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Abstract
Many state-of-the-art DeepFake video detectors use Long Short-Term Memory-based
networks (LSTM) as they can easily capture temporal information and take video as
direct input. We opt not to use LSTM-based approaches and instead utilise Convo-
lutional Neural Networks which cannot infer temporal information and instead take
images as input. We consider a series of pre-processing methods. Frame differencing
(FD) is where we take the difference of frames over subsections of video in hopes to
highlight idiosyncratic movements often present in DeepFake videos. We also con-
sider averaging over subsections of video (FA) and compare against a baseline dataset
of randomly selecting single frames over the same subsections (RF). We do this in
hopes to leverage temporal information in an image: FA uses averaging and blurs to
indicate movement, FD uses highlighted colours to do the same, and RF does not cap-
ture any temporal data. The aim is to make our model time-aware in some rudimentary
sense. We hypothesise that these pre-processing methods, FA and FD, which trans-
form video into a series of images encapsulating movement, will increase performance
compared to still, randomly selected frames, RF. We use Transfer Learning on both
our MesoInception4 baselines and custom Xception for DeepFake detection. We find
that this hypothesis is correct, with the frame averaging dataset yielding consistently
higher performance compared to randomly selected frames. However, we did not see
this trend with our novel frame differencing approach.
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Chapter 1

Introduction

1.1 Motivation

DeepFake is a method in which Deep Learning is employed to synthesise videos in
which individuals’ facial expressions or faces are transplanted onto other individuals,
although there are many different variants. With time, this technology has signifi-
cantly improved to the point that DeepFakes can be indistinguishable from real videos.
The term “DeepFake” is a portmanteau of the words “Deep Learning” (predominant
method to generate these videos [29]) and “Fake”. Hyper-realistic DeepFake videos
are generally created using Generative Adversarial Networks [27].

These videos can be particularly damaging to the target of the DeepFake; promi-
nent celebrities, political figures, and everyday people have had their faces manipulated
[42]. In the past, it had been the case that one would need thousands of images to create
fake videos. However, as technology has improved, the amount of data required (i.e.
images of source and target individuals) to create these fake videos has significantly
decreased [41]. In extreme scenarios, we can foresee situations in which influential
figures are DeepFaked to say outrageous statements that insight violence, political in-
stability, and even war.

We use Transfer Learning to the problem of DeepFake detection as it allows al-
gorithms to be trained with significantly fewer data and time, as well as being more
generalisable compared to training from scratch [30]. We use a “fight AI with AI ap-
proach” whereby, when humans cannot discriminate real videos from fake ones, we
use a DeepFake detector. This project concerns itself with such algorithms. There
have been strides to address this issue and create DeepFake detectors with notable
competitions held by Facebook on Kaggle [10].

Deep Learning with high-quality videos requires prohibitive amounts of computa-
tion and time to train. Transfer Learning with Convolutional Neural Networks (CNNs)
has been shown to yield state-of-the-art results in many domains outside of computer
vision by representing data as images [16] [28] [11]. This is discussed in detail in
Part 2.4 Image Classifiers for Non-Image Domains. Thus we propose a novel pre-
processing method to convert videos into images while retaining relevant information.
We encode the contents of a DeepFake video to a single image, to take advantage of
temporal information. We try three different methods to achieve this, frame averaging
(FA), a randomly selected frame (RF), and frame differencing (FD).

5



Chapter 1. Introduction 6

Figure 1.1: An example of data point from three pre-processed datasets: Random
Frame (RF) [Left], Frame Averaging (FA) [Middle], and Frame Differencing (FD) [Right]

FA consists of averaging frames over subsections of video. RF is randomly se-
lecting a frame(s), FD consists of taking the difference of frames every interval and
pasting onto a blank image to create an additive image that showcases movement over
multiple time intervals. Examples can be seen in Figure 4.1. These images are passed
into a pre-trained model and Transfer Learning is applied to determine the legitimacy
of the input video. RF is different from the other two datasets as it is not encoding
temporal information, whereas the other two are.

1.2 Research Objective

The aim of this project is to create an end-to-end DeepFake detection system, with raw
video as input and a prediction of real or fake as output. We hypothesise that training
an FD and FA dataset will yield better performance compared to training on an RF
dataset. We believe that training on FD may yield better results compared to FA, as it
can be considered a blurring effect, which may lose temporal information.

State-of-the-art DeepFake detectors often use Convolutional Long Short-Term Mem-
ory Networks (ConvLSTM) [27] which leverages spatio-temporal information to make
their predictions. This is also how humans tend to determine whether a DeepFake video
is real or fake, e.g. by paying close attention to flickering/artifacts in facial movements.

We opt for a Convolutional Neural Network (CNN) for detection, We do this as it
allows us to utilise Transfer Learning which tends to use pre-trained CNNs. This net-
work architecture offers world-class performance on computer vision tasks [23], such
as image classification, by taking advantage of spatial information through convolu-
tion operations. In conjunction with Transfer Learning, CNNs accelerate the training
process while yielding high performance compared to training from scratch. CNNs
already use spatial information and we hypothesise that the addition of these pre-
processing methods mentioned prior will allow us to capture and utilise temporal as-
pects of video and potentially increase performance.

The main research objective is to determine whether pre-processing videos to datasets
of FA and FD provide tangible benefits in performance compared to RF, as well as ex-
plore mechanisms behind them.



Chapter 2

Background

2.1 Deep Learning

Deep Learning (DL) is a subset of Machine Learning. It leverages the power of Artifi-
cial Neural Networks (ANN), which can be summarised as several layers performing
vector operations followed by non-linear differentiable activation functions. By the
Universal Approximation Theorem for ANNs, any continuous function can be approx-
imated to an arbitrary degree of accuracy by an ANN with only a single (sufficiently
large, potentially infinite) hidden layer [9].

In practice, this network would be extremely prone to overfitting; This is when
the error on the training set is low, however, the error for the testing set is large in
comparison. The network memorises training examples themselves, rather than the
key features that distinguish them. Thus, the model is no longer generalisable to new
unseen examples.

For this reason, we opt for deeper networks, which learn slower and are not as
prone to overfitting. “Deep” in “Deep Learning” refers to the depth of the network.
DL removes the need for hand-made features. The network approximates the under-
lying function described by the training data in such a way that the network is able to
decompose the derivative at any point in a computationally feasible manner, allowing
for gradient-based optimisation methods e.g. Stochastic Gradient Descent.

DL has proven to be effective in many areas, including computer vision tasks such
as image classification using Convolutional Neural Networks [23].

2.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) is a special type of neural network design that
rose to prominence with AlexNet in 2012 [19], which achieved top-five accuracy of
84.7% test accuracy on ImageNet challenge, a 1000-class image classification prob-
lem. This was more than 10.8 percentage points higher than the next runner-up.

CNNs are generally divided into three parts: Convolution layers, Pooling layers,
and Fully Connected/Dense layers. Convolutions and Pooling layers are used to extract
spatial correlations in the image and reduce the size of input that is fed into the Dense
layers. AlexNet built on top of this by introducing a deep structure (more layers) [20],

7



Chapter 2. Background 8

Figure 2.1: General structure of Convolutional Neural Netowork (CNN) for image
classification, last few layers for classification are dense; with final layer corresponding
to number of classes (in this case Softmax activation, i.e. Sigmoid for multi-class)

allowing for more parameters to fit the complexities of input images. This makes them
well suited to computer-vision-related tasks [23].

Convolution layers can be thought of as the network breaking down subsections
via convolution filters, summarising the image. The Pooling layer is then applied to
rejoin, via averaging or taking the maximum value from each convolutional subsec-
tion. We apply further convolutions to these summary components images, removing
redundant information to increase efficiency. The final Dense layer takes the feature
vector produced by preceding layers and performs final abstractions for output e.g.
classifying.

2.3 Transfer Learning

Transfer Learning is the technique of using a pre-trained model for a target domain dif-
ferent from its originally trained source domain. We are starting with a mature model
and re-purposing it to a new domain, instead of starting completely from scratch. This
means we transfer knowledge learned from the source to the target domain, reusing
useful information common to both domains. Transfer Learning has been shown to
be effective as it requires orders of magnitude fewer data and significantly less time to
train.

The main mechanism for Transfer Learning is Fine-tuning, whereby we update
pre-trained model parameters by training additional epochs for new data. There are
many different ways to do this, including using the pre-trained model as a starting
point and updating weights of every parameter in the network; this is analogous to a
lucky parameter initialisation. A commonly used method is to freeze all layers from
input to a given layer, L1, and only update parameters from L1 onwards during training.
Freezing sets parameters of the network in place, so they can not be updated during
Backpropagation.

