Know Your Customer using
Distributed Ledger Technology

Matus Drgon

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract

Know Your Customer (KYC) is a verification process financial institutions need to
execute before they can start conducting business with new customers. The increasing
level of regulations imposed on this process makes it burdensome. Distributed ledger
technology (DLT) has been propounded to share the work and cost associated with
onboarding a new customer between financial institutions operating with the client. In
our previous work, we put forth a design and Solidity smart contract implementation
of a DLT-based KYC system that focused on securing the process by introducing a
probabilistic mechanism, making the system more robust. The primary objective of
this work is to assess the privacy aspect of a KYC system based on a distributed ledger
that preserves the probabilistic mechanism. We identify four conditions that cover the
privacy of both financial institutions and customers operating via a distributed ledger.
We provide design and implementation of two KYC systems on Corda blockchain.
These introduce a compromise between fulfilling the privacy requirements and the
level of involvement of a trusted third party (TTP) in the network. The first one meets
all privacy conditions but requires a TTP to distribute the cost of onboarding a new
client between the financial institutions. The second one requires no involvement of a
third party but breaches some aspects of the privacy conditions.

Acknowledgements

First, I would like to thank to my supervisor, Aggelos Kiayias, whose expertise and
mentorship have immensely helped me throughout this project. Second, I would like
to express my gratitude to Lamprini Georgiou, a research assistant at the Blockchain
Technology Laboratory at the University of Edinburgh, for her valuable advice on
Know Your Customer process from the legal and procedural perspective.

It has been a thrilling journey. I am fortunate and grateful that throughout the two years,
we have published a conference paper and our article has recently been accepted to the
Journal of Digital Banking.

Table of Contents

1 Intr 1

(1.2 Procedural background|
(1.3 Cost-sharing|.

(1.4 Limitations of previous work and objective of this project|

2 Corda blockchain|
[2.1 Technological background|

[2.2 Motivation for using Corda for KY(]
[2.3 Drawbacks of using Corda for KYC]

3 Centralized Corda-based KYC system|

d Designl.

(3.2 Implementation|
Eval

14
14
16
26

27
27
28
32

37
37
38

40

Chapter 1

Introduction

1.1 Know Your Customer Process revisited

Know Your Customer (KYC) is an onboarding process financial institutions need to
execute to verify new customers before they can start conducting business with them.
This onboarding process counters financing of terrorism (CFT) and it is the first mea-
sure to prevent anti-money laundering (AML). The AML/CFT directives have been
under a lot of scrutiny, with new regulations coming up every 2-4 years, making the
KYC process highly regulated. Under the current settings, a financial institution that
wants to facilitate a customer has to always beforehand execute the KYC process for
this customer. This equally applies to a customer who wants to open up their first
bank account, as well as to a customer who is already conducting business with several
other financial institutions, and has been verified multiple times. Figure depicts
this practice for a customer who operates with N financial institutions.

Combined with the tight regulations, this process has unsurprisingly become finan-
cially and temporally onerous. According to Thomson Reuters 2017 Global KYC
survey, large financial institutions (with 10$bn or more in revenue) on average employ
307 KYC compliance professionals and annually spend $150M to accommodate this
process [23]]. For major financial institutions, these annual costs can climb up to 500$m
[8]. The average waiting period on this process was 26 days, resulting in low customer
satisfaction. These inefficiencies stem from the nature of the KYC process under the
current settings - always execute the full KYC onboarding verification without con-
sidering whether a similar process has been recently accomplished by other financial
institutions.

Distributed Ledger Technology (DLT) has been proffered as an instrument for the KYC
process that could mitigate its financial and temporal inefficiencies. Parra-Moyano et.
al. [21} 22] offer the first comprehensive study on this topic. The authors consulted ex-
perts in financial industry and produced design for a KYC system that leverages DLT.
According to their design, the DLT-based KYC system would only require the first
financial institution (Bank A) to execute the KYC process for a customer. The institu-
tion would subsequently store the result of this process on the distributed ledger. When
the customer would like to start operating with another financial institution (Bank X),

Chapter 1. Introduction 2

Bank A
g Nx@

* N x[®-]

& .
Customer 540_*@—* @ -

Figure 1.1: Simulation of the current KYC process.

it will not need to repeat the KYC process, but only retrieve the result of this process
from the distributed ledger. Bank X would further need to pay an appropriate fee that
would be delivered via the distributed ledger to Bank A to fairly share the costs Bank
A incurred by onboarding the customer.

This DLT-based KYC system was the theme of our last year’s work. We analysed it and
found out that the system and its various modifications proposed by current literature,
including [25,19], are all susceptible to a single point of failure - a property we named
brittleness. If a single FI would make an operational mistake in the KYC process, this
mistake would be propagated via the distributed ledger and shared by all other financial
institutions which would onboard the customer in the future. The system is brittle in
a sense of coming apart when a single financial institution (Bank A in our example)
makes a mistake in the KYC onboarding process.

We modified the design of the DLT-based KYC system by probabilistically requir-
ing each financial institution that wants to onboard a customer in the future to repeat
the KYC process. When the customer operates with several financial institutions, the
single point of failure is effectively eradicated, making the system more robust. Un-
der the assumption of collaboration between financial institutions via the distributed
ledger, we showed that our robust system could simultaneously decrease the costs in-
curred by the KYC process and increase the security of the process when compared
with how the KYC process is currently accomplished. The security of the system
in this context refers to the probability of detecting false negatives - customers who
are accepted during the onboarding process and later misuse their accounts for illegal
activities, such as money laundering or financing of terrorist activities. Facilitating
such a customer might cost a financial institution billions in fines ﬂ Finally, we put
forth a smart-contract implementation in Solidity programming language on Ethereum
blockchain that simulates how customers and financial institutions would interact with
the distributed ledger in our proposed DLT-based KYC system.

In the US in 2020, twelve cases of AML non-compliance were detected that resulted in a total
of €9.39 billion in fines. Goldman Sachs alone was fined €3.30 billion in that single year. https:
//shuftipro.com/blog/record-breaking-fines-on-banks-for-kycaml-non-compliance

https://shuftipro.com/blog/record-breaking-fines-on-banks-for-kycaml-non-compliance
https://shuftipro.com/blog/record-breaking-fines-on-banks-for-kycaml-non-compliance

Chapter 1. Introduction 3

1.2 Procedural background

KYC process can be broadly split into two parts: (1) Customer Identification Program
(CIP), where the customer’s name, date of birth, and address verified. This usually
requires a picture of the customer’s ID, drivers license, or passport. (2) Customer
Due Diligence (CDD), where the financial institution’s aim is to assess the type of
transactions the customer will conduct. The depth of due diligence is determined by
an estimated risk level of the customer. Common practices include PEP (politically
exposed person) search, negative news search, and watchlist check. If the customer
presents a moderate or higher level of risk, the customer may need to present previous
credit card statements or other references from previous financial institutions.

1.3 Cost-sharing

A key property of a KYC system that utilizes distributed ledger technology for sharing
the onboarding cost of a customer is that this cost is fairly shared between financial
institutions that operate with the customer. We provided details on how this can be
attained in a DLT-based system that probabilistically requires financial institutions to
repeat KYC for a customer in our previous work [9)]. To summarize the findings of
our previous work, assume a customer who has approached N — 1 financial institutions
and would like to open a bank account at Bank X, making it the Nth institution the
customer has approached. Further assume that the average cost of executing KYC for
this customer is ¢ and the probability of repeating KYC is p. A random decision is
made determining whether Bank X has to repeat KYC for the customer. If it does, then
it independently repeats KYC process for the customer and can start operating with the
client after this has been completed. Bank X is not required to pay any fee as it has
incurred a cost by having to repeat the KYC process. Otherwise, Bank X only has to
pay a fee and can launch operating with the client as soon as it has paid the fee. The
size of the fee is the expected cost a financial institution would face when the customer
operates with N financial, the average cost of single KYC for the customer is ¢, and
the probability of repeating KYC is p. This expected cost is:

ctex(N—1)xp

N (1.1

The equation comes from (1) requiring the first financial institution the customer ap-
proached to unconditionally execute KYC, which incurred cost ¢ to the institution,
and (2) each other financial institution in the future to repeat KYC with probability p.
Assume Bank X does not need to repeat KYC and that there are k financial institu-
tions that either executed or repeated KYC for the customer. Note that k approaches
1+ (N —1)x*p as N goes to infinity. Then each of the k financial institutions receives
a fair share of the fee paid by Bank X. The share a single financial institution receives
= ctex(N—=1)xp

Nk (1.2

Chapter 1. Introduction 4

1.4 Limitations of previous work and objective of this
project

The KYC process is a complex business use-case that requires a thorough treatment
from legal, procedural, and implementation standpoint. Our previous work touched on
the legal aspect in terms of referring to various jurisdictional regulations [4} 16} 12, 11]]
and recommendations [[10] associated with the process. From a procedural perspective,
we outlined the design of the system, evaluated how it would fairly distribute the KYC
expenses between financial institutions, and quantified the cost efficiency and security
of the system under certain assumptions. Finally, from an implementation view, the
smart contracts we supplied provided for financial institutions a means of interacting
with the distributed ledger to share the KYC costs, use the platform to accept or reject
a new customer, and a create a digital profile for the customer.

