
Enhancing Simulation
Capabilities in Proter

Michal Baczun

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract
Discrete event simulation is a common method for analysing business processes for
the purposes of predictive analytics, optimisation, and exploring possible “what-if”
scenarios. The quality of the simulation depends on the model used to describe the
process and its environment. Task priorities and priority-based scheduling are one
example of an aspect which is hugely beneficial in creating more realistic and accurate
models which is unfortunately often overlooked.

Proter is a unique business process simulator with a focus on prioritised processes
which enables the simulation of such models in way that more accurately represents
how people schedule tasks. However, having originally been built within the narrow
context of a research prototype, Proter lacks a number of features encountered in typi-
cal use cases and tools for general purpose business process simulation.

Our main goal is to enhance Proter towards a fully functional, general purpose business
process simulator, such that it is comparable with existing, state-of-the-art simulators
with the addition of its unique priority-based scheduling features. Through this pro-
cess, we also introduce a concrete set of criteria to evaluate and compare business
process simulators.

This thesis presents a collection of essential criteria identified as part of a survey of
BPS literature, and a practical evaluation of Proter against existing BPS tools using a
handmade dataset of practical examples that test for each of the essential criteria.

i

Acknowledgements

I would like to thank my supervisor, Dr Petros Papapanagiotou, for his invaluable
guidance and mentorship throughout this project.

I would also like to thank my family for their support and motivation.

ii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Methodology . 2
1.3 Project Goals . 3

2 Background 4
2.1 Business Process Modelling and Simulation 4
2.2 Modeling Notations . 6

2.2.1 BPMN . 6
2.3 Business Process Simulation Tools 8

3 Proter 9
3.1 Architecture . 9
3.2 Example Usage . 11
3.3 Priorities and Scheduling . 12

4 Evaluating Simulators 13
4.1 Identifying Essential Capabilities . 13
4.2 Initial Evaluation of Proter . 16

5 Supporting Essential Capabilities 18
5.1 Arrival Process and Distributions . 19

5.1.1 Design . 19
5.1.2 Implementation . 19

5.2 Replications . 20
5.3 Warm-up Period and Confidence Intervals 21

6 BPMN Integration 22
6.1 Design . 22
6.2 Challenges . 23
6.3 Implementation . 24

7 Evaluation of Proter 27
7.1 Comparison with Existing Tools . 27

7.1.1 Obtaining Results . 28
7.1.2 Discussion of the Results . 30

iii

7.1.3 Updated Evaluation of the Tools 34
7.2 Extending the Simulator Criteria . 34

8 Conclusion 36
8.1 Project Outcomes and Critical Evaluation 36
8.2 Future Work . 38

8.2.1 Plan for Minf Project Part 2 38

Bibliography 39

A Evaluation Results 42
A.1 Evaluation Examples Dataset Reference 42
A.2 Results . 43

iv

Chapter 1

Introduction

Simulation is a particularly useful tool towards understanding a complex system and
examining how it behaves. Simulation can be used to gain insight into an existing or
proposed situation, to test what-if hypotheses, to see how a system will behave over a
longer period of time, or to test a scenario which is too expensive or too dangerous to
try out in reality. This is a very common and powerful application of computing, and
it is used in a wide variety of disciplines and fields of study.

Business Process Management (BPM) is a particular discipline in which simulation
can be very useful. BPM includes various activities such as modeling, discovery, au-
tomation, measurement, and optimisation of operational business processes in support
of enterprise goals [34, 20]. In this field, Business Process Simulation (BPS) is a
particularly useful tool which can enable BPM professionals to analyse and optimise
business workflows. BPS can be used to consider many potential scenarios for “What-
if” analysis, in support of decision making, to identify bottlenecks in a system, or for
prediction, making it a very versatile and useful technique.

A number of BPS tools exist for this purpose, but the functionality and capabilities
of these tools varies greatly. In this project we present, develop, and evaluate the
functionality of our own business process simulator, named Proter [26]. Proter is a
very capable and unique tool for discrete event simulation, with novel features that
can enable a more realistic simulation of business processes. In our effort to perform
a comparative evaluation of these features, it is made obvious that Proter lacks some
common features which are seen in many other tools. This thesis is a study of how
Proter compares to other simulators and what we can do to improve it.

1.1 Motivation

As mentioned, BPS is a useful technique which is commonly used in BPM in order to
gain insight into business processes or trial possible scenarios, especially where this
it is infeasible in real life. The quality and accuracy of BPS based analysis is directly
affected by the level of abstraction and realism that can be achieved in the simulation
model and associated tools.

1

Chapter 1. Introduction 2

Most business process simulators do not place enough consideration into priorities.
In reality, different activities have a different priority, even if this is sometimes im-
plicit.For instance, in the real world if a very important order is placed at a manufactur-
ing facility then it would likely be assembled as soon as possible, or if a very important
customer enters your store you might try to get to them as fast as you can, potentially
ahead of others. As a surgeon, if you know that a patient in critical condition will arrive
on an ambulance in half an hour, you would not start a new operation that will take 3
hours to complete, but instead, to avoid downtime, you might take a few minutes to
check on your other patients. This is what Proter does, instead of a greedy approach
where as many tasks are started here-and-now, it puts the higher-priority tasks first and
ensures these are not delayed in favour of lower-priority ones.

This prioritised approach of Proter is closer to how processes are handled in the real
world, and it gives users of the simulator an additional way of expressing how their
processes work and how they need to be simulated. This extra degree of control can be
very advantageous, and we would like for Proter to be accessible for researchers and
BPM professionals so that they can utilise priorities effectively in their simulations.

There are a few obstacles which might discourage interested parties from using Pro-
ter, and removing these obstacles is the focus of this thesis. As we discover, there
are a number of features which are commonplace among other simulators which were
missing in Proter, some of which turn out to be very essential for BPS. Furthermore,
the majority of BPS tools use the Business Process Modelling Notation (BPMN) as
the language to describe the workflow models that they simulate. This is a common
notation used across the BPM discipline and is sometimes seen as preferable to alter-
natives due to its familiarity and widespread usage. This is why in this project we set
out to add some essential functionality to Proter and to extend it to be compatible with
BPMN models.

1.2 Methodology

To our knowledge there are no standardised criteria or functionality that should be
provided by a business process simulator. Because of this, the first course of action
is to identify what features are considered to be the most important in the literature,
and how Proter stacks up against these expectations especially when compared to other
simulators. This compiled set of criteria also serves as a useful output of this thesis
and could be used in future work for comparing and evaluating BPS tools.

From there, the most indispensable of these criteria are implemented in Proter. We also
implement support for using BPMN models in Proter due to their widespread usage in
BPM and in other BPS tools.

Once these features are implemented we are able to compare Proter with other sim-
ulators using the exact same BPMN models for simulation. The new simulator func-
tionality which we add is essential in enabling Proter to perform the same simulation
scenarios as other tools. The evaluation of Proter asserts that it can replicate the same
results as existing tools and allows us to discuss the interesting differences in the tools’
functionality and output, with a particular focus on Proter’s unique features.

Chapter 1. Introduction 3

1.3 Project Goals

In summary, this project set out to achieve the following goals:

1. Identify a set of the most important simulation criteria based on tool surveys and
other BPS literature (Chapter 4).

2. Implement missing essential simulation capabilities into Proter (Chapter 5).

3. Implement BPMN compatibility, a standard feature of many simulators which
also enables us to compare Proter to existing tools using the same BPMN models
(Chapter 6).

4. Evaluate Proter’s capabilities by comparing it with existing popular BPS tools
on the basis of the identified simulation criteria (Chapter 7).

5. Extend the list of proposed essential simulation criteria based on the novel fea-
tures regarding prioritised processes (Chapter 7).

We begin by introducing some of the necessary background and context of this project
in the next chapter. This is followed by a detailed discussion of how we approached
each of our goals in their respective chapters.

Chapter 2

Background

In this chapter we discuss the context of simulation within BPM and introduce the
modeling notations used in this field before talking briefly about some of the existing
BPS tools.

2.1 Business Process Modelling and Simulation

Van der Aalst is one of the most influential authorities in the fields of business process
management, with a long history or highly recognised publications in the field. His
“Business Process Simulation Survival Guide” [30] stands out as one of the most useful
and comprehensive reviews of BPS and relevant concepts and techniques.

According to the Survival Guide, the possible motivations for using a simulation are:

• Gaining insight in an existing or proposed future situation.

• Running a real experiment might be too expensive.

• Real experiments may be too dangerous or unrepeatable.

Business Process Management (BPM) is a discipline which includes various activi-
ties such as modeling, discovery, automation, measurement, and optimisation of opera-
tional business processes in support of enterprise goals [34, 20]. There exists a number
of BPM tools and software to support such activities, but BPM is fundamentally a set
of methodologies for managing and transforming business operations while the soft-
ware is considered auxiliary [9]. Nevertheless, Business Process Simulation (BPS)
has emerged as one of the most established analysis techniques in BPM [30].

BPS refers to discrete event simulation of business processes within the field of BPM.
In BPS we are interested in simulating workflows which consist of tasks that take some
time to complete and potentially require the use of certain resources. The advantage
of BPS over alternatives such as Markov Chains is that it tends to be flexible, easy to
understand, and capable of answering a wide variety of questions. It can be used for a
variety of purposes including determining key performance indicators such as finding

4

Chapter 2. Background 5

average queuing times or resource utilization, trialling possible “what-if” scenarios,
predictive analytics, and decision support [30].

Through the practice of BPM we might have a model, or workflow, which describes
a business process. A BPM workflow model, typically defined using some modelling
notation, describes the appropriate sequence of tasks and decisions for a particular
case. Task dependencies and sequences can vary a lot, but there exist a number of typ-
ical workflow patterns [32] that can be used to evaluate the expressiveness of different
modelling languages.

If we wanted to use BPS to learn more about this workflow, we would need to also
describe the environment it operates in, and the relevant aspects of its domain. Each
task in the workflow may require specific resources (for example equipment, machin-
ery, specialist workers) and take some amount of time to complete. The duration of the
task might be constant, or it could be drawn from a probability distribution. Resources
should have certain roles, capacities, and a schedule [27], and tasks may require mul-
tiple resources to run.

The environment may consist of different types of resources with different capacities.
When a workflow is simulated, we go through each of its tasks, assign the appropriate
resources from the environment and execute it in virtual, discrete time. As we execute
multiple interleaving workflow cases with different tasks and resource requirements,
we start observing the delays, waiting times and bottlenecks caused by the limited
available resources. A scheduling strategy becomes essential for deciding which tasks
can begin at any given moment. For example, most simulators use a basic first come
first served principle for assigning tasks to resources, and if a certain required resource
is currently busy then the task cannot begin and it is saved until later. This aspect of
BPS research can lead to subjects such as queuing theory and job shop scheduling.

