Learning systems biology
models from data

Edon Aliko

4th Year Project Report
Computer Science
School of Informatics
University of Edinburgh

2021

Abstract

Ordinary differential equations are often used in systems biology models to estimate
the kinetic rate parameters which shape the dynamical systems of the model. One such
experiment where this method is used is proposed by Faas et al. [6], who model the
interaction between Calcium and the Calcium-binding protein Calmodulin which oc-
curs during synaptic plasticity. Due to the non-linearity of ODE’s and experimental
conditions which lead to uncertainty, these estimates can not often be trusted, as they
only provide a point estimate of the model parameters. In this paper, we propose a
way of obtaining the posterior distributions of the kinetic rate constants in Faas et al.’s
experiment by using the Metropolis-Hastings Markov Chain Monte Carlo method. We
analyze different techniques to improve the estimates as well as to try and optimize
the convergence of the chains. In conclusion, we found that our parameter estimates
resulted in superior model outputs compared to the model outputs obtained through
the Faas et al. estimates. Furthermore, we were able to find the joint and single distri-
butions of all the parameters, which allows our method to be generalized and be used
in various ODE systems biology models.

Acknowledgements

I’d like to thank my two supervisors during the course of my thesis, Dr. David Sterratt
and Dr. Melanie Stefan. It has been a pleasure working with them and learning from
them. They have been insightful, understanding and encouraging all throughout the
year, and despite this year’s challenges, working with them has been very enjoyable
and easy.

Table of Contents

1 Introduction

.1 Motivations L
1.2 Objectives oo i e
1.3 Summaryofresults
1.4 Structureof thereport L.
2 Background
2.1 Synaptic Plasticity
2.2 Calmodulin model by Faasetal. Model
2.2.1 Experimento
222 Modelo
2.3 Sloppiness property in systems biology
2.4 MarkovChainMonteCarlo
241 emcee e e
3 Methods
3.1 MCMCModel
31,1 Model
3.1.2 Runningemcee
32 Experiments e e
32.1 Usingfixedvalues
322 SyntheticData
3.23 Imterpolation
3.24 Marginalization oL
3.2.5 Alternative to marginalization
3.3 Evaluation of convergence
4 Results
4.1 Synthetic Data and Fixed Parameters
42 Interpolation. Lo
4.3 Synthetic Data with Nuisance Parameters
4.4 MCMC without Nuisance Parameters
441 Convergenceot i e e e e e e e
442 ModelFits
4.5 MCMC with nuisance parameters

4.5.1 Convergence e e

WO N =

o elle I BRU I s

10
10
10
11
12
12
12
13
13
16
16

452 ModelFits
4.6 Summaryofresults

5 Conclusion and future work
5.1 Conclusion e
52 Futurework
5.2.1 MCMCinhighdimensions.

Bibliography

A Experimental data and model outcomes using MAP estimate

29
29
30
30

32

34

Chapter 1

Introduction

1.1 Motivations

A special challenge in systems biology is that parameters of interest are often unknown
and need to be approximated through data. Frequently, Ordinary Differential Equations
(ODE) have been used to model dynamical systems, yet due to the nature of systems
biology, experimental noise and non-linearity of ODE systems pose a challenge when
trying to estimate these parameters [19]. Optimization methods are often applied in
systems biology [8][13], however due to the aforementioned challenges, these methods
will only result in parameter estimations corresponding to some local maxima of their
likelihood, thus not providing posterior and joint distributions over parameter values
[19]. To overcome this issue, an alternative to optimization techniques are Markov
Chain Monte Carlo (MCMC) methods, which use Bayesian inference to infer posterior
distributions for the parameters of interest.

Faas et al. designed a model describing the chemical reactions which occur during
synaptic plasticity. Synaptic plasticity is a process involved in learning and memory in
the brain, and certain neuropsychiatric disorders can be attributed to faults in this pro-
cess. Synaptic plasticity is often initiated by changes in intracellular Calcium (Ca”*)
[21][16] and its interactions with Calmodulin (CaM)[20]. Faas et al.’s model describes
the dynamics of the binding between Ca?* and CaM, which they used to find estimates
of the kinetic rate parameters through the use of ODEs. Despite the fact that they
have estimates for the parameters of interest, their method to infer those parameters is
complex and tailored to their specific model and experiment, as well as to their set of
ODEs. In this paper, we explore the use of MCMC methods to obtain posterior distri-
butions of the kinetic rate constants and find the join distributions between parameters,
thus validating a method which can be generalized for various experiments in systems
biology and overcoming the challenges which arise when using classical optimization
methods.

Chapter 1. Introduction 2

1.2 Objectives

The primary objective of this paper is to estimate the posterior probability distributions
of the various parameters used by Faas et al. [6] to model the dynamics and interaction
between Ca%* and CaM involved during the process of synaptic plasticity. The data that
will be used in the project is the experimental data from the Faas et al. experiment, and
we hope to find estimates of the parameters which align and confirm their findings and
provide good model outputs. Despite the use of this dataset, we expect that this method
can be easily extended to be used on various systems biology models in finding kinetic
rate parameters.

As described in the previous section, systems biology models suffer from the chal-
lenges attributed to the non-linearity of ODEs and experimental noise. To overcome
this, we will use the Metropolis-Hastings Markov Chain Monte Carlo method imple-
mented in the emcee python library [3]. Previous work carried out by Candel [2] at-
tempted to solve these challenges, however they encountered challenges regarding the
convergence of the MCMC chain, thus an objective for this paper is to better under-
stand the viability of MCMC as a technique for parameter estimation given our data,
and we will then compare our results to the ones found by Faas et al. We will ana-
lyze the MCMC results by examining the one and two dimensional projections of the
posterior probability distributions of each parameter, and then judge the model output
achieved when using those parameters. Furthermore, we aim to have a method which
allows the MCMC chains to converge, thus allowing us to trust our results.

1.3 Summary of results

Throughout this project, we determined that MCMC is a viable technique to use on the
data provided, however, it is necessary to somehow include nuisance parameters which
introduce uncertainty in the model outputs. Firstly, we ran MCMC on a synthetic
dataset and found that the joint distributions produced followed a predictable Gaussian
curve, which is what is to be expected for the parameters since we assumed a Gaussian
noise model for the likelihood function. We then proceeded to run 5000 iterations of
MCMC using the interpolarized likelihood function, which allowed us to more evenly
distribute the data points, without the inclusion of nuisance parameters. The results
from this experiment aligned with the hypothesis that nuisance parameters have a large
effect on the model output as seen in Section 4.3, where we saw that when including
randomly generated nuisance parameters in our synthetic data creation, the posterior
distributions were no longer Gaussian. Lastly, we included nuisance parameters in
our likelihood computation and found that this method successfully removed the error
caused by the uncertainty in the nuisance parameter values. Although by our analysis,
after 5000 iterations the chain had not converged, the results from this experiment
give us estimates of the posterior distribution of the parameters, and the maximum a
posteriori estimates are similar to the ones found by Faas et al. in their experiment.

Chapter 1. Introduction 3

1.4 Structure of the report

Chapter 2 provides an insight into synaptic plasticity and more details on the Faas et al.
experiment. We also explore the theory behind MCMC and discuss the previous work
carried out on this topic[2]. We will identify the use for using MCMC methods and
what value they can being in systems biology model. Chapter 3 outlines the methods
for the various experiments which have been carried out throughout the project. It
includes looking at how well MCMC performs against a synthetic dataset, performing
MCMC without using nuisance parameters, using interpolation to evenly distribute
the data and marginalizing over the nuisance parameters. Chapter 4 later reports the
results achieved from running the experiments from Chapter 3, where we analyze the
convergence of the MCMC chains and the parameter estimates. Finally, in Chapter
5 we summarize the project findings and techniques and propose future work which
can be carried out to further improve the results achieved using MCMC. Lastly, we
found the mean squared error values between the model output and experimental data
achieved through our estimates using MCMC were much lower than the MSE values
obtained by using the Faas et al. parameter estimates.

