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Abstract
Multicore architectures are pervasive within the computing industry, demanding that
computer science students master a thorough understanding of the underlying theoret-
ical concepts. However, while the open-source nature of prominent operating systems
such as Linux offers the potential for students to learn about the internals of real op-
erating systems, the complexity of the codebases make them extremely difficult to
understand, particularly for novice programmers. Furthermore, the intricacy of such
operating systems makes experimenting with new performance improvements almost
impossible without introducing difficult-to-detect bugs. This project solves both of
these problems by adding multicore processing support to a research operating system,
InfOS. By redesigning InfOS specifically with multiple cores in mind, we produce a
well-structured, modular implementation that can be used as a valuable teaching tool
to help undergraduate students grasp multicore concepts. Furthermore, we produce a
research platform for investigating intelligent scheduling approaches, and discuss how
this platform will be used for a future research paper on cache-aware scheduling.
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Chapter 1

Introduction

For decades, Moore’s law scaling has predicted exponential advancements in comput-
ing performance. However, with Moore’s law coming to an end and power consump-
tion becoming an increasingly constraining factor, chip makers have turned to multi-
core architectures. A multicore processor has two or more processing units, or cores,
on the same chip, and can provide performance improvements without unsustainable
power consumption. In 2001, IBM released the POWER4, the industry’s first server
chip with two cores [41], then in 2005 came the Athlon 64 X2, AMD’s first desk-
top dual-core processor. Today, the multicore trend shows no signs of slowing down.
The Sunway TaihuLight supercomputer has 256 cores per processor chip, amounting
to over 10 million cores across the entire system [4]. With multicore architectures
being so pervasive in computing, it is especially important for students to develop a
good understanding before entering the industry. However, multicore concepts are not
easy to grasp, and parallel programming is particularly challenging. Expert program-
mers must explicitly divide tasks into threads that can be run concurrently, and avoid
synchronisation issues while doing so [39].

It is possible for the operating system to simplify the programmer’s task by present-
ing a clean, well-structured, multicore interface; however, most operating systems do
not. In fact, most modern operating systems are extremely complex and difficult to
understand. For example, the Linux kernel has evolved over a period of thirty years
into a project comprising over 27.8 million lines of code [14] with around six thousand
developers [15]. While the open-source nature of Linux makes it a good educational
resource, with all source code being publicly available on GitHub [17], the large and
unwieldy nature of the project makes it almost impossible for a novice programmer
to understand. The code is not particularly readable, and demands a good mastery
of low-level technical concepts such as pointers. In essence, while being a freely-
accessible example of an established operating system, Linux is not particularly useful
as a teaching tool.

Furthermore, as researchers continue searching for performance improvements, new
scheduling policies have been developed that utilise system resources more efficiently
[44]. However, the extensibility of traditional monolithic operating systems is limited,
meaning that these policies rarely make their way into production operating systems.

1



Chapter 1. Introduction 2

One study proposed that a modular scheduler could offer a solution, combining a mul-
titude of factors such as resource contention, cache usage and workload balancing
among cores. However, once an operating system is established, a modular redesign is
not a feasible option. As an illustrative example, the cost of redeveloping Linux was
estimated in 2011 at $3 billion USD [26], and again in 2018 at $14.7 billion USD [16].

InfOS [58] is a research operating system that can provide a solution. InfOS was
written entirely from scratch in C++ following an object-oriented design, and was de-
veloped precisely because modern operating system kernels like Linux are extremely
complex. InfOS is a valuable teaching tool that is used to help undergraduate students
to develop their understanding of operating system internals. InfOS currently only sup-
ports unicore processing, but being relatively lightweight in comparison to large-scale
and long-lived operating systems, InfOS presents a rare opportunity to redesign an op-
erating system specifically with multicore processing in mind. The object-oriented de-
sign of InfOS will extend naturally to support multicore processing in a well-structured
manner, and adding this support will develop InfOS further as a teaching tool. This can
also provide research advantages, since the scheduler can be designed in a modular way
that allows experimenting with new scheduling policies easily. This project makes the
following key contributions:

1. A well-designed, object-oriented multicore operating system that can be easily
understood by students.

2. A working operating system implementation that can be downloaded and booted
on real hardware by anyone.

3. A platform on which to build further research and experiment with performance
optimisations.



Chapter 2

Background

2.1 Unicore Limitations

Moore’s Law predicts that the number of transistors per integrated circuit doubles
roughly every two years [48, 49]. For decades, Moore’s Law scaling has correctly
predicted exponential advancements in computing performance, which has set a prece-
dent. However, this doubling cannot go on forever, and Moore’s law is coming to an
end [59]. Still, our expectations have been set, and so the computing industry has be-
gun to look to new ways of improving computing performance. This has ultimately
introduced two key issues.

2.1.1 The Power Wall

In a processor, the operations performed are governed by a system clock, with each
operation beginning on a pulse of the clock. These operations may include fetching
an instruction, decoding an instruction or performing an arithmetic operation. It fol-
lows that fundamentally, the speed of the processor is determined by the speed of the
clock, so chip manufacturers have historically improved performance by increasing
the clock speed [55]. The increased clock speed was achieved by shrinking the tran-
sistors, since smaller transistors can switch faster. Dennard scaling [37] suggested that
as transistors shrank, their power density stayed constant, meaning that a chip’s power
use should stay proportional to its area. This should have allowed circuits to operate
at higher frequencies without an increased power usage. However, this scaling rule
ignored transistor leakage, which aggregates with a growing number of increasingly
small transistors and drives up power consumption [35].

This breakdown of Dennard scaling meant that increasing the clock speed demanded
an increase in power, which was problematic. To illustrate, the digital workload of
mobile phones increases by an order of magnitude by every 5 years, demanding per-
formance improvement [61]. However, the dominant constraining factor is the limited
available battery power [61]. In larger applications such as servers and data centres, the
dominant constraining factor becomes running costs, which are driven up by excessive
power consumption. This has effectively defined a “power wall” [51]. Power consump-

3



Chapter 2. Background 4

tion has become a limiting factor, and the trend described above of ever-increasing
clock speeds is unsustainable [34].

2.1.2 Diminishing Returns

Performance may also be improved by increasing the chip’s logic complexity. For
example, superscalar processors use instruction-level parallelism to improve perfor-
mance. That is, they contain multiple instances of execution units such as the Arith-
metic Logic Unit (ALU). Each execution unit is not a separate processor, but simply
an additional resource of the existing processor. This allows for multiple instructions
to be executed in parallel within the same processor, increasing throughput [55].

However, there are diminishing returns here: Pollack’s rule states that the performance
increase delivered by microarchitectural improvements is roughly proportional to the
square root of the increase in logic complexity [36]. In other words, doubling the
logic in the processor will result in roughly a 40% increase in performance. We can
see this trend by looking at yearly chip performance improvement. In the 1990s, chip
performance was improving by 60% each year, but this slowed to 40% each year be-
tween 2000 to 2004, and slowed again to 20% in 2004 [38]. Clearly, increasing the
complexity of processor designs is a poor investment.

2.2 Towards Multicore

A multicore architecture can address the two key issues discussed above. Here, we
make a distinction between multiprocessor and multicore architectures, with the for-
mer definition being broader and including systems with two or more processing units,
which may or may not reside on the same chip. A multicore architecture has two
or more processing units, called cores, residing on the same chip. Differently to su-
perscalar processors, each core has all the components of an independent processor,
including registers, control unit, ALU, instruction pipeline and private L1 cache. The
cores also have access to a shared L2 cache, and increasingly, a shared L3 cache. Each
core appears to the operating system as a separate processor. Within this project, we
focus on multicore architectures only.

Performance growth can then come from increasing the number of cores rather than
the clock speed. Using multiple cores rather than one increasingly powerful core has a
slower growth in power consumption [34], meaning that in the case of mobile phones
constrained by battery power, the solution has to be multicore [61]. A multicore archi-
tecture also has the potential to provide a nearly linear performance improvement with
complexity. For example, two smaller processor cores instead of one monolithic core
can provide a 70-80% performance improvement, compared to the 40% mentioned
previously [36].

Chip manufacturers soon turned to multicore. In 2001, IBM released the POWER4,
the industry’s first server chip with two cores [41]. In 2005, AMD announced the
first dual-core Opteron, their server processor. A month later came the Athlon 64 X2,
AMD’s first desktop dual-core processor. Today, the multicore trend shows no signs of
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slowing down. The Fujitsu A64FX has 48 cores and powers the Fugaku supercomputer
[2], which was the fastest supercomputer in the world as of June 2020 [5]. The Sunway
TaihuLight supercomputer has 256 cores per processor chip, amounting to over 10
million cores across the entire system [4]. However, despite being prevalent, multicore
processing presents a number of challenges, discussed along with relevant technical
concepts below.

2.2.1 Instruction Set Architecture

An instruction set architecture (ISA) is an abstract model of a computer that defines
the instructions that must be supported by the processor. Examples include x86, Arm,
RISC-V and MIPS. A microarchitecture is the design of a particular processor, which
implements a specific ISA. Processors may have different microarchitectures, while
sharing a common ISA. For example, the AMD Athlon and the Intel Core processors
have entirely different microarchitectural designs, but both implement the x86 ISA
with only minor differences.

The ISA will sometimes present a multiple processor (MP) protocol, which defines
how the cores interact with one another. However, this is not always the case, and
notably the MIPS and RISC-V ISAs do not have mature MP protocols. This shifts the
decision about core interaction onto the operating system designer, adding complexity
to the design and development of the operating system. The Arm ISA does not have
a standardised MP protocol, and so the implementation is again left to the operating
system developer. Microsoft did propose a protocol in 2014, but this has not been
widely adopted. Instead, most developers use the Generic Interrupt Controller (GIC)
to interact with the cores.