A good BPS study should involve the following [30, 14]:

1. Arrival process - This is the process which dictates how new instances arrive
in the simulation. For example if a workflow describes the journey of how a
product for a specific order is manufactured, then the arrival process will describe
the frequency with which new orders arrive at the facility, and the simulation
will include a constant flow of old orders being completed and new orders being
started. This is how to queuing, bottlenecks, and competition for resources might
arise in the system.

2. Warm-up period - This is typically a designated period of time at the beginning
of a simulation which is ignored in the final results. This is in anticipation of the
way that resource utilisation, queuing, or the number of instances currently being
handled might take some time to reach their true level when we start simulating
from an empty system.

3. Replications - Also known as sub-runs, this refers to either running a simulation
multiple times or splitting a simulation into multiple segments, and is necessary
in obtaining confidence intervals.

4. Confidence intervals - These should be calculated for any desired Key Per-

Chapter 2. Background 6

formance Indicator by using the results of many replications and through the
application of the central limit theorem.

The effectiveness of BPS depends on the granularity of the model. It is impossible to
model the entire domain and choosing the appropriate level of abstraction can be hard:
Should the worker operating the machine be modeled as a resource? Should we model
that they work slower right before lunch? If their mood affects their productivity,
maybe we should model the factors that affect their mood, like weather and personal
life? Inadequate modelling of human actors as resources is one of the most common
pitfalls in simulation, according to the Survival Guide. Other typical pitfalls it identifies
include using the wrong level of detail which can lead to over-complicating of the
model, forcing the model to fit by blindly tweaking parameters (instead of finding
the reason why the model is not quite right), and omitting replications which leads to
incorrect assumptions about confidence intervals for key performance indicators. This
is not helped by the fact that many commonly used BPM simulation tools lack certain
capabilities, like warm-up periods, multiple resource roles, and replications [24]

2.2 Modeling Notations

Business process modeling notations are integral to BPM. With a modeling notation
one can visually represent a workflow, which is useful not only for simulation but also
for describing and communicating business processes to other people. Many types of
notation exist, but the two most commonly used ones in the business process simulation
are BPMN and Petri Nets.

Petri nets [17], can be used to model and analyse all kinds of processes. In BPS they
are the most common alternative to BPMN, featuring in popular simulators such as
CPN Tools [12]. In this thesis we focus on BPMN over petri nets due to the popularity
and widespread usage in BPM and in the vast majority of popular business process
simulators.

2.2.1 BPMN

BPMN (Business Process Modeling Notation) [18] was created with the primary
goal of providing a notation which is understandable by both business and technical
stakeholders. BPMN defines Business Process Diagrams (BPD) which are based on a
flowcharting technique. A basic BPMN diagram can be seen in Figure 2.1.

Figure 2.1: A basic BPMN model.

Chapter 2. Background 7

The basic elements of a BPMN diagram are:

• Flow objects, of which there are three types:

– Events, denoted by a circle, represent the start and end events in a process,
and external variables or stimuli along a path.

– Activities, represented by a rounded rectangle, denoting the tasks that need
to be carried out.

– Gateways, represented by a diamond shape, and can be used to express
different decisions in a process as well as forking, merging and joining of
paths.

• Connecting objects, represented by different types of arrows, which are used to
connect flow objects together.

With these fundamental components, one can express the sequence of tasks involved
in a workflow, including task branching and parallelism. Pools and swimlanes can also
be used in a diagram to organise activities into separate visual categories, which can
represent different actors in a system or different organisations interacting with each
other- it is also common practice to not model external organisations (whose processes
may not be known) by leaving their pool blank, and only using dashed connecting
objects (arrows) to indicate messages being sent to and from the company.

The basic BPMN activities include user tasks (also known as human tasks), service
tasks, script tasks, and abstract tasks. The choice of task type usually has a mean-
ingful impact for BPM applications, however in BPS these are usually all treated the
same.

The most common types of gateways include parallel and exclusive gateways. Exclu-
sive gateways are used to model a decision or a fork in the workflow where only one of
the available outgoing routes is taken, while parallel gateways model for parallelism,
where every one of the outgoing paths is taken. Other types of gateways exist to, for
example various types of event-based gateways, but these are slightly more rare [36].

The extended BPMN language has a large variety of expressive features, including
a diverse range of intermediate events such as messages being received, timers, and
errors, various types of tasks, sub-processes and call activities, event-based gateways,
associations, data objects, and much more. This can lead to a lot of complexity and
diversity, so the BPMN specification comes with some best practices, guidelines and
examples. Despite this, as shown by M. zur Muehlen and J. Recker [36], BPMN
diagrams are not complex in practice, as on average a BPMN model uses just 9 distinct
constructs, with a large portion of models using only the most fundamental constructs
such as tasks and sequence flows.

As shown by P. Wohed et al [35], BPMN lacks a lot of expressive power when it
comes to process modelling for the purposes of simulation. Some workflow patterns
cannot be represented, while others have multiple contrasting ways of being modeled,
but the most notable shortcoming is the lack of support for resource representation.
Pools and swimlanes, which represent parties and roles, are the closest BPMN comes

Chapter 2. Background 8

to expressing resource requirements, but the vast majority of resource patterns have no
way of being shown.

2.3 Business Process Simulation Tools

There exists a wide selection of BPS tools, with varying capabilities and target users.
A BPS tool is usually based on a modeling notation like Petri nets or BPMN. BPM
tools are of particular relevance in this project, but some popular “general purpose”
process simulation tools have also been considered below.

In the literature, the term “general purpose simulator” tends to refer specifically to
CPN Tools [12] and Arena [13], and it seems to be used to distinguish them as tools
which have been made for use in many disciplines outside of BPM, and as such they
do not use BPMN. These are two of the most known simulation tools and they ap-
pear frequently in various surveys. CPN Tools is a general purpose coloured Petri
net [11] framework with simulation functionality and Arena is a discrete event simu-
lator which uses its own modelling language. Both are widely acknowledged as be-
ing strong simulation tools with good modeling and simulation functionality, but are
sometimes critiqued as being hard to model with and “profound knowledge” of their
modelling solution [10]. This is occasionally listed as a major disadvantage of these
tools when compared to the more familiar BPMN-based BPS simulators [25].

There exist many business process simulation tools. Some of the most known tools
include Adonis [7], BIMP [19], Bizagi [5], Bonita [6], and Visual Paradigm [16]. The
tools listed here, like most BPM simulation tools, are BPMN-based. There are many
differences in the capabilities of these tools [23, 25], but in general they tend to lack
some of the features of the general purpose simulators, such as replications and built-
in support for confidence intervals. The biggest advantage that these tools have over
the general purpose tools like Arena and CPN is that they are easier to use and do not
require “profound knowledge”[10] since they use BPMN. Unfortunately many of these
tools are not open-source and do not have free versions, making them inaccessible for
research and comparative evaluation. The common pattern is that these tools tend to
originate as BPM tools which are extended with simulation capabilities, as opposed
being purpose-made simulators [23], and this can result in poorer support for criteria
like replications or resource roles .

Chapter 3

Proter

The Proter simulator was originally created as part of the WorkflowFM platform.
WorkflowFM is a logic-based framework for formal process modelling and composi-
tion [21], and it consists of many subsystems ranging from the workflow modelling
tool to a business process management dashboard. It uses a formal reasoning approach
to process composition, resulting in correct-by-construction workflow models that can
be executed asynchronously. WorkflowFM has been used in collaboration with manu-
facturing partners [22] and the NHS [2].

The simulation engine, Proter, is one piece of the WorkflowFM framework. Proter
was once embedded as part of WorkflowFM, but in recent developments it has been
extracted into a standalone unit, and made open-source. Proter is used to simulate
user-defined models by concurrently running multiple discrete events in virtual time
while respecting resource constraints. Given information about a workflow, such as the
sequence of tasks involved, the duration and cost of tasks, and resource requirements,
Proter can simulate the workflow by scheduling tasks to use the available resources for
the duration that the task is live throughout virtual time. Proter then produces data files
summarising the entire simulation, and a visual timeline which is helpful in visualising
how the simulation transpired.

Proter is also a very unique simulator in that it places an emphasis on task priorities,
whereby features such as prioritised scheduling of tasks and multiple resource allo-
cation by priority are at the core of its functionality. In this chapter we give a brief
overview of the Proter architecture and of these unique features.

3.1 Architecture

The basic software architecture of Proter consists of three key components: the coor-
dinator, the scheduler, and the simulation instance. The interactions between these
components are summarised in Figure 3.1.

In order to simulate a workflow, Proter needs information about the tasks involved.
This includes things like the order of the tasks (control flow), the resources they need,
their duration, and so on. This information is handled by the simulation instance,

9

Chapter 3. Proter 10

Figure 3.1: Annotation

which interacts with the coordinator by sending task information when it is needed. For
example, when the coordinator messages the instance that a certain task has finished,
the instance needs to then respond with the tasks that should start next. There can be
many task instances during a single simulation, all talking to the same coordinator.

The coordinator primarily keeps track of virtual time through a stream of discrete
events. In each timed event, it communicates with the simulation instances to find out
which tasks are waiting to be started at the current virtual time and it attempts to start
tasks by consulting the scheduler. Upon the event of a task finishing the coordinator
can message the simulation instance in order to receive the next tasks. The coordinator
has an internal event stream, and it progresses through virtual time by dealing with the
events as they come up. The event stream can contain the following events:

• FinishingTask events - these events describe the time at which a certain task
will complete. The task information is received from the simulation instance,
and it begins with the permission of the scheduler, at which point the finishing
task event is placed on the event stream to signify the time when the task will
end.

• StartingSim events - this event contains a reference to a simulation instance.
The coordinator will initialise the instance at the time of this event, therefore this
enables us to plan for simulation instances to begin at some point in the future.

• TimeLimit events - this event marks the maximum duration of the simulation.
If the time limit event is reached in the event stream, everything is forced to stop.
Note that the simulation can also end if the event stream becomes empty, so a
time limit event is not always necessary.

Finally, the scheduler determines which tasks can start given the current resource avail-
ability. It keeps track of which resources are busy or free, and by using this information
it selects which of the currently available tasks should begin. If a task cannot start right
away it is scheduled to start at some point in the future. The scheduler uses task prior-
ities to intelligently schedule task starting times, and we discuss this in more detail in
section 3.3.

Chapter 3. Proter 11

3.2 Example Usage

The example shown below demonstrates a typical usage of Proter. Figure 3.2 shows a
code extract in Scala which defines a simulation instance, and 3.3 shows the resource
timeline which results from simulating this instance. This example uses the internal
Flows structure to define the workflow, which is a tree-like structure loosely based on
BPMN gateways, and it serves as a quick and fairly easy way to define simulation
instances.

Figure 3.2: Annotation

Figure 3.3: Annotation

On lines 1, 2, and 3 in the code extract we define tasks, which will become leaf nodes
in the Flows tree. We can see that each task is given a name (e.g. “task1”), and a
duration (in this case each task has a constant duration of 2). In addition, each task
has a resource assigned to it, and resources are being referenced by their unique names
(e.g. “r1”).