Previously learned information is stored as the model’s parameters i.e. approxima-
tion of the underlying function described by data. We freeze parameters to utilise as
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Figure 2.2: Transfer Learning approach where we use off-the-shelf pre-trained models
as Feature Extractor, i.e. we “chop” of last classifying layer (or more in this case) and
attach a new custom classifying network, CCN for a new target-domain

much information learned by the original pre-trained model as possible.
Another option is to freeze all layers until L1 and add extra layers for a specific

target domain e.g. classification. This can be thought of as freezing and chopping off
the network at L1 and attaching a trainable sub-network that takes the output from L1 as
input. Special case being when L1 is the last layer of the pre-trained model, where we
are adding a sub-network at the end of the existing one (Figure 2.2) - This is using the
pre-trained model as a feature extractor, and the model we use in this project due to its
simplicity and decreased computational demands [30].

In general, CNN pre-trained models are trained on natural images which means
the first few layers of the network tend to be the same regardless of domain. We can
visualise parameters of AlexNet (Figure 2.3 [45]). Parameters in layer one learn to
distinguish general features; lines, edges, and gradients. Layer two combines features
learned in the previous layer to learn more complex features; curves, corners, and
simple shapes. Later layers perform further abstractions, learning domain-specific fea-
tures. Fine-tuning allows us to adapt what later layers learn to focus on new domains,
in our case from 1000-class (ImageNet) to binary classification of DeepFakes.

2.4 Image Classifiers for Non-Image Domains

CNNs are exceptional at image classification but fall short when the domain is not
visual. However, data can be transformed to create images.

For example, we can convert sounds to a spectrogram which is a visual represen-
tation of frequencies and amplitudes over time. This can be seen in the top right of
Figure 2.4. We can see that each sound has a distinct spectral signature associated with
it. Mushtaq et al. showed state-of-the-art performance of 99.49% for UrbanSound8K
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Figure 2.3: Visualisation of learned features for ImageNet via weights in AlexNet [45]

dataset (10-class sound classification [33]) using spectrograms and Transfer Learning
[28].

Similarly, Mahmoud Kalash et al. achieved state-of-the-art results in malware clas-
sification [16] by transforming binary machine code to grayscale images (bottom of
Figure 2.4). Another example of this is Gleb Esman’s anti-fraud system at Splunk
[11]. Using user’s mouse movements and clicks to draw images (top left of Figure 2.4),
Esman’s network can recognise a real customer from a fake customer with over 80%
accuracy given user activity.

The ground-breaking performance achieved by these methods was the main mo-
tivation for this project, transforming data into a meaningful image that captures the
essence of the original video.

2.5 Types of DeepFake Videos

There are generally three levels of DeepFake. Fully Synthesised is when no component
of the image is real, such as produced by Nvidia’s StyleGAN [17]. Examples of this
can be view on popular websites such as This Person Does Not Exist. The next level of
facial manipulation is face-swapping i.e. transforming a target face onto another source
face, where both individuals are real [6]. The lowest level of DeepFake is switching
facial expressions or some other attributes such as hair colour [43], e.g. using Trump’s

https://thispersondoesnotexist.com/
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Figure 2.4: Three examples of transforming data to an image for use with CNNs;
top left transforms mouse movements and clicks to line drawing for fraud detection, top
right transforms sounds to images for sound classification, and bottom image shows
malware software being transformed into binary images for malware detection.

face to make him say something novel, this can be achieved via Thies et al.’s Face2Face
[40].

This project concerns itself with the face-swapping level of manipulation as we
believe it has the most potential for causing harm to society currently. One could argue
that lower facial attributes and expression manipulation could be worse for society as
one could manipulate political figures into saying abhorrent statements, but this can
also be achieved with face-swapping level with carefully chosen target actors.

A malicious user of this technology intending to do harm, would not use facial
attribute and expression manipulation as it requires videos that are real, meaning that
it could be traced back and proven fake; this is not the case for face-swapping.

The majority of DeepFakes online are used for pornography in some shape or form,
with some estimates claiming over 96% of fake videos online are pornographic in na-
ture [39]. Pornographic DeepFakes are usually created using celebrity faces as source
face as there are large amounts of facial data available for these individuals.

However, state-of-the-art DeepFake generators are able to create fake videos us-
ing significantly less data [35], meaning prevalence of revenge porn using faces of
everyday people, via pictures on social media, has become more prominent.
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Figure 2.5: Structure of Meso4 DeepFake detection CNN; MesoInception4 replaces
first two convolution layers with Inception layers, otherwise identical to Meso4 [3]

2.6 DeepFake Video Detection

Older methods of DeepFake detection utilise hand-made features to detect fake videos,
more recent work use DL to inspect for a number of anomalies present in DeepFake
videos. This ranges from idiosyncrasies in frames (e.g. twitching), visual artifacts (e.g.
face warping), to more sophisticated methods e.g. measure an individual’s heartbeat
through the video to detect DeepFakes [37] [13].

The majority of state-of-the-art DeepFake methods are time-aware, using ConvL-
STMs or their derivatives. We do not use ConvLSTM-based methods as our baseline,
as it is not a fair comparison to our CNN-based solution. Instead, we opt to use a
state-of-the-art CNN-based detector, MesoNet [3], first introduced by Afchar et al. in
2018 which demonstrated a detection rate of more than 95% for Face2Face genera-
tion method. MesoNet created two networks Meso4 and MesoInception4 which utilise
mesoscopic features, i.e. scale between microscopic (very small; pixel-level features)
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and macroscopic (large; visible to the naked eye).
Structure of Meso4 can be seen in Figure 2.5. MesoInception4 marginally im-

proves upon Meso4 by replacing first two convolution layers with Inception layers.
Inception layers were first seen in InceptionNet [38],

It can be challenging to figure out optimal convolution kernel sizes, Inception reme-
dies this by trying all of them. Inception layers combine convolution layers with kernel
sizes of 1ˆ 1, 3ˆ 3, and 5ˆ 5 with their output filters concatenated and reshaped to
a single output vector for the next stage. Due to limits in time and computation, we
have opted to only consider MesoInception4 as it yields slightly better performance
compared to Meso4 [3]. In addition, our final CNN-based model uses Xception [8]
with ImageNet weights, as a base network, which also uses Inception layers and is the
latest iteration of Inception architecture.
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Dataset

There are a number of promising open-source DeepFake datasets that can be used for
the purpose of detection. We considered FaceForensics++ (FF), DeepFake Detection
Challenge (DFDC), and CelebDFv2 (CDFv2); all datasets proposed are at the middle,
face-swapping level of manipulation.

3.1 FaceForensics++

The FF dataset [32] contains 1,000 video sequences manipulated with four methods
which include, Face2Face, FaceSwap, NeuralTextures, and the classical Deep-Fake.
FF released 01-2019, which contains 1,000 real and fake videos, gathered from gen-
uine YouTube videos at a resolution of 256ˆ 256, totaling 509,900 frames per class.
This dataset mostly contains frontal faces with minimal obstruction, allowing for best-
case video forgery which may aid in generalisability. FF also provides binary face
masks, which allow for more complex tasks such as segmentation.

The main reason we chose not to use this dataset was due to ethical issues around
the lack of actor consent. The videos within the dataset were all sourced from YouTube.
We deem it unethical to conduct research and benefit from this, on the basis of uncon-
senting (non-celebrity) individuals, even if it is closer to a real-world use case. FF
is also used in MesoNet’s original paper, but this dataset is outdated compared to the
other options.

3.2 Deepfake Detection Challenge

This was the dataset created by Facebook for the world-famous DeepFake detection
challenge on Kaggle [10]. Although it was a very promising candidate, We chose not
to use this dataset due to the sheer size of it, with 119146 .mp4 files totaling 471.84GB
compressed. DFDC released 10-2019 contains 1,131 real and 4,113 fake videos. Cre-
ated with the consent of 66 actors of various genders, ages, and ethnicities, totaling
488,400 real frames and 1,783,300 fake frames.

This dataset features eight facial modification algorithms which would help us cre-
ate a generalisable solution. We considered using a subset of DFCF, although the other
datasets were more compelling due to actor diversity. DFCF only contains explicitly

14



Chapter 3. Dataset 15

consenting actors which helps alleviate the ethical issues. However, a major drawback
with this dataset is that there is no ground truth for every DeepFake. Some actors only
appear in a single class e.g. fake, and therefore there is a chance that the model will
learn which individuals appear in which classes instead of if they’re fake or not. This
is not the case with CDFv2.