The x86 ISA does define a MP initialisation protocol called the Multiprocessor Speci-
fication Version 1.4 [3]. The protocol defines two classes of processors: the bootstrap
processor (BSP) and application processors (APs). If one core requires action from
another core, it can send a special type of interrupt, called an interprocessor interrupt
(IPI). When the MP system is powered on, the system hardware dynamically selects
one of the processors as the BSP, and the remaining processors are designated as APs.
The BSP executes the BIOS’s bootstrap code and then the operating system initialisa-
tion code, while the APs wait for a sequence of IPIs from the BSP processor. The se-
quence, called an INIT-SIPI-SIPI sequence, consists of one Initialisation IPI followed
by two Startup IPIs, with delays throughout to allow the APs time to respond.

2.2.2 Core Organisation

Even with a MP protocol, there still remains the issue of how to organise multiple
cores. A homogeneous architecture consists of a number of processing cores of the
same microarchitecture and ISA. Conversely, a heterogeneous architecture consists of
processing cores of different microarchitectures, capabilities and perhaps ISAs, with
each core being suited to a certain subset of tasks.

Heterogeneous architectures can offer improved performance. To fully exploit the ben-
efits of multicore processing, software must be highly adapted to a parallel execution
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environment (discussed further in section 2.2.6). The programmer’s effort to parallelise
the program can be reduced if the underlying architecture promises faster execution of
the serial part of an application [57]. Consider, for example, a system with many sim-
ple cores to provide high parallel performance, and a few complex cores to ensure high
serial performance too [32].

Core diversity can also offer a greater ability to adapt to the demands of different appli-
cations, and running each application on the most appropriate core can increase energy
efficiency [42]. One notable example is the Arm big.LITTLE architecture [1], which
uses two types of processor. “LITTLE” processors are designed for maximum power
efficiency, whereas “big” processors are designed for maximum compute performance.
The big.LITTLE architecture is well suited to mobile devices such as smartphones and
tablets, since it is able to adjust to a dynamic usage pattern of processing intensity
while preserving battery life. Furthermore, with a heterogeneous architecture, cores
may even implement different ISAs. A multiple-ISA heterogeneous architecture has
the potential to outperform the best single-ISA heterogeneous architecture by as much
as 21%, while offering a 23% energy saving [62]. The Arm Thumb instruction set is a
subset of the most commonly used 32-bit Arm instructions, with every 16-bit Thumb
instruction having a corresponding 32-bit Arm instruction, allowing the processor to
switch between the two instruction sets during execution. This provides a concrete ex-
ample of a multiple-ISA heterogeneous architecture, where both traditional Arm and
Arm Thumb are supported, and cores may be operating in different modes at any given
time. However, while the benefits of heterogeneous architectures can clearly be seen,
they complicate matters for the operating system designer, since the operating system
must now select the most suitable core for a particular task.

2.2.3 Processes and Threads

We define a process to be a program in execution. A process has an associated set of
resources, including an address space, which is typically divided into multiple sections:

• Text section. The executable code.

• Data section. The global variables.

• Stack. Temporary storage for local variables and function arguments.

• Heap. Memory that is dynamically allocated during runtime.

Each process may also have multiple threads of control, allowing it to perform more
than one task at a time. For example, a word processor may assign one thread to man-
aging user input, and another thread to running the spell checker [53]. Some resources
are shared between all threads belonging to the same process, such as the text and
data segments, whereas other resources are exclusive to the thread. Such individual
resources include the stack and the thread context, which tracks the current program
counter, register values, runtime, thread state and so on. The thread state may be any
one of the following:

• Created. The thread is being created.
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• Running. The thread is currently executing instructions on a processor.

• Ready. The thread is ready to execute, but is waiting for an available processor.

• Blocked. The thread cannot execute, as it is waiting for some event, such as the
completion of an I/O transfer.

• Terminated. The thread has finished execution.

Operating systems typically define two separate modes of operation: user mode and
kernel mode, or unprivileged and privileged mode. This protects the system by des-
ignating instructions which have the potential to cause harm as privileged instructions
that can only be executed by the kernel. It follows that threads must also have a privi-
lege level, depending on whether they are executing in user space or in kernel space.

Here, we define the operating system’s unit of work to be the thread, though this defi-
nition may vary slightly elsewhere. In general, most threads can be described as either
I/O-bound or compute-bound. An I/O-bound thread spends more time asleep wait-
ing for I/O than doing computation, whereas a compute-bound thread generates I/O
requests infrequently and spends most of the time doing computation. In a typical
system, there are many threads active at a given moment in time, and the role of the
scheduler is to multiplex the processor among them. In particular, the processor should
be fully utilised, so if one thread becomes blocked for I/O, another ready thread should
be dispatched onto the processor. The scheduler should also ensure fairness where
possible, otherwise compute-bound threads may monopolise the processor and starve
I/O-bound threads of computation time. A non-preemptive scheduler will allow the
currently running thread to maintain control of the processor until it either blocks or
terminates, whereas a preemptive scheduler will interrupt a running thread after a given
time slice to allow another thread to run. The scheduler maintains a queue of ready
threads, and when a processor becomes available, it selects the next thread to execute.

2.2.4 Scheduling Policies

The decision of which thread to execute next is made by the scheduling policy. In the
case of a single core, there are many different algorithms that can be used to choose the
next thread to execute, such as first-come-first-served, round-robin or priority schedul-
ing. In the case of multiple cores, the problem becomes more complex, and there are
many design decisions to be made. The scheduler may maintain a system-wide ready
queue, or it may maintain a ready queue for each core. A system-wide ready queue
may be better for homogeneous architectures, but care must be taken to ensure that
the ready queue is not subject to race conditions (discussed further in section 2.2.5) if
multiple cores were to become available at the same time. Furthermore, this introduces
the issue of processor affinity. When a thread has been running on a specific core, that
core’s private cache will hold relevant data to that thread, so the thread will run faster
on that specific processor. In other words, the thread has an affinity for a particular
core. With a system-wide ready queue, if the thread were to become blocked, it would
be removed from the ready queue. When it later wakes up, it may be allocated to a
different core than the one it has an affinity for, causing a cache flush. The per-core
ready queue naturally solves the issue of affinity, and may be better suited to a hetero-
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geneous architecture. However, the scheduler must then have a way to decide which
core each task is most suited to. The scheduler must also undertake load balancing to
attempt to keep the workload balanced among all processors, since it would not be a
good use of a multicore system to have some processors sitting idle with empty ready
queues while others are overworked.

2.2.5 Synchronisation

With multiple threads executing concurrently and sharing data, if care is not taken,
the result of execution can be dependent on the particular order in which memory
accesses happen. This means that the result of execution is non-deterministic, leading
to errors that only appear intermittently. This is known as a race condition. Note that
if preemptive scheduling is used, race conditions are a problem even in the unicore
case. To see this, consider the case when one thread only partially completes execution
before it is interrupted and another one is scheduled. If they are operating on the
same data, the interleaving of operations may affect the final result. Adding multiple
cores into the system only exacerbates this problem further, since now, two threads
can access the same data in a true parallel fashion, and which one gets there first is
unpredictable.

The operating system must provide some method of synchronisation in order to guar-
antee the outcome of a particular execution. It can do this using the notion of a critical
section, which is the region of code where a thread is modifying shared data. Locking
primitives such as spinlocks and mutexes can be used to enforce the following: if a
thread wants to enter its critical section, it must wait until no other thread is executing
in its critical section. The implementation of these locking primitives relies on atomic
assembly instructions, that is, instructions that can be executed as one, uninterruptible
unit. If this is not the case, the locking primitives themselves may be subject to race
conditions. The x86 ISA provides these atomic instructions, and the C++ standard
library uses them to implement an atomics library.

2.2.6 Scalability

Another challenge is fully exploiting the performance improvements offered by multi-
core architectures. Amdahl’s law [30, 31] states that the potential speedup to be gained
by using multiple processors is bounded by the amount of program code that is inher-
ently sequential. That is, to fully exploit the benefits of multicore processing, software
must be highly adapted to a parallel execution environment, and this is not a trivial
task. Existing software contains a substantial amount of sequential code and must be
refactored to suit a parallel execution environment. Rewriting legacy code in a parallel
manner is incredibly difficult and time-consuming, and some must be left as it was
originally written to preserve the function [39]. Parallelising compilers initially looked
promising [43], but there has been a lack of success in automatic parallelisation. Tech-
niques for extracting parallelism automatically are still an ongoing area of research,
but are yet to be widespread [60]. Parallel programming from the outset is also chal-
lenging. Expert programmers must explicitly divide tasks into threads that can be run
concurrently and avoid synchronisation issues while doing so [39].
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This may lead to the rather pessimistic view that an investment in multicore processing
is not worth the returns. However, it is important to remember that the true performance
of a large multicore architecture can be fully exploited with a large parallel problem.
There are, in fact, numerous applications where it is possible to effectively exploit
multicore systems. Database management systems and database applications are one
such application [46]. Another is Java applications [47]. Furthermore, computing
presents a large number of embarrassingly parallel problems [40], which naturally lend
themselves to being solved in parallel. Examples include the Mandelbrot set, Monte
Carlo algorithms [50] and searches in constraint problems [45]. If the operating system
is able to simplify the programmer’s task by presenting a well-structured, modular
multicore interface, then there is plenty of scope to take advantage of a multicore
execution environment.

2.3 Related Work

While the performance benefits of multicore processing are clear, the transition from
unicore processing to multicore processing presented a challenge for already estab-
lished operating systems. Many optimisations, such as caching frequent values to
accelerate computation, had already been found for unicore operating systems. The
challenge was to migrate large systems to multicore processing while retaining those
optimisations. This section discusses the main approaches taken, and identifies oppor-
tunities to develop the field further.

