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Abstract
This paper presents an extension of the ProtoGen software for cache coherence proto-
col synthesis. Motivated by the insight that performance evaluation is a crucial aspect
of developing new cache coherence protocols, the presented extension gives ProtoGen
the ability to generate cache controllers suitable for use with the cycle-accurate system
simulator Gem5. Thus, the proposed software extends ProtoGen’s reach from protocol
synthesis and verification to quantitative evaluation of protocols. To showcase the use-
fulness of this tool, the paper presents two case studies, the results of which challenge
conventional wisdom in cache coherence protocol design and thus highlight the tool’s
ability to quickly establish results which are specific to a given system.
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Chapter 1

Introduction

1.1 Motivation

That developing cache coherence protocols is a challenging, laborious, and error-prone
process is a fact familiar to any computer architect who has dabbled in the memory
sub-system. Different data sharing patterns, cache hierarchies, and races on the inter-
connections between cores cause all sorts of headaches when it comes to making sure
that the protocol will act correctly in every possible scenario, making us as designers
reliant on formal verification techniques such as model checking. To make matters
worse, correctness is not the only point of concern. Once it has been determined that
the protocol will not blow up the computer or, even worse, lead to extremely subtle
bugs that only show up once in a blue moon, we still have performance to worry about.
Obtaining data about the coherence protocol’s performance will require us to once
again implement it, this time in a simulator instead of a formal verification tool. Not
only does this add to the already laborious process, but we also need to be confident
that this new implementation is in fact equivalent to the one that was verified; if not,
we are back to square one as far as safety is concerned.

Over the past few years, the world of computing has increasingly gone in the direc-
tion of specialization. Domain-specific accelerators are driving progress in genomics,
image processing, and several other fields. Just as quickly as the capabilities of the
algorithms driving progress within these fields evolve, so do their expectations of the
hardware they run on; now, perhaps more than ever, the biggest challenge faced by the
computer architect is that of the clock, and we need tools which can relieve us of the
most laborious and time-consuming tasks. Better tooling for memory consistency and
cache coherence can help architects design systems which incorporate these accelera-
tors in the shared-memory domain, enabling rapid progress further up the stack.

1.2 Project Goals & Overview

The overarching goal of this two-part Master of Informatics project is to facilitate
the design, construction, and verification of cache coherence protocols, as part of the
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Chapter 1. Introduction 2

ongoing ProtoGen project (Oswald et al., 2018, 2020).

1.2.1 Synopsis of Part 1

In the first part of the project (Olausson, 2020), we investigated the stable state pro-
tocols which the ProtoGen software takes as input. The project began by defining a
concrete correctness criterion for stable state protocols, so that their correctness could
be verified automatically. Then, this correctness criterion was used to derive a tax-
onomy of the ways in which stable state protocols may be incorrect: message bugs,
which ”relate to the specification of which messages to send at what point in the pro-
tocol” (Olausson 2020, p.25); state bugs, which ”relate to the setting and updating
of state in the protocol” (Olausson 2020, p.25); high-level design bugs, which ”boil
down to a lack of fully understanding the target system and how to design a protocol
for it” (Olausson 2020, p.25); and concurrency bugs, which form the ”complement of
the union of the above three classes of bugs” (Olausson 2020, p.26). Using insights
from this taxonomy, two algorithms were then presented for bug localization: Reduced
Model Checking, which finds message bugs in protocols at the granularity of a single
transaction, and State Consistency Tracking, which finds state bugs by throwing an
error if an inconsistent state update is found. In experimental evaluation, these two
algorithms were found to be capable of finding bugs at a significantly finer granularity
than standard model checking, which opened up for future work on synthesising bug
fixes. Finally, several future directions of work were suggested, all of which had in
common the fact that they would further the tool’s ambition to accurately locate, and
ultimately synthesize fixes to, the bugs present in the stable state protocols.

1.2.2 Contributions of Part 2

For the second part of the project, we build a new backend for ProtoGen so that the
synthesised protocols can, in addition to being verified in a model checker, also be
evaluated holistically with the Gem5 simulator. Concretely, the contributions of this
second part of the project are as follows:

• An extension of the ProtoGen codebase, which translates ProtoGen’s internal
representation of the synthesised protocols into cache controllers suitable to be
used with Gem5 (chapter 3)

• An extensive evaluation of this new backend (chapter 4), which includes:

– A sanity check that the generated protocols are capable of supporting fine-
grain simulation (section 4.1)

– A first case study, which compares the performance of three commonly
used protocols (section 4.2)

– A second case study, which investigates the impact of handshake messages
and stalling in systems with unordered interconnects between the cores
(section 4.3)
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It is noteworthy that this second part of the project does not follow the list of future
work which was identified at the end of the previous dissertation. Instead, we view the
contributions of this second part as being in the same space as those of the first, but in
an orthogonal direction. The motivation for this was that the authors felt further work
along the same direction as the first part of the project would be hard to fairly evaluate
without engaging in large-scale user studies. Such user studies would give a much
better view of, for example, whether an algorithm which can synthesise simple bugs in
stable state protocols actually helps architects be more productive. However, ProtoGen
as a tool is very much still in its adolescence, and does not yet have the breadth of users
needed to carry out such studies. This is precisely the motivation for this shift in focus:
by integrating ProtoGen with a popular system simulator, the tool may see additional
uptake in both industry and academia, thus enabling well-justified and fairly evaluated
future research in this field.

1.3 Outline of the Report

We begin this short report by discussing cache coherence protocols, ProtoGen, Gem5,
and prior work in this space in chapter 2. We then discuss the proposed backend in
chapter 3, highlighting both conceptual as well as real issues with translating Proto-
Gen’s internal representation of protocols to Gem5’s SLICC language. The previously
discussed evaluation of the backend is then presented in chapter 4. Finally, chapter 5
summarizes what has been presented in this work, discusses the most time-consuming
challenges faced and how they might have been avoided, and outlines future work.



Chapter 2

Background

Before diving into the contributions of this dissertation, we will first spend some time
familiarizing the reader with the underpinning concepts. Section 2.1 introduces cache
coherence protocols, first discussing their raison d’être as a solution to problems with
programming shared memory architectures, and then going deeper into their design
and implementation. Next, section 2.2 discusses ProtoGen, the coherence protocol
synthesis software which this project builds upon, and section 2.3 discusses the Gem5
simulator as well as its domain-specific language for cache coherence controllers,
SLICC. Finally, section 2.4 discusses prior work in this space.

Disclaimer. By necessity, several sections in this chapter overlap with the corre-
sponding sections in the report from the first part of the project (Olausson, 2020).
We invite the curious reader to also read the background chapter there, since some
topics are discussed in more (or less) detail than here.

2.1 Shared Memory Architectures and Cache Coherence
Protocols

A shared memory architecture (Valduriez, 2009) is a system consisting of several pro-
cessing elements, all sharing the entire main memory. This has become a common
feature in modern computer systems, which typically consist of several processors
working in parallel, either on independent workloads or together to achieve a joint
task. In the latter case, the processors of course need a way to synchronize their ac-
tions and communicate their results; shared memory allows them to do exactly this by
simply reading and writing to agreed addresses.

Shared memory architectures come with many benefits: they are both intuitive to pro-
gram and avoid the cost of moving data between each processor’s private regions of
memory. The downside, however, is that most of these benefits are only true if you
look at them from 30,000 feet. In reality, out-of-order execution within each processor
and non-zero latencies on the interconnects between them make programming shared-
memory architectures a bug-prone headache, and data kept in a processor’s private
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Chapter 2. Background 5

caches must one way or another be propagated to everyone else in order for the value
to be communicated.

The first of these problems is typically hidden from high-level programmers through
the use of a memory consistency model (Nagarajan et al., 2020), which is effectively a
contract between the hardware and the software regarding which interleavings of mem-
ory operations may occur; as long as the programmer writes their parallel program us-
ing the synchronization primitives offered to them by their chosen high-level language
and the compiler abides by this contract, the headaches will be avoided. Memory
models are a complex and fascinating subject on their own, but are not the focus of this
dissertation, and we will not discuss them further.1

To resolve the latter issue, shared memory architectures make use of cache coherence
protocols, which are precisely the topic of this dissertation. Informally, a cache coher-
ence protocol dictates what happens when a load, store, or eviction occurs in a private
cache, so that the value is propagated to others (when needed) and in a way such that
the memory consistency model is not violated.2 Of course, determining when and
how to propagate data values to other caches will have an impact on the system’s per-
formance, and thus performance is an important metric to consider when designing a
cache coherence protocol for a new system. Furthermore, there are many more dimen-
sions to the design space than one may first expect.

