related entries of the redesigned AFP. A line from A to B
implies A is related to B. Each node will only have up to three outgoing edges, but
there is no limit on incoming edges. There is no ordering of the clusters.

66

Appendix E. Related Entry Graphs 67

Appendix E. Related Entry Graphs 68

Appendix F

Screenshots of the Redesigned AFP

At time of submission, the redesigned AFP shown below can be viewed at https:
//carlinmack.github.io/

Figure F.1: Home page of the redesigned AFP

69

https://carlinmack.github.io/
https://carlinmack.github.io/

Appendix F. Screenshots of the Redesigned AFP 70

Figure F.2: Example entry page from the redesigned AFP

Figure F.3: Example theory page from the redesigned AFP

Appendix F. Screenshots of the Redesigned AFP 71

Figure F.4: Search page of the redesigned AFP

Figure F.5: Help page of the redesigned AFP

Appendix F. Screenshots of the Redesigned AFP 72

Figure F.6: Contribution page of the redesigned AFP

Appendix G

Poster

Figure G.1: Honours project day poster

73

Appendix H

Script for the Second Evaluation

Hello, I’m Carlin and today we will be evaluating a redesign of the Archive of Formal
Proofs. Your participation today is purely voluntary, you may stop at any time.

Before we start, I just want to confirm that you’ve read the participation sheet and
signed the consent from. If not, you can do that now. [After they have confirmed/signed]
Is it okay for me to start recording the call now?

In this observation, I am interested in what you think about, as you perform the tasks
you’re asked to do. To do this, I am going to ask you to talk aloud as you work on
the task. What I mean by “talk aloud” is that I want you to tell me everything you are
thinking from the first time you see the statement of the task till you finish the task. I
would like you to talk aloud constantly from the time I give you the task till you have
completed it. I do not want you to try and plan out what you say or try to explain to
me what you are saying. Just act as if you were alone, speaking to yourself. It is most
important that you keep talking and I will prompt you if you are silent for a long period
of time. Do you understand what I want you to do?

Good. We’ll start with a simple practice problem first. I will demonstrate by thinking
aloud while I solve a simple problem: “How many pillows are there in my parents’
house?” [Demonstrate thinking aloud.] Please verbalise like this as you are doing the
tasks. I will not be able to answer any questions, however, please ask them anyway
and I will answer them after the session. Is this clear?

First, I would like you to open a browser and go to the link which I will send in the
chat. [When they confirm have done so] Thank you, could you now share your screen?

https://carlinmack.github.io

I have prepared six tasks for you to do which I’ll send over Teams. For each one please
read it aloud, complete it to the best of your ability and to say ”done” when you feel
that you have completed the task. Lastly take your time, remember that I’m testing the
interface, not you!

1. Visit the “Ordinal Partitions” entry and copy its BibTeX citation.

2. Download the “AVL Trees” entry

74

Appendix H. Script for the Second Evaluation 75

3. Search the AFP for “lemma” then “graph theory”.

4. Find how many submissions “Bohua Zhan” has authored.

5. Find the link to the submission form and return to the home page.

6. View the “Type” and “Instance” theories of the “Mini ML” entry and return to
the home page.

Now that you have completed the tasks, I will send you a link to a survey which I
would like you to answer. You can stop sharing your screen now, and please feel free
to take your time and click around the website if you need a reminder. Let me know
when you have completed it.

Lastly, I’d like you to visit the old website before I ask some final open-ended ques-
tions. I’ll send a link in the chat to www.isa-afp.org

1. Is this an improvement over the current AFP? How so/how not?

2. Does this redesign meet your needs? Is there anything lacking or missing?

This is the end of experiment, thank you so much for your time, it was really appreci-
ated.

	Introduction
	Background
	Formalization of Mathematics
	QED Manifesto

	Formal Proof Assistants
	Mizar
	Isabelle
	Coq
	Lean

	The Archive of Formal Proofs
	Features
	Design
	Directory Structure
	Entry Information

	Previous Work Involving the AFP

	Evaluation of the Current Archive
	User Survey
	Pre-study
	Study

	Automated Audits
	W3C Validation
	Google Lighthouse

	Conclusion

	Design
	Paper Prototypes
	Theme Colour
	Menu
	Home page
	Entry page

	Interactive Prototype
	Design Philosophy

	Implementation
	Site Generation
	Overview
	Python Scripts
	Directory Structure
	Entry Information
	URL Structure

	Search
	FlexSearch.js
	FindFacts Integration
	Autocomplete Suggestions
	Search on Other Pages

	Navigation
	Taxonomies
	Related Entries

	Script Browsing
	SideKick

	Styling
	Validation
	Avoiding Tables for Layout
	Redesign
	Fine-tuning Cohesion

	Hosting
	Autogeneration

	The AFP in Machine Readable Format
	Conclusion

	Evaluation of the New Archive
	User Evaluation
	Design
	Results

	Automated Audits
	Performance
	Maintenance
	Software
	Hugo

	Conclusion

	Conclusion
	Suitability for Production
	Site Generation
	Continuous Integration
	Documentation
	Testing

	Future Work

	Bibliography
	Screenshots of the Current AFP
	Evaluation of the Current Archive—Pre-study
	Design
	Results

	Evaluation of the Current Archive—Study Results
	Paper Prototypes
	Related Entry Graphs
	Screenshots of the Redesigned AFP
	Poster
	Script for the Second Evaluation

