
Accelerating Function Merging

Sean Stirling - s1641210

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract
The importance of file compression in hardware limited devices has long been known;
compressing files can free up valuable storage and memory space on SoC devices,
smartphones, personal computers and web servers. In 2019, a new technique paved
the way for binary file compression through an additional step in compilation by merg-
ing similar functions, borrowing a technique from BioInformatics known as sequence
alignment. In its infancy and later upgrades, this technique provides far greater code
reduction than its counterparts but falls short due to its increased compile-time require-
ments.

In this paper, we present a vastly superior search strategy that achieves improvements
in code reduction, memory usage, and compilation times when compared to the current
state-of-the-art. Applied to the SPEC 2006 suite, we show that our approach delivers
average compilation times below that of a baseline which performs no function merg-
ing. Consequently, we show that function merging can serve as a notable speedup in
compilation by reducing the effort of the code generator.

i

Acknowledgements

Huge thanks to Pavlos Petoumenos and Rodrigo Rocha for supervising me through-
out the development of this project. Their guidance, feedback, and support has been
monumental to the success of this thesis. It has been a privilege to be supervised by
them.

ii

Table of Contents

1 Introduction 1
1.1 Project Description . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Contributions and Results Summary 3

2 Background Review 4
2.1 Code Size Optimisation . 4
2.2 LLVM Compiler Architecture . 5

2.2.1 LLVM Intermediate Representation 5
2.2.2 Static Single Assignment . 6

2.3 SalSSA . 7
2.3.1 Component Steps . 8

2.4 Sequence Alignment . 9
2.5 Set and Sequence Similarity . 10

2.5.1 Jaccard Index . 10
2.5.2 MinHash . 11

2.6 Nearest Neighbour Search . 13
2.6.1 Locality Sensitive Hashing 13

3 The Search Strategy 16
3.1 Previous Search Strategy . 16
3.2 Overview of the New Search Strategy 18
3.3 Instruction to Integer . 19
3.4 MinHash . 20

3.4.1 Efficient Implementation of MinHash 21
3.5 Locality Sensitive Hashing and Searching 23

3.5.1 Efficient LSH and Searching 23
3.5.2 Memory Usage . 28

3.6 Cost Profitability Fine-Tuning . 29

4 Evaluation 31

5 Discussion 37

6 Conclusion 40

iii

6.1 Future Work . 40

Bibliography 41
.1

Quick Abort . 44

iv

Chapter 1

Introduction

1.1 Project Description

The demand for the consideration of resource-constrained devices is becoming more
and more apparent in recent years with the rapid development of the Internet of Things.
Such systems are very limited in their memory and storage capacities. When it comes
to compiled code, the sequence alignment technique for merging functions can greatly
alleviate this issue by combining function bodies such that the resulting merged func-
tion contains the instructions for both functions but de-duplicates the shared ones.
What comes out is a merged function that requires less space but has behaviour identi-
cal to that of the original functions.

This technique relies on a series of steps to format, identify, align and merge functions.
Last year, the most computationally expensive part of this process, sequence alignment,
was investigated to reduce total compilation times and increase code reduction. In this
paper, a broader range of steps in this process are explored so as to further reduce
compilation overhead and increase the code reduction capabilities of the technique.
More specifically, this paper investigates the search strategy used to identify similar
functions and briefly visits the system used to determine the profitability of merging
two functions.

1.2 Motivation

File compression cleverly packs data into a format such that it can be read and under-
stood just as well as the original file but at a much smaller size. A compressed file
will take up less system storage and memory, which becomes incredibly important for
hardware-constrained devices. With most files, simply executing a compression algo-
rithm onto them can produce an acceptably compressed file. However, for generated
binaries, these methods cannot be applied without breaking the program.

One solution, executable compression, combines the compressed data with decompres-
sion code into a single executable. On execution of this file, the decompression code
recreates the original code before executing it. While successful in its goal to reduce

1

Chapter 1. Introduction 2

binary file sizes, it comes with a plethora of significant disadvantages. These include:
being prohibited by some virus scanners; upon startup of a compressed exe/dll, all of
the code is decompressed from the disk into memory in one pass, which is inefficient
on systems already low on memory; and multiple instances of a compressed exe/dll
creates multiple instances in memory, whereas, with uncompressed exe/dlls, the code
is stored once and shared between instances.

Other techniques to reduce binary file sizes are included on the compiler itself, at-
tempting to shrink the size of compiled code. Unfortunately, these techniques fall flat
in their attempts with lacklustre code reduction. Production compilers offer little help
beyond dead-code elimination or the merging of identical functions. Even experimen-
tal state-of-the-art compilers, which analyse control flow graphs (CFGs) to determine
merging possibilities, don’t achieve significant code reduction. This is likely caused
by the rigid, overly restrictive algorithms used to find candidates.

2019 saw the emergence of a new technique for code reduction by merging the bod-
ies of similar functions using a technique borrowed from BioInformatics known as
sequence alignment. This method has significant benefits over other merging tech-
niques, in that it is possible to merge any function with another, whether they have
varying CFGs or signatures. With the increased flexibility in merging capabilities, a
greater number of functions can be merged reducing the impact of code duplication.

Yet, it disappoints with its increased compilation times. Relying on some inefficient
methodologies to achieve the desired merges leaves the technique with unrealized po-
tential. For instance, the exploration framework used to identify pairs of functions
to be merged is quadratic at its core. As code-bases grow and the number of func-
tions increases, this framework becomes unable to efficiently find similar functions
and becomes a key slowdown in the process. Take the DealII and Xalancbmk bench-
marks from the SPEC2006 suite [1], and the LLVM [2] code-base: of the whole func-
tion merging procedure, the relative time spent ranking functions for similarities totals
∼33%,∼69%, and∼98% respectively. Ranking becomes the predominant process the
optimisation spends its time on.

Moreover, this framework attempts to merge every single function with another, re-
gardless of how similar those two functions may be, resulting in the overall time being
dedicated to wasteful failed merges. This can be clearly seen in the gcc and povray
benchmarks, where the proportion of the processing of failed merges to the total opti-
misation time, totals∼92% and∼90% respectively. For many benchmarks, the system
is committing an egregious amount of time to failed merges.

1.3 Objectives

The aim of this project is to improve the effectiveness and performance of the current
state-of-the-art in code size optimisation. Through analysis of this system, solutions
can be implemented that allow it to become practical for all applications, realising its
potential for widespread adoption.

Chapter 1. Introduction 3

1.4 Contributions and Results Summary

In this paper we present a search strategy based on the MinHash algorithm [3] applied
with the Locality Sensitive Hashing technique to achieve rapid similarity searching
between functions. Through the SPEC2006 benchmark suite [1] and select large-case
programs, we show that our method is superior in code reduction, memory usage, and
compilation time, when compared to the current state-of-the-art, SalSSA [4].

Furthermore, we show that our method achieves boosts in compilation time and im-
provements in memory requirements against a baseline compiler that performs no
function merging. This allows us to present function merging as a noteworthy speedup
in compilation time while also lowering the required resources to compile programs.

SPEC2006 Baseline SalSSA Ours

Avg Code Reduction (%) N/A 10.2 10.6

Avg Relative Compilation Time
(Normalised to the baseline) (%) N/A 11 -4

Avg Peak Memory Usage (MB) 152 159 146

LLVM

Code Reduction (%) N/A 30.2 30

Compilation Time (s) 1011.48 11139.2 859.24

Peak Memory Usage (GB) 9.86 8.34 7.3

Linux Kernel

Code Reduction (%) N/A N/A N/A

Compilation Time (s) 25.97 1376.34 30.13

Peak Memory Usage (GB) 1.37 1.177 1.184

Table 1.1: Results

Chapter 2

Background Review

2.1 Code Size Optimisation

Optimisation of written code is at the heart of an optimising compiler’s purpose; clev-
erly transforming code during the compilation process to improve specific attributes
in the output binaries. With these compilers, programmers can select for minimised
execution time, memory requirements, power consumption, or binary size. Systems
low on storage and memory hardware will benefit greatly from reduced binary sizes,
reducing costs or allowing for hardware to be put to other necessary tasks.