2.1.1 The Design Space of Cache Coherence Protocols

Cache coherence protocols are typically described as extended finite state transducers.
Each state is associated with a permission to the cache line, for example whether the
core may read or write to the line; transitions correspond to internal (evictions, loads
or stores) or external (incoming messages) events, and may also include guards on
auxiliary variables; taking a transition may not only change the state, but also output
messages to other machines or update auxiliary variables such as counters. Thus, one
important way in which cache coherence protocols may differ is in the sets of states
and transitions they define; as will see in the next section, the set of states defined by a
protocol is in fact often used as the protocol’s name.

Another way in which cache coherence protocols may differ is whether they are snoop-
ing or directory-based. In snooping protocols, the caches and the memory controller
are connected together by a single bus; messages sent between machines are simply
broadcasted over this bus. This makes the system design rather simple, but may not
scale well to large numbers of caches due to the ensuing bandwidth requirements of
the bus. Directory-based protocols, on the other hand, scale better by using point-to-
point networks between the machines. In order to keep track of which messages should

1The topic of memory consistency models is certainly more complicated than our swift tour would
suggest; for example, high-level languages themselves often have formal memory models, which would
then be a contract between the programmer and the compiler! For more information, see Nagarajan
et al. (2020).

2This informal definition of a cache coherence protocol should be sufficient for this Part 2 of the
project; for a slightly more formal take, see the corresponding chapters in Olausson (2020) and Nagara-
jan et al. (2020).
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be delivered to which machine, a special directory controller is used; this keeps track
of information such as which caches currently hold a certain cache line with read or
write permission, so that when a request comes along, it can be forwarded to the right
machines.

Finally, directory-based cache coherence protocols can differ in whether the point-to-
point networks between the machines are ordered or not; that is, whether messages may
arrive at their destination in a different order than the one in which they were sent. This
is an important distinction, because unordered networks may be easier to construct in
hardware, but lead to more races on the interconnects. Thus, protocols using unordered
networks typically need to make use of additional messages – so called handshakes –
to avoid succumbing to these races; we will look at this in more detail in section 4.3.

We have now seen three dimensions along which cache coherence protocol designs
may differ. In this dissertation, however, we will only focus on the first and the last
of these, because the ProtoGen tool which forms the basis of our work only works for
directory-based protocols. Let us now look at the first dimension – the different states
and transitions defined by the protocol – in more detail, as it is a rather important topic
for the reader to be familiar with.

2.1.2 Protocols Used in This Dissertation: MI, MSI and MESI

In this dissertation, we will often refer to three different protocols: MI, MSI, and
MESI (also called the Illinois protocol (Papamarcos and Patel, 1984)). In this section,
we will spend some time familiarising the reader with each of these protocols as well
as highlighting the differences between them, so that they understand why one might
perform better than another on a given workload.

MI is the most simple cache coherence protocol one could devise, consisting of only
two stable states: Modified (M) and Invalid (I).3 The I state simply does what it says on
the tin: it indicates that the given address is not present with read nor write permission
in the current cache. The M state, on the other hand, indicates that the cache line is
present, and that the line may be read or written to. The M state is exclusive, meaning
there may only be one cache holding a given line in M state. Thus, if a cache currently
holds a line in I state but wants to read or write to it, it must first obtain the line in M
state. The cache may then hold the line in M state until it is evicted due to a cache line
conflict, or another cache wants to read or write to the line. Figure 2.2 summarizes the
transitions between the states in the cache and directory controllers.

M I
iR, iW

eR, eW, iEiR
iW

(a) MI cache controller

M I
R,W

E
R,W

(b) MI directory controller

Figure 2.1: MI protocol. Legend: R = Read; W = Write; E = Eviction; i = internal
(originating in the machine itself); e = external (originating in some other machine).

3The Modified state could just as well be called the Valid state, but we will refer to it as the Modified
state to make the link to MSI and MESI clearer.
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But what about read-only data? Imagine a scenario in which a set of processors are
executing a multi-threaded program, and all threads share a variable storing some con-
figuration parameter of the workload. Once its initial value has been set up, no thread
ever writes to the variable again, but they frequently read it. In MI, such sharing of
read-only data between processors is extremely expensive; since there is no distinction
between read and write permissions, each cache would have to obtain an exclusive
copy of the data every time it was to be read, leading to the variable being bounced
around each cache.

The need for better handling of read-only data is the motivation for the MSI protocol,
which adds the Shared (S) state. In this state, the cache line is present, but may only
be read – not written. If a cache is holding a line in S state but decides it wants to write
to it, it must first upgrade the line to M state. Since it is guaranteed that the value will
not change in the cache while it is held in S, there may thus be arbitrarily many caches
holding a given line in S at any one time; however, if there is a cache which holds the
line in M state, then there must not be any sharers. This is shown in detail in Figure 2.2.

M S

I

iW iR

iW

eW
iE

eW
iE

eR
eR
iR

iR
iW

(a) MSI cache controller

M S

I

W R

W

E E-last

R
R

E-not-last
W

(b) MSI directory controller

Figure 2.2: MSI protocol. Legend: R = Read; W = Write; E = Eviction; i = internal
(originating in the machine itself); e = external (originating in some other machine). Note
that the directory needs to differentiate between when the last sharer evicts the line and
when there are still other sharers holding the line. Diagram and caption obtained from
Olausson (2020), with permission.

Finally, the MESI protocol adds the Exclusive (E) state, which a cache enters only
when it requests a line with read permission and there are no other readers of the line
at this current time (Figure 2.3). Like the M state, only one cache may hold the line in
this state at a time; but unlike the M state, it only gives the processor the permission to
read the line. What is then the point of this state? Is it not just a degenerate version
of the S state? The difference is that when a cache holds a line in the E state, it knows
that no one else is. Thus, if it decides it needs to upgrade to M state to obtain write
permission, it can do so silently – without sending any messages to anyone else at
all! If such scenarios are common, e.g. if data is largely private and often accessed
in a read-then-write manner, then avoiding these extra messages for the upgrade in
permission may save significant time.

Thus far, we have described these protocols on a very high level, discussing how the
different stable states are connected but not how to actually implement these transi-
tions. For example, we have said that when an MI-style protocol is used and a cache
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M S

I

iW
eR eR

iR
iR
iW

E

iW

iR eW
iE

eR

iR-first

eW
iE

eW
iE

iR-not-first

(a) MESI cache controller

M S

I

W
R

R
E-not-last

W

E

W

E

R

R-first

E
W

E-last
R-not-first

(b) MESI directory controller

Figure 2.3: MESI protocol. Legend: R = Read; W = Write; E = Eviction; i = internal
(originating in the machine itself); e = external (originating in some other machine).
Diagram and caption obtained from Olausson (2020), with permission.

wants to read a line it holds in I, it must first obtain the line in M. But what exactly does
this mean in practice? In a directory-based protocol, such a transition would typically
require the cache to send a certain message – in this case often called a GetM – to the
directory. The directory might then either fetch the data from RAM, or forward the
request to another cache if there already is someone else who holds the line in M (a so
called ”owner”). Then, the directory or the owner will reply to the requesting cache
with a message containing the data. It is only upon receiving this last reply that the
requester may proceed with updating its state to M, so while it is waiting it should use
some intermediate state – say IM. Such an intermediate state, or transient state, is often
excluded from high-level discussions of the protocols, but will in reality be a vital part
of the protocol.

2.1.3 A Brief Note on Implementing Cache Coherence Protocols:
Transaction Buffer Entries

Cache coherence protocols are typically implemented in hardware, although software-
based approaches are possible as well. The exact way in which this is done is not a
topic we will cover in this dissertation, but it is important to note that transistor area is
always a key constraint when designing a real piece of hardware. As one might expect,
implementing the full extended finite state machines described above for every cache
line in every cache would therefore be prohibitively expensive; in fact, even storing the
state variable could become expensive if there are a lot of possible states!