Privacy is essential in the context of financial industry and it has to be a key property
of any customer-onboarding mechanism. The major limitation of our previous work
was the neglect of privacy considerations on the distributed ledger. We outlined that a
public blockchain network, such as Ethereum, could not be used due to the sensitivity
of the customer data. We proposed employing our smart contracts programmed in
Solidity on a private blockchain network that is compatible with the Ethereum network
(e.g. aprivate fork of the main Ethereum network or Hyperledger Sawtooth). However,
importantly, we did not discuss the privacy aspect in detail and if it would be fulfilled
on such a private blockchain.

A private blockchain in this context implies that a party can enter the blockchain only
after obtaining a permission. This permission could be either given by a trusted third
party (the regulator or a private independent company), or by a consortium of the
financial institutions. Such a blockchain ensures zero access from the general public
into the network, but does not automatically ensure that the privacy of customers and
financial institutions on the network would be fulfilled. As long as the information is
propagated via a public network protocol, such as the gossip protocol which is used
on Ethereum blockchains, the information regarding onboarding a new client would be
freely shared with other parties on the network - including other financial institutions
and customers. Even if this information is pseudonymized, a pattern could eventually
reveal that could lead to either revealing the real identities of customers behind their
digital profiles, or the connection between financial institutions and the customers they
operate with.

Privacy can be perceived from the perspective of customers and financial institutions.
We identify the following privacy requirements, sorted by the order of importance:

1. The personal documents a customer supplied for the KYC onboarding process,
as well as any other documents and confidential customer information, cannot be
revealed to any party that was not an intended recipient of these documents or in-
formation. In other words, only the financial institution(s) the customer operates
with have access to the customer’s documents and confidential information.

2. The general public should not have access to the blockchain network.

Chapter 1. Introduction 5

% i % . Operating together
f Operating together
Set A {

Customer X

f I Operating together

o
o+

Operating together Bank B

SetB

Figure 1.2: Bank A and Bank B both operate with Customer X. Bank A also operates
with customers in set A, and Bank B operates with set B. According to the third privacy
condition, only Bank A knows that it operates with set A and Customer X. Likewise,
only Bank B knows that it operates with set B and Customer X. According to the fourth
privacy condition, only Customer X knows that he/she operates with both Bank A and
Bank B.

3. The set of customers a financial institution operates with is only known to the
financial institution.

4. The set of financial institutions a customer operates with is only known to the
customer.

Objective The objective of this project is to supply a design and implementation of a
DLT-based KYC system that is robust (i.e. uses probabilistic repetition of the KYC
process) and fulfills the privacy aspects we outlined.

Chapter 2

Corda blockchain

2.1 Technological background

Corda is a form of distributed ledger technology that, unlike Bitcoin [18] or Ethereum
[3], does not have a single central distributed ledger. Instead, a ledger exists between
any non-empty set of parties that executed a transaction with each other. Subsequently,
the consensus is not achieved on a central distributed ledger at a network level, but has
to be achieved for each ledger in the network and only by the parties with access to
the ledger. A ledger is a chain of transactions accessible by a party only if the party
was required to sign transactions the ledger is composed of. Figure [2.1] presents a
Corda network with three participants - Alice, Bob, and Charlie. The network stores
8 different transactions composing 6 different ledgers. Ledger L; is accessible by all
parties, Ly is only accessibly by Bob and Charlie and L3 is accessible by Alice.

State is an immutable object stored on the ledger. It can present any form of informa-
tion, such as a request for the KYC process or the result of this process. A state can
be known by one or more parties. Figure 2.2]depicts a Corda network with 9 different
states. State 1 is shared by all of the participants and everyone knows it. State 2 is only
known by Alice and Bob - Charlie does not have access to this state. Similarly, Bob
does not know of states 3, 6, and 7. Alice does not know of states 8 and 9. States 4 and
5 are privately known by Alice and Charlie respectively.

Figure [2.3] presents a detailed state view. Each state needs to define its participants -
nodes that should be alerted when the state is created or consumed. For instance, when
a customer wants to open a bank account at a financial institution and makes a request
for this, the participants could be the financial institution and the customer. The state
properties and functions are used to store and retrieve the actual information from the
state. Each state contains a reference to a contract that provides the validation logic
for interaction associated with the state. For instance, when we propose an output state
defining the result of KYC for a customer, we want to ensure that the KYC cost is not
a negative number. The contract does this validation to enforce a state has desirable
properties and is also a form of preventing misuse by malicious parties.

Similar to Bitcoin, Corda uses UTXO (unspent transaction output) model - a design

Chapter 2. Corda blockchain 7

Ledgers

Ledgers

Charlie

Figure 2.1: Corda network with three participants - Alice, Bob and Charlie. Instead
of containing a central distributed ledger that would involve all the transactions (Tx1,
Tx2,...,Tx8), Corda has multiple ledgers accessible only by the parties that are involved
in the transactions that comprise the ledger. For instance, ledger containing transaction
Tx6, as well as the transaction itself, is only accessible by Alice and Bob. The ledger
containing transactions Tx3 and Tx7 is only accessible by Alice.

Figure 2.2: Corda network with three participants - Alice, Bob and Charlie. Each circle
with a number inside it presents an immutable state stored on a distributed ledger. For
instance, states 3, 6 and 7 are only known by Alice and Charlie; states 5 is only known
by Charlie, and state 1 is known by everyone. Inspired by: https://docs.corda.
net/docs/corda-os/4.7/key-concepts—-ledger.html

https://docs.corda.net/docs/corda-os/4.7/key-concepts-ledger.html
https://docs.corda.net/docs/corda-os/4.7/key-concepts-ledger.html

Chapter 2. Corda blockchain 8

State
Contract
reference State
properties
and
o functions
Participants

Figure 2.3: State structure. Each state contains reference to a single contract, a
list of participants that should get notified when the state is updated, and a list
of properties. Figure inspired by https://docs.corda.net/docs/corda-os/4.7/
key—concepts—states.html

under which a transaction has a set of input states and a set of output states. The
input states are spent after the transaction is executed and cannot be used in any future
transaction. The output states, on the other hand, can serve as input states in a future
transaction. Given the immutability of a state, it is not possible to modify it after it
has been defined on the ledger. To update a state, we use the state as an input in a
transaction whose output is the updated version of the state.

Figure shows the structure of a simple transaction with a single input and output
state. The input and outputs states are validated by a contract. Each transaction has a
set of required signers who need to sign the transaction. Note that the set of participants
in a state does not need to be the same as the set of required signers. A transaction can
contain multiple states, each possibly with a different set of participants.

The lack of a global distributed ledger that would record all transactions that occurred
in the network and would be accessible by every node stems from using point-to-
point communication instead of a global broadcast (e.g. gossip protocol in Bitcoin
and Ethereum) [17]. The communication occurs via TLS-encrypted messages sent
over AMQP/1.0 [13]]. Corda uses flows as an abstraction for the actual communication
between nodes. A flow is a sequence of steps nodes execute in order to achieve a
ledger update. Figure [2.5]details a flow taken to to execute a transaction. The initiator
first retrieves documents from its local storage called the vault. It builds a transaction
which is verified by the referenced contract(s). After the initiator signs the transaction,
it is sent over to the responder who also verifies the transaction, signs it, and sends it
back to the initiator. After the transaction has been verified and signed by both parties,
it is checked by notaries for double-spending. If no double-spending attempt occurs, it
is committed to the ledger.

A transaction is only valid if it is (1) contractually valid, (2) signed by the required
parties, and (3) does not contain double-spends. Contractual validity is accomplished
by referencing each state in the transaction with a contract whose validation logic is

https://docs.corda.net/docs/corda-os/4.7/key-concepts-states.html
https://docs.corda.net/docs/corda-os/4.7/key-concepts-states.html

Chapter 2. Corda blockchain 9

state] Contract — state
validation| validation
Transaction
Input State » Qutput State

Required signatures

Figure 2.4: Structure of a simple transaction containing one input state and output
state. The input state gets spent when committing the transaction to the ledger. The
output state is produced by the transaction. The referenced contract validates the input
and output state. The box in the left bottom corner includes parties that need to sign
the transaction. Figure inspired by https://docs.corda.net/docs/corda-os/4.
T/key-concepts-contracts.html

programmed according to application specifics. Figure shows how both parties
need to sign a transaction before it is sent to the notary. The notaries ensure prevention
of double-spending on Corda network. Every transaction has to pass through a notary
cluster that checks whether the input states in the transaction have already been spent.
If they have been spent, the transaction becomes invalid and a double-spending attempt
is recognized together with the identities of nodes that made this attempt. Otherwise,
the transaction can be committed to the ledger. The type of consensus algorithm a
notary runs can be decided upon based on the nature of parties running the notary
cluster. This property is called pluggable consensus [2]. In case the notary cluster is
run by a trusted party, a high-speed consensus algorithm such as RAFT can be used.
If the notary cluster consists of low-trusted parties, a Byzantine Fault Tolerant (BFT)
algorithm can be chosen instead.

There are two types of notaries - validating and non-validating [14]. The non-validating
notaries only prevent double-spending of the input states and have limited access to
the contents of the transaction. This access includes references to the input states that
are required to prevent the double-spending. The content of the transaction is hidden
ensuring no confidential information the parties deal with in the transaction is exposed
to the notary. The validating notaries have a full access to the contents of a transaction,
including fully visible input and output states, commands, attachments and signatures.
This enables them to validate the transaction more thoroughly, including contractual
validation, before committing the transaction to the ledger.