The vast approaches to code size optimisation [5] can be split into two categories: the
replacement of code with smaller but semantically equivalent code; and the removal
of redundant code. The former employs techniques like peephole optimisation [6],
whereas the latter employs techniques such as dead code elimination and function
merging. Function merging bases itself on the premise that similar functions should
be replaced with a singular function representing the individuals as one. It is common
for compilers to merge identical functions as seen by Google’s Identical Code Folding
(ICF) technique [7] implemented into their ELF gold linker [8] at the bit level, and
LLVM’s provided identical merging pass.

Prior to sequence alignment, the state-of-the-art [9] merged functions when they share
identical structures and signatures. For two function signatures to be equivalent they
must agree on the number, order, and types of arguments, as well as other compiler-
specific properties. Secondly, the functions must share identical Control Flow Graphs
(CFGs). There must exist a directed edge-preserving bijection between them, known
as graph isomorphism. In other words, the number of vertices and edges are the same
and their edge connectivity is also equivalent. Lastly, the number of basic blocks must
be equal, with each instruction having equivalent types. The rigidity of this tech-
nique prevents many highly similar functions from being merged and its results on the
SPEC2006 benchmark suite shows this at only an average 3.9% reduction in code size
while introducing an extra 5.4% overhead to compilation time.

Sequence alignment, as a technique for code reduction, was published in 2019 as
FMSA (Function Merging by Sequence Alignment) [10]. It did not suffer from any

4

Chapter 2. Background Review 5

of the major limitations of previous solutions, outperforming them by more than 2.4x
in terms of code reduction. FMSA achieved an average 6% code reduction on the
SPEC2006 benchmark suite but lagged behind other solutions with an added average
15% compile-time requirement.

2.2 LLVM Compiler Architecture

The LLVM project [2] was initially designed to provide a compiler framework that
allowed for life-long program analysis and transformation. Since then, LLVM has
matured into a collection of modular and reusable compiler and toolchain technologies,
cementing LLVM as an umbrella project that encompasses many sub-projects.

The LLVM compiler implements the three-phase multipass compiler architecture, di-
viding source code processing into three distinct stages. This design is depicted in
Figure 2.1, consisting of a frontend, an optimiser, and a backend. The frontend parses
and validates source code, transforming it into an Intermediate Representation (IR) and
passes that to the optimiser. The optimiser uses the IR to transform the source code,
independently of the source language it was written in, to improve aspects of the code
such as code size, execution speed, or memory usage. Function merging sits as a stage
within the optimiser. The backend, or code generator, finally transforms the IR into the
target machine code.

FrontendSource Code Optimiser BackendBackend
Target Machine
Code

IR IR

Figure 2.1: Simplified LLVM Compiler Architecture

2.2.1 LLVM Intermediate Representation

At the core of the LLVM project is its IR. A strongly typed, assembly-like, language
that abstracts away the specifics of the higher-level source language and the details of
the target. This allows programmers to develop their compiler optimisations to work
on any language, such that it has a frontend to transform to IR. An example LLVM IR
instruction can be seen in Figure 2.2.

Variables are distinguished by the % symbol, as seen by %8 and %7. An instruction’s
opcode simply defines what the instruction is doing. In the case of Figure 2.2, it is
adding the variable %7 and the number 1 together. The resulting type of the instruction
is given right next to the opcode, an i32 (32-bit integer) in this case.

Figure 2.2: Example IR Instruction

Chapter 2. Background Review 6

Function merging operates by matching the individual equivalent instructions within
each function. In general, for two IR instructions to be equivalent they must follow
these set of rules:

1. Their opcodes must be equivalent

2. The instruction types must be equivalent

3. They each contain the same number of operands

4. Each pairwise operand must have equivalent types

This, however, is only a generalised idea of what makes two instructions equal. For
many instructions, they must be examined further at an increased depth to determine
whether they are equal or not, while some cases can be more lenient on these rules. For
instance, the equivalence of Call instructions depends on the equivalence of the called
functions, whereas Return instructions can be equivalent regardless of the number of
operands.

2.2.2 Static Single Assignment

An important aspect of LLVM’s IR is that it adheres to the Static Single Assignment
(SSA) form, meaning that variables are assigned only once and defined before they
are used. This strict rule where each variable is defined prior to their uses is known
as dominance. Existing variables within the source code which do not adhere to these
rules are split into new variables known as versions, usually indicated by subscript no-
tation e.g x1 and x2. SSA form is responsible for simplifying and enhancing a number
of compiler optimisations since the necessary use-def chains (uses and definitions of a
variable) are explicit and do not need to be calculated.

Most importantly for this paper, are the existence of phi-nodes. Due to the demands
of the SSA form, the problem arises where multiple definitions come from separate
branches of execution. For instance, consider the leftmost CFG in Figure 2.3.

Figure 2.3: Phi-Nodes - Resolving Definitions

Chapter 2. Background Review 7

The final basic block on the left is unable to resolve which definition y should assume.
The correct definition of the variable, which is used in subsequent instructions, could
come from either incoming branch. To resolve this, a special instruction known as a
phi-node, φ, is inserted at the entrance of the uniting basic block. This phi-node selects
for which incoming definition between the branches and can resolve more than just
two definitions.

Phi-nodes are not directly implemented as machine operations. In LLVM’s case, when
compilation is near completion, SSA form is eliminated. In most cases, phi-nodes
should not present an increase in code size as they are not actually translated to ma-
chine instructions. However, during the register allocation stage, where variables are
assigned onto the small number of CPU registers, phi-nodes can exacerbate register
pressure and cause an increase in load and store instructions. If there are not enough
registers available to hold all the necessary variables, some will be moved to and from
memory, known as spilling the registers. Code which accesses the registers can be
more compact than instructions fetching and storing in memory.

2.3 SalSSA

In less than a year since the initial release of FMSA, the sequence alignment technique
has been upgraded, seeing far greater code reduction and even better compilation times.
This new system, SalSSA [4], geometrically averages 9.3% in code reduction while
minimising compilation overhead to just 5%.

SalSSA improves upon the FMSA system with a major overhaul in the way it handles
phi-nodes in the SSA form. FMSA demanded the removal of these instructions before
merging and replaced them with costly extra code, then added them back in once the
function merging step was complete, which unfortunately brought increased compila-
tion times and lacking code reduction. Moreover, as function sizes and complexities
grew, the negative effects of this method escalated seeing the doubling in size of many
merged functions.

Instead, SalSSA efficiently handles these instructions by disallowing one to be merged
with another, and by generating new ones when necessary. SalSSA treats phi-nodes
as though they are attached to the basic block’s label, i.e. they are not used in the
computation of the alignment but are copied into the newly merged function in their
associated basic blocks. Then, due to the increased complexity of the function, ad-
ditional phi-nodes are generated to maintain the dominance property (SSA) for these
violating variables.

While we present this work on the SalSSA system, it is not exactly equivalent to
SalSSA [4] which was released last year. There have been some minor adjustments
made which can result in differing code reduction and compilation times compared to
that system. We present our work on this slightly modified system. These modifica-
tions are unimportant for this paper’s discussion.

Chapter 2. Background Review 8

2.3.1 Component Steps

The SalSSA compiler can be thought of as the general C++ Clang compiler but with
the added function merging procedure placed between other optimisations built with
LLVM. The SalSSA function merging pass comprises of multiple key component
steps:

Searching Before merging two functions, they must first be identified and paired up.
Large-scale similarity computations can be very expensive, so the current exploration
framework reduces this effort by breaking down functions into fingerprints based on
opcodes and types. A function is then merged with its most resembling fingerprint
counterpart.

Linearisation Sequence alignment operates on sequences, not CFGs. Prior to align-
ing two functions, they are flattened into a sequence of instructions by the linearisation
algorithm.

Sequence Alignment Finding the most optimal arrangement of two functions into
one is the job of the sequence alignment algorithm. By minimising the Levenshtein
edit distance [11], or by maximising a score based on an arbitrary scoring scheme, the
alignment details how the merged function should look. Equivalent instructions are
matched, whereas differences are separated with gaps.

Code Generation With the alignment completed, the final merged function is built
from that information. Branches are created to separate the differences between func-
tions and a function identifier is used to select between them depending on which
original function was intended to be called.

Cost Profitability Before storing the newly merged function, the system must check
that keeping it will give a lower total binary size. One IR instruction does not neces-
sarily translate to one machine instruction, and so the estimation of a function’s size is
measured with LLVM’s target-specific code size cost model.

This general procedure is shown in Figure 2.4, where two functions have been paired
up, linearised, aligned, generated, and checked for profitability, resulting in a success-
ful merge.