Chapter 2

Background

2.1 Synaptic Plasticity

The ability of the brain to change and adapt to new information is referred to as plastic-
ity. The phenomenon by which the neural activity generated by experiences modifies
brain functions of synaptic transmission is called synaptic plasticity. Synaptic plastic-
ity refers to the activity-dependent modification of the strength or efficacy of synaptic
transmission at preexisting synapses, which are connections between neurons, and it
is believed to play a central role in the brain when incorporating transient experiences
into persistent memory traces. Furthermore, it is thought to also contribute to neu-
ropsychiatric disorders when it malfunctions [14].

Due to the variety of functions associated with synaptic plasticity, many forms and
mechanisms have been described. Synaptic transmission can be either enhanced or
depressed by activity with varying temporal domains. Most of the research in this
domain explores long-term potentiation (LTP) and depression (LTD) [14]. In both
cases, synaptic transmission is dependent on changes in intracellular Calcium (Ca**)
[21][16], and its interaction between CaZ* binding proteins such as Calmodulin (CaM)
to regulate synaptic transmission[16][20].

2.2 Calmodulin model by Faas et al. Model

2.2.1 Experiment

Previous work has been carried out to understand the interaction between Calmod-
ulin as a direct detector of Ca®* signals, and in particular, Faas et al. [6] found that
CaM directly intercepts incoming unbound Ca?* and strongly contributes to fast Ca>*
buffering, therefore making CaM and efficient transducer. To achieve these results,
they tracked the concentration of unbound Ca?* as it reacted with CaM in a reaction
vessel using a Ca>* sensitive fluorescent dye. [6]

There are two Ca2+—binding sites at both termini of CaM (N- and C-lobes). Both
these sites have distinct Ca?*-binding properties, and the goal of the experiment was to

Chapter 2. Background 5

A o
(icaPP
3 ‘\[Ca+ I~ [CaPP]

> \ g
¢ \(PE} Nz
N & N Detection
PP AS[)PP]: Fmin Fmax

[CaDMn] [DMn] [Ca2+] +[OGB- 5N]47[CaDGB 5N]

< [CaM]
2= kcu[Kany _honim)
- =00
term IUL. RFT 2 k #R)

2 % Kan, 2*konrm
=00
terminus 2 KofitR)

c 4x [CB]T&[CaCB]
(off{CB)

Figure 2.1: Schematics of the simulated reactions by
Faas et al. [6]

find the on-rate (k,,) constants and off-rate (k) kinetic constants, describing different
binding dynamics [6]. To find the rate at which Ca®* binds to CaM, they tracked the
fall in unbound Ca** ([Ca®*]) after a rapid (<100 ps) change in the total Ca** pro-
duced by flash photolysis of DM-nitrophen (DMn) by using a Ca* sensitive fulores-
cent dye called OBG-5N. Figure 2.1 shows the schematics of the simulated reactions
as described and modelled by Faas et al.

The results show that CaM is activated upon a rise in cellular Ca>* producing 10-100
times more activated CaM than previously thought. In addition, there is a difference
in Ca®* binding between each of the two lobes, with the N-lobe being the first to bind
Ca’*.

2.2.2 Model

CaM has two Ca*-binding sites at both its N- and C-lobes, both having distinct prop-
erties and show cooperativity. Faas et al. quantified the binding kinetics by fitting the
data with a two-step binding model of cooperative binding to each lobe.

2-kon(),N

NtNp 4 Ca?* CaNTNg 2.1)

Kogr),N

kon(R),N

CaNTNg + Ca’™" CaNgCaNg (2.2)

2-koir)N

CrCrp 4 Ca?t o2 0 CrCr (2.3)
kofrr),C

kon(r),C

CaCrCg + Ca’*™" CaCgrCaCgr (2.4)

2-kofiir),c

where Ny and Cx represent binding sites on the N and C lobes, respectively. After
the first binding, the state changes from T (nothing is bound to the lobe) to R (CaZ*

Chapter 2. Background 6

is bound to lobe), giving rise to cooperativity. The ky values represent the kinetic
constants which describe binding dynamics, values which this paper tried to infer.

The model fits reliably described the data and were consistent with previous work,
showing that the C-lobe bound Ca®* with higher affinity than the N-lobe. To deter-
mine the kinetic parameters from the recordings, Faas et al. used an Ordinary Differ-
ential Equation (ODE) solver to simulate a time course of the system, allowing them to
achieve an approximate numerical solution for the kinetic parameters by testing differ-
ent combination of parameters, starting with a broad range and then narrowing it down,
and comparing them to a randomly selected subset of traces. The ODEs for the N lobe
are found below, and since the dynamical equations for the two lobes are identical, the
same ODEs are valid for the C lobe.

% = _2kon(T),N[NTNTHC(12+] +k0ff(T),N[CaNTNR]

TN, = 2y N INTNT][CA>] = Ko () [CaNTNR]
_kon(R),N [CaNTNR] [C612+] + 2koff(R),N [CaNRCaNR]

(2.5)
CaN;;?aNR = kon(R),N [CaNTNg] [Ca2+] - 2k0ff(R),N [CaNgNg]

2
CZ; = _2kon(T),N[NTNT] [C(12+] +k0ff(T)’N[CaNTNR]
_kon(R),N [CaNTNg] [Ca2+] + 2k0ff(R),N [CaNRrCaNg]

To see that the reactions can be implemented as ODEs and that the set of ODEs work,
Figure 2.2[6] shows Ca>* buffering by CaM, where the individual points are the ex-
perimental values and the solid black lines are the fit achieved through a mathematical
model using the kinetics parameters found through the use of the set of ODEs from
equation 2.5.

40

1

'..,““..lu'l--v-- ag ¥

[Ca®] (uM)
[%]
(o]

0 10 20 30
Time (ms)

Figure 2.2: Traces from Faas et al. experiment [6]

Chapter 2. Background 7

Faas et al. carried out 94 experiments which they used to fit the kinetic parameters
and find values for the ko, and kqg rates, where each experiment has 259 entries cor-
responding to a specific time point. The experimental data is split up into 7 batches,
each one containing a different number of experiments (between 12 and 14), where
experiments in the same batch are characterized by the fact that the concentration of
the reagent is the same, but the length of the length of the flash differed. The issue
with this approach is that there is no distribution of possible parameters, but rather just
a numerical solution with error bars. Furthermore, this method is very specific to their
model and dataset, meaning that it cannot be generalized to find parameters of different
models. [6]

2.3 Sloppiness property in systems biology

Other models have been researched which explored the interactions between Ca>* and
CaM. One of these is the Pepke et al. model [17], which is similar to the one created
by Faas et al [6]. They used gradient descent on 3 experimental data sets to find point
estimates kinetic rates such as the ones in the Faas et al. experiment. However, the
values they found for parameters in common with Faas et al.’s experiment, such as the
dissociation constants, differ widely from the ones found by Faas et al., suggesting
that either the method used for parameter estimation, dataset or model influence the
outcomes. Previous experiments also show that there is a difference in kinetic param-
eter values compared to the values reported by Faas et al [10][11]. Furthermore, work
carried out by Judith Borowski [1] found that the model proposed by Faas et al. suf-
fered from this very property, thus further reinforcing the need for a more robust and
generalized model which can be used for various experimental data.

It is possible that the difference in parameter values suggests that the model, inference
method and data used affect the outcomes. Furthermore, the inference methods used
in these experiments, such as the one by Faas et al. are not easily applicable to new
data and thus not easily generalized. Thus it would be useful to have a generalized
inference method that can be used to infer the parameters of any systems biological
model, allowing for comparisons between different models.