The disadvantage of non-validating notaries is that it does not prevent a denial-of-state
attack. This can occur when a state is shared between multiple parties and a single
malicious party decides to consume this state selfishly. The non-validating notaries do
not have access to input states and contracts referenced by the states. Hence, the non-
validating notary cannot determine if an input state is being selfishly consumed by a
malicious party. If this occurs, the input state will be consumed and become unusable

https://docs.corda.net/docs/corda-os/4.7/key-concepts-contracts.html
https://docs.corda.net/docs/corda-os/4.7/key-concepts-contracts.html

Chapter 2. Corda blockchain 10

Initiator

)

Retrieve information
from node's storage

Y

Build the transaction

h 4

Verify the
transaction

h 4

Responder
Sign the transaction
(Send partially signed Tx
Verify the
transaction
Y
Sign the transaction
Send back fully signed Tx
{ v
Motary double- End
spending check &
validation

h 4

Commit transaction

- - -

End

Figure 2.5: An example flow between two parties - Initiator and Responder. The initiator
builds, verifies, and signs a transaction. The transaction is then sent to the Responder
who verifies it, signs it, and sends it back. The fully signed transaction is checked for
a possible double-spending attempt and if no attempt was recognized, it is committed
to the ledger. Figure insipired by https://docs.corda.net/docs/corda-os/4.7/
key—-concepts—-flows.html

https://docs.corda.net/docs/corda-os/4.7/key-concepts-flows.html
https://docs.corda.net/docs/corda-os/4.7/key-concepts-flows.html

Chapter 2. Corda blockchain 11

for other parties, creating a denial of state if they collaboratively attempt to spend the
state in the future. However, note that all notaries, including the non-validating ones,
have access to the identity of the nodes who proposed a transaction. This provides for
the conflict to be resolved off-chain as the notaries would have a real identity of the
malicious node that selfishly consumed a state.

Corda is a permissioned network only accessible by parties who obtained a permission
from the doorman - a party that has authority over who obtains a permission to join
the private network. Corda uses X.509 certificate for nodes in the network [7]]. Under
this certificate, before a node can join the network, it needs to reveal its X.500 name.
This includes the name of the person (in case of a customer) or organization (in case
of a financial institution), locality (city where the customer or the financial institution
operates in), and country of the respective location. This identity is visible to other
nodes that have been permitted to join the network.

Key takeaways:

1. Corda does not have a global distributed ledger that would store all transactions
that occurred in the network and would be accessible by each node in the net-
work.

2. Corda uses point-to-point communication between nodes instead of globally
broadcasting transactions to other peers in the network.

3. Nodes in Corda network have a public identity that is shared with other nodes in
the network.

4. A party can join a Corda network only after it has been given a permission from
the doorman service.

2.2 Motivation for using Corda for KYC

Corda blockchain was selected as a suitable candidate of distributed ledger technology
for the KYC process due to its enhanced privacy measures that stem from avoiding
public broadcast of information and the lack of a central distributed ledger. Corda uses
point-to-point communication via private ledgers that ensure messages and transac-
tions are only exchanged between the sender and intended recipients. A private ledger
in this context presents a chain of transactions that is only accessible by the parties that
were involved in signing those transactions.

Note that Corda is a private network accessible only by parties that obtain a permission
from the doorman. In this scenario, the doorman could either be a trusted third party
(i.e. the regulator or an independent company) or a consortium of financial institutions
operating on the network. Hence, due to this design of Corda network, the second

privacy condition is automatically fulfilled. The other privacy conditions are discussed
in detail in sections [3.3]and

Chapter 2. Corda blockchain 12

2.3 Drawbacks of using Corda for KYC

The first potential downside of Corda is that every node, including all financial insti-
tutions and all customers, reveal their real identity in the network. The real identity
in this context refers to using a valid instance of CordaX500Name class. This contains
the name of the person (in case of a customer) or organization (in case of a financial
institution), locality (city where the customer or the financial institution operates in),
and country of the respective location. It does not reveal any further information about
the customer or the financial institution. Note that this does not breach the privacy
requirements outlined in section 1.4}

In our previous work, we created a pseudonymized digital profile of each customer
on the distributed ledger that would include the following key properties: the result of
the KYC process that financial institutions that verified the customer came to, the cost
of onboarding the process, the number of financial institutions the customer operates
with, and the blockchain addresses of accounts the financial institutions used to on-
board the customer. When a financial institution wanted to onboard a customer who
already operated with other FIs, this profile provided for effective sharing of the work
behind KYC and costs associated with the process - the ultimate benefit of reinvent-
ing KYC process with the distributed ledger technology. Figure shows a customer
who operates with a single FI (Bank A) and approaches another FI (Bank B). Un-
der the assumption that Bank B does not need to repeat the KYC process, which is
randomly decided with a certain non-zero probability, Bank B is required to pay its
fair share of the KYC cost via the distributed ledger. In a scenario when the cus-
tomer only operates with Bank A, this share would be ¢/2, where c is the cost Bank
A faced when onboarding the client. After this fee is paid, Bank B can onboard the
customer without any further complications. The second downside is that this simple
cost-sharing between financial institutions cannot be easily replicated in Corda net-
work without compromising the privacy of customers and financial institutions. The
outlined cost-sharing between financial institutions operates with the assumption that
financial institutions would use pseudonymous blockchain accounts to onboard their
customers with a one-to-one relationship between these accounts and their customers.
This could hypothetically conceal the real identity of the financial institutions on the
ledger. However, this has not been thoroughly investigated by the current literature
and remains an open problem. In Corda network, each node has a well-known identity.
Hence, referring to figure when Bank B would pay the fair share of the KYC cost
(¢/2) to Bank A, both financial institutions would reveal to each other that they oper-
ate with the particular customer. This would breach the fourth and partially the third
privacy condition outlined in section

The third flaw is that we cannot present a global digital identity of the customer due
to the lack of a central distributed ledger in the network. The pseudonymous digital
profile of customer outlined in figure [2.6| was stored on the central distributed ledger.
This profile was used when a financial institution wanted to onboard a new customer
and it needed to retrieve the result of the KYC process, find out if it needs to repeat the
process, and what fee it would have to pay to fairly distribute the onboarding cost be-
tween the financial institutions. We go around this by preserving the customer profile

Chapter 2. Corda blockchain 13

Paying fee to share KYC costs
-
Customer ID
KYC cost
Num. of institutions Pseudonymous
Institution addresses -"‘JJ account of Bank B
Y / KYC result
.| Pseudonymaous -
7| account of Bank A -
-
Already operating V4 Blockchain network
lm- together Getting onboarded .ﬁ.
Bank A Customer Bank B

Figure 2.6: Simulation of approaching a new financial institution and cost-sharing
mechanism via distributed ledger technology with a central blockchain. This simula-
tion applies to our previous work. Customer operates with Bank A and approaches
Bank B. Bank B retrieves the pseudonymous customer’s digital identity from the cen-
tral blockchain and pays an appropriate fee from its pseudonymous blockchain account
to a pseudonymous account of Bank A. The identity of the two financial institutions is
hidden behind their pseudonyms and is not directly revealed. After the fee is paid, Bank
B can start operating with the customer.

via transaction states as we later explain. Given that this profile was only pseudony-
mous and accessible by any party on the network, it raised a concern whether there
could be a leakage of confidential information about the customer and it vastly limited
the scope of information that could stored under this profile. This is overcome by us-
ing the transaction states that are only accessible by financial institutions the customer
sends them to.

We propose two different designs of Corda-based systems for the KYC process. The
first one tackles the drawbacks of Corda network at the cost of increased involvement
of a trusted third party. The second works in a fully decentralized manner but partially
compromises the privacy conditions outlined in [I.4}

Chapter 3

Centralized Corda-based KYC system

This Corda-based KYC system is called centralized because it relies on a trusted third
party (TTP) to (1) proportionately distribute the cost incurred by onboarding a cus-
tomer between all financial institutions that operate with the customer and (2) provide
notary service. The KYC process itself, however, is executed by the financial institu-
tions and does not require any involvement of the third party. The distributed ledger
technology serves as a medium for sharing the work and cost associated with onboard-
ing new customers. A financial institution might benefit from using the distributed
ledger technology by being able to onboard a new client without executing KYC be-
cause the client has been previously verified by other financial institutions. In such a
scenario, it pays a fee for this service to the TTP that fairly distributes this fee between
financial institutions that executed KYC for this customer.

3.1 Design

When a customer approaches the first financial institution where they would like to
open a bank account, the customer needs to provide the FI with documents required
for the KYC onboarding process. Due to the point-to-point communication in Corda
network, the customer documents are sent directly via the distributed ledger between
the financial institution and the customer. Non-validating notaries are used as they do
not have access to the states and attachments of a transaction they validate. The double-
spending validation requires only references to the input states of the transaction, not
the content of the states is not revealed. The financial institution stores the customer
documents in its vault, which is a local storage on Corda network only accessible by
the institution. The financial institution may also store these documents off the ledger
in its own database. This step is voluntary.

