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Abstract

To improve readability, punctuation prediction is typically performed on text output by

an Automatic Speech Recognition (ASR) model. We introduce a Transformer-based

model to predict punctuation marks on unpunctuated text suitable for text streamed

word-for-word, as is often the case for ASR models. We propose a decoding strategy

that delays punctuation marks’ insertion in case of uncertainty until a specific threshold

is reached. Leveraging existing pre-trained language models in conjunction with a

special token for acoustic pause features, we achieve state-of-the-art performance for

punctuation prediction on the MGB dataset and results that compare favourably to

the state-of-the-art on the IWSLT11 dataset while using comparatively less computing

power than previous work by using downsampling. To make the model viable for

real-time use in combination with an ASR system and on low-resource devices, we

evaluate input truncation and weight quantization. We show these techniques lead to

faster-than-real-time inference speeds and a significant reduction in model size.
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Chapter 1

Introduction

Punctuation annotation is often used in conjunction with automatic speech recognition

(ASR). This work focuses on building a punctuation annotation system for this context.

ASR systems, in turn, are used in many contexts, such as voice assistants, dictation

systems or subtitling. For this work, we divide these into:

a) applications which present the recognised text to the user

b) applications which do not present the recognised text to the user

State-of-the-art ASR systems output streams of words without punctuation (Bakhtu-

rina, 2019). For applications of type a), adding punctuation to the raw stream of words

produced by the ASR system can aid readability for the user. For applications of type

b), punctuation annotation can still be useful as some possible downstream tasks such

as machine translation or named entity recognition can yield better results on punctu-

ated text rather than a raw stream of words (Makhija et al., 2019). Of the applications

that present recognised text to the user, many will aim to do so in real-time, with words

appearing as they are spoken. We call this special case streamed punctuation annota-

tion.

Creating a punctuation annotation system for this streamed case comes with the fol-

lowing challenges:

1. When predicting punctuation immediately following each word, words appear-

ing to the right of the possible punctuation mark are not available to the system.

We call this lack of right-side context.

2. Using acoustic features as shown in Figure 1.1 is likely to be more difficult in a

streaming scenario, as information from multiple parts of the pipeline has to be

1
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Figure 1.1: Punctuation in an ASR pipeline.

streamed to the punctuation prediction model. We call this reduced availability

of acoustic features.

3. When predicting punctuation following every streamed word, we should, on av-

erage, not use more time than the average word duration. This is one of the most

wanted characteristics, which we call the need for inference speed.

While we reason that most existing punctuation annotation systems could be adapted to

the lack of right-side context, the reduced availability of acoustic features could be hard

to overcome in real-world applications. For example, if an ASR system provided as a

service by a third party is used in an application, the recorded audio would, in addition

to being sent to said ASR system, have to be stored locally and then aligned to the

output produced by the ASR system for use with a punctuation annotation system.

In this work, we aim to achieve the following.

1. Perform similarly to state-of-the-art punctuation annotation systems using pre-

trained Transformer models.

2. Address the aforementioned challenges associated with streamed punctuation

annotation of lack of right side context and need for inference speed using a

classification approach in tandem with truncation and quantization.

3. Utilise acoustic features despite their reduced availability using [PAUSE] tokens.
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Background

We now outline the methods used for punctuation annotation in the past in the context

of the streamed punctuation annotation task.

2.1 Existing Approaches to Punctuation Annotation

Punctuation annotation using learned and statistical models has been studied for more

than two decades, with the related task of sentence segmentation predating those efforts

even further. We examine the different approaches to punctuation annotation in the

following three sections:

1. We examine the data used to train such systems and how feature engineering has

been used to get the most out of said data.

2. We examine the learning methods used over time and explain the recent rise of

Transformer-based techniques.

3. We give an overview and interpretation of previous results in terms of F1-scores

on different punctuation marks, datasets and learning techniques.

2.1.1 Punctuation Data & Feature Engineering

The earliest systems in the sentence segmentation and punctuation annotation domain

(Palmer, 1994; Beeferman et al., 1998) used datasets of written or read rather than

spoken language, such as the Wall Street Journal corpus (Paul and Baker, 1992) or

Brown corpus (Francis and Kucera, 1979). N-grams were successfully used by these

early systems (Beeferman et al., 1998), while auxiliary features such as POS tags were

3
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Figure 2.1: Punctuation annotation is learned using punctuated texts which are split

into X (no punctuation) and y (punctuation target).

shown to improve performance as well (Palmer, 1994). Earlier work found commas

to be easier to predict than full stops as they require less lexical context (Beeferman

et al., 1998). In contrast, it was later found that in the HUB-4 Broadcast News Corpus

(BN) (Fiscus et al., 1998), commas are harder to predict than full stops, in part due to

weak human agreement on the correct placement of commas (Christensen et al., 2001;

Batista et al., 2008). Experiments with features derived from acoustic data showed a

significant improvement in predicting full stops when using pause durations and a mod-

est improvement when including phone durations or pitch (Christensen et al., 2001).

Recent efforts in feature extraction use pre-trained word and speech vectors to great

effect (Che et al., 2016; Żelasko et al., 2018; Yi and Tao, 2019), but other works in-

dicate there is a trade-off between the wider availability of text than speech features

and the expressivity of speech features, leading to purely lexical models outperform-

ing acoustic ones in certain settings due to more available training data (Klejch et al.,

2017). With the rise of multi-task learning (Crawshaw, 2020), Part-of-speech (POS)

tags have seen renewed use (Yi et al., 2020), but as an additional output target rather

than an additional input feature. By training on both tasks, the model improves on the

punctuation annotation task by benefiting from the information learned for the POS

tagging task. The same principle has been applied using disfluency detection as well

(Chen et al., 2020). Most recent work focuses on predicting full stop, comma and

question punctuation marks, which we assume is motivated by their distinct functions

in language. Less common punctuation marks contained in datasets are either dis-

carded (Żelasko et al., 2018) or mapped to one of the common three classes. These



Chapter 2. Background 5

DATASET TOKENS FULL STOP COMMA QUESTION MARK

WSJ 51,023 4.59% 5.98% 0.04%

BN 35,710 3.5% 5.1% 0.29%

IWSLT11 17,207 5.37% 6.36% 0.48%

MGB 92,622 7.63% 4.77% 1.67%

Table 2.1: Distribution of the three most commonly reported punctuation marks across

the most widely used corporas’ validation sets as reported by previous work.

punctuation marks include exclamation mark, parenthesis, dash, colon, semicolon and

three dots and their mapping to one of the three punctuation classes most widely used

is sometimes ambiguous, as for example, three dots could be either mapped to comma

or full stop (Gravano et al., 2009).

More recent work also focuses on newer datasets, with the most common one being

the dataset introduced at the International Workshop on Spoken Language Translation

2011 (IWSLT11), which consists of TED Talk1 transcripts. TED talks, while delivered

in a spoken form, are scripted in advance and rehearsed and are monologues rather than

conversations. The Multi-Genre Broadcast (MGB) dataset, which consists of a wide

range of TV broadcasts, has also been used, and contains more spontaneous speech and

dialogues (Bell et al., 2015). The WSJ and BN datasets used in the past contain written

and spoken news, respectively. The distribution of punctuation marks across datasets is

shown in Table 2.1. The spoken nature of BN could explain the slight increase in ques-

tion marks over WSJ. The IWSLT11 and MGB corpora are more informal and span

more genres, which could explain the more common occurrence of question marks and

full stops. Human annotators do not always agree on punctuation (Batista et al., 2008;

Boháč et al., 2017), which could also play a role in these differences. In related work,

all of these datasets are processed in a similar fashion. First, the text is converted to

a single, unsegmented transcript to avoid giving the model segmentation information

that would not be present at inference time (Che et al., 2016). Second, punctuation

data is removed from the input (X) while the desired output (y) contains the removed

punctuation. There are different ways to model y (see Section 2.3). While we have now

covered feature engineering, datasets, and how the initial text is processed for punctu-

ation annotation, we explain the learning methods that aim to utilise these datasets and

1https://www.ted.com

https://www.ted.com
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features in the next section.