3.3 CelebDFv2

CDFv2 [24] released 11-2019 contains 590 and 5,639 real and fake videos, respec-
tively. Created from YouTube interview clips of 62 celebrities DeepFaked among each
other based on gender. These actors are of differing ages and ethnicities, with balanced
genders. Totaling 225,400 real frames and 2,116,800 fake frames. We opt to use the
CDFv2 dataset for a number of reasons. The main one being that every DeepFake has
an associated ground truth i.e. every real video has at least one corresponding fake
video; 9.6 fake videos for every real video. Ground truths are not included in the other
datasets mentioned in this section, making it impossible to isolate actors for a fair test.

The majority of videos within CDFv2 are of an interview-style format which is
helpful for pre-processing as backgrounds will not change over time and faces do not
move as much as compared to the other datasets. This dataset consists of celebrities,
whose faces are already in the public domain. We see them on the movie screen and
although these actors have not consented to have DeepFakes created of them, we deem
it more ethically allowable than “every day” strangers having their faces DeepFaked
which is the case for FF.

Comparing DeepFake datasets is non-trivial and while there is no one agreed-upon
metric for such comparisons, the Structural Similarity Index Measure (SSIM) [26] is
often used. It provides a score between the DeepFake in question and the original real
face. Using mask-SSIM, where “mask” refers to the segmented facial area. CDFv2
shows the highest mask-SSIM score with a 0.04 improvement on its predecessor [24],
meaning the DeepFakes provided by CDFv2 are the most realistic to date.

Ground truths present in CDFv2 allow us to create actor-isolated test sets which
may aid in determining model generalisability. We take care to split the train-validation
and test set in such a way that actors who appear in the train-validation set will never
appear in the test set. We use identical train-validation and test sets for training and
evaluation of all models, this includes the random seeds and the order in which images
are shown to each model, ensuring a fair test.
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Data Pre-Processing

Pre-processing is the main novel contribution for the project, we compress the con-
tents of a DeepFake video to a single image every one-second interval. At the start of
the project, we opted for a single image over the entire video, but due to severe data
imbalance, we later opted for an image every one second (k “ 30 or 30 frames). The
reasons for doing so are covered in detail within 4.6 Class Imbalance.

These videos are on average 13 seconds in length at 30 frames per second and
high definition, resulting in large file sizes. This compression allows us to reduce
the file size and take advantage of temporal information through our pre-processing
methods. We try three different methods to achieve this, frame averaging (FA), frame
differencing (FD), and using randomly selected frames (RF) as a baseline. This means
we create 13 pre-processed images per video. Reducing the original 8.8GB CDFv2
dataset to 5.7GB, a 35.2% decrease in the magnitude of data we are working with.

Order of the sections in this chapter roughly corresponds to the order of operations
for our pre-processing pipeline. A high-level diagram of the pipeline can be seen in
Figure 4.1. This shows an example of pre-processing over intervals of three frames
(k “ 3), i.e. we use three frames to compute a new pre-processed video, with the
frame-to-face-cropping, and edge-case checks omitted for brevity.

4.1 Train-Test Actor Isolation

Each test set has pre-processing applied which corresponds to the train set. i.e. if
a model is trained on FA, we evaluate it on the test set for FA. Each set contains
images created from the same videos. To keep the test as fair as possible, we isolate
an equal number of male and female actors for test purposes only. There are 62 actors
in this dataset, we pick 18 actors exclusively for testing purposes; 9 male and 9 female
actors, this means that we are using 29.9% of the total dataset for testing. This ensures
that there is no chance for the model to learn actors’ faces and utilise them for its
predictions. This means 18,038 fake and 1,600 real images per pre-processed test set.

16



Chapter 4. Data Pre-Processing 17

Figure 4.1: Toy example of pre-processing pipeline with six frames for FD, FA, and
RF datasets with cropping (ExtractFaceLocationsptviuq) omitted for clarity.

4.2 Face Recognition

The pipeline starts with extracting all faces as images from a video. We do this by
extracting all frames from the video, scanning each frame for a face, discarding all
frames which do not contain a face, pre-processing and cropping any faces found with
the smallest bounding box which encapsulates the frames over the interval being con-
sidered, there are minor modifications to this technique for each of the pre-processing
methods but this will be covered in more detail in the respective sections.

Consider an .mp4 video, V of class Real or Fake. W,H corresponds to the width
and height of a single frame in V . The 3 refers to the number of channels (RGB), and
N the total number of frames.

Figure 4.1 captures the essence of the pre-processing being carried out with a toy
example of six frames and an interval, k “ 3. This means we will group k frames
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together (if they contain faces). We use this group, Ki, to create the tN
k u images from

each group, Ki.

V “W ˆHˆ3ˆN P tReal,Fakeu

Note, in this and all other examples, we assume that every frame contains a face, in
the code, we perform many checks to mitigate edge cases - even so, we may not always
end up tN

k u images from N frames. But as we are assuming all N frames have detectable
faces for purposes of explainability, we will have no issues with the numbers.

We extract all frames in V resulting in a list of frames, tv1,v2, ...,vNu P V , where
vi corresponds to the i-th frame of the video which have faces.

ExtractFramespV q “ tv1,v2, ...,vNu

We then partition the video into groups or subsections with k elements in each (if
they contain a face). Since CDFv2 is at 30 frames per second, we use the arbitrary
choice of k“ 30, we experimented with different intervals (we tried k“N; not enough
data, k “ 2; too much data and infeasible compute) but due to time constraints, we
could not determine optimal intervals for each pre-processed dataset.

Grouppk,V q “ t@Ki Ď V |tK1,K2, ...,Kt N
k u
u

Where grouped subsection of frames, Ki for any i, we have at-most k frames in
Ki. The special cases being when k “ N where we average/difference/randomly select
over the entire video and k “ 2 where we just average/difference/randomly select over
pairs of consecutive frames, provided they contain faces (k “ 1 does not make sense
for FD and FA).

For any set of frames, tviu, we scan for faces (using the face recognition python
library [12]), this returns the face location as a four-tuple corresponding to the smallest
bounding box which contains the face(s) found in tviu. Four-tuple because this is the
four lines needed to create this box, which can be seen in Figure 4.2. We assume that
there will only be one face per video, any extra faces detected are discarded.

ExtractFaceLocationsptviuq “ @iptmaxpiq,bminpiq, lmaxpiq,rminpiqq “ ctviu

ExtractFaceLocationspt.uq calculates the smallest bounding box which encapsu-
lates all faces within any set, tviu, and returns it as a four-tuple face location. This face
four-tuple location, ci can be used to ”crop” vi, in Python this is done via list splicing
e.g. face = frame[top:bottom, left:right] but here we use Fi“ vipptpiq,bpiq, lpiq,rpiqqq
to denote the cropped face frame, Fi (seen in bottom right of Figure 4.2), This crop-
ping only effects W and H. More concisely, Fi “ vipctviuq. Now that we have the face
frame, Fi, and the locations associated with each frame, ci, this is where the pipeline
splits into three.

4.3 Random Frame

RF is randomly selecting a frame(s). We pick a random frame from every grouped
subsection, Ki for all i with uniform distribution. This can be seen at the bottom of
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Figure 4.2: Example of four-tuple output returned by ExtractFaceLocationsptviuq,
where t,b, l,r correspond to top, bottom, left and right, respectively

Figure 4.1, “Random, RF”. @ random frames, ri,

ri “ uniftKiu “ unifttvpiq1 ,vpiq2 , ...vpiqk uu

ri is our single, randomly selected frame (in one of our k grouped subsections),
now we must crop it. To obtain the final image, since there’s only one frame to deal
with, ExtractFaceLocationspt.uq just returns the four-tuple location of the face, which
is inherently the smallest bounding boxing containing the face:

R F i “ ripExtractFaceLocationsptriuqq “ rip friqq

4.4 Frame Averaging

FA consists of averaging the frames over the grouped subsections, Ki, of the video.
Before averaging, we find the largest bounding box which contains all faces being
averaged, this is again done using ExtractFaceLocationspt.uq.

We care about this as when it comes to averaging and differencing, it does not
make sense to look at individual faces, we need a set reference point so that there’s
no overlapping - this concept is similar to matrix operations which rely on consistent
shape.