Next, our Flow is defined on line 5. The tasks are combined into a single Flow using
operators like “And” and “Then”. In this example the sequence of tasks used is task1
> (task2 + task3), which means that task 1 starts first, and once it completes
both task 2 and task3 can begin in parallel. Internally, this would result in an Flows tree
where a “Then” operator is the root node, with “task1” as the left child and an “And”
operator as the right child. Finally on lines 7 and 8 we make a simulation instance from
this Flow, and then send it to the coordinator.

Chapter 3. Proter 12

(a) Timeline with prioritised scheduling (b) Timeline without prioritised scheduling

Figure 3.4: Resource timeline example with/without prioritised scheduling

Figure 3.3 shows the resulting timeline for this example. Because of the Flow we de-
scribed it might seem that task 2 and task 3 should run in parallel after task 1 completes,
but in reality they run in sequence. This is because both of these tasks use resource r2,
so one task can start but the other must then wait for this resource to become available.

Only one simple instance is involved in this example, but in reality there could be
many instances being simulated in the same environment, all of which compete for re-
sources. Furthermore the tasks could have costs and durations drawn from probability
distributions, different task priorities, and multiple resources.

3.3 Priorities and Scheduling

Priorities are at the core of Proter. As mentioned previously, the scheduler decides
which available task can start in order of priority, and in case there is a conflict for a
resource the task is scheduled to start as soon as the resource becomes available. If
some high-priority task is scheduled at a point in the future to use a resource which is
currently free, the scheduler knows that a low-priority task which uses that resource
cannot begin unless it can finish in time, because this would result in further delaying
the high-priority task.

The effect that this has is most clear with an example. Consider three tasks:

• Task1 has a duration of 2, requires resource r1, and has high priority.

• Task2 has a duration of 3, requires resources r1 and r2, and has medium priority.

• Task3 has a duration of 4, requires resource r2, and has low priority.

Given these, consider the flow task1 + task2 + task3, so all 3 tasks can run in
parallel if not for resource conflicts. Figure 3.3 shows the result between the Proter pri-
oritised scheduler (left) versus a more typical greedy first-come-first-served scheduler
(right). With no consideration for priorities, the greedy scheduler finishes faster but
task 2 is delayed by task 3 even though task 2 has a higher priority. With prioritised
scheduling task 3 is delayed even though all of its required resources are free at the
beginning, such that task 2 can start sooner. If task 3 was short enough that it could
finish before task 2 could ever begin, the Proter scheduler would be able to slot it in.

Chapter 4

Evaluating Simulators

As mentioned in chapter 2, there exist many different simulation tools, and they can
have vastly different capabilities and functionality. Naturally, selecting which tool to
use will depend on the requirements that the user will have and the use cases of the
simulator, yet one would think that the standard requirements of such simulation tools
have been well defined. However, surprisingly, there is no clear-cut consensus on stan-
dard essential capabilities of BPM simulation tools in the literature. To our knowledge,
only a handful of papers [23, 25, 10] attempt to survey some of the existing popular
simulation tools, however the criteria which they use to evaluate tools varies a lot.
Since some of the goals of this thesis include evaluating Proter alongside other sim-
ulation tools and implementing some important but previously missing functionality,
it is imperative to first identify what simulator capabilities considered essential or ex-
pected, and to this end we rely on the existing surveys and some other papers on the
topic of business process simulation.

4.1 Identifying Essential Capabilities

The first survey by M.H. Jansen-Vullers and M. Netjes [10] evaluates a number of tools
using a wide variety of criteria. In contrast to our own focus, this particular survey is
dedicated to evaluating the usability and presentation of the results in the tools, such
as “animations” or the ability to replay simulations, with relatively little analysis of
the technical capabilities of each tool. The most useful criteria as used by this paper
include the importance of supporting standard workflow patterns, the resource and data
perspective, and support for distributions.

The paper by Peters et al. [25] has a very useful analysis of simulation engines as part
of their work on an unnamed prototype. They use a number of important functional cri-
teria in their evaluation, including support of workflow patterns, distributions, resource
perspective, and most notably a section named “Simulation” that includes warm-up pe-
riods, replications, and confidence intervals as advocated for by van der Aalst [30, 31]
. Most of the criteria which they used is also applicable in this project, with the excep-
tion of the advanced resource constructs which they identify, such as queuing strate-
gies, allocation strategies, and separation of duties. These advanced constructs are an

13

Chapter 4. Evaluating Simulators 14

interesting perspective into the way resources are utilised in simulations but they ap-
pear to be selected specifically to bolster the prototype which they present, and the
remainder of the paper goes on to focus on these constructs and the prototype. A very
insightful takeaway from this paper is the comment about BPMN support: “General
purpose simulation tools are less in favor than the business process simulation tools,
which are easier to use and do not take a steep learning curve to model processes,
since they use the BPMN modeling language”. By “general purpose simulation tools”
they refer specifically to Arena [3] and CPN tools [29, 12], which are not targeted at
a specific industry unlike the business process management oriented tools which we
consider most often.

The survey by J.L. Pereira and A.P. Freita [23] covers some similar topics to Peters
et al., including the resource perspective and features such as replications, but they
also evaluate other important criteria including context definition, arrival rates, and
branch probabilities. Some of the criteria they cover, such as the inclusion of specific
probability distributions, are useful from the perspective of an end user, however in the
case of this thesis and from the stance of evaluating the tool’s capabilities this level of
detail is not needed, since we choose to focus on more general capabilities as opposed
to specifics like the types of distributions supported.

Much of the work by van der Aalst presents a good foundation for business process
simulation. In his Survival Guide [30] he goes into depth discussing the importance of
sub-runs and a warm-up period for obtaining confidence intervals, and has an informa-
tive perspective on resources such as considering human actors who might have shifts,
take days off, or have shifting levels of efficiency throughout the day. Van der Aalst
also established standard workflow patterns such as parallelism and branching [33],
which have been used to evaluate simulators in papers such as the one by Peters et al.
[25].

From the literature discussed above, we have identified the following essential criteria:

1. (Basic Flow) Sequence, does the tool support the modelling and execution of a
sequence of tasks?

2. (Basic Flow) Parallelism, does the tool support parallelism of tasks or sequences
of tasks? The BPMN parallel gateway is the analogous modelling construct for
this criterion.

3. (Basic Flow) Branching does the tool support branching within a workflow?
The BPMN exclusive gateway is the analogous modelling construct for this cri-
terion.

4. Starting Time, if the starting time of instances in the simulation is measured
and recorded.

5. Transfer Time, if the transfer time if instances in the simulation is measured
and recorded. This is the time spent “moving” the instance between resources,
for example moving a part between machines in a workshop.

6. Waiting Time, if the waiting / queuing time of instances in the simulation is
recorded. This is the time elapsed while a task is delayed due to some resource

Chapter 4. Evaluating Simulators 15

being unavailable.

7. Processing Time, if the time spent processing instances is measured and recorded.
This is the time that the tasks involved in the instance consume directly while
they are completed, as opposed to the waiting time.

8. Arrival Distributions, if the tool supports the use of probability distributions to
model the arrival rate of new instances into the simulation, for example using
a negative exponential distribution to model the rate at which customers enter a
store.

9. Duration Distributions, if the tool supports for task durations to be expressed
using a probability distribution.

10. Branch Probabilities, if the tool allows the usage of probabilities to specify the
likelihood of following different branching paths in the workflow.

11. Resource Requirements, if the tool allows for tasks to have resource require-
ments.

12. Cost per Activity, if the tool supports, measures, and records the costs associ-
ated with executing a task.

13. (Resources) Capacity, if resources in the simulation can have a certain capacity,
for example if a machine in the workshop can operate on multiple items at once.

14. (Resources) Roles if the resources in the simulation can have roles, whereby a
task may require a resource with a certain role as opposed to a specific resource.
For example consider a workshop with three different lathes where any of these
machines is equally suitable for a task requiring the use of a lathe.

15. (Resources) Schedules if the resources in the simulation can have schedules, for
example the ability to model the shifts of workers.

16. (Resources) Cost of Usage, if resources can have an associated cost of usage,
and if the simulation measures and records these costs.

17. (Resources) Multiple Roles, if resources can have multiple roles (see (Resource)
Roles).

18. (Simulation) Duration, if the tool measures the duration of the simulation

19. (Simulation) Warm-up Period, if the tool supports the designation of a warm-
up period in the simulation. A warm-up period is often included in simulation to
account for the initial growth period before the simulation settles into a from of
steady-state, where resources are still not fully used and the number of instances
being simulated has not reached saturation.

20. (Simulation) Replications, if the tool allows the usage of replications, also
known as sub-runs. This refers to either distinct re-runs of the simulation or
the splitting of the simulation runtime into discrete chunks (the first of these
could even be specified as the warm-up period). These are essential in obtaining
statistically correct confidence intervals based on the central limit theorem.

Chapter 4. Evaluating Simulators 16

Criteria BIMP Bizagi BPSim Proter

Sequence + + + +
Parallelism + + + +
Branching + + + +

Starting Time + + + +
Transfer Time - - + -
Waiting Time + + + +

Processing Time + + + +
Arrival Distributions + + ? -

Duration Distributions + + - +
Branch Probabilities + + + +

Resource Requirements + + + +
Cost per Activity + + + +

Capacity + + + -
Roles + + + -

Schedules + + + -
Cost of Usage + + + +
Multiple Roles - - + -

Duration + + + +
Warm-up Period - - - -

Replications - + ? -
Confidence Intervals - - - -

Table 4.1: Evaluation of simulation engines using essential criteria

21. (Simulation) Confidence Intervals, if the tool has built-in support for calcu-
lating the confidence intervals of Key Performance Indicators (KPIs) using the
results of replications.

Table 4.1 evaluates some popular simulation engines, where + and - indicate if a fea-
ture or present or missing. The evaluation of these simulators is sampled from the sur-
veys and other papers discussed previously, and the symbol ? is used in cases where
these papers disagree on the presence or absence of a feature.

4.2 Initial Evaluation of Proter

Table 4.1 also includes an evaluation of Proter prior to any of the implementation in-
volved in this thesis. A full and detailed evaluation of Proter after the implementation
can be found in Chapter 7. As indicated in the table, Proter supports the standard work-
flow patterns (Sequence, Parallelism, Branching), as well as measuring various aspects
of the simulation such as processing time and waiting time. Elements of randomness
such as duration distributions and branch probabilities are supported, and the cost of a
task and cost of usage of a resource can both be specified.

As expected, Proter had many missing criteria. The most important missing criteria
gneraly fall under the category which Peters et al. [25] labeled simply as “Simulation”,

Chapter 4. Evaluating Simulators 17

which encapsulates capabilities such as Warm-up Period, Replications, and Confidence
Intervals. In reality the problem in Proter is a bit more deep-rooted than simply missing
these features: Proter does not have an arrival process at all.