2.3.1 Linux

The most prominent open-source operating system is Linux. Linux does not distin-
guish between processes and threads, referring to them collectively as tasks, and all
activity occurs within the context of a task. This is possible due to the clone() system
call, which creates a new task and allows the caller to specify which resources to share
between parent and child, simulating the behaviour of either a process or a thread. The
fork() routine is a special case of the clone() system call that requests all subcon-
texts to be copied. Often, the fork() routine is used to create a new task, before the
exec() system call is used to start a new program running within that task [53]. Linux
supports preemptive scheduling, aiming is to balance fairness and performance across
a variety of workloads, which is not a trivial task (discussed further in section 2.3.1.1).
Tasks can be classified differently depending on their nature; real-time tasks must be
responded to within a strict timeframe, whereas normal tasks do not [52]. Naturally,
the different types of task require different scheduling approaches, so the Linux sched-
uler is modular. Each different scheduling algorithm is wrapped in a scheduling class,
offering an interface to the main scheduler [52] and allowing the scheduling policy to
be changed.

Normal tasks are handled by the Completely Fair Scheduler (CFS), which aims to
multiplex the processing resources fairly between tasks. Rather than allocating each
task a static time slice like earlier versions of the scheduler did, CFS allocates each
task a proportion of the processor’s time. Each task is assigned a nice value, ranging
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from -20 to 19, indicating the task’s priority. The higher the nice value, the lower the
task’s priority, such that increasing your ‘niceness’ to the rest of the system means
you are decreasing your own priority. Each task’s proportion of the processor time
is also weighted by nice value. This means that a task’s time slice depends on the
total number of runnable threads and their priorities, which is particularly good for
interactive workloads. Real time tasks are handled differently. They have a priority
ranging from 1 to 99, again with a smaller number representing a higher priority. While
the Linux kernel usually meets the real-time deadlines, the scheduling approach is a
soft one, meaning that no guarantees are provided on how quickly a real-time thread
will be scheduled after becoming runnable [53]. The real-time scheduler can operate in
two modes, first-in-first-out (FIFO) or round-robin (RR). FIFO schedules a task until
it terminates, whereas RR schedules each task for a fixed time slice and preempts that
task for either a higher-priority task, or a task of the same priority if the time slice has
expired [52].

2.3.1.1 Transition to Multicore

Multicore support was introduced in June 1996, with version 2.0 of the Linux kernel.
However, because the kernel was not designed with multiple cores in mind, the tran-
sition was not simple, and the developers had to consider both synchronisation issues
and scheduling challenges. The preliminary approach taken to synchronisation was
Big Kernel Locking (BKL), which involved one singular lock that had to be acquired
before any thread could enter kernel space. The lock was then released on that thread
returning to user space, allowing the next thread to enter kernel space. The main ad-
vantage of BKL was that it provided simple concurrency control with little code mod-
ification. However, the disadvantage was that while threads in user space could run
concurrently and utilise multiple cores, kernel threads could not. The discussion of
Amdahl’s law in section 2.2.6 notes that any performance gained from multiple pro-
cessors is bounded by the portion of the code that remains sequential, meaning that the
serial nature of the kernel code was a major performance limitation.

The developers had only intended to use BKL to ease the initial transition to multicore.
They then began making an effort to transition towards finer-grained locking, aiming to
protect each data structure with an individual lock and remove the BKL [56]. However,
changes to the locking code had to be implemented very cautiously, to avoid introduc-
ing difficult-to-detect deadlocks. The problem was exacerbated by the sheer scale of
the Linux kernel project. It was a long and difficult task to map the semantics of such
a large codebase and refactor it to use finer-grained locking, and every additional fine-
grained lock increased the complexity. It was not until version 2.6.39 of the kernel was
released in May 2011 that the BKL was finally removed, some 15 years after it was
first introduced.

The other issue was scheduling, which was largely considered to be a solved problem
in the unicore case. In fact, when discussing Linux’s transition to multicore scheduling,
Linus Torvalds said:

“I suspect that making the scheduler use per-CPU queues together with
some inter-CPU load balancing logic is probably trivial. Patches already
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exist, and I don’t feel that people can screw up the few hundred lines too
badly.” [27]

However, balancing the workload of multiple cores was more challenging than origi-
nally anticipated. In section 2.2.4 we discussed that the scheduler could either maintain
a system-wide runqueue with synchronised accesses, or multiple per-core runqueues
with explicit load balancing. In practice, synchronised accesses are expensive and in-
crease the context switch overhead excessively, so per-core runqueues are the more
sustainable choice. This is the approach that Linux takes, with each core’s runqueue
tracking and scheduling the runnable tasks assigned to that core, and the scheduler
performing system-wide load balancing periodically. Active load balancing has the
main scheduler check regularly how the load is spread throughout the system, and
redistributing tasks if necessary. Idle load balancing is essentially emergency load bal-
ancing that calls an idle_balance() function to request work when a core’s runqueue
becomes empty. Balancing is also performed when deciding where to allocate newly
created or awoken tasks [52].

Whilst necessary, performing load balancing is computationally demanding, involving
iterating over multiple runqueues to evaluate how the load is distributed. Furthermore,
the load balancing approach must consider that migrating tasks between cores will
often result in a cache flush, which could be detrimental to performance. It is bet-
ter to migrate tasks between cores that share caches where possible, to minimise the
amount of data flushed. To account for this, the Linux scheduler tries to optimise the
load balancing algorithm, grouping together cores that share physical resources into
a hierarchy. For example, one core with hyperthreading would be seen as two logi-
cal cores to the operating system, and these would be grouped together at the lowest
level of the hierarchy. Separate physical cores with access to a shared cache would
then be grouped together into the next level and so on, until all cores were grouped
together. Each level of the hierarchy is a scheduling domain, and load balancing runs
on each domain, from bottom to top. Each domain can contain one or more schedul-
ing groups, which are treated as a single unit by the domain. The crucial optimisation
is that the scheduler tries to balance the load within the domain without examining
the work within each individual group. Instead, the scheduler uses only each group’s
average load to estimate whether the domain is balanced, which can introduce perfor-
mance bugs. Consider, for example, the case where two cores are in a group, and one
core is overloaded while the other is underloaded. The average workload of the group
conceals the fact that one of the cores is actually sat idle, which could only be seen by
examining the workloads within the group [44].

A study of the Linux scheduler found four main performance bugs, all directly aris-
ing from the complexity of the scheduler implementation. The authors discuss that
ongoing research has discovered promising scheduling algorithms, but these have not
been adopted by mainstream operating systems because it is not clear how to inte-
grate these algorithms into the scheduler safely. Furthermore, the authors conclude
that simply adding more complexity to a monolithic scheduler is not sustainable, as it
introduces more performance bugs. Instead, they propose rethinking the architecture
of the scheduler, having a core module that performs basic scheduling tasks. Optimi-
sation modules, such as load-balancing, cache-affinity or resource-contention modules
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could then be enabled to provide specific enhancements. The core module could then
blend these enhancements together depending on the workload and the system’s needs
[44].

2.3.1.2 Readability

Linus Torvalds began writing the Linux kernel in 1991, and since then, the project
has rapidly evolved into a colossal operating system contributed to by a community
of around six thousand developers [15]. The open-source nature of Linux makes it a
good educational resource, with all source code being publicly available on GitHub
[17]. However, the large and complex nature of the project makes it almost impossible
for a novice programmer to understand. As an illustration, the graph shown in figure
2.1 shows the growth of the source code with each release, and as of January 2020, the
kernel comprised 27.8 million lines of code [14].
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Figure 2.1: Lines of code in each version of the Linux kernel [13]

Linux is mostly written in the C language. While extremely fast and powerful, C does
not offer support for useful object-oriented concepts. As a workaround, developers
use structs within the Linux source code to mimic a semi object-oriented structure.
Since a C struct can combine data items of different kinds, the struct can hold multiple
data values, representing the attributes of an object, and multiple pointers to functions,
representing the methods of an object [20]. Additional complexity like inheritance and
polymorphism can also be achieved, offering great flexibility. However, this demands
a good mastery of low-level technical concepts such as pointers, and is not particularly
readable.

The readability issues were compounded by the complexity of the transition to multi-
core. Had the developers had the opportunity to design Linux with multicore in mind
from the outset, the design could have been simpler, because they would not have been
constrained by the existing codebase. Redesigning an established operating system
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retrospectively is not a feasible option either; the cost of redeveloping Linux was es-
timated in 2011 at $3 billion USD [26], and again in 2018 at $14.7 billion USD [16].
To further compound the readability issues, the Linux documentation is not yet com-
plete, with the community still working to integrate separate documents into a coherent
whole [25]. In essence, while being a freely-accessible example of an established op-
erating system, Linux is not easily understood.

2.3.2 RTOS

Real-time operating systems are a class of operating system that demand strict perfor-
mance guarantees. Examples include safety-critical systems such as air traffic control
systems, where data provided by sensors must be processed and responded to immedi-
ately. Processing must therefore be done within specified time constraints, or the sys-
tem will fail [53]. The real-time scheduling provided by Linux and similar operating
systems makes no guarantees of meeting these time constraints, whereas a dedicated
RTOS like FreeRTOS [11] will. However, the need to maintain these guarantees heav-
ily restricts scheduler development within the RTOS. Similar to Linux, InfOS makes no
such real-time performance guarantees, giving us the flexibility to experiment with the
scheduling interface without needing to maintain any strict performance assurances.

2.3.3 Barrelfish

The negative implications of retrospective multicore design are being recognised by re-
searchers [9]. Current operating systems were not designed to support computers with
large numbers of cores, and researchers are beginning to explore radical new ideas,
specifically focused on increasing scalability. One such project is a research operat-
ing system called Barrelfish [24] that aims to explore a new paradigm for negotiating
the multicore era. Barrelfish is written from scratch, removing the constraints that an
operating system with an existing codebase bring. In particular, the researchers have
proposed that having a shared-memory kernel with data structures protected by locks
is a bottleneck. Rather than having small parts of the kernel stored in the caches of
each processor and trying to maintain cache coherence, they instead experiment with
a multikernel architecture. This is a distributed system with essentially one kernel per
core, each having a replicated operating system state. The kernels explicitly commu-
nicate via message-passing and hardware keeps the replicated states consistent. The
project also recognises the increasing diversity in computer hardware, and focuses
on designing the operating system structure to be independent of particular hardware
characteristics, increasing portability.