Upon retrieving the customer documents, the FI initiates the KYC process. The cus-
tomer identification process (i.e. assessing customer’s identity) can be accomplished
by checking the attached documents sent by the customer. However, certain aspects
of KYC, such as enhanced due diligence controls (e.g. watch list scan, negative news
search, politically-exposed-person check, etc.) still need to be assessed off-ledger.
Once finished, the FI either accepts or rejects the customer. This process is outlined in

14

Chapter 3. Centralized Corda-based KYC system 15

3. Execute
KYC

A. Store customer documents in

local database
____________________________________ Bank A

- database
2. Store customer

1
1
|
i
| 4. Create KYC state defining result |
! of the process & basic customer documents in vault
| ————————3| Bank A
b parameters vault
Customer !

Distributed ledger between
Customer & Bank A

1. Customer documents

Corda network

Figure 3.1: A customer approaches the first financial institution and gets onboarded by
the institution via the centralized Corda-based KYC system.

figure 3.1

In our previous work, a financial institution would create a pseudonymous digital pro-
file of the customer on the distributed ledger. This enables the first financial institution
(Bank 2) to share the onboarding costs with any other financial institution (Bank X)
that starts to operate with the customer in the future. This digital profile is required to
confirm that the customer has already been onboarded by a financial institution (Bank
A). Without it, Bank X would not know and could not confirm that the customer has
been onboarded and verified by another financial institution. Corda network lacks a
centralized distributed ledger that would be accessible by other parties operating on
the network. Hence, the customer’s digital profile is shared via states that serve as
inputs and outputs of transactions.

When the same customer approaches a new financial institution (Bank X), the customer
presents their documents together with a state that contains the following information:
(1) result of the previous onboarding process, (2) whether Bank X needs to repeat the
KYC process, and (3) what fee it has to pay to proportionately share the KYC cost
with the institution that executed the KYC process (Bank A). Note that the customer
at this point only operates with Bank A, which has fully incurred the onboarding cost.
The repetition of the KYC process is randomly determined with probability p. This
probability is set by the first financial institution the customer operates with. If Bank
X does not need to repeat the KYC process, it only has to pay a fair share of the
onboarding process (i.e. 50% of the cost incurred by Bank A) and can start operating
with the customer immediately. Otherwise, it has to independently repeat the process,
in which case it is not required to pay any fee.

If Bank X does not repeat the KYC process and only pays a fee to equally share the
onboarding cost with Bank A, Bank X me cannot pay the fee directly to Bank A via
Corda network. Having a transaction with another node on the network implies know-
ing the identity of that node. However, the fourth privacy condition requires that only
the customer knows that he/she operates with both institutions. Bank X is only al-
lowed to know that there exists a financial institution that verified this client and it is
now going to share the cost of verifying this client with the institution. Bank A re-
ceives a fee that in the transaction specifies the customer’s ID, so that the institution

Chapter 3. Centralized Corda-based KYC system 16

I. Probabilistically

i repeat KYC A i o tsi
O | 1. Customer documents & basic KYC - Bt and gk
e parameters ! SOk TRRREEEERE - Bank X
! — L - database
3. Create KYC state defining result | 2. Store custormer
) of the process & basic parameters l l l l documems in vault Bank X
! , AA AR .- vault
Customer]
Distributed ledger between :
4 Customer & Bank X Bark X]
i 4. Pay
5 + appropriate
] fee
| |

0 Distributed Ied er
Trusted Third g
Fr,:sn;" [Trrl,r} between TTP & Bank X

5. Distribute the fee
between banks that
executed KYC

together

Already operating ‘ ah i |

Banks that executed or repeated KYC

Corda network

Figure 3.2: The customer approaches another financial institution. If the institution
doesn’'t need to repeat the KYC process, it pays a fee to proportionately share the
onboarding cost. This fee is paid to the TTP that distributes it between the financial
institutions that executed the KYC.

would know which customer of its customers now starts operating with another finan-
cial institution, but does not know the identity of this FI. Hence, Bank X sends the fee
to a trusted third party (TTP), which could be the regulator or a private company. The
TTP would then send the fee to Bank A. the recipient financial institutions. Figure[3.2]
details this process when the customer operates with and has been verified by multi-
ple financial institutions. In this scenario, the size of fee Bank X pays is specified by
equation [I.1] and each financial institution that executed or repeated the KYC process
for the customer receives an equal share of the fee specified by equation [[.2]

3.2 Implementation

KYC is a business process that might be fairly time consuming. When a node in Corda
network has a flow in a suspended state, it cannot be updated to a possibly new release
of Corda. Presenting long business processes in a single flow is therefore undesirable

Chapter 3. Centralized Corda-based KYC system 17

and it is recommended to break a longer flow into a series of shorter flows instead'} In
our implementation, we implement the following flows:

* FirstRequestFlow - initiated by a customer and used when the customer would
like to open a bank account at a financial institution of their choice.

* AccomplishKYCFlow - initiated by a financial institution and used when the fi-
nancial institution executed KYC and wants to store the result in the customer’s
profile.

* RequestFlow - initiated by a customer and used when a customer would like to
start operating with a financial institution and has already been onboarded by at
least one other FI via Corda.

* RepeatKYCFlow - initiated by a financial institution and used when a financial
institution repeated the KYC process.

* UpdateKYCFlow - initiated by a financial institution and used when the financial
institution needs to update the KYC process (e.g. due to a regulatory change).

* DownloadDocumentsFlow - initiated by a financial institution to download doc-
uments provided by the customer for the KYC onboarding process.

* ShareCostFlow - initiated by the trusted third party to distribute a fee paid by
a financial institution that can start operating with a customer without execut-
ing KYC between financial institutions that executed or repeated KYC for the
customer.

FirstRequestFlow, outlined in figure is initiated by a customer when he/she
would like to open a bank account at a financial institution and has not yet been on-
boarded by another financial institution via the Corda-based KYC system. This ei-
ther means that the customer approaches the very first financial institution where they
would like to open an account, or the customer is already operating with other finan-
cial institutions, but none of these use the Corda-based KYC system to onboard their
customers. For instance, they might be onboarding their customers the traditional way
(see Fig[I.T) that does not take advantage of distributed ledger technology.

FirstRequestFlow simulates step 1 in figure[3.1] To realistically replicate the KYC
process which customer begins by approaching a financial institution (either physi-
cally or via a mobile/web application), this flow is also started by the customer. The
customer uploads their documents and requests a customer ID from the financial insti-
tution. This ID serves as a unique identifier of the customer on Corda network, but is
only accessible to financial institutions the customer approaches. Upon receiving the
ID from the financial institution, the customer builds transaction Tx1, verifies it via
a referenced smart contract(s), signs it, and sends it to the financial institution. The
financial institution also verifies and signs the transaction, and sends it back to the cus-
tomer. The customer sends the transaction to a notary who validates the transaction
input states to prevent double-spending and commits it to the ledger if no double-
spending attempt is detected. Note that once the flow is initiated, the process of build-

Ihttps://docs.corda.net/docs/corda-os/4.6/flow-state-machines.html

https://docs.corda.net/docs/corda-os/4.6/flow-state-machines.html

Chapter 3. Centralized Corda-based KYC system 18

Customer
Y
Initiate Flow
h
Upload KYC
documents Bank
L Request customer 1D !

Generate customer ID

Send customer ID

{

Retrieve customer ID

Y

Build the transaction

y
15

(Tx1)
h
Verify & sign the
transaction
L Send partially signed Tx
Verify & Sign the
transaction
Send back fully signed Tx J
v v
MNotary double- End

spending check

Commit transaction

End

Figure 3.3: FirstRequestFlow initiated by the customer that creates the customer’s
ID and produces Tx1.

Chapter 3. Centralized Corda-based KYC system 19

{ RequestContract]

state

validation
Tx1 FirstRequestState
- String customerld
%) » FirstRequestState
- Party customer
Customer,
Bank - Party bank

Customer, Bank - SecureHash docsHash

Figure 3.4: A detailed view of Tx1 and FirstRequestState.

ing, verifying, signing and sending a transaction is automated by the flow logic and
smart contracts and does not require further involvement from either side.

Transaction Tx1 is detailed in figure Note that the transaction has no input states
and so double-spending cannot occur. The transaction has to be signed by both the
customer and the financial institution. The referenced RequestContract ensures that
a malicious customer cannot produce arbitrary output states and that the transaction has
a single output state of type FirstRequestState. This output state stores identities
of the customer and of the financial institution, the customer’s ID, the hash of the
customer documents, and a unique identifier of the state. Figure illustrates these
private state properties; each property has an associated public getter method. Note
that the customer’s ID (customerId) is used to uniquely represent the customer, while
the unique state identifier (stateId) uniquely represents the state.

Each state also needs to overwrite a getParticipants method that returns the par-
ticipants of the state. These participants are parties that should be notified when the
state is created or consumed. The participants of this state are the financial institution
and the customer. The set of participants does not necessarily equal the set of required
signers for a transaction. A transaction might have multiple input and/or output states,
each with a different set of participants. Assuming a transaction gets signed by all
required signers, a required signer is a party that will have the committed transaction
on a distributed ledger that is shared with other required signers of the transaction.
This distributed ledger will have stored any previous and future transactions that were
signed by exactly the same set of signing parties.