Van der Aalst et al. [31, 30] present the arrival process as an absolute essential, and
it is the foundation of their argument for the importance of the other criteria such as
Warm-up periods and replications. The arrival process describes the rate at which
new simulation instances enter the system, such as the rate of customers in a store or
the rate of new jobs in a manufacturing facility. In past work with WorkflowFM many
instances of a simulation would be set to start at different times, and this could be com-
puted externally to the Proter simulation engine. Within Proter, however, simulation
instances can only be assigned individually at specific times, and there is no process
for assigning instances at a set rate or even for generating them. Since there are no ar-
rival processes, features like warm-up periods and replications cannot be implemented.
Also for this reason the “Arrival Distributions” criteria is not met. This feature stands
out as a very common and essential requirement of simulation tools, and in this regard
Proter falls behind when compared to other business process simulators.

The other major missing capabilities include resource capacity, roles, and (resource)
schedules. These, and other resource-related criteria, are sometimes referred to as the
resource perspective, and this is a very interesting area of simulation which is often
overlooked or underestimated by simulators[30]. much of the “resource perspective”
criteria are very desirable in a simulator and we will return to tackle this topic in future
work, however the above criteria were selected as the focus of this project due to
how essential they are for simulation. In particular the arrival process is absolutely
indispensable, given how implicit it seems to be in the literature and the fact that all
other simulation tools have this functionality.

One other feature which is very widespread and seemingly indispensable for business
process simulation is support for BPMN models. The Survival Guide [30] states that
common modeling notations such as BPMN are preferred over proprietary solutions
due to their familiarity, Jansen-Vullers and Netjes [10] state in their survey that BPMN
simulators are proffered since they do not require “profound knowledge” to be used,
and Peters et al. [25] point out that simulators using BPMN are preferred because they
are easier to use and do not require a steep learning curve. Due to this massive popu-
larity of BPMN models, and due to the fact that they are supported by the majority of
business process simulators, we have decided that this is another essential component
which must be added to Proter so that it is more accessible to a BPM audience, and
easier to compare against other existing tools.

In the next two chapters we discuss the implementation of the essential criteria identi-
fied above, and the support for BPMN models.

Chapter 5

Supporting Essential Capabilities

As we observed in Chapter 4, there are a number of criteria which appear to be con-
sidered essential throughout simulation tools, yet are missing in Proter. As part of the
goal of this thesis we set out to implement the most essential of these missing criteria
with the aim raising Proter to be on-par with the general expectations for a business
process simulator as seen throughout the literature.

Based on the missing criteria as shown in Table 4.1, the following criteria were origi-
nally selected for this project as being the most essential:

1. Arrival Process

2. Arrival Distributions

3. Replications

4. Warm-up Period

5. Confidence Intervals

Notice that the “arrival process” feature is not an item in Table 4.1, since curiously the
existing literature does not include this in their own evaluations - perhaps they thought
it was implicit for all business process simulators - however it is clear that this is an
absolute essential and this feature forms the foundation for all the other elements in
the above list.

The above criteria are presented in order of importance, and they were worked on in
this order during the project. We prioritise the implementation of the essentials first,
followed by the most common criteria. This order is based on the frequency with which
other simulators implement the criteria. From the literature discussed previously we
find that confidence intervals and warm-up periods are particularly rare among business
process simulators. A potential justification of this is that these can be calculated
externally by the data analyst given the output of the simulation. Additionally there
is a large breadth of potential KPIs which the analyst may be interested in, many of
which might require additional calculations prior to obtaining confidence intervals and
so supporting KPIs in anticipation can be extremely challenging and support for an
exhaustive set of KPIs might be impossible.

18

Chapter 5. Supporting Essential Capabilities 19

5.1 Arrival Process and Distributions

5.1.1 Design

Within Proter singular simulation instances are typically added to the coordinator using
one of its methods such as addSimulation or addSimulationNow. These methods
have the effect of placing a new event on the coordinator’s event queue, which is re-
sponsible for starting a new simulation case. Once the coordinator eventually reaches
this event, it will communicate with the simulation instance, sending and receiving in-
formation about the tasks involved as virtual time progresses, thereby simulating this
instance. For an arrival process, we would like to maintain the same pattern of interac-
tion with the coordinator, such that we only send information about the process to the
coordinator once at the beginning and then the coordinator interacts with the process
itself during simulation.

The arrival process needs to consist of the following:

1. An arrival rate.

2. A simulation instance generator.

The arrival rate, also known as the arrival distribution, will need to return the length
of time between two separate instances from the arrival process, and the simulation
instance generator will be responsible for providing these fresh instances for the coor-
dinator to use.

5.1.2 Implementation

At its core the arrival process is a new event which can appear in the coordinator’s
event stream. This event extends the existing DiscreteEvent trait and consist of the
time at which it occurs, the arrival rate associated with the process, and the simulation
generator. Similar to other events in Proter, it is eventually reached and handled by the
coordinator once virtual time progresses. When this happens, other events tend to call
a certain method before being removed but the arrival process event is self-replicating,
in that by handling this event a new identical arrival process event is placed onto the
coordinator’s event stream.

Figure 5.1: Code extract showing how the arrival process event is handled in Proter

An extract of code showing how the arrival process event is handled by the coordinator
is shown in Figure 5.1. Our new event consists of a time t, an arrival rate, and a
generator, as seen on line 1. We make a duplicate of this event which is placed back
onto the event stream on line 2, and this new event has a new time which is sampled
from the arrival rate, so through this process subsequent events will occur at different
future times. Lastly, on line 3 we start a new simulation instance at the current virtual

Chapter 5. Supporting Essential Capabilities 20

time. The simulation generator associated with this arrival process provides the new
simulation instance, and from here on out the coordinator and instance proceed to
interact as usual.

The rate in Figure 5.1 refers to an instance of the new ArrivalRate class, and is used
to obtain the time at which the next event should occur using the next method. Ran-
dom numbers can be used in order to sample from a random distribution, for example
in the following equations which show how the result in equation 5.5 was obtained
which allows us to get a time interval between the arrival of two instances as modeled
by the negative exponential distribution function:

Density function:

fx(t) = λe−λt (5.1)

Cumulative distribution:

Fx(t) = 1− e(−λt) (5.2)

Given a random number r, 0 ≤ r ≤ 1:

r = Fx(t) (5.3)
⇒ t =−ln(1− r)/λ (5.4)
⇒ t =−ln(r)/λ (5.5)

The negative exponential distribution is the most common distribution used for simula-
tion due to its link to its ties to possion arrival processes and fitness to human patterns,
however other distributions, such as normal or gamma, are sometimes used too.

The new SimulationGenerator class provides an interface which is implemented by
various sub-classes such that given necessary data in the constructor they are able to
return new simulation instances. A handful of basic simulation generators are imple-
mented for basic single-task, flow, and BPMN (see Chapter 6) simulations are pro-
vided, but one may require more complex behaviour from their generator, such as
generating different instanced depending on the current time or congestion, in which
case they would need to implement the interface themselves. The one important thing
to remember is that the names of every instance generated by the generator must be
different since they are used as unique identifiers within Proter. The provided gener-
ators do so by keeping an internal counter and appending its value to the base names
which are specified by the user.

5.2 Replications

In Proter, simulation metrics are handled using a publisher-subscriber pattern between
the coordinator and a simulation metrics output handler. The coordinator publishes a

Chapter 5. Supporting Essential Capabilities 21

message for all simulation metrics, which includes things such as a simulation instance
starting, a task finishing, or when a resource is being used by a specific task. The
simulation metrics handler then receives all of these events and records each one as
needed. The top-level handler distributes event information to various output handlers
and aggregators, which can have functionality such as saving information to a csv or
printing a summary at the end of the simulation.

To implement replications, we have chosen the approach of splitting a longer simu-
lation into multiple sub-runs. The alternative, according to the Survival Guide [30],
is to run a shorter simulation multiple times, but we have chosen the prior technique
because it is easier to implement into Proter, since we can simply adapt the simulation
metrics handler functionality to store event information into separate bins depending
on the virtual time.

This implementation introduces a new metrics handler which contains multiple met-
rics aggregators. Each aggregator is responsible for a separate sub-run of the overall
simulation. When an event is received by this metrics handler, it inspects the virtual
timestamp to decide which aggregator should receive the event. The aggregator num-
ber is determined using this formula, where n is the total number of replications and
therefor the total number of aggregators:

b timestamp
totalTime÷n

c

Special care has to be taken with certain events to avoid incomplete information in old
aggregators. For example it would be possible that an aggregator is told a simulation
instance has started, but by the time the it finishes the next aggregator is being used,
and so the initial aggregator would never find out that the instance has completed.
This is why events such as simulation instances ending or resources being added are
forwarded to all aggregators.

5.3 Warm-up Period and Confidence Intervals

Unfortunately warm-up periods and confidence intervals were features which which
we were not able to finish. This was due to time constraints which resulted from trou-
bles during the implementation of BPMN into Proter, which was a more important
milestone in this project. Luckily because of the prioritised approach to the crite-
ria which we set out to implement, we managed to successfully implement the other,
more essential features. We can find additional solace in the fact that warm-up periods
and confidence intervals are also not supported in any major business process simu-
lators. It seems to be a common practice in BPS studies to carry out this sort of data
manipulation outside of the simulation tool, especially since the KPIs being studied
can sometimes require additional calculations to obtain, for example if the study is
interested in median queuing times while the simulator only calculates the mean.

Chapter 6

BPMN Integration

There is a clear affinity for BPMN within the world of business process management.
We saw a hint of this in the paper by Peters et al. [25] in Chapter 4, where they say
that tools which do not use BPMN are “less in favour” due to a steeper learning curve.
From the tool surveys which were examined previously it is also apparent that the vast
majority of simulation tools use BPMN. It is clear that, despite its shortcomings for
simulation purposes, BPMN is very popular and widely used among business process
management professionals, and so as part of our goal to establish Proter as a state-of-
the-art business process simulation tool it is essential to support BPMN in order to be
an approachable and attractive option for researchers and professionals alike.

6.1 Design

Proter requires that an instance of a class implementing the Simulation trait is pro-
vided to the coordinator so that it can be simulated. There is a small number of built-in
ways to create simulation instances, such as the recently developed Flows notation
which provides a simple way of expressing the sequence of tasks. In order to support
BPMN we need to take a .bpmn file as input and construct a subclass of Simulation
which can communicate the contents of the file to the coordinator.

Per the original design it was intended that the BPMN model would be processed using
an external library such as the popular jBPM [8], however unfortunately this did not
work for reasons discussed in Section 6.2. Instead in the final design we parse the
BPMN file ourselves in order to figure out the sequence of tasks in the workflow.

Since BPMN only expresses the sequence of tasks in the workflow (control flow),
additional information will need to be provided to create a full model as is also standard
among other simulation tools. In this design we will pass an additional configuration
file which stores necessary information on task cost, resources, duration, and priority.