2.1.2 Learning Methods

Early neural-network-based approaches on the sentence segmentation task showed

promising results (Palmer, 1994), but early systems recovering punctuation models

relied mostly on statistical language models such as Hidden Markov Models (HMMs)

(Beeferman et al., 1998; Chen, 1999; Christensen et al., 2001; Briscoe and Carroll,

2002). These models did not perform well at modeling long-range dependencies

required for end-of-sentence punctuation marks such as question mark or full stop

(Beeferman et al., 1998). This is due to these models utilising the Markov assumption

which limits the dependence of each state to its immediate predecessor. Their purely

statistical nature also made it difficult to perform well on unseen sequences, even if

they were semantically similar to sequences the model was trained on. A maximum

entropy approach showed promising results as well (Huang and Zweig, 2002). Dy-

namic conditional random fields (CRFs) improved further on HMMs, and performed

better at capturing said long-range dependencies (Lu and Ng, 2010; Wang et al., 2012).

Further work explored deep neural networks (Tilk and Alumäe, 2016; Klejch et al.,

2017) in the form of Long short-term memory neural networks (LSTMs) (Hochreiter

and Schmidhuber, 1997). Experiments on knowledge distillation showed that a student

model can leverage information from a teacher ensemble in the punctuation annotation

domain (Yi et al., 2017). Recent work has shown promising results using attention-

based models (Yi and Tao, 2019; Sunkara et al., 2020). While pre-trained Transformer

models such as BERT (Devlin et al., 2018) often performed better than models trained

from scratch, recent work has introduced novel ways to combine lexical and acoustic

features without forced alignment, such as sub-word attention models (Sunkara et al.,

2020). It has also been shown that jointly predicting POS tags and punctuation leads

to improvements (Yi et al., 2020). Next, we contrast and compare recent work with

respect to different punctuation marks, datasets, input features and learning methods.

2.1.3 Evaluating Punctuation Prediction Models

While the most frequently used evaluation metric for punctuation annotation is the

F1 score, the slot error rate (SER) (Makhoul et al., 2000) can be used as well. As it

is more common to report F1 score on a per-punctuation mark basis, we use the F1

scores reported by previous work in this section. Due to the majority class being no
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Figure 2.2: The average F1 scores achieved in previous work per dataset.

punctuation, the recall and precision scores for punctuation annotation are computed

over punctuation marks only:

precision =
# of correctly predicted punctuation marks

# of predicted punctuation marks

recall =
# of correctly predicted punctuation marks

# of punctuation marks in reference
Using these recall and precision values, we can then compute the F1 score. For the

remainder of this work, we report F1 scores computed in the following way.

F1 =
2∗ recall∗precision

recall+precision

2.1.4 Overview of Punctuation Annotation

As shown in Figure 2.2, periods are the only punctuation marks with similar scores

across datasets. We attribute this to the combination of their relatively high occurrence

(see Table 2.1) and little ambiguity. Question marks get very low scores in the BN and

WSJ corpora which were used with purely statistical methods which made it difficult

to capture the long-range dependencies needed to distinguish question marks from

periods (Christensen et al., 2001; Gravano et al., 2009). Commas seem to be easier to

recover on the WSJ corpus than the BN one, which we attribute to the spoken nature of

the BN corpus. In general the lower scores on BN and WSJ, as opposed to IWSLT11
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Figure 2.3: The average F1 scores achieved on the IWSLT11 dataset reference tran-

scriptions, grouped by input features and model architectures.

and MGB, should not be attributed to the datasets being more difficult but rather shows

the weaknesses of the purely statistical models used on these earlier datasets. The

results on the IWSLT11 and MGB corpus are more indicative of modern deep-learning-

based techniques and show an important trend: the spoken nature of both the IWSLT11

and MGB corpus make commas the hardest symbols to predict, while question marks,

although much less common, are close to periods in their F1 score. Previous work

has shown that commas are the most ambiguous punctuation mark, with its ambiguity

increasing further when utterances are unscripted (Boháč et al., 2017). Intuitively,

the MGB corpus should lead to lower scores overall due to its more spontaneous and

unscripted nature, and the data seems to confirm this. However, we caution to draw this

conclusion, as state-of-the-art Transformer models have been used on the IWSLT11

dataset but not, to our knowledge, on the MGB dataset.

As these differences between datasets are quite significant, and most recent work

makes use of the IWSLT11 dataset, we conduct a more detailed analysis solely on pa-

pers predicting punctuation in the reference transcripts of the IWSLT11 dataset. While

pre-training and additional data used varies across these works, this still allows in-

sight into some general trends. First, we group models by their use of solely lexical or

acoustic and lexical information, which reveals that models incorporating acoustic in-

formation generally perform better than ones without. The aforementioned drawback
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Figure 2.4: Comparison of neural contextual encoders by Qiu et al. (2020).

of less available training data when using acoustic information does not apply to one

of these models, as Yi and Tao (2019) combine a pre-trained word embedding with

pre-trained speech embeddings. This acoustic information comes in different forms as

well: Tilk and Alumäe (2016) use pause durations alone, while Yi and Tao (2019) use

Speech2Vec (Chung and Glass, 2018) to encode the original acoustic information into

a vector. When comparing recurrent architectures such as LSTM or Recurrent Neural

Networks (RNN) with Transformers, a very clear trend emerges which shows Trans-

formers to clearly outperform recurrent models on every punctuation mark except the

comma. It is possible that Transformers outclass RNNs when it comes to long-range

dependencies as the maximum path lengths between any two inputs is O(1) rather

than O(n) due to self-attention (Vaswani et al., 2017). Other reasons could be the

availability of pre-trained Transformer models for NLP and their scalability, allowing

for deeper models (Qiu et al., 2020). Comma prediction depends less on long-range

context than end-of-sentence punctuation marks (Beeferman et al., 1998), which we

hypothesise explains the similarity of recurrent and Transformer architectures in this

case. Overall, Transformers are state-of-the-art performers in the punctuation domain,

and their architecture and functionality is explained next.

2.2 Pre-trained Transformer Models in NLP

Transformers, which achieve state-of-the-art performance in most tasks in the NLP

domain, scale well with training data and model size (Wolf et al., 2019). In this section,

we briefly outline the Transformer architecture and how and why Transformers are pre-

trained. We then describe how said models are fine-tuned for sequence tagging and

classification. Finally, we outline possible ways to speed up these models at inference

time and to reduce their size.
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Figure 2.5: Architecture of a Transformer Encoder

2.2.1 Architecture of a Transformer Encoder

The central concept of Transformers is self-attention. As shown in Figure 2.4 (Qiu

et al., 2020), this self-attention allows a model to take all elements of the sequence

into account, while also processing them at the same time. A Transformer encoder

transforms a sequence of input tokens xi to contextualised word embeddings ci using

the following steps (Vaswani et al., 2017).