Figure 2.4: SalSSA Overview

Chapter 2. Background Review 9

2.4 Sequence Alignment

Sequence alignment is one of the most crucial optimisation problems to exist within the
field of BioInformatics. It is firmly tied to a similarity measure between sequences, first
defined as the edit distance between two strings, known as the Levenshtein distance
[11]. This distance represents the minimum number of edit operations - insertions,
deletions, and letter substitutions - needed to transform one string into another.

A sequence alignment algorithm solves for a generalised version of this minimum dis-
tance and traces through the optimisation space to find the alignment that assumes it.
Principally, an optimal alignment represents the closest arrangement of two sequences
such that the number of matching characters are maximised while the number of mis-
matches or gaps are minimised. An example alignment can be seen in Figure 2.5.

Figure 2.5: Sequence Alignment

Optimally pairwise aligning two sequences requires the effort of dynamic program-
ming solutions at the cost of O(NM) in time and memory, as seen in Needleman-
Wunsch’s [12] and Smith-Waterman’s [13] algorithms, where N and M are the respec-
tive sizes of the two sequences. In fact, it was the Needleman-Wunsch algorithm that
was presented in FMSA [10] and used again in SalSSA [4]. Fortunately, the memory
requirements can be reduced to the linear memory requirement ofO(min{N,M}) with
Hirschberg’s algorithm [14].

Last year’s investigation into the sequence alignment technique provided a variety of
new algorithms shown to increase code reduction by around 1.5% while introducing
no extra compile-time overhead or speed up compilation by 5% at no cost to code
reduction.

The various algorithms showed that focusing on only highly similar segments while
gapping the rest, or constraining the alignment to keep the number of gap openings
quite low, resulted in boosted code reduction. Knowing that gap openings in an align-
ment indicated branches, and subsequent surplus code, it was concluded that minimis-
ing their number plays a significant role in reducing the final size of the merged func-
tion, even at the cost of turning down some number of matching instructions. These al-
gorithms included the Smith-Waterman [13], Gotoh [15], and its linear memory coun-
terpart, Myers-Miller [16].

Chapter 2. Background Review 10

Heuristic algorithms like BLAST (modified to a pairwise algorithm) [17], MUMmer
[18], and FOGSAA [19], were implemented to reduce the total amount of time spent
aligning. Unfortunately, FOGSAA brought disastrously larger alignment times de-
spite the effort put into its implementation. Unlike FOGSAA, BLAST and MUMmer
reduced the total compilation time by 5% and 3% respectively.

2.5 Set and Sequence Similarity

As briefly mentioned, the Levenshtein distance measures how similar two sequences
are. While it is commonly used interchangeably with edit distance, the edit distance
actually describes a family of sequence similarity measurers including the Hamming
distance [20] and Longest Common Substring (LCS) distance. Such similarity mea-
sures are also known as string metrics which more broadly attempt to describe the
similarities between two sequences. String metrics are incredibly important in the
realm of approximate string matching and searching.

String metrics don’t just make use of edit distances - with insertions, deletions and
substitutions - instead also utilising set similarity measures to give their scores. These
include the Overlap Coefficient, Sørensen–Dice coefficient [21], and the popular Jac-
card Index [22]. Set similarities like these are applied to sequences by decomposing
the sequence into a set of overlapping fixed-size subsequences. For instance, consider
the sequence and its resulting subsequences in Figure 2.6. The sequence “ACTCG”
has been transformed into a set containing the elements “ACT”, “CTC”, “TCG”.

Figure 2.6: Breaking Down a Sequence

Such subsequences go by many different names depending on the field they’re being
used in. For instance, BioInformatics regularly uses seeds or k−mers, linguistics may
use n− grams, and natural language processing may use w− shingles. Where k, n,
or w, represent the number of characters within the subsequence. We will use the
terminology w− shingles for similarity measuring between sets, or just w to represent
the size of each subsequence.

2.5.1 Jaccard Index

The Jaccard Index can be calculated with this equation:

Chapter 2. Background Review 11

J(A,B) =
| A∩B |
| A∪B |

(2.1)

This value is 0 when the two sets are completely disjoint and 1 when they are exactly
equal. The Jaccard Index is therefore a similarity measure, not a distance.

Like the edit distances, the Jaccard Index is difficult to compute, this time due to its
set operations. Given that we use a C++ set, we could calculate the set operations in
O(N) time, assuming we could sort and hash the elements, where N is the set size.
However, in the context of large-scale similarity computation, a linear operation just to
compare sequences is out of the question. Comparing hundreds of thousands of vari-
ably sized sequences with one another will be dramatically bottlenecked by similarity
calculations.

We could even use bloom filters [23] to probabilistically determine whether the two
sets share elements or not, within a certain confidence range, at a far superior rate
when the sets become large. Utilising random hash functions, bloom filters would
allow us to test whether an element belongs to a set in an incredibly memory efficient
and rapid constant time. But similarity calculations would still be linear to the number
of elements.

2.5.2 MinHash

A solution that addresses this problem is the somewhat esoteric MinHash algorithm
[3]. Like Bloom Filters, the MinHash algorithm leverages the randomness in hashing,
giving it the ability to probabilistically solve for the Jaccard Index in constant time,
O(k), where k is a constant value. However, it must perform a pre-computation stage
that requires O(Nk) time to complete but does not need to be re-computed. This fact
makes it a great technique for large-scale similarity computation.

The elegant solution presented by MinHash involves hashing each element of both sets
and selecting the minimum value of each set. Surprisingly, the probability of these
two hashes being equal is exactly equivalent to the Jaccard Index of the two sets. The
idea, then, is to randomly sample this probability k times to estimate this value. With
k samples, the expected error is O(1/

√
k). For example, 400 samples would estimate

the Jaccard Index with an expected error less than or equal to 0.05.

2.5.2.1 MinHash Explained

Suppose we have two sets, A and B. If an element produces the minimum hash in both
sets on its own, it also produces the minimum hash in their union.

min(h(A)) = min(h(B))⇔ min(h(A∪B)) = min(h(A)) = min(h(B)) (2.2)

The probability that a specific element in their union, A∪B, is selected as the minimum
hash is:

Chapter 2. Background Review 12

1
| A∪B |

(2.3)

Therefore, the probability that any shared element, u ∈ A∩B, is selected as the mini-
mum hashed element is equal to:

| A∩B |
| A∪B |

(2.4)

Hence, the probability that any element in their intersection is the minimum hashed
element, chosen from their union, is equivalent to the Jaccard Index. But recall that
if an element produces the minimum hash in their union, then it also produces the
minimum hash in both sets on its own:

Pr[min(h(A)) = min(h(B))] =
| A∩B |
| A∪B |

(2.5)

The Jaccard Index! The probability that equivalent elements from both sets are selected
is equal to the Jaccard Index of the two sets. By hashing k times, and counting the
number of hashed elements which they share, and that which they don’t, the Jaccard
Index can be estimated.

2.5.2.2 MinHash Algorithm

To actually estimate the Jaccard Index through MinHash, those k hashes of each set
must first be computed. This is done in a pre-processing stage where the hashes are
stored for the upcoming similarity calculations. This process is polynomial to the
size of the sequences, the number of sequences, and the number of desired hashes per
sequence, O(NLk), with N, L, and k respectively.

This is obviously a very expensive computation and is often considered to be the fun-
damental computational barrier. Despite being released over 20 years ago, MinHash is
still ever-improving and recent developments have shown that it is possible to reduce
the need for k passes over the data to generate the hashes, to just one pass [24][25],
reducing the complexity to justO(NL). This variant, known as the single-hash variant,
uses one hash function to hash each element in the set and then picks out the smallest
k hashes as the full fingerprint.

Despite the chosen variant, once the necessary hashes have been computed for each
sequence, MinHash can estimate the Jaccard Index at an incredible speed. The fastest
way of doing this is to first sort the hashes and then iterate through each list comparing
hashes. Because sorting the hashes allows the similarity calculation to be performed
quickly, they are usually sorted during the pre-processing stage and stored in the sorted
form. This gives a similarity calculation in O(k) time which is effectively constant as
k is known at compile-time.

Chapter 2. Background Review 13

2.6 Nearest Neighbour Search

Nearest Neighbour Search is a long-standing optimisation problem that pertains to all
walks of computational science including computer vision, recommendation systems,
data compression, and plagiarism detection. Given a similarity or distance metric and
a data-point, a solution to this problem must be able to efficiently find the closest other
data-point.