To minimize the cost of implementing the coherence protocols, we can instead make
use of (Transaction Buffer Entries) (TBEs). These are special cache entries which are
reserved for the use of transactions which are currently in flight, and hold the auxiliary
counters and transient states. All that is necessary to store in the cache lines themselves
is then the stable states, of which there are typically very few (2-4, meaning we require
1-2 bits of extra space per cache line). Since only a small subset of the cache lines are
likely to have use for the extra variables at any one time, we can often get away with
using a number of TBEs which is significantly lower than the number of cache lines,
hence saving a lot critical space.
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2.2 ProtoGen

ProtoGen (Oswald et al., 2018, 2020) is a software which automates away a lot of the
heavy lifting involved in writing cache coherence protocols. Given an atomic spec-
ification of a cache coherence protocol, a very simple version of the protocol where
transitions induced by races on the interconnect networks are not present, ProtoGen
can generate a fully concurrent protocol. Thus, ProtoGen can be a vital part of any
computer architect’s toolbox as it can massively speed up the development cycle for
cache coherence protocols.

It is easiest to understand how ProtoGen derives the transitions needed to handle races
on the networks by looking at an example. Suppose you have a cache controller imple-
menting an MSI protocol, and that the cache wants to evict a line it currently holds in
M state. It sends a special message called PutM to the directory, and should now enter a
transient state MI whilst it waits for the directory to acknowledge the replacement. Now
suppose that whilst this is happening, a different cache wants to read the same line. It
sends a GetS (the meaning of which should be obvious from the naming convention)
to the directory, which may arrive before the first cache’s PutM has. The directory sees
the GetS and sends a Fwd_GetS to the first cache as it is the current owner of the line.
When the cache in MI receives this Fwd_GetS, what should it do? At this point, the di-
rectory has decided that the transaction started by the second cache attempting to read
the line should, logically, happen before the replacement. The cache needs to respect
this ordering; hence, the cache should act as if it received the Fwd_GetS before evicting
the line. Therefore, we can deduce its behaviour from what it would have done had the
Fwd_GetS arrived in M, which is typically to demote itself to the S state before replying
with the latest value of the cache line to the requester; the only exception is that at the
end of the day, we still want to model the fact that the eviction has happened, so instead
of going to S we go to SI, as if we had first gone to S but then immediately evicted the
line. Continuing with this type of reasoning, we can derive the correct action for every
possible race on the networks.

Having constructed an internal representation of the full protocol, ProtoGen can output
code in a model checker called Murφ (Dill, 1996). This allows the protocol to be
formally verified for correctness; however, Murφ is not a system simulator, and as such
does not allow for any evaluation of the generated protocol’s performance. Adding
such capabilities to ProtoGen is precisely the topic of this dissertation.

2.3 Gem5

Gem5 (Lowe-Power et al., 2020) is an open-source computer systems simulator which
can be used to evaluate the performance of new architectural features. Originally a
merger of the GEMS and m5 simulators, Gem5 has over the years been extended with
several additional features such as GPU modelling and DRAM power usage analysis,
and several leading companies in the industry now contribute to its further develop-
ment.

Gem5 supports two simulation modes: Syscall Emulation (SE) and Full System (FS).
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SE mode is the simpler of the two, focusing on modelling the CPU and memory sub-
system and hence not requiring the user to configure the rest of the hardware. However,
SE mode therefore only runs user-level code; even worse, it offers very limited sup-
port for user-mode parallelism (e.g. pthreads). In FS mode, Gem5 instead emulates
the entire hardware system. This allows Gem5 to execute unmodified OS kernels and
gather more extensive data on the system performance, but slows down the process and
requires more work from the user to set up the system.

2.3.1 Modelling cache coherence protocols with SLICC and Ruby

SLICC (Specification Language for Implementing Cache Coherence) is Gem5’s domain-
specific language for writing cache coherence protocols. The protocols are compiled
into Ruby4, which is Gem5’s detailed simulation model of memory, caches, intercon-
nection networks and coherence controllers.

In SLICC, each unit in the memory system requires a controller to be defined for it
in its own separate .sm file. In SE mode, this typically means that, at minimum, each
level of cache (e.g. L1 and L2) will have a controller defined for it. Additionally, if the
protocol is directory-based then a controller for the directory will be required, too. For
FS mode simulation, one also needs to define a controller for IO and Direct Memory
Access (DMA). These latter controllers are typically non-caching and quite simple
themselves, but introduce additional transitions in the directory and cache controllers;
as such, full system simulation protocols are often larger and more complicated than
those found in textbooks.

SLICC mandates an event-driven programming paradigm, where receiving messages
or CPU requests trigger events which in turn cause transitions depending on the cur-
rent state of the controller. As a result, a SLICC controller can be split into four largely
independent parts, as shown in Figure 2.4. This is so that the Gem5 simulator can
make certain guarantees about the controller’s behaviour, for example that transitions
are always executed atomically (thus requiring Gem5 first to check that all of the re-
sources required to complete the transition’s actions are available). As we will see
later, this leads to some challenges when automatically generating the controllers from
ProtoGen’s internal representation.

Finally, Ruby requires the user to write a configuration script for each protocol. This
script is quite simple in nature: its purpose is to show Ruby how the different con-
trollers are connected, to designate the networks between them and whether they are
ordered or not, to set hyperparameters such as the sizes and access latencies of the
caches, et cetera.

2.4 Related work

To the author’s knowledge, there have been no previous attempts at generating Gem5/SLICC
controllers from a simple DSL. However, the wider space of cache coherence protocol

4Not to be confused with the programming language carrying the same name.
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machine(MachineType:L1Cache, "Cache controller")
: Sequencer *sequencer;
  CacheMemory *cache;
  bool send_evictions;

  ...

  state_declaration(State, desc="L1Cache states", default="L1Cache_State_I") {
    I, AccessPermission:Invalid, desc="Invalid state";
    I_load, AccessPermission:Invalid, desc="Load in I";
    I_store, AccessPermission:Invalid, desc="Store in I";
    M, AccessPermission:Read_Write, desc="Modified state";
    M_evict, AccessPermission:Invalid, desc="Replacement in M";
    M_evict_x_I, AccessPermission:Invalid, desc="Replacement in M, Fwd_GetM";
  }

  ...

  Tick clockEdge();
  Tick cyclesToTicks(Cycles c);
  Cycles ticksToCycles(Tick t);
  void set_cache_entry(AbstractCacheEntry a);
  void unset_cache_entry();
  void set_tbe(TBE a);
  void unset_tbe();

...

  in_port(respfrom_in, CoherenceMessage, respFrom) {
    if (respfrom_in.isReady(clockEdge())) {
      peek (respfrom_in, CoherenceMessage, block_on="LineAddress") {
        Addr LineAddress := in_msg.LineAddress;
        TBE tbe := TBEs[LineAddress];
        State st := getState(tbe, getEntry(LineAddress), LineAddress);
        if (st == State:I) {
          trigger(Event:Stall, LineAddress, getEntry(LineAddress), tbe);
        } else if (st == State:I_load) {      
          ...
        }
        } else if (st == State:S) {      
          ...
        }
        ...
      }
    }
  }
  
  ...

  action(allocEntry, "a", desc="Allocate an entry") {
     assert(is_invalid(cache_entry));
     assert(cache.cacheAvail(address));
     set_cache_entry(cache.allocate(address, new Entry));
  }

  action(local_loadHit, "lLh", desc="Callback local load hit.") {
    // Signal to gem5 that this load/read access was a hit locally
    assert(is_valid(cache_entry));
    cache.setMRU(cache_entry);
    sequencer.readCallback(address, cache_entry.cl, false);
  }

  ...

  transition(I, allocI_load, I_load) {
    allocEntry;
    a_allocTBE;
    actionI_I_load;
    popmandatory_in;
  }
  
  transition(M, MloadMEvent, M) {
    local_loadHit;
    popmandatory_in;
  }

}

Static Declarations &
Boilerplate

Declare interconnects, events,
states, required functions to inherit
from the simulation engine, etc

In-Port Specifications

Declare the ports at which
messages may come in, which
messages to expect in which
states, and when to trigger which
events

Actions

What can the controller do?
Actions may involve sending
messages to other machines,
modifying local state, allocating
TBEs, etc

Transitions

Given an event in a certain start
state, what actions should be
taken, and what should the final
state be once they have?