We achieve this by averaging over all face frames and taking the largest bounding
box which contains all faces being averaged. @ averaged frames, ai,
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Figure 4.3: Top: real frame, with RF, FA and FD pre-processing applied with varying in-
tervals, k. Bottom: fake frame, with same pre-processing showcase differences among
real and fake

ai “
1
k

ÿ

Ki

vpiqi

In this case, although ai is again a single image corresponding to the averaging over
k frames in Ki, we need to crop and get the smallest bounding box which contains all
faces in Ki.

F A i “ aipExtractFaceLocationspKiqq “ aipcKiq

4.5 Frame Differencing

FD is very similar to FA, however, instead of summing and dividing by k, we sub-
tract consecutive frames, in an overlapping fashion, and sum the differences up, then
normalise.



Chapter 4. Data Pre-Processing 21

This process is clearly illustrated at the top of Figure 4.1 whereby the first k “ 3
frames are grouped to create K1 “ tv1,v2,v3u and then K1 is used to subtract consec-
utive frames and sum, similar to zipping and subtracting in Python. This results in the
difference final frame in the example being equal to F D1 “

1
k´1ppv3´v2q`pv2´v1qq.

More generally this can be stated as, @ differenced frames, di:

di “
1

k´1

ÿ

Ki

pvpiqj`1´ vpiqj q

F D i “ dipExtractFaceLocationspKiqq “ dipcKiq

We also considered performing no overlapping subtracts, i.e. v1,v2,v3,v4 Ñ pv4´

v3q` pv2´ v1q, but this did not make sense as we would be losing the information be-
tween these sub-groups. We normalise due to the fact that as we keep summing, the
RGB values start increasing past 255, normalisation must be applied to keep the image
from being completely white as differences accumulate. Our first implementation of
these pre-processing techniques did not yield k distinct images (per subsection), in-
stead, we combined the k images into one image, this can be seen in Figure 4.3. This
was later changed due to severe levels of class imbalance and poor performance on the
validation set.

Modern DNNs, including Xception, are more than capable of handling class im-
balance provided enough data. We tried many different techniques for easing the class
imbalance (9.6 to 1), but one of the simplest ways to ease class imbalance is to use
more data [15]. Thus, we omit the combining of k images to one image and instead
output the k images themselves. The reason we chose to use FD was that we believed
that the network could pick up on some meaningful details within the FD frames.

Prior to doing this change, we heavily experimented with values of k, to see if there
was any tangible difference detectable (via the human eye) from a real video to a fake
one, the results of which can be seen in Figure 4.3.

We do indeed see some artifacts only present in the fake videos using FD. If we
consider the real image at ”diff k “ N{{5” (i.e. the video was split into 5 equal parts
and differenced, then combined; in our final dataset we do not combine), we can see
the FD frame, with highly saturated parts of the image indicating lots of movement
and black parts of the image showing little movement (frame to frame over the five
subsections). If we then consider the same ”diff k “ N{{5” image in the fake image,
we see that the image is very similar but colors are muted. This indicates that fewer
changes are occurring from frame to frame. This is just one example, this trend holds
true for most videos tested.

This is odd, as a key giveaway for DeepFakes is temporal flickering, which would
show up as a more colorful image with many saturated spots compared to the real
counterpart. Instead, we see the opposite trend, real images have more movement from
frame to frame, we hypothesise this is due to the micro facial expressions performed
by real humans which many DeepFakes fail to emulate, leading to unrealistic images.
In DeepFakes which look very real, this muted color phenomenon is less dramatic.
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4.6 Class Imbalance

As mentioned prior, we made a lot of changes due to the severe class imbalance present
in CDFv2, there are approx. 9.6 fake videos for every real video. We tried a variety
of techniques to address this issue including: Sigmoid Focal Loss (niche loss function
used in image segmentation problems where the class imbalance is extreme as most
of the data is not the class being segmented [25]), data augmentation (creating new
data from existing data via transformations), synthetic minority oversampling tech-
nique (SMOTE, discarding extra fake examples), thresholding (changing the threshold
for prediction, i.e. at which point do we class as real/fake), ensembling (creating 10
models and training on all reals and a tenth of the fake images per model, then casting
a weighted vote for predictions), and using more data. With preliminary experiments,
we found that Sigmoid Focal Loss had zero effect on the final AUC, thus we did not
include it in our final model.

Data augmentation helped the model’s generalisability, we used default, commonly
used settings for data augmentation found on Keras Blogs as these examples yielded
positive results. SMOTE and the majority class oversampling counterpart showed little
to no impact on our model performance, thus we opted not to use it as we would
be throwing away nine-tenths of our dataset or increasing the chance of overfitting.
Thresholding yielded positive results improving metrics like F1 (harmonic average of
precision and recall) but this effect was negligible, AUC curves inherently vary the
threshold for us. We did not manage to create and test ensemble models due to time
and computational constraints.

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
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Methodology

5.1 Overview

This chapter covers methodology, order of experiments, and general motivation. Al-
though there are many different approaches to Transfer Learning, we chose to focus on
using a pre-trained model as a feature extractor.

For example, using Xception [8] as a feature extractor consists of utilising the
network without its final classification layer. This transforms input images to a 2048-
dimensional vector, which extracts valuable features from the source-domain, and we
can leverage this knowledge to a new-domain task.

We do this by discarding the final classification layer and freezing parameters of
our pre-trained model, so as not to alter the learned features. Then a number of train-
able custom final layers are concatenated, a classifying network of our own (seen in
Figure 2.2).

However, for purposes of determining optimal hyperparameters, we make our cus-
tom classifying network, CCN, a single output neuron until we determine all other
optimal hyperparameters; i.e. we take the output from the penultimate layer as the fea-
ture vector and feed it to a single dense unit (for binary classification) for all rounds of
the experiment which do not consider network structure. After calibration of all other
components is complete, we experiment to determine the optimal structure. We then
use this optimal CCN and train on all datasets and evaluate.

We consider a single untrained network, MesoInception4, as our baseline. This
network comes with two sets of pre-trained weights, which correspond to training
on the Deep-Fake (DF) and Face2Face (F2F) datasets. This allows us to circumvent
training from scratch and evaluate for each dataset and for each pre-trained weight.
UntrainedBaselines“ tWeightsF2F ,WeightsDFuˆtRF,FA,FDu “ tU-F2F-RF,
...,U-DF-FDu. Due to poor performance with these out-of-the-box baselines, we con-
sider a minimally trained network, using our baseline with the best weights and ap-
ply basic Transfer Learning. In the same fashion as our Xception network, we use
MesoInception4 loaded with F2F weights (U-F2F). This model is then used as a fea-
ture extractor, only training the last layer to obtain a series of minimally trained fea-
ture extractor baselines that have been fine-tuned to our datasets. This makes base-
line comparisons to our custom Xception model fairer. FeatureExtractorBaselines “
BestpUntrainedBaselinesqˆtRF,FA,FDu “ tFE-RF,FE-FA,FE-FDu.

23
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5.1.1 Automated Machine Learning Approach

We utilise the Hyperband [22] algorithm to find optimal hyperparameters of the model
and CCN structure. We use this hyperparameter search algorithm due to its perfor-
mance in the literature and its ability to find optimal calibrations quickly.

We treat this search algorithm as a black-box, whereby we only give it a subset of
the hyperparameters to determine the optimal settings so far. We opt for a tournament-
style experimentation method to determine the best parameters and structure, we con-
sider the hyperparameters with the broadest effects first; loss, optimiser, and CCN
structure.

5.1.2 Experiment Outline

Hyperband was used to get optimal hyperparameters, λ, and we use |λ|ˆ100 epochs of
exploration to ensure the reliability of the result. This number of epochs of exploration
is arbitrary but we thought it would be useful to increase epochs for exploration as the
number of hyperparameters being considered increased. The order of experiments are
as follows:

0.) Evaluate untrained baselines, with both sets of weights on all datasets (U-F2F
& U-DF).

1.) Pick best untrained baselines and apply fine-tuning on the last layer to create
feature extractor baselines (FE) and re-evaluate.

2.) Given CCN“ tDensep1qu, pick best Optimiser Ô PO“ tBinary Cross-Entropy
(BCH), Sigmoid Focal Cross-Entropy (FL)u.