1. Create a d-dimensional embedding for each input token.

2. As the Transformer architecture processes all inputs simultaneously, position in-

formation is not inherently available to the model. To circumvent this, the sin

and cos functions are used to generate values which differ at each input position,

which are then added to each embedding based on its position. These slight vari-

ations in value based on position allow the Transformer to learn from positional

information without processing inputs in sequence.

3. In a process called Dot-Product Self-Attention, create a key, value and query

vector from each input, and transform each using a learned weight matrix. For

each input, create one output oi as the weighed sum of all values based on the
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key and value dot product as follows:

oi =
N

∑
j=1

softmax(k j ·qi)√
d

× v j

Note that it has been found that normalising the weighed sum by dividing by
√

d leads to more Table training (Vaswani et al., 2017). When this process is re-

peated multiple times with independent weight matrices, we speak of Multihead

Attention. The outputs of these multiple heads are concatenated in this case.

4. A residual, which is a connection partially ”skipping” the network, is added to

said output to avoid vanishing gradient (He et al., 2015). The vector is then

passed through a feed-forward neural network. As shown in Figure 2.5, this

process can be repeated N times, with popular architectures ranging between 6

and 24 of these blocks (Qiu et al., 2020).

5. The resulting context vectors ci can be passed to a decoder for sequence-to-

sequence tasks, or to a so-called head for tasks with fixed-length target values,

such as classification, tagging or regression.

Next, we explain how the encoder is used in tandem with these heads to create pre-

trained Transformer models for NLP.

2.2.2 Large, Pre-trained Models

The lack of large amounts of task-specific, annotated data has lead to the rise in a

range of pre-trained Transformer models. These models are trained using a range of

pre-training objectives on large, unlabeled text datasets (Qiu et al., 2020). One of

the most successful and widely-used models is BERT (Devlin et al., 2018). BERT

is pre-trained using masked token prediction, which randomly selects tokens in the

input sequence and replaces them with a [MASK] token. The model then has to fill in

these gaps as in the Cloze task (Taylor, 1953). A second task which is used for pre-

training BERT is next sentence prediction (NSP), in which the model has to solve the

binary classification task of predicting if two sentences, separated by a special [NSP]

token, follow each other or are randomly chosen. The goal is not to excel at these

two tasks, but to train a model which produces hidden representations which can be

used well for a variety of down-stream tasks. A variant of BERT called RoBERTa (Liu

et al., 2019) showed improved performance by computing the mask positions for MLM
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[SEP] ...
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Figure 2.6: The two pre-training tasks used in BERT.

anew for each epoch rather than once before training. They also remove the NSP task

and tune batch size and other hyper-parameters. RoBERTa outperforms BERT on a

diverse set of downstream tasks (Liu et al., 2019). Another approach instead replaces

a percentage of tokens with similar ones and trains the model as a discriminator (Clark

et al., 2020). Whichever set of pre-training tasks is chosen, their aim is to train a

model which produces a contextualised embedding for each input token for later use

in downstream tasks. These embeddings could be used in a separate model, in the

same way as typically used word embeddings such as GloVe (Pennington et al., 2014)

or Word2Vec (Mikolov et al., 2013). However, usually the whole model is adapted to

a new task in a process called fine-tuning.

2.2.3 Fine-tuning for Punctuation Annotation

When adapting a pre-trained Transformer to a downstream task, a task-specific head

with randomly initialised weights is added after the pre-trained Transformer encoder.

Training the architecture with this task-specific head can yield good results even when

training on few training samples (Howard and Ruder, 2018; Wolf et al., 2019). Dif-

ferent tasks require different heads, but for punctuation annotation, the majority of

previous work use either one or two linear layers (Chen et al., 2020; Alam et al., 2020)

or a bi-directional Long Short-Term Memory (Bi-LSTM) (Yi et al., 2020). CRFs in

conjunction with RoBERTa were found to not improve performance by Alam et al.

(2020). It is also possible to add a decoder component and treat the problem as a
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sequence to sequence task (Yi and Tao, 2019).

2.2.4 Inference Speed and Model Size

A drawback of the Transformer architecture is that the runtime and memory require-

ments of dot-product attention scales quadratically with sequence length (O(n2)) (Tay

et al., 2020). A range of replacements of this expensive operation have been proposed

such as Reformer (Kitaev et al., 2020) and Linformer (Wang et al., 2018), which re-

duce this to O(n logn) and O(n), respectively. However, to the best of our knowledge,

no large-scale pre-trained models using these architectures are publicly available at the

time of writing, negating the benefit of pre-trained Transformer models. Another way

to improve inference speeds is to reduce the length of the input, which we explore in

Section 4.4.

State-of-the-art punctuation annotation models rely on Transformer models which are

large in size. The best results achieved on the IWSLT11 dataset reference transcrip-

tions we are aware of make use of ROBERTA-LARGE (Alam et al., 2020), which has

355M parameters. When each weight is of type float32, this leads to a model size

of 1.4GB. Recent work has shown that during training, Transformers benefit from this

large number of weights and converge faster than when using smaller models (Li et al.,

2020). Li et al. (2020) therefore suggest to train large Transformer models first, and to

then quantize and/or prune the model weights. By compressing a model this way and

then re-training on a subset of the original data, model size can be reduced to a fraction

of its original size, while maintaining comparable performance (Han et al., 2016). To

the best of our knowledge, this has not been explored in the punctuation annotation

domain.

2.3 Ways to Model Punctuation Annotation

As discussed in Section 2.1.2, early punctuation annotation systems mainly use sta-

tistical methods, such as Finite-state Machines (FSMs) in conjunction with Viterbi

Decoding, to recover punctuation. These approaches found valuable information still

useful today such as the strong predictive power of pause durations (Christensen et al.,

2001) and the limited context required for predicting comma (Beeferman et al., 1998),

but the statistical models themselves were replaced by a variety of neural network ar-

chitectures. Until recently, the main contenders among these were recurrent (Tilk and
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Figure 2.7: Punctuation- and capitalization-recovering finite-state machine by Gravano

et al. (2009).

Alumäe, 2016; Klejch et al., 2016; Yi et al., 2017), and less frequently, convolutional

(Che et al., 2016) neural networks. In recent years, the trend of the Transformer archi-

tecture achieving state-of-the-art results in many NLP domains (Qiu et al., 2020) has

extended to punctuation annotation as well (Yi and Tao, 2019; Chen et al., 2020; Alam

et al., 2020). While statistical models model punctuation as a probability distribution

over possible events occurring between words, there are three other ways to model

punctuation annotation which have emerged alongside learning-based models in NLP:

(a) Tagging: For models which create one state for each element in the input se-

quence, such as RNNs or Transformers, a final tagging layer can predict the

punctuation mark associated with each such element. When using this approach

with the Transformer architecture, punctuation marks predicted earlier in the se-

quence are not taken into account for later predictions. This limitation can be

overcome by using an RNN as the tagging head as described in Section 2.2.3.

Some previous work successfully uses Conditional Random Fields (CRFs) as

well (Yi et al., 2020), while the work reporting the best results on the IWSLT11

dataset as of the time of writing finds no improvement from CRFs (Alam et al.,

2020).