Figure 2.4: The structure of a general controller in SLICC. The relative sizes of the
sections in this diagram do not reflect what a full protocol specification might look like.
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design and verification has seen quite some interest in the literature, including in recent
years. We will now discuss some of these efforts.

Very recently, the Hemiola framework for cache coherence protocol development was
proposed by Choi (2021). Hemiola is embedded in the Coq interactive theorem prover
(Barras et al., 1997), offering an alternative to the traditional method of verifying cache
coherence protocols with model checking. By interleaving the protocol design process
with the proof of the protocol’s correctness, verification becomes a first-class citizen
in the development phase. Once designed and, by construction, hence also proven
correct, a protocol written in Hemiola can be compiled to the hardware synthesis lan-
guage Kami (Choi et al., 2017). Thus, Hemiola covers the entire process of designing
a cache coherence protocol, from its initial inception to the construction of the hard-
ware. Certainly, one can imagine compiling Hemiola protocols to SLICC, as well. We
consider Hemiola to be a significant step forward in this space, although time will have
to tell whether its extensive reach and rigorous process will be offset by the labour cost
stereotypically associated with interactive theorem proving.

Earlier work in the literature included some attempts at synthesising protocols from
partial specifications, most notably VerC3 (Elver et al., 2018) and TRANSIT (Udupa
et al., 2013). A common feature of these efforts is that they, unlike ProtoGen, approach
the problem as a typical program synthesis task, rather than focusing exclusively on
the introduction of concurrency into the system (as ProtoGen does). This results in the
state space of possible complete protocols blowing up; VerC3 attempts to deal with
this by heuristically pruning the search space, while TRANSIT instead requests more
information from the user in the form of solutions to counter-examples found by the
synthesis engine. Either way, the cost of this increased generality is more labour from
the user – either because they must specify larger portions of the protocols, or because
they must address the counter-examples.

Going even further back, there were some attempts at making the design process less
laborious, even if not using synthesis. Teapot (Chandra et al., 1996) was a domain-
specific language in which the user could construct cache coherence controllers, which
would then be compiled to a general-purpose language (C) in a form suitable for
model-checking. Although no synthesis was involved, Teapot did lessen the overhead
involved in programming the controllers.



Chapter 3

The SLICC Backend

In this chapter, we cover the meat of the matter: the SLICC backend for ProtoGen.
We begin in section 3.1 by discussing the task on a conceptual level, outlining how
the backend fits into the wider scope of ProtoGen and what challenges are involved
in translating ProtoGen’s internal representation of a protocol to SLICC. Then, sec-
tion 3.2 discusses the backend as it is implemented in our codebase, touching upon a
few unexpected issues that we faced during the process. Finally, section 3.3 discusses
what challenges, issues and limitations remain.

3.1 Conceptual Overview & Challenges

On a high level, ProtoGen is a transpiler from a DSL to a target language; what makes
it special is the automated race detection and transient state generation it does in-
between. Thanks to its modular structure, adding a new backend, for example to target
SLICC, is therefore conceptually an easy task: just add a translation from ProtoGen’s
internal representation of the protocols to the syntax of the target language, and let the
user choose which backend should be invoked.

Figure 3.1 shows how the backend fits into the larger scope of ProtoGen in slightly
more detail. First, the user’s specification of the protocol, written under atomic as-
sumptions in ProtoGen’s DSL, is parsed. This parser turns each transaction described
in the protocol into an (extended) finite state machine (recall the discussion in sec-
tion 2.1.1). Then, different serialization orders of potentially racing transactions are
considered, and the state machines are updated with transient states such that no mat-
ter how the messages arrive at the controller, the serialized order is respected. Then,
finally, these e-FSMs are translated into SLICC. Simple, right? Unfortunately, as is
often the case, the devil is in the details.

3.1.1 Managing Main Memory Accesses

In the ProtoGen DSL, the directory is assumed to have instant access to any cache line.
That is, if it receives a request for a line, it can immediately reply with the data – as

13
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ProtoGen DSL
architecture L1Cache {
    ...
    process(I, Store) {...}
    ...
    process(I, Load) {...}
    ...
}

architecture Directory {
    ...
    process(I, GetM) {...}
    ...
    process(I, GetS) {...}
    ...
}

Parsing

Race detection & Transient state generation

SLICC Generation

SLICC
machine(L1Cache) {
    ...
    in_port(...) {
        ...
        if (in_msg.Type
            == Store) { ... }
        ...
    }
    ...
}

machine(Directory) {
    ...
    in_port(...) {
        ...
        if (in_msg.Type
            == GetM) { ... }
        ...
    }
    ...
}

Figure 3.1: Overview of ProtoGen. The frontend parses the input DSL, creating FSMs
for individual transactions (cache FSMs with circular nodes, directory FSMs with hexag-
onal nodes). Then, possible serializations of concurrent transactions are considered,
and the FSMs are updated with new transient states to handle the ensuing races. Fi-
nally, these FSMs are translated to a target language, in this case SLICC. Everything
above the dashed line is prior work.
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if it could manifest the data out of thin air. In reality, the directory does not have such
magical powers – it must instead ask the main memory for the data before replying.

The way memory reads and writes are handled in SLICC is that the directory is con-
nected to two special ports, requestToMemory and responseFromMemory. To obtain
a cache line, a message of type MEMORY_READ is sent on the request network, and some
cycles later a message of the same type will appear on the response network, now with
the message’s DataBlk field set to the value of the line. Similarly, writes are handled
by sending a MEMORY_WB, which will set the value in memory to that of the request’s
DataBlk.

When generating SLICC controllers from ProtoGen’s internal representation of a pro-
tocol, we must thus make some minor adjustments to the directory’s finite state ma-
chine. Whenever a directory in state S upon receiving a request message M needs to
fetch/write data from/to memory to fulfill the request, we send a request to main mem-
ory. Since we must now wait for this request to finish, we move to a new state S M.
Only once the memory has responded do we execute the behaviour that the directory
was supposed to execute in the original (S,M) transition, and move to the state S′ which
the user specified that the (S,M) transition should end in. But what about branches?
The (S,M) transition defined by the user may branch on some predicate, and not all
branches may require contacting main memory. For example, a common specification
of the (M, PutM) directory transition in an MSI-style protocol is that the data value of
the PutM should only be written to main memory if the machine which sent the PutM is
the current owner of the line – that is, the PutM is not stale. If we were to disregard this
in our implementation as discussed above, then we would sometimes write stale values
to memory, which would make programming the computer incredibly challenging. We
therefore make a small adjustment to the process above: instead of simply going to the
S M state and later executing all of the expected logic there, we scan the logic of the
(S,M) transition and find, for each read and write, the closest ancestral branch. That
is, we find the point at which the program most recently branched before this read or
write. Then, for each closest ancestral branch of a memory read or write, we let the
directory execute the transition up to this point before sending the memory request. To
keep track of which branch to resume execution at once the memory controller replies,
we simply give each ancestral branch its own, unique transient state S M i (for some
unique natural number i).

3.1.2 Dealing with Direct Memory Access

In section section 2.3.1, we mentioned that Full System (FS) simulation in Gem5 re-
quires us to set up Direct Memory Access (DMA) controllers. Without this DMA, the
system has no way of, for example, reading files on disk. Unfortunately, the Proto-
Gen DSL does not model DMA. Although the DMA controller itself is rather simple
and could more or less be statically generated without the user’s input, the presence
of DMA events would also force us to change the directory’s FSM. We could leave it
out all together and focus on Syscall Emulation (SE) mode simulation, but this would
severely limit the usefulness of the backend due to the SE mode’s inability to run arbi-
trary concurrent workloads.
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To overcome this obstacle, we make a simple adjustment. Instead of generating a typi-
cal write-through, non-caching DMA controller, we generate a DMA controller which
looks identical to the cache controllers. This way we do not rely on the user to spec-
ify any more information, and do not complicate the directory’s FSM since, from the
point of view of the directory, the DMA is simply another cache. It is noteworthy that
this ”hack” does have an impact on the system evaluation – such caching DMA con-
trollers are not typically used in practice, and depending on the data access patterns of
the DMA, attaching a cache to it may either benefit or be detrimental to performance
in our simulations. However, we argue that this is not a cause of concern; architec-
tural performance evaluation typically focuses exclusively on CPU-bound pre-defined
Regions-of-Interest (ROI) in the target programs, which will not invoke IO and there-
fore will not be affected by the performance of the DMA controller.