The simplest solution, linear search, computes the similarity or distances against every
other element in the database, saving the closest element found “so far”. This is the
exact methodology that the SalSSA searching framework uses to compute a function’s
most suitable candidate for merging. This method is exact, in that it will always re-
turn the closest item in every case. However, as databases become large, this type of
searching methodology becomes awfully inefficient, revealing the origin of its other
name, “naive search”.

Other NNS solutions attempt to approximate the closest data-point through using less
exact methods. These include graph-based methods such as HNSW [26], specialised
methods like projected radial search used on dense 3D maps of geometric data, and
hashing methods as seen in Locality Sensitive Hashing.

2.6.1 Locality Sensitive Hashing

The MinHash algorithm doesn’t just provide a quick and reliable similarity measure.
It brings with it the potential to utilise a technique belonging to the incredible set of
techniques known as Locality Sensitive Hashing (LSH). The very simple core concept
behind LSH is to hash similar items into the same buckets with high probability. There-
fore, with an LSH searching scheme implemented, searching for an item’s most similar
counterpart would involve hashing that item and comparing against only a select few
items which are very likely to be similar.

The LSH techniques can be found anywhere from being used to filter out duplicates
in web pages [27], to reducing the dimensionality of high-dimensional data, or to per-
form lookups of nearby points in a geospatial dataset [28]. They encompass all sorts
of similarity measures and methods to hash similar items, through that similarity mea-
sure, into the same bucket. While there are many variations on the Locality Sensitive
Hashing technique, we will only focus on the MinHash variation.

In the context of MinHash, LSH splits the list of k hashes into bands of size rows.
Each band is a hash of the individual hashes within that band. For instance, the first
band is simply a hash of the first rows hashes within the fingerprint. With each of these
band hashes, we can store the reference to the associated set in a hash map. If two sets
are similar, then they will likely match at least one of their bands and hash to the same
bucket in that hash map. The bands and rows terminology comes from a representation
of the MinHash algorithm using matrices. Further MinHash and Locality Sensitive
Hashing information can be found in the fantastic book Mining of Massive Datasets,
Chapter 3 [29].

Chapter 2. Background Review 14

Figure 2.7: Decomposing Hashes Into Bands

Consider the list of hashes in Figure 2.7. It can be split into a list of 5 bands each
made up of two hashes. Using these bands, we can index into a hashmap for each band
and compare similarities against the sequences stored in those locations. For example,
the 5 bands in Figure 2.7 mean we only need to access the hashmap 5 times at those
specific band locations and perform full similarity computations against the sequences
stored there. Two sequences may not share their first band, and so hash into different
locations in the hashmap, missing each other. However, they have 4 more attempts
to find each other. If they don’t share any bands then they are incredibly unlikely to
be similar anyway. It only takes one band match to consider these two sequences as
candidate pairs.

Figure 2.8: LSH - Similar Sequences Hashing to the Same Bucket

2.6.1.1 LSH Properties

Suppose we use b bands of size r rows, and suppose we have a pair of sets with Jac-
card Index s. The probability that these two sets will become a candidate pair can be
calculated as follows:

1. The probability that the fingerprints match in every single row is sr

Chapter 2. Background Review 15

2. The probability that the fingerprints mismatch in at least one row is 1− sr

3. The probability that the fingerprints mismatch in at least one row of each of the
bands is (1− sr)b

4. The probability that the fingerprints match in all the rows of at least one band,
and therefore become a candidate pair, is 1− (1− sr)b

Figure 2.9: LSH - Probability of Becoming a Candi-
date Pair

This function takes on the form
of an S-curve. Assuming we
have 10 hashes per set, set-
ting b = 5 and r = 2, this
curve can be seen in Figure
2.9. As sets become more sim-
ilar, they become much more
likely to become candidate pairs
through LSH. As a natural con-
sequence of the probabilities in-
volved within LSH, a threshold
is born where sets at an arbitrary
similarity are 50% likely to be
matched or mismatched. In the
case of Figure 2.9, this threshold
sits just under a MinHash simi-
larity of 0.4. Pairs above this threshold in similarity are > 50% likely to become
candidates whereas pairs below in similarity are < 50% likely. This threshold can be
approximated with (1

b)
1
r , giving us a threshold of 0.447. If we tune b and r appropri-

ately, we can calibrate the threshold so that we can be sure that function pairs with a
certain degree of similarity are very likely to become candidate pairs.

Consider Table 2.1, the probability of becoming a candidate pair varies with the sim-
ilarity between the sets. Very similar documents are guaranteed to become candidate
pairs with near 1 probabilities while those that are less similar become far less likely
to be paired up.

This would be an ideal scenario if we only wanted to consider comparing against se-
quences that achieve similarities above 0.7 as we can be more than 96% sure that each
sequence will find a specific partner above 0.7 in similarity.

s 1− (1− sr)b

0.1 0.049
0.3 0.375
0.5 0.762
0.7 0.965
0.9 0.999

Table 2.1: Probabilities of Becoming A Candidate Pair at Similarity s. b = 5, r = 2.

Chapter 3

The Search Strategy

Maximising code reduction with function merging is an incredibly difficult task, one
that would require an oracle-like algorithm capable of predicting future merges and
allowing functions to be paired up with yet-to-be merged functions. Even constrain-
ing to just the currently available functions would still require a quadratic effort per
merge just to determine which two functions give the greatest code reduction. Obvi-
ously, pairing up functions in this way is completely infeasible and the most attractive
solution involves taking each function one-by-one, finding its most similar partner and
merging them.

Rapidly measuring similarity between text or sequences is also a difficult task that
lands us right back to sequence alignment and the Levenshtein distance [11]. Knowing
that such a similarity measure is time consuming to compute, it is far better to strip a
function into simple core components that make it very easy to compare with others.

In this chapter, we present a new search strategy that employs the fingerprint methodol-
ogy through the MinHash algorithm and leverages locality sensitive hashing to rapidly
perform searching.

3.1 Previous Search Strategy

On release of the FMSA system [10], it presented a novel exploration framework based
on a “light-weight ranking infrastructure” that uses fingerprints to determine similar-
ities between functions. In a pre-computation stage, it calculates a fingerprint for all
functions and saves them. A fingerprint consisted of a map of instruction opcodes to
their frequency and the set of types in the function. In essence, a function was re-
duced to the frequency of the operations it performed and the types involved within
that function.

The similarity measure between two functions was then calculated with these two
equations:

UB(f1, f2,K) =
∑k∈K min{ f req(k, f1), f req(k, f2)}

∑k∈K f req(k, f1)+ f req(k, f2)
(3.1)

16

Chapter 3. The Search Strategy 17

s(f1, f2) = min{UB(f 1, f 2,Opcodes),UB(f 1, f 2,Types)} (3.2)

Where k in Eq 3.1 is calculating the similarity on opcodes or types. The final similarity
measure simply uses the minimum value of these two calculations, as shown in Eq 3.2.
Such a score ranged between [0, 0.5], where 0.5 indicated a perfect match, while a 0
indicated that they were completely incompatible.

The exploration framework utilised this similarity measure to linearly scan through the
code-base to find the first function’s best candidate counterpart, merging and storing
the newly created function so that it may be re-merged with others. If this merge was
deemed not profitable, it is thrown away and the function is considered to have no
suitable merge candidates and is removed from further consideration. This process is
repeated for every function until each one has been processed.

This similarity measure and exploration framework remained in the SalSSA [4] sys-
tem. When it was released in 2020, it touted drastically increased merging possibilities,
allowing for more functions to be merged with one another, boosting code reduction
all the while reducing compilation times. Unfortunately, the paper fails to mention
the success rate of merging two functions. The time spent processing failed merges
and successful merges can be found in Figure 3.1. Clearly, the system is struggling to
effectively choose when to merge two functions.

400.perlbench

401.bzip
2

403.gcc
429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

20

40

60

80

100

M
er

ge
 T

yp
e

Pr
oc

es
si

ng
 T

im
e

(%
)

Successful Merge Failed Merge

Figure 3.1: SalSSA Processing Times of Successful vs Failed Merges

This problem stems from multiple issues within the search strategy. Firstly, the similar-
ity measure between two functions is unsophisticated. Simply counting the frequency
of opcodes and the set of involved types does not fully represent the context to which
they belong. Two functions can share similar counts of opcodes and types but can be
wildly different in the structure of the blocks which use them.