2.4 Motivation

InfOS [58] is a research operating system, written entirely from scratch in C++ follow-
ing an object-oriented design. It is based on the x86 architecture, and was designed
and developed by Tom Spink for the UG3 Operating Systems course [6], although it is
technically a general purpose operating system. InfOS was designed precisely because
modern operating system kernels like the Linux kernel are extremely complex and
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difficult to understand. It is a valuable teaching tool that forms the foundations of the
Operating Systems coursework and provides interfaces for core operating system oper-
ations. This allows students to rewrite different subsystems, like the memory allocator
or the scheduler, and develop their understanding of operating system internals.

InfOS currently only supports unicore processing, but being relatively lightweight in
comparison to large-scale and long-lived operating systems, InfOS presents a rare op-
portunity to redesign an operating system specifically with multicore processing in
mind. The object-oriented design of InfOS will extend naturally to support multicore
processing in a well-structured manner, and adding this support will develop InfOS
further as a teaching and research tool. Unlike the Barrelfish project, which aims to
explore radical new multikernel structures for operating systems, InfOS aims to take
the familiar and well-established monolithic kernel structure and provide the following
key contributions.

2.4.1 Key Contributions

Teaching contributions. A well-designed, object-oriented multicore operating sys-
tem that can be easily understood by students. As discussed, multicore process-
ing is a very pervasive field, and thoroughly understanding parallel architectures
is vital for computer science students, especially those interested in systems de-
velopment. InfOS follows a conventional operating system structure, meaning
that students’ understanding can be mapped to larger systems such as Linux.

Technical contributions. A working operating system implementation that can be
downloaded by anyone, booted on real hardware and used to execute user pro-
grams.

Research contributions. A platform on which to build further research. The mul-
ticore implementation will extend the way InfOS provides interfaces for com-
ponents of the operating system, allowing experimentation with different algo-
rithms for load balancing and performance optimisation. Section 2.3.1.1 noted
that a modular scheduler would be beneficial for experimenting with new algo-
rithms, and we discuss our future research paper based on this idea in section
5.2.
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Implementation

3.1 Existing System

As described in section 2.4, InfOS has a clear advantage over other operating systems
because it was specifically designed to be straightforward to understand. With this
being said, InfOS is still a general purpose operating system, and the whole reposi-
tory comprises around 20,000 lines of code. Before implementation could begin, the
major conceptual challenge was to understand the existing system. There is a brief
specification document [54] written by the designer, which is aimed at students of the
UG3 Operating Systems course. This document explains InfOS’s high-level structure
and implementation, but it is by no means extensive technical documentation. Most
of my understanding of InfOS therefore came from navigating the existing codebase
and reading the Intel architecture manuals [12]. This consumed a significant portion of
development time throughout the entire project. Furthermore, since the C++ standard
library implementation uses system calls, it must be ported to each individual operating
system. Naturally, no such port exists for InfOS, meaning that the entire implementa-
tion had to be written in the C++ core language [10]. Any standard C++ functionality
needed during the implementation, including strings, lists, maps, input/output, random
number generation, atomics support and time utilities, had to be written from scratch.
This became particularly relevant during evaluation and benchmarking, when atomic
operations were needed (see section 4.2 for further details).

The Advanced Programmable Interrupt Controller (APIC) [3] is the Intel standard for
controlling interrupts, and InfOS follows this standard. The standard defines two main
controllers, a local APIC (LAPIC) and an external input/output APIC (I/O APIC). The
I/O APIC is responsible for receiving external I/O interrupts, such as keyboard strokes,
and relaying them to the LAPIC. Each LAPIC has a LAPICTimer, and the LAPIC is
responsible for receiving internal I/O interrupts such as LAPICTimer interrupts, along-
side the I/O APIC generated interrupts. The APIC standard supports multiprocessor
systems by representing each processor as a core and a LAPIC, with each LAPIC han-
dling core-specific interrupts. With this representation, the system has one I/O APIC,
and as many LAPICs and LAPICTimers as there are cores. Figure 3.1 shows an ex-
ample in the case of a quad-core system. The cores may communicate by sending

15
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interprocessor interrupts (IPIs) from their LAPIC to another processor’s LAPIC [3].
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Figure 3.1: Block diagram showing the APICs in a quad-core system

InfOS has an object-oriented design, with each of the major components of the oper-
ating system represented as a subclassed device object. For example, the scheduler,
I/O APIC and LAPIC are all represented as devices. When InfOS boots, the platform
is probed, and any detected devices are created and registered with a central device
manager object. Every device is assigned a unique name by the device manager, who
is then responsible for providing an interface that allows any class of device to be ac-
cessed by other parts of the system. The most natural design extension was to represent
the cores as objects, with each core having a separate LAPIC and LAPICTimer object.
With this design in mind, I broke the implementation down into four main milestones:

Detecting cores. QEMU [23] is a virtualisation environment that can be used to boot
real operating systems in a virtual machine. It can be used throughout develop-
ment to emulate running InfOS with varying numbers of cores. The first mile-
stone, then, is to supply InfOS with multiple cores and detect those cores during
boot.

Initialising cores. Recall from section 2.2.1 that the x86 ISA defines a MP initialisa-
tion protocol, which defines two classes of processors, the bootstrap processor
(BSP) and application processors (APs). The BSP runs the main operating sys-
tem boot code, and is responsible for the detection of other cores. The APs are
initially in a waiting state, so the BSP is also responsible for sending them a
memory address to start execution at. For the purpose of this milestone, the code
can be general code, such as “Hello world from core x!”.
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Calibrating timers. InfOS supports preemptive scheduling by having the LAPIC-
Timer generate interrupts every 4 milliseconds, which then trigger scheduling
events. To extend this, each core’s LAPICTimer must be calibrated and ini-
tialised to send periodic interrupts too. The calibration code determines the fre-
quency of the timer by measuring it against the programmable interrupt timer
(PIT), meaning that the calibration code must be executed on the core itself in
order to determine the correct frequency. Therefore, the earliest point at which
the timer calibration can be done is once each core is awake and running general
code, so this is the third milestone.

Scheduling threads. On every timer interrupt, a scheduling event occurs, so the next
logical step is to configure the scheduler to recognise multiple cores and dis-
patch tasks between them. Once this is implemented, all threads running in the
operating system will need to be shared between the cores. This introduces a lot
of design decisions, such as how to distribute the threads between the cores and
whether a centralised scheduling manager should be used to coordinate.

3.2 Detecting Cores

As already mentioned, QEMU provides a simple way to modify the number of cores
available to InfOS via the -smp argument. For instance, InfOS can run on a dual-
core processor by adding the command line argument -smp 2 to the runscript. Once
provided with multiple cores, however, InfOS still has to detect them. The Advanced
Configuration and Power Interface (ACPI, not to be confused with the previously men-
tioned Advanced Programmable Interrupt Controller, APIC) provides an open standard
that operating systems can use to discover and configure hardware components. To be-
gin using ACPI, the operating system must locate the Root System Description Pointer
(RSDP), which contains a pointer to the Root System Description Table (RSDT),
which contains pointers to yet more tables describing the hardware available on the
system. InfOS already had an implementation to locate the RSDP, enable ACPI and
parse the tables, so I extended this existing code to collect information about the avail-
able cores.

One of the tables pointed to by the RSDT is the Multiple APIC Description Table
(MADT), which describes all of the interrupt controllers in the system. Each entry in
the MADT has an entry type, and entry type 0 is used to represent LAPICs, as shown
in figure 3.2.

Figure 3.2: MADT Entry Type 0 [18]

Since each core has a LAPIC, each core’s LAPIC will be represented by one individual
MADT entry of type 0. Each entry contains the processor’s ID, the LAPIC’s ID and a
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set of flags. The flags are represented as 32 bits (see figure 3.3) and contain extremely
important information: whether or not the processor can be enabled. If bit zero is set,
the processor is enabled. If bit zero is clear, but bit one is set, then the system supports
enabling the processor during runtime. If neither bit is set, then there is some error
with the processor, meaning that it cannot be enabled and the operating system should
not try.

Figure 3.3: Entry type 0 flags structure

It is useful to know which core is the BSP (for timing purposes, discussed further in
section 3.4), so this information needs to be recorded at some point during core de-
tection or core initialisation. The simplest way is to record the ID of the BSP, which
can be done by reading the ID register of the BSP’s LAPIC. Every core’s LAPIC reg-
isters are memory-mapped to the same base address, and this base address is specified
in the MADT. This mapping means that each core is only able to directly access its
own LAPIC registers, so reading the BSP’s LAPIC ID register must be done by code
executing on the BSP. At this stage of boot, only the BSP is executing code while the
APs sit idle, so the core running the code parsing the ACPI tables is guaranteed to be
the BSP. For this reason, it makes sense to collect the BSP ID at this point by reading
the LAPIC ID register, and store it for later.

As already discussed, the object-oriented design of InfOS extends well to supporting
multiple cores. I decided to represent each core as a new subclass of device, creating
and registering a new core object with the device manager whenever an entry type
0 was encountered in the MADT table. Within the core object, I stored the LAPIC
ID, needed later for sending IPIs between cores, and the core state. The core state is
represented by an enum with four values, BOOTSTRAP, ONLINE, OFFLINE, and ERROR,
and is used during the core initialisation process to decide whether or not to send the
wake sequence of IPIs to the core. If bit zero and bit one are both clear, the core
state is set to ERROR so that the core is not enabled later. Otherwise, the core’s state is
set to OFFLINE, with this being changed to ONLINE once the initialisation sequence is
complete. The only exception is the case when the core’s ID matches the BSP’s ID, in
which case the state is set to BOOTSTRAP. Note that state BOOTSTRAP implies the state
ONLINE, since if we have reached this stage in the boot process, the BSP is already
executing code. Figure 3.4 shows the parsing process as a flowchart.