3.) Given Ô,CCN “ tDensep1qu, pick best Loss L̂ P L“ tAdam, RMSprop, SGDu.
4.) Given Ô, L̂ pick best structure ˆCCN PCNN“t(Dense(d)|Dropout(p))˚Dense(1)u

where d and p corresponds to the number of hidden units and Dropout probability for
the given layer, respectively. Note: we use regular expression notation for CCN. This
means that CCN is a sequence of any number of Dense or Dropout layers (with any
number of hidden units or dropout probability), which must end with a single Dense
unit for the final layer.

5.) Evaluate our model (Xception ÝÑ ˆCCNpÔ, L̂q) and compare against all other
models.

The main metric we will consider when evaluating is Area Under the ROC (Re-
ceiver Operating Characteristic) Curve, also known as AUC [7]. We chose to use this
metric over others, such as accuracy, as it is commonly used in image classification
tasks and indifferent to class imbalance. We also consider other metrics such as F1 and
the confusion matrix to gain further insights into specific models. We use the identical
train and test sets for all models, with the same random seeds, batch sizes, order of
evaluation, etc., ensuring that the only thing that changes is the model we are training
or evaluating on.

5.2 Pre-Trained Model & Baseline

Table 5.1 [1] shows performance of a number of pre-trained models on the ImageNet
challenge. Xception has a number of desirable features, reaching the highest top-1
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Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth
Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26

ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -

ResNet50V2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159

InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88

MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201

Table 5.1: Performance of a variety of pre-trained models on ImageNet, sorted by
top-one accuracy [1]

accuracy of 79%, which is 1.1% higher than InceptionV3 which is the model that
MesoInception is based on. Xception also falls into the bottom third for model size
at 88MB, this makes it easier to download and work with. For these reasons, we use
Xception as our pre-trained network to build on top of. As mentioned in 2.6 DeepFake
Video Detection we will use the MesoInception4 (Figure 2.5) as our baseline network,
due to its similarity to Xception, and marginal performance gain over Meso4.

Baseline experiments will consist of evaluating the out-of-the-box, untrained MesoIn-
ception4 on our three datasets. We expect this to yield low AUC, thus we apply min-
imal training on MesoInception4, in the same fashion as Xception. We use U-F2F, as
it is the best performing untrained baseline, as a feature extractor and only train the
last layer, with the identical loss, optimiser, and other parameters outlined in Afchar et
al.’s original paper [3]. We hypothesise that the RF dataset will perform best on this
baseline, with FA as a close second and we expect FD to perform poorly, but we will
test this regardless.

5.3 Hyperband Hyperparameter Tuning

Hyperband performs hyperparameter tuning as a pure-exploration non-stochastic infinite-
armed bandit problem [22].

Similar to Bayesian Optimisation (BO), Hyperband is a search optimisation algo-
rithm. We chose not to use BO as the literature suggests that Hyperband is better
than Bayesian optimisation provided enough epochs of exploration, yielding up to an
order-of-magnitude speedup over other methods [22].

Hyperband utilises successive halving, i.e. dropping the bottom worst half of hy-
perparameters, and randomly distributes resources to each batch in order to explore
different convergence behaviors. This is essentially an augmented random search that
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Figure 5.1: Outline of main experiments: untrained baselines, minimally trained fea-
ture extractor baselines, and process to find optimal custom classifying network, CCN

pays attention to good hyperparameter candidates but still distributes resources ran-
domly in-hopes not to overfit to hyperparameter that performs well early on.

We set Hyperband’s objective function to maximise validation AUC and give it a
subset of hyperparameters to consider at each round of experimentation and carrying
on with the best. More concisely, for some subset of hyperparameters λ Ď Oˆ Lˆ
CCN, we use Hyperbandpλq for |λ|ˆ100 epochs to find the best hyperparameter, λ̂ P λ

(Seen in Figure 5.1). We then use the architecture determined by Hyperband and train
to 100 epochs (with early stopping and patience of 10 epochs, i.e. if the model does
not improve in 10 non-consecutive epochs, we terminate) and evaluate. This 100 epoch
training and early stopping are also applied to feature extractor baselines, we do this in
order to eliminate unnecessary computation.

5.4 Loss Function

We experiment with two loss functions, Binary Cross-Entropy (BCH) and Sigmoid
Focal Cross-Entropy, also known as Focal Loss (FL) [25].

If we consider ground-truth of a class to be y P t´1,1u and the model’s prediction
probability of class y “ 1 to be p P r0,1s then we can define BCH loss for binary
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classification can be as:

BCHpp,yq “
"

´ logppq if y“ 1
´ logp1´ pq otherwise

This distance may range outside of the interval r0,1s, so we normalise, we use
Rectified Linear Unit (ReLU) to do this for non-classifying layers and the Sigmoid
activation for the final classifying layer. This is a commonly used loss in many DL-
based computer vision tasks. For mathematical convenience, we introduce pt as we
can rewrite BCHpp,yq “ BCHpptq “ ´ logpptq where:

pt “

"

p if y“ 1
1I´ p otherwise

Due to the 9.6 fake to 1 real class imbalance problem, we used class weights as it
was beneficial in preliminary results. This is a simple oversampling method whereby
every fake image will only be considered in conjunction with 9.6 real images, meaning
that the gradient produced by a fake image is scaled by 9.6´1. This can also be thought
of as adding a normalising coefficient α to BCHpptq “ ´α logpptq.

To further ease the problem of class imbalance, we consider FL, which was de-
veloped to help ease the problem of extreme data imbalance in dense object detection
[25]. FL can be defined as:

FLpptq “ ´αt p1´ ptq
γ logpptq

Where α and γ are biased towards the imbalance class and a penalisation parameter;
Notice: this loss is similar to BCH with a balancing factor. FL sees state-of-the-art
results in one-shot object detection in images. We hypothesise that FL will aid in
easing class imbalance compared to BCH. We run HyperbandpLq for 200 epochs each
dataset to determine L̂.

5.5 Optimiser

Once we have determined the optimal loss, L̂, we will use this to determine the optimal
optimiser, Ô, given L̂.

We experiment with three standard optimisers, Adam [18], Root Mean Square
Propagation (RMSprop) [14], and Stochastic Gradient Descent [31]. All of these al-
gorithms are gradient-based optimisers, meaning that they use the derivative of loss
to infer the “direction” of optima. Adam and RMSprop utilise momentum as well as
gradient, which allows them to escape local optima. None of these algorithms guaran-
tee global optima, however, they do guarantee convergence to some local optima given
enough iterations and appropriate learning rates. Similar to finding L̂, we will use Hy-
perband with 300 epochs of exploration for each dataset and pick the best performing
optimiser to determine Ô.
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5.6 Fine-tuning

At this point, we know the optimal loss, L̂, and optimiser, Ô, for our Xception Fea-
ture Extractor when our CCN is a single Dense unit, with Sigmoid activation (since
it is the final binary classification layer). We then experiment with structure CCN “
t(Dense(d)|Dropout(p))˚Dense(1)u meaning (Dense layer with d units OR Dropout
layer with dropout probability p) repeated zero or more times followed by a Dense
layer with a single unit

However, this implies that we could potentially have an infinite number of layers
or units for CCN, which would be infeasible. To reduce the search space to a finite and
discrete set, we consider the search space as follows: Eight layers maximum, |CNN| “
8. For layers one to eight: Dense layers will have d units, where d P D“ r1024,4096s
with step size 256, i.e. d P t1024,1280, ...,4096u. Dropout layers will have Dropout
probability, p, where p P P “ r0,1s with step size 0.05, i.e. p P t0,0.05, ...,1u. For
the final layer: We must have a Dense layer with a single unit, Dense(1). In regular
expression notation, this can be written as
pDensepdq|Dropoutppqqt0´8uDensep1q.

The choice of eight layers is completely arbitrary but most CCNs in the litera-
ture tend to have eight or fewer layers [8] [30]. Discretisation of settings results in
678,724,137,931 total possible network architectures (

ř8
n“0p|D|`|P|q

n). We then pass
these discretised settings for the structure to Hyperband to determine the optimal struc-
ture, Ŝ. Due to computational constraints, we run HyperbandpSq for 500 epochs as it
would be infeasible to 6.79ˆ1011ˆ100 epochs of exploration.