But by far the worst performance failure of the SalSSA system is that it attempts to
merge each function with another. Even if one function is deemed dissimilar to ev-
ery other function in the code-base, SalSSA will still forcefully try to merge it with
the best it could find, most often resulting in a failed merge. However, this rigorous
methodology guarantees the system superb code reduction by never missing out on any
potentially profitable merges.

Chapter 3. The Search Strategy 18

Despite the time spent on both successful and failed merges, a significant portion of
that time is simply spent trying to pair up the two functions, known as ranking. Con-
sider Figure 3.2, quite a few benchmarks exhibit large timings just to rank similar
functions.

400.perlbench

401.bzip
2

403.gcc
429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

20

40

60

80

100

B
re

ak
do

w
n

Ti
m

e
(%

)

Align
Param

CodeGen
Fingerprinting

Linearisation
Ranking

Updating
Post Processing

Figure 3.2: Proportion of Time Spent Doing X

This problem gets exponentially worse as we consider real-world programs. The SPEC
benchmark suite consists of code-bases that are relatively small compared to what is
developed today. For example, attempting to compile the LLVM code-base [2] takes
upwards of 3 hours with SalSSA. Because of the sheer size of the application,∼98% of
that time is dedicated solely to ranking functions. All other processes within the system
are dwarfed by the time spent quadratically ranking over 250,000 functions. This
drastically reduces the applicability of the system to real-world programs, preventing
it from being adopted as a serious method.

3.2 Overview of the New Search Strategy

To combat these issues, we present a search strategy based on the MinHash similarity
measure and the LSH technique. These new mechanisms should help to better repre-
sent the similarities between functions, preventing many failed merges, all the while
boosting the time spent ranking functions in real-world programs. In the next sections,
we show how we transform LLVM IR instructions into integer values, efficiently per-
form MinHash, create the hashmap, adaptively define a threshold per program, and
redefine how phi-nodes affect the profitability of functions.

An overview of our proposed search strategy is shown in Figure 3.3.

Chapter 3. The Search Strategy 19

Figure 3.3: Optimisation Overview

3.3 Instruction to Integer

In the context of function merging, the crux of the MinHash algorithm rests on our
ability to transform an LLVM IR instruction into an integer such that two matching
instructions will have equivalent integer values and mismatched instructions will have
differing values. In chapter 2, the generalised rules for matching two instructions had
been listed: they must be equivalent in their opcodes, types, number of operands, and
pairwise operand types.

Both opcodes and the number of operands are provided by LLVM as positive integer
values. This makes representing these attributes very simple. However, types are
more complicated. LLVM provides a TypeID system that defines all the base types
for the type system. Fortunately, TypeIDs are just unsigned enums, which can be
converted through a standard cast. But TypeIDs are often not accurate enough, with
many instructions matching their TypeIDs but actually mismatching their true type.
Instead, we combine the TypeID with the pointer value towards the memory location
which contains the exact type. Since each individual type is stored once in only one
memory location, we can guarantee that two matching types will have matching pointer
addresses.

Pairwise operand types are handled in an identical manner. However, because the
ordering of the operands matter, we make sure to distinguish them by multiplying
their value by their operand position. Just these few transformations result in a decent
representation of an instruction. Through extensive testing, we have found that this
results in no false negatives (falsely mismatches two instructions), only false positives
(falsely matches two instructions). The transformations above are lacking in depth to
accurately capture the details in specific instructions that might make them unequal.

Chapter 3. The Search Strategy 20

We then investigated increasing the depth that this transformation can go. Utilising
most of the approaches previously discussed, we encoded more and more properties
that determine the equality between these instructions. Through similar testing, we
found far fewer false positives and a negligible number of false negatives.

This should suggest that this representation will better represent the MinHash simi-
larities between functions. However, we have found that as we become stricter, the
similarities between many profitable functions drops to near-zero. Their very low sim-
ilarity scores make them very hard to discern between the dissimilar ones. We are not
entirely sure as to why this happens but we think that even if two instructions do not
match exactly but match with their generalised rules, they hold some amount of in-
formation about the rest of the function which indicates that the other instructions are
much more likely to match.

While the increased depth should serve to reduce the number of failed merges more
significantly than just applying the generalised rules, we have found that they do almost
nothing to help improve the performance of the system. In chapter 5, we show that
increasing code reduction can actually speed up the compilation process. This allows
us to use the generalised rules only, giving us superior code reduction capabilities while
not having to discount on the performance of the system.

Lastly, some instructions must be ignored during this process. As briefly explained
in chapter 2, SalSSA does not merge phi-nodes, choosing to dismiss them from the
sequence alignment equation and re-integrate them when the final merged function
is being built. Therefore, phi-nodes should play no role in the similarity between
two functions. Hence, we simply ignore them, pretending they were not a part of the
function.

3.4 MinHash

In chapter 2, the MinHash algorithm was briefly described as an estimator for the
Jaccard Index and how it can compute similarities between sequences in constant time.
This is only one of various reasons why MinHash suits a searching similarity scheme.

MinHash utilises set similarities based on subsequences, which means it takes into
account a fraction of structural similarity. The elements of each set are fixed-sized
runs of instructions. Two elements are only equal if and only if all the individual
instructions are equivalent and in order. With subsequences of instructions, the context
for which they belong is better represented, and true similarities can be uncovered.

Additionally, the SalSSA system conceptually fails to solve the issue of storage. LLVM
IR only has about 64 different opcodes making the storage of their frequency constant
per function. However, because types are represented as just the set of involved types,
if a function implements a new type on each instruction, then the storage of the set is
bounded by the size of the function. On the other hand, MinHash reduces a function
to a constant k hashes regardless of the original function size, resulting in constant
storage per function.

Chapter 3. The Search Strategy 21

3.4.1 Efficient Implementation of MinHash

To effectively utilise MinHash as a similarity measure, it is critical that we can effi-
ciently compute the necessary hashes and similarity scores at incredible speeds. In
this short subsection, we detail the most important optimisations made to the MinHash
algorithm to rapidly boost its processing time to realise the full capabilities of the al-
gorithm. We also provide one extra optimisation in the form of an early exit in the
similarity computation. This optimisation can be found in appendix .1.

3.4.1.1 MinHash Variant

As discussed earlier, there are two variants of the MinHash algorithm which can esti-
mate the Jaccard Index. Both versions were experimented with, and while the single-
hash variant proves to be the fastest version, it cannot be applied.

The single-hash algorithm relies on at least k elements within the set to draw its hashes
from. If there are < k elements within the function, then it cannot produce the full
k hashes that we desire. Function sizes can range from just 1 instruction to tens of
thousands. If a function does not contain at least k elements then it will not be able to
generate k hashes.

We experimented with ideas that involved artificially lengthening a function by re-
peatedly concatenating the function onto itself until it had enough elements. But this
seemed only to work momentarily, deeming far too many dissimilar functions as simi-
lar. So, we proceeded with the multiple-hash variant but took special care to optimise
it as best we could.

3.4.1.2 k Hash Functions

The first step in implementing the multiple-hash variant is choosing hash functions
that are both fast and complex enough such that they are robust to permutations, i.e.
the hash values depend on the ordering of its constituent characters. It may seem
absurd to have k good hash functions, especially considering development time and
the computational time of sufficiently complex hash functions. But at this stage, we
can cut corners significantly and reduce the number of good hash functions to just 1.

If we hash each element with a good hash function and save the hash of each element
as a base state, then we can utilise simple XOR operations with randomly generated
numbers to compute our hashes. This will maintain the quality of our hashes while
being much less expensive. Other operations like bitwise rotations (or shuffling) to
generate the hashes are insufficient. Bitwise rotations will likely result in choosing the
same element over and over again. Combining XOR with bitwise rotations could result
in better hashes but the extra CPU cycles for little improvement in hash quality makes
it unnecessary.

The chosen base hashing algorithm was FNV-1a as it is well known, widely used in
practice, and also inexpensive. See code for FNV-1a in listing 3.1.