In order for Bank A to obtain access to the documents sent by the customer, it needs to
download them into its vault (internal storage of the financial institution on the Corda
network). To accomplish this, Bank A executes DownloadDocumentsFlow. Thisis a
simple flow that neither produces a transaction, nor consumes or produces any states.
It is not sent over to any party and does not require any signatures. This presents step
2 in diagram 3.1

Chapter 3. Centralized Corda-based KYC system 20

KYCState
RequestContract KYCCaontract

state state - String customerld
validation validation
- Party customer
Tx2
- Party bank
- boolean result
FirstRequestState KYCState .
- double singleCost
Customer, Customer,
Bank Barnk - double totalCost
- double repeatProbability
Bank, Customer - int numberQOflnstitutions

- int numberOfExecutions
- SecureHash docsHash

- Uniqueldentifier stateld

Figure 3.5: A detailed view of Tx2 and KYCState.

Upon retrieving the documents, Bank A performs the KYC process, simulating step
3 from figure The customer identification part of KYC, which confirms the cus-
tomer’s identity, can be checked directly from the documents supplied by the customer
via the distributed. However, certain aspects of the enhanced due diligence, including
watchlist scan, negative news search, politically exposed person scan, etc. currently
cannot be directly executed on the ledger as they require use of a separate database
(e.g. a database containing politically exposed people). This process could be au-
tomated by integrating a Corda application (CorDapp) presenting this KYC system
with existing systems of the financial institutions but this goes beyond the scope of
this work. Our implementation delivers sharing of the KYC documents that can be
retrieved by the financial institution via Corda network and directly used for customer
identification program.

After the financial institution executed the KYC process, it can initiate AccomplishKYCFlow
to store the result of this process on the ledger shared with the customer. This flow is
detailed in figure|3.6| presents step 4 from figure The financial institution retrieves
from its vault request state for the particular customer based on the stateId property.
It builds transaction Tx2, detailed in figure that consumes this state and produces a
KYCState. KYCState state includes information about the result of the KYC onboard-
ing process (i.e. whether the financial institution accepts or rejects the customer), the
cost of this process, and the probability of repeating this process by a future financial
institution that the client would like to be operate with. This information is required
for a future financial institution the customer might decide to approach. The full list of
the state’s properties is shown in figure 3.5

Tx2 references RequestContract and KYCContract. These ensure that the transac-
tion has an input and output state of appropriate type and cannot be misused by a
malicious financial institution to pretend to onboard a customer who did not file such

Chapter 3. Centralized Corda-based KYC system 21

a request. Once the transaction is built, verified via the smart contracts, signed by both
parties, and checked by the notaries for double-spending, it is committed to the ledger.
The notaries ensure that the financial institution does not attempt to use a single request
state made by a customer in multiple transactions to come to multiple KYC states.

When the customer would like to open a bank account at another financial institution,
he/she initiates RequestFlow outlined in figure This flow simulates step 1 in fig-
ure [3.2] The flow is similar to FirstRequestFlow in a way that both fulfill the same
purpose - a request made by a customer to be onboarded by a customer-selected fi-
nancial institution. The crucial difference between the flows is that the customer has
already been onboarded by at least one financial institution. This implies that the cus-
tomer already has a digital profile and that the KYC process has been executed for the
customer. Hence, the new financial institution (Bank X) has to only conditionally re-
peat the KYC process. Whether Bank X repeats the process is dependent on a random
number generator implemented on the customer side to ensure the financial institution
has no impact over the outcome of this. If Bank X does not need to repeat the KYC
process, it has to pay the fee specified by equation [1.1|to fairly distribute the cost as-
sociated with onboarding the customer between all financial institutions that operate
with the customer.

RequestFlow introduces a new required signer - the trusted third party (TTP) that
redistributes the fee paid by Bank X. The transaction built in this flow (Tx3 detailed
in figure [3.8)) needs to be signed by three parties - the customer, who is the initiator
of the flow, the financial institution, which responds to the customer’s request, and a
trusted third party (TTP) that later controls the proportional distribution of the total cost
associated with onboarding the client between the financial institutions that operate
with the client. The value of the fee Bank X should pay, that follows equation |1.1
is specified when the flow is initiated by the customer. The TTP is included in this
transaction so that it sees the fee the financial institution should pay when the request
is being made by the customer. This ensures the financial institution cannot process the
request and attempt to pay a smaller fee to the TTP pretending this was the fee it should
pay. The value of the fee is currently inputted by the customer. In an industry-applied
setting, the CorDapp (i.e. Corda mobile application) would not enable the customer to
set the value of this fee and would rather take it directly from the customer’s storage.
From implementation perspective, this would be easier to enforce on the application
level as taking this value directly from a previous KYCState, from which the cost of
onboarding the customer and thus the fee Bank X has to pay are derived, would breach
the privacy by revealing identity of the previous financial institution to Bank X.

Tx3 has two output states: RequestState and MonetaryState. RequestState is an
augmented FirstRequestState class that with additional properties, including the
result of the KYC process, the cost of the KYC process, and whether the financial
institution needs to repeat the process. For a full list of the properties, see figure 3.9
MonetaryState presents a state with the specified monetary value that was given by
the financial institution to the trusted third party. If a financial institution needs to
repeat the KYC process, this value is set to zero. Otherwise, this value follows equation
and the financial institution can start operating with the customer upon completion
of this flow. Note that Corda at this point does not operate with a currency that could

Chapter 3. Centralized Corda-based KYC system

Bank

¥

Retrieve appropriate
FirstRequest input
state based on its
unigue 1D
Build Tx2
(specify customer
properties)
¥
)) Customer
Verify & sign the
transaction
L Send partially signed Tx2
Verify & Sign the
transaction
Send back fully signed Tx2 J
v v
Motary double- End

spending check

Commit transaction

End

22

Figure 3.6: AccomplishKYCFlow initiated by the FI when it records the result of the

KYC process on a ledger shared with the customer.

Chapter 3. Centralized Corda-based KYC system 23

Customer

v

Initiate Flow

'

Decide randomly
(with probability p)
whether KYGC should
be repeated

h 4

Build Tx3 (contains
MonetaryState and
RequestState output
states)

'

Verify & sign the
transaction

Bank

L Send customner-signed Tx3

Verify & Sign the

transaction
Send back bank- and
customer-signed Tx3 ’J
v v
Retfrieve transaction End
TTP
L Send Tx3 signed by Bank & Customer |
Verify & Sign the
transaction
Send back fully-signed Tx3]
‘ v
Motary double-
spending check End

Commit transaction

¥

End

Figure 3.7: RequestFlow initiated by the customer when they would like to open a bank
account at a financial institution after having been onboarded by at least one other FI.

Chapter 3. Centralized Corda-based KYC system 24

RequestContract RequestContract KYCContract

state state state
wvalidation validation validation
Tx3 Tx4
%) » RequestState RequestState KYCState
Customer, Customer, Customer,
Bank Bank Bank
MonetaryState Bank, Customer
Bank, TTF
Customer, Bank, TTP

state
validation

MonetaryContract

Figure 3.8: A detailed view of Tx3 and Tx4.

be easily sent between the two parties. Hence, MonetaryState rather presents that the
TTP is now an owner of a state that was issued by the financial institution and has a
specified monetary value.

If Bank X has to repeat the KYC process, it executes the process based on documents
the customer supplied in RequestFlow. When Bank X accomplishes this task, it ini-
tiates RepeatKYCFlow to record the result of this process on the ledger it shares with
the customer. Repeating the KYC process and realizing RepeatKYCFlow present steps
I and 3 in figure RepeatKYCFlow has the same structure as AccomplishKYCFlow
with the exception that RepeatKYCFlow produces a transaction of format Tx4 illus-
trated in figure [3.8] Tx4 consumes input state of type RequestState, as this flow is a
continuation of a business process that initiated with the RequestFlow.

ShareCostFlow is initiated by the TTP to distribute the fee it received from Bank X
between the financial institutions that executed or repeated the KYC process for the
customer. It simulates step 5 in figure [3.2] The flow always has two required signers -
the TTP and the financial institution that receives a part of the fee from the TTP. The
flow has no input states and has a single output state of type MonetaryState which
defines that the recipient financial institution is now the owner of a certain monetary
value previously owned by the TTP.

The KYC process is a subject to regulations which might change over time. When this
occurs, the process might have to be updated. Similarly, certain jurisdictions require
financial institutions to revisit the process within a certain time period (e.g. every six
months in China). For this purpose, we created UpdateKYCF low that is used by a finan-
cial institution when it requires to update the process for a customer. The flow follows
the structure of AccomplishKYCFlow and RepeatKYCFlow but produces a transaction

Chapter 3. Centralized Corda-based KYC system

25

HequestState

MonetaryState

- String customerld

- Party customer

- Party bank

- boolean result

- double repeatProbability
- double singleCost

- double totalCost

- int numberOfExecutions
- int numberOfinstitutions
- boolean repeatKYC

- SecureHash docsHash

- Uniqueldentifier stateld

Figure 3.9: A detailed view of RequestState and MonetaryState.

state
validation

- double value

- String customerld
- Party issuer

- Party receiver

- Unigueldentifier stateld

state
validation

Tx5

KYCState

A 4

KYCState

Customer,
Bank

Customer,
Bank

Bank, Customer

Figure 3.10: A detailed view of Tx5 created in UpdateKYCFlow.

Chapter 3. Centralized Corda-based KYC system 26

which consumes KYCState in the input and produces an updated version of the state
in the output. This transaction (Tx5) is portrayed in figure [3.10] Tx5 needs to be only
signed by the financial institution as the process might be updated or refreshed without
the awareness of the customer.