(b) Machine Translation: The hidden state(s) produced by a neural network en-

coder can also be fed to a decoder, which then outputs a sequence of punctuation

marks. This approach can make use of previously predicted punctuation marks,

but requires the model to learn to output the same number of marks as are words

in the input.
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Figure 2.8: Three possible ways to model punctuation using neural network encoders

are (a) tagging each element based on its contextualised embedding, (b) treating the

task as a translation problem and creating punctuation using a decoder (c) classifying

a single element in the input sequence.

Approach Paper

Tagging
Tilk and Alumäe (2016); Yi et al. (2017); Chen et al. (2020)

Yi et al. (2020); Alam et al. (2020)

Machine Translation Klejch et al. (2016, 2017); Yi and Tao (2019)

Classification Che et al. (2016)

Table 2.2: Differing approaches for modeling punctuation annotation in previous work.

(c) Classification: A model can also be trained to predict one punctuation mark per

input. The position of the punctuation mark can either be static or given to the

model as an additional input. The drawback of this approach is that one inference

step is required for each word in the input sequence.

All of the above have been successfully used for punctuation annotation, as shown in

Table 2.2. While there are more examples for tagging and machine translation, to the

best of our knowledge, Che et al. (2016) present the only approach using classification.

We reason that this is due to the increased resources required when doing inference for

each word rather than being able to do inference on a full sequence. In the next section,

we show how for streamed punctuation annotation, this classification approach can be

advantageous, and present the Streamed Classification Punctuation Transformer.



Chapter 3

Streamed Classification Punctuation

Transformer

We now outline our proposed architecture for predicting punctuation in a streamed

setting, such as at last step of the ASR pipeline. The desiderata for this system are

(1) ability to use in a streamed setting with limited lookahead (2) near state-of-the-art

performance (3) real-time inference speed.

3.1 Masked Punctuation Prediction

[PUNCT]

Punctuation Annotation Model
Masked Classification

[PUNCT]

Punctuation Annotation Model
Masked Classification

[PUNCT]

Punctuation Annotation Model
Masked Classification

Figure 3.1: Punctuation annotation as a classification task using a [PUNCT] token.

In real-time settings, there is a lack of right-side context: an ASR streams words to the

punctuation system and punctuation is added continuously. The less right-side context

a model needs, the earlier can a punctuation mark be inserted into the final output.

However, as discussed in Section 2.3, most recent punctuation annotation systems

model the problem as a tagging or sequence-to-sequence task and use deep learning

models. For these models, the training objective is loss minimization. When modeled

16
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[PUNCT]... ...

Left-Side Context Right-Side Context

Figure 3.2: Left- and right-side context in masked punctuation prediction.

Inference Stack

Inputs ...

 

 

Figure 3.3: Inferences stack for lmax = 3, assuming H(P)> h at each time step.

as a tagging or sequence-to-sequence task however, this loss term includes equal parts

of each output, regardless of its position within the sequence. We argue that a model

facing little right-side context will perform better when trained exclusively on samples

with little right-side context, and propose Masked Punctuation Prediction for this pur-

pose. Inspired by the masked language modeling (MLM) and next sentence prediction

(NSP) tasks used in pretraining (Liu et al., 2019), we insert a special [PUNCT] token

into each training sample. The model is then tasked to predict the punctuation present

at the location of this token using a classification head. As shown in Figure 3.1, this

requires one sample per punctuation mark. In a streamed setting, this is not a draw-

back however, as inference has to be run at the arrival of every new word in any case.

When trained with a fixed-length right-side context, this token would not be necessary,

as the model could learn the position of the punctuation over time. If we use varying

lookahead however, this token is needed, as it encodes the punctuation position, and in

turn the length of the current lookahead. Next, we describe this varying lookahead and

how it can be used in practice.
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3.2 Varying Lookahead and Decoding

To predict punctuation in a streamed setting, we need a way to progressively feed the

model more right-side context should it fail to predict punctuation with the context it

is given initially, and make it robust to predicting sequences with varying lengths of

this context.

Training

Using the [PUNCT] token described above, this can be achieved when training the

model: We set the minimum and maximum lookahead (lmin and lmax), and then insert

the [PUNCT] token at n− l for each sample, where n is the sequence length and l is the

lookahead. The lookahead can be cycled through or drawn randomly from [lmin, lmax].

Inference

For inference, a decoding strategy utilising varying lookahead is needed, which we

propose in Algorithm 1. The first question that presents itself is how we decide if

the system is predicting punctuation with reasonable confidence, or if more context is

needed. We solve this by computing the Shannon-Entropy (Shannon, 1948) H over the

set of probabilities pi, ..., pk ∈ P assigned to each of the k punctuation marks after the

softmax step.

H(P) = H(pi, ..., pk) =−
k

∑
i=1

pi log2 pi

This value can be understood as the uncertainty of the model, and will be lower when

the model is more certain of a prediction, being 0 when one probability is 1 and all

others are 0. Given the four possible outcomes of comma, period, question mark and

no punctuation, the maximum value is reached when all probabilities are 1
4 which

corresponds with H(P) = 2. For decoding, we set an entropy threshold h and wait for

more right-side context and repeat inference if the computed entropy H(P)> h. This is

repeated until H(P)≤ h or lmax is reached. As words are streamed into the system, we

potentially do inference on multiple punctuation positions at the same time step, with

the maximum number of inferences conducted at the same time being lmax− lmin +1,

as shown in Figure 3.3.
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Algorithm 1: Entropy Threshold Decoding
Data: N = List(maxsize: lmax +1), L = List

input : token, h

output: punctuations, positions

punctuations←List, positions←List

L← L ∪ token

P← probabilities(L ∪ [PUNCT])

if H(P)> h then
N← N∪0

else
punctuations← punctuations∪ argmax(P)

positions← positions∪0
end
for i← 1 to |N| do

n← Ni

P← probabilities({Li}
|L|−n
i=0 ∪ [PUNCT] ∪ {Li}

|L|
i=|L|−n+1)

if H(P)> h then
Ni← n+1

else
punctuations← punctuations∪ argmax(P)

positions← positions∪−n

N← N \n
end

end

3.3 Adding Pause Tokens

As described in Section 2.1.1, pause features have been shown to be strong indicators

of punctuation (Christensen et al., 2001). Given our setup of a pre-trained Transformer

with a classification head (see Section 3.1), we see two ways to make these features

available to the model:

1. Concatenate pause durations following each word to the context vectors de-

scribed in Section 2.2.1 before passing them to the classification head.

2. Add a [PAUSE] token after each word followed by a pause above a certain thresh-

old.

While 1) can include information on all pauses, rather than exclusively ones above
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Figure 3.4: Pause statistics of the MGB and IWSLT11 datasets.

a certain threshold, only the classification head can learn from these features, while

the Transformer encoder cannot. 2) on the other hand cannot encode all pause infor-

mation, but enables the full architecture to learn from the pause features. For these

reasons, our approach uses [PAUSE] tokens. For a streamed punctuation system, pause

durations can either be a part of the output of said system or can be approximated

by measuring the time between words streamed. However for training, transcripts for

both the IWSLT11 and MGB datasets do not contain timing information. On the other

hand, ASR output for both systems including this information is available. Previous

work aligns ASR outputs and transcripts to add punctuation to the ASR output (Yi and

Tao, 2019). Inspired by this approach we first add [PAUSE] tokens to the ASR output

using the available timing information, and then align this modified ASR output with

the original transcripts using the Needleman and Wunsch (1970) algorithm. We pub-

lish our code to load the publicly available IWSLT11 dataset with and without pause

durations.1 One drawback of this method is that for the IWSLT11 dataset, only the

validation and test splits of the data come with ASR transcripts. To combat this we can

a) use training data without pause durations first b) use MGB training data first and

then finetune. For both approaches, we finetune the model using the validation set. a)

and b) can be used in combination as well. We evaluate these options empirically in

Section 4.5. When using the MGB dataset for this purpose, it becomes worthwhile to

investigate the pause duration similarity in both datasets. As shown in Figure 3.4, both

1https://github.com/MiniXC/punctuation-iwslt2011

https://github.com/MiniXC/punctuation-iwslt2011
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Figure 3.5: The proportion of pauses between words based on threshold tp in ms.