1 uint32_t fnv1a(const std::vector <uint32_t > &Seq)
2 {

Chapter 3. The Search Strategy 22

3 uint32_t hash = 2166136261;
4 int len = Seq.size();
5 for (int i = 0; i < len; i++)
6 {
7 hash ˆ= Seq[i];
8 hash *= 1099511628211;
9 }

10 return hash;
11 }

Listing 3.1: FNV-1a Algorithm

In one iteration, the MinHash algorithm computes the FNV-1a hash of each element
and temporarily saves them. The minimum hash is also saved in this operation so
we only have to apply k− 1 random numbers. The next k− 1 iterations take these
base hashes and XORs with pre-determined randomly generated numbers, saving the
smallest hash on each iteration. This generates the k random hashes with only one
inexpensive hash function.

3.4.1.3 Pipelining

A forgotten, and subsequently slow, step in the MinHash process is generating the
shingles (subsequences) and their base hashes. A naive implementation would loop
through each character in the sequence, computing the shingle where that character
defines the starting point and then computing its hash. This algorithm revisits the same
characters multiple times for each successive shingle, wasting many CPU cycles.

What should be noticeable is that generating shingles should only require visiting each
character once, i.e. a streaming algorithm. We can accomplish this by storing partially
computed hashes. On a read of a new character, the partially computed hashes are
updated and the top hash is collected as the shingle’s finalised hash. This idea can be
seen in Figure 3.4.

Figure 3.4: Efficiently Generating Subsequence Hashes

In Figure 3.4, the algorithm first hashes instruction 3, I3, and saves it in the first par-
tially computed hash, and combines it with the second and third partial hashes. As the
shingle beginning with I1 has been completed, it can be collected as its finalised hash
value. The boxes containing the partially computed hashes are shifted and the process
repeats itself.

Chapter 3. The Search Strategy 23

On a test-bench of over 500,000 strings, each with 1,000 characters, this algorithm can
save ∼15% on the pre-processing stage, compared to a standard implementation. The
main speedup doesn’t purely come from the prevention of revisiting characters, instead
primarily coming from the compiler unrolling the loop which combines the hash with
each partially computed hash. The instructions of the unrolled loop can be executed
in parallel as they are independent of one another, giving far greater performance than
other implementations we experimented with.

3.4.1.4 Choosing k and Memory Usage

The speed of both the pre-computation and pairwise calculations are dependent on the
number of hashes that we use, k. But so does the accuracy of the estimation and the
memory required to store every hash. We need to choose a reasonably sized value
for k such that computations involving MinHash are fast without compromising on
accuracy, and without needlessly using large chunks of memory.

The expected estimation error is bounded by O(1√
k
). At 400 hashes we can expect

a maximum error of 0.05 in our estimation of the Jaccard Index. But 400 hashes
require quadruple the computation time against just 100 hashes which only doubles
the expected estimation error to 0.1. What’s more, each hash is stored as a 32-bit
unsigned integer. At 400 hashes, each fingerprint would require 1600 bytes, around
1.5KB per function. If we assumed a real-world stress-test scenario where the system
is compiling a program with around 500,000 functions, storing just the fingerprints
would take over 750MB. However, if we used only 100 hashes, this is significantly cut
to just 190MB.

Ultimately, we chose k = 200 as we felt anything below 200 did not provide a depend-
able estimation, and anything over 200 quickly sees little to no estimation improve-
ments and far worse computational and memory requirements. 200 hashes guarantee a
maximum error on the estimation of 0.07, and each fingerprint uses only 800 bytes. We
evaluate this decision in chapter 4 on the achieved code reduction and the consistency
of those results.

3.5 Locality Sensitive Hashing and Searching

Now that we have an efficient similarity measurer between two functions, we can at-
tempt to use the LSH technique to implement a search strategy that is both accurate
and fast.

3.5.1 Efficient LSH and Searching

Likewise to the MinHash similarity scheme, the LSH search strategy must be optimised
as much as possible to minimise the time it takes to compute the hashmap and find
candidate pairs. In one massive pre-computational stage, every function fingerprint
and band hash must be computed, storing its reference in a hashmap, and allow for
rapid access speeds for similarity searching. Moreover, the hashmap must be able to
quickly insert newly merged functions and delete fully processed ones.

Chapter 3. The Search Strategy 24

3.5.1.1 HashMap and Buckets

LSH’s reliance on a hashmap that allows for quick insertion, deletion, and access,
makes conventional hashmaps undesirable. As we compute each function fingerprint,
we store a reference to that particular function in the locations defined by its band
hashes. This is ordinarily undertaken in the pre-computation stage where all input
functions are processed and stored, but also when we add newly merged functions
to the hashmap. Furthermore, we must be capable of removing functions from the
hashmap when they have been fully processed.

Due to the intense demand on the hash map, we should choose to avoid C++’s STL
unordered map in favour of other implementations which greatly improve the perfor-
mance in those aspects. Based on an article comparing the performance of many pub-
licly available hashmaps [30], we decided to proceed with the Tessil robin map [31].
It touts superior speed efficiencies in almost all cases - insertions, deletions, accesses
- at the cost of slightly increased memory, however, this cost doesn’t come into play
until programs reach exceptionally numerous function counts.

This hashmap is open-source, license-free, interfaced after STL’s unordered map, and
provided in a simple include folder, making it very easy to implement. However, this
map is built only to store one item per bucket, as with many hashmaps. We have to
simulate the bucket with a data structure with efficient iteration, insertion, and dele-
tion speeds. This issue is also tightly connected to the problem of storing duplicate
references to functions, where two distinct bands have the same hash value. A func-
tion with two or more equivalent bands will store multiple references to itself in that
bucket, repeating the number of times the search strategy checks against this one par-
ticular function.

We opted to utilise the STL vector for its superior performance in iteration thanks to
how it stores elements in contiguous memory. This has proven to be the deciding
factor in the performance of the search strategy. Additionally, the vector is very attrac-
tive with its amortized constant time insertion and far reduced memory requirements
compared to other alternatives. Furthermore, we alleviate the issue of duplication by
filtering the bands of a function, thereby removing any duplicates and preventing the
search strategy from checking the same buckets multiple times. We can do this effi-
ciently since the number of bands is likely going to be small, maxing out at k = 200
but usually far smaller than this. The brunt of any apparent slowdown this causes is
during the pre-computation stage, unlike the consistent searching slowdown caused by
other alternative data structures.

We also limit the total number of elements that one bucket can hold to 100. This
prevents code-bases, with exceptionally large numbers of similar functions, flooding
the same buckets repeatedly. When this happens, the search strategy has to linearly
scan through each one for each band. In effect, nullifying any potential performance
gains that LSH is bringing. This constraint has shown to help performance in many
benchmarks while proving to show little to no negative side effects on code size or the
number of successful merges. However, we only apply this limitation to the initial pre-
computation stage. We allow any newly merged functions to be added to the bucket
even if the bucket exceeds 100 elements. This constraint also helps to solve the issue

Chapter 3. The Search Strategy 25

of deletion when using a vector, since deletion is linear to the size of the vector, as now
the performance impact is limited.

3.5.1.2 Adaptive Threshold

Possibly the most egregious performance mistake the FMSA and SalSSA systems
make is that they do not implement a threshold, attempting to merge each function
with another, no matter how dissimilar they may be. Though, optimally choosing a
threshold that maximises the number of successful merges and minimises the number
of failed merges is a frustratingly difficult task. One shared threshold can be detrimen-
tal to the performance in some applications while beneficial to others.

Instead, our adaptive threshold bases itself on how willing we are to accept failed
merges, and their associated time cost, in an attempt to elevate the ratio of successful
merges to the code-base size as much as possible. In a program of only 100 functions,
we may be willing to try nearly all merge attempts because the performance hit will
be limited, suggesting a low threshold would be suitable. However, in a program
with over 100,000 functions, function merging cannot afford to consider every single
possible merge, choosing to consider only those that are guaranteed to be successful.

With this in mind, our threshold, t, defines itself on an expression based on the number
of functions within the code-base, Eq 3.3.

t =
1

2+(x
1−x)

−3 +0.125 (3.3)

Figure 3.5: Adaptive Threshold Initialisation

where x = log10(nFunctions)
10 , and

nFunctions represents the num-
ber of functions within the code-
base. The hyper-parameters of
this expression were set to allow
the threshold to exhibit a max-
imum difference of around 0.5.
This was chosen from testing in-
volving the smallest and largest
sized benchmarks, and finding
thresholds that suited these pro-
grams well. This expression
caps out at just over 0.6 and was
chosen to allow even the largest
of benchmarks to realise signifi-
cant code reduction.