3.3 Evaluation

The major benefit of the centralized Corda-based KYC system is that it meets the pri-
vacy requirements specified in section [I.4] The first privacy condition, regarding the
customer’s documents and other confidential information, is preserved due to the point-
to-point communication and the use of non-validating notaries. This private commu-
nication ensures that when a transaction between two parties is made, then any attach-
ments, input and output states of this transaction are exclusively accessible by the two
parties. The non-validating notaries only have access to the references of the input
states to check for double spending. The actual input and output states, as well as the
attachments, are hidden from the notaries.

The second privacy condition is fulfilled due to operating on a private blockchain net-
work that has a doorman service. The third and fourth privacy conditions are met
due to using the point-to-point communication between financial institutions and their
customers, and due to letting a trusted third party distribute the fee between financial
institutions that executed or repeated the KYC process for a customer. This prevents a
financial institution from knowing which customers the other institutions operate with.

The robustness property is preserved by requiring financial institutions to probabilisti-
cally and independently repeat the KYC process. The digital profile of the customers
is preserved by using the transaction states. The main downside is that this system
requires a trusted third party to maintain proportionate sharing of KYC costs between
the financial institutions.

The system uses non-validating notaries by default. This is sufficient to prevent double-
spending. The denial-of-state attack should not be a real threat as the malicious party
that exploits this vulnerability is traceable and would face legal repercussions. Option-
ally, if the TTP is fully trusted, validating notaries could be used instead. We do not
recommend this, however, as this would give the notaries (i.e. the regulator or a private
company) a full access to the input and output states of transactions, as well as access
to any attachments. This level of access highly exposes confidential customer data that
should only be given if the trusted third party is fully reliable.

Chapter 4

Decentralized Corda-based KYC
system

This Corda-based KYC system is called decentralized because it requires no involve-
ment of a trusted third party in the Corda network.

4.1 Design

The decentralized Corda-based KYC system is in many aspects the same as the central-
ized system outlined in section |3| Figure [3.1|that captures how a customer approaches
the first financial institution where they would like to open a bank account equally
applies to this decentralized system. The difference occurs when the customer ap-
proaches another financial institution (Bank X) and this institution needs to pay a fee
to equally distribute the onboarding cost between all financial institutions operating
with the customer.

Instead of paying the fee to an intermediary trusted third party, Bank X directly dis-
tributes the fee in an equal manner between the financial institutions that executed or
repeated the KYC process for the customer. Subsequently, this maintains the onboard-
ing cost fairly shared between all financial institutions operating with the customer,
including those that did not execute or repeat the KYC, as we showed in our previous
work. The fee Bank X pays is specified by equation Each financial institution that
executed or repeated the KYC process for the customer receives from Bank X an equal
share of the fee specified by equation[I.2] Figure 4.T|outlines this process.

To provide a fully decentralized system, the notary service should be provided directly
by the financial institutions. In order to avoid a breach of the third and fourth privacy
conditions, the notary service for a transaction between a customer and a financial in-
stitution should be provided by the financial institution. The notary of a transaction
between two financial institutions should be either (or both) of the two financial insti-
tutions. If this is fulfilled, the notaries can be validating. Otherwise, the notaries have
to be non-validating.

27

Chapter 4. Decentralized Corda-based KYC system 28

I. Probabilistically

..................................... : repeat KYC)

1. Customer documents & basic ' a A. Store r;ucilot?‘la\:;ggggmems n Bank X
KYC parameters . y .“ """""""""""""""""""" database
3. Create KYC state defining result : 2. Store customer -
i ofthe process & basic parameters l l l documents in vault
e H —————————»| BankX

Customer e e | — et
A Distributed ledger between Customer & Bank X

Bank X

4. Distribute the fee
between banks that

Alrea
dy executed KYC

operating
together

Banks that executed or repeated KYC

Corda network

Figure 4.1: The customer approaches another financial institution - Bank X - that di-
rectly redistributes the fee between the financial institutions that executed the KYC to
equally share the onboarding cost.

4.2 Implementation

The decentralized Corda-based KYC system consists of seven flows, six of which are
the same as in the centralized system introduced in section [3| The first difference is in
DecentralizedRequestFlow, which is an adapted version of RequestFlow that op-
erates with a decentralized form of the request state (DecentralizedRequestState).
The second difference is in how ShareCostFlow is applied to share the onboarding
cost.

The process of approaching and getting onboarded by the first financial institution
remains the same as in the centralized system from chapter It is presented by
FirstRequestFlow and AccomplishKYCFlow whose implementations remain iden-
tical.

A customer commences DecentralizedRequestFlow when they approach a finan-
cial institution (Bank X) where they would like to open a bank account after having
been onboarded by at least one other FI via the decentralized Corda-based KYC sys-
tem. This situation corresponds to step 1 in figure This flow, depicted in figure
4.2 flows between the customer and the financial institution and builds transaction
Tx3pecentr. 1llustrated in figure 4.3] This transaction consumes no input states as it
simulates the request initiated by the customer without prior interaction with the fi-
nancial institution. The transaction has to be signed by the customer who initiates
this request flow and by the financial institution. Upon signing the transaction, the FI
acknowledges the customer’s request to be onboarded. The transaction has a single
output state of type DecentralizedRequestState. The state is an augmented ver-

Chapter 4. Decentralized Corda-based KYC system 29

sion of RequestState that contains an additional key property - X.500 identities of
all financial institutions that previously executed or repeated the KYC process for the
customer. The X.500 standard reveals an organisation’s name, the city and country it
1s registered in. This list is imperative for sharing the total cost incurred by onboard-
ing the customer. If it wasn’t supplied and Bank X would not require to repeat the
KYC process, it could onboard a client without paying any fee and doing any verifica-
tion, benefiting from the system at the expense of financial institutions that previously
verified the customer.

Note that unlike Tx3 from figure Tx3pecentr. dO€s not contain any MonetaryState
in the output. This is due to the following reason: assume the financial institution
approached by the customer is called Bank X and it is the Nth institution the cus-
tomer approached. If the probability of repeating the KYC process is p, then there are
K ~ 1+ (N — 1)« p institutions that either executed or repeated the KYC process for
this customer. The one comes from the first financial institution that unconditionally
had to execute the KYC process, and the following N — 1 institutions had to repeat
it with probability p. We can see that K grows as the customer operates with more
financial institutions and the probability of this process is set higher. Given that in
this decentralized system Bank X needs to distribute the fee between all K financial
institutions, it would need to create a transaction that would gather signatures from all
K financial institutions. Obtaining a signature from each financial institution might
become cumbersome when K is relatively large and slow down the customer’s request
to be onboarded. The monetary states were therefore not created directly in transaction

TX3pecentr.-

To keep the system proportionate and distribute the fee, Bank X would initiate flow
ShareCostFlow. This is a simple flow between Bank X and Bank J, where J €
{A,...,K}, that is initiated by Bank X and presents a monetary transfer of certain value
from Bank X to Bank J. The flow needs to be executed K time and each of the K fi-
nancial institutions receives an amount of money prescribed by equation [[.2l When
ShareCostFlow is executed between Bank X and Bank A, transaction TxA illustrated
in figure is committed to the ledger shared by the two financial institutions, sig-
naling Bank A is now the owner of a monetary state of a certain value that was pre-
viously owned by Bank X. The same process applies to all institutions Bank J where
Je{A,...,K}.

The use of an additional flow for the monetary transfers ensures that the request made
by the customer, as well as the cost distribution between the financial institutions,
cannot be put to a halt by having a single financial institution delayed with signing a
transaction.

The rest of the flows and transactions work the same way as described in section [3.2]
Indeed, the execution of the KYC process is otherwise identical and the only difference
is the sharing of the total cost incurred by this process.

Chapter 4. Decentralized Corda-based KYC system 30

Customer

v

Initiate Flow

!

Decide randomly
(with probability p)
whether KYC should
be repeated

l

Build TX3pecentr. (CONtains

DecentralizedRequestState
output state)

!

Verify & sign the

transaction Bank
Send customer- ;
L signed TX3pecentr. '

Verify & Sign the
transaction
Send back bank- and

customer-signed Tx3pecentr. J
i v

Notary double- End

spending check

l

Commit transaction

¥

End

Figure 4.2: DecentralizedRequestFlow initiated by the customer when they would
like to open a bank account at a financial instituion after having been onboarded by at
least one other FI.

Chapter 4. Decentralized Corda-based KYC system 31

RequestContract

state
validation

Tx3Decentr.

%)

h

RequestState

Customer,
Bank X

Customer, Bank X

Figure 4.3: A detailed view of Tx3pecenr.

TxA

%)

h 4

state
MonetaryState veldsticn MeonetaryContract
Bank X, Bank A

Bank X, Bank A

TxK

¥

%)

state
MaonetaryState validation MaonetaryContract
Bank X, Bank K

Bank X, Bank K

Figure 4.4: Transactions created by Bank X to share the cost of onboarding a customer.

Chapter 4.

Decentralized Corda-based KYC system

Bank A | Bank B | Bank C | Bank D | Bank E
Customer 1 - - 1 - -
Customer 2 1 2 5 4 3
Customer 3 - - 1 - -
Customer 4 - 1 2 3 4

Table 4.1: A matrix view of the customer and financial institutions they operate with. The
numbers indicate in which order a customer started operating with a financial institution.
The bold numbers signal that the financial institution executed or repeated KYC. The
order was chosen arbitrarily.