[PUNCT]... ......

Input Text

Figure 3.6: Tokenization, [PUNCT] token insertion and truncation.

datasets follow a similar exponential decay when considering all pauses ≥ 10ms, al-

though the MGB dataset has a higher proportion of pauses in the range of [0ms,75ms]

while the proportion of pauses in IWSLT11 is higher in the interval of [75ms,150ms].

We also observe a big discrepancy between the occurrence of pauses ≥ 10ms, with

97% of word transitions being accompanied by at least a short pause in the IWSLT11

dataset, while this is the case for just 25% of transitions between words in the MGB

dataset. We expect this to be the case due to the spontaneous vs. scripted nature of the

MGB and IWSLT11 datasets (see Section 2.1.1). The dataset ASR transcriptions were

possibly generated using differing systems, which could cause this difference as well.

To combat this imbalance when training on one of the datasets and evaluating on the

other, we can either take speaking rate into account or find the threshold that leads to

the most similar statistics. In this work, we use the latter approach and find that for

tp ≈ 280ms, both datasets have a pause proportion of 7.9%, as shown in Figure 3.5.

We evaluate this and other threshold values in Section 4.5.
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Figure 3.7: Class distribution of the MGB and IWSLT11 validation datasets.

3.4 Input Truncation for Faster Training and Inference

As described in Section 2.2.4, Transformers use dot-product self-attention, which has

a time and memory complexity of O(n2). While there are architectures which reduce

this to O(n logn) or O(n), no large pre-trained models of such variants are available

at the time of writing, negating the benefits we outline in Section 2.2.2. As in many

other punctuation annotation research (Tilk and Alumäe, 2016; Yi and Tao, 2019; Alam

et al., 2020), we generate samples by using a sliding window on a transcript with all

prior segmentation removed. Due to our approach of only predicting one punctuation

mark at a time however, we are able to trim left-side context until we notice a degrada-

tion in performance. This is done after tokenization, as some Transformer architectures

rely on a one-to-many mapping between words and embeddings. We introduce a pa-

rameter w which determines the length of the window after truncation. We empirically

evaluate different values of w in terms of speedup and model prediction performance.

3.5 Punctuation Class Imbalance

When treating punctuation annotation as a classification problem, we encounter the

class imbalance shown in Figure 3.7. Models trained on such datasets with imbal-

anced classes can develop a prediction bias for the majority class (Leevy et al., 2018).

While there are many approaches for preventing this, under-sampling, where part of

the majority class data is discarded and over-sampling, where part of the minority

classes is repeated are commonly used (Leevy et al., 2018). When over-sampling, the
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repeated data can be augmented as well, by replacing words or characters in the input

with similar ones (Ma, 2018). In this work, we rely on downsampling as a means to

train large models efficiently.

Summary

We have introduced a novel way to create a classification punctuation annotation sys-

tem using a special [PUNCT] token. We have proposed a training procedure utilising

this approach to train a model specifically on samples with little or no right-side con-

text, to create a model well-suited for the streamed punctuation annotation task. For in-

ference, we have introduced Entropy Threshold Decoding, which varies the lookahead

needed based on model certainty. We have hypothesised that this will lead to easier

samples being predicted early while the model will wait for more context for harder

samples. To utilise acoustic features commonly available as a part of ASR output, we

have shown that word timing information can be used to infer pause information by

adding a [PAUSE] token at a threshold tp. For inference speeds, we have proposed in-

put truncation due to the quadratic complexity of dot-product attention. We also have

also reasoned that due to the class imbalance present, downsampling can help train

on fewer samples while maintaining comparative performance. Next, we evaluate the

techniques described in this chapter and present their best combination as our system.
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Experiments and Results

We now put our proposed architecture to the test and empirically evaluate how different

methods affect performance on the MGB and IWSLT11 datasets. We make the scripts

used for all experiments publicly available at https://github.com/MiniXC/SAPAUT.

4.1 IWSLT11 and MGB Dataset & Statistics

DATASET SAMPLES FULL STOP COMMA QUESTION MARK

MGBT RAIN 2.49M 8.36% 5.72% 1.28%

MGBT RAIN↔ASR 2.04M 8.43% 5.83% 1.25%

MGBVALID 93.0K 9.74% 6.76% 2.01%

MGBVALID↔ASR 76.6K 10.24% 6.86% 1.98%

IWSLT11T RAIN 2.4M 6.13% 6.94% 0.52%

IWSLT11VALID 49.2K 5.82% 7.46% 0.54%

IWSLT11VALID↔ASR 47.4K 6.27% 7.50% 0.54%

IWSLT11T EST 14.3K 6.19% 5.79% 0.35%

IWSLT11T EST↔ASR 13.5K 6.73% 5.97% 0.37%

Table 4.1: The statistics of the MGB and IWSLT dataset splits.

As shown in Table 4.1, the datasets splits aligned with the ASR transcripts (for example

T EST ↔ ASR) are slightly smaller due to not all talks appearing in the transcripts.

To allow for a fair comparison, we use the aligned splits for all experiments. The

IWSLT11T RAIN dataset split does not come with ASR transcripts, and we can therefore

only use it without pause information.

24

https://github.com/MiniXC/SAPAUT
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Figure 4.1: The F1 scores achieved given different lookahead values. Classification

outperforms tagging significantly for l > 0 in both the MGB and IWSLT11 dataset.

Hyper-Parameters

Learning Rate (Initial/Maximum/Final) 1e-6/5e-5/1e-7

Learning Rate Schedule 1-cycle (Smith, 2018)

Batch Size 128

Optimizer AdamW (Loshchilov and Hutter, 2019)

Weight Decay 0.01

Table 4.2: Hyper-parameters used for all experiments.

4.2 Pre-Trained Models by Hugging Face

The Hugging Face Transformers library, offers a range of pre-trained Transformer

models in conjunction with differing heads for finetuning (Wolf et al., 2019). As de-

scribed in Section 2.2.3, based on the downstream task in question, a simple linear

layer with nclasses output nodes might be used for classification, while recurrent layers

can be used for sequence tagging tasks.
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TEST MODEL
FULL STOP COMMA QUESTION OVERALL

P R F1 P R F1 P R F1 P R F1

IWSLT11
TAGGING 75.0 78.6 76.7 58.8 64.7 61.6 76.9 78.9 77.9 67.3 72.1 69.6

CLASS. 74.5 84.9 79.4 69.1 71.5 70.1 50.0 80.0 61.5 71.6 78.7 75.0

MGB
TAGGING 65.4 68.6 67.0 56.1 52.9 54.5 62.4 62.4 62.4 61.8 62.1 62.0

CLASS. 63.4 72.0 67.4 59.9 48.8 53.8 71.0 55.3 62.2 63.0 61.6 62.3

Table 4.3: Tagging and classification results for lookahead l = 4.