22

Chapter 6. BPMN Integration 23

6.2 Challenges

As mentioned in Chapter 2, BPMN is a very intricate and verbose notation. It was not
created for simulation or programmatic usage, but rather for communicating business
workflows between management professionals. Because of this, a model can consist of
a wide variety of events, gateways, and activities, not to mention black box pools and
sub-processes which make simulating a model even harder. Supporting all the possible
constructs and all the ways in which they could connect is a significant challenge.

Due to this complexity, it is desirable to use a mature external library, such as the rel-
atively popular jBPM [8], that can already parse and execute BPMN models. Initially
we planned to use the BPMN engine in jBPM to step through the model in parallel to
the Proter simulation. This would work by starting the jBPM engine at the beginning
of the simulation instance’s lifespan, and whenever a task finished according to the
coordinator we would report that the corresponding BPMN activity has completed to
the jBPM engine, hence obtaining the next tasks from the engine and sending those to
the coordinator. In this design, the simulation instance would be an intermediary be-
tween the coordinator and the jBPM engine, where it would receive activities from the
engine, create Proter tasks by pairing activities with the corresponding cost, duration,
and resource information, and sending them off to the coordinator.

Unfortunately, this did not work out even after a considerable amount of effort. Dis-
appointingly, BPM libraries such as jBPM are designed in a way which locks you into
using their entire ecosystem, without much room for utilising specific tools or com-
ponents. In jBPM, the BPMN engine is tightly coupled with multiple other jBPM
components and cannot work on its own, and trying to execute each type of task came
with its own complications:

• Abstract tasks completely do not work since one cannot control when they are
completed and the engine essentially skips them.

• Script tasks seem promising since they allow us to call any function in the code,
but they execute automatically (without waiting for us to start them) and they
are blocking even if they are marked as “asynchronous” which means that even
if we run them on a separate thread they will prevent us from retrieving other
pending tasks from the engine until they finish processing.

• Human tasks need to be provided with a registered user that belongs to the cor-
rect department in order to retrieve them from the engine and to complete them.
Even once they are retrieved there are difficulties with finding which tasks are
pending.

• The documentation for this is very poor, and there exist a few examples which
use the engine but they are designed to be implemented with the rest of the jBPM
system and there’s not much to work with in our direction.

In general jBPM was very hard to work with, and because of poor documentation our
efforts were riddled with much trial and error. We tried to use other BPM tools, such
as Camunda [15], but this also did not work out. Unfortunately it turns out that despite
how easy it is to execute BPMN within the ecosystem of these tools, it is very difficult

Chapter 6. BPMN Integration 24

to integrate the BPMN execution component with custom external software.

Because of this, we had to resort to stepping through the BPMN model ourselves. Nat-
urally this poses its own challenges, and it ties back to the fact that BPMN is fairly ver-
bose, with a large number of variations of activities, events, and gateways. Supporting
all of these variations offered by BPMN would be desirable, but is a potentially long
and arduous process which would arguably not add much value to Proter. In addition,
it is known that despite the available variety, on average only 9 distinct constructs are
used in a BPMN model [36].

1. Basic BPMN Activities: Abstract, User, Script, and Service Tasks

2. Exclusive Gateways

3. Parallel Gateways

These, plus start and end events, are among the most commonly used BPMN con-
structs [36], the remaining ones being pools and swimlanes, however these are typ-
ically used to model actors or companies, which we would instead model with re-
sources in a simulation.. Other more complex constructs, such as events or message
flows would be a nice addition to the supported constructs, but due to the limited time
for this project we did not consider them as essential.

6.3 Implementation

The implementation uses the Camunda [15] library to help with parsing the BPMN
model. As mentioned before, we tried using the BPMN engine in Camunda to execute
BPMN models for us, but this did not work. Instead we ended up using the parser
included in this library, which allows us to easily query the XML-based model, but the
execution of the model is down to our own implementation.

A new BPMNSimulation class was introduced as a subclass of Simulation. Other
than a name and a reference to the coordinator, an instance of this class requires the
path to the model .bpmn file and to the model data .json file. These are used to create
an instance of the new BPMN class.

The json file is translated into a BpmnDataset data structure, which stores a list of
entries describing the cost, duration, resources, and priority of tasks in the BPMN
model. This is stored in the BPMN class alongisde a Camunda BpmnModelInstance.
The Camunda model instance allows us to traverse the BPMN model in order to find
the sequence tasks or gateways that appear, for example given the id of a task we can
find the tasks or gateways that are connected after it in the diagram.

The core usage of the new BPMNSimulation class revolves around reacting to a pre-
vious task completing in the coordinator. The following sequence occurs each time a
task completes according to the coordinator:

1. The id of the BPMN object corresponding to this task is found. A map from
Proter task ID to BPMN object ID is maintained making this easy.

2. The id of the task that just completed is removed from the above mentioned map.

Chapter 6. BPMN Integration 25

Figure 6.1: An example BPMN model with a split and join parallel gateway

3. We find all of the next BPMN objects (tasks or gateways) that appear in the
model after the task with the corresponding id.

4. For each next BPMN object:

(a) If this is a task (user task, script task, abstract task) make a Proter Task
using the information found in the corresponding model data entry. This
task is sent to the coordinator and a mapping from Proter task id to BPMN
object id is saved for later.

(b) If the object is an exclusive gateway, one of the possible outgoing paths can
be taken. A decision is made randomly between the possible options and
then step 4 is repeated for the object(s) which come next.

(c) If the object is a parallel gateway, all outgoing routes are taken but we need
to make a distinction between “split” and “join” parallel gateways: A split
has one input and many outputs, while a join has many inputs and a single
output. An example of this is shown in Figure 6.1.

For split gateways we simply execute every outgoing path by repeating
step 4 for every branch. For join gateways we must wait until all of the
input paths have completed, since otherwise we would execute the output
path every time one of the input times reaches the gateway. In the example
from Figure 6.1, the join gateway should wait until the top and the bottom
branches both reach it before the script task can be executed. We achieve
this by keeping track of “tokens” at each input of the gateway in a fashion
inspired by Petri nets [4]. Every time a branch arrives at the input of a
join gateway a token is placed at this input. When all of the inputs have at
least one token, the gateway will consume one token per input branch and
execute the output branch by repeating step 4.

The Petri net style approach to parallel join gateways described in step 4c ensures that
loops and complex workflow patterns will work with this gateway. This functional-
ity is achieved with a ParallelGateway class which stores the number of tokens at
each input, and a map between BPMN gateway id and corresponding parallel gateway
objects is maintained in BPMNSimulation.

Chapter 6. BPMN Integration 26

Figure 6.2: An example json model data file

The model data structure mentioned throughout this section is built from the input
json file with the help of the Scala spray-json library [28]. Custom json formatting
objects were made by extending spray-json classes, which allow us to encode and
decode Proter data structures. This is what lets us build instances of the BpmnData
data structure from the json file.

An example of a json model data file used in this project is shown in Figure 6.2. Such
a file must consist of a list of objects named “data”. Each object in the list refers to
a single task in the BPMN model corresponding to this file. The entry has the id of a
task, the duration (expressed using a Proter value generator), the cost, priority, and the
list of resources used by the task.

Using the json and BPMN files we can createBPMNSimulation simulation instances
and send these to the coordinator, and from there the coordinator and instance can
interact with each other as normal. For example, we can simulate the model in Figure
6.1 with the json in Figure 6.2, which generates the timeline shown in Figure 6.3. Note
that user Task A and User Task B happen one after another despite the parallel gateway
because they are competing for the same resource.

Figure 6.3: An example output timeline generated by using a BPMN model

Chapter 7

Evaluation of Proter

Having now implemented some important functionality and BPMN compatibility into
Proter we will now look at a comparison between Proter and some other popular BPS
tools, our goal being to demonstrate that the implementation is correct and that we
get the same results given the same inputs. Thanks to the new BPMN support we are
able to use the exact same BPMN model in each tool, so that the only differences in
results will arise from the simulators themselves. Doing such a comparison also lets
us discuss the ways in which these tools differ both in terms of functionality and in
terms of the way in which they support the “essential criteria” which we identified in
Chapter 4.

After this comparison we will also examine the benefit of some of the unique fea-
tures offered by Proter, namely prioritised scheduling and look-ahead. These are not
supported by any of the tools which we examine, and to our knowledge no business
process simulators implement similar behaviour despite the popularity of similar topics
such as job shop scheduling in the surrounding literature.

7.1 Comparison with Existing Tools

In this evaluation we compare Proter to the Bonita simulator (community version
6.5.3) [6] and BIMP (online academic version) [19]. These are both popular BPS
tools which have featured in a number of the surveys which were analysed in Chap-
ter 4. These simulators are also easily accessible unlike many alternatives such as
Bizagi [5] and Visual Paradigm [16] which cost money making them inaccessible for
research given the scope of this project. We also tried other freely available tools such
as Bizagi [5] and Scylla [1], but we were unable to obtain functional simulations in
them. It should be noted that we are using an old version of Bonita since unfortunately
the latest community version of this tool no longer supports simulation.

There is no standard dataset or procedure for doing such an evaluation documented in
any of the literature which we reviewed. As such, a total of 23 unique examples were
made from scratch for this evaluation. These consist of a BPMN model and auxiliary
information about the configuration used for the simulation which includes the arrival

27

Chapter 7. Evaluation of Proter 28

rate, total execution time / number of instances to simulate, resource information, and
task information. These were made to test all of the simulation criteria which we have
identified in Chapter 4 as well as some interesting simulation properties as possible.
This includes examples of sequences of tasks, parallelism, branching, loops, interesting
resource patterns, such as deliberate resource conflicts between tasks, and interesting
time properties such as a “tight fit” between the arrival of two instances versus long
intervals.

BPMN models used in these examples are mostly purpose-made, while a few have
been taken from example repositories of Camunda and Scylla. The problem with most
BPMN examples available online is that they were not made for simulation purposes
and they tend to contain many complex constructs (events, advanced gateways, black-
box swim lanes) which impede the process of adapting them for a simulation.

A reference for every single example is included in the Appendix, and the examples
themselves are submitted with this thesis. These references are simply short descrip-
tions of the BPMN model and its environment, for example “1. (Basic Flow) Sequence,
all one resource” or “13. Simple loop - one task”.

7.1.1 Obtaining Results

Each example from our dataset was run on all three simulators. A script has been
created to execute all the examples automatically in Proter. For the other simulators,
however, the configuration has to be set manually each time. This process is made
slightly harder by the fact that the different tools have different requirements for how
some information has to be formatted:

• Proter - The simulation parameters consist of the arrival distribution used and
the time limit for the simulation. This means that if our example calls for 100
instances to be simulated using a uniform arrival distribution with 20 time units
between instances, then we need to set a time limit of 2000 units in our simula-
tion.

• Bonita - Bonita uses Load Profiles to define an injection period, which has to be
specified by selecting the date and time from a calendar (see Figure 7.3). Using
the same example of 100 instances to be simulated with 20 hours between each
instance, we would set the injection period to start on January 1st at midnight
(00:00) and end on March the 24th at 8am with a uniform distribution and 100
instances, which works out to exactly 2000 hours. The process of figuring out
the date and time which is needed and then selecting it from a calendar interface
is quite cumbersome.