The core objects should be accessible from anywhere within InfOS to allow the op-
erating system to make calls on them, so I added a cores method to the device man-
ager that iterates through all devices in the system, appends any of type Core to a
List<Core*> returns the list. I also added a static mapping Map<uint8t, Core*>
cores in the Core class that maps each core ID to the associated object, and a static
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Figure 3.4: Flowchart depicting the process of parsing MADT entries and creating core objects

function get_current_core that reads the ID register of the currently executing core’s
LAPIC and returns the object instance mapped to by that core ID.

3.3 Initialising Cores

Once the APs have been detected, they need to be triggered to begin executing. The
BSP can generate interprocessor interrupts (IPIs) by writing specific values to one of
its LAPIC registers, the interrupt command register (ICR). As already mentioned, each
core is able to directly access its own LAPIC registers by writing to the LAPIC base
address plus some offset. The ICR comprises two 32-bit registers, one at offset 0x300
and the other at offset 0x310. The Intel MP protocol defines a sequence of IPIs, called
an INIT-SIPI-SIPI sequence, that wakes an AP from the waiting state. To send an
Initialisation (INIT) IPI, the BSP first writes the target LAPIC ID into bits 24-27 of
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offset 0x310, then writes the value 0x00004500 to offset 0x300, which generates the
interrupt. To send a Startup IPI (SIPI), the target LAPIC ID is written as before, and
then the value 0x00004600 is or-ed with the page number at which the AP should
begin executing, before being written to offset 0x300. The initialisation sequence then
proceeds as follows: the BSP sends an INIT IPI to the AP, waits 10 milliseconds, sends
a SIPI and then waits a further 1 millisecond. The BSP then polls for a ready flag from
the AP indicating that it is online. If the ready flag is not set, the BSP repeats the SIPI
and waits a further 1 second. If the ready flag is still not set after the second SIPI, the
core state is set to ERROR and the BSP stops trying to wake that core. Figure 3.5 depicts
the INIT-SIPI-SIPI sequence as a flowchart.

wake core
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to target LAPIC
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ready 
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set? YESNO
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set state 
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Figure 3.5: Flowchart depicting the INIT-SIPI-SIPI sequence for waking each core

The page address sent with the SIPI locates initialisation assembly code, commonly
referred to as trampoline code. The BSP allocates page zero as the trampoline page
and copies the assembly code onto that page, before including the address of that page
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with the SIPI. For compatibility reasons, all x86 processors begin execution in 16-bit
real mode, a simplistic mode used by early operating systems with only 1MB of ad-
dressable memory, no memory protection and no virtual memory. The main operating
mode of Intel processors today is 64-bit protected mode, so the trampoline code must
enable this on the AP. In protected mode, memory access is controlled through the
Global Descriptor Table (GDT), which stores information about various memory ar-
eas, their base address, size and access privileges. Therefore, before entering protected
mode, the AP must first prepare a temporary GDT to access. Once the GDT is ready,
32-bit protected mode is enabled by setting the PE control flag in the CR0 register.

From 32-bit mode, the AP then jumps to 64-bit protected mode. However, it has not
yet finished initialising. In a similar fashion to memory access, interrupt handling
is controlled through the Interrupt Descriptor Table (IDT), so the AP must also load
this table using the lidt instruction. The LAPIC is an interrupt controller, and it
controls interrupt redirection by accepting interrupt requests and feeding them to the
processor. Without an interrupt controller, the processor would have to poll all of the
devices in the system to see if they require attention. The LAPIC replaces the older
8259 Programmable Interrupt Controller (PIC), which did not support sophisticated
interrupt redirection or IPIs [7]. However, the PIC is enabled for legacy reasons, so the
trampoline code must also disable the PIC to prevent interference with the LAPIC.

Additionally, InfOS uses paging, so this must be enabled on the AP. However, before
paging is enabled, the page directory address needs to be loaded into the AP’s CR3
register so that the AP can locate the page table. The trampoline code reserves some
storage space for this value in the data segment, and then the BSP inserts this value
when copying the trampoline code to page zero. The AP then loads this value from the
data segment into its CR3 register, and paging is enabled by setting the PG flag in the CR0
register. Furthermore, each AP needs its own stack, so the BSP allocates the AP one
page of memory and again inserts a pointer to this page in the data segment. The AP
can then load this value into its RSP register, at which point, the AP is finished using
the trampoline code. There is one final reserved storage location for the previously
mentioned ready flag, which the AP sets and the BSP polls for. Finally, the AP jumps
to a function x86_core_start, which prints "Hello world from core x!" to the
terminal and then pauses indefinitely. A six core system (with one BSP and five APs)
would give the console output shown in figure 3.6.

Figure 3.6: Console output when initialising a six core system
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The sequence described above needs to be done for each core individually, and this can
either be done in serial or in parallel. Serial initialisation has one trampoline page that
each AP uses in turn, with the BSP waiting for one AP to complete initialisation before
sending the INIT-SIPI-SIPI sequence to the next AP. This introduces a bottleneck that
could be reduced by giving each AP a separate trampoline page and broadcasting the
INIT-SIPI-SIPI sequence across the bus to start all present cores. However, this will
wake any present core, irrespective of the value of the core’s ready flags found in the
MADT, which could potentially wake a core that had been deliberately disabled due to
an error. For this reason, other operating systems generally avoid broadcasting during
AP initialisation, and I took the same approach. Instead, the BSP retrieves the list of
available cores and only sends IPIs to OFFLINE cores. The BSP has to then wait for
each core to set the ready flag before knowing whether to resend the SIPI, or move on
and update the core’s state. The initialisation code is relatively small because InfOS
is so lightweight, meaning that this serial initialisation process has a negligible impact
on overall system performance.

All of the code described above is contained within two small methods, cpu_init and
start_core, which are executed during the boot process by the BSP. The function
cpu_init requests a reference to the BSP’s LAPIC object and the Programmable In-
terval Timer (PIT) from the device manager. It then retrieves the list of cores from the
device manager and iterates through it, calling start_core whenever a core should be
initialised. The LAPIC class has methods send_remote_init and send_remote_sipi
that write the appropriate values to the LAPIC registers to generate the IPIs, and the
BSP calls these functions on its own LAPIC object within the start_core function.
The PIT has a function spin which initialises one-shot mode (see section 3.4) and is-
sues nop instructions until the timer stops. This function is used when the BSP needs
to wait a certain number of milliseconds as described above.

3.4 Calibrating Timers

Recall that each AP has a LAPIC and a LAPICTimer, which need to be initialised and
registered with the device manager. This initialisation involves reading and writing
the LAPIC registers, so it had to be delayed until the APs were executing code so
that it could be done locally. The first step is to create a LAPIC object for the AP
and register it with the device manager. Since every core in the system would be
repeating this, it made sense to write a method lapic_init within the core object.
This method reads the LAPIC base address collected when parsing the MADT tables,
creates a LAPIC object and registers it with the device manager. All device objects
must implement a method init, which the device manager calls when registering a
new device. To enable the LAPIC to receive interrupts, it is necessary to configure
the Spurious Interrupt Vector Register with the IRQ number to map spurious interrupts
to, so the LAPIC init function does this. Finally, since the LAPIC object is needed
whenever the core wants to read its LAPIC registers or send IPIs, the core object also
stores a reference to its LAPIC object.

Once the LAPIC object has been created, it can be used to create and calibrate the
LAPICTimer object. Since InfOS is preemptive, each AP’s LAPICTimer needs to
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be initialised to tick periodically, generating timer interrupts to tell the AP when to
schedule. The LAPICTimer has two modes. Periodic mode has an initial count set by
software, and the LAPICTimer decrements this count until it reaches zero, generates an
interrupt and then resets the current count to the initial count and begins decrementing
again. One-shot mode decrements the initial count in the same way as periodic mode
and generates an interrupt when it reaches zero, but it does not reset the current count.
If another one-shot interrupt is required, the software must set the initial count again.
The advantage of each core having a LAPICTimer is that cores don’t have to share the
Programmable Interval Timer (PIT), which lies on a separate circuit. The disadvantage
is that while the PIT uses a standard frequency, the LAPICTimer’s frequency varies
from machine to machine, so it must be determined before the LAPICTimer can be
used [8]. To do this, the LAPICTimer can be reset to a well-known state and calibrated
using the PIT as a reference timer.

I defined a second function within the core object, timer_init, to do this. This func-
tion creates the LAPICTimer object, passing a reference to the associated LAPIC ob-
ject. The function then registers the LAPICTimer with the device manager, which calls
the LAPICTimer’s init function. This init function calibrates the timer by initialising
both the LAPICTimer and PIT for one-shot operations, then counting the number of
LAPICTimer ticks that happened during that period and calculating the frequency. In-
fOS’s frequency is 250Hz, so the LAPICTimer should be set to interrupt the AP every 4
milliseconds. The LAPICTimer object defines init_periodic and start functions,
which make calls on the associated LAPIC object to write values to the registers. Once
the timer is calibrated, the timer_init function sets the timer to be periodic, with a
period of 4ms, and starts the timer using these functions. As previously mentioned,
this code needs to be executed locally on the AP. The previous milestone had the AP
jump to a function x86_core_start that printed to the terminal and entered an infinite
loop of nop, so I modified this function to call lapic_init and then timer_init on
the core object, which the BSP passed the AP a reference to through the trampoline
code.

In section 3.2, I mentioned that it was important to record which core is the BSP. This
is because in the unicore case, the kernel updated the system runtime with 4ms on
every timer interrupt. However, with multiple cores, this would be done for every 4ms
for every core, making the system runtime wrong by a factor of the number of cores.
Within the timer interrupt handler, I retrieved the current core object by calling the
static method get_current_core in the Core class, and added a conditional to only
update the system runtime if the state of the current core is bootstrap.