Another factor that would lead to different parameter values is the sloppiness property,
which is present in most systems biology models. Sloppiness refers to the property
where model behaviour is insensitive to changes except along a few combinations of
parameters, with an large sloppy neutral subspace [4], leading to multiple value com-
binations having equally good fits to the experimental data [7]. Due to this property
and the fact that similar experiments can result in different outcomes, it is desirable
to find the full posterior distribution of the parameter space, as opposed to point esti-
mates. This will return the parameter values and the confidence associated with such
parameters, as well as showing dependence between parameters.

Chapter 2. Background 8

2.4 Markov Chain Monte Carlo

The desired outcome which builds on Faas et al.’s experiment would be to find the pos-
terior distribution of the parameters given the data. A popular technique for sampling
from a high-dimensional distribution is the use of Markov Chain Monte Carlo methods
(MCMC). Using MCMC methods allows us to generate samples from a given proba-
bility distribution and estimate expectations of functions under this distribution [12].
To sample from the unnormalised probability distribution, we can evaluate a function
P*(8) such that

P(B) = PZ<6) (2.6)

where 6 is the vector containing the parameters of interest and Z is the usually unknown
normalizing constant defined as

7= / dVoP*(6) 2.7)

Where N is the dimension of the parameter space. The issue is that even if Z were
known, we would have sample from everywhere on the 8-space, where P(0) is large.
To avoid having to sample from 0 uniformly, we can use different MCMC methods. In
the sampling methods, we assume we have a simpler density Q(6) from which we can
generate samples from which we can evaluate Q* (8) (where Q(8) = %(Qe)) such that in

—

the limit of a large number of samples, the samples will be from P(6) [12]. The most
popular method is the Metropolis-Hasting algorithm, in which we sample from a from
a proposal density Q which depends on the current state 6. The proposal density
Q(é’ ;é(t)) can be any fixed density from which we can draw samples, where o is a
tentative new state generated from it. To decide whether to accept the new state, we
compute:

P*(0') Q(8"
P+(61) 0(6

a =

(2.8)

If a > 1 then the new state is accepted, otherwise the new state is accepted with prob-
ability a. If the step is accepted, we set B0+ = @, otherwise if it is rejected, we set
6+l = §(). Other MCMC algorithms exist, each of them having their own advan-
tages and disadvantages, but they use similar acceptance functions.

2.4.1 emcee

Previous work has been carried by students regarding finding the posterior distribution
of the parameters used in the Faas et al. model, such as Carine Candel’s MSc disser-
tation [2]. Their work included using a Python MCMC package called emcee to solve
this problem. The method used involves an affine invariant “stretch move” proposed
by Goodman and Weare (2010) based on the Metropolis-Hasting algorithm. The affine
invariance is adequate for the use in systems biology as it works well in the elongated

Chapter 2. Background 9

spaces often seen in biological models. Furthermore, The Metropolis-Hasting algo-
rithm uses w tuning parameters due to the fact that each term in the covariance
matrix of this proposal distribution is unspecified [3], where N is the dimension of the
parameter space. However, emcee reduces the parameters needing tuning down to one,
and all that is needed to sample from the parameter posterior is a function proportional
to the log posterior over the parameters. Since the log posterior itself is unknown,
Candel [2] used the following log likelihood function to estimate the true log posterior

distribution.:

logp(8,6|X,€) = logp(X|6,€) +logp(6) +logp(o) (2.9)

where 6 represents a vector of the parameters we are interested in, ¢ represents the
standard deviation used in the likelihood, X represents the data and € represents the
nuisance parameter values modelling the uncertainty in the flash photolysis process.
A nuisance parameter is one that is required to model the process that generates the
data, but otherwise, its distribution is of little interest. For the purpose of this paper
and the methods used, we assume a Gaussian noise model, thus in the equation above,
Gaussian noise was added to the outcome of the simulator.

Candel then proceeded to include nuisance parameters to represent the inaccuracies in
the uncaging experiments for every experiment. Due to the fact that Faas et al. ran 94
experiments, there are a total of 94 nuisance parameters that we would need to sample
over in order to find their posterior distribution. Since our parameter space already
consisted of 10 parameters, with the additional 94 nuisance parameters, this would
increase the dimensionality from 10 to 104, thus slowing down the rate of convergence
of the chain.

To circumvent this, it is possible to marginalize over nuisance parameters, where
marginalization is the process of integrating over possible values of a parameter and
thus eliminating the effect of its value’s uncertainty on the data.

Candel attempted to marginalize over the nuisance parameters, and thus were able
to add the nuisance parameters to the MCMC chain without increasing dimensional-
ity thus without a significant increase in computational costs. Although this method
seemed promising, the chain obtained when not using nuisance parameters had not
converged after 20,000 iterations, thus they were not able to find the posterior distribu-
tion of the parameters. Although the experiments ran without the nuisance parameters,
the results demonstrated the need to use them in the final MCMC. Furthermore, Can-
del’s parameter estimates did not create Gaussian posterior distributions, and the joint
distributions between various parameters did not provide any useful relationships, thus
their method was unsuccessfull.

Chapter 3

Methods

3.1 MCMC Model

3.1.1 Model

To simulate the model presented by Faas et al., I used the ODE solver taken from the
MSc thesis of Judith Borowski [1] to solve the dynamical equations described in equa-
tions 2.1-2.4. The initial input parameters form vector 6, which holds the 4 logk,n
rates, the 4 logKp rates, mq, and 0p. These parameters along with the conditional pa-
rameters for each of the 94 experiments are passed to the model which then returns
the modelled f-ratio data, which is the current modelled fluorescence over the starting
fluorescence. Since the conditional nuisance parameters for the 94 experiments are
only used to define the experiment and we aren’t concerned about their distribution,
we are only interested in inferring the values of 6. The amount of Ca2* that is uncaged
is modelled as:

max((1+4€.)(mgP:+0yp),0) 3.1)

where €, represents the conditional parameters for experiment c, P, represents Pockels
Cell Delay (length of the UV-flash) and mg, and 0 model the intercept and slope of
the process.

Equation 2.9 provided earlier outlines the equation of the posterior distribution of the
parameters which was passed to the emcee package. This is made up of the likelihood
and the prior of the parameters. The following subsections describe how the prior and
likelihood were achieved in order to compute the posterior.

3.1.1.1 Prior

The prior over the parameters 6 can be determined from the original results from the
Faas et al. paper with the appropriate ranges by looking at their confidence intervals.
From their paper, the values for the logk,, rates were chosen from a uniform prior from
5 to 12, while for the logKp rates, the values were chosen from a uniform prior between
-8 and -2. The priors for oy and me, were defined by the following priors respectively:

10

Chapter 3. Methods 11

A(—0.39,(—0.39 x 2)?) and A((0.0011, (0.0011 x 2)?), where again these were taken
from the Faas et al. paper. Finally, all the nuisance parameters representing each
experiment were defined by the Gaussian distribution A((0,0.1%). Since the emcee
package requires log probabilities, we made the simplifying assumption that all the
parameters are independent and thus their log probabilities were added to return the
log prior.

3.1.1.2 Likelihood

Since we are assuming a Gaussian noise model for the data, we artificially added Gaus-
sian noise to the outcome of the model. This noise represents some of the measurement
noise that would be present in the original experiment. The likelihood can be computed
as follows.