• BIMP - Similarly to Bonita, in BIMP we need to supply the number of in-
stances to simulate. However this time we specify the inter arrival time between
instances. Using our example from before we directly type in 100 instances and
20 inter arrival time.

The tools also vary significantly in the output which they generate, so it is not trivial
to select the values by which to compare the three. With Proter all the information

Chapter 7. Evaluation of Proter 29

Figure 7.1: Example of a BIMP bar chart output

about resources, tasks, and simulation instances is stored in csv files and we are able to
process this data to extract any desired value. Bonita has an option to export simulation
details, but the csv files that it generates are empty so this is presumably a broken
feature. Thus, the only information we can access is given in the report generated at
the end of a simulation, which contains minimum, maximum, and average values for
properties such as task duration and resource utilisation. BIMP similarly generates a
report with some minimum, maximum, and average values for measurements such as
task costs or simulation instance times. However, a lot of the data is shown in bar
charts using bins as in the example in Figure 7.1, which makes getting some specific
values a tedious manual process.

Ultimately these values have been recorded from each tool and each example scenario,
because they give a good indication of how the simulation went and are obtainable
from all three tools:

• Resource utilisation

• Average instance waiting time

• Average instance execution time

As mentioned, the BIMP output for instance waiting times is divided into bins as shown
in Figure 7.1, so the values which we used in the final table have been calculated
manually by using the count and average value of each bin, but unfortunately this is
just an estimate of the true average instance waiting time.

The final results table is fairly large and can be found in the Appendix. A summary
of the results is shown here in Table 7.1. The summary table shows the difference in
values between Proter and the other tools, and the utilisation of individual resources
has been merged into an average resource utilisation column. Note that multiple Bonita
trials did not finish or did not work for reasons we will discuss in the next section, and
these have been highlighted gray in the summary table.

Chapter 7. Evaluation of Proter 30

Proter-Bonita Difference Proter-BIMP Difference

Example

A
vg

.R
es

ou
rc

e

U
til

is
at

io
n

(%
)

A
vg

.W
ai

tin
g

Ti
m

e

A
vg

.E
xe

cu
tio

n

Ti
m

e

A
vg

.R
es

ou
rc

e

U
til

is
at

io
n

(%
)

A
vg

.W
ai

tin
g

Ti
m

e

A
vg

.E
xe

cu
tio

n

Ti
m

e

1 0.175 0 0.1 0.0475 0.5 0
2 0.175 5 0.15 0 0.5 0
3 0.4 0 0 0.06 0.5 0
4 0.3 5 0 0 0.5 0
5 0.175 0 0.1 0.0475 0.5 0
6 7.05 0 0 0.53 0.5 0
7 0.4275 0 0 0 0.5 0
8 0.2775 5 0.05 0.0825 0.5 0
9 0.2775 0 0.05 0.1275 0.5 0

10 0.2325 4 0.07 0.1 0.5 0
11 0.1525 5 0 0.14 0.5 0
12 0.2025 0 0.05 0 0.5 0
13 7.4325 1.7 6.2 0.22 0.12 0.1
14 N/A N/A N/A 9.09 1.89 5.15
15 0.075 0 0 0.0675 0.5 0
16 5.785 0 0.1 0.8525 0.5 0
17 0.275 0 0 0.0475 0.5 0
18 24.838 5.4 6.3 0.665 2.5 1.6
19 N/A N/A N/A 0.25 1.02 1.5
20 N/A N/A N/A 0.6925 0.5 0.45
21 0.3825 2.11 0.99 1.065 0.13 0.19
22 9.4825 8.63 7.92 2.9525 14.93 5.83
23 6.565 69.37 33.38 2.485 116.44 58.57

Table 7.1: A summary of the evaluation results

7.1.2 Discussion of the Results

Probably the most apparent thing from the summary table is that most of the results are
very similar, and so the difference in the measured values is almost always nearly zero.
This is good news as it shows that Proter gets the same results as these simulators and
it is good evidence that the features implemented in this project work as intended. The
reason why the values are not exactly equal (and therefore why the difference between
them shown in the summary table is not always exactly zero) can be explained, and this
reveals some interesting differences between the way in which the simulators work.

First let us look at the average execution time. Initially it might seem that the mea-
sured time is meant to be identical, however it should be expected that the value will be
slightly different if the model has some element of randomness involved, such as loops
which can be taken with a certain probability, or probability distributions for task du-

Chapter 7. Evaluation of Proter 31

rations or the arrival rate. Only about a third of the models prepared for this evaluation
have such random elements, namely examples 13, 14, and 19 to 23. This explains the
discrepancies between Proter and BIMP, where we can see that the examples with no
randomness yield identical average execution times (hence the difference is zero in the
summary table), and for the other examples the result varies slightly.

For Bonita, the examples with no randomness are still slightly different. This arises
due to a quirk in the way that Bonita works: it seems that no matter what we tried there
was always an outlier instance which was somehow delayed and had a longer duration
than the rest. For example, in the very first model we have a sequence of three tasks,
each of which lasts 5 hours. There is no randomness, so the duration of every single
instance should be exactly 15 hours. Proter and BIMP both report this result, but in
Bonita report we find that exactly one instance always lasted 25 hours. This bumps up
the average instance duration to 15.1 hours, hence the 0.1 difference between Proter
and Bonita in the summary table. The reason for this behaviour is unclear but it could
be a flaw to do with the way Bonita implements its load profiles. This explains why
the Proter-Bonita difference in average execution time tends to be slightly off even in
cases where Proter and BIMP agree on the result.

Now we need to mention the problematic examples in Bonita, which have been high-
lighted gray in the summary table and red in the full results table in the appendix. In
the examples with N/A (or DNF in the full results) Bonita would either start trying
to simulate the model but never finish, or it would throw a null pointer exception or
“cycle detection” error. The other examples, which are highlighted but still contain
readings, went wrong for some other reason or could not be fully modelled.

• Example 13 contains a loop, but it is clear from the results that the loop was
never taken.

• Examples 14 and 20 contain loops and the Bonita simulation fails.

• Example 19 is a complete anomaly. It seems perfectly normal (no loops or com-
plex patterns, just two tasks in sequence with an optional third task in-between
connected by an exclusive gateway) but a null pointer exception is thrown. It
should be noted that the exact same BPMN model works just fine in BIMP and
Proter, and it’s completely unclear what causes the error.

• Examples 21, 22, and 23 require the use of duration distributions and arrival
rate distributions. Bonita does not have arrival rate distributions other than a
uniform distribution, and despite having an option for specifying some sort of
range for the duration of a task as shown in Figure 7.2, we found that no matter
what input is given the task always runs for the minimum duration of time (e.g.
in the example figure this task always lasts for 5 hours despite the 50% and 100%
estimate and max time parameters). These examples were still carried out but the
Bonita parameters are only approximations for what is called for by the model
descriptions of these examples, so the results are inaccurate.

The issues we encountered in examples 13, 14, 19, and 20 might possibly be due hu-
man error. This is due to the limited user interface, options, and documentation of
Bonita which make it very hard to work with, especially seeing as many of the solu-

Chapter 7. Evaluation of Proter 32

Figure 7.2: Bonita Simulator task execution time interface

tions they use are non-standard such as the injection periods and sampling intervals.
Nonetheless, BIMP confirms the right results.

Getting back to the summary results table, let us consider the discrepancies between
Proter and the other simulators in the average resource utilisation. For both Bonita
and BIMP, the difference with Proter is almost always extremely close to zero, but
almost never exactly zero. The difference in reported utilisation tends to be about
0.2% off, and is predictably larger in cases with more elements of randomness, such
as examples 22 and 23. This small difference is easily explained by the way the Proter
arrival process works.

In Proter we specify a time limit, and the arrival process continues adding new in-
stances into the system until the time limit is reached, but in Bonita and BIMP we
specify the number of instances to simulate. For example, if a model description in our
dataset says to simulate 100 instances with a uniform arrival rate and 20 hours between
arrivals, we set a time limit of 2000 in Proter. In this example, consider what might
happen if one instance completes in exactly 15 hours (as is the case in example number
1 in the dataset). In Proter the 100th instance would start at time 1980 hours and finish
at 1995 hours, then there are 5 hours of no instances and then the simulation terminates
at 2000 hours. In contrast, in a simulator like BIMP the 100th instance also finishes
at 1995 hours but then since all 100 instances have been simulated as requested in the
input, the simulation terminates at 1995 hours. In both cases the resources were used
for the exact same amount of time (e.g. example 1, resource r1 is used for exactly 1500
hours in both Proter and BIMP), but due to the different total simulation durations the
resource utilisation percentage is slightly different.

This is exactly the reason for the discrepancies between Proter and BIMP, but then
why is utilisation reported by Bonita slightly different from both the one reported by
BIMP and Proter? This is possibly linked with Bonita’s injection period and sampling
interval parameters. In Bonita we specify the number of instances to simulate and an
injection period. Since we cannot control the specific inter-instance times the specifics
of when they actually begin is out of our control. It might seem as though you could
calculate the time in-between instances given the injection period, however this is fur-
ther complicated by the fact that the true duration of a simulation differs from the one
specified in the injection period. Returning to our running example, we want 100 in-
stances simulated over 2000 hours such that the instances are uniformly distributed
with 20 hours between each arrival. Knowing this we define an injection period as
shown in Figure 7.3, using the fact that there are exactly 2000 hours between Midnight

Chapter 7. Evaluation of Proter 33

Figure 7.3: Bonita Simulator Load Profile interface, used for defining the injection period

on January 1st and 8am on March the 24th, which is 83.33 days. Despite this, and de-
spite the fact that we know for certain that an instance in this simulation lasts exactly
15 hours, the simulation duration reported by Bonita in the final report is 82 days 13
hours 14 minutes 24 seconds. This result is very enigmatic, but one idea is that this is
linked with the way Bonita uses sampling intervals, but even still if the sampling in-
terval is set to 6 hours and a simulation instance lasts 15, and the total injection period
duration is 2000, then why does the simulation duration involve minutes and seconds?
This remains as another Bonita mystery, but what’s clear is that the simulation duration
is different from that which we specify, and so resource utilisation percentage reported
will also, of course, differ slightly from the value which we expect.

Lastly let us discuss the average waiting time. As mentioned previously, BIMP does
not report this value directly, but instead it produces a bar chart which summarises
the range of waiting times as shown in Figure 7.1. We therefore need to estimate the
average waiting time by taking the median value of each bin and scaling by the number
of instances in that bin. This means that the reported value will be slightly off from
the true average even for simulations with 0 waiting time, since in these cases BIMP
presents a single bar in the bar chart with the range 0 to 1, thus we record 0.5 in the
results. For Bonita, we were unable to get the waiting time to work at all.