Again, the above timer calibration steps needed to be done for each core. This time,
it seemed natural to have all cores initialising themselves in parallel since the initiali-
sation was done locally on each core. The only consideration was regarding synchro-
nising access to the PIT and the device manager. This was necessary because each
core registers devices with the device manager, which involves modifying a global list
of devices, and because each core uses the PIT to calibrate its LAPICTimer. Further-
more, recall that the BSP uses the PIT for spin delays while initialising the APs, which
increases contention on the PIT. For example, a previously started AP could be using
the PIT to calibrate while the BSP is spin-waiting for the next AP to come online. I
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addressed this by protecting the PIT and the global devices list with two spinlocks.
When the device manager wishes to add a device to the list, the device manager lock
is acquired, the device is added, and then the lock is released. When the PIT function
start is called, the PIT lock is acquired, and when the PIT function stop or reset is
called, the lock is released. The PIT functions spin and init_oneshot, used by the
BSPs and the APs respectively, then utilise these start, stop and reset functions.

3.5 Scheduling Threads

Once the cores were taking timer interrupts at the correct frequency, the final piece
of the puzzle was to configure a scheduling event to happen on these interrupts. Sec-
tion 2.2.4 mentioned that there are two approaches to scheduling: either a per-core
runqueue, or a system-wide runqueue. A system-wide runqueue would have to be
protected with locking to prevent race conditions. However, locking adds significant
overhead, since it prevents any of the other cores from progressing while one core
holds the lock. This overhead would be included in every schedule event, which hap-
pens on every AP’s timer tick, or every 4 milliseconds. The more cores in the system,
the more critical this bottleneck becomes. With scalability in mind, the only realistic
option is therefore to have multiple, per-core runqueues.

Before discussing the implementation, I will explain how InfOS previously handled
scheduling in the unicore case. Processes were represented as a class, and were each
allocated an area of virtual memory. The process then had a variable main_thread that
was initialised when the process was created. The process also had a list of thread ob-
jects, allowing processes to be multithreaded if required, and a method create_thread
that allowed adding new threads. Threads therefore existed within the context of a pro-
cess, and shared the address space with other threads belonging to the same process.
Threads were also represented as an object, with a reference back to their process par-
ent and an associated stack and context. InfOS focuses on threads when scheduling,
and the thread class is wrapped with a scheduling entity class that holds properties such
as the current runtime and the scheduling state. The scheduling state could be either
STOPPED, SLEEPING, RUNNABLE or RUNNING.

There was one global scheduler object with a reference to a scheduling algorithm. This
algorithm was an interface that managed the system-wide runqueue, providing meth-
ods such as pick next task, add to runqueue and remove from runqueue. Dif-
ferent scheduling policies, such as first-in-first-out, round-robin, or Linux’s CFS could
then implement the interface, and the user could select between them at boot-time
using command line arguments. The scheduling algorithm worked with scheduling
entity objects, meaning that although InfOS currently schedules threads only, the con-
cepts are kept separate and InfOS could easily be switched to schedule processes (like
Windows), or processes and threads (like Linux). This can be seen in figure 3.7.

The scheduler initialisation happened during boot, and involved creating the scheduler
object, an idle process and an idle thread. The idle thread is essentially a function that
pauses indefinitely by issuing the pause instruction, which was chosen over the nop
instruction because in the case of hyperthreading, pause lets the sibling core continue
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Figure 3.7: Block diagram depicting the scheduler components within unicore InfOS

executing, whereas nop wastes cycles. After the idle thread was created, it was acti-
vated, which set a global variable current_thread to be that thread. This means that
when the scheduler started running, the context that began being saved and restored
was that of the idle thread. Once the kernel had finished the boot process, a run func-
tion was called on the global scheduler, which essentially activated the first eligible
thread, which would likely be the idle task. From that point onwards, on every timer
tick, a function schedule was called on the scheduler, and this function requested the
next entity from the scheduling algorithm via pick_next_entity. If the runqueue
was empty, the algorithm returned NULL, and the scheduler continued to schedule the
idle thread. Otherwise, if a new thread had been created and added to the runqueue, the
algorithm would return this and the scheduler would need to perform a context switch.
This was done using the global current_thread variable mentioned earlier, by sav-
ing the context of the previous thread and setting the variable to be the new thread.
Naturally, this global variable would need to be refactored to support multiple cores,
otherwise they would keep overwriting the current thread of the other cores.

In order to support the per-core runqueues but maintain the object-oriented structure,
I decided to have one scheduler object per core. I refactored the core class to hold
a reference to this scheduler object, and refactored the scheduler object to hold the
current_thread variable, rather than having one global current_thread. Rather
than initialising the scheduler once at the beginning of the boot process, the scheduler
of each core needed to be created and initialised with an idle task as above. How-
ever, the BSP needed a functioning scheduler before initialising the APs in order to
schedule the kernel thread running the boot code. I refactored the original scheduler
initialisation code to initialise the BSP’s scheduler rather than a global scheduler, and
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Figure 3.8: Figure depicting the scheduler components within a quad-core system

then delayed the AP scheduler initialisation until later in the boot process when the
APs were online.

I do this scheduler initialisation as soon as the APs are online and executing code, so
at the same time as the timer initialisation in section 3.4. They call the init function
on their scheduler object, which creates a new idle process and thread for that core
and activates it. Then, they call run to activate their schedulers once all initialisation
has been completed, and this represents the point at which the core is fully initialised
and begins scheduling threads. On every timer tick, rather than calling schedule on
the global scheduler, the function get_current_core returns the current core object,
which is then used to get a reference to the current scheduler. The function schedule
is then called to select a new task for that specific core, and perform the context switch
as before.

When a thread was created previously, it would be added to the runqueue of the global
scheduler object. With the removal of this object, there needed to be some way for
new threads, or threads waking up from sleep, to be scheduled onto some core. I could
have just added the thread to the runqueue of whatever core created it, but this would
be a really obvious way to create a workload imbalance. When InfOS boots, the shell
launches and waits for the user to run a program. The shell thread would likely be
running on the BSP core, and then any program that the user launched would also
be added to the BSP’s runqueue, while all other cores sit idle. The system therefore
needed some sort of global scheduling manager to distribute new tasks between cores,
and then once a thread is assigned to a core, the core’s individual scheduling algorithm
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could be responsible for distributing that core’s cycles between the threads on that
core’s runqueue.

I created a global scheduling manager class which maintains a list of all schedulers in
the system. Figure 3.8 shows the scheduler components within a quad-core system. On
initialisation, each scheduler now registers itself with the scheduling manager, and this
global scheduler list is protected with a mutex lock. When a new thread is created or
awoken, the thread is passed to the scheduling manager, who then selects a scheduler
and dispatches the task to that scheduler. I chose to mimic the abstraction provided by
the scheduling algorithm class, and created a core algorithm command line parameter.
The user can then specify how tasks should be distributed between cores, whether that
be randomly or by some other metric (discussed further in section 5.2). This modular
functionality allows easy customisation and fine-tuning of the scheduler’s policy to
tailor the system’s performance to its workload.
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Evaluation

As discussed in section 2.2.6, in order to fully exploit the processing power of multiple
cores, software needs to be highly adapted to a parallel execution environment. An
embarrassingly parallel problem is one where very little effort is needed to divide the
original task into a set of almost independent parallel tasks, and such problems are both
pervasive in computing and well-suited to exploiting parallel architectures.

Figure 4.1: Black and white rendering of the Mandelbrot set [28]

28
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4.1 The Mandelbrot Set

The Mandelbrot set is the set of complex numbers c for which the recurrence relation
fc(z) = z2 + c with z0 = 0 does not diverge. Thus, a complex number c is a member
of the Mandelbrot set if, when applying fc repeatedly, the absolute value of zn remains
bounded for all n > 0. The set can be represented visually in a two-dimensional plane
by taking each (x,y) point in the plot as the real and imaginary parts of a complex
number c, such that c = x+ iy, and iteratively computing values for the recurrence
relation fc. An arbitrary escape value is chosen, and each iteration checks whether
the result has exceeded this critical value. If the escape value has been exceeded, the
computation has diverged and that pixel is not a member of the Mandelbrot set, so
computation for that particular pixel can terminate. Otherwise, computation continues
until a number of maximum iterations, at which point it is inferred that the pixel will
probably not diverge and is a member of the Mandelbrot set. A simple black and white
rendering like figure 4.1 can then colour a pixel black if it does not diverge, or white if
it does diverge. A coloured rendering can provide additional detail by recording how
many iterations it takes each pixel to diverge and colouring each pixel correspondingly.
This gives a representation of how fast each pixel diverges, as shown in figure 4.2.

Figure 4.2: Coloured rendering of the Mandelbrot set [19]

The algorithm described above is often known as the escape time algorithm [21]. It
is a perfect example of an embarrassingly parallel problem, because the computation
of each pixel is independent from every other pixel in the plane. Separate threads
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within InfOS can therefore handle the computation of each pixel without the need
for any communication, making this an ideal benchmark to measure how introducing
additional cores affects performance.