4.3 Evaluation

Similar to the centralized system, the robustness property is retained by requiring fi-
nancial institutions to probabilistically repeat the KYC process. The customer profile
is sustained via the input and output states in transactions. The first privacy condition is
fulfilled due to the point-to-point communication used for the exchange of documents
and the result of the KYC process between a financial institution and a customer. The
second privacy condition is satisfied due to the doorman. The doorman could be a
consortium of financial institutions operating on the ledger to avoid involvement of a
third party. A customer does not reveal to the doorman the financial institution(s) they
would like to operate with, implying no violation of the privacy conditions we outlined.

The core benefit of this decentralized system is that it minimizes the involvement of a
trusted third party (i.e. the regulator or an external company) in the network. Involving
an external company or the regulator would incur additional cost and could make the
process ponderous. The aim of the distributed ledger technology is to make KYC
temporally and financially more efficient. Minimising the involvement of a TTP is
therefore desirable. In this decentralized scenario, the TTP is no longer needed for
the equal distribution of the costs associated with onboarding customers. The cost
sharing would be accomplished by the financial institutions themselves by transferring
the monetary states via the Corda network.

The downside of this decentralized system is a partial breach of the fourth, and a mini-
mal breach of the third privacy conditions we outlined in section This stems from
sharing the customer onboarding cost via Corda network, where the identity of nodes
is well known, directly by the financial institutions. When a financial institution pays a
fee for onboarding a customer, it has to know the list of financial institutions that either
executed or repeated the KYC process. This reveals that these financial institutions
also operate with the same client. Thus, when a financial institution is about to on-
board a new client, it knows of all other financial institutions that executed or repeated
the KYC process for this customer.

To show how much information the financial institutions reveal between each other,
consider the scenario in figure Five financial institutions are operating with four
customers. A blue line indicates that a customer operates with a financial institution
and the institution either executed or repeated the KYC process for this customer. A
black line indicates that a financial institution operates with a customer but neither

Chapter 4. Decentralized Corda-based KYC system 33

i o - - ..

i I I I I

Bank A Bank B Bank C Bank D Bank E
T A A A A A A J
I | (—f .
l L l l l l \u'l v I

Customer 1 Customer 2 Customer 3 Customer 4

Figure 4.5: A situation depicting 5 financial institutions operating with 4 customers that
were onboarded via the Decentralized Corda-based KYC system. A blue line between a
financial institution and a customer indicates that the Fl either executed or repeated the
KYC process for the customer. A black line indicates that a financial institution did not
have to execute or repeat the KYC process, but only had to pay a fee to start operating
with the customer.

executed, nor repeated the KYC process for the customer. Such an institution had to
pay a fee to operate with the customer. Assume that the order in which the financial
institutions started operating with the customers is given by table 4.1} The following
information is then available to the financial institutions:

* Bank A knows that Bank B, Bank C, and Bank E operate with Customer. Bank A
knows this because it receives a fee from these Fls so that they can start operating
with the customer. It does not know of Bank D because it does not receive a fee
from this FI. Bank D has to repeat KYC for the customer which already incurs a
cost for the institution.

e Bank B knows that (1) Bank A executed KYC for Customer 2 and (2) Bank C
and Bank E operate with Customer 4. It knows (1) because Customer 2 supplies
a list of financial institutions that verified the customer to Bank B. This list at

this point only contained Bank A. It knows (2) because it received a fee from the
Fls.

e Bank C knows that (1) Bank A executed KYC for Customer 2 and (2) Bank B
executed KYC for Customer 4. It knows (1) because Customer 2 provides it with
the list of FIs that executed/repeated KYC, which contained only Bank A when
the customer approached Bank C. It knows (2) for the same reason - Customer
4 tells Bank C that he/she operates with Bank B so they can fairly share the
onboarding cost.

* Bank D knows that (1) Bank A executed KYC for Customer 2, (2) Bank B
executed KYC for Customer 4, and (3) Bank E operates with Customer 4. It

Chapter 4. Decentralized Corda-based KYC system 34

knows (1) and (2) because the customers share this information with the institu-
tion when they make a request to start operating with Bank D. It knows Bank E
operates with Customer 4 because it receives a part of the onboarding cost from
the institution.

* Bank E knows that (1) Bank A executed KYC for Customer 2 and (2) Bank B
and Bank D executed and repeated KYC for Customer 4 respectively. Both facts
are revealed to Bank E when it is approached by the customers so that Bank E
can make a payment to the financial institutions to share the onboarding cost.

Let us define the following terminology - when we say that Bank I reveals its identity
to Bank J with respect to Customer C, we mean that Bank J now knows that Bank I
operates with Customer C. Assume Bank X is a financial institution approached by
Customer C. The following rules then specify how, with respect to Customer C, the
identity of Bank X is revealed to other financial institutions, and how other institutions’
identities are revealed to Bank X, based on (1) when Bank X is approached by the
customer and (2) whether it has to repeat KYC for the customer:

1. Bank X is the first financial institution approached by the customer. Bank X’s
identity is revealed to all financial institutions the customer will operate with in
the future and Bank X knows identities of all these institutions.

2. Bank X repeats KYC for a customer when the customer has been verified by a
non-empty set M of financial institutions, and operates with a non-empty set P of
financial institutions. Note that M is a subset of P. The identity of Bank X is then
revealed to each financial institution in set M, and to any financial institution that
starts operating with the client in the future. Similarly, Bank X knows identities
of all financial institutions in set M, and of any financial institutions the customer
operates with in the future.

3. Bank X starts operating with the customer, without having to repeat KYC, when
the customer has been verified by a non-empty set M of financial institutions,
and operates with a non-empty set P of financial institutions. Note that M is a
subset of P. The identity of Bank X is then revealed to all financial institutions
in M and Bank X knows identities of all institutions in M. It neither knows of

future institutions the customer operates with, nor the institutions know of Bank
X.

We cannot thwart that the first financial institution executing KYC for a client will
know of other institutions operating with the client and vice versa. However, we can
minimize breach of the fourth privacy condition when a financial institution is in situ-
ation 2. or 3. by reducing set M. This can be achieved by decreasing the probability
p of repeating the KYC process. Two extremes are: (1) p = 0 implying M = 0, and
(2) p =1 implying M = P. The latter scenario completely breaches the fourth privacy
condition. Note that the smaller the probability p is, the less robust and more brittle
the KYC system becomes. Hence, this decentralized system introduces a compromise
between robustness and breach of the fourth privacy condition.

The third privacy condition is fulfilled if a node on Corda network does not know
any customers a financial institution operates with. Hiding this information from cus-

Chapter 4. Decentralized Corda-based KYC system 35

Bank A
customers

Bank A
customers

Bank B
% customers $

R

Lower interconnectedness Higher interconnectedness

Bank B
% customers

Figure 4.6

tomers in the network is trivial. A customer is always only involved with transactions
he/she shares with a financial institution and has no way to learn about institutions
other customers operate with. Hiding this information from other financial institutions
is more involved. This condition can be fully met only if the fourth condition is ful-
filled. If Bank X is a financial institution that executes/repeats KYC for a customer, all
FIs operating with the customer in the future will know that Bank X operates with the
customer too and vice versa. This means the financial institutions would know of at
least one custoemr Bank X operates with. However, financial institutions operate with
thousands to hundreds of millions of clients. We do not quantify the extent to which
this condition is fulfilled, but for each financial institution, it intuitively depends on
how many of its customers operate with multiple financial institutions, and how many
institutions each such customer operates with, out of all of its customers.

Figure 4.6| gives an example of Corda network with three financial institutions and two
different scenarios - the first has a lower interconnectedness of customers between the
financial institutions and the second has a higher level of customer interconnectedness.
In both scenarios, Bank B can identify a higher proportion of customers of Bank C
than Bank A can identify. In the second scenario, the financial institutions can identify
a higher proportion of the customers the other institutions operate with. We can see
that breach in the third privacy condition is not constant across the institutions. The
third privacy condition is fulfilled to a larger extent for Bank A than it is for Bank B. In
the second scenario with higher customer interconnection, Bank C is almost entirely
exposed to Bank B.

In our previous work, we outlined that financial institutions might feel skeptical about
using a KYC system in which a financial institution does not know who executed the
KYC process for a customer. Consider a scenario in which Bank X is a large financial
institution with a strong and long reputation on the market. When Bank X wants to
onboard a customer who operates with one other financial institution - Bank A - and
Bank X does not need to repeat the KYC process, then it solely relies on how Bank A

Chapter 4. Decentralized Corda-based KYC system 36

executed the process for this customer. However, to meet the fourth privacy condition,
Bank X does not know that Bank A was the financial institution that executed the KYC
process for this customer. From the viewpoint of Bank X, it is only known that a single
financial institution executed KYC for this customer. Our centralized system proposed
in 3| that fulfills the privacy conditions also inherits this flaw.