Tables outlining Hyperband results in Evaluation and Results have validation AUCs
as their score. We should not pay much attention to this as the 500 epochs are a quota
for exploration, and will not be allocated to just one candidate model. The flow of
experiments can be seen in Figure 5.1. We then evaluate all models, with the same
test sets for each given dataset. Each dataset contains the pre-processed version of the
exact same videos. Due to the actor-isolation, we expect lower test AUCs compared
to validation AUCs because of the unseen actors, this is ideal as, if we gain high test
AUC, we know that the model has generalised well.
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Evaluation and Results

6.1 Untrained MesoInception4 Baselines

Dataset Random Frame (RF) Frame Average (FA) Frame Difference (FD)
Pre-Trained Weights Face2Face (F2F) DeepFake (DF) Face2Face (F2F) DeepFake (DF) Face2Face (F2F) DeepFake (DF)

Model Name U-F2F-RF U-DF-RF U-F2F-FA U-DF-FA U-F2F-FD U-DF-FD
Class Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake

Precision 0.09 0.92 0.08 0.92 0.08 0.92 0.09 0.92 0.08 0.92 0.09 0.92
Recall 0.02 0.99 0.22 0.78 0.62 0.41 0.14 0.87 0.71 0.31 0.03 0.97

F1 0.03 0.95 0.12 0.85 0.15 0.56 0.11 0.90 0.15 0.47 0.05 0.94
Test AUC 0.496 0.492 0.510 0.501 0.510 0.492

Table 6.1: Untrained Baselines (U-F2F & U-DF) classification report of all untrained
out-of-the-box baselines, evaluated with both weights (F2F & DF) and all datasets

We look at six untrained out-of-the-box baseline models, for each of our three
datasets and two loadable weights for MesoInception4. All models show poor per-
formance on all datasets with AUCs close to 0.5 (as good as randomly guessing), as
expected. This is due to the fact that these baselines are being evaluated on datasets
very different from what they were trained on. Unusually, we find that the best (tied)
performing untrained baseline was U-F2F evaluated on the FD and FA datasets, both
reaching AUCs of 0.51.

Table 6.1 (RF Baselines left) shows that performance on the RF dataset is also poor.
By comparing the real and fake metrics, we can see that the model tends to predict fake,
far more often than real. This is expected and due to class imbalance and is a common
trait among most models. Oddly, the RF dataset performs the worst compared to the
other untrained baselines. With the lowest AUC of 0.492. Despite this, RF baselines
yield marginally higher real class precision, over the other baselines.

Table 6.1 (FA Baselines middle) again shows poor performance, with a slightly
better than random test AUC of 0.510 with F2F weights. We find that FA consistently
performs better than RF, regardless of which weights were loaded; validating our hy-
pothesis that frame averaging pre-processing may aid performance.

This is strange as these baselines were trained on a still-image dataset analogous
to RF. One would think that the averaging of frames over one-second intervals may
blur important details but these results show otherwise. Although F1 significantly
improves compared to U-F2F-RF and U-DF-RF, F1 for the fake class has fallen to
0.56, implying that we are now misclassifying fakes far more often than before. If

29
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we consider all baselines, we see that, excluding the RF dataset, baselines loaded with
the F2F weights perform consistently better, with higher real class F1s and test AUCs,
compared to baselines loaded with DF weights. This suggests that the models trained
on the F2F dataset generalise better to our new datasets.

Considering Table 6.1 (FD Baselines right), we oddly find that baselines evalu-
ated on the FD dataset loaded with F2F (U-F2F-FD), performs identically to its FA
evaluated counterpart, both achieving the highest test AUC of 0.510.

This is still strange as we would assume that the FD dataset would be drastically
different from the F2F dataset this baseline was originally trained on. FD, as seen in
Figure 4.3 contains unnatural images far removed from the images found in any other
DeepFake dataset, and yet U-F2F-FD is just as good as U-F2F-FA.

6.2 Feature Extractor MesoInception4 Baselines

Dataset Random Frame (RF) Frame Average (FA) Frame Difference (FD)
Model Name FE-RF FE-FA FE-FD

Class Real Fake Real Fake Real Fake
Precision 0.09 0.92 0.08 0.92 0.08 0.92

Recall 0.39 0.63 0.62 0.40 0.51 0.50
F1 0.14 0.75 0.15 0.56 0.14 0.65

Test AUC 0.503 0.505 0.498

Table 6.2: Feature Extractors (FE) classification report of all feature extractor MesoIn-
ception F2F baselines, evaluated on all datasets

Due to the poor AUC, we opt to apply basic Transfer Learning to our baseline,
regardless of the dataset; untrained baseline with F2F weights, U-F2F. We only train
the last layer of U-F2F on all datasets to obtain a series of minimally trained feature
extractor MesoInception4 networks loaded with F2F weights and evaluate.

Table 6.2 shows the results of the trained models on our test sets. We see that de-
spite fine-tuning on the last layer, these models are not much better than our untrained
baselines in terms of test AUC. Looking closer at the real class F1, there is a clear
improvement with the highest real class F1 belonging to FE-FA. Here, the trend of FA
models performing better than the others continues. However, FE-RF is now perform-
ing slightly better in comparison to FE-FD. Although a marginal improvement, FE-FA
is indeed consistently yielding better results compared to FE-RF; U-F2F-FD was one
of the best performing untrained baselines whereas FE-FD was the worst minimally
trained baseline, therefore no clear conclusions for FE-FD can be made as of yet.

Figure 6.1 shows training history, notice how we did not train all models for the
same number of epochs. This is due to the early stopping mechanism which will ter-
minate training if the model shows 10 instances of decreasing validation AUC. We can
see that all models show smooth training curves. However, the validation curves for all
metrics are volatile, suggesting that FE models are having trouble finding generalisable
optima.
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Although FE-FA reached the highest test AUC (top right of Figure 6.1). FE-RF
shows lower false positives (FP) at 156 versus FE-FA’s 420. We care about FP as the
model keeps predicting fake due to the severe class imbalance. If we get low FP and
high AUC, this means the class imbalance problem is being solved.

FE-RF’s validation loss is decreasing in tandem with train loss, whereas all other
FE models do not show convergent validation losses. This means that FE-RF had lit-
tle trouble adapting to our dataset, with all metrics smoothly converging. This makes
sense as the RF dataset is the closest to the datasets used in MesoNet. In brief, FEs
showed marginal gains over U-F2Fs, with FE-FA being the best on test AUC, although
FE-RF showed better validation statistics implying more training may yield better re-
sults with this model. Despite these marginal gains over the untrained baselines, we
find FA performs better than its counterparts, further implying that FA pre-processing
has a positive impact on performance.

6.3 Determining Optimal Loss

Dataset Random Frame (RF) Frame Average (FA) Frame Difference (FD)
Best Loss Binary Cross-Entropy Binary Cross-Entropy Binary Cross-Entropy

Epochs of Exploration 200 200 200
Time Taken 20 Hours 14 Mins

Score (Val-AUC) 0.621 0.678 0.666

Table 6.3: Best Loss, L̂, determined by HyperbandptBCH,FLuq

Table 6.3 shows the results of running Hyperband for 200 epochs per dataset, with
two choices for loss, Hyperband({BCH, FL}). All top ten models achieve a validation
AUC of 0.62 or higher, regardless of the dataset. All top models prefer Binary Cross-
Entropy, over Focal Loss. Examining closer, Focal Loss had no gain in performance
compared to randomly guessing. Thus, L̂“ BCH.

Although not the metric we are focusing on, validation AUC is relatively high,
being higher than any test AUCs achieved by untrained baselines (Table 6.1). We
find a similar trend: RF slightly worse than FD, with FA being the winner in terms of
validation AUC. This is promising but we can not make any concrete conclusions using
validation AUC, as the model is indirectly “training” using the validation set [34]. We
do not evaluate Hyperband models as they are too numerous and we are only using
them to determine optimal hyperparameters.
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6.4 Determining Optimal Optimiser

Dataset RF FA FD
Best Optimiser Adam SGD SGD

Epochs of Exploration 300 300 300
Time Taken 29 Hours 24 Mins

Score (Val-AUC) 0.623 0.658 0.660

Table 6.4: Best Optimiser, Ô, determined by HyperbandptAdam,RMSprop,SGDuq
given L̂“ BCH

Table 6.4 shows the results of using Hyperband for 300 epochs for each dataset, Hy-
perband({Adam, RMSprop, SGD}) given L̂ “ BCH. We see that two out of the three
models for each dataset prefer SGD over Adam. SGD classically does not utilise mo-
mentum [31] whereas Adam [18] does. However, in the TensorFlow implementation,
SGD incorporates a default initial momentum of 0.9 which decays. RMSprop was not
present in any top tens for any of the datasets. In preliminary tests, RMSprop showed
noisy convergence behaviour when considering training and validation loss; Adam also
showed this trend, whereas SGD did not.