Denote the f-ratio of the experimental data as X, and the f-ratio outcome of a simulation
from using the model as x.. x. can be calculated directly from the model by providing
the input parameters 6 and the experiment specific parameters €.. The likelihood of a
single data point at time ¢ is as follows:

p(x8,e,0) = A(x:x 6?) (32)

Where the notation)E'c(t) represents the solution to the set of ODEs presented earlier
parameterised by 6. By making the simplifying assumptions that different time points
are independent, and that different experiments are also independent, we can calculate
the likelihood through:

Cle 867 Hp |e 86‘7 (33)
p(X|8,¢,0) Hp X.|8,e.,0 (3.4)

Again, since the emcee package uses log probabilities, the log likelihood was com-
puted with the following formula:

log(p(X[6,€,6)) = Y. ¥ log(p(x\"[6,e.,5))
c t
3.5

xgt)—Xc(t) log(2nc?)
LY e

3.1.2 Running emcee

The emcee has an object called EnsambleSampler which is used to run the MCMC.
One of the parameters that is required for this class is a matrix which holds initial
values of the parameters we want to find the posterior of. We initialized 20 walkers to

Chapter 3. Methods 12

run MCMC, where a walker is a member of the ensamble which can be thought of as a
Metropolis-Hastings chain where the proposal distribution for a given walker depends
on the positions of all the other walkers in the ensemble. We used 20 walkers since this
is twice the number of parameters we are estimating, as recommended [3]. Since we
are aiming to sample over 10 parameters, 6 will therefore be a 20 x 10 matrix, where
each row is initialized to a Gaussian centered around the original parameter values
found by Faas et al. with a standard deviation of 1 x 10~*. Although the initial values
aren’t very important, this can reduce the time it takes for the walkers to branch out and
thus to converge. Lastly, for all the experiments outlined later, the standard deviation
was kept constant at 1.5.

3.2 Experiments

3.2.1 Using fixed values

One of the drawbacks of emcee is the fact that it does not scale well in high dimen-
sions. Even when using the full 10 parameter space from the Faas et al. experiment,
running MCMC until convergence takes a considerable amount of time due to the fact
that each iteration takes an average of 7.1s. To combat this, we decided to fix some
parameter values and only run MCMC on the 4 remaining parameters. Firstly, we fixed
the 4 forward rate constants and the parameters 0 and mg, which link the fraction of
Ca”* uncaged to the Pockels Cell Delay, to be the same as from the Faas et al. exper-
iment, and only found the distributions for the dissociation constants. Here we refer
to a dissociation constant as one which describes the affinity between a protein and a
ligand, which in this case is between Ca>* and CaM. The justification for this is that
by finding the dissociation constants of the experimental data once it has reached the
equilibrium state, we can then compute the forward rate constants using these values,
thus allowing them to as constant when running MCMC. However, we decided to also
include the forward rate constants when running MCMC while still keeping the last
two parameters fixed. This still allowed for a performance improvement when running
MCMC until convergence, decreasing the time per iteration to 5.5s.

3.2.2 Synthetic Data

To understand whether MCMC would produce adequate parameter posterior distribu-
tions given the model, we ran emcee on a synthetic dataset produced by running one
simulation of the model with the Faas et al. parameter values as inputs. The simulation
returns F-ratio values as described earlier, and we use these instead of the experimental
data in our likelihood function.

The resulting corner plot after 2000 iterations is shown in Figure 4.2, and it shows
that the model output data can be sampled using MCMC, providing strong parameter
posterior distributions as well as covariances between parameters. The results can be
seen in Chapter 4, where we ran MCMC using 8 parameters on the synthetic dataset.

Chapter 3. Methods 13

3.2.3 Interpolation

The experimental data provided is a matrix of 94 rows (one row per experiment) and
259 columns (one column per time point). However, when analyzing the data, it is
possible to see that the time points are not evenly distributed, with over 90% of read-
ings occurring in the first Sms of the experiment. This will have an effect on how well
the parameters will fit the model and how they compare to the experimental data. An
attempt to overcome this is to use linear interpolation to evenly distribute the data and
then use it to carry out MCMC. Figure 3.1 shows how the data is distributed origi-
nally and how interpolation of the experimental data distributes the points more evenly
across the time course, thus smoothing out the initial points and giving an even weight
to the later points when calculating the likelihood of the model data. Without this, the
later points of the model data would not contribute much to the computation of the
likelihood value, and thus they could contribute to a worse model fit.

1.7 4 +-— Raw data

Linearly interpolated data

1.6+

1.5 A

F-ration

1.4 4

131

1.2 1

T
o 5 10 15 20 25 30 35
Time (ms)

Figure 3.1: F-ratio during timepoints for raw
experimental data and linearly interpolated data

3.2.4 Marginalization

One of the disadvantages of MCMC is that it performs poorly at high dimensions. This
poses a challenge when trying to accurately model the experiment at hand, where we
have 94 nuisance parameters which represent the conditions of each experiment. If
these conditions aren’t included, we would have a poor posterior distribution of the
parameters and thus a poor model fit. However, simply adding and sampling over
94 parameters would increase the time taken for the MCMC to converge exponen-
tially, and furthermore, learning about their distribution isn’t important since they only
shape the experimental conditions. To overcome this, we can marginalize over the
nuisance parameters and thus indirectly include their distribution when computing the
likelihood, and thus in turn removing the uncertainty added by these parameters in the
simulations.

The posterior distribution expressed in equation 1.8 when marginalizing out the nui-
sance parameters can be formulated as:

Chapter 3. Methods 14

p(®.0/%) = p(8)p(c)p(X.0)
= p®0(0) [+ [p(X[8.E 0)p(E) e 56
= p®p()[] [p(Xelo.cc.0)de.

The marginalized log posterior is thus the sum of the log prior over theta and sigma
plus the sum of the integral under the log likelihood curves for each experiment.

log(p(8,0(X)) = log(p(6)) +log(p(c)) +Zlog/p(fc|§,ec,6) de.+C (37)

The integral in Equation 3.7 represents the area under the curve of the likelihood over
different epsilon values, which we assume to form a Gaussian distribution. We can
verify that the shape formed by plotting the likelihood against values of epsilon ranging
from -1 to 1 is indeed Gaussian as seen in Figure 3.2a when using the experimental
data from the first Faas et al. experiment.

le—-133

—340

-342 A

—344

34 —346

Likelihood
Log Likelihood

| | |
w w w
o I ey
~ =) o

-354

=356 7

T T T T T T T T T T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 025 0.50 0.75 100
Nuisance parameter value Nuisance parameter value

(a) Likelihood vs nuisance parameter values (b) Log Likelihood vs nuisance parameter values

Figure 3.2: Likelihood and log likelihood for different nuisance parameter values for one
experiment

One way in which we can compute this area is through numerical integration which
can be computationally expensive, since we would need to calculate the likelihood
for many different epsilons. Another approach which is sufficiently accurate for the
purpose of marginalizing over the nuisance parameters is to approximate the area under
the conditional likelihood. This approximation can be done by inferring the parameters
of the Gaussian indirectly. Finding the mean and standard deviation of a Gaussian can
easily be done when we have many points, however, we want to minimize the number
of likelihood computations done to lower the time taken per iteration, since for each
computation, we run a simulation of the model. Thus finding the Gaussian parameters
directly from data points is not feasible. As an alternative, we can instead plot the log

Chapter 3. Methods 15

likelihood against different nuisance parameter values, which forms a quadratic curve
as seen in Figure 3.2a. This is the technique which is used to to approximate the area
of the conditional likelihood as outlined below.

1. Firstly, we find the nuisance parameter value which minimises the negative log
likelihood, which is the equivalent to maximising the log likelihood. This gives
us the peak of the quadratic curve which we can use to determine the function of
the quadratic curve

2. We then calculate the log likelihood for points on either side of the optimal nui-
sance parameter value, these points being equidistant from the maximum and
from each other and whose resulting likelihood falls within a certain range. It
is important that the likelihood of the calculated points remains within a certain
range due to the fact that the log likelihood values can approach negative in-
finity for certain experiments, and when this happens, the curves are no longer
quadratic. Thus we limit this situation by only calculating likelihood for points
near the maximum which do not fall below a log likelihood threshold set by:

logp(X.18, &, 6)max —1020.01p(X.]6, &, O)max

Max log likelihood

—2000 4
Min Thershold

g —4000

Log Likelino

—6000 4

—B8000 {

—10000 A

71:00 70‘75 70‘50 70‘25 0.60 0.‘25 0.‘50 0.‘75 l.i)()
Nuisance parameter value
Figure 3.3: Log likelihood over nuisance parameter
values for an experiment with an irregular shape

Figure 3.3 shows the log likelihood values for different epsilons for one specific
experiment where certain extreme values of epsilon can lead to irregularities
in the shape of the log likelihood curve. In situations like these, it is useful
to limit the range of the log likelihood which is considered in order to keep
the curve quadratic. For this specific experiment and values of 6, the highest
log likelihood was —434.8, thus the minimum log likelihood threshold becomes
—434.8 —10g0.001 x —434.8 = —2437.13, under which no more points will be
used to calculate the likelihood.