4.3 Baseline using Tagging Approach

As our baseline to compare against, we train a model using the widespread sequence

tagging approach (Tilk and Alumäe, 2016; Yi et al., 2017; Chen et al., 2020; Yi et al.,

2020; Alam et al., 2020) with a Bi-LSTM head. The pre-trained model used is DIS-

TILROBERTA, which is a ROBERTA variant (Liu et al., 2019) distilled into a smaller

model using the approach described by Sanh et al. (2019). In preliminary experiments

we find the hyper-parameters shown in Table 4.2 to lead to robust results, and use said

parameters for the remainder of experiments. We use the sliding window approach

described in 3.4 with a window size of w = 32 and evaluate using the F1 measure

described in Section 2.1.3 at different lookaheads.

As shown in Figure 4.1, the classification model outperforms the tagging one for all

lookaheads except l = 0. We reason that this is due the classification model putting

more emphasis on samples with little right-side context, as hypothesised in Section 3.1.

The better performance of the tagging model on lookahead l = 0 is surprising, but could

be due to the tagging model having access to previous predictions using its Bi-LSTM

layer, which the classification model has not.

Preliminary experiments showed no significant improvements beyond a lookahead of

4. Therefore, to be able to compare to previous work, which has no limitations on right-

side context, we evaluate the per-class performance of models given a lookahead of 4

for this baseline (see Table 4.3) and for the remainder of experiments. We notice that

the classification approach yields a significant improvement for the IWSLT11 dataset,

while not doing so on the MGB dataset.
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Figure 4.2: Window size effect on speed and performance. Decreasing the window size

seems to lead to a linear increase in speed, while F1 scores decrease when using a

window size of 16 or less.

4.4 Truncation Window Sizes

So far, we have mainly focused on right-side context, as it is a major limiting factor

for streamed punctuation prediction. Left-side context, on the other hand, can be lim-

ited on purpose to speed up training and inference. Due to the O(n2) complexity of

dot-product attention (see Section 2.3), every halving of the input should result in a

quadratic reduction in inference and training time. We therefore truncate the left side

of the input as described in Section 3.4 and compare window sizes w of 128, 64, 32, 16

and 8. Instead of the theoretically possible ×4 speedup for each halving we observe

a ≈ ×2 increase in speed. There also seem to be diminishing returns, as the decrease

from 16 to 8 in window size yields the lowest speedup in relative terms. As shown

in Figure 4.2, decreasing the window size to below 32 decreases performance on both

datasets. We therefore use a window size of 32 for all future experiments.
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PAUSE
FULL STOP COMMA QUESTION OVERALL

P R F1 P R F1 P R F1 P R F1

NONE 71.0 67.9 69.4 50.9 59.0 54.7 26.6 80.0 40.0 59.3 64.1 61.6

tp = 100ms 74.1 71.1 72.6 54.9 61.2 57.8 75.0 75.0 75.0 63.8 66.3 65.0

tp = 150ms 74.5 70.4 72.4 49.7 57.8 53.4 75.0 75.0 75.0 61.8 64.8 63.3

tp = 200ms 74.0 70.4 72.2 49.7 57.8 53.4 50.0 66.6 57.1 60.6 64.5 62.5

tp = 250ms 72.2 74.1 73.2 46.1 51.0 48.4 80.0 57.1 66.6 59.5 62.9 61.2

tp = 280ms 77.1 75.6 76.3 50.5 58.8 54.3 66.6 76.9 71.4 63.0 67.7 65.2

tp = 300ms 73.8 72.9 73.3 56.2 59.0 57.5 42.8 60.0 50.0 64.1 65.7 64.9

tp = 350ms 70.4 82.3 75.9 56.2 55.5 55.9 63.6 87.5 73.6 63.8 69.3 66.4
tp = 400ms 74.2 67.9 70.9 46.7 59.3 52.3 60.0 85.7 70.5 59.2 64.5 61.7

Table 4.4: Results of using the different pause thresholds on the IWSLT11 dataset.

PAUSE
FULL STOP COMMA QUESTION OVERALL

P R F1 P R F1 P R F1 P R F1

NONE 63.4 72.0 67.4 59.9 48.8 53.8 71.0 55.3 62.2 63.0 61.6 62.3

tp = 100ms 62.5 73.6 67.6 60.3 45.7 52.0 65.1 58.3 61.5 62.1 61.4 61.7

tp = 150ms 64.0 72.1 67.8 61.0 49.9 54.9 62.6 56.2 59.2 63.0 62.2 62.6
tp = 200ms 64.6 70.8 67.6 60.9 49.2 54.5 68.6 56.6 62.0 63.8 61.5 62.6
tp = 250ms 63.0 69.3 66.0 58.6 48.6 53.1 67.3 54.3 60.1 62.0 60.0 61.0

tp = 280ms 63.7 69.4 66.4 63.1 49.2 55.3 65.7 59.2 62.3 63.7 60.6 62.1

tp = 300ms 63.8 70.0 66.8 58.8 47.5 52.6 67.6 55.8 61.1 62.5 60.2 61.4

tp = 350ms 61.6 71.9 66.4 59.0 47.7 52.7 67.2 50.8 57.8 61.3 60.9 61.1

tp = 400ms 63.1 71.4 67.0 59.9 52.1 55.7 68.4 54.3 60.6 62.5 62.3 62.4

Table 4.5: Results of using the different pause thresholds on the MGB dataset

4.5 Pause Features at different Thresholds

We now test if the [PAUSE] token proposed in Section 3.3 improves performance and

which pause threshold tp is optimal. We test thresholds in 50ms intervals, and addi-

tionally test 280ms as it the pause threshold with the same pause proportions between

MGB and IWSLT11 datasets (see Section 3.3).
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MGB

On the MGB dataset, we find a slight improvements over not using pause tokens at tp

values of 150ms and 200ms. The biggest impact can be observed for comma prediction,

where the 150ms and 200ms increase performance by 1.1% and 0.7%, respectively

(absolute). The partly spontaneous nature of the MGB dataset could cause annotators

to mark pauses as commas in the transcripts, while the end of a sentences does not

have to be accompanied by a pause. The impact of pause features on performance is

much less pronounced on the MGB dataset than the IWSLT11 one. This could be due

to less pronounced pauses in the dataset, as the speech in the MGB dataset is more

spontaneous than in IWSLT11 one (see Section 2.1.1).

IWSLT11

For this experiment, we train on the IWSLT11VALIDAT ION dataset and evaluate on

IWSLT11T EST . The intuitively chosen 280ms performs well, only slightly outper-

formed by 350ms. We therefor use 280ms for the remainder of experiments. The

results also indicate that short pauses are helpful for predicting commas but lead to

worse results on full stops. The model without pauses performs worst of all models

for the end-of-sequence punctuation marks full stop and question, while performing

well on comma. This is expected, as we reason that end-of-sequence punctuation is

more likely to be accompanied by a pause than comma. The results for the IWSLT11

datasets are lower than the baseline due to the IWSLT11T RAIN set not having pause

durations, which forces us to use the IWSLT11VALIDAT ION set alone for training.

4.6 Pause Finetuning

To successfully apply the pause features while making use of the baseline trained on a

large dataset, we use said baseline as a starting point and finetune on smaller datasets

containing pause features. The results of these experiments are shown in Table 4.6.