This function follows an S-curve
as can be seen in Figure 3.5. We opted for a sigmoid curve, instead of any other func-
tion e.g. linear, as an expression that exhibits small thresholds that smoothly accelerate
in value proved to obtain the most promising results. We found through limited test-
ing that a linear function too sharply rose the thresholds in smaller sized code-bases.

Chapter 3. The Search Strategy 26

Consequently, these programs suffered in code reduction. The smooth sigmoid func-
tion allows us to keep the thresholds low for the modestly sized programs and rapidly
increase for the larger ones.

An extra constraining threshold we can place on the code-base is on the processing of
excessively large functions. Investigations have shown that as combined function sizes
increase, F1+F2, the savings by merging these two functions tend to increase too.
However, further investigations have shown that the merging of exceptionally large
functions suffers disproportionate cumulative processing times when considering their
code reduction capabilities. See (a) and (b) of Figure 3.6.

(a) Cumulative Merge Savings (b) Cumulative Merge Processing Times

Figure 3.6: Disproportionate Processing Times for Very Large Functions

Most code reduction is found in the merging of two functions with combined sizes
ranging between 2 and 10,000 units because there are just so many of them. Yet, the
cumulative processing times do not reflect this. The immense processing times of these
exceptionally large functions do not warrant the minuscule amount of code reduction
that they provide.

Therefore, we disallow any function to be merged with another such that their com-
bined size is greater than 10,000. This also affords us the opportunity to completely
ignore any function over 10,000, removing these functions from consideration. This
has the added benefit of speeding up the pre-processing stage as these offending func-
tions dominated the total time spent in that stage.

3.5.1.3 Choosing b and r

In chapter 2, the probabilities for which candidate pairs could be found through LSH
was discussed. We saw that varying the values of b and r affected the probability that a
data-point would be able to find another specific data-point, where (1

b)
1
r approximated

the point at which they are 50% likely to find each other.

Given our previous discussion on the adaptive threshold, we must aim to pick appro-
priate values for b and r such that function similarities above our adaptive threshold
are very likely to be found. However, we are restricted to just a select few choices.

Chapter 3. The Search Strategy 27

Recalling that b and r are bound by the number of hashes in the fingerprint, b and r
must multiply to give k. For example, at k = 200, the lowest LSH threshold we can
assume is given by b = 200, r = 1, resulting in t = 0.05.

Also noting that our adaptive threshold maxes at 0.6125, this affords us only the b and
r combinations found in Table 3.1. Decreasing the band size further results in LSH
thresholds above 0.6125, making them unusable.

b r (1
b)

1
r

200 1 0.05
100 2 0.1
50 4 0.376
40 5 0.478

Table 3.1: Potential b and r Combinations

The bands and row sizes maintain an in-
timate relationship with how performant
our searching strategy can be. Increasing
the number of bands dictates increased ac-
cesses into the hashmap resulting in many
more comparisons. This is where an un-
fortunate aspect of our adaptive threshold
can be found, smaller sized code-bases are
given smaller thresholds resulting in in-
creased hashmap accesses and increased
searching times.

To mitigate this, we only apply LSH if the total function count exceeds 100. This
way, we get the iteration speed of the linear scan when function counts are sufficiently
small that using LSH would only be detrimental to performance, and get the drastic
performance boost when linear scans are inefficient. In these select cases, it affords us
the removal of the hashmap pre-processing and storage. However, we maintain the use
of MinHash as the similarity measure, and the fingerprints must still be computed.

As for function counts over 100, we decided to define b and r based on these possible
ranging values of the adaptive threshold, t:

b = 200,r = 1 t < 0.15
b = 100,r = 2 0.15≤ t < 0.4
b = 50,r = 4 0.4≤ t < 0.5
b = 40,r = 5 0.5≤ t

The first combination is rarely utilised. More often than not, the linear scan is em-
ployed as function counts typically don’t reach 100 in that threshold range. Discount-
ing that combination, the probabilities for which candidates could be found at the min-
imum similarity in their specific threshold range are ∼90%, ∼73%, and ∼72%. The
ranges have not been optimised for guaranteed candidate pair lookup but were selected
because these probabilities are good enough.

3.5.1.4 Thunk Predictor

Computing the effective size of a merged function is not purely determined by the
number of instructions within that function. In a perfect world, when two functions
are merged, they can be deleted and all calls to those functions are replaced with a call
to the newly merged function. However, it is often the case that we cannot delete the
original functions nor replace all the calls to those functions. This can be caused by

Chapter 3. The Search Strategy 28

the program storing references to one of these functions. Deleting one could break the
program.

In these cases, the body of each offending function is replaced with a single call to the
merged function, maintaining the original calls to those functions. When the program
calls for one of the component functions, it perceives no difference. But once inside
the body of that function, it calls the merged function. This extra jump or extra call
is known as a thunk. The instructions in a thunk have an associated code size cost to
them. That is why, when computing the profitability of merging two functions, it is
important to check if the thunk has such a negative impact on code size that it actually
increases the total code size.

The observation we can make here is that when taking into account a thunk’s cost,
even a 100% match on two functions may not be enough to overcome that cost. Since
a thunk’s cost is independent of the merged function, we can find it before performing
the expensive sequence alignment and merging operations. If two functions satisfy this
relationship then they will never be profitable to merge and can be aborted early.

max(F1,F2)+T hunkSize(F1,F2)> F1+F2 (3.4)

Unfortunately, this check will only result in a small boost in performance, since the
functions which could satisfy this relationship are going to be very small and quick
to operate on. But as code-bases grow, every small speedup will begin to add up
significantly. This will also drastically improve the accuracy of our search strategy,
boosting the ratio of successful merges to failed merges.

3.5.2 Memory Usage

The performance of the LSH technique comes at the cost of memory. We mentioned
that each fingerprint stores 200 32-bit hashes, totalling around 800 bytes of memory
per function. But this is forgetting the storage of the band hashes. We do not want
to have to re-compute a function’s bands every time we want to search with it. Band
hashes are, at max, equivalent to the storage of each fingerprint. This happens when the
row size is set to just one hash and the number of bands is k. Now, storing a function
fingerprint and its hashes is bounded by O(8k) bytes, or in our case, 1600 bytes.

But it’s in the hashmap where we compromise memory for the speedups that LSH
provides. Assuming no memory overhead to using the Tessil robin map and no mem-
ory usage from empty buckets, the memory requirement of the hashmap is bounded
by O(32Lb), where b is the number of bands and L is the number of functions being
stored. We suppose this worst-case conclusion by assuming no function is similar to
another, allocating just one element per bucket. A vector utilises 24 bytes in a 64-bit
system and storing one function pointer is 8 bytes. Re-using the theoretical real-world
stress-test scenario of 500,000 functions, the hashmap could, at max, require just under
3GB of memory. We are likely to use more, however, with the storage required by the
hashmap implementation itself.

Chapter 3. The Search Strategy 29

While this may seem quite horrendous, it’s not otherworldly for compiling a program
whose size rivals that of some of the largest pieces of software ever made. Even so, this
estimate is a worst-case estimate. As code-bases get larger, the number of bands can be
tuned down to allow for a stricter threshold in the LSH system, reducing the memory
usage. For instance, a reasonable row size at 500,000 functions would be around 5,
giving a band size of just 40. The memory usage would then become just 610MB.

3.6 Cost Profitability Fine-Tuning

The final stage in merging two functions involves checking that integrating the merged
function will give a lower total code size. This is simply done by adding up the instruc-
tion costs within F1 and F2 and comparing against the cost of the merged function, M.

One LLVM IR instruction is not guaranteed to be translated into one machine instruc-
tion, and machine instruction costs are not equal to one another. To account for this,
FMSA and SalSSA use LLVM’s provided target-transformation interface (TTI) to es-
timate the cost of each instruction, and subsequently the whole function. However, due
to the major overhaul in the way SalSSA handles phi-nodes, it weighs these specific
instructions differently.

Instruction costs are given without units and do not directly translate to binary sizes.
However, comparing costs will adequately indicate whether one is likely to result in
an increased or decreased binary size when compared to another. With that said, in
SalSSA, phi-nodes are given a cost of 0.2. When dealing with fractional instruction
costs, SalSSA computes the aggregate cost of a function and then takes the ceiling
value, which then gives the expected integer cost.