3. We can then fit a quadratic curve through these points by using a NumPy’s (a
Python library) polyfit function to find its coefficients.

4. We can now compute the integral of exponential of this curve to integrate over
the nuisance parameters.

Using the coefficients found in step 3, we now have a function ax® +bx +c
which we use to compute the integral over the nuisance parameter values within

Chapter 3. Methods 16

the range of -1 and 1.

VElerf(2) —erf(22ne o
2v/—a

Where erf is the error function. The result of this integral provides an approxi-
mation of the integral from equation 1.17.

1
2
/ o™ +bx+c de = —
-1

To implement this change in the MCMC code, on each iteration of the chain, we mini-
mize the negative log likelihood with respect to the nuisance parameter for the specific
experiment, giving us the value which maximizes the log likelihood for a given theta
and for a given experiment. After doing this, we compute points on either side of the
maximum and we fit a quadratic curve through those points to obtain the values for the
constants of the quadratic terms. Finally, we compute the integral using equation 3.8,
and use this as the value of the log likelihood which is used by MCMC.

3.2.5 Alternative to marginalization

Although marginalizing over the nuisance parameters propagates the effects of un-
certainty about their value into the final result [3], the process defined above is com-
putationally expensive. Specifically, steps 1 and 2 described above require repeated
calculation of the likelihood function. In step 1, minimizing the negative log likeli-
hood function requires several calls, which in turn needs to compute the model output
given specific parameter values and a nuisance parameter value. Although the number
of calls can be limited, an average of 10 calls is needed to accurately find the maxima
of the quadratic curve. Secondly, in step 2 we need to make additional function calls
in order to determine the quadratic coefficients. Due to the fact that we are using 20
walkers, and each of them needs to marginalize over epsilon for 94 experiments, when
combined, one emcee iteration required on average 220s to complete. As an alterna-
tive, we simplified the problem and instead only found the value of epsilon which led
to the highest log likelihood for every theta and every experiment, and then compared
the associated model output to the experimental data. This reduced the time taken per
iteration to 45.6s per iteration, a considerable improvement from fully marginalizing.
This method works under the assumption that the variance of the likelihood curves are
equal.

3.3 Evaluation of convergence

When using MCMC techniques, before we are able to make any conclusions about the
posterior distributions created from the MCMC chain, we need to ensure that the chain
has converged. One popular method for quantifying MCMC convergence proposed
by Gelman and Rubin [5] which analyzes the estimated Markov between-chain and
within-chain variances for each model parameter with the assumption that the chains
are independent. However, the chains within the emcee ensemble are not independent
[3], thus this method cannot be used in this situation. Alternatively, Goodman & Weare
[9] recommend using a measure called the integrated autocorrelation time to analyze

Chapter 3. Methods 17

whether a chain has reached convergence and quantify the effects of sampling error on
the results. Due to the fact that samples from our chain are not independent, we must
estimate the effective number of independent samples [3]. Thus to quantify the robust-
ness of our results from MCMC, we can use the integrated autocorrelation time, since
it directly quantifies the Monte Carlo error (and hence the efficiency of the sampler)
on any integrals computed using the MCMC results [9]. As explained by Sokal [18],
the approximated integrated autocorrelation time is defined as

M
Ar(M)=1+2 Z pr(7) (3.9)
=1

where P ¢(7) is the approximated normalized autocorrelation function of the stochastic
process that generated the chain for f, and M is a number such that M << N, where
N is the total number of samples in the chain. Although Sokal says that the proce-
dure works best for chains longer than 10007, thanks to the use of parallel chains in
emcee, chains longer than 50t are often sufficient [3]. With this in mind, we will
analyze whether the chain has converged by looking at the plot of the average autocor-
relation time of all the parameters over the number of MCMC steps, knowing that it
converges when this curve approaches an asymptote. The emcee library has an built-
in function to determine the autocorrelation time, which we will use to analyze our
chain’s convergence.

Chapter 4

Results

4.1 Synthetic Data and Fixed Parameters

As a first experiment, we wanted to understand whether MCMC was a viable method
for the task at hand, and to test this out, we used a synthetic dataset which was built
by running one simulation using the original parameters found by Faas et al. and
running emcee on this data. The log likelihood function we used for this experiment
did not contain any interpolation or marginalization of nuisance parameters, and the
synthetic data was obtained by setting all the nuisance parameters to 0, thus effectively
keeping the conditions in all the experiments the same. We also simultaneously tested
how using fixed values for certain parameters would affect the curves and parameter
values obtained. We initially started by fixing the 4 forward rate constants, & and my,
thus reducing the parameter space of MCMC down to the 4 dissociation constants and
producing the corner plot seen in Figure 4.1.

logk_D_TC

logk_D_RN

logk_D_RC

logk_D_RC

Figure 4.1: Corner plot of 4 dissociation constant
parameter distributions on synthetic data

18

Chapter 4. Results 19

Corner plots show the one and two dimensional projections of the posterior probability
distributions of our parameters, thus also showing the covariance between them. Later,
we also included the forward rate constants in MCMC, thus bringing the number of
parameters up to 8. By including these parameters, we can see the posterior distribu-
tions of the forward rate constants and the covariance between different parameters,
instead of numerical approximations. From 4.2 we can see the corner plot produced
by running emcee using 8 parameters on the synthetic data, while still keeping o and
mg as fixed parameters.

oKD
> \'o‘ \'J ¥v ¥\> \70 \‘)\r \“a \6:

Figure 4.2: Corner plot of parameter distributions on
synthetic data with 8 parameters

As we can see from the two figures above, the covariances between the dissociation
constants share similar shapes, however in 4.2 we now additionally have the posterior
distributions and covariances of the forward rate constants. Examining Figure 4.1, we
can notice Gaussian posterior distributions with clear peaks as well as their join distri-
butions. Similarly, The posterior distributions of the 4 dissociation constants achieved
when expanding the parameter space to 8 parameters are similar to the ones achieved
when fixing the 4 forward rate constants. In both plots, the blue points represent the
original parameter values which were used at the beginning of the MCMC process.
Naturally, when running MCMC using a synthetic dataset created by running a simu-
lation of the model on some initial parameter values, these values will yield the highest
likelihood values. Therefore it is understandable that in the plots above, the blue points

Chapter 4. Results 20

coincide with the center of each joint distribution and with the peak of each individual
posterior distribution since they give the highest likelihood. This however isn’t the
case when using experimental data as we will see later. Nonetheless, we hope that the
corner plot achieved on the synthetic data can provide us with an estimate of the shapes
of the projections of the posterior probability distributions.

4.2 Interpolation

To ensure that interpolarizing the data does not negatively impact the shape of the
distributions, we ran MCMC using the modified log likelihood function with the in-
terpolarized data, expecting to achieve corner plots similar to the figures above, yet
with possibly different maximum a posteriori values. This was in fact the case, and
as we can see from Figure 4.3, the shapes of the covariances and posteriors are simi-
lar to the ones observed when not using interpolation, and once again, the blue points
corresponding to the original values yield the highest probabilities.