Surprisingly, for every single example we tried Bonita reports 0 waiting time even if it
is abundantly clear that there is lots of queuing and delays in the model. Many different
inputs were tried, but the result never changed, so we suspect this is a broken feature.
As a result, the values you see in the summary table are simply Proter’s measured
waiting times for each example.

Overall it is clear that Proter works as well as any of these other tools. We have shown
over a variety of examples that the behaviour of Proter is correct, and that the small
differences in the results arise from the very different ways in which each tool works.
These are important differences which are hard to discern at-a-glance or from reading a
tool survey, but as shown they have a noticeable effect on the output of the simulators.
Despite these differences it is clear that the new functionality which we have added to
Proter, which includes the “critical” simulation capabilities and BPMN support, both
works and produces correct results.

Chapter 7. Evaluation of Proter 34

Criteria BIMP Bonita Bizagi BPSim Proter

Sequence + + + + +
Parallelism + + + + +
Branching + + + + +

Starting Time + + + + +
Transfer Time - - - + -
Waiting Time + - + + +

Processing Time + + + + +
Arrival Distributions + - + ? +

Duration Distributions + - + - +
Branch Probabilities + + + + +

Resource Requirements + + + + +
Cost per Activity + + + + +

Capacity + + + + -
Roles + - + + -

Schedules + - + + -
Cost of Usage + - + + +
Multiple Roles - - - + -

Duration + + + + +
Warm-up Period - - - - -

Replications - - + ? +
Confidence Intervals - - - - -

Table 7.2: Updated evaluation of simulation tools using essential criteria

7.1.3 Updated Evaluation of the Tools

Now that we have fully evaluated Proter against Bonita and BIMP using a dataset
designed to test all of the criteria identified in chapter 4, we can update the evaluation
table from before to show the new capabilities of Proter (highlighted gray) alongside
the other tools as shown in Table 7.2.

This table is slightly deceiving, as we have added more than it shows: BPMN support
and the arrival process are very important additions yet these are not criteria found in
the literature. Furthermore some of the criteria are actually slightly misleading, such
as “Multiple Roles”. In Proter a task can have multiple resources but resources do
not have roles, while BIMP only allows tasks to have a single resource, but since a
resource has capacity it is considered to be a “role” by the surveys we have reviewed,
yet in many ways a BIMP resource is essentially the same as a Proter resource.

7.2 Extending the Simulator Criteria

We have been using the list simulation criteria which we identified in Chapter 4 through-
out this thesis for determining which features were missing in Proter up to creating ex-
ample simulation scenarios to compare Proter with other tools. On multiple occasions

Chapter 7. Evaluation of Proter 35

we have commented that this list, based on the evaluation of tools in the existing liter-
ature, is missing some criteria which we believe to be important. As such we suggest
that this list of important functional criteria should be extended with the following:

1. BPMN Model Support - Throughout the literature reviewed in this thesis we see
the recurring notion that the usage of BPMN in BPS greatly preferred over alter-
natives like Petri nets or proprietary solutions, for example in the work of Jansen-
Vullers and Netjes [10], Peters et al. [25] and even in the Survival Guide [30].
Despite not being one of the criteria we identified from the literature, we also
decided that support for BPMN is essential enough that it needed to be added to
Proter. Due to this, and also with the knowledge that support for BPMN models
is one of the first things that any review or tool survey mentions about a simu-
lator, we believe it that this should clearly be included it in the list of essential
criteria.

2. Multiple Resources - As we observed, the current “Multiple Roles” criterion
is ambiguous. Bonita and Proter both allow tasks to require multiple resources,
however since they do not support roles this criterion is not met. From the list of
criteria it might seem that multiple resources are not a beneficial capability un-
less the tool also has resource roles, but this is false. Allowing multiple resources
per task, regardless of whether roles are supported, can greatly improve the ex-
pressive potential of the model and therefore the quality of the simulation, and
this is a big distinguishing factor between simulators which is why we propose
that it belongs on the list.

3. Prioritised Task Allocation - This refers to the prioritised assignment of tasks
to resources. In Proter, this is achieved through prioritised scheduling, and as
we have shown in Chapter 3, the consideration of tasks priorities has a tangible
effect on the simulation. Some simulators may have task priorities but still use
first-come-first-served scheduling, and to our knowledge Proter is the only BPS
simulator that has support for prioritised scheduling of tasks with multiple re-
sources with a controllable degree of foresight such that lower priority tasks do
not block or delay higher priority tasks.

Prioritised scheduling is an approach to scheduling which is different to solutions
such as the typical first-come-first-served strategy used in other simulators, but
it is an addition and not a replacement. With prioritised scheduling, all of the
same FIFO scenarios can be simulated simply by making all task priorities the
same, but it also enables the creation of models which better reflect the real world
and human behaviour by incorporating varying priorities. Given that this is an
addition which enables the creation of better and more descriptive models for
simulation, we believe this is an important addition to the simulation criteria.

The challenge in establishing and expanding on this list stems from the fact that there
is no standard set of such simulator capabilities in the literature. We propose that the
list we identified and expanded on in this thesis could be considered as a standardised
list of essential BPS simulation capabilities. This list could be used in tool surveys
to evaluate other business process simulators, and as a reference for the criteria which
would be met by a theoretical ideal simulator, just as we have used it in this project.

Chapter 8

Conclusion

Business process simulation is a very powerful and widely used BPM technique, and
simulations can benefit greatly from added expressive power which enables them to
more closely model the real world. Our simulator, Proter, is designed and focused
around a priority-centric approach to discrete event simulation, which enables work-
flows to be simulated in a more lifelike way. We believe this is a great and unique
asset that could benefit many BPM professionals and researches. However, Proter was
missing some critical functionality which could prevent or discourage its usage.

We set out to implement some essential features into Proter to meet the expectations
of a business process simulator, and this thesis shows how we have identified and im-
plemented them. We were also able to compare Proter to other business process simu-
lators thanks to these additions, and show that Proter can execute the same simulation
scenarios (modelled after the simulation criteria we identified) as other BPS tools.

This conclusion highlights the project outcomes, how this work fits in with existing lit-
erature, and discusses some shortcomings and potential improvements to our process.

8.1 Project Outcomes and Critical Evaluation

One of the main goals of this project was to improve Proter by adding some important
features. We have succeeded in adding the following:

1. An Arrival Process

2. Arrival Distributions

3. Replications

4. Support for basic BPMN models

(a) All standard BPMN activities- User, Script, Service, and Abstract tasks

(b) Exclusive Gateways

(c) Parallel Gateways

36

Chapter 8. Conclusion 37

These additions enable Proter to simulate the same scenarios as other simulators, which
we have successfully shown in our evaluation. The additional compatibility with the
industry standard BPMN models also makes Proter more accessible and potentially
useful to a wider audience.

These new features will not go to waste. Some of these, such as the arrival process and
distributions, have already been merged onto the main release of Proter 1 and they will
undoubtedly be used in future projects.

Unfortunately we were unable to implement all of the features that we had hopped.
Warm-up periods and confidence intervals were also identified as being important cri-
teria and a start was made in their implementation, but sadly we were not able to
complete these features due to time constraints which resulted from our struggles with
jBPM and Bonita. If we could anticipate the difficulties we encountered we could have
found sufficient time to complete these features too.

The process of implementing BPMN support was also very challenging. Initially we
hopped that the entire notation could be supported by using an external BPMN engine.
However, as discussed in 6.2, this did not work out and we had to change plans. Many
weeks were wasted on trying to get external libraries to work for our purposes, and
this had a severe impact on other parts of the project. Ultimately we decided to parse
BPMN ourselves, but we could only support the basic components given the limited
time. Had we started with this approach, we could have added support for far more of
the BPMN constructs.

The features of each simulator which we investigated were unclear in the beginning,
and only after thorough investigation and having worked with them for a longer period
of time did their unique differences and behaviour become apparent. At this point it
was too late in the process to replicate their behaviour in Proter, which is why we have
some different solutions to the same features, for example using a time limit in Proter
instead of an instance count. These differences also made the process of evaluation
more challenging, for example due to Bonita’s strange injection periods and sampling
intervals, and if we knew this earlier we could have tried to use different tools in our
comparison.

Identifying and extending the list of critical simulation criteria was another goal of
this thesis. We have successfully compiled a set of the criteria which appears most
prominently throughout the literature, and added new criteria which we believe to be
important. No other work attempts to identify and justify a standard set of such criteria,
and so we propose that our identified list could fill this role. This list could serve as
a guideline for creating the ideal business process simulator, and it could be used in
future work for comparing and evaluating BPS tools.

As part of this project we also identified and discussed some very interesting differ-
ences in the way that the Bonita, BIMP, and Proter simulators work. As part of the
evaluation process we also created a set of detailed simulation examples, which could
be used in future tool surveys to evaluate other business process simulators.

1Main branch of Proter: https://github.com/workflowfm/proter

Chapter 8. Conclusion 38

8.2 Future Work

Given our proposed standard for BPS simulator criteria, more discussion should be
had around this topic. There is potential to propose other essential criteria which we
did not discover in our investigation, or for critique of our choices, and in general we
would like to see more effort in the direction of solidifying some sort of standard to
which simulation tools can be developed and evaluated.

Proter can be further developed to implement the remaining missing criteria. The
support for BPMN models is also incomplete, and future work could return to this im-
plementation to add the missing constructs. This is not entirely trivial, since complex
components like events and messages would require research to understand how they
should be simulated.

Now that Proter has been improved with new features, future work could also apply
Proter in new industry settings which can utilise the new functionality and further
demonstrate the benefit of prioritised models in real applications.

8.2.1 Plan for Minf Project Part 2

In part 2 of this project we will turn our attention to the resource perspective. Now
that Proter supports the essential simulation criteria, we can further improve it with the
addition of features such as resource roles, capacity, multiple roles per resource, and
schedules. These features would open up Proter to even more possible applications
and use cases, and combined with its priority-centric approach it would provide an
interesting perspective into the world of job shop scheduling and optimisation.

Combining multiple resources per task with resource roles and capacities and priority-
based scheduling at the same time is a worthwhile challenge. The resulting environ-
ment would make the job of the scheduler much more complex since it would have
to choose between multiple resources with various roles in a way that prioritises high-
priority tasks. An exciting prospect is that this could possibly be framed as a more
general optimisation problem which opens the doors for research involving possible
machine learning and metaheuristic solutions even further down the line.

The baseline goals for part 2 of the project will be to:

1. Implement resource roles and capacity

2. Implement multiple roles per resource

3. Implement resource schedules

4. Provide basic scheduler implementations to support these additions (for example
a greedy scheduler)

5. Provide an interface to the prioritised scheduling problem in Proter as an opti-
misation problem.

Bibliography

[1] Madis Abel. Lightning fast business process simulator. Master’s thesis. Institute
of Computer Science, University of Tartu, 2011.

[2] Cristina Adriana Alexandru, Daniel Clutterbuck, Petros Papapanagiotou,
Jacques D Fleuriot, and Areti Manataki. A step towards the standardisation of
hiv care practices. In HEALTHINF, pages 457–462, 2017.