Due to the decaying momentum found in SGD, we hypothesise that the model
was able to find a better optimum by avoiding bad local minima with higher loss via
overshooting with momentum. All models use a standard constant learning rate of 1e´
3 as the literature suggests that this is optimal for a variety of problems [21] [5], hence
we did not consider multiple learning rates in conjunction with our optimisers. Due to
computational constraints, we only create a single model for our final evaluation. A
vote of our top optimisers determines that the optimal optimiser is Ô“ SGD.

6.5 Determining Optimal Structure

Table 6.5 shows the top models for each dataset for finding optimal structure using
Hyperband((Dense(d)|Dropout(p))0-8) for 500 epochs, given L̂“ BCH and Ô“ SGD.
All models show to prefer seven penultimate layers, i.e number of layers after Xception
output and before final Dense unit, seen in Figure 5.1. RF preferred a CCN with a
Dense layer size of 2816 followed by another Dense layer with 1280 units. This is
strange as this means that the network is compressing the learned features in the layer
before (similar to Autoencoders [4]), then the network prefers more units with dropout
layers with 3328 or more dense units.

Both FA and FD preferred the exact same network. This may be due to the fact that
we used the same random seed for all experiments, thus Hyperband considered the
same order of “random” initialisations for structure. With the initial layer containing
2304 units, with dropout throughout the networks excluding the last layer leading to
the final Dense unit. This initial layer is followed by an increased number of Dense
units, 3328, then a constant number of 1280 dense units.
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Dataset Random Frame (RF) Frame Average (FA) Frame Difference (FD)
Penultimate Layers 7 7 7

Dense Units 0 2816 2304 2304
Dropout Probability 1 N/A 0.30 0.30

Dense Units 2 1280 3328 3328
Dropout Probability 3 0.10 0.15 0.15

Dense Units 4 3584 1280 1280
Dropout Probability 5 0.30 0.15 0.15

Dense Units 6 3328 1280 1280
Dropout Probability 7 0.1 N/A N/A
Epochs of Exploration 500 500 500

Time Taken 50 Hours 27 Mins
Score (Val-AUC) 0.641 0.667 0.651

Table 6.5: Best Structure, ˆCCN, determined by Hyperband((Dense(d)|Dropout(p)){0-
7}Dense(1)) given L̂“ BCH and Ô“ SGD. N/A indicates that the model chose not to
use this layer.

All models preferred dropout probabilities of 0.3 or less. This is promising and
consistent with the literature where higher values are rarely used [36]. All models
prefer to take Xception’s 2048 dimensional feature vector and pass it into a Dense
layer first. Models had the option of using eight layers, however, they all chose to use
seven instead. All models mostly preferred to have an alternating Dense and Dropout
arrangement, suggesting that this arrangement was helpful for maximising validation
AUC, and when a layer was not included, it was always a Dropout layer. Due to
the fact that two out of our three best performing models per dataset choose identical
parameters, we determine the optimal structure of our custom classifying network to
be ˆCCN = {Dense(2304), Dropout(0.3), Dense(3328), Dropout(0.15), Dense(1280),
Dropout(0.15), Dense(1280), Dense(1)}.

6.6 Our Models

We now train a our custom classifying network determined by Hyperband, L̂ “ BCH,
Ô“SGD and ˆCCN = {Dense(2304), Dropout(0.3), Dense(3328), Dropout(0.15), Dense(1280),
Dropout(0.15), Dense(1280), Dense(1)} with the feature vector of Xception as input.

Dataset Random Frame (RF) Frame Average (FA) Frame Difference (FD)
Model Name OM-RF OM-FA OM-FD

Class Real Fake Real Fake Real Fake
Precision 0.08 0.92 0.08 0.92 0.08 0.92

Recall 0.71 0.31 0.53 0.48 0.78 0.23
F1 0.15 0.47 0.14 0.63 0.15 0.37

Test AUC 0.501 0.502 0.497

Table 6.6: Our Models (OM) classification report of our final models, evaluated on all
datasets

Table 6.6 shows that all models performed poorly, with OM-FA performing marginally
better than OM-RF in terms of test AUC with OM-FD being the worst with sub 0.5
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AUC. All of our models show high fake class precision at 0.92, with low fake class
recall, this indicates that our models are still mostly predicting real to the detriment of
fake class predictions. OM-FA achieves the highest cumulative F1 over both classes at
0.77, with OM-RF a second at 0.61 and OM-FD with the lowest at 0.51. These metrics
show a clear improvement over our untrained baselines, however, they are marginally
worse than our FE models.

Despite the class imbalance and low AUCs, confusion matrices (Table 6.7) show
that OM-RF and OM-FA predicted real far more often than fake, whereas FA does the
opposite. The fact that some of our models predicted real more often, even with the
heavy imbalance towards fake, suggesting class imbalance seems to be circumvented
here. Perhaps ensemble methods may yield better results as different models have
picked on different features to distinguish DeepFakes. Ensembling is when we take
the predictions of many different models and combine them (e.g. with a vote) to reach
performance better than any single model [44].

OM-RF Confusion Matrix
Predicted Real Predicted Fake

True Real 1136 464
True Fake 12431 5607

OM-FA Confusion Matrix
Predicted Real Predicted Fake

True Real 352 1248
True Fake 3908 14130

OM-FD Confusion Matrix
Predicted Real Predicted Fake

True Real 1253 347
True Fake 13811 4227

Table 6.7: OM Confusion Matrix for all our final models

Figure 6.2 shows metrics during training, we can clearly see that the early stopping
mechanism has significantly hindered our performance as training metrics have not
plateaued. Most of our models only trained to around 30 epochs before early stopping
terminates them. This is somewhat of an unfair comparison as our models clearly did
not converge to optimas; early stopping has caused some models to train for far more
epochs compared to others, e.g. FE-FA models being trained for over 60 epochs which
may explain its improved performance compared to other models.

Figure 6.2 also shows the same trend of noisy validation metrics which do not
converge. All validation metrics of our model are significantly worse compared to
FE models. Our models had 770 false positives and the lowest accuracy at 0.626 at
the worst case, whereas FE models had 420 maximum false positives and the lowest
accuracy 0.745, indicating that FE models are better than our models in every case. Our
models show that FD pre-processing yielded no significant benefits on performance
compared to RF, although throughout all experiments, we have seen that FA-trained
models consistently beat RF-trained ones.
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We are getting low AUCs close to 0.5 for all models, despite our training metrics
showing much higher validation AUCs and accuracy, sometimes close to 0.9. We
hypothesise this is due to two reasons, our actor-isolated test set and non-voting based
prediction on videos. This test set is much harder than a typical test set as we took care
to isolate 9 male and 9 female actors strictly for testing purposes. This was done to
ensure that the models did not memorise the faces and scenarios of fake actors, making
the test set harder and thus we achieve low AUCs. Another reason is the way we choose
to evaluate our models. When we pre-process for a given dataset, we create around 13
images per video (since the interval, k “ 30 and videos are on average 13 seconds).
This naturally increases the amount of data the model has access to - more instances
to train on but also more instances to get wrong, and without taking into account what
video these images are originally from, we unfairly penalise the model, even if it is
making meaningful predictions.

For example, in our setup, consider a real video. When it is pre-processed there
will be 13 images corresponding to this video. This means that there are now 13
times more instances to potentially predict wrong. If the model incorrectly predicted
that seven or more of these images were fake, a simple vote over the predictions per
video would lead to a single (incorrect) verdict of fake and the model would only be
penalised once, instead of six more times which is the case currently. This would
also mean that creating more images (i.e. increasing k) would have no effect on the
total number of labels to predict. We do not currently vote on images with respect to
the original video’s label as part of the evaluation, but we hypothesise that using this
method would lead to far better performance. AUC curves and confusion matrices for
all models discussed in the main body of this project can be seen in Appendices.
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Figure 6.1: Feature Extractor MesoInception4 Baselines Training Metrics.
Top Right : FE-RF, Validation Metrics: Loss=0.125, Acc=0.823, AUC=0.935, FP=156.
Top Left : FE-FA, Validation Metrics: Loss=0.134, Acc=0.806, AUC=0.861, FP=420.
Bottom: FE-FD, Validation Metrics: Loss=0.163, Acc=0.745, AUC=0.923, FP=121.
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Figure 6.2: Our Models’ Training Metrics.
Top Right : OM-RF, Validation Metrics: Loss=0.728, Acc=0.626, AUC=0.805, FP=296.
Top Left : OM-FA, Validation Metrics: Loss=0.517, Acc=0.765, AUC=0.732, FP=770.
Bottom: OM-FD, Validation Metrics: Loss=0.585, Acc=0.690, AUC=0.737, FP=532.
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Discussion

7.1 Conclusion

We set out to apply pre-processing to the CelebDFv2 DeepFake video dataset in hopes
to leverage temporal information in an image for use with CNNs. We created three
datasets via frame averaging (FA), frame differencing (FD), and randomly selecting
frames (RF). Two of the three datasets, FA and FD, encapsulated time information in
some meaningful way; FA does this via blurs and FD via colour intensity, whereas RF
did not capture any and can be thought of as a snapshot in time. We do this in hopes of
picking up on the idiosyncrasies present in many DeepFake videos.