Figure 4.3: Corner plot of parameter distributions on
synthetic data with 8 parameters and interpolation

Chapter 4. Results 21

4.3 Synthetic Data with Nuisance Parameters

The nuisance parameters represent the difference in conditions between experiments,
thus since 94 experiments were originally carried out by Faas et al., we would need to
find the distribution of 94 different nuisance parameters. To combat this, we propose
a method to marginalize over the nuisance parameters. However, before trying this
method, we wanted to understand the effect that different nuisance parameter values
have the data. Until this point, we have dealt with synthetic data produced by running a
simulation of the biological model once and setting nuisance parameter values to 0. To
understand the effect of the nuisance parameters, we then used a synthetic dataset pro-
duced by setting the nuisance parameter values randomly within a range of -0.5 to 0.5.
This introduces noise to the data, which more accurately represents the experimental
data from the Faas et al. experiments. Figure 4.4 shows the corner plot achieved by
using the same interpolarized log likelihood function as above on the new synthetic
data.

Figure 4.4: Corner plot of parameter distributions on
synthetic data with noise with 8 parameters and
interpolation

As we can see from Figure 4.4, the projections of the posterior distributions are less
clearly defined than the ones in Figure 4.3. Furthermore, the posterior distributions
now have multiple peaks, implying the possibility of bi-modal distributions or perhaps
indicating that MCMC has not yet converged. Thus we now know that introducing

Chapter 4. Results 22

noise in the form of adding nuisance parameters to our simulations alters the data in
a way that makes it more challenging for MCMC to converge and provide a Gaussian
posterior distribution for the various parameters. Although the join distributions be-
tween certain parameters, such as 10gKp(7) y and 1ogKp gy . have the same direction
and shape as in Figure 4.3, the majority of the posterior and joint distributions are less
clearly defined. Lastly, we can see that the blue points corresponding to the original
parameter values used to generate the synthetic data no longer correspond to the points
with the highest posterior probabilities. The results from this experiment suggest that
only using 8 parameters without modelling the uncertainty introduced by the nuisance
parameters is adequate on data which is consistent between experiments, however due
to the fact that the nuisance parameters have a real impact on the model output, they
need to be included in the likelihood computation.

4.4 MCMC without Nuisance Parameters

As we saw from section 3.3, running MCMC on a synthetic dataset with added noise
results in worse posterior distributions for each parameter, so we expect this to be the
case when MCMC is ran on the experimental data without accounting for the nuisance
parameters. To compare how well our marginalized model works however, we tested
using our interpolarized likelihood function with MCMC on the experimental data with
all the nuisance parameters set to 0. Figure 4.5 shows the corner plot achieved after
5000 iterations of MCMC without altering nuisance parameters.

NS

Figure 4.5: Corner plot of parameter distributions on
experimental data with 8 parameters and interpolation

Chapter 4. Results 23

Examining this plot, we can see that most parameters don’t have one clearly defined
posterior distribution peak, similarly to Figure 4.4. Furthermore, none of the posterior
distributions follow a Gaussian curve, and the majority of the joint distributions don’t
represent a real relationship between parameters. This could be attributed to the fact
that the chain has not converged yet, however, due to the fact that we saw the same
effect take place in section 3.3, these results can likely be attributed to the fact that the
nuisance parameters have not been included.

4.4.1 Convergence

As mentioned in section 2.3, one way to see if our chain has reached convergence is
to analyze the average autocorrelation time of our parameters. Figure 4.6a shows the
average autocorrelation time of all the parameters after running 5000 iterations of the
interpolarized likelihood function on the experimental data. From this, it is apparent
that the chain has not yet converged due to the fact that the autocorrelation time has
not reached an asymptote and the number of iterations is less than the 50 times the
autocorrelation time as suggested by the documentation of emcee[3]. For the chain to
have converged, the autocorrelation curve should have reached an asymptote and the
N > 507 dashed line should’ve intercepted it.

—— autocorrelation
—=- N/50

100

0 1000 2000 3000 4000 5000
number of steps

logk D_RC logk D_RN logk D_TC logk_ D_ TN logk on_ RC logk_on RN logK on TC logK_on TN

0 1000 2000 3000 4000 5000
Step number

(a) Average autocorrelation time when running (b) Plot of parameter values during each MCMC
MCMC without nuisance parameters and with iteration
interpolation

Another way in which we can verify whether the chain has converged is to look at
Figure 4.6b, where we can see the raw parameter values throughout each iteration of
MCMC. The traces suggest that the full space of possible values has not been explored
due to the very narrow parameter values. Furthermore, the traces indicate that there
there are local optima for each parameter value due to the fact that the parameter values

Chapter 4. Results 24

remain in the same range of values for many iterations. This would explain the shape of
the posterior distributions seen in Figure 4.5 and the existence of multiple peaks. One
way to remedy this would be to increase the standard deviation passed to the likelihood
function, which would allow the parameters to explore the space further.

4.4.2 Model Fits

To further analyze the results produced by running MCMC without using nuisance
parameters, we can plot the f-ratio over time of the experimental data and the model
output obtained using the Maximum a Posteriori (MAP) parameter values. Figure 4.7
can be used to form a comparison between the experimental results (solid lines) and the
model output (dotted lines). As explained in the background chapter, the experimental
data was separated into 7 different batches, thus we plotted experiments from within
batches in the same figure. The plots of the other batches can be found in the Appendix.

— Expdata
—-- Model output

(a) Batch 0 (b) Batch 4

Figure 4.7: Data and model outcomes using MAP values and without nuisance parameters

Examining Figure 4.7, it can be seen that model outputs for certain experiments is
closer to the experimental data than for other experiments. This could be attributed to
the fact that we haven’t included nuisance parameters in our model inputs or due to the
fact that, as seen earlier, the chain for this experiment had not yet converged.

4.5 MCMC with nuisance parameters

Similarly to Section 3.4, we will be analyzing the results achieved by running MCMC
with the inclusion of nuisance parameters. In Chapter 2, I proposed marginalizing over
the nuisance parameters for each iteration of MCMC, thus removing the uncertainty
caused by the emission of the nuisance parameters in the calculation. However, when
running MCMC on 32 cores, each iteration of MCMC took an average of 220s. It
was thus unfeasible to use this as an approach to obtain the distributions of the pa-
rameters. As an alternative, on each MCMC iteration, I calculated the maxima of the
log likelihood over epsilon curve and used this to compute the model output, under
the assumption that the variance of the likelihood curves for all experiments are equal.

Chapter 4. Results 25

Figure 4.8 shows the corner plot achieved by including the nuisance parameters in the
method described above for 5000 iterations.

|-

Figure 4.8: Corner plot of parameter distributions on
experimental data with 8 parameters, interpolation and
nuisance parameters

As we can see from Figure 4.8, the parameter posterior distributions now have the
expected Gaussian shape, similarly to the corner plot 4.3 of the parameters sampled
using the synthetic data. Furthermore, we can see that the joint distributions of the
parameters also follow a traditional Gaussian contour shape, and once again, the joint
distributions between the parameters have similar shapes to the ones obtained in Figure
4.3. One commonality that can be observed from Figures 4.3, 4.4 and 4.8 is that the
Joint distribution between the logK,, () y parameter and the rest of the parameters
seems to not be greatly affected by the its value. This can be explained by the fact
the parameter, which is a forward rate constant, is rate limiting, meaning that it is
the slowest step of a chemical reaction [15]. Due to this, any values of this constant
which occur after a certain time period will not have an effect on other parameters. This
phenomenon explains the invariant joint distribution produced between the 10gK,,,(7) v
parameter and the other parameters.