During the development of the search strategy, we found that, when merging two func-
tions, the number of phi-nodes within the merged function is massively increased.
Considering the SPEC2006 benchmark suite, the number of phi-nodes within F1 and
F2 combined is increased nearly nine-fold in the merged function. This is due to how
SalSSA generates additional phi-nodes to retain the SSA form. Consider Figure 3.7,
where two functions have matched on the last half of their singular basic block, result-
ing in the merged function as shown in the figure.

The differing first halves must be gapped and result in the branching flow of execution
as seen. Unfortunately as a result, SSA form may become violated. The shared instruc-
tions and their variables may have separate definitions from either incoming branch, or
variables may be defined in only one of the incoming branches.

SalSSA solves both of these issues by inserting a pseudo-definition in the entry block,
guaranteeing that all definitions of a variable are dominant. It later simplifies these
definitions through a novel process called phi-coalescing [4]. But these conflicting
definitions must be resolved. In the uniting basic block, every violating variable must
be resolved with phi-nodes. If the number of defined variables in the gapped blocks
becomes large, then so does the number of generated phi-nodes.

This simplistic case does not represent the sheer potential for when phi-nodes must be
generated. As the complexity of the merged function grows, the number of generated

Chapter 3. The Search Strategy 30

phi-nodes also grows. More branches in control flow results in more phi-nodes being
generated. But recalling the discussion on phi-nodes in chapter 2: additional phi-nodes
should not present an issue for code size as they are not directly translated to binary
code in later compilation stages.

Figure 3.7: Resolving New Branching Flow
With Phi-nodes

The problem is, the current cost of phi-
nodes is given a fixed size value of
0.2. So, when sufficiently complex func-
tions are merged, the merged function is
flooded with phi-nodes and deemed not-
profitable because it contains so many of
them. A simple fix would involve set-
ting their cost to 0, allowing some ap-
plications to deem many more functions
as profitable. But we shouldn’t forget
that when they become seriously numer-
ous, they do end up having a code size
cost with their increase in load and store
instructions caused by register spilling.
Load and store instructions usually have
a higher code size cost to them than in-
structions that access the registers.

We then count phi-nodes by ramping up
their impact as they increase in number.
Per phi-node in a function, we weigh its
cost by how many have come before it.
See code listing 3.2 to see how we esti-
mate the size of a function with this new
weighting. The weighting 0.0002 was
chosen because it produced reasonably
good results but has not been experimentally proven to be the best weighting.

1 size_t EstimateFunctionSize(Function *F, TargetTransformInfo *TTI) {
2 double size = 0;
3 int count = 0;
4 for (Instruction &I : instructions(F)) {
5 if (I.getOpcode() == Instruction::PHI){
6 count++;
7 size+=(count *0.0002);
8 }
9 else{

10 size += TTI->getInstructionCost(
11 &I, TargetTransformInfo::TargetCostKind::TCK_CodeSize);
12 }
13 }
14 return size_t(std::ceil(size));
15 }

Listing 3.2: Function Size Estimation

Chapter 4

Evaluation

In this section, we evaluate the proposed search strategy and analyse our improvements
on code reduction, compilation time, and memory usage. The proposed optimisation is
presented alongside the current state-of-the-art, SalSSA [4], and a baseline that applies
no function merging optimisations. We also present statistics relevant to the function
merging procedure. Code reduction is presented as the decrease in code size compared
to the baseline system. Similarly, compilation time is presented as normalised to the
baseline compilation time, which allows for direct comparisons. Memory usage rep-
resents the peak maximum memory usage seen by the compilation process. Code size
reduction and memory usage are presented with a geometric mean whereas compila-
tion time is presented with an arithmetic mean.

We evaluate the performance of these systems through the C/C++ SPEC 2006 bench-
mark suite [1], and a couple of select large-case programs including the LLVM code-
base and the Linux kernel v5.11. The LLVM program is compiled without the frontend
procedure of the compiler, and so compilation times are presented as the combined
time of the optimiser and the code generator. On the other hand, the Linux program
is only presented with the compilation time of the optimiser. There is an unknown
bug that prevents the backend from successfully compiling in both SalSSA and our
method. All experiments have been performed on a dedicated server, intended to min-
imise noise, with specs:

• Cpu: Intel Xeon CPU E5-2560 v2 @2.6GHz, 16 cores

• Memory: 64GB

• OS: Linux ”Ubuntu” v18.04.3 (Bionic Beaver), kernel 4.15.0-69-generic

The function merging optimisation runs as a pass within llvm, version 11.0.0, with
clang, version 6.0.0-1ubuntu2. Due to the randomness involved in the MinHash and
LSH algorithms, we present the average results of 10 distinct runs. The error bars
represent the variability of the results given by the standard deviation that is centred
around the mean of those results.

We chose to optimise for code reduction by only applying the generalised rules of the
IR to integer transformation, and setting w = 2. The shorter the subsequence size, the

31

Chapter 4. Evaluation 32

more likely it is for two subsequences to be equal to one another. These parameters are
selected to allow the system to find as many successful merges as it can while keeping
compilation times as low as possible.

Figure 4.1 shows the code size reduction over the baseline. Both vanilla SalSSA [4]
and our proposed optimisation achieve similar code size reductions. Our improvements
observe an increase of code reduction by 0.4% in the geometric average. We have
found that both SalSSA and our method frequently choose the same successful pairs
of functions for merging. The difference in code reduction comes from the edit to
cost profitability with how we weight phi-nodes, allowing more merges to be deemed
profitable and deliver minor boosts in code reduction.

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
GMean

0

20

40

60

R
ed

uc
tio

n
(%

)

10.6
10.2

Ours
SalSSA

Figure 4.1: Code Reduction

But where we see less code reduction is mostly found in larger benchmarks like DealII
and Xalancbmk, containing 7380 and 14191 functions respectively. With these bigger
benchmarks, the adaptive threshold sets itself relatively high, causing them to miss out
on some profitable functions. Decreasing the threshold gives back the remaining code
reduction but, by that point, we start to feel the negative effects of failed merges and
their processing times.

Figure 4.2 shows the compilation time normalised to the baseline. We see significant
performance improvements over the state-of-the-art and speedups compared to our
baseline. In most cases, our optimisation completely nullifies the overhead brought
about by function merging. Unexpectedly, we achieve compilation times faster than
the baseline compiler performing no function merging at all, averaging 4% faster than
the baseline.

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0.2

0.0

0.2

N
or

m
al

iz
ed

 T
im

e

-0.04

0.11

Ours
SalSSA

Figure 4.2: Normalised Compilation Time

Looking at the DealII, and Xalancbmk benchmarks, the reason for the notable improve-
ments over SalSSA comes principally from the LSH lookup scheme. These bench-

Chapter 4. Evaluation 33

marks gain a lot of speedup from using the LSH hashmap to find similar functions
because of their size. However, many other benchmarks report remarkable improve-
ments where LSH isn’t the sole reason. Most of the smaller sized benchmarks, and
including the large ones, enjoy the reduced number of failed merges thanks to the
adaptive threshold and MinHash similarity measure.

Analysing the benchmarks which are still slower relative to the baseline, like gobmk,
sjeng, and lbm, reveal a couple of problems. Both sjeng and lbm still suffer from the
majority of their processing times being dedicated to failed merges. These processing
times can be found in Figure 4.3. On the other hand, the gobmk benchmark is slowed
down by how many similar functions it contains. Hundreds of functions are deemed
similar by LSH and placed in the same buckets, causing massive lookup times. Even
the cap on bucket sizes at 100 functions does not fully manage to mitigate this issue.
Unfortunately, capping the buckets any lower than this starts to display negative effects
on code reduction.

400.perlbench

401.bzip
2

403.gcc
429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

20

40

60

80

100

M
er

ge
 T

yp
e

Pr
oc

es
si

ng
 T

im
e

(%
)

Successful Merge Failed Merge

Figure 4.3: Processing Times of Successful vs Failed Merges

Comparing the performance of both systems reveals how much of an improvement
has been made. Figures 4.4 and 4.5 shows how our optimisation manages to achieve
increased average successful merges while decreasing the number of failed merges by
∼4.3x. Figure 4.6 also shows how much of an improvement has been made on the
total processing time of failed merges. Less than a fifth of the time is spent on failed
merges than in SalSSA. