
Efficient compression of
semantic segmentation neural

networks

Maciej Kowalski

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract
Semantic segmentation is the process of assigning a label to every pixel in the image.
Current state-of-the-art segmentation models becoming unnecessarily large and cum-
bersome. Thus, an evident need for compression emerges. The majority of literature
on compression focuses on image classification, which is widespread in Computer Vi-
sion. This project explores the applicability of compression approaches designed for
image classification in semantic segmentation.

For this purpose, the DeepLabV3+, a dominant semantic segmentation model, has been
implemented to support further experiments. Depthwise separable convolution and
bottleneck blocks were tested in the Atrous Spatial Pyramid Pooling module. Knowl-
edge Distillation and Attention Transfer has been attempted with the compressed,
cheaper variants of the models to restore their accuracy. Finally, a novel Compressed
ASPP module has been studied, with a deeper but more efficient architecture.

The results suggest that distillation performs inadequately in pixel-wise classification.
Conversely, “Cheaper convolution” blocks give promising results, with their efficient
structure allowing for additional layers. The deeper architecture with Compressed
ASPP achieves improved IoU with comparable compression.

i

Acknowledgements

First and foremost, I would like to thank Professor Amos Storkey for supervising my
project, despite his decision not to take any supervisions this year. The ongoing support
and guidance have allowed me to grow in a way I would not have believed beforehand.

I would also like to thank Wojtek Adamczyk and Karolina Konicka for proofreading
my work and providing valuable insights and my parents for being very forgiving the
last couple of months.

Lastly, a special thanks to Marcin Rybok. Your feedback, continuous discussions about
Machine Learning and endless jokes have definitely made it easier to survive this crazy
year.

ii

Table of Contents

1 Introduction 1
1.1 Focus on semantic segmentation . 1
1.2 Main contributions . 2

2 Background research 3
2.1 Computer Vision . 3

2.1.1 Image classification . 4
2.1.2 Image segmentation . 4

2.2 Convolutional Neural Networks . 5
2.2.1 Residual Neural Networks 6
2.2.2 Pre-training . 6
2.2.3 Pooling and striding . 7
2.2.4 Atrous convolution . 7
2.2.5 Kernel-Sharing Atrous Convolution 9

2.3 Efficiency . 9
2.3.1 Cost of networks . 9
2.3.2 Efficient designs . 10
2.3.3 Separable convolution . 10
2.3.4 Bottleneck . 11

2.4 Compression . 12
2.4.1 Pruning . 13
2.4.2 Knowledge distillation . 13
2.4.3 Attention transfer . 14

3 Dataset and task 16
3.1 PASCAL VOC . 16
3.2 Metrics . 16

3.2.1 Intersection over Union . 16
3.2.2 Memory and computation 17

4 Methodology 19
4.1 DeepLabV3+ . 19

4.1.1 Implementation details . 20
4.2 Compression with “Cheap Convolutions” 21

4.2.1 Depthwise separable convolution and bottleneck 22
4.2.2 Knowledge Distillation with Attention Transfer 22

iii

4.2.3 Compressed Atrous Spatial Pyramid Pooling 24
4.3 Memory and computation . 24
4.4 Cluster computing . 24

4.4.1 Scheduling experiments . 25

5 Experiments 27
5.1 Baseline experiments . 27

5.1.1 Model parameter descriptions 28
5.1.2 Baseline results . 28

5.2 Knowledge Distillation and Attention Transfer 29
5.2.1 Distillation method descriptions 30
5.2.2 Distillation results . 31

5.3 Compressed ASPP . 34
5.3.1 ASPP module descriptions 34
5.3.2 Compressed ASPP results 34

6 Conclusion 37
6.1 Future work . 38
6.2 Plan for the next year . 38

Bibliography 40

A Additional experiments results 44

iv

Chapter 1

Introduction

Tremendous advances in the field of Machine Learning, in particular in Deep Learning,
have occurred in the last decade. The growth of new models’ efficiency is outpacing the
famous Moore’s Law, with the number of floating-point operations required to achieve
a similar performance as AlexNet [Krizhevsky et al., 2012] decrease by a factor of 44x
between 2012 and 2019 [Hernandez and Brown, 2020].

Notwithstanding, the size and complexity of the models have grown even further. GPT-
3 [Brown et al., 2020] has a record-breaking 175 billion parameters. The state-of-the-
art Transformer-based models like BERT [Devlin et al., 2019], or ViT [Dosovitskiy
et al., 2020] are now too large to be trained from scratch by most of the researchers.
This trend has a negative effect on our environment, privacy, and the difficulty of re-
search.

There are successful attempts at the compression of these large models such that they
can be deployed to small but powerful mobile devices. Local computing has the benefit
of being more secure, energy-efficient, and usually faster. However, smaller models
tend to be substantially less accurate since they have worse generalisation ability and,
unfortunately, because the majority of the research is directed towards making the
models larger, not smaller.

1.1 Focus on semantic segmentation

This project’s initial goal was simply the compression of neural networks, with seman-
tic segmentation in mind. However, the project quickly took a different direction when
further research into Computer Vision’s compression techniques revealed the disparity
between existing approaches directed at image classification and other tasks. For ex-
ample, the widely popular Attention Transfer method in Computer Vision has not been
created or studied with pixel-wise classification like semantic segmentation in mind.
Generally, the prevalent assumption is that each discovery for the standard image clas-
sification will be easily transferable to other domains, which might not be accurate in
the real world.

1

Chapter 1. Introduction 2

Therefore, this project’s ultimate goal was to determine whether there are some intrin-
sic differences in how the semantic segmentation networks should be compressed.

1.2 Main contributions

• DeepLabV3+, the famous, state-of-the-art semantic segmentation model, has
been adopted to support a range of compressed, more efficient networks.

• Two efficient, substitute convolutional blocks: depthwise separable convolution
and bottleneck have been implemented and researched to compress the expensive
ASPP block of the DeepLabV3+ model.

• The support for Kernel-Sharing Atrous Convolution has been added to the net-
work’s decoder module, following a recent paper.

• Knowledge Distillation along with the atypical Attention Transfer on the decoder
module of the DeepLabV3+ has been implemented and studied.

• A novel, Compressed ASPP module has been proposed that achieves better ac-
curacy than the naive compression methods.

• Finally, a comprehensive set of experiments has been performed to verify the
assumptions on the compression techniques and provide data for further discus-
sion.

Chapter 2

Background research

This chapter will cover the technical background of various Computer Vision tasks,
focusing on image classification and image segmentation. After that, a brief introduc-
tion to Convolutional Neural Networks will be presented, alongside some of their key
features. Having discussed the popular architectures, the focus will be on the efficiency
of these implementations, more efficient network designs, and an overview of some of
the popular approaches to achieve network compression and reduce computation costs.

2.1 Computer Vision

The classical Computer Vision (CV) has historically been focused on the careful ex-
traction of features from the images with tools like edge or corner detectors [Canny,
1986, Harris and Stephens, 1988], or SIFT descriptors [Lowe, 2004]. Notwithstand-
ing, Convolutional Neural Networks (CNN) have been used sporadically in various
CV tasks like recognition of hand-written characters [LeCun et al., 1998] with great
success for many years.

However, CNNs have not been the prevalent Computer Vision architecture until 2012,
and the breakthrough achieved with AlexNet [Krizhevsky et al., 2012]. Using one
of the first successful Deep Neural Networks with convolution layers (Figure 2.1),
AlexNet achieved a spectacular accuracy boost in the ImageNet competition [Deng
et al., 2009]. Having realised the potential of Deep Neural Networks with convolu-
tional layers as local feature extractors, there has been an increase in the robustness
and applicability of DNNs in Computer Vision and other tasks.

CNN’s power as a flexible model that captures equivariant properties of visual data
can be taken advantage of in other applications, even if designed for a different one in
mind. However, despite all CV tasks tackling the problems connected with visual data
and typically extracting the features in a similar fashion, their architecture can diverge
substantially.

3

Chapter 2. Background research 4

Figure 2.1: Illustration of the CNN architecture used by AlexNet, [Krizhevsky et al.,
2012].

2.1.1 Image classification

Image classification is the most popular CV task that has become the benchmark for
most Computer Vision models these days. This popularity is primarily due to the
inherently straightforward problem that it answers - given an image that can consist of
millions of pixels, what single class does the image belong to?

It has dominated the Computer Vision industry because it is challenging and yet easy
when compared to other tasks. Typically, the findings can apply to other branches of
Computer Vision as well. With the ImageNet competition, [Deng et al., 2009] a fierce
rivalry has started among researchers to produce a model that can yield better accuracy.
The achievements done by AlexNet, GoogLeNet [Szegedy et al., 2014] or ResNet [He
et al., 2015], winners or ImageNet competition in 2012, 2014 and 2015, respectively,
have been propagated to other fields of Machine Learning and are still used up to this
day.

2.1.2 Image segmentation

Image segmentation is a pixel-level classification task where each pixel in the image
has to be classified into one of the available classes. This task can be further described
as partitioning the image into multiple segments, where each segment contains a col-
lection of neighbouring pixels belonging to the same class.

Segmentation is typically split into two types: semantic segmentation and instance
segmentation. The definition interpreted from [Arnab et al., 2018] describes them as
follows:

Semantic segmentation is the process of assigning a label to every pixel in the
image, where multiple objects of the same class are treated as the same entity

Instance segmentation is the process of assigning a label to every pixel in the im-
age, but here multiple objects of the same class are treated as distinct individual objects
(or instances).

Chapter 2. Background research 5

Figure 2.2: Illustration of a single-kernel convolution. Image from [Bai, 2019].

Figure 2.3: Illustration of a convolution with 128 kernels. Each kernel corresponds with
one output channel. Image from [Bai, 2019].

Due to the additional difficulty of separating the segmented mask into distinct ob-
jects, instance segmentation is considered a much harder task than semantic segmen-
tation. Instance segmentation models tend to share common architecture features with
object recognition models like Faster R-CNN [Ren et al., 2016].

In segmentation, the output has to have the same resolution as the input and can repre-
sent multiple classes at once, with each class’s location and shape clearly shown in the
image. Hence, it is not enough for the model to compress the input data into a more ab-
stract form and predict a final single-digit output, as do the image classification models.
Therefore, segmentation models, despite sharing common DNN backbones with mod-
els designed for other tasks, are inherently different and require a more sophisticated
approach.

In this project, only the semantic segmentation will be studied to reduce the research
scope to a purely pixel-wise classification domain.

2.2 Convolutional Neural Networks

Convolution is an efficient way of describing transformations that apply the same linear
transformation of a small local region across the entire input [Goodfellow et al., 2016].
Convolutional Neural Networks in Computer Vision take advantage of this property
and apply convolution of several kernels to a region of an image (Figure 2.2 and 2.3),
sliding this convolution window across the whole image. In CNNs, instead of all fully
connected layers, convolution layers are used to extract more local, location invariant

Chapter 2. Background research 6

features. The intrinsic locality of convolutions works well with pixel dependencies in
images. Thanks to parameter-sharing, CNNs are also easier to train thanks to the lower
amount of connections needed to capture the same local features compared to fully-
connected networks. Convolution layers are usually combined with pooling layers,
and Batch Normalisation [Ioffe and Szegedy, 2015].

The ability to abstract larger patches of data into more miniature representation induces
the need for deeper rather than wider networks. It is one of the reasons why this
feedforward class of neural networks has been a keystone architecture in modern Deep
Neural Networks.

2.2.1 Residual Neural Networks

Deep CNNs tend to suffer from vanishing or exploding gradient problem, where the
loss is not backpropagated correctly to lower layers. This obstacle can make it in-
creasingly hard to train a network as it gets deeper, requiring more computations due
to, i.e. lower learning rate and quick overfitting. Residual Neural Networks, mostly
recognised by ResNet [He et al., 2015], introduce residual blocks which usually con-
sist of 2 convolution layers with a ReLU [Nair and Hinton, 2010] activation function.
The identity mapping from the first layer’s input is added to the second layer’s out-
put, a piece-wise sum of which then goes through another ReLU function. This map-
ping could also be considered a “shortcut” connection where the additional connection
skips a few layers. Residual connections between convolutional layers allow for eas-
ier backpropagation of gradient since the gradient can bypass convolution layers. The
improved flow, in turn, results in quicker convergence and allows for deeper networks
to be created.

In semantic segmentation, residual connections play a crucial role. With an even
deeper architecture that is usually built on top of the ResNet backbone [Chen et al.,
2017], the better gradient’s propagation aids the extraction of the low-level features
that help with proper contour predictions.

2.2.2 Pre-training

Large and deep neural networks like ResNet contain millions of parameters. Since
the optimisers’ goal in neural networks is to find the minimal loss and, hence, the
global minimum of the underlying transformation functions, the parameters’ initiali-
sation plays a crucial role in achieving good performance [He et al., 2018]. The more
parameters there are and the deeper the network, the more critical it is to initialise them
to reasonable values to get an initial boost of performance. What is more, DNNs are
known to be burdensome to train, even with the addition of residual connections. Pre-
training helps alleviate both of these issues by allowing new models to share weights
with a different model that has already been pre-trained on a different dataset or a
different task, a useful property in the context of segmentation.

ResNets have become so popular because the ability to use pre-trained models has
allowed these first, really deep neural networks to be used and adapted without the
need to train them on other, larger datasets. In the case of semantic segmentation, the

Chapter 2. Background research 7

models are typically built on top of a good performing classification model pre-trained
on a large dataset like ImageNet, with only the last classification layers removed to fit
the segmentation architecture [Chen et al., 2017, Chen et al., 2018].

In the context of this project, despite initially limiting the ability to change the back-
bone of the chosen model, pre-training offers higher accuracy and shorter training
times, reducing the overall computation. This would not have been possible if all of
the layers had to be trained from scratch.

2.2.3 Pooling and striding

Pooling layers are often used to reduce the spatial size of the feature representation and,
thus, to reduce the number of parameters and computation in the network. To achieve
this, a stride between pools is introduced, effectively allowing the models to extract the
defining features of the larger representation and condense the information to a smaller
format. The most popular pooling versions are max pooling, average pooling and their
adaptive version - adaptive max pooling and adaptive average pooling.

Pooling helps make the representation approximately invariant to small translations of
the input [Goodfellow et al., 2016]. The use of pooling can be viewed as adding an
infinitely strong prior that the function the layer must learn. Invariance to local trans-
lation can be a valuable property if we care more about whether a feature is present
than where exactly it is. This invariance is helpful in image classification where we are
not interested in the location of the predicted class or its boundaries. However, in the
case of segmentation, this is not a desirable effect. Therefore, pooling should be used
only in strategic locations in the architecture, not as an afterthought taken from image
classification.

Striding itself is not exclusive only to pooling layers. More generally, it is a method
where the filter is not applied to each consecutive patch of data. Stride modifies the
amount of movement over the input data, skipping a number of positions specified by
the stride parameter. Stride s, in the case of Computer Vision, means that the filter
gets applied to every s pixels. With k > 2s, where k is one of the dimensions of a
square kernel, every single pixel is still considered during convolution, but there is less
overlap between each patch of data.

The goal of striding is primarily to reduce the resolution of the output feature maps
and allow for deeper network architectures. This reduction, in turn, results in a broader
context of subsequent layers, which helps with better feature abstraction and limits
the computational requirements. Smaller resolution can have, however, an undesirable
effect in segmentation tasks [Chen et al., 2017] where the model struggles to translate
these condensed features into clear segmentation boundaries.

2.2.4 Atrous convolution

Atrous convolution or dilated convolution allows the model to enlarge the field of view
of filters to incorporate multi-scale context [Chen et al., 2017], without reducing the
resolution as done by typical pooling layers or striding in convolution. The number of

Chapter 2. Background research 8

Figure 2.4: 3×3 atrous convolution with the rates (1, 6, 24). Larger rates offer a wider
receptive field while having the same number of parameters. Image taken from [Chen
et al., 2017].

weights in the filter remains the same, but with the increase in dilation rate, they can
cover more area (Figure 2.4). Atrous convolutions are particularly useful in segmenta-
tion models as they help achieve a wider field of view without the need to do multiple,
stacked convolutions or use large kernels.

For each location i on the output y and a filter w, the atrous convolution is applied as
in Equation 2.1, where r is the atrous rate.

y[i] = ∑
k

x[i+ r ∗k]w[k] (2.1)

The atrous rate or dilation rate r corresponds to convolving the input x with upsampled
filter produced by inserting r−1 zeros between the consecutive filter values along each
dimension (Figure 2.4). Standard convolution is a special case where r = 1.

The exciting feature of atrous convolution is that it offers the benefits of the wider con-
text while using the same number of parameters as the standard convolution. There-
fore, it is possible, as in DeepLabV3 [Chen et al., 2017], to use a pre-trained ResNet50
model and change in the last layers the convolution with a stride to atrous convolu-
tion while still using pre-trained weights. However, the larger resolution causes the
subsequent layers to process larger feature maps, effectively increasing the amount of
computation by a large margin.

Moreover, atrous convolutions can also be used in parallel with a range of rates, as in
Atrous Spatial Pyramid Pooling (ASPP) introduced by DeepLabV3 (Section 4.1).

Chapter 2. Background research 9

2.2.5 Kernel-Sharing Atrous Convolution

Kernel-Sharing Atrous Convolution (KSAC), introduced by [Huang et al., 2019], takes
a different approach to the atrous convolution in the Atrous Spatial Pyramid Pooling
module, describer further in Section 4.1. Instead of using a separate kernel for each
dilation rate, KSAC uses the same weights for all kernels being applied in parallel. It
is possible since the atrous convolutions share the kernel size (i.e. 3× 3, 5× 5) but
only differ in the applied dilation, as seen in Figure 2.4.

The addition of kernel-sharing helps improve the accuracy and reduce the number of
parameters in the meantime [Huang et al., 2019]. In the paper, the author explains
that a low atrous rate might be unable to extract features for a large object, while a
large atrous rate can be ineffective in capturing local and more minor details. With
the varying scale of the objects only a subset of the kernels can detect them. This
limitation has an adverse effect on training, effectively reducing the number of training
examples per kernel. With a shared kernel, despite having fewer parameters in total,
all images can contribute to that layer’s training since at least one of the atrous rates
should activate.

2.3 Efficiency

Neural networks require sizeable resources, especially the fully-connected layers. Con-
volution has allowed to substantially reduce the number of operations and take advan-
tage of the data’s locality when extracting abstract features. However, the field of
neural networks is growing so rapidly that any new, more efficient architectures even-
tually result in more parameters and layers added to the model rather than settling for
the same accuracy with a more economic design. This phenomenon is known as the re-
bound effect1 - the gains from a new, more efficient technology are usually lower than
expected due to other changes diminishing the returns. Therefore, a more prominent
focus should be put on the models’ flexibility, with their size and complexity being
easily scaled according to the needs.

2.3.1 Cost of networks

The cost of networks is becoming an important factor in their design. Recently, there
is a significant movement of people noticing the impact of the models on the envi-
ronment and our society. Training of neural networks requires lots of computation,
and computation requires energy. Not all of the energy being used at the moment is
carbon-neutral, with a large part of it still requiring the burning of fossil fuels.

The social impact of these is also worth noticing. Larger and larger models have,
in recent years, become unattainable for most researchers. Not everyone can train a
model on ImageNet from scratch, not to mention any of the recent Transformer-based
models. The power has shifted unfavourably to large corporations that are able to run
experiments on thousands of high-end GPUs for months.

1https://en.wikipedia.org/wiki/Rebound_effect_(conservation)

https://en.wikipedia.org/wiki/Rebound_effect_(conservation)

Chapter 2. Background research 10

2.3.2 Efficient designs

A possible option is to take advantage of the research community’s improvements
while still being aware of the diminishing returns of some of the state-of-the-art mod-
els. Therefore, it is essential to look into more efficient designs of the popular models.

MobileNetV2 [Sandler et al., 2019] is based on the ResNet architecture but introduces
a more efficient, inverted residual structure. In general, even with a different design, it
is heavily inspired by the larger ResNet models.

A slightly different approach was proposed by [Tan and Le, 2020]. The EfficientNet
architecture allows for uniformly scaling of the width, depth and input resolution with
a single compound coefficient. With a single parameter, it is possible to control the
overall complexity of the model. EfficientNet achieves state-of-the-art results while
being smaller and faster than other best networks. However, with the being model
designed for image classification, there is still room for improvement in other tasks
like semantic segmentation.

2.3.3 Separable convolution

As large fully-connected layers are no longer commonplace, convolutions make up
almost all of the parameters of modern networks. It is, therefore, desirable to make
them smaller. [Crowley et al., 2019a] describes a concept of “Cheap Convolution”,
a group of convolutional blocks that can be introduced as a substitute of a standard
convolution block in a network to reduce its memory footprint and inference time
significantly. “Cheap Convolutions” will be studied extensively in this project.

Figure 2.5: Illustration of a depthwise convolution. The number of kernels corresponds
to the number of channels. Image by [Bai, 2019].

Depthwise separable convolution The standard convolutional layer uses Nout filters
of Nin×k×k shape, where Nout is the number of output channels, Nin is the number of
input channels, and k× k is the kernel’s size. This layer can be seen in Figure 2.3.

Depthwise convolutional layer uses just Nin kernels of 1× k× k shape (Figure 2.5),
where each kernel is applied to only one channel of the input. However, the number
of output channels is Nin, not Nout as it was previously. Moreover, no information
is being exchanged between the channels since the convolution’s output is separated
per channel. To accommodate for that, another 1× 1 convolution is applied, called

Chapter 2. Background research 11

Figure 2.6: Illustration of a 1×1 pointwise convolution. Three channels are mixed into
one. Image by [Bai, 2019].

pointwise convolution (Figure 2.6). The additional layer, shown in Figure 2.7, uses
additional Nout kernels of Nin×1×1 shape to produce the desired number of channels
as in standard convolutional layer and allows for cross-channel information sharing
[Crowley et al., 2019a].

Figure 2.7: The depthwise separated channels are mixed using 128 kernels to produce
the expected 128 output channels. Image by [Bai, 2019].

Grouped convolution Grouped convolution was introduced in the AlexNet paper
[Krizhevsky et al., 2012]. The model required 3GB of GPU memory to fit, which in
2012 was impossible to satisfy. Therefore, the authors have used grouped convolution
to split the model into two separate convolutional paths, as shown in Figure 2.1.

Grouped convolution is similar to depthwise separable convolution, although there are
some key differences. Grouped convolution is parallelisable, with larger possible batch
sizes. The output of the grouped convolution has already Nout channels (Figure 2.8),
therefore no pointwise convolution is required to extend it from Nin, as in depthwise
separable convolution. Moreover, each group can learn a separate representation of the
data. However, without cross-channel mixing, this can also have adverse effects.

2.3.4 Bottleneck

In the original ResNet paper [He et al., 2015], the authors introduced a bottleneck
block. The block’s input has its channels decreased by a factor of b via a 1×1 point-
wise convolution before a full 3× 3 convolution is carried out. Finally, another 1× 1
pointwise convolution brings the representation back up to the desired resolution. An
illustration of this can be found in Figure [Wu and Lee, 2018].

Chapter 2. Background research 12

Figure 2.8: Grouped convolution produces Nout channels in k separate, parallelisable
operations. Illustration by [Bai, 2019].

The 1× 1 layers are used to reduce and then increase (restore) dimensions, leaving
the 3× 3 layer a bottleneck with smaller input/output dimensions. This combination
reduces the number of parameters and computation, with only a slight drop in perfor-
mance. Furthermore, with its three consecutive convolutional layers instead of one, the
bottleneck’s architecture is a prime candidate to use the residual skip connections that
help with gradient propagation, hence the architecture of models like ResNet. [San-
dler et al., 2019] uses inverted residual connections, where the skip connections are
between the shrunken layers with an expanded block in between, further decreasing
the number of parameters and computation required to achieve similar accuracy.

Figure 2.9: Illustration of Bottleneck by [Wu and Lee, 2018]. The width of the layers
is reduced in the bottleneck to perform the convolution on a smaller input and restored
back to the original resolution afterwards, potentially saving parameters and computa-
tion in the process.

2.4 Compression

The “Cheap Convolutions” mentioned in the previous section are a great example of a
more efficient architecture. However, there are cases where it is more straightforward
or necessary to compress an existing, successful architecture rather than designing a

Chapter 2. Background research 13

new model from scratch.

2.4.1 Pruning

Pruning is a neural network compression method where a subset of weights is pruned
from the network. The criteria for deciding which weights to remove creates two
pruning approaches: weight pruning and filter pruning.

Weight pruning, or unstructured pruning, focuses on removing specific connections
with weights below a certain threshold. [Han et al., 2015] introduced `2 regularisa-
tion to induce smaller weights further, improving the pruning potential. Such a simple
strategy, performed several times iteratively, can achieve significant speed-ups but at
the cost of generating a sparse model. Compression with weight pruning, although
successful in reducing the number of parameters and hence the memory footprint, re-
sults in a sparse, non-structured model that cannot be used with popular deep learning
libraries and widely available hardware due to insufficient data locality [Han et al.,
2016, Luo et al., 2017, Crowley et al., 2019b]. Instead, specialised software and hard-
ware are required, diminishing the benefits of such compression and increasing the
cost of implementation.

While modern Convolutional Neural Networks contain a large variety of layers, many
parameters and long inference time are spent on convolutional layers. Whole feature
maps can be pruned from the network to remove a subset of layers least contributing
to the final result, maintaining the original structure of CNNs.

Filter pruning, or structured pruning, is a pruning method where the whole channels
are removed from the convolutional layers. The pruning yields an unchanged archi-
tecture that becomes thinner due to having fewer channels in each layer but has the
same depth as the uncompressed network. Channel pruning is one of the most popular
methods of accelerating over-parametrised CNNs by pruning [Luo et al., 2017, Chen
et al., 2020] because it can be directly applied on any off-the-shelf hardware.

Notwithstanding, pruning is not as prevalent in recent years due to a relatively low
transferability across different models. Pruning is also consistently beaten by reduced
networks [Crowley et al., 2019b], further reducing its usefulness.

2.4.2 Knowledge distillation

A relatively different method of compressing neural networks is creating a smaller or
more efficient student version of a successful model and transferring the accumulated
knowledge from the teacher. Geoffrey Hinton compares distillation in Machine Learn-
ing to an insect transitioning from a “larval form that is optimized for extracting energy
and nutrients from the environment and a completely different adult form that is opti-
mized for the very different requirements of traveling and reproduction” [Hinton et al.,
2015].

In Knowledge Distillation, students use a weighted average of two objective functions
to calculate the loss for backpropagation. Typically, the first one is a standard cross-
entropy loss with the correct labels. In contrast, the second one is a cross-entropy with

Chapter 2. Background research 14

Image low level mid level high level Target

Figure 2.10: Attention maps at different levels of a network. Low-level attention maps
pay more attention to contours and small features, high-level attention happens more
holistically and corresponds to the whole object.

the soft targets - outputs of the teacher model, commonly produced using a softmax
function. The idea behind it is that the soft labels can contain more information than
the typical ground truth and allow the student to learn the teacher’s pre-computed gen-
eralisations directly. The relative probabilities produced by the teacher tell us a lot
more about the data compared to the raw labels. An image of a cat, for example, has a
slight chance of being mistaken for a dog but is not nearly as likely to be mistaken for
an apple.

[Crowley et al., 2019a] uses Knowledge Distillation in image classification to transfer
the knowledge from a larger teacher model to a compressed, efficient student model
with Cheap Convolutions in place of standard convolution. Thus, better accuracy is
achieved by a student than the model being trained purely on the target labels.

2.4.3 Attention transfer

Knowledge Distillation focuses purely on the network’s output, taking advantage of the
additional information contained in the soft targets of the teacher models. However,
it is also possible to extract useful information from the internal activations of the
models. One of these methods is Attention Transfer.

[Zagoruyko and Komodakis, 2017] considers attention as a set of spatial maps that
essentially represent which spatial areas of the input the network focuses on most when
taking its output decision.

Typically, with the activation per layer being a 3-dimensional tensor, a normalised sum
across the channel dimension is taken, outputting a 2D map of the activations. The
equation 2.2 shows an example mapping F , where the sum can be raised to the power
p, where 1≤ p and C is the number of channels.

Chapter 2. Background research 15

F p
sum(A) =

C

∑
i=1
|Ai|p (2.2)

The attention can be taken at various layers of the network, with lower layers having
higher resolution and focusing on smaller features. The layers closer to the output tend
to have a more holistic approach (Figure 2.10). To use this information, student models
compare their attention maps with the more knowledgeable teachers and produce a
cross-entropy loss used in the backpropagation phase.

Attention is relatively intuitive to explain in the case of image classification: what part
of the image should we pay more attention to? It is interesting, however, how does
that translate to semantic segmentation with a pixel-level classification task. Correctly
predicting the mask of the object is just as important as the class prediction.

What is more, it is vital to choose the correct layers for the Attention Transfer. Thus,
with the additional layers in most semantic segmentation architectures [Chen et al.,
2017], it is possible that the attention in decoder layers (e.g. in ASPP [Chen et al.,
2017]) can have more impact compared to the traditional approach of using the back-
bone layers.

Surprisingly, the literature on Attention Transfer focuses mainly on image classifica-
tion, which does not have the additional classifier modules used in semantic segmenta-
tion. Therefore, it is a part of this project to determine whether attention is as valuable
for segmentation as other tasks.

Chapter 3

Dataset and task

3.1 PASCAL VOC

The experiments are evaluated on the PASCAL VOC 2012 [Everingham et al., 2015]
semantic segmentation dataset, which contains 1,464 train, 1,449 validation and 1,456
test images. The images have a 513× 513 resolution. Each image is labelled on a
pixel level, with 20 foreground object classes and one common background class. The
dataset is commonly augmented with the extra contour annotations [Hariharan et al.,
2011] of the PASCAL VOC 2011 dataset and referred to as PASCAL VOC 2012aug.
Therefore, the larger dataset is used for this project, yielding a total of 10,582 training
(trainaug) images.

Another popular dataset for semantic segmentation is the Cityscapes [Cordts et al.,
2016] dataset, containing 5,000 images in total, for training, validation and testing
purposes, with an additional 20,000 coarsely annotated images. However, due to the
large size of each image (1024× 510) and hardware limitations of the project, de-
scribed further in Section 4.3, only the PASCAL VOC dataset has been studied.

3.2 Metrics

3.2.1 Intersection over Union

In image classification, the accuracy metric is used to report the model’s performance.
Given the output vector of 1×C shape, the predicted class is the one with the highest
probability. The accuracy is the number of correctly predicted classes over the total
number of predictions. However, this benchmark does not make much sense with
semantic segmentation. We cannot simply count the number of the correctly predicted
pixels and divide them by the total number of pixels in the image. This approach would
favour the most significant class and not be size invariant. If the predicted object was
small, the model could skip the class and still achieve good accuracy. Instead, we are
interested in the overlap of the prediction or how much the predicted mask matches
the ground truth.

16

Chapter 3. Dataset and task 17

Im
ag

e
Ta

rg
et

Figure 3.1: Example images and ground truth masks from the PASCAL VOC 2012aug
dataset. Black colour in the targets corresponds to the background and is also one of
the 21 classes.

The standard accuracy metric that is used by the research community to verify the
performance of the model for segmentation is the Intersection over Union averaged
across all classes or mIoU (Equation 3.1), where 0≤ mIoU ≤ 1.

mIoU =
∑

C
i=1

Ai∩Bi
Ai∪Bi

C
(3.1)

For each class i, the intersection Ai ∩Bi indicates the number of shared pixels found
both in the prediction mask and ground truth mask. The union Ai ∪Bi indicates the
number of the pixels found in either of the masks. The ratio of the intersection and the
union represents how well the predicted mask overlaps the target mask - a too small
prediction mask will lead to the intersection being small, a too-large prediction will
lead to the union being large, making the mIoU smaller in both cases.

The calculated overlap for each class is averaged out over the number of classes C,
yielding the mean IoU. The score can be balanced on the number of examples for
each class, although typically, the unbalanced version is used [Heffels and Vanschoren,
2020], as seen in Equation 3.1.

It is common to report the IoU instead of mIoU, with IoU = 100 ∗mIoU . Thus, the
IoU version will be used to report the results of the experiments.

3.2.2 Memory and computation

In the case of this project, the IoU performance is not the only important metric. With
the rising size of a model, it is worth looking at the memory footprint and the compu-
tation amount needed for a single inference.

Due to the possibility of storing the parameters at lower bit widths than typical, the
memory requirements are usually not represented in bytes but rather in the number of
parameters.

Chapter 3. Dataset and task 18

Similarly, the model’s speed is usually not represented by the inference time due to
the wide range of hardware capabilities of each system. Moreover, even the same
hardware and software setup can produce different results, depending on the system’s
utilisation. Therefore, a Multiply-Add (MAdd) metric is used to count the number
of operations of the model. Note that, despite the Floating-Point-Operations (FLOPs)
being commonly used in Computer Science, modern GPU architectures perform the
multiplication and addition in one operation, as in f = Ax+b, whereas this takes two
FLOPs in theory. Thus, the MAdd will be used to report the number of computations,
as is usually done in Machine Learning.

Chapter 4

Methodology

4.1 DeepLabV3+

A baseline state-of-the-art semantic segmentation model is needed to compare the pro-
posed approaches and methods of compression for semantic segmentation, provide a
solid base for further exploration and expansion, and the results in terms of mIoU, pa-
rameters and MAdds. Therefore, DeepLabV3+ [Chen et al., 2018] has been selected
as the base semantic segmentation model.

The family of DeepLab models for semantic segmentation has been one of the most
popular architectures thanks to its straightforward architecture, based on a pre-trained
backbone model like VGG [Simonyan and Zisserman, 2015] or ResNet and atrous
convolution. Base DeepLabV3 [Chen et al., 2017] model uses ResNet50 as the en-
coder to extract visual features that later get decoded with an Atrous Spatial Pyramid
Pooling (ASPP) module. The encoder extracts high-level visual features while multi-
scale atrous convolutions, using their wide receptive field, help transform them into a
segmentation map.

The original ASPP module contains four parallel convolutions, captured by curly brack-
ets in Figure 4.1, with one 1×1 convolution and three 3×3 atrous convolutions with
different atrous rates. To incorporate additional global-level features, crucial for ac-
curate semantic segmentation, DeepLabV3 introduces global average pooling on the
backbone’s last layer, a 5th operation in the ASPP. These five outputs in the ASPP
module are then concatenated, passed through a final classifier module and upscaled to
the final image resolution.

DeepLab introduces the notion of output stride, which signifies how much smaller
the model’s output resolution is. A typical ResNet model reduces the output resolution
by 32x before it performs final classification. For example, using atrous convolution
instead of stride of 2 in the last layer of the ResNet, DeepLabV3 achieves the same
field-of-view while preserving the resolution of the second last backbone feature map.
Therefore, by removing one stride operation, the output is 16x smaller than the image’s
resolution, yielding output stride=16. Replacing further stride operations with atrous
convolution can create the output stride of 8, 4, and smaller, at the cost of slower

19

Chapter 4. Methodology 20

Figure 4.1: High-level architecture of DeepLabV3+. The DCNN backbone extracts high
and low-level features. The ASPP module and the decoder capture and combine the
multi-scale information and detailed contours, which then gets upsampled in steps to
the output resolution. Image taken from [Chen et al., 2018]

computation.

DeepLabV3+ improves upon the encoder structure of its predecessor, DeepLabV3.
Instead of using the naive method of bilinearly upsampling the output features to the
original resolution of the image from the specified output stride, DeepLabV3+ first
upsamples the output by a factor of 4. The upsampled features are then concatenated
with the encoder’s low-level features of the same spatial resolution and upsampled to
the final shape (Figure 4.1).

4.1.1 Implementation details

The authors of DeepLabV3+ have provided a reference code implementation of the
model in Tensorflow. However, PyTorch, a different framework for Machine Learn-
ing, was used for this project. Therefore, implementation has been based on the Py-
Torch code from [Fang, 2019], which contains the implementation for DeepLabV3 and
DeepLabV3+ models with ResNet50, ResNet101 and MobileNetV2 as the optional
backbones models.

Learning rate policy: A standard learning rate of 0.01 [Chen et al., 2017] has been
used. However, as implemented by [Chen et al., 2017, Chen et al., 2018], the learning
rate was decreased to 0.001 for the backbone when using pre-trained weights from
ResNet or MobileNetV2. The lower learning rate for the encoder part ensures the
model relies on the visual features extracted from the image and prevents it overfitting,
thus promoting healthier learning of the classifier.

Chapter 4. Methodology 21

A multiplicative “poly”1 learning rate scheduler is used for segmentation tasks as in
[Chen et al., 2017, Chen et al., 2018]. In this scheme, the learning rate is updated
on every iteration via the equation 4.1, where ηinit stands for the learning rate at the
beginning of training.

ηiter = ηinit ∗
(

1− iter
max iter

)0.9

(4.1)

max iter = Nepochs ∗Nbatches (4.2)

Data augmentation: Data augmentation is an industry standard that allows the mod-
els to train on more coherent yet diverse data. The setup used for data preprocessing
consists of a applying normalisation with a mean [0.485, 0.456, 0.406] and std [0.229,
0.224, 0.225], a standard procedure for the PASCAL VOC2012aug [Chen et al., 2017].

Additionally, a random scaling of the input images by a factor in the range [0.5, 2]
has been applied to each image, following by a random horizontal flip and a random
crop of 256× 256. The choice of a smaller random crop size is against the findings
of [Chen et al., 2017] which showed that the large receptive field of the atrous convo-
lution required a non-padded image. Hence, a smaller crop size will result in atrous
convolution layers being applied to the zero-padded regions. However, an issue with
the available hardware described further in Section 4.4 has influenced the decision to
use a smaller crop size for efficiency reasons. This crop size effectively reduces the
input resolution of the image to 256×256. Although this change of the resolution does
not change the number of the parameters, since the filters’ size does not change, it does
change the overall footprint of the model during the training phase.

With a larger resolution, the filters are applied to a larger number of features, yielding
a more significant number of function activations. All activations have to be stored
in memory to perform backpropagation so that their gradient can be computed when
propagating the loss backwards. Hence, a larger input size can easily cause the model
to require excessive amounts of GPU memory. In the case of the DeepLabV3+ with
513× 513 input size, at least 16GB of GPU memory is required, whereas the largest
GPU widely available to Informatics students has 11GB of memory (RTX 2080Ti)
while the GPUs dedicated to undergraduate students have only 6GB (GTX 1060).
Notwithstanding, the outcomes of the experiments using a smaller crop size should
be directly transferable to the larger, 513×513 crop sized used for PASCAL VOC in
DeepLabV3.

4.2 Compression with “Cheap Convolutions”

Following the findings of [Crowley et al., 2019a], the implementation of DeepLabV3+
is extended to support “cheap convolution” blocks that can be put in place of any

1The scheduler has been called “poly” by the authors of DeepLabV3, even though the learning rate
is not, in fact, a polynomial [Wu et al., 2019].

Chapter 4. Methodology 22

Figure 4.2: Illustration of the depthwise separable convolution. The block of the two
layers can be put in place of a standard convolution to achieve the same output shape
with reduced resources. Image from [Bai, 2019].

convolutional layers.

4.2.1 Depthwise separable convolution and bottleneck

For this project, instead of using the grouped convolution, only the depthwise separable
convolution has been studied since the separable convolution has already been tested
by [Chen et al., 2018] in their DeepLabV3+ model.

The number of kernels has been set to the number of input channels, Nin, following
with the Nout 1×1 pointwise convolutions. The implementation is identical to the one
used in DeepLabV3+, which can use the depthwise separable convolution in place of
the 3×3 convolutions, but only in the added decoder module and ASPP.

Using the cheaper block in the ResNet backbone would remove the possibility of us-
ing pre-trained weights, reducing the expected benefits. Thus, only the segmentation-
specific compression has been pursued in this project.

4.2.2 Knowledge Distillation with Attention Transfer

To verify the effect of distillation on semantic segmentation, Knowledge Distillation
and separately Attention Transfer have been implemented.

The code for distillation has been adopted from the PyTorch implementation of the
paper by [Crowley et al., 2019a].

Knowledge Distillation Let’s assume we have a dataset of images, with one such im-
age denoted as x, where each element has a corresponding one-hot labelled image: de-
note the one-hot vector encoding of x as y. Given x, the teacher network teacher(x) = t
produces the prediction t. Likewise, student(x) = s outputs s. Standard cross-entropy
(Equation 4.3) is used to calculate the loss of the output.

LCE =−∑
k

pk logqk (4.3)

LS (Equation 4.4) is the standard loss of the student when comparing the output s to
the ground truth. LT (Equation 4.5) is the loss between s and the output of the teacher

Chapter 4. Methodology 23

t and is minimised when the student network produces similar output to that of the
teacher network.

LS = LCE(y,s) (4.4)

LT = LCE

(
t
T
,

s
T

)
(4.5)

To perform Knowledge Distillation, the student network is trained to minimise the LKD
loss function, shown by Equation 4.6.

LKD = (1−α)LS +2αT 2LT (4.6)

The value of α is controlling the ratio of the two losses, while temperature T controls
the distillation process such that the teacher emits less extreme probabilities, which are
more informative for the students [Wild, 2018].

For the experiments, α has been set to 0.9 while the temperature T was set to 4, fol-
lowing the implementation by [Crowley et al., 2019a].

Attention transfer For the choice of NL layers i in the teacher network, correspond-
ing NL layers are chosen from the student network. If it is impossible to find layers with
the matching size due to, e.g. different output stride, the teacher layers are bilinearly
scaled to match the resolution of student layers.

At each chosen layer i, the spatial map of the activations is calculated using the adopted
version of the Equation 2.2, described in Section 2.4.3. In particular, Equation 4.7 is
used, recommended by [Zagoruyko and Komodakis, 2017, Crowley et al., 2019a].

f(Ai) = (
1

NAi

)

NAi

∑
j=1

a2
i j (4.7)

Similarly to Knowledge Distillation, in Attention Transfer the student network is trained
to minimise the LAT loss function (averaged across all data items), shown by Equation
4.9. LS is the same cross-entropy loss as in Equation 4.4, while LA (Equation 4.8) is
the normalised loss between the NL attention layers of the teacher and student. Analo-
gous to KD, the LA is minimised when the student network produces similar attention
maps to these of the teacher.

LA =
NL

∑
i=1

∥∥∥∥∥ f(At
i)∥∥f(At

i)
∥∥

2
−

f(As
i)∥∥f(As

i)
∥∥

2

∥∥∥∥∥
2

(4.8)

LAT = LS +βLA (4.9)

Chapter 4. Methodology 24

The hyper-parameter β controls the ratio of the two losses and has been set to 1000,
based on the choice by [Crowley et al., 2019a].

4.2.3 Compressed Atrous Spatial Pyramid Pooling

The popular ASPP module has relatively few layers compared to the encoders like
ResNet50 or MobileNetV2. In particular, only one large convolution layer is used for
each of the three parallel 3× 3 atrous convolutions that are supposed to extract the
segmentation details from the encoder’s output features. However, the ASPP module
can be responsible for up to 50% of the total parameters and about 25% of the MAdds
in a standard DeepLabV3+ model. Thus, it is difficult to add any more layers without
drastically increasing the size, at which point it might be more efficient to use a larger
encoder like ResNet101 or Xception-65.

The novel Compressed Atrous Spatial Pyramid Pooling (CASPP) is proposed with
additional bottleneck layers for each atrous rate, taking advantage of the bottleneck
block’s significant compression factor. Thanks to the efficient convolution operations
in the bottleneck module, it is possible to add more layers while still having a substan-
tially lower number of parameters and MAdds.

With ResNet50, the number of output channels Nout is equal to 2048. Each atrous
convolution with a rate r outputs 256 channels, with the outputs being concatenated
together. CASPP performs this reduction of channels in a more gradual fashion, with
more than one convolutions. CASPP-2, CASPP-3 and CASPP-4 have 2, 3, and 4
bottleneck layers, respectively. Since they use bottlenecks, the number of parameters
and MAdds is still lower than in the one standard convolutional block.

The CASPP blocks are defined in Section 5.3.1, with their performance discussed in
Section 5.3.

4.3 Memory and computation

The memory usage, represented by the number of parameters, and computation, rep-
resented by MAdds, were calculated using the flops-counter.pytorch framework
[Sovrasov, 2020] for PyTorch. The library, given the model and an example input
size, calculates the total number of parameters and multiply-adds per layer in CNN
recursively. The results are shown per layer as in Figure 4.3, allowing for a thorough
analysis of the model’s complexity and opportunities for optimisation and improve-
ment.

4.4 Cluster computing

A single experiment on a CPU can take days, if not weeks, to train. Using the paral-
lelisation technique available on mainstream deep learning frameworks like PyTorch
or Tensorflow, the experiment’s training can be run on popular and widely available
GPUs with CUDA cores or, better designed for these tasks, TPUs. These allow us to

Chapter 4. Methodology 25

Figure 4.3: A cutting of the output of the flops-counter.pytorch library. The
number of parameters and MAdds (MACs) is displayed per layer and its nested children.

take advantage of the parallel nature of the computation in convolutional neural net-
works and speed up the training by a couple of magnitudes.

However, with Computer Vision experiments and large models like DeepLabV3+, it
is still very cumbersome and time-consuming to run the experiments one by one, even
on the fastest GPUs available. Using a single GTX 1060, available on the Informatics
GPGPU Teaching Cluster2, we can train a baseline DeepLabV3 model, although with a
limited crop size to fit the model into the GPU’s memory, in around 5 hours. Therefore,
performing a single experiment with a range of parameters to compare and fine-tune
them to achieve the best validation IoU, even using a powerful GPU, can take days to
finish, assuming a non-stop access to the hardware.

However, the Informatics cluster allows us also to run a batch of experiments in paral-
lel. Using the Slurm3 scheduler installed on the cluster, we can request multiple nodes
with a specified CPU, GPU and memory configuration, and the scheduler will put our
tasks in the queue.

Therefore, a batch of 20 experiments, given a low utilisation of the cluster and, there-
fore, shorter queue times and more GPUs available to the user, can be accomplished
under 10h.

4.4.1 Scheduling experiments

Multiple steps are required to streamline the process of running a batch of experiments
on the Informatics cluster and ensure efficient resource utilisation and data safety. This
part has been crucial for any progress of this project; many hours had been spent opti-
mising this pipeline, ensuring a good quality of results can be achieved and adequately
analysed.

Generate experiment configurations An experiment-generating script4 has been
adopted and extended to schedule a number of experiments efficiently. The script
generates a list of commands in a .txt format from a dictionary where the keys are

2https://computing.help.inf.ed.ac.uk/teaching-cluster
3https://slurm.schedmd.com/overview.html
4https://github.com/cdt-data-science/cluster-scripts

https://computing.help.inf.ed.ac.uk/teaching-cluster
https://slurm.schedmd.com/overview.html
https://github.com/cdt-data-science/cluster-scripts

Chapter 4. Methodology 26

parameter names, and the values are lists of the variants of the parameters for the ex-
periment. Each command would be then launched on a separate task with a dedicated
GPU by another script.

The code directory in a .zip format, along with the scrips mentioned above and the
experiment results are added to a separate folder to efficiently track the changes of the
code and be able to replicate the experiments easily.

Data preparation Before the training process, the dataset has to be downloaded and
pre-processed on the cluster’s head node to extract the target segmentation maps. With
the existing cluster configuration, only the primary node has access to the Internet.
Even though all of the nodes are connected by a distributed file system, the large quan-
tities of data being loaded during each experiment can put excessive load on the servers
and slow down the jobs. Therefore, it is recommended that the data is loaded from each
node’s local scratch disk. To achieve that, the dataset has to be transferred to the ma-
chine running the experiment before starting the job. On each node, the startup script
confirms if the data is present on the scratch disk using a rsync command, copying
only the missing data from the head node.

Checkpoints and intermediate results A standard procedure when training large
models is creating checkpoints of the progress as a backup solution in case the training
gets interrupted. This approach is critical on a cluster, where the process of resource
allocation is outside of our control. In this project, checkpoints have also been used to
store the teacher models - checkpoints can be loaded and used for distillation.

With a large number of experiments and the large size of the saved models, checkpoints
have been stored on the scratch disks of the nodes and only transferred to the head
node after the completion of the experiment, limiting the impact on other users of the
excessive data transfer that would occur otherwise.

Along with checkpoints, each model outputs validation scores during the training
phase. The validation mIoU has been scored in a .csv file after each epoch per exper-
iment.

Chapter 5

Experiments

In this section, several teacher networks are trained and evaluated. A comparison be-
tween the standard ASPP module and the KSAC module is shown. After creating the
baseline results, the best model is chosen as the teacher for further experiments. Stu-
dent networks are distilled using Knowledge Distillation or Attention Transfer. For
Attention Transfer, four different variants are used. For comparison, a compressed
variation of the ASPP module, CASPP, is used to verify whether the compression can
be achieved without compromising the model’s performance. Additional bottleneck
layers are added to the parallel atrous convolution in the CASPP modules to take ad-
vantage of the layers’ reduced size.

To combat the stochasticity of the validation results, a common approach is to report an
average of k experiments. However, performing the distillation in its standard format
only takes a single teacher’s output to calculate the loss. This poses the following
question: which trained model should be used for distillation if an average is taken for
comparison?

It was concluded that a more fair approach is to repeat each experiment and consider
the better performing model. Therefore, all experiments have been performed twice,
and instead of taking a mean of the mIoU, the model with higher mIoU has been used
for distillation and further analysis.

5.1 Baseline experiments

A comprehensive set of experiments has been performed to demonstrate the capabil-
ities of the teacher networks. Although these are mainly to provide a reference point
when comparing students networks in distillation, the outcomes provide helpful infor-
mation about the nature of compression when training smaller models.

The results of “cheaper convolution” blocks in the ASPP module are compared to the
standard convolution, alongside the effect of using Kernel-Sharing Atrous Convolution
or a smaller output stride of 32. The comparison is shown in the Table 5.1 for ResNet50
and Table A.1 for MobileNetV2.

27

Chapter 5. Experiments 28

Architecture Metrics
OS KSAC ST DS BTN IoU Params MAdds
16 X X 74.38 30.32M 14.94G
16 X 73.99 39.63M 14.94G
16 X X 73.81 25.53M 9.21G
16 X 73.88 26.61M 9.21G
16 X X 73.48 25.09M 8.72G
16 X 73.21 25.39M 8.72G
32 X X 73.14 30.32M 9.29G
32 X 72.89 39.63M 9.29G
32 X X 72.21 25.53M 5.95G
32 X 72.26 26.61M 5.95G
32 X X 71.75 25.09M 5.69G
32 X 71.63 25.39M 5.69G

Table 5.1: Results of the DeepLabV3+ models with the ResNet50 backbone. Column
names explained in Section 5.1.1.

5.1.1 Model parameter descriptions

• OS - Output stride of the model.

• KSAC - Kernel-Sharing Atrous Convolution in the ASPP module.

• ST - Standard convolution blocks used in the ASPP module.

• DS - Depthwise separable convolution blocks used in the ASPP module.

• BTN - Bottleneck blocks used in the ASPP module.

5.1.2 Baseline results

As can be derived from the tables, Kernel-Sharing Atrous Convolution achieves a sub-
stantial memory compression in all cases. However, the gain is smaller when a com-
pressed block is used for each atrous rate. This finding aligns with the implementation
details - kernel-sharing uses just one kernel for all rates, reducing the number of param-
eters for the atrous convolution by a factor of 3x in the case of 3 rates. With compressed
kernels, the gain is lower in absolute terms.

In the case of ResNet50 backbone (Table 5.1), with KSAC, the IoU improves sub-
stantially for the standard ASPP encoder while staying approximately the same for
compressed atrous convolutions, indicating that a smaller number of kernel-sharing
parameters might be lacking some of the generalisation and representation power of
the larger, non-compressed variants.

Surprisingly, with MobileNetV2 (Table A.1), the KSAC approach performs consis-
tently worse than the standard counterpart. This finding could be attributed to the
relatively small size of MobileNetV2. With a smaller number of parameters from the

Chapter 5. Experiments 29

start, the further reduction of the decoder can cause heavily undesirable effects on the
accuracy.

The models with an output stride of 16 perform consistently better than their coun-
terparts with output stride 32 while having substantially more MAdds and the same
number of parameters. This result confirms the findings of [Chen et al., 2017] and
[Chen et al., 2018], which treat the output stride as a variable that controls the amount
of computation.

A promising result for compressed convolution blocks can be noticed when comparing
a model with ResNet50 backbone, OS=32 and models with OS=16 and the separable
convolution or bottleneck (Table 5.1). The variants with compressed ASPP and OS=16
show better performance while having fewer parameters and MAdds than a standard
DeepLabV3+, with or without KSAC and OS=32. This important discovery can be
approached in two ways:

• The necessity of more severe upscaling in the case of OS=32 is dwindling the
performance more than using compressed convolution. More efficient convolu-
tion structures have similar generalisation capability, but with OS=16, they are
not limited by the low resolution of the features.

• The naive method of controlling the model’s output stride, introduced in the
DeepLabV3 paper, is not a method of compression but rather an afterthought
solution to control the excessive computation required by low output strides and,
therefore, large resolutions. The original paper used OS=4 to achieve state-of-
the-art mIoU at that time. However, even an OS=8 is not a viable option for
most hardware and applications, with OS=8 using 2.9x (43.33G) while OS=4
using absurd 10.7x (160.94G) more MAdds when compared to a baseline model
with OS=16.

Possibly, the introduction of “cheap convolutions” has allowed for a successful com-
pression without unnecessarily impairing the prediction capability. Therefore, simi-
larly to [Crowley et al., 2019a] it is concluded that the use of efficient configurations
should be considered further, potentially incorporating deeper a structure of the con-
volutions with additional, “cheap” layers that could help recover from the accuracy
drop.

Lastly, the accuracy of the depthwise separable convolution is generally better than the
one of the bottleneck in all cases, at the cost of being minimally less compressed. This
finding will be further studied in the next section.

5.2 Knowledge Distillation and Attention Transfer

The checkpoint from the best model from baseline, with the IoU of 74.38, has been
chosen for distillation. During the distillation procedure, the teacher model was loaded
from the checkpoint with original settings. A separate student model has been ini-
tialised with the student-specific settings. During training, each batch of images would
be passed through both networks and their predictions combined to calculate the stu-
dent’s loss.

Chapter 5. Experiments 30

Architecture AT KD
OS KSAC ST DS BTN None Output Atrous All KD
16 X X 74.38 74.45 74.16 74.33 70.46
16 X 73.99 74.36 74.18 74.28 70.39
16 X X 73.81 74.05 73.90 73.96 68.25
16 X 73.88 74.12 74.08 74.22 68.14
16 X X 73.48 73.49 73.63 73.57 68.45
16 X 73.21 73.49 73.71 73.91 68.15
32 X X 73.14 72.04 72.78 72.69 70.46
32 X 72.89 72.12 73.08 72.84 70.39
32 X X 72.21 72.00 72.57 72.45 68.25
32 X 72.26 72.05 72.37 72.36 68.14
32 X X 71.75 71.81 72.02 71.72 68.45
32 X 71.63 71.66 72.25 72.07 68.15

Table 5.2: The results of the DeepLabV3+ student models with the ResNet50 backbone.
Column names explained in Section 5.2.1.

To verify whether it is possible to improve the compressed models’ accuracy from
Section 5.1, only the best teacher model has been taken and distilled into the smaller
architectures. The teacher model was a DeepLabV3+ with the ResNet50 in the back-
bone, with an output stride of 16, Kernel-Sharing Atrous Convolution and standard
ASPP architecture.

The same models from Section 5.1 have been used for the student models to see the
impact of distillation on them.

5.2.1 Distillation method descriptions

• None - Standard training with no distillation, results from Table 5.1.

• Output - Attention Transfer with the attention taken from the output of the ASPP
module.

• Atrous - Attention Transfer with the attention taken from the outputs of each
atrous convolution in the ASPP module.

• All - Attention Transfer with the attention taken from the outputs of each atrous
convolution in the ASPP module and the output of the ASPP module itself.

• KD - Knowledge Distillation with the second loss from the soft targets of the
teacher (Equation 4.6).

The description of the architecture details is the same as in Section 5.1.1.

Chapter 5. Experiments 31

Architecture AT KD
OS KSAC ST DS BTN None Output Atrous All KD
16 X X 69.17 69.19 69.38 69.55 65.84
16 X 69.34 69.32 69.24 69.28 65.83
16 X X 67.73 67.65 68.32 67.82 64.34
16 X 68.12 67.79 68.20 67.77 64.12
16 X X 67.64 67.94 68.42 68.74 63.91
16 X 68.15 67.65 68.23 68.08 64.02
32 X X 68.00 66.99 66.92 67.26 64.89
32 X 68.20 66.47 67.29 67.36 64.99
32 X X 66.38 65.60 66.37 66.20 63.12
32 X 66.44 65.45 66.04 66.17 62.92
32 X X 66.31 65.64 66.12 66.27 62.59
32 X 66.41 65.97 66.32 66.55 62.78

Table 5.3: The results of the DeepLabV3+ student models with the MobileNetV2 back-
bone. Column names explained in Section 5.2.1.

5.2.2 Distillation results

Table 5.2 and 5.3 compare the different approaches of distillation for student networks.
From the start, it is easy to notice that the Knowledge Distillation performs signifi-
cantly worse than any other approach. The results confirm the initial assumptions that
KD does not work for semantic segmentation even though it achieves good results in
image classification [Crowley et al., 2019a, Hinton et al., 2015]. The change of the do-
main from standard classification to pixel-level classification questions the underlying
reasoning for the benefits and applications of Knowledge Distillation.

Possibly, with the teacher having mIoU that is far from the state-of-the-art, the stu-
dents are trying to optimise for a mediocre prediction that ultimately might be confus-
ing them instead of directing towards a good solution. Surprisingly, even the student
with the same architecture as the teacher performs noticeably worse. This result goes
against the findings of [Kim et al., 2020, Zhang et al., 2019], which show that Self-
Distillation can improve a model’s performance.

The story of Attention Transfer is more complicated. The larger, ResNet50-based
model can take advantage of the attention and generally performs better with it than
without it. However, smaller models with MobileNetV2 cannot make any substantial
improvements over the model trained from scratch. Interestingly, with a lower output
stride of 32, there are also adverse effects of the distillation. Acknowledging the results
from the previous section, the smaller backbone of the MobileNetV2 combined with
downsampling the attention maps to match student’s resolution has possibly prevented
the model from learning an optimal representation of the images.

Three different types of Attention Transfer have been tested in this work. All of them
are concerning the layers of the ASPP decoder module, unique to the segmentation
problem. The single output map, taken from the ASPP module’s output, performs

Chapter 5. Experiments 32

Im
ag

e
AT

al
l

Sc
ra

tc
h

KD
Ta

rg
et

Figure 5.1: Example predictions of the DeepLabV3+ model with the ResNet50 back-
bone. All models use non-shared kernels and depthwise separable convolution. Row
2 shows predictions of the AT-all student, Row 3 the teacher model without distillation,
and Row 4 shows the least accurate student trained with KD.

worse than other solutions. This could be explained by the limited number of layers
(only one) and the fact that this is one of the last layers, which combines the outputs of
atrous convolution. Theoretically, each rate of the dilated convolutions is responsible
for retrieving features of a different scale. Thus, the attention of the combined layers is
less detailed than the one of the atrous layers, which can be noticed on the visualisation
of the attention maps in Figure 5.2.

The atrous and all variants are similar, with an almost equal split of best mIoU
results. It is impossible to tell from the collected data which performs better. Thus,
more experiments have to be performed to make a more probable conclusion. However,
the two approaches share the attention maps of the atrous convolution layers, which
seem to help the ASPP module learn optimal weights.

Chapter 5. Experiments 33

Im
ag

e
r=

6
r=

12
r=

18
AS

PP
ou

t
Pr

ed
ic

tio
n

Ta
rg

et

Figure 5.2: Spatial maps of the attention of the best baseline DeepLabV3+ model with
ResNet50 backbone. Row 2, 3 and 4 represent the attention of the atrous convolution
with corresponding rate. ASPP-out represents the attention of the ASPP module output.
Attention of atrous convolutions tends to activate near the correct parts of the image
while the combined ASPP output can lose the focus.

Chapter 5. Experiments 34

5.3 Compressed ASPP

Section 5.1 focused on compression methods by swapping the standard convolutional
blocks for their cheaper counterparts. The swapped blocks were in the DeepLabV3+
ASPP encoder module, taking advantage of the unchanged, pre-trained backbone. In
this section, with the encouraging results of the cheaper convolutions in ASPP, a crucial
element of the DeepLabV3+, three augmented variants are evaluated further.

5.3.1 ASPP module descriptions

• ASPP - Standard atrous convolutions with just one layer, used in Section 5.1.

• CASPP-1 - Compressed atrous convolutions with just one bottleneck layer, used
in Section 5.1.

• CASPP-2 - Compressed atrous convolution with two convolutional layers. The
first bottleneck reduces the number of output channels to 2×Nout . The second
reduces the output channels further to Nout .

• CASPP-3 - Compressed atrous convolutions with three convolutional layers.
The first bottleneck reduces the number of output channels to 4×Nout . The
second reduces the output channels further to 2×Nout . The last layer reduces
the output channels to the final Nout .

• CASPP-4 - Compressed atrous convolutions with four convolutional layers. The
first bottleneck reduces the number of output channels to 4×Nout . The second
reduces the output channels further to 2×Nout . The third layer reduces the output
channels to the final Nout while the last layer is an additional bottleneck with Nout
output channels.

5.3.2 Compressed ASPP results

As shown in Table 5.4 and Table A.2, all models with Compressed ASPP have sig-
nificantly fewer parameters and MAdds than a traditional ASPP, despite potentially
having three extra layers per atrous convolution.

CASPP-1, the model with just one bottleneck, described in Section 4.2, in all con-
figurations, performs undoubtedly worse than the original DeepLabV3+ model but
achieves the best compression ratio.

The CASPP-2, CASPP-3 and CASPP-4 models, with 2, 3 and 4 bottleneck layers per
atrous convolution, respectively, perform better than their counterpart with just one
layer. As initially expected, the additional bottleneck layers help the model achieve
improved accuracy. This could be attributed to the additional transformations that the
model can apply to translate the high-level features from the backbone into segmenta-
tion maps.

Counterintuitively, the best performing model is the CASPP-2 without KSAC. It is
possible that the kernel-sharing method does not work well with an increased number
of layers. With two bottleneck blocks per atrous convolution and three distinct atrous

Chapter 5. Experiments 35

Architecture
OS KSAC Decoder IoU Params MAdds
16 X ASPP 74.38 30.32M 14.94G
16 ASPP 73.99 39.76M 14.94G
16 X CASPP-1 73.48 25.09M 8.72G
16 CASPP-1 73.21 25.39M 8.72G
16 X CASPP-2 73.42 25.43M 8.89G
16 CASPP-2 74.25 26.08M 8.89G
16 X CASPP-3 73.49 26.49M 9.4G
16 CASPP-3 73.48 28.07M 9.4G
16 X CASPP-4 73.79 26.59M 9.43G
16 CASPP-4 73.64 28.17M 9.43G
32 X ASPP 73.14 30.32M 9.29G
32 ASPP 72.89 39.76M 9.29G
32 X CASPP-1 71.75 25.09M 5.69G
32 CASPP-1 71.63 25.39M 5.69G
32 X CASPP-2 72.13 25.43M 5.74G
32 CASPP-2 72.29 26.08M 5.74G
32 X CASPP-3 72.16 26.49M 5.86G
32 CASPP-3 71.85 28.07M 5.86G
32 X CASPP-4 71.52 26.59M 5.87G
32 CASPP-4 71.57 28.17M 5.87G

Table 5.4: The results of the DeepLabV3+ models with the ResNet50 backbone and
variable ASPP modules. Decoder names explained in Section 5.3.1.

rates in the CASPP, the number of shared kernels can be burdensome to the prediction
ability. However, with the results from Section 5.1 showing that KSAC does indeed
yield improvement, the optimal selection of the bottleneck layers with kernel-sharing
in the CASPP structure could alleviate this problem and, therefore, should be studied
further. Presumably, sharing only the first layer can be the best of both worlds: more
reliable and resilient shared kernel, as in the original paper, and the distinct transfor-
mation applied to the output of each dilation rate.

Ultimately, adding more than two layers seems to decrease the performance slightly
while unnecessarily increasing the number of parameters and MAdds. This decrease
can be attributed to the disproportion in the Compressed ASPP module - only the atrous
convolution blocks have their depth increased. In the meantime, the image level fea-
tures extracted from the backbone by the encoder in DeepLabV3+ (Figure 4.1) have
not been extended, creating a disparity between the two signals. This uneven combi-
nation could potentially prevent the model from extracting the final output features in
a balanced manner.

Chapter 5. Experiments 36

Im
ag

e
CA

SP
P

1
16

CA
SP

P
2

16
CA

SP
P

1
32

CA
SP

P
2

32
Ba

se
lin

e
Ta

rg
et

Figure 5.3: Example predictions of the DeepLabV3+ model with the ResNet50 back-
bone. All models use non-shared kernels. Rows 2-5 show predictions for CASPP-1 and
CASPP2 with an output stride 16 an 32. Row 6 shows the baseline from Section 5.1.

Chapter 6

Conclusion

This project’s objective was to determine whether there are some intrinsic differences
in compression approaches of the semantic segmentation networks compared to im-
age classification. The majority of the literature on efficient neural network designs
for Computer Vision focuses primarily on image classification, assuming that the out-
comes will be directly transferable to other tasks since extraction of the high-level
features is a common task for most applications. This transferability can be true for
some semantic segmentation since most models use a slightly modified version of an
image classification model as a feature extractor.

Conversely, semantic segmentation has its particular, domain-specific problems like
having the same input and output resolution. These problems encourage original ap-
proaches to classifier modules like ASPP that produce the output from the abstract,
high-level features.

Several teacher models, based on DeepLabV3+, have been compared, focusing on the
accuracy and the compression ability when modifying the network’s classifier module
to support Kernel-Sharing Atrous Convolution, depthwise separable convolution and
bottleneck block.

The best model has been distilled to a large number of smaller, more efficient models
using Knowledge Distillation or Attention Transfer to verify the applicability of distil-
lation in semantic segmentation. For AT, three different approaches have been studied,
focusing on the layers that the Attention Transfer should be applied to.

As predicted, Knowledge Distillation with the soft targets performs considerably worse
than any other model. Attention Transfer, if executed on correct layers, can bring
slight improvement to the models. Specific settings of AT for segmentation should
be studied further to verify its usefulness. However, the amount of preparation work
required to train the teacher models and then train the students afterwards does not
work in favour of the distillation. In general, current distillation approaches, designed
for image classification tasks, do not transfer well to pixel-wise classification domains.

Lastly, having noticed the reassuring compression when changing the standard con-
volution blocks to “Cheaper Convolution”, a Compressed ASPP variant of the ASPP

37

Chapter 6. Conclusion 38

module has been investigated. The addition of bottleneck layers to the convolutions
with atrous rates improved accuracy while the model has remained more efficient than
the naive compression approach. Additionally, to our best knowledge, efficient layers
in the ASPP have not been studied before and shed new light on the atrous convolution
and the incorporation of the extracted features with the object contours.

These discoveries expose us to the next steps that should be undertaken when working
on semantic segmentation compression. Some of them are outlined in the next section.

6.1 Future work

The compressed ASPP module shows that it is possible to achieve similar accuracy
with a more efficient design. A simple addition of the efficient bottleneck layers can
have a significant impact on performance. However, only the addition of bottleneck
layers to the atrous convolution layers has been studied. Therefore, a more compre-
hensive set of experiments should be performed with the Compressed ASPP to verify
the module’s optimal structure in the future.

Precisely, the addition of bottleneck layers to the low-level features should be studied,
as well as the overall structure of the encoder. Residual connections could play a
significant role in the better propagation of the signal in the deeper layers. Possibly,
inverted residual connections, implemented by MobileNetV2, could offer a further
boost. Moreover, since a predefined number of input and output channels has been
used for the bottlenecks, the additional layers’ specific sizes should be verified.

Kernel-Sharing Atrous Convolution achieves the promised benefits with standard con-
volution blocks, but its performance diminishes with the change of ASPP architec-
ture. Possibly, a further study should be performed on the specific configuration of the
kernel-sharing, especially that there has not been any follow-up work on the original
paper.

Lastly, the recommended Attention Transfer settings by [Crowley et al., 2019a] yield
only a negligible improvement in mIoU but confirm that distillation is possible for
semantic segmentation. Therefore, other, more sophisticated attention mechanisms
could be verified along with an ablation study on the parameter values.

6.2 Plan for the next year

Since this is the first part of a two-year-long project, next year’s focus will be on
compression methods for neural networks. Optimisation of the existing architectures
requires a good comprehension of the authors’ design decisions. Therefore, the focus
will shift to the compression of more recent architectures that have improved upon the
DeepLabV3+.

The overall topic of compression in Computer Vision is broad. The disproportionate
number of techniques focuses on Convolutional Neural Networks. Although, with the
recent rise of popularity of the large Transformer models in CV, there has also been

Chapter 6. Conclusion 39

even more demand in making them more approachable. These sequence-to-sequence
approaches displace the encoder-decoder structure, invalidating a large portion of the
literature. Therefore, there is a large void that is only starting to be filled with ideas.

Consequently, next year’s project will focus on finding new, attention-based equiva-
lents of “cheap convolutions” in the Transformer-based network.

Bibliography

[Arnab et al., 2018] Arnab, A., Zheng, S., Jayasumana, S., Romera-Paredes, B., Lars-
son, M., Kirillov, A., Savchynskyy, B., Rother, C., Kahl, F., and Torr, P. (2018).
Conditional random fields meet deep neural networks for semantic segmentation:
Combining probabilistic graphical models with deep learning for structured predic-
tion.

[Bai, 2019] Bai, K. (2019). A comprehensive introduction to different types of con-
volutions in deep learning.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
(2020). Language models are few-shot learners.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698.

[Chen et al., 2017] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille,
A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs.

[Chen et al., 2018] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.
(2018). Encoder-decoder with atrous separable convolution for semantic image
segmentation.

[Chen et al., 2020] Chen, X., Wang, Y., Zhang, Y., Du, P., Xu, C., and Xu, C. (2020).
Multi-task pruning for semantic segmentation networks.

[Cordts et al., 2016] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M.,
Benenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset
for semantic urban scene understanding.

[Crowley et al., 2019a] Crowley, E. J., Gray, G., and Storkey, A. (2019a). Moonshine:
Distilling with cheap convolutions.

[Crowley et al., 2019b] Crowley, E. J., Turner, J., Storkey, A., and O’Boyle, M.
(2019b). A closer look at structured pruning for neural network compression.

40

Bibliography 41

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L., Kai Li, and Li Fei-Fei
(2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 248–255.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019).
Bert: Pre-training of deep bidirectional transformers for language understanding.

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16 words: Transform-
ers for image recognition at scale.

[Everingham et al., 2015] Everingham, M., Eslami, S. M. A., Van Gool, L., Williams,
C. K. I., Winn, J., and Zisserman, A. (2015). The pascal visual object classes
challenge: A retrospective. International Journal of Computer Vision, 111(1):98–
136.

[Fang, 2019] Fang, G. (2019). Deeplabv3plus-pytorch. https://github.com/
VainF/DeepLabV3Plus-Pytorch.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[Han et al., 2016] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A.,
and Dally, W. J. (2016). Eie: Efficient inference engine on compressed deep neural
network.

[Han et al., 2015] Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning both
weights and connections for efficient neural networks.

[Hariharan et al., 2011] Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., and Ma-
lik, J. (2011). Semantic contours from inverse detectors. In 2011 International
Conference on Computer Vision.

[Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In In Proc. of Fourth Alvey Vision Conference, pages 147–151.

[He et al., 2018] He, K., Girshick, R., and Dollár, P. (2018). Rethinking imagenet
pre-training.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning
for image recognition.

[Heffels and Vanschoren, 2020] Heffels, M. R. and Vanschoren, J. (2020). Aerial im-
agery pixel-level segmentation.

[Hernandez and Brown, 2020] Hernandez, D. and Brown, T. B. (2020). Measuring
the algorithmic efficiency of neural networks.

[Hinton et al., 2015] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the
knowledge in a neural network.

[Huang et al., 2019] Huang, Y., Wang, Q., Jia, W., and He, X. (2019). See more than
once – kernel-sharing atrous convolution for semantic segmentation.

https://github.com/VainF/DeepLabV3Plus-Pytorch
https://github.com/VainF/DeepLabV3Plus-Pytorch
http://www.deeplearningbook.org

Bibliography 42

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal covariate shift.

[Kim et al., 2020] Kim, K., Ji, B., Yoon, D., and Hwang, S. (2020). Self-knowledge
distillation: A simple way for better generalization.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, page 1097–1105, Red Hook, NY, USA. Curran Associates Inc.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, page 91–110.

[Luo et al., 2017] Luo, J.-H., Wu, J., and Lin, W. (2017). Thinet: A filter level pruning
method for deep neural network compression.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units im-
prove restricted boltzmann machines.

[Ren et al., 2016] Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn:
Towards real-time object detection with region proposal networks.

[Sandler et al., 2019] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen,
L.-C. (2019). Mobilenetv2: Inverted residuals and linear bottlenecks.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep
convolutional networks for large-scale image recognition.

[Sovrasov, 2020] Sovrasov, V. (2020). Flops counter for convolutional networks in py-
torch framework. https://github.com/sovrasov/flops-counter.pytorch.

[Szegedy et al., 2014] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going deeper with con-
volutions.

[Tan and Le, 2020] Tan, M. and Le, Q. V. (2020). Efficientnet: Rethinking model
scaling for convolutional neural networks.

[Wild, 2018] Wild, M. (2018). Turning up the heat: The mechan-
ics of model distillation. https://towardsdatascience.com/
turning-up-the-heat-the-mechanics-of-model-distillation-25ca337b5c7c.

[Wu and Lee, 2018] Wu, Y. and Lee, T. (2018). Reducing model complexity for dnn
based large-scale audio classification.

[Wu et al., 2019] Wu, Y., Liu, L., Bae, J., Chow, K.-H., Iyengar, A., Pu, C., Wei, W.,
Yu, L., and Zhang, Q. (2019). Demystifying learning rate policies for high accuracy
training of deep neural networks.

https://github.com/sovrasov/flops-counter.pytorch
https://towardsdatascience.com/turning-up-the-heat-the-mechanics-of-model-distillation-25ca337b5c7c
https://towardsdatascience.com/turning-up-the-heat-the-mechanics-of-model-distillation-25ca337b5c7c

Bibliography 43

[Zagoruyko and Komodakis, 2017] Zagoruyko, S. and Komodakis, N. (2017). Pay-
ing more attention to attention: Improving the performance of convolutional neural
networks via attention transfer.

[Zhang et al., 2019] Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., and Ma, K.
(2019). Be your own teacher: Improve the performance of convolutional neural
networks via self distillation.

Appendix A

Additional experiments results

Architecture Metrics
OS KSAC ST DS BTN IoU Params MAdds
16 X X 69.17 3.75M 4.29G
16 X 69.34 5.23M 4.29G
16 X X 67.73 2.48M 1.25G
16 X 68.12 2.65M 1.25G
16 X X 67.64 2.39M 1.03G
16 X 68.15 2.46M 1.03G
32 X X 68.00 3.75M 3.50G
32 X 68.20 5.23M 3.50G
32 X X 66.38 2.48M 0.83G
32 X 66.44 2.65M 0.83G
32 X X 66.31 2.39M 0.64G
32 X 66.41 2.46M 0.64G

Table A.1: Results of the DeepLabV3+ models with the MobileNetV2 backbone. Col-
umn names explained in Section 5.1.1.

44

Appendix A. Additional experiments results 45

Architecture
OS KSAC Encoder IoU Params MAdds
16 X ASPP 69.17 3.75M 4.29G
16 ASPP 69.34 5.23M 4.29G
16 X CASPP-1 67.64 2.39M 1.03G
16 CASPP-1 68.15 2.46M 1.03G
16 X CASPP-2 68.41 2.61M 1.12G
16 CASPP-2 68.75 2.83M 1.12G
16 X CASPP-3 68.73 3.45M 1.46G
16 CASPP-3 68.63 4.15M 1.46G
16 X CASPP-4 67.65 3.55M 1.49G
16 CASPP-4 68.09 4.25M 1.49G
32 X ASPP 68.00 3.75M 3.50G
32 ASPP 68.20 5.23M 3.50G
32 X CASPP-1 66.31 2.39M 0.64G
32 CASPP-1 66.41 2.46M 0.64G
32 X CASPP-2 67.39 2.61M 0.67G
32 CASPP-2 67.68 2.83M 0.67G
32 X CASPP-3 67.59 3.45M 0.75G
32 CASPP-3 67.65 4.15M 0.75G
32 X CASPP-4 66.10 3.55M 0.76G
32 CASPP-4 66.06 4.25M 0.76G

Table A.2: The results of the DeepLabV3+ models with the MobileNetV2 backbone and
variable ASPP modules. Decoder names explained in Section 5.3.1.

Appendix A. Additional experiments results 46

Im
ag

e
CA

SP
P

1
16

CA
SP

P
2

16
CA

SP
P

1
32

CA
SP

P
2

32
Ba

se
lin

e
Ta

rg
et

Figure A.1: Additional predictions of the DeepLabV3+ model with the ResNet50 back-
bone. All models use non-shared kernels and. Rows 2-5 show predictions for CASPP-1
and CASPP2 with an output stride 16 an 32. Row 6 shows the baseline from Section
5.1.

	Introduction
	Focus on semantic segmentation
	Main contributions

	Background research
	Computer Vision
	Image classification
	Image segmentation

	Convolutional Neural Networks
	Residual Neural Networks
	Pre-training
	Pooling and striding
	Atrous convolution
	Kernel-Sharing Atrous Convolution

	Efficiency
	Cost of networks
	Efficient designs
	Separable convolution
	Bottleneck

	Compression
	Pruning
	Knowledge distillation
	Attention transfer

	Dataset and task
	PASCAL VOC
	Metrics
	Intersection over Union
	Memory and computation

	Methodology
	DeepLabV3+
	Implementation details

	Compression with ``Cheap Convolutions''
	Depthwise separable convolution and bottleneck
	Knowledge Distillation with Attention Transfer
	Compressed Atrous Spatial Pyramid Pooling

	Memory and computation
	Cluster computing
	Scheduling experiments

	Experiments
	Baseline experiments
	Model parameter descriptions
	Baseline results

	Knowledge Distillation and Attention Transfer
	Distillation method descriptions
	Distillation results

	Compressed ASPP
	ASPP module descriptions
	Compressed ASPP results

	Conclusion
	Future work
	Plan for the next year

	Bibliography
	Additional experiments results