4.2 Mandelbrot Benchmark

4.2.1 Environment

I wrote a benchmark program in the InfOS user space that computes and displays the
Mandelbrot set in the shell. The program takes the number of threads as a parame-
ter and distributes the computational work evenly between them, which allowed me
to vary both the number of cores and the number of threads for each execution. One
simple way to divide the work between threads would be to divide the plane into equal
sections and have each thread compute all the pixels within a section independently,
but it is important to note that this would not be an equal division of work because
pixels require differing amounts of work to compute. Some pixels may diverge very
quickly, after a handful of iterations, whereas others may take longer to diverge or not
diverge at all, running for thousands of iterations until the maximum iterations limit
is reached. To distribute the work more evenly, the program instead uses a worklist
algorithm, having a global next_pixel variable which ranges from 0 to 80x25, or
2000. The requested number of threads are then created, and when a thread has no
work to do, it atomically reads the value of next_pixel and increments it using a
fetch_and_add function. The thread is then responsible for computing that pixel,
and the (x,y) values are retrieved using x=next_pixel%80 and y=next_pixel/25.
The colour for each pixel is decided based on the number of iterations, and a * char-
acter of that colour is printed directly to the shell at the correct (x,y) position. This
results in an output like figure 4.3. It is important that the function fetch_and_add
is atomic to ensure that no race conditions arise when two threads attempt to access
next_pixel at the same time. As already mentioned, InfOS does not have access to
the standard C++ library with atomics support, so this fetch_and_add function was
written from scratch using x86 assembly instructions, specifically xaddl. The use of
this next_pixel variable ensures that all threads are kept busy until the entire plane
has been computed, maximising throughput.

One other important point to note is that the Mandelbrot set is traditionally computed
using floating point arithmetic. While InfOS does have a floating point unit, it does
not routinely save and restore the floating point registers during a context switch, in
order to reduce switching overhead. This means that with a multithreaded execution
of the benchmark, any floating point computation would be overwritten and interfered
with by other threads, unless the floating point state was saved. I did spend some time
trying to save floating point state on a context switch using the xsave instruction, but
this turned out to be more complex than expected and I wasn’t able to implement this
within the time available. Because the focus of this project is parallel computation
rather than floating point arithmetic, I instead decided to implement the Mandelbrot
algorithm using fixed-point arithmetic and left the floating point context switching as
future work. A fixed-point number representation simply stores all values multiplied
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Figure 4.3: Rendering of the Mandelbrot set in the InfOS shell

by some normalisation factor, uses integer operations for calculations, and then nor-
malises the result when required. By choosing the multiplier to be a power of 2, I
was able to compute the Mandelbrot set using only integer operations, and then use bit
shifting operations to quickly perform multiplication and division when necessary.

As already discussed, the program supported varying the number of threads alongside
the number of cores, since for x cores to be utilised effectively, there must be at least
x independent threads ready for execution. This allowed me to experiment with the
following three scenarios:

1. Unicore, single-threaded

2. Unicore, multithreaded

3. Multicore, multithreaded

The unicore, single-threaded case provided a baseline to compare execution times
against. It was important to separate the two multithreaded cases because even in the
unicore case, multithreading alone can improve performance. For example, processor
throughput can be increased by replacing a blocked thread with one that is ready to ex-
ecute, until the blocked thread is ready to resume execution. If the system’s threads are
mostly I/O-bound, then multithreading alone can improve performance by increasing
processor throughput. If, however, the threads are mostly compute-bound, then proces-
sor throughput will already be maximised and multithreading alone should have little
impact. Here, we put the compute-bound theory to the test, but we were unable to test
the implementation on an I/O-bound benchmark because InfOS does not currently sup-
port asynchronous I/O, and adding support would be beyond the scope of this project.
However, on such a benchmark, I would expect to see a performance improvement
with both the introduction of multithreading and the introduction of multicore. That
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is, the unicore, single-threaded case would again be the baseline, the unicore, multi-
threaded case would provide a performance improvement over the baseline, and the
multicore, multithreaded case would likely provide a second improvement over that.

In order to determine if any performance difference was really caused by introducing
additional cores, as opposed to making the Mandelbrot program multithreaded, I iso-
lated the changes between experiments. The combinations of threads and cores used
can be seen in table 4.1, with horizontal lines separating five distinct cases: unicore and
single-threaded, unicore and multithreaded, and then multithreaded with two, three and
four cores respectively. For each configuration, I timed the real execution time using a
timing program written in InfOS user space. This timing program was verified using
an external stopwatch to ensure accuracy before experiments began. Each parameter
configuration was executed three times, and then the execution times were averaged,
to give the results shown in table 4.1.

4.2.2 Results

The baseline performance on the Mandelbrot benchmark was 9.143 seconds in the uni-
core, single-threaded case. The results for the unicore, multithreaded case show that
introducing multithreading had very little impact on the execution time. In fact, the
execution time actually increased slightly to about 9.4 seconds. This is consistent with
my expectations, because the Mandelbrot program involves extensive computation and
very little I/O, meaning that the threads are compute-bound. This gives no opportu-
nity to interleave threads while other threads are waiting, so multithreading simply
introduces additional overhead with no performance benefit.

In the multicore, multithreaded case, the execution time decreases with each additional
core, with the exception of the two cases highlighted in bold. In the case with three
cores and two threads, the thread count is not high enough to keep all cores busy. One
core must be sat idle at any given point, which is why the performance is at a similar
level to the dual-core case. Similarly, in the case with four cores and two threads, two
cores are sat idle, and the performance is again similar to the dual-core case. Again, the
results show that increasing the number of threads past the number of cores does not
decrease the execution time any further, due to each core already being fully utilised
by the compute-bound threads.

It is clear to see that any performance benefit gained was the result of introducing
additional cores to the system. To see the trend, I plotted the number of cores against
the average performance once the thread count met or exceeded the number of cores:
that is, one core one thread, two cores two threads, three cores four threads and four
cores four threads. This plot is shown in figure 4.4. Clearly, with the introduction
of additional cores, the execution time decreases, but the trend is not quite linear. I
was interested to learn more about how this scaling compared to how other operating
systems utilise additional cores, which led me to run a second benchmark, described
in section 4.3.
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Cores Threads Average time (s)

1 1 9.143

1 2 9.150
1 4 9.400
1 8 9.387
1 16 9.243
1 32 9.430

2 2 4.753
2 4 4.930
2 8 4.950
2 16 4.887
2 32 4.873

3 2 4.900
3 4 3.453
3 8 3.447
3 16 3.377
3 32 3.390

4 2 4.910
4 4 2.647
4 8 2.670
4 16 2.677
4 32 2.687

Table 4.1: Average time taken
in seconds for InfOS to ex-
ecute the Mandelbrot bench-
mark with varying numbers of
cores and threads
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Figure 4.4: Number of cores plotted against average time taken for
InfOS to execute the Mandelbrot benchmark once the thread count
met or exceeded the number of cores

4.3 Scalability Benchmark

4.3.1 Environment

As previously mentioned, the more cores available to InfOS, the better the perfor-
mance. However, I wanted to compare this performance scaling to a highly-developed
and well-established operating system in order to visualise how efficiently InfOS uses
the additional available resources. To do this, I ported the Mandelbrot benchmark into
a Linux version. Since the pixels may be computed out of order, the original Mandel-
brot benchmark displays the output to the terminal correctly by allowing each thread to
specify exactly which (x,y) point to print which colour to. There is no way to do this in
standard C++ without writing additional complex functionality, so the benchmark was
modified to save the pixel value to a global two-dimensional array, rather than printing
the value to the screen. I controlled the number of threads by creating pthreads, and I
controlled the number of cores by affining those threads to a processor set: so in the
unicore case, all threads were affined to a singleton processor set, in the dual-core case,
all threads were affined to a processor set containing two cores, and so on.

I then reran the same core and thread configurations as in table 4.2.2 on InfOS, but
using the modified Mandelbrot benchmark. I also ran this modified Mandelbrot bench-
mark on Linux, again with the same core configurations as in table 4.2.2. I timed the
Linux execution using the time command, and again, verified this with an external
stopwatch to ensure accuracy. I also manually set the Linux scheduler to be FIFO
and gave the threads maximum priority, to ensure they had the best possible chance of
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executing quickly. This gave the results shown in tables 4.2 and 4.3.

Cores Threads Average (s)

1 1 9.210

1 2 9.200
1 4 9.378
1 8 9.367
1 16 9.135
1 32 9.273

2 2 4.539
2 4 4.736
2 8 4.763
2 16 4.587
2 32 4.644

3 2 4.678
3 4 3.228
3 8 3.260
3 16 3.184
3 32 3.266

4 2 4.676
4 4 2.429
4 8 2.457
4 16 2.473
4 32 2.451

Table 4.2: Average time taken in seconds for
InfOS to execute the scalability benchmark
with varying numbers of cores and threads

Cores Threads Average (s)

1 1 8.937

1 2 8.864
1 4 8.708
1 8 8.857
1 16 8.866
1 32 8.873

2 2 4.584
2 4 4.572
2 8 4.542
2 16 4.449
2 32 4.466

3 2 4.578
3 4 3.079
3 8 3.158
3 16 3.162
3 32 3.185

4 2 4.563
4 4 2.432
4 8 2.382
4 16 2.359
4 32 2.426

Table 4.3: Average time taken in seconds for
Linux to execute the scalability benchmark
with varying numbers of cores and threads

4.3.2 Results

The InfOS execution times were very similar to the previous benchmark, confirming
that the minor functionality changes did not alter the program’s behaviour. Making a
direct comparison between the results obtained on this benchmark, the Linux execution
times were very similar to the InfOS execution times. The operating systems both
showed almost identical behaviour to that observed in the previous section, namely:

1. Multithreading in the unicore case did not impact execution time.

2. In the case where there were less threads than cores, performance was negatively
affected by one or more cores being idle.

3. Increasing the number of threads past the number of cores made little further
difference to performance.

4. With every additional core, the execution time decreased.

To compare the resource utilisation, we can look at the number of cores against the av-
erage performance once the thread count met or exceeded the number of cores for each
operating system. This data is extracted and shown in table 4.4. From this data, we can
calculate the percentage performance increase gained with each additional core rela-
tive to the performance without the additional core. That is, we compute the percentage
performance increase for two cores relative to the unicore case, with three cores rela-
tive to the dual-core case, and so on. These percentages can be seen in table 4.5, and
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figure 4.5 shows this data graphically. We can see that the trend of performance against
additional resources is about the same for both InfOS and Linux. That is, when given
additional resources, InfOS is able to extract the same performance benefit from them
that Linux can, confirming that the multicore implementation accurately represents the
way a real operating system handles multiple cores.