The perk of breaching the fourth privacy condition and revealing the identity of finan-
cial institutions that previously executed or repeated KYC for a customer (Bank A) to
a financial institution that is about to onboard this customer (Bank X), is that Bank X
now knows how much it can rely on the result of this process. If Bank X deems Bank A
untrustworthy, it can execute additional controls of the customer outside the distributed
ledger system to mitigate the chance of onboarding a malicious customer. If Bank X
considers Bank A a reliable financial institution, then it could take full advantage of
the distributed system, share the onboarding cost with Bank A and start conducting
business with the customer straight away.

Chapter 5

Final remarks

5.1 Future work

The first potential step in future work could be to build a full CorDapp with a graphical
interface so that the financial institutions and customers would not need to interact via
a command line.

The second field for future work is to fully utilise the customer’s digital profile. The
distributed ledger technology is currently used to share the work and costs associated
with onboarding a new client. However, it is only partially used for the execution of the
process itself. It can be used for customer identification program, but some other as-
pects of KYC, including the negative news check or the politically exposed person scan
remain outside the ledger. The customer’s digital profile includes the customer’s docu-
ments used for the onboarding process, information on how many financial institutions
operate with the customer, the probability of repeating KYC for the customer, etc. A
full list of properties this digital profile involves is captured in figure[3.5] Th customer
profile in our previous work could not store further information about the customer as it
was pseudonymously presented on a central distributed ledger accessible by any party
on the blockchain network. Had it stored whether the customer is a politically exposed
person, the customer’s country of taxation, residence and so forth, the pseudonymous
profile could quickly reveal the real customer’s identity to any financial institution and
customer operating on the permissioned blockchain platform. Therefore, the depth of
information captured by the customer profile had to be minimized.

The point-to-point communication on Corda network opens doors for sharing confi-
dential information between two parties without revealing this information to anyone
else. We broadened the customer profile with the customer documents. In the future,
the customer profile could be further expanded with other risk assessment parameters,
including geographical risk (e.g. customer’s country of residence, operation, taxation,
etc.), risk associated with account type, industry, occupation, watch list check, and
many more [24]. Designing this profile should be accompanied with advice from pro-
fessionals in the financial industry and legal representatives who have expertise in the
procedural and legal background of this process. An enhanced customer profile would
enable financial institutions to minimize the off-ledger work required in KYC and fully

37

Chapter 5. Final remarks 38

utilize the distributed ledger technology for onboarding new customers. The platform
could eventually be used for real-time sharing of suspicious customer behavior.

Should structured data be gathered about the customers, machine learning could be
leveraged to predict the level of risk the customer presents at the onboarding state. The
depth of the due diligence and enhanced due diligence a financial institution might
carry out could be established based on this risk level. Using machine learning for
credit risk analysis is now a common practice and has been considerably reviewed by
existing literature [[15, 1,16, 20]. The use of machine learning for predicting the level of
risk a customer presents at the onboarding stage is a new phenomenon and it is getting
attention as rule-based models are getting replaced by models leveraging artificial in-
telligence [5,27]]. The literature exploring the use of machine learning for onboarding-
risk assessment is limited and based on the current KYC scheme, which does not con-
sider potential benefits the distributed ledger technology could bring. A significant
benefit our proposed systems bring is the probabilistic repetition of the KYC process.
The probability of repeating KYC for a customer could be established based on the
level of risk the customer presents. A high-risk customer could be associated with a
higher probability of repeating the KYC process. This would ensure that as high-risk
customers would operate with more financial institutions, the customer would be in-
dependently verified several times, increasing the chances of exposing a potentially
malicious customer.

5.2 Conclusion

A thorough KYC process is the first step to prevent anti-money laundering and fi-
nancing of terrorist activities. The process has been under a lot of scrutiny with new
regulations coming up every few years. Consequently, the process has become expen-
sive and time-consuming, resulting in low customer satisfaction. The distributed ledger
technology has been proposed to address these inefficiencies by sharing the work and
the cost behind this process between financial institutions via the distributed ledger.

In our previous work, we proposed a KYC system that leveraged the DLT and in-
troduced a probabilistic repetition of the KYC process. This made the system more
robust and increased chances of exposing malicious customers - false negatives that
if facilitated by a financial institution, they might later cause the institution billions in
fines [26]. However, we neglected one core attribute a DLT-based KYC system should
provide for - privacy.

In this work, we utilized the probabilistic repetition of the KYC process to keep its
robustness and put a heavier focus on the privacy aspect. We defined four privacy
conditions, each being of distinct importance, that cover the privacy of financial insti-
tutions and customers operating via a distributed ledger platform. We delivered design
and implementation on Corda network of two distinct systems - a centralized one that
involved a trusted third party in the form of a regulator or external company, and a fully
decentralized one that would not require any collaboration with a third party.

The two systems present a natural trade-off between involvement of a third party and
privacy. The centralized system meets all privacy conditions but requires a synergy

Chapter 5. Final remarks 39

between the financial institutions and a trusted third party. This might increase the
costs and bureaucracy. The fully decentralized system requires no involvement of a
third party, but only fulfills the first two privacy conditions. It partially breaks the third
and the fourth privacy condition. We saw that the last two privacy conditions are not
fully breached and the extent of the leak of information depends on the probability
of repeating KYC for customers, and the interconnectedness of customers between
financial institutions. The former introduces a compromise between robustness and
breach of the fourth privacy condition. Under certain settings, such as when the bank-
ing clients operate with several banks and would do not mind that these banks know
of each other, implying the fourth privacy condition would not be relevant, this system
might be desirable.

Bibliography

[1] Majid Bazarbash. Fintech in financial inclusion: machine learning applications
in assessing credit risk. 2019.

[2] Richard Gendal Brown, James Carlyle, [an Grigg, and Mike Hearn. Corda: an
introduction. R3 CEV, August, 1:15, 2016.

[3] Vitalik Buterin et al. A next-generation smart contract and decentralized applica-
tion platform. white paper, 3(37), 2014.

[4] Colin Powell Charles Freeland. Customer due diligence for banks. 2001.

[5] Ting-Hsuan Chen. Do you know your customer? bank risk assessment based on
machine learning. Applied Soft Computing, 86:105779, 2020.

[6] Jacky CK Chow. Analysis of financial credit risk using machine learning. arXiv
preprint arXiv:1802.05326, 2018.

[7] Corda. Documentation and training for corda developers and operators, Accessed
on April 1, 2021.

[8] Kelvin Dickenson. The future of kyc: How banks are adapting to regulatory
complexity, 2019.

[9] Matis Drgon, Lamprini Georgiou, and Aggelos Kiayias. Robust kyc via dis-
tributed ledger technology. 2020.

[10] FATF. Fatf 40 recommendations, 2004.
[11] FCEN. History of anti-money laundering laws, Accessed on April 1, 2021.

[12] FDIC. Bank secrecy act, anti-money laundering, and office of foreign assets
control, 1970.

[13] Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper, 2016,
2016.

[14] Tommy Koens, Scott King, Matthijs van den Bos, Cees van Wijk, and Aleksei
Koren. Solutions for the corda security and privacy trade-off: Having your cake
and eating it. 2020.

[15] Jochen Kruppa, Alexandra Schwarz, Gerhard Arminger, and Andreas Ziegler.
Consumer credit risk: Individual probability estimates using machine learning.
Expert Systems with Applications, 40(13):5125-5131, 2013.

40

Bibliography 4

[16] YVONNE Lootsma. From fintech to regtech: The possible use of blockchain for
kyc. Fintech To Regtech Using block chain, 2017.

[17] Debajani Mohanty. Corda architecture. In R3 Corda for Architects and Develop-
ers, pages 49-60. Springer, 2019.

[18] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[19] Vimalkumar Pachaiyappan and R Kasturi. Block chain technology (dlt technique)
for kyc in fintech domain: A survey. International Journal of Pure and Applied
Mathematics, 119(10):2108, 2018.

[20] Trilok Nath Pandey, Alok Kumar Jagadev, Suman Kumar Mohapatra, and Satchi-
dananda Dehuri. Credit risk analysis using machine learning classifiers. In 2017

International Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), pages 1850-1854. IEEE, 2017.

[21] José Parra-Moyano and Omri Ross. Kyc optimization using distributed ledger
technology. Business & Information Systems Engineering, 59(6):411-423, 2017.

[22] José Parra-Moyano, Tryggvi Thoroddsen, and Omri Ross. Optimized and dy-
namic kyc system based on blockchain technology. Available at SSRN 3248913,
2018.

[23] Thompson Reuters. Global know your customer survey, 2017.
[24] Oracle Financial Services. Know your customer risk assessment guide, 2014.

[25] Prince Sinha and Ayush Kaul. Decentralized kyc system. International Research
Journal of Engineering and Technology (IRJET), 5(8):1209-1210, 2018.

[26] Oliver Smith. Record-breaking fines on banks for kyc/aml non-compliance, Jan-
uary 15, 2021.

[27] Anuraj Soni and Reena Duggal. Reducing risk in kyc (know your customer) for
large indian banks using big data analytics. International Journal of Computer
Applications, 97(9), 2014.

	Introduction
	Know Your Customer Process revisited
	Procedural background
	Cost-sharing
	Limitations of previous work and objective of this project

	Corda blockchain
	Technological background
	Motivation for using Corda for KYC
	Drawbacks of using Corda for KYC

	Centralized Corda-based KYC system
	Design
	Implementation
	Evaluation

	Decentralized Corda-based KYC system
	Design
	Implementation
	Evaluation

	Final remarks
	Future work
	Conclusion

	Bibliography