3.1.3 Particularities of the Programming Paradigms

The biggest issue in translating ProtoGen’s internal represention of a protocol into
SLICC is that the ProtoGen DSL is very liberal in terms of how the protocol should
be specified, allowing for arbitrary interleaving of branches, local state changes, and
messaging. This is well suited for the original task of generating Murphi code, because
Murphi is similarly relaxed. As we briefly touched upon in section 2.3.1, SLICC, on
the other hand, mandates an event-driven programming paradigm. Recall that SLICC
protocols can be divided into four parts: the mostly boilerplate and static declarations;
the in-ports, where we define which messages may arrive where, and invoke corre-
sponding events; the action blocks, which implement conceptual tasks such as sending
a particular type of message to the current cache line owner; and the transitions, which
dictate which actions should be executed given the current state and the type of the
event which was triggered. Furthermore, although the official Gem5 documentation
makes no mention of this, it turns out that all branching must be handled in the in ports:

There are a number of poorly documented ”rules” to writing SLICC pro-
tocols. One rule is that you should not do *anything* other than trigger
a transition (call trigger(<Event >)) in a in port. [...] Another rule that
isn’t documented is that the only place you should use a ’if’ statement is
in in ports. You should never use an ’if’ (to take two different actions) in
an ’action’ block. [...] If you bypass these mechanisms, strange things
happen :).

– Lowe-Power (2020).

What does this mean in practice? Consider a cache transitioning from S to M in an
MSI protocol. Since the M state is exclusive, the cache must collect invalidation-
acknowledgements (acknowledging that the sharer has given up read permission to
the line) from all other sharers before it can finish its transaction. A natural way of im-
plementing this is to track how many such acknowledgements are expected (supplied
to the requester by the directory), along with how many have already been received.
When a new acknowledgement arrives, the latter counter is then incremented before
being compared to the former. If they match, the cache can safely transition to M,
knowing that no core has read permission to the line anymore; if they don’t, we sim-
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ply wait for the next acknowledgement. This way of implementing the transaction is
supported by both the ProtoGen DSL and by Murφ, but in SLICC it would lead to a
”chicken-and-egg”-style problem: per the above rules the increment must be put in an
action block, but the following branch must be placed in the in-port; yet it is the in-port
specification which will trigger the transition that executes the action block. In order
to resolve this paradox, we would have to move the branch above the increment, and
change the branch condition to reflect this. Such changes are easy to make manually
but auto-generating them in a way that will work regardless of how the protocol is writ-
ten is challenging, particularly when there are several nested branches or the branch
condition is more complex than a simple (in-)equality check.

How can we overcome this mismatch? One way could be to constrain the syntax of
ProtoGen’s DSL, so that only protocols matching the branches-first flow of SLICC
could be expressed in the DSL. However, this is a rather unsatisfying solution; our
vision of ProtoGen is to make it a general, modular tool, where backends can easily
be added for more target languages (e.g. hardware description languages such as RTL
and Verilog). Tailoring the DSL to match SLICC specifically does not sit well with
this vision. Furthermore, we would ideally like the output of the SLICC backend to be
as similar to that of the Murphi backend as possible, to make it easier to verify their
equivalence. Thus we are left with no option but to break the rules, and implement
most of the protocol’s logic directly in the in-ports. To minimize the risk of ”strange
things” happening, we make a few exceptions:

(A) Cache transactions which start in an invalid state, i.e. without the cache line
present, trigger an event which first allocates the cache entry.

(B) Cache transactions which end in an invalid state must end by triggering an event
which deallocates the cache entry.

(C) Transactions which may require the use of a TBE first trigger an event to allocate
one.

(D) Cache transactions which start in a transient state and and end in a stable one
(indicating that we have finished making use of a TBE) must end by triggering
an event which deallocates the current TBE.

(E) All branches in the in-ports must end with an event being triggered; if none of
the above hold, this event is simply a no-op.

(A)-(D) are necessary because allocating and deallocating cache lines or TBEs requires
obtaining the resource from the simulation kernel; this is likely to be a common source
of resource contention, so to avoid strange behaviour from the kernel we make sure that
it has the chance to stall the triggered event. (E) is there to make sure that the kernel
makes progress, and that the number of transitions which can be executed within a
single cycle is modelled correctly.

3.1.4 Matching Messages to Networks

Finally, one small conceptual challenge we face in this task is that in the ProtoGen
DSL, there is no sense of which network a given message belongs to. For example,
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there is no explicit semantic link between a network called requests and messages
which we, as protocol designers, would think of as being requests. In SLICC, this is
done a bit differently, because the expected messages to be received on a certain net-
work are defined within that particular network’s in-port. This means that, in SLICC,
one can for example throw an error if a Put-style message is ever received on the
request network. You could even use the networks to differentiate the meaning of
messages, taking different actions depending on which network a message arrived on
despite being in the same state and receiving the same type of message. This is not
possible with ProtoGen, because when we in the ProtoGen DSL define a transition,
the unique identified of the transition is the state S in which it begins and the message
or attempted access M which triggers it; we do not specify at all which network M is
arriving on.

To get around this issue, we simply generate the complete list of transitions for every
network’s in-port. Functionally, this is OK; certain transitions will simply never be in-
voked when executing the protocol, such as those corresponding to response messages
on the request network. However, it does mean that we inherit the ProtoGen DSL’s
limitation in this regard, and makes the generated controllers appear a bit bloated.

3.2 Implementation

The SLICC backend consists of about 3,300 lines of Python 3.6 code, spread over 58
files. Furthermore, the backend makes use of about 550 lines of template .sm files;
these contain skeleton SLICC code, with holes that are dynamically filed in by the
backend. This structure is modelled after the Murphi backend for ProtoGen (Oswald
et al., 2018), and three of the files (GenSLICCTree.py, GenPCCToSLICC.py, and Tem-
plateClass.py; see Figure 3.1) were adapted from code written by Nicolai Oswald.

The full structure of the backend is shown in Figure 3.1. At the top level, the Run-
SLICCModular class defines the entry point into the backend. This then invokes Mod-
ularCache, ModularDir, ModularDMA and ModularMsg in /ModularSLICC. These
in turn use the classes in their corresponding sub-directories (/cache, /dir, /dma, and
/msg) in order to generate the target .sm files. For example, the ModularCache will
use the GenCacheInPorts class to generate the in-port declaration section of the cache
controller.

Unsurprisingly, a lot of the logic involved in for example translating a machine’s FSM
to an in-port can be re-used across the caches, directory and DMA. As a result, these
machine-specific files will in turn often invoke methods in the generic classes provided
in the /common subdirectory, such as for example /common/GenMachineInPorts.py.
Roughly 40% of the backend’s logic is housed in the /common subdirectory1, which
not only explains the surprisingly low line count but also illustrates how important
efficient code reuse is for the maintainability of this backend.