MGB

While increasing performance on question marks and comma prediction, finetuning

the MGB baseline on pause features leads to degradation on full stop prediction, while

significantly improving comma prediction, leading to an overall lower result. Utilizing

the IWSLT11 data also yields worse results, decreasing performance on comma and
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TRAIN
FULL STOP COMMA QUESTION OVERALL

P R F1 P R F1 P R F1 P R F1

IWSLT11 Baseline 74.5 84.9 79.4 69.1 71.2 70.1 50.0 80.0 61.5 71.6 78.7 75.0

+IWSLT11VALID↔PAUSE 80.8 89.1 84.8 66.2 69.3 67.7 76.9 76.9 76.9 73.9 79.2 76.5
+MGBVALID↔PAUSE 73.9 89.1 80.8 72.5 62.1 66.9 73.3 84.6 78.6 73.4 76.1 74.7

+BOTH 80.8 86.5 83.6 65.3 72.5 68.7 76.9 76.9 76.9 73.1 79.5 76.2

MGB Baseline 63.4 72.0 67.4 59.9 48.8 53.8 71.0 55.3 62.2 63.0 61.6 62.3
+MGBT RAIN↔PAUSE 62.3 67.9 65.0 59.5 53.8 56.5 66.8 60.5 63.5 61.7 61.8 61.8

+IWSLT11VALID↔PAUSE 63.1 59.7 61.4 50.9 54.6 52.7 66.2 59.7 62.8 58.3 57.7 58.0

+BOTH 61.4 69.6 65.2 60.8 46.7 52.8 73.8 54.5 62.7 62.2 59.3 60.7

Table 4.6: Finetuning the model baselines on pause features using differing datasets.

full stop. We hypothesis that a better way to encode pause features would be needed to

allow for improvements on the MGB corpus. We also reason that the IWSLT11 dataset

does not improve finetuning results on MGB due to its more scripted nature.

IWSLT11

The IWSLT11 dataset shows an inverse result to the MGB one. Full stop prediction

is improved significantly, while comma prediction is degraded. The overall best result

is achieved when finetuning on the IWSLT validation set alone (1.5%). Finetuning

on both MGB and IWSLT11 leads to better comma prediction (1%) while improving

overall performance (1.2%) compared to the baseline.

4.7 Entropy Threshold Decoding

Using the algorithm described in Section 3.2, we dynamically vary lookahead based on

different entropy thresholds on the IWSLT11 dataset. We start at a threshold of h = 0.1

and evaluate the F1 score of the system at intervals of 0.1 until reaching h= 1.5. We re-

port the average lookahead as well to allow for comparison with decoding using a fixed

lookahead. As shown in Figure 4.3, we find that entropy threshold decoding yields

worse results than fixed-lookahead decoding when including zero-lookahead. We hy-

pothesise that due to the low F1 score of the model at zero-lookahead (see Figure 4.1),

the Shannon-Entropy measure is not an accurate measure of model confidence either.

This leads to a disproportionate amount of false predictions at zero-lookahead, and

lowers the F1 score overall. To test this hypothesis, we exclude the zero-lookahead step
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Figure 4.3: Entropy threshold decoding at different values for the threshold h. Each

number accompanying a point represents an entropy threshold. As the maximum en-

tropy for four classes is 2.0, Entropy threshold decoding using this value is equivalent

to fixed-lookahead decoding with the smallest lookahead.

in our decoding algorithm, and find decoding is now on par with fixed-lookahead de-

coding. This decoding strategy allows to specify the desired average lookahead, while

only slightly decreasing performance. Future work could investigate using lookahead-

specific thresholds (e.g. gradually decreasing the entropy threshold h) or training a

neural network for this purpose.

4.8 Scaling Up & Comparison to Previous Work

Recent state-of-the-art performance on the IWSLT11 dataset has been shown using the

BASE and LARGE variants of ROBERTA, which are twice and quadruple the size of the

DISTILROBERTA model used thus far. Li et al. (2020) show evidence for large models

outperforming small ones even when using the same computational time and resources.

They show that larger models trained on smaller datasets outperform smaller models

trained on large ones. To improve our model performance while restricting ourselves to

a similar compute budget as for the DISTILROBERTA model, we use downsampling.

We remove samples with no punctuation until there are twice the number of None
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MODEL
FULL STOP COMMA QUESTION OVERALL

P R F1 P R F1 P R F1 P R F1

Alam et al. (2020) 88.6 89.2 88.9 76.8 76.6 76.7 82.7 93.5 87.8 82.6 83.1 82.9

IWSLT11T RAIN (Resampled) 77.4 87.6 82.2 55.0 87.1 67.5 87.5 77.8 82.4 63.9 87.1 73.7

+IWSLT11T RAIN,2% 76.4 89.9 82.6 64.0 74.2 68.7 50.0 80.0 61.5 70.4 82.7 76.0

+IWSLT11VALID,tp=280ms 82.4 88.1 85.1 63.0 78.8 70.0 57.1 80.0 66.7 72.5 83.8 77.7

+BOTH 78.9 89.3 83.8 67.8 76.5 71.9 88.1 78.3 82.9 73.5 83.4 78.2

MGBT RAIN (Resampled) 62.3 81.2 70.5 53.4 68.9 60.2 72.9 64.8 68.6 59.8 74.9 66.5

+MGBT RAIN,2% 66.6 77.2 71.5 63.9 55.7 59.5 73.3 58.8 65.2 66.2 67.4 66.8
+MGBT RAIN,2%,tp=280ms 64.8 76.5 70.2 61.0 58.3 59.6 75.5 62.1 68.1 64.5 68.2 66.3

+BOTH 65.4 73.3 69.2 60.6 56.9 58.7 70.2 62.7 66.2 64.2 66.1 65.2

Table 4.7: Results of the ROBERTA-LARGE model trained on a resampled training set.

samples than the number of samples for the most common punctuation mark. For the

MGB dataset, this reduces the number of samples to 33% of their original number.

For the IWSLT11 dataset, the number of samples is reduced to 29%. As this shifts the

class priors, we also finetune on an unaltered subset of the data (2% of the training

data). Table 4.7 shows these results in detail. The IWSLT11 results in said table can

be compared with Alam et al. (2020), which achieve the best results on said dataset to

the best of our knowledge. Alam et al. (2020) augment the training data to train with

more samples, while we downsample for more efficient training.

MGB

When comparing to the best previous work, which utilises a RNN and sequence-to-

sequence approach (Klejch et al., 2016), we outperform said model by 2.9% on average

for each punctuation class (1.1% full stop; 2.8% comma; 4.9% question mark). In

contrast to said work, we do not using any language model data and just 33% of the

training data. Pause features do not lead to any significant improvements on the MGB

dataset. We reason that this general improvement can be attributed to Transformer

architecture we are utilising, coupled with its unsupervised pre-training, following the

trend seen in other NLP domains (Qiu et al., 2020).

IWSLT11

Despite training on 29% of the train dataset alone, we achieve an overall F1-score of

78.2% on the IWSLT11 test dataset, which, to the best of our knowledge, is the highest

to date without utilising additional data such as POS-tags (Yi et al., 2020), disfluency

data (Lin and Wang, 2020) or data augmentation (Alam et al., 2020).
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Figure 4.4: Effect of truncation and quantization on inference speed.