We consider a series of untrained out-of-the-box MesoInception4 baselines (U-
F2F and U-DF), which showed poor performance on all datasets. Oddly, untrained
baselines evaluated on the FA dataset yielded the best performance despite the fact they
are trained on datasets analogous to RF, suggesting these models gained a marginal
boost in performance due to this pre-processing.

We then applied basic Transfer Learning on the best performing untrained baseline
(U-F2F), by treating this network as a feature extractor and only training the last layer
to fine-tune to our datasets, to arrive at a series of minimally trained feature extractors
(FE).

We found that these FE models performed the best compared to any other networks,
with marginally higher AUCs compared to untrained models. This continues the same
trend of FA-trained models performing slightly better than RF-trained models.

We then proposed our own model which used the penultimate output of Xception,
with ImageNet weights, as a feature vector and passed it to our own custom classifying
network (CCN). We used Hyperband to find optimal settings for our CCN including
loss, optimiser, and network structure given our datasets.

We then used these settings to create our own models (OM). We found that these
models perform slightly better than our untrained baselines but worse than our FE
models. This poor performance was most likely due to the varying training epochs
among all networks. Early stopping made it so that some models trained more than
others, which may have skewed our results. The training metrics for OMs showed
they had not fully converged to optima when we evaluated them. Despite this, we
again found that FA models performed better than RF, and FD showed slightly worse
performance.

38
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We hypothesise that FE models gained performance is due not only to the extra
epochs of training but the fact that this network had already been trained on another
DeepFake dataset (F2F dataset), whereas OMs had been trained from ImageNet, which
does not have as many faces as F2F.

We see poor test performance among all models, despite high validation perfor-
mance and we speculate this is due to the harder actor-isolated test set and the means of
evaluation. To conclude, we found that all models trained or evaluated on FA showed
slightly higher performance compared to RF-trained models, whereas FD-trained mod-
els showed no such improvements.

7.2 Future Work

At the start of this project, we wanted to combine FA and FD pre-processing methods,
by overlaying the averaged frame on top of the differenced one. This would result in
the averaged frame plus highlighted areas which would show where the movement had
occurred. We opted not to do this so that we could assess each method individually.
A natural place to improve upon this work is to combine pre-processing methods and
investigate whether this further improves performance.

In addition, We see that class imbalance played a major role in hindering our per-
formance. In the future, we would want to explore methods of easing class imbalance
in more detail. We chose the naive approach of just creating more data, and although
this can sometimes work, it also affected our test set (more instances to possibly get
wrong). We would like to specifically explore ensembling and other voting-style meth-
ods, which could potentially combine the predictions of many different models to yield
better performance compared to any single model.

We would like a constant number of epochs per model and perhaps more complex
training setups. We hypothesise that we can achieve a much better test AUC by finding
a better optimum. This might include trying a series of random seeds, using learning
rate decay, and/or more aggressive data augmentation. In preliminary results, we heav-
ily experimented with automatically reducing learning rates based on the loss over a
given interval, this allows us to take smaller steps in the loss landscape when close to
an optimum. Despite success with this, we chose not to include it in our model as we
are focusing on determining whether the pre-processing had any tangible effects on
performance.
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Appendices

Notice

This Chapter does not intend to infringe on the 40-page limit. Everything included
from here onwards is supplementary and not vital to the understanding of this project.

Training Setup and Other Details

Most if not all training and evaluation was conducted on Google Colab which utilises
Nvidia K80 GPUs. Google Colab presented a lot of problems due to server time-outs,
thus with great difficulty, we managed to borrow a GTX 970. Despite this compute,
we ran into many issues with TensorFlow and GTX 900 series cards. If we were to do
this project again, we would highly recommend using PyTorch. For all training and
testing purposes, we used a random seed of 1337, this seed was used for both NumPy,
TensorFlow, model initialisations, and all data generators, anything that had an element
of randomness. This ensured that we would get the same results no matter the run. We
used a batch size of 64 for all models, as it was the same as the MesoNet papers [3].
No data augmentation was applied, as we deemed it unnecessary due to the size of our
dataset. Default TensorFlow learning rates (1e´3), optimiser initialisation, etc. were
used throughout and can be viewed on the TensorFlow API page [2]. All layers in
our CCN used ReLU activation, except for the final Dense unit which used Sigmoid
activation.

Throughout this project we use the term “preliminary results”, this term refers to
tests conducted early on in the project. These results were not included in this project
as they were lost; due to malicious crypto-mining software present on our laptop, re-
sulting in data loss. All the code can be found at the GitHub:
https://github.com/Sakib56/MInf-DeepfakeDetection-FrameDifferencing.
This GitHub will remain private until the day of project submission (12/04/2021), after
this date this repository will be made public. However, the dataset will not be included
in this repository as re-distributions and derivations of CelebDFv2 are not permitted
[24]. If you would like access to the dataset, please do not hesitate to contact me at
s1759855@ed.ac.uk.

Software, Libraries and Dependencies

44

https://github.com/Sakib56/MInf-DeepfakeDetection-FrameDifferencing
mailto:s1759855@ed.ac.uk
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Python 3.8.6 packaged by conda-forge
dlib 19.21.1
face-recognition 1.3.0
face-recognition-models 0.3.0
h5py 2.10.0
Keras 2.4.3
Keras-Preprocessing 1.1.2
keras-tuner 1.0.2
matplotlib 3.3.3
numpy 1.19.5

opencv-python 4.5.1.48
Pillow 7.2.0
scikit-learn 0.24.1
tensorboard 2.4.1
tensorboard-plugin-wit 1.8.0
tensorflow 2.4.1
tensorflow-addons 0.12.1
tensorflow-estimator 2.4.0
tqdm 4.56.0

Full Results of All Models
U-DF-FA Confusion Matrix
Predicted Real Predicted Fake

True Real 229 1371
True Fake 2302 15736

U-DF-FD Confusion Matrix
Predicted Real Predicted Fake

True Real 53 1547
True Fake 562 17476

U-DF-RF Confusion Matrix
Predicted Real Predicted Fake

True Real 352 1248
True Fake 3908 14130

U-F2F-FA Confusion Matrix
Predicted Real Predicted Fake

True Real 988 612
True Fake 10715 7323

U-F2F-RF Confusion Matrix
Predicted Real Predicted Fake

True Real 25 1575
True Fake 240 17798

U-F2F-FD Confusion Matrix
Predicted Real Predicted Fake

True Real 627 973
True Fake 6739 11299

FE-FA Confusion Matrix
Predicted Real Predicted Fake

True Real 994 606
True Fake 10785 7253

FE-FD Confusion Matrix
Predicted Real Predicted Fake

True Real 810 790
True Fake 8960 9078

FE-RF Confusion Matrix
Predicted Real Predicted Fake

True Real 621 979
True Fake 6674 11364
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Figure 8.1: U-DF-FA AUC Curve
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Figure 8.2: U-DF-FD AUC Curve
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Figure 8.3: U-DF-RF AUC Curve
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Figure 8.4: U-F2F-FA AUC Curve
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Figure 8.5: U-F2F-FD AUC Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Fake Incorrectly Classed Rate)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(F

ak
e 

Co
rre

ct
ly

 C
la

ss
ed

 R
at

e) Untrained MesoInception4 (F2F) on Random Frame Dataset ROC

ROC curve (area = 0.496)

Figure 8.6: U-F2F-RF AUC Curve
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Figure 8.7: FE-FA AUC Curve
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Figure 8.8: FE-FD AUC Curve
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Figure 8.10: OM-RF AUC Curve
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Figure 8.11: OM-FA AUC Curve
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Figure 8.12: OM-FD AUC Curve
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