4.5.1 Convergence

Once again, we can analyze the convergence of the MCMC chain by examining the
autocorrelation time plot throughout the various steps of MCMC. From Figure 4.9a
we can see that once again, the average autocorrelation time from the parameters after

Chapter 4. Results 26

5000 iterations is still higher than 50 times the theoretical autocorrelation time shown
by the dotted line. Differently from Figure 4.9b, Figure 4.9b shows that certain param-
eters seem to have already converged to a specific value after having explored a larger
range of parameter values, such as the logK,,(7) ¢ parameter. Contrarily, parameters
such as logK,,,(r) v seem to be stuck in a local maxima for some time before exploring
a larger parameter space. One possible solution to this issue, which was also encoun-
tered in Figure 4.6b would be to include the standard deviation which is passed to the
likelihood function as one of the parameters which we sample over. This would allow
for a wider range of parameter values, and it would alter the curvature of the quadratic
curves described in Section 2.2.4, which would potentially lead to faster convergence
and potentially better model fits.

—— autocorrelation
—=- N/50

140

120

100

@
8
logk_ D_RC logk D_RN logk_D_TC logk_D_TN logk_on_RC logk_on_RN logk_on_TC logk_on_TN

4

0 -75

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
number of steps Step number

(a) Average autocorrelation time when running (b) Plot of parameter values during each MCMC
MCMC with nuisance parameters and with iteration
interpolation

4.5.2 Model Fits

Once again, we can examine the model outputs obtained from the MAP parameter
values and using nuisance parameters and how they compare to the experimental data
by plotting the f-ratio over time. From Figure 4.10 it is clear to see that the model
outputs more closely resemble the experimental data when using the MAP parameter
values and nuisance parameters. This can especially be noticed in the experiments
belonging to batch 0, where previously, the model outputs were much higher than the
experimental data. Furthermore, the fit during the initial stages of the reaction seem
to be more accurately fit when using the nuisance parameters, since the shape of the
curves is similar to those of the experimental data.

Chapter 4. Results 27

(a) Batch 0 (b) Batch 4

Figure 4.10: Data and model outcomes using MAP values and with nuisance parameters

4.6 Summary of results

To summarize the results, Table 4.1 shows the parameter values found by Faas et al. in
their experiment, as well as their MAP estimates from out two methods, one where we
do not include nuisance parameters and one where we do.

Parameter | Unit Faas et al. MAP estimates
estimates Without With
nuisance parameters | nuisance parameters
logk,n(r) v | logM 8.89 7.78 9.09
logk,n(r),c | logM 7.92 7.66 7.47
logk,ur).N | logM 10.50 10.76 9.98
logk,n(r).c | logM 7.40 7.94 7.24
logKp(r)n | logM -3.68 -3.85 -3.06
logKp(r),c | logM -4.51 -3.65 -5.07
logKpr).n | logM -6.16 6.53 -6.60
logKp(r),c | logM -6.59 -6.74 -6.74
logmyg, logM | 1.10E-03 1.10E-03 1.10E-03
logoy logM | -3.90E-01 -3.90E-01 -3.90E-01

Table 4.1: MAP estimates from MCMC and the parameter values found by Faas et al.

As we can see from Table 4.1, despite the use of nuisance parameters, the MAP es-
timates vary from the Faas et al., yet this is to be expected. Due to the fact that we
are making certain assumptions throughout the likelihood calculation process, such
as assuming independence between time points and between experiments, the MAP
estimates are expected to differ from the Faas et al. estimates. Nonetheless, using
nuisance parameters produces estimates which are closer to the Faas et al. approx-
imations, which explains the superior model output seen in Figure 4.9b. To more
objectively quantify the performance of our methods and the parameter estimates, we
analyzed the average mean squared error (MSE) between the model output and the ex-

Chapter 4. Results

28

perimental data for each method. Table 4.2 shows the MSE values achieved by using
the Faas et al. values and then using the MAP estimates from Table 4.1.

Batch
0 1 2 3 4 5 6

Faasetal. | 13.08 | 1.42 | 3.35 | 2.07 | 1.14 | 545 | 19.75
MSE | Without

nuisance | 997 | 2.04 | 3.49 | 3.24 | 1.46 | 4.63 | 19.23

params

With

nuisance | 0.38 | 0.11 | 1.06 | 0.38 | 0.24 | 0.50 | 1.53

params

Table 4.2: MSE values of model output vs experimental data from using different methods

As we can clearly see from the results, the method which includes the nuisance param-
eters performs much better than when only using the Faas et al. values or when not
including the nuisance parameters in the likelihood computation. In every batch, the
parameter estimates achieved when using nuisance parameters outperforms the model
fits generated using the Faas et al. parameters. The results from this table show that
Faas et al. might not have found the best parameter estimates due to the fact that their

MSE values are higher than both estimates we achieved using MCMC.

Chapter 5

Conclusion and future work

5.1 Conclusion

In this paper we explored the use of an MCMC method implemented in emcee to obtain
the posterior distribution of the kinetic rate parameters used to model the interactions
between Ca?* and CaM described by Faas et al. We analyzed whether this method
is feasible by running an MCMC chain on synthetic data, and then later explored the
effects of the nuisance parameters on the model outputs. Due to the limitations of
emcee, we attempted marginalizing over the nuisance parameters and then later ran an
MCMC chain using the nuisance parameters which resulted in the highest likelihoods.
Furthermore, we tried to improve the parameter estimates by interpolating the data and
thus evenly distributing the data over the full time course of the experiment.

The primary initial goal of the project was to obtain interpretable posterior distributions
by using the emcee library and thus show that this method is applicable in systems biol-
ogy, overcoming the challenges posed in such models. Firstly, we tested using MCMC
as a method for parameter estimation on a synthetic dataset achieved by running one
simulation of the model and using this data in the likelihood function. From this we
saw that MCMC is a viable method to use, since the results from Figure 4.2 showed
that the distributions of the parameters was Gaussian. We then interpolated the data
during the likelihood calculation to give more weight to the points in the later stages
of the experiment, and we saw that this did not negatively impact the shapes of the
posterior distributions previously observed. We then tested the effect of the nuisance
parameters on the parameter distributions, and noticed that when these are included in
the creation of the synthetic data, the distributions are no longer Gaussian, thus prov-
ing the requirement for us to include nuisance parameters in MCMC. After running
MCMC with and without nuisance parameters, we saw that the results achieved from
using them are largely better than than when not using them. This was quantified by
the much lower MSE values when using this method. Furthermore, despite the fact
that our chains had not yet converged, we found that the parameter estimates from us-
ing MCMC gave improved model outputs as opposed to the values found by Faas et
al. Our findings reinforce the parameter estimates found by Faas et al. and our method
can be generalized and be used in similar model which model the interaction between

29

Chapter 5. Conclusion and future work 30

Ca* and CaM, such as by Pepke (2010)[17].

However, as we previously mentioned, the MCMC chains did not converge, thus our
estimates aren’t to be fully trusted. One issue with the MCMC approach when using
nuisance parameters is the large computational cost. We ran emcee on 32 cores, and
to integrate over the log likelihood curve produced by varying the nuisance parame-
ter value for each experiment, each iteration required an average of 220s to complete.
We would need to run MCMC for thousands of iterations in order for it to converge,
thus taking days achieve trustworthy parameter estimates. Although we were able to
slightly shorten the time taken per iteration by fixing certain parameters to the spe-
cific values found by Faas et al., this did not show a significant improvement. There-
fore, more work could be carried out to find how to optimize the MCMC convergence
and each calculation of the log likelihood. Throughout the experiments, we kept the
standard deviation constant so that the evaluations between methods could be trusted,
however, another improvement which would be made to our method is to include the
standard deviation as a parameter to be sampled over. This would allow for parame-
ters to explore more values in the parameter space and possibly converge quicker, or
perhaps give better model fits.

5.2 Future work

5.2.1 MCMC in high dimensions

One of the issues encountered throughout this project and Candel’s work is the prob-
lem of convergence of the MCMC chain. In our experiments, after running the chain
for 5,000 iterations, it was clear from Figure 4.9a that the chain had not converged.
Furthermore, another challenge encountered when trying to marginalize over the pa-
rameters is the time taken per iteration. The way we computed the likelihood was to
calculate many log likelihood values for varying values of epsilon, which vastly in-
creases the computational costs due to the large number of function calls made to the
ODE solver. Although we are not interested in the distribution of the nuisance pa-
rameters, we sampling over them would prove to be more efficient if we were able to
perform MCMC in high dimensions. To help with this, some methods for MCMC in
high dimensions exist, including Hamiltonian Monte Carlo.

Since the emcee package uses a version of Metropolis-Hasting algorithm, Hamiltonian
Monte Carlo is a suitable method since it is also a Metropolis method applicable to
continuous state spaces, which uses gradient information to reduce the random walk
behavior of the normal Metropolis method. In the Hamiltonian Monte Carlo method,
the state space 0 is augmented by momentum variables p, and there is an alternation of
two types of proposal. The first randomizes the momentum variable, leaving the state
0 unchanged, while the second changes both 0 and p using simulated Hamiltonian
dynamics, defined as [12]:

—

H(®,p)=E(®)+K(p) (5.1)

Chapter 5. Conclusion and future work 31

where K(p) is a kinetic energy function. These two proposals create samples from the
joint density:

- 1 - 1

Py(8,p) = Zexp[—H (8,p)] = Z—Hexp[—E (8)]exp[—K(p)] (5.2)

The marginal distribution of is the desired distribution exp[—E (8)]/Z, and if we dis-
regard the momentum variables, we can obtain a sequence of samples that come from
the unknown distribution P (é) [12]. This approach would not only improve the time to
converge thanks to the momentum variable, but would also allow for a higher dimen-
sional parameter space. Implementing this method would thus further generalize the

use of MCMC methods in systems biology in models with many parameters.

[1]

(2]

[5]

[6]

[7]

[10]

[11]

Bibliography

Judith Borowski. Sloppy parameters in a synaptic model. Master’s thesis, School
of Informatics, University of Edinburgh, 2017.

Carine Candel. Learning systems biology models from data. Master’s thesis,
School of Informatics, University of Edinburgh, 2019.

Dustin Lang Jonathan Goodman. Daniel Foreman-Mackey, David W Hogg. em-
cee: the MCMC hammer. Publications of the Astronomical Society of the Pacific,
2013.

Bryan Daniels, YJ Chen, JP Sethna, Ryan Gutenkunst, and Chris Myers. Sloppi-
ness, robustness, and evolvability in systems biology. Current opinion in biotech-
nology, 19, July 2008.

Andrew Gelman and Donald B Rubin. A single series from the gibbs sampler
provides a false sense of security. Bayesian statistics, 4:625-631, 1992.

John E Lisman Istvan Mody Guido C Faas, Sridhar Raghavachari. Calmodulin
as a direct detector of Ca2+ signals. Nature Neuroscience, 2011.

Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christo-
pher R Myers, and James P Sethna. Universally sloppy parameter sensitivities in
systems biology models. PLOS Computational Biology, 3(10):1-8, 10 2007.

Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jiirgen Pahle, Natalia
Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. Co-
pasi—a complex pathway simulator. Bioinformatics, 22(24):3067-3074, 2006.

Jonathan Weare Jonathan Goodman. Ensemble samplers with affine in-variance.
Communications in applied mathematics and computational science, 2010.

Yoshihisa Kubota, John A Putkey, Harel Z Shouval, and M Neal Waxham. Ig-
motif proteins influence intracellular free Ca2+ in hippocampal neurons through
their interactions with calmodulin. Journal of neurophysiology, 99(1):264-276,
01 2008.

Yoshihisa Kubota, John A Putkey, and M Neal Waxham. Neurogranin controls
the spatiotemporal pattern of postsynaptic Ca2+/CaM signaling. Biophysical
journal, 93(11):3848-3859, 12 2007.

32

Bibliography 33

[12] David J.C. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[13] Thomas Maiwald and Jens Timmer. Dynamical modeling and multi-experiment
fitting with potterswheel. Bioinformatics, 24(18):2037-2043, 2008.

[14] Ami Citri Robert C Malenka. Synaptic plasticity: Multiple forms, functions, and
mechanisms. Nature, 2008.

[15] Galaxy Mudda, Pamela Chaha, Florence-Damilola Odufalu, and Filmon
Tewolde. 3.2.3: Rate determining step, Sep 2020.

[16] Beat Schwaller Isabel Llano Marco R. Celio Alain Marty Olivier Caillard, Her-
man Moreno. Role of the calcium-binding protein parvalbumin in short-term
synaptic plasticity. Proceedings of the National Academy of Sciences, 2000.

[17] Shirley Pepke, Tamara Kinzer-Ursem, Stefan Mihalas, and Mary B. Kennedy.
A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits
of Ca2+/calmodulin-dependent protein kinase II. PLOS Computational Biology,
6(2):1-15, 02 2010.

[18] A. Sokal. Monte carlo methods in statistical mechanics: Foundations and new
algorithms note to the reader. 1996.

[19] Gloria I. Valderrama-Bahamondez and Holger Frohlich. Mcmc techniques for
parameter estimation of ode based models in systems biology. Frontiers in Ap-
plied Mathematics and Statistics, 5:55, 2019.

[20] Zhengui Xia and Daniel R. Storm. The role of calmodulin as a signal integrator
for synaptic plasticity. Nature Reviews Neuroscience, 6(4):267-276, 2005.

[21] Robert S Zucker. Calcium and activity-dependent synaptic plasticity. Current
Opinion in Neurobiology, 1999.

Appendix A

Experimental data and model
outcomes using MAP estimate

34

Appendix A. Experimental data and model outcomes using MAP estimate 35

s Exp data
Model output

20
Time (ms)

— Expdata
-~ Model output

— Expdata
- Model output

s
6
° 1)
6 14
s
2
s
10
2
8
2
13 10 2 E) o 13) 2 E) P
Time (ms) Time (ms)
1 T T
i 20 [n
H /
! {
10 !
! d
i 1 2
H
s
10
e s e
£ H
6
s
4
2 o -
o 2
N A~ —
— Expdata NG — Expdata /\/\/\
=== Model output 751 === Model output
13 10 2 E) ® 13) 2 E)) 3) 2 B) 13 0 2 E) E)
Time (ms) Time (ms) Time (ms) Time (ms)

(d) Batch 5 (e) Batch 6

Figure A.1: Data and model outcomes using MAP values and without nuisance parameters

Appendix A. Experimental data and model outcomes using MAP estimate 36

10 — Expdata
-~ Model output

0 10 20 EY P o 10 20 30 P
Time (ms) Time (ms)
—— Expdata — Expdata
- Model output 1\ -~ Model output

Fratio

o 10 20 30 40 o 10 20 0 Y o 10 20 E) 0 o 10 20 30 0
Time (ms) Time (ms) Time (ms) Time (ms)

— Exp data
-~ Model output

Fratio

Expdata - V N 8
Model output

10 o 10 30 0

20 20
Time (ms) Time (ms)

20
Time (ms)

(d) Batch 5 (e) Batch 6

Figure A.2: Data and model outcomes using MAP values and with nuisance parameters

Appendix A. Experimental data and model outcomes using MAP estimate 37

— Expdata
——- Model output

n — Expdata R — Bxpdaa
i\ ~~- Model output i -~ Model output

e I R S R R T) N D R S T N)
Time (ms) Time (ms) Time (ms) Time (ms)
(b) Batch 1 (c) Batch 2

— Expdata

(d) Batch 3

Figure A.3: Data and model outcomes using Faas et al.’s parameter estimates

Appendix A. Experimental data and model outcomes using MAP estimate 38

B — epdan Y N A —

~== Model output

(f) Batch 5 (g) Batch 6

Figure A.3: Data and model outcomes using Faas et al.’s parameter estimates