Cores Threads InfOS Linux
average average
time (s) time (s)

1 1 9.210 8.937

2 2 4.539 4.584

3 4 3.228 3.079

4 4 2.429 2.432

Table 4.4: Average time taken in seconds for
InfOS and Linux to execute the scalability
benchmark once the thread count met or ex-
ceeded the number of cores

Cores Threads InfOS Linux
performance performance

increase increase

2 2 50.72% 48.71%

3 4 28.88% 32.83%

4 4 24.75% 21.01%

Table 4.5: Performance increase with every
additional core relative to performance imme-
diately prior to adding that core
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scalability benchmark once the thread count met or exceeded the number of cores
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Conclusion

5.1 Discussion

This project provides three key contributions, as discussed in section 2.4.1:

Teaching contributions. A well-designed, object-oriented multicore operating sys-
tem that can be easily understood by students.

Technical contributions. A working operating system implementation that can be
downloaded and booted on real hardware by anyone.

Research contributions. A platform on which to build further research and experi-
ment with performance optimisations.

5.1.1 Teaching Contributions

As with the rest of InfOS, the multicore implementation was designed specifically with
structure and readability in mind. The original boot code was a series of initialisation
function calls for different subsystems. For example, mm_init initialises the memory
management subsystem, before acpi_init parses the ACPI tables. I extended this,
defining a function cpu_init and calling that from the original boot code. This makes
it clear for students to see at what point the multicore initialisation is done during the
operating system boot process.

The C++ language’s object-oriented support provided flexibility when modelling the
cores. As discussed in section 3, the cores, LAPICs, LAPICTimers, schedulers and
scheduling manager are all modelled as subclasses of the device object. The global de-
vice manager object provides centralised access to all other devices in the system, and
devices communicate by calling methods on other device objects. For example, cores
send IPIs by calling the send_remote_sipi function defined within the LAPIC class
on their LAPIC instance. Recall from section 3.3 that within cpu_init, the function
start_core contains the general procedure for waking each core. This is called on
every core object in the system, making the generic waking code simple to understand.
Also recall from section 3.4 that all calibration code is defined within the core class, in
methods such as lapic_init and timer_init, making the AP calibration code itself

36
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very short and readable: simply a series of calls on the AP object to these initialisation
functions. This modular structure makes the entire multicore initialisation control flow
path very easy to follow throughout the system.

InfOS also models processes and threads as distinct objects, as opposed to Linux’s im-
plementation, which doesn’t differentiate between the two. Within InfOS, processes
have a private address space and one or more threads, whereas threads have an associ-
ated context but share the address space of their process parent. This makes the con-
ceptual difference between processes and threads explicit, aiding students in learning
the core theoretical concepts, which can then be generalised to other operating sys-
tem implementations. Recall that the scheduler works with scheduling entity objects,
which are currently threads. However, section 3.5 noted that processes could easily
extend the scheduling entity class, allowing the programmer to change InfOS’s unit of
work from threads to processes, or perhaps both. This separation of the concepts again
helps the student to understand the underlying theory, without being too focused on
one specific operating system implementation. The design choices discussed have not
been detrimental to performance either, as evidenced by the scalability comparison in
section 4.3: InfOS achieves the same percentage performance improvement with addi-
tional cores as Linux does. This project has therefore achieved the goal of producing
a teaching operating system with simple, readable, modular code, that still accurately
represents the behaviour of larger operating systems.

5.1.2 Technical Contributions

The multicore implementation will be made open-source and merged into the public
InfOS GitHub repository [58]. It will be used for the next iteration of the UG3 Operat-
ing Systems course, and it is also freely accessible to the public. It is available to view,
modify and run, either in an emulator like QEMU [23], or on real hardware by booting
from a USB drive, achieving the technical contribution.

5.1.3 Research Contributions

The scalability comparison in section 4.3 confirms that the multicore implementation
is utilising the cores in a similar way to Linux, but we do not see the near-linear trend
that the literature review in section 2.2 suggested was possible. The literature sug-
gests that Linux’s approach to load balancing is sub-optimal, with one study noting
several performance bugs that lead to cores sitting idle [44]. Recall that while ongo-
ing research has discovered promising scheduling algorithms, the monolithic nature
of operating system schedulers make these algorithms impractical to implement with-
out adding significant complexity. The authors of the study suggested that a modular
scheduler would allow further research into how different load balancing approaches
can be combined to suit different system workloads [44].

InfOS can provide this functionality. While Linux’s scheduler is modular in the sense
that it allows selection between different scheduling policies such as first-in-first-out
or round-robin, it has a static load balancing policy applied uniformly to all tasks and
cores in the system. InfOS goes one step further, allowing both modular selection
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of the scheduling policy, and also modular selection of the load balancing algorithm,
providing flexibility for dynamic workloads. This gives the perfect opportunity for fur-
ther research into scheduling algorithms that effectively utilise all available processing
resources, with the aim of diverging from the sub-linear performance trend shown in
section 4.3 by both InfOS and Linux. InfOS provides a platform for this research, as
discussed in section 5.2.1.

5.2 Future Work

A number of factors affect how the operating system’s workload should be distributed,
including the available resources, the number of threads and the nature of those threads
(I/O-bound or compute-bound). The behaviour of threads also changes over time, and
this dynamic nature means that an adaptive load balancing approach may be more
practical than a static one [29]. For example, with programs involving repeated data
accesses, the load balancing approach should prioritise keeping threads executing on
their affined cores where possible. However, for a workload with a mixture of I/O-
bound threads and compute-bound threads, the thread nature may be a more important
consideration. Consider a system with four threads: two I/O-bound threads, and two
compute-bound threads. A simple load balancing approach may consider the following
situation well-balanced: both of the I/O-bound threads on one core and both of the
compute-bound threads on the other core. However, the I/O-bound thread core could
be regularly sat idle with both threads blocked, while the compute-bound thread core
could be overwhelmed with both threads demanding processor cycles. Migrating the
threads to evenly distribute the work might be beneficial, even if this results in an initial
cache flush. Introducing thread priority levels would further complicate the matter.

Furthermore, the memory access patterns of threads may conflict with one another,
meaning that threads may regularly evict cache lines belonging to other threads, in-
creasing miss rates. Intuitively, these threads should not be allocated to the same core
if possible, and recent research suggests that intelligent scheduling approaches could
not just consider which cache a thread has warmed to, but also that particular cache’s
statistics. A recent study has proposed a multi-metric scoring scheme that allows the
scheduler to consider a thread’s execution characteristics [29]. Another study consid-
ers contention for other shared resources in addition to the cache, such as the memory
controller, the memory bus and prefetching hardware. A scheduling algorithm con-
sidering these resources was demonstrated to perform within 2% of the optimal [33].
Clearly, there are many factors that the scheduler may take into account when try-
ing to find the optimal way to schedule threads, and there is no static combination of
these factors that suits all workloads. There is plenty of scope for further research into
this area, and we are currently working on a research paper investigating intelligent,
cache-aware scheduling policies, described further in section 5.2.1.

5.2.1 Balancing Benchmark

As already mentioned, we are currently working on a research paper that uses InfOS’s
modular scheduling interface to investigate how intelligent scheduling approaches can
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be integrated into real operating system schedulers. Such approaches may include, but
are not limited to:

Random. Uses the rdrand instruction to read a random value and takes this number
modulo the number of cores available to the system. Uses this number as an
index into the list of cores available and returns that core as the one to dispatch
the task to.

Round-robin. Removes a core from the head of the list and appends it to the end of
the list. Returns this core as the one to dispatch the task to.

Load balancing. Chooses the core with the smallest workload. There are many pos-
sible definitions of ‘load’ to consider here, with varying impact on performance.

Processor affinity. Tries to reduce cache flushes by allocating threads back to the core
on which they were recently running.

Cache-aware. Considers statistics such as cache misses and tries to allocate threads
to cores in a way that reduces cache contention.

Resource-aware. Considers contention for other shared resources in addition to the
cache, such as the memory controller, the memory bus and prefetching hardware,
and tries to allocate threads in a way that minimises resource contention.

As a proof-of-concept, I added another command line parameter to select the load
balancing policy and wrote the implementations for the random and round-robin poli-
cies. The future work for this paper involves extending this interface by adding im-
plementations for the remainder of the policies to allow running the experiments and
drawing comparisons. To put these policies to the test, they need to be executed on a
system with a dynamic workload, otherwise the load balancing task is fairly simple.
For example, an asynchronous workload would have thread sleeping and waking fre-
quently, prompting the scheduling manager to continually try to balance the load. If
the scheduling manager is migrating the threads between cores a lot, recall that this
will result in cache flushes, which may be detrimental to performance. A good bench-
mark would therefore be a program involving lots of asynchronous events and lots of
cache accesses.

I wrote a benchmark loosely inspired by the Bitcoin proof-of-work algorithm [22],
which has a global integer array and a number of threads. Each thread is allocated one
section of the array and must repeatedly compute the hash of this section, where the
hash is essentially the sum of the elements in the section with some salt value. The
salt is incremented on every iteration, which increases the sum until the hash exceeds
a certain value. Dividing the array between the threads and requiring repeated calcu-
lation of the sum means that each thread is repeatedly accessing the same data, which
would benefit from being in the core’s private cache. In order to simulate blocking for
I/O or waiting for some other event, after each calculation, the thread sleeps for a ran-
dom amount of time, generated using the rdrand function. When each thread awakes,
it returns to the global scheduling manager, who then decides which core to dispatch
the task to. This benchmark means that each thread is essentially accessing the same
data repeatedly, but potentially migrating between cores and suffering cache flushes.
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Our experiment will then take the policies defined above and evaluate them on this
benchmark to evaluate the impact of different workload balancing. We are particularly
interested in investigating the impact of cache-aware scheduling on performance.
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