1Counted by lines of code.
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$ tree SLICC
SLICC
|-- ModularSLICC
| |-- ModularCache.py
| |-- ModularDMA.py
| |-- ModularDir.py
| |-- ModularMsg.py
| |-- SLICCTokens.py
| |-- TemplateClass.py
| |-- cache
| | |-- GenCacheActions.py
| | |-- GenCacheBase.py
| | |-- GenCacheEvents.py
| | |-- GenCacheFooter.py
| | |-- GenCacheHeader.py
| | |-- GenCacheInPorts.py
| | |-- GenCacheOutPorts.py
| | |-- GenCacheStateDecl.py
| | |-- GenCacheStaticFns.py
| | |-- GenCacheStruct.py
| | |-- GenCacheTBE.py
| | |-- GenCacheTransitions.py
| |-- common
| | |-- GenMachineActions.py
| | |-- GenMachineEvents.py
| | |-- GenMachineHeader.py
| | |-- GenMachineInPorts.py
| | |-- GenMachineOutPorts.py
| | |-- GenMachineStateDecl.py
| | |-- GenMachineStruct.py
| | |-- GenMachineTransitions.py
| | |-- GenPCCToSLICC.py
| | |-- GenSLICCTree.py
| | |-- Util.py
| |-- dir
| | |-- GenDirActions.py
| | |-- GenDirBase.py
| | |-- GenDirEvents.py
| | |-- GenDirFooter.py
| | |-- GenDirHeader.py
| | |-- GenDirInPorts.py
| | |-- GenDirOutPorts.py
| | |-- GenDirStateDecl.py
| | |-- GenDirStaticFns.py
| | |-- GenDirStruct.py
| | |-- GenDirTBE.py
| | |-- GenDirTransitions.py
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| |-- dma
| | |-- GenDMAActions.py
| | |-- GenDMABase.py
| | |-- GenDMAEvents.py
| | |-- GenDMAFooter.py
| | |-- GenDMAHeader.py
| | |-- GenDMAInPorts.py
| | |-- GenDMAOutPorts.py
| | |-- GenDMAStateDecl.py
| | |-- GenDMAStaticFns.py
| | |-- GenDMAStruct.py
| | |-- GenDMATBE.py
| | |-- GenDMATransitions.py
| |-- msg
| |-- GenDMADefault.py
| |-- GenMsgBase.py
| |-- GenMsgEnum.py
| |-- GenMsgStruct.py
|-- RunSLICCModular.py
|-- TempSLICC

|-- * various template files *

9 directories, 117 files

Figure 3.1: The layout of the SLICC backend code. The contents of the TempSLICC
directory have been removed, for brevity.
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3.2.1 Unexpected Issues

Even with suitable planning in advance to tackle the conceptual challenges described
in the preceding section, we find that we run into several unexpected issues while
implementing the backend. Here we detail a few of them.

3.2.1.1 Silently failing CPU callbacks

Early on in the development of the backend, we found that even small-scale SE-mode
experiments would consistently deadlock. Inspecting the execution trace, there was
nothing that seemed wrong from the point of view of the coherence protocol: messages
were being exchanged correctly, state variables were being updated and there was no
deadlock to be found on the interconnects.

After a serious amount of digging, it became clear that the problem was that while the
coherence interface happily marked off each transaction as it finished, sometimes the
CPU would not be made aware that a transaction it had initiated had been completed.
Thus, the CPU would wait indefinitely for the coherence interface to get back to it
with a cache line it had wanted to access, resulting in a deadlock. The root cause of
this was that the callbacks to the CPU – special functions in SLICC which let the CPU
know that a load or store access can now go ahead – were placed in the in-ports. This,
it turns out, caused them to occasionally silently fail, despite seemingly not requiring
any special resources.

Ultimately, this issue was resolved by adding a sixth exception to our in-ports-only
approach:

(F) Finishing a cache transaction which started with a load or store coming into
the memory system from the CPU always triggers an event, in which the CPU
callback must take place.

3.2.1.2 Improperly handled Read-Modify-Write instructions

When simple SE-mode tests started consistently passed, it was time to move on to
FS-mode tests. However, attempting to just boot a Linux kernel would consistently
fail for multi-processor setups. Although no deadlock or assertion violation was en-
countered, the simulation would at a certain point of the boot process simply livelock,
seemingly continuing to run without ever making any progress. Ultimately, we found
that the root cause of the issue was that our in-port definitions were missing a seem-
ingly optional ”block on” statement. The presence of this statement was not mandated
by the compiler, nor was it ever used in the unofficial ”Learning Gem5” e-book (Lowe-
Power (2017)); to the author’s knowledge, it is in fact not mentioned anywhere in the
Gem5 documentation at all. However, digging into the Gem5 source code, we find that
the value of this statement is used when handling atomic Read-Modify-Write (RMW)
instructions in the CPU. Since such RMW instructions are an integral part of any syn-
chronization or communication between cores, this would explain why the issue only
became apparent when multiple cores were present. Adding a block on statement to
each in-port definition and setting it appropriately, the issue went away and Linux ker-
nels could successfully be booted even in multi-processor setups.
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3.3 Discussion: Limitations of the Implemented Back-
end

Although we consider the completion of this backend a great feat given the great differ-
ences between SLICC and the ProtoGen DSL, there are two limitations that are worth
highlighting.

The first limitation is that of the configuration files. Recall from section 2.3.1 that
SLICC requires the user to define a config for each protocol, which shows Gem5 how
to set up the cache system – for example, which networks are ordered and which are
not, which machines are connected and how, how big the caches are, and so on. In its
current form, the backend does not create such a configuration file for the generated
protocol, due to limitations of the ProtoGen DSL. While the ProtoGen DSL does allow
the user to specify some of this file’s contents – such as the number of caches in the
system and the ordering of the networks – most of the configuration lies outside of
this limited scope, since it is information that is not needed for the original task of
formally verifying the correctness of the protocol. We do not consider this to have a
large impact on the usefulness of the tool, however, as these config files are typically
very small (100-200 lines of code).

The second limitation is that the extra transient states we generate in order to handle
main memory reads (section 3.1.1) must be stalling. That is, if the directory receives
any other request to the same line while it is waiting to hear back from main memory,
that request must be stalled. This limitation is due to the fact that since the memory
is assumed to be instantly accessible in the ProtoGen DSL, the user will specify the
transition atomically. Thus, we have no information about what to do when another
request arrives during this one, since such a scenario would not be possible if the tran-
sition was really atomic. This leaves us with no option but to stall for the duration of
the main memory request, which can be expensive. In real protocols, such stalls are
often mitigated by coalescing requests. For example, if the directory is fetching the
data due to a cache wanting to read the line and then receives the same type of request
from another cache, it does not really need to wait until the first fetch finishes and then
send another MEMORY_READ; instead, it could simply note down in some internal struc-
ture that the data – once obtained – should be sent not only to the original requester,
but also to the new one.
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Evaluation

In the previous chapter, we saw that – with some effort – we can translate ProtoGen’s
internal representation of protocols into SLICC code. We also saw that achieving this
feat required quite a few tricks. In this chapter, we ask the critical question: do the
generated protocols really work?

We begin in section 4.1 with a very basic test of correctness, where we simply check
whether we can boot a relatively modern Linux kernel in full-system simulation. Re-
calling that the motivation behind this project was to enable quick evaluation of pro-
tocols, we then move on to a set of case studies. In the first case study (section 4.2),
we compare the performance of the MI, MSI and MESI protocols discussed in sec-
tion 2.1.2. In the second case study, (section 4.3), we instead fix the overarching
protocol to be MSI, but vary some fine-grain details of its implementation to evalu-
ate their impact on its performance. Through these case studies, we hope to illustrate
the backend’s usefulness.

4.1 Validation: Booting Linux in Full System Mode

Before we proceed with our case studies, we first ought to make sure that the generated
cache coherence controllers are capable of full-system simulation at all. The simplest
way of checking this is to boot a Linux kernel in a multi-core system with the coher-
ence protocol active; since booting a Linux kernel is a significant workload in itself, a
successful boot would indicate that the protocol is capable of running FS mode tests.
We could then proceed with our case studies, knowing at least that we do not expect
any immediate issues such as incorrectly specified transitions or issues with accessing
main memory.

To carry out this validation step, we generate SLICC controllers for the MI, MSI, and
MESI protocols (section 2.1.2) and compile them with Gem5 version 20.1 (Lowe-
Power et al., 2020). We obtain a Linux kernel of version 5.4.49 from the Gem5
resources repository (gem5.org, n.d.a), and set up a simple system model with the
TimingSimpleCPU CPU model; this combination of CPU model and Linux kernel is
known to be functioning in Gem5 v20.1 (gem5.org, n.d.b). With the system model
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set up, we then start FS simulations for each of the MI, MSI and MESI protocols and
check whether the kernel is booted successfully. We perform this experiment with 1,
4, and 16 CPUs present, and repeat each run 5 times, making for a total of 3 ·3 ·5 = 45
runs.

We find that the Linux kernel is successfully booted in all 45 of the runs. Thus, we
conclude that the cache controllers which the backend generate are capable of full
system simulation, and may now move on to our first case study.

4.2 Case Study 1: Comparing the Performance of MI,
MSI, and MESI

4.2.1 Problem Statement

Recall from section 2.1.2 the motivations of the MSI and MESI extensions of the MI
protocol: MSI adds the read-only S to facilitate data sharing, and MESI also adds
the E state to speed up scenarios where private data is upgraded from read-only to
write permission. In this case study, we seek to answer the question of whether these
optimizations actually improve the performance of the system; and, if so, by how
much?

4.2.2 Experiments

To answer this question, we first need to choose a set of benchmark programs to com-
pare the protocols on. In the literature, the benchmark suites PARSEC (Bienia, 2011)
and SPLASH-2 (Woo et al., 1995) are popular choices for system evaluation. How-
ever, several programs in these two benchmark suites contain little communication
between processors and are therefore not well suited to experiments comparing differ-
ent coherence protocols. We therefore restrict our experiments to the ”cholesky” and
”lu” (contiguous blocks version) programs from SPLASH-2, along with ”bodytrack”,
”freqmine”, and ”swaptions” from PARSEC; these programs have all been identified
as containing significant data sharing and/or synchronization in the characterization
papers (Bienia, 2011; Woo et al., 1995). Furthermore, we use the versions of these
programs provided by Samani et al. (n.d.), where each program has been annotated
with Gem5 handlers for its region-of-interest (ROI); this allows us to gather perfor-
mance characteristics without polluting our results with irrelevant data such as how
long it took to boot the system.

Having chosen the set of benchmark programs to evaluate the performance on, the next
step is to construct the experimental system. Aiming to make the system as realistic
as possible, we use 4 processor nodes connected together in a 2x2 mesh. Co-located
with each node is a full L1 and a shard of the directory; each shard of the directory
is responsible for a subset of the memory’s address space. This means that a core’s
private L1 will always sit in the same node as the core, but requests that need to go via
the directory may need to be routed via some other node depending on the address of
the request. As we do not generate coherence controllers for L2 or L3 caches, we add
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Figure 4.1: The system model used in section 4.2 and section 4.3. Each node contains
a CPU core, a private L1 cache, and a shard of the directory responsible for one quarter
of the memory range. Nodes are placed in a mesh and connected only to their immedi-
ate neighbors (solid lines). Each directory is connected to the LLC (dotted lines), which
is co-located with main memory.

a last-level cache below the point of coherence, between the directory and the main
memory; this way we avoid accessing main memory for each L1 miss, which would
make our results quite unrealistic. This system model is summarized in Figure 4.1.
The hyper-parameters of the caches, such as their sizes and access latencies, can be
found in Appendix A.

Having decided on the experimental set up, we may now proceed with evaluating the
protocols. We begin by generating the MI, MSI and MESI controllers with ordered
networks1. For each combination of protocol and benchmark, we boot a full system
simulation and note down how many CPU ticks it took to execute the workload’s ROI;
we do this 10 times for each protocol and benchmark, making for a total of 3 · 5 ·
10 = 150 runs. To avoid waiting for potentially livelocked experiments, we impose a
maximum wall clock time of 6 hours for each run.

4.2.3 Results & Discussion

We find that 19 out of 150 runs do not finish within 6 hours, which indicates that the
exceptions (A)-(F) from chapter 3 do not fully avoid the presence of strange behaviour
from the simulation kernel. Figure 4.2 shows the runtimes for the 131 workloads
which did finish. As expected, the jump from MI to MSI is very large in all workloads;
dropping the S state results in an average slowdown ranging from 1.5× in bodytrack
to 3.4× in lu cb. This indicates that the presence of a read-only, non-exclusive state

1Using fully ordered networks will reduce the variance in our results and allows us to focus on the
optimization introduced by each extra state
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(c) Run-times in ticks for the freqmine workload.
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(d) Run-times in ticks for the lu cb workload.
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(e) Run-times in ticks for the swaptions workload.

Figure 4.2: Runtimes within each workload’s ROI per protocol considered in section 4.2.
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can massively speed up parallel workloads such as those considered here. However,
in these workloads we do not find any evidence that the E state leads to better run-
times in general; only in cholesky does MESI obtain the lowest average run-time, but
even then its distrubtion overlaps significantly with that of MSI. In lu cb both MSI
and MESI perform about equal, and in the rest of the workloads the E state actually
appears to slow down the workload considerably. This is especially clear in bodytrack
(Figure 4.2a), in which the average run-time is 13% higher for MESI than it is for MSI.

How can this be? On a surface level, one may expect MESI to be at least as efficient
as MSI given that it contains all of MSI’s states. However, recall that the point of the E
state is to speed up private read-write data patterns by letting a cache silently upgrade
to write permission when it was the first (and only) cache to obtain read permission.
This is only safe to do as long as the cache remains the only sharer of the line; as
soon as someone else wants to read the line, we must first demote from E to S, which
involves sending a message to the first cache. What we see in this case study is thus
that this added communication is prevalent in several of these workloads, and that it in
fact outweighs the benefits of the silent permission upgrade.

4.2.4 Conclusion

In conclusion, there are three findings in this case study. The first is that even after
making the adjustments labeled (A)-(F) in chapter 3, our generated protocols do still
sometimes livelock. The second is that the MI protocol is significantly slower than
MSI and MESI in all workloads, which matches our expectation. The third is that,
somewhat surprisingly, MESI is not in general a gain in performance compared to
MSI, and in fact slows down execution considerably in some cases.

4.3 Case Study 2: Handshakes and Stalls in Unordered
MSI

4.3.1 Problem Statement

In the previous case study, we looked at protocols where all the networks are ordered;
that is, messages arrive in the same order as they were put on the network. In real sys-
tems, such ordered networks are often avoided, as it may be cheaper and more efficient
to instead use unordered networks. Unordered networks, however, introduce additional
races on the interconnects, which protocols typically deal with by adding handshake
messages – extra messages which do not carry data, but only serve to acknowledge that
a response or forwarded request has been received. Handshakes thus makes the chain
of messages for a transaction longer, and more messages per transaction means more
stalls in the protocol, since there is more time for conflicting requests to appear. Stalls
are typically thought of as expensive operations, since they limit the concurrency of
the system. Thus, conventional wisdom dictates that handshakes will slow down the
system considerably.

In this case study, we explore whether handshakes really do slow down (small) sys-
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tems.

4.3.2 Experiments

We use the same system model as in the previous case study (Figure 4.1), and target
the same set of benchmark workloads. However, this time we look at two different
implementations of fully unordered MSI protocols: one typical implementation which
uses handshakes, and another implementation (proposed by Nicolai Oswald) which
avoids the need to handshake forwarded requests by cleverly using more networks
than the typical requests/response/forward split. Furthermore, for each of these two
protocols, we consider two distinct ways of handling stalls. The first is to use so-called
z-stalls; this means that when a message is stalled, it is simply left in place and no
action is taken. Other messages arriving later on the same network must thus wait
for the stalling transaction to finish, even if they are to non-conflicting addresses and
could be executed safely right now.2 The other alternative is to use recycling; when a
message is stalled, it is removed from the in-port queue, but then re-placed on it after
some fixed amount of cycles. The proposed advantage of this scheme is that messages
to other addresses may go ahead in the meantime. By trying both of these methods,
we can investigate whether the expected performance drop due to handshakes can be
offset by recycling.

For our experiments, we use a recycling latency of 10 cycles, which is the default in
Gem5 v20.1. We leave all other parameters as in Appendix A. However, given that we
this time expect smaller differences in performance than before, and therefore wish to
be more careful to reduce the variance in our results, we double the number of runs per
set up from 10 to 20. Thus, since we have two protocols and two types of stalling to
consider for each protocol, as well as 5 workloads which we want to run 20 times each,
we get a total of 2 · 2 · 5 · 20 = 400 runs. As before, we limit each run to a maximum
wall clock time of 6 hours.

4.3.3 Results & Discussion

We find that 31 out of 400 runs do not finish within 6 hours, which is a comparable
rate to that in the previous set of experiments. Figure 4.3 summarizes the runtimes
of the 369 runs which did finish, which reveal two things. First of all, they show
that the performance of the non-handshaking ”optimized” protocol is nigh equal to
that of the handshaking protocol; for cholesky and swaptions, the mean run-time is
a bit lower, but the distributions still overlap significantly. This contradicts our prior
belief that handshakes cause frequent, costly stalls in protocols. Secondly, in every
workload except swaptions, recycling actually appears to be slower than z-stalling;
this is especially clear in bodytrack and cholesky, and holds for both of the protocols.

The cause of this second finding is not immediately obvious. Intuitively, recycling
should increase throughput in the coherence protocol. How could it then degrade per-
formance? One possible explanation is that since our system is comparatively small,

2Note that this implies that, in order to avoid deadlocks, the message which the machine is waiting
for must not be arriving on the same port as is being stalled.
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(e) Run-times in ticks for the swaptions workload.

Figure 4.3: Runtimes within each workload’s ROI per protocol considered in section 4.3.
Legend: ”uno” is the unordered MSI protocol with handshaking, ”optim” is the (at-
tempted) optimization protocol which does not use handshaking; -z indicates a z-stall,
while -r indicates stalled messages are recycled with a latency of 10 cycles.
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with a maximum of two hops between the cores, z-stalls are unlikely to last for long.
The fixed penalty of 10 cycles which transactions suffer each time a message is re-
cycled may thus simple be too costly in comparison, leading to this counter-intuitive
result.

4.3.4 Conclusion

In conclusion, we once again find that the generated protocols do still sometimes live-
lock, which supports our findings from the previous case study. When runs do not
fail due to livelock, we find that our results contradict conventional wisdom. In our
simple 2x2 mesh-style system, we find that stalls due to handshaking are not a source
of performance degradation. Furthermore, even if they were, we find that attempting
to minimize the impact of each stall by using recycling instead of simple z-stalling
actually degrades performance. Thus, we conclude that handshakes are not necessarily
a cause for concern, and that it may sometimes be beneficial to accept the small cost
of a z-stall instead of taking (course-grained and poorly calibrated) countermeasures.
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Conclusion

5.1 Summary

This dissertation has presented an extension of the ProtoGen software (Oswald et al.,
2018, 2020) in the form of a new backend which gives the user the option to generate
cache controllers suitable for use with the Gem5 system simulator (Lowe-Power et al.,
2020). Thus, the work presented herein has extended the reach of the ProtoGen tool
chain, allowing it to also be useful as a way of quickly evaluating the performance of
different designs, rather than only their correctness.

Chapter 3 discussed the conceptual challenges involved in making such a SLICC back-
end for ProtoGen, as well as its implementation. It laid out solutions to the biggest
challenges, which were often due to mismatches between ProtoGen’s DSL and SLICC
both in terms of syntax and in terms of expressiveness. Then, it touched upon how,
even with this preparation, several other issues came up during the implementation.
Finally, it discussed remaining limitations of the backend, and how they might affect
its use.

Experimental evaluation in chapter 4 showed that the generated protocols were capa-
ble of their intended use, which was to support Gem5’s full-system simulation mode.
However, it also revealed that the generated protocols did sometimes cause livelocks
in the system when more complex workloads were run, which occurred in a total of
50 out of the 550 test runs from our two case studies (section 4.2, section 4.3). When
the protocols did not cause livelocks, they were capable of generating the performance
statistics necessary to evaluate the protocols. Thus, the usefulness of the proposed
backend was established.

5.2 Reflection: What Took So Long?

The majority of what was discussed in chapter 3 actually took place during a small
minority of the project’s timeline. Thanks to the author being previously experienced
with the ProtoGen codebase, initial progress was very quick; the first implementa-
tion of the backend, with the generated protocols passing the most basic of tests, was

33
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written during a three-week period in June-July 2020. A week or two later, the issue
discussed in section 3.2.1.1 had been identified and fixed. Ridiculous as it may sound,
it then took until mid-November – about 5 months of continuous effort – to identify
and fix the issue discussed in section 3.2.1.2, since debugging proved very difficult.
Since no explicit error was thrown, there was no error trace to step back through. Even
if such a trace had been available, it would have been so long that sorting through it
would have been impossible; even simple SE-mode tests containing several orders of
magnitude fewer instructions than booting a Linux kernel does can generate several
MB worth of traces. Instead, to debug this issue we had to rely on comparing the
generated protocols to sample protocols supplied with Gem5. This was interweaved
with manual adjustments being made to protocols in order to understand what ”strange
things” happen when you mess with how SLICC expects the protocols to be written,
and how much one can mess with it while still maintaining a working implementation.
The signal to noise in both of these approaches proved to be very, very low, which
caused what was really a small issue to take so long to debug (despite our best efforts).

Another challenge this project faced was that the wider ProtoGen codebase was still
under active development. By the time the above issue had finally been fixed, the de-
velopment version of ProtoGen had undergone substantial changes in order to support
future research on hierarchical and heterogeneous protocols. This included significant
changes to the frontend, completely changing ProtoGen’s internal representation of the
protocols. In order to support the latest version of ProtoGen, the call was made to re-
implement the backend, which once again took a few weeks since they changes were
so substantial that the backend practically had to be rebuilt from scratch.

It is true that some of these delays would have been hard to avoid or even foresee – for
example, it would have been hard to estimate how much the lack of proper documen-
tation for Gem5 would slow down debugging. However, the project certainly would
have benefited from better planning. In particular:

• Spending even more time getting familiar with SLICC’s limitations early on in
the project could have saved significant time later on when debugging

• Better communication with others working on ProtoGen’s codebase might have
avoided the need to re-write the backend from scratch halfway through the aca-
demic year

• Devising a thorough testing infrastructure for the protocols in advance might
have lead to some issues becoming obvious earlier on in the process, and in
ways that made their causes clearer

5.3 Future Work

This dissertation has only scratched the surface of what is possible to do with Proto-
Gen. Out of all the possible directions of future work, the ones we find to be most
promising are:

• Using the backend for a large-scale design space exploration. While carrying
out the case studies in chapter 4, we were genuinely surprised to find that the
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results sometimes contradicted our intuition. However, it is important to remem-
ber that these two case studies only looked at five different workloads and one
particular system model, which was necessary in order to fit them within the time
constraints of this project (recall that we allocated each of the 550 runs a max
time limit of 6 hours, meaning the case studies alone took a total of 6 ·550= 3300
CPU hours to carry out). It may very well be that conventional wisdom, such
as the advantage of MESI over MSI or that of avoiding z-stalls, holds in other
settings, such as for other workloads than those considered here or for larger sys-
tems. A systematic evaluation of this would be a nice addition to the literature,
and this backend facilitates precisely such a study.

• Making more backends, such as for hardware design languages. Recall that
Hemiola (Choi, 2021) is closely integrated with Kami (Choi et al., 2017), mak-
ing it trivial to synthesize real hardware from Hemiola protocols. Adding more
backends to ProtoGen, for example targeting Kami, would extend the reach of
ProtoGen even further and would thus help cement it as the definite tool for
cache coherence protocol development.

• Supporting hierarchical protocols. The latest release of ProtoGen, dubbed
HieraGen, is capable of generating hierarchical protocols (Oswald et al., 2020).
This makes the software much more useful in practice, since few real systems
use only one level of coherent caches. Supporting HieraGen fell outside the
scope of this project, but when the backend was rewritten it was done in a matter
such that adding support for hierarchical protocols in the future would be simple.
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Appendix A

Detailed Settings for Case Study
Experiments

In this appendix, we give a few more details of the experimental set up used in the
case studies. The values of response and request latencies were copied from example
protocols supplied with Gem5. Parameters not mentioned here were set to their default
values (as of Gem5 v20.1).

Component Settings
L1 Cache(s) size = 64kB; associativity = 2; response

latency (number of cycles before a
response message is added to the
network) = 1

Directory response latency = 6; memory request
latency = 1 (number of cycles before a
memory request is sent to the memory
controller)

Network network type = garnet2.0; router latency
= 1; link latency = 1; link width = 128b;
routing algorithm = XY
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