[3] Rockwell Automation. Arena simulation software. https://www.
arenasimulation.com/. Retrieved 9 April 2021.

[4] Gianfranco Balbo. Introduction to generalized stochastic petri nets. In Interna-
tional School on Formal Methods for the Design of Computer, Communication
and Software Systems, pages 83–131. Springer, 2007.

[5] Bizagi. Simulation in bizagi. https://help.bizagi.com/bpm-suite/en/
index.html?simulation_in_bizagi.htm. Retrieved 9 April 2021.

[6] Bonitasoft. Bonitasoft. https://www.bonitasoft.com/. Retrieved 9 April
2021.

[7] BOC Group. Adonis process simulation. https://knowledge.boc-group.
com/en/module/adonis-process-simulation/. Retrieved 10 April 2021.

[8] KIE Group. jbpm. https://www.jbpm.org/. Retrieved 9 April 2021.

[9] Michael Hammer. What is business process management? In Handbook on
business process management 1, pages 3–16. Springer, 2015.

[10] Monique Jansen-Vullers and Mariska Netjes. Business process simulation–a tool
survey. In Workshop and Tutorial on Practical Use of Coloured Petri Nets and
the CPN Tools, Aarhus, Denmark, volume 38, 2006.

[11] Kurt Jensen. Coloured petri nets. In Petri nets: central models and their proper-
ties, pages 248–299. Springer, 1987.

[12] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri nets and
cpn tools for modelling and validation of concurrent systems. International Jour-
nal on Software Tools for Technology Transfer, 9(3-4):213–254, 2007.

[13] W David Kelton. Simulation with ARENA. McGraw-hill, 2002.

39

Bibliography 40

[14] Averill M Law, W David Kelton, and W David Kelton. Simulation modeling and
analysis, volume 3. McGraw-Hill New York, 2000.

[15] Camunda Ltd. Camunda. https://camunda.com/. Retrieved 9 April 2021.

[16] Visual Paradigm International Ltd. Visual paradigm. https://www.
visual-paradigm.com/. Retrieved 10 April 2021.

[17] M Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and
Giuliana Franceschinis. Modelling with generalized stochastic petri nets. ACM
SIGMETRICS performance evaluation review, 26(2):2, 1998.

[18] OMG. Business process modeling notation (bpmn) (2011). https://www.omg.
org/spec/BPMN/2.0/PDF. Retrieved 23 October 2020.

[19] MABEL OÜ. Bimp simulator. https://bimp.cs.ut.ee/simulator/. Re-
trieved 9 April 2021.

[20] Nathaniel Palmer. What is bpm? https://bpm.com/what-is-bpm. Retrieved
23 October 2020.

[21] Petros Papapanagiotou and Jacques Fleuriot. Workflowfm: A logic-based frame-
work for formal process specification and composition. In International Confer-
ence on Automated Deduction, pages 357–370. Springer, 2017.

[22] Petros Papapanagiotou, James Vaughan, Filip Smola, and Jacques Fleuriot. A
real-world case study of process and data driven predictive analytics for manu-
facturing workflows. In Proceedings of the 54th Hawaii International Conference
on System Sciences. Hawaii International Conference on System Sciences, 2021.
To appear.

[23] José Luı́s Pereira and António Paulo Freitas. Simulation of bpmn process models:
Current bpm tools capabilities. In New Advances in Information Systems and
Technologies, pages 557–566. Springer, 2016.

[24] Sander PF Peters, Remco M Dijkman, and Paul WPJ Grefen. Advanced simula-
tion of resource constructs in business process models. In International Confer-
ence on Business Process Management, pages 159–175. Springer, 2018.

[25] Sander PF Peters, Remco M Dijkman, and Paul WPJ Grefen. Advanced simula-
tion of resource constructs in business process models. In International Confer-
ence on Business Process Management, pages 159–175. Springer, 2018.

[26] WorkflowFM Petros Papapanagiotou. Proter. http://docs.workflowfm.com/
proter/. Retrieved 9 April 2021.

[27] Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and David Ed-
mond. Workflow resource patterns: Identification, representation and tool sup-
port. In International Conference on Advanced Information Systems Engineering,
pages 216–232. Springer, 2005.

[28] Spray. Spray-json library. https://github.com/spray/spray-json. Re-
trieved 9 April 2021.

Bibliography 41

[29] CPN Tools. Cpn tools. https://cpntools.org/. Retrieved 9 April 2021.

[30] Wil MP Van Der Aalst. Business process simulation survival guide. In Handbook
on Business Process Management 1, pages 337–370. Springer, 2015.

[31] Wil MP Van der Aalst, Joyce Nakatumba, Anne Rozinat, and Nick Russell. Busi-
ness process simulation. In Handbook on Business Process Management 1, pages
313–338. Springer, 2010.

[32] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alis-
tair P Barros. Workflow patterns. Distributed and parallel databases, 14(1):5–51,
2003.

[33] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alis-
tair P Barros. Workflow patterns. Distributed and parallel databases, 14(1):5–51,
2003.

[34] Wil MP Van Der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business
process management: A survey. In International conference on business process
management, pages 1–12. Springer, 2003.

[35] Petia Wohed, Wil MP van der Aalst, Marlon Dumas, Arthur HM ter Hofstede,
and Nick Russell. On the suitability of bpmn for business process modelling.
In International conference on business process management, pages 161–176.
Springer, 2006.

[36] Michael Zur Muehlen and Jan Recker. How much language is enough? theoreti-
cal and practical use of the business process modeling notation. In Seminal Con-
tributions to Information Systems Engineering, pages 429–443. Springer, 2013.

Appendix A

Evaluation Results

A.1 Evaluation Examples Dataset Reference
1. (Basic Flow) Sequence, all one resource
2. (Basic Flow) Parallelism, all one resource
3. (Basic Flow) Parallelism, all different resource
4. (Basic Flow) Parallelism, one conflicting resource
5. (Basic Flow) Branching, all one resource
6. (Basic Flow) Branching, all different resource
7. (Basic Flow) Branching, one conflicting resource, tight timing
8. Long Parallelism, pairwise conflicting resources - each resource used by two

parallel tasks
9. Long Parallelism, Staggered resources - each parallel task uses different re-

sources
10. Long Parallelism, varying durations, semi-conflicting resources (staggered but

time overlap)
11. Long Parallelism, same as (8) but short time (perfect time due to resource align-

ment)
12. Long Parallelism, same as (9) but short time (should be perfect amount)
13. Simple loop - one task
14. Long loop - multiple tasks
15. Large branching of two parallelisms - large BPMN example
16. Large parallelism of two branchings - large BPMN example
17. “validate customer” - BPMN from Camunda examples
18. “invoice approval” - BPMN from Camunda examples
19. “calculate rating” - BPMN from Camunda examples
20. “parallel” - BPMN from Scylla examples
21. Basic model, random arrival rate
22. Basic model, random task durations (uniform)
23. Basic model, random arrival rate + random task durations

42

Appendix A. Evaluation Results 43

A.2 Results

The results table has been split into three in order to fit on the page.

Example r1 r2 r3 r4 Average Waiting Time Average Execution Time

1 75 0 0 0 0 15

2 100 0 0 0 5 20

3 25 25 25 25 0 15

4 25 50 25 0 5 20

5 75 0 0 0 0 15

6 25 13.5 11.5 25 0 15

7 33.33 33.33 33.33 0 0 15

8 33.33 33.33 33.33 0 5 20

9 33.33 33.33 33.33 0 0 15

10 16.67 33.33 36.67 0 4 16

11 66.67 66.67 66.33 0 5 20

12 66.67 66.67 66.67 0 0 15

13 63.33 0 0 0 1.7 11.2

14 70.33 70.33 70 0 4.15 35.75

15 25 25 25 0 0 25

16 19.5 43.62 18.88 18 0 25

17 50 25 0 0 0 15

18 17 83.67 0 0 5.4 21.2

19 66.67 36 0 0 2.3 17.7

20 20 18.1 18.1 18.1 0 19.05

21 33 32.67 33 0 2.11 10.99

22 93 44.93 0 0 8.63 17.97

23 83.53 42.73 0 0 69.37 49.43

Proter

InstancesResource Utilisation (%)

Figure A.1: Evaluation results for Proter

Appendix A. Evaluation Results 44

Example r1 r2 r3 r4 Average Waiting Time Average Execution Time

1 75.7 0 0 0 0 15.1

2 99.3 0 0 0 0 20.15

3 25.4 25.4 25.4 25.4 0 15

4 25.3 50.6 25.3 0 0 20

5 75.7 0 0 0 0 15.1

6 25.4 0 25.4 25.4 0 15

7 33.9 33.9 33.9 0 0 15

8 33.7 33.7 33.7 0 0 20.05

9 33.7 33.7 33.7 0 0 15.05

10 16.8 33.7 37.1 0 0 16.07

11 66.4 66.4 66.4 0 0 20

12 66.4 66.4 66.4 0 0 15.05

13 33.6 0 0 0 0 5

14 DNF DNF DNF DNF DNF DNF

15 25.1 25.1 25.1 0 0 25

16 25 37.6 25 12.5 0 25.1

17 50.7 25.4 0 0 0 15

18 0.33 0.99 0 0 0 27.5

19 DNF DNF DNF DNF DNF DNF

20 DNF DNF DNF DNF DNF DNF

21 33.4 33.4 33.4 0 0 10

22 66.7 33.3 0 0 0 10.05

23 66.7 33.3 0 0 0 10.05

InstancesTotal Resource Utilisation (%)

Bonita

Figure A.2: Evaluation results for Bonita

Example r1 r2 r3 r4 Average Waiting Time Average Execution Time

1 75.19 0 0 0 0.5 15

2 100 0 0 0 5.5 20

3 25.06 25.06 25.06 25.06 0.5 15

4 25 50 25 0 5.5 20

5 75.19 0 0 0 0.5 15

6 25.06 12.53 12.53 25.06 0.5 15

7 33.33 33.33 33.33 0 0.5 15

8 33.44 33.44 33.44 0 5.5 20

9 33.5 33.5 33.5 0 0.5 15

10 16.74 33.49 36.84 0 4.5 16

11 66.45 66.45 66.45 0 5.5 20

12 66.67 66.67 66.67 0 0.5 15

13 64.21 0 0 0 1.58 11.1

14 58.1 58.1 58.1 0 2.26 30.6

15 25.09 25.09 25.09 0 0.5 25

16 18.19 43.41 19.32 19.45 0.5 25

17 50.13 25.06 0 0 0.5 15

18 15.89 82.12 0 0 2.9 19.6

19 66.45 35.22 0 0 1.28 19.2

20 20.1 18.99 18.99 18.99 0.5 19.5

21 34.31 34.31 34.31 0 2.24 10.8

22 99.37 50.37 0 0 23.56 23.8

23 92.48 43.72 0 0 185.81 108

BIMP

Resource Utilisation (%) Instances

Figure A.3: Evaluation results for BIMP