4.9 Inference Speed & Quantization

We now evaluate inference speed of the final IWSLT11 model described above.1 While

we observed a linear increase in speed while training (see Section 4.4), for inference,

we get closer to the quadratic improvement expected. The theoretical upper bound for

the speedup when using 1
4 of the original window size is ×16. In our inference exper-

iments, we find an actual increase in speed of ×10.68, from 1.6 samples
second to 17.1 samples

second .

To further increase model speed and decrease model size, we perform quantization of

the model weights, reducing their size from float32 to int8. We do this using stan-

dard procedures available in the PyTorch libary2 (Paszke et al., 2019). This leads to a

slight decrease in model performance (−1.3% F1 for MGB, −2.6% F1 for IWSLT11).

This also leads to a ×2.36 increase in speed to 40.5 samples
second and ≈×4 compression in

model size, reducing model size from 1.4GB to 355MB. We reason that the decrease in

performance observed could be offset by the compression and speed gained in certain

use cases, for example for use on mobile devices. We reason that this loss in perfor-

mance could also be offset using quantization-aware training or finetuning following

quantization (Han et al., 2016; Jacob et al., 2017).

1A single core of a Ryzen 7 2700X processor was used, 6000 inference iterations were averaged.
2https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html

https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html


Chapter 5

Conclusion and Future Work

Instead of building a punctuation prediction system and then adapting it to the streamed

ASR use case, we focused directly on streamed punctuation annotation. Most recent

punctuation annotation systems using Transformers use a sequence tagging approach.

Contrary to this we used a classification approach and presented a novel masked punc-

tuation prediction training and inference procedure inspired by the masked language

modeling task used when pre-training Transformers (Devlin et al., 2018). We showed

our new method outperforms the aforementioned tagging approach when a right-side

context of 4 words or less is available, which is desirable for streamed punctuation

annotation. To utilise acoustic information while relying on an ASR system’s output

alone, we encoded timing information commonly provided by ASR systems as an ad-

ditional feature. We achieved this by adding a special [PAUSE] token to the input.

On the IWSLT11 dataset, this lead to a significant improvement of 2.2% (absolute)

in F1 score. We conclude that pause tokens work exceedingly well for datasets of a

semi-scripted nature, and could be of great use for dictation systems. We see masked

punctuation prediction and [PAUSE] tokens as our most promising contributions and

plan to submit a paper exploring this further to ICASSP 2022. We used downsam-

pling to efficiently train our final model using ≈ 1
3 of the available training data, while

achieving overall F1 scores within 4.7% (absolute) of the best model we are aware of

on the IWSLT11 dataset (Alam et al., 2020). We also found that the advantages of the

commonly used approach of fine-tuning pre-trained Transformer models extend to the

semi-spontaneous speech present in the MGB dataset, as we are able to outperform the

previous best model (Klejch et al., 2016) by 2.9% (absolute) on average for each eval-

uated punctuation mark. As we used a model pre-trained on an unsupervised language

modeling task, we achieved this while utilising 0.03% of the data used to train the pre-

34
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vious best model on the MGB dataset. We showed our classification approach can be

combined with truncation, which leads to a ×4 speedup for training and ×10 speedup

for inference while not decreasing performance. For use of ASR on low-resource de-

vices, we showed weight quantization yields a further ×2.36 speedup and a reduction

in model size by ×4, while leading to a minor decrease in F1 scores of 2% on average.

Future work could improve our system by adding teacher forcing as a mechanism to

use past punctuation predictions for future ones. Our naive Entropy Threshold De-

coding algorithm could be replaced by a learned method, such as a shallow neural

network to predict if more lookahead is needed. Quantization-aware training, in which

floating point weights are regularly rounded during training, could help mitigate the

loss in performance reported due to quantization. While the improvement in inference

speed gained using truncation are significant, we show that truncation starts to decrease

model performance at a window width of 16 or less. This limits further improvements

when reaching this window size. To further improve models for low-resource applica-

tions, efficient Transformer architectures reducing the O(n2) complexity of dot-product

attention could be investigated. In our experiments on the IWSLT11 dataset, we show

pause tokens at varying thresholds affect different punctuation mark performance. To

allow the model to distinguish between pauses of different lengths, the pause features

utilized in our work could be provided as an input to the final model head, or separate

short- and long-pause tokens could be investigated. Finally, our system and the impact

of [PAUSE] tokens could be evaluated on the ASR results, rather than transcriptions,

of the MGB and IWSLT11 datasets.
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Appendix A

Background

A.1 On Dataset Statistics in Table 2.1

The train/evaluation/test splits for datasets used in punctuation annotation are incon-

sistent across papers, which means the percentages reported in 2.1 might vary from

some of the evaluation sets used in punctuation papers. The sources for said numbers

are as follows:

• Ueffing et al. (2013) for WSJ and IWSLT11 corpus.

• Kim and Woodland (2003) for BN corpus size and Batista et al. (2008) for BN

punctuation percentages.

• Klejch et al. (2016) for MGB corpus.

• Juin et al. (2017) for Europarl corpus.

Punctuation marks other than full stop, comma and question mark were reported for

several corpora and are shown in the Table below.

Dataset Tokens Full Stop Comma Question Mark Exclamation Mark Dash Triple Dots

WSJ 51,023 4.59% 5.98% 0.04% - - -

IWSLT11 17,207 5.37% 6.36% 0.48% - - -

MGB 92,622 7.63% 4.77% 1.67% 1.18% - 0.59%

BN 35,710 3.5% 5.1% 0.29% - - -

Europarl 10,000 2.29% 2.36% 0.01% 0.01% 0.41% -
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Appendix B

Experiments

B.1 On Truncation Window Sizes

See the detailed results of truncation window sizes shown in Figure 4.2 below.

Test Window samples

second

Full Stop Comma Question Overall

P R F1 P R F1 P R F1 P R F1

IWSLT11

w = 128 572 75.3 86.2 80.4 64.7 65.2 64.9 57.1 80.0 66.7 70.5 76.7 73.5

w = 64 1258 (×2.19) 74.1 81.1 77.5 65.5 68.9 67.2 40.0 80.0 53.3 69.3 75.7 72.4

w = 32 2340 (×1.86) 74.6 84.9 79.4 69.1 71.2 70.1 50.0 80.0 61.5 71.7 78.7 75.0

w = 16 4724 (×2.01) 70.9 84.3 77.0 66.9 61.4 64.0 75.0 60.0 66.7 69.4 73.6 71.5

w = 8 8060 (×1.70) 62.9 49.1 55.1 40.0 9.1 14.8 100.0 40.0 57.1 59.0 31.1 40.7

MGB

w = 128 581 63.7 70.5 67.0 57.7 48.6 52.7 69.9 54.2 61.0 62.3 60.7 61.5

w = 64 1241 (×2.13) 64.2 72.2 68.0 58.3 48.8 53.1 69.5 54.2 60.9 62.8 61.6 62.2

w = 32 2387 (×1.92) 63.4 72.0 67.4 59.9 48.8 53.8 71.1 55.3 62.2 63.0 61.7 62.3

w = 16 4649 (×1.94) 61.5 69.8 65.4 56.6 46.9 51.3 68.5 45.5 54.6 60.5 58.7 59.6

w = 8 8004 (×1.72) 43.8 35.8 39.4 49.2 7.0 12.3 0.0 0.0 0.0 44.4 21.3 28.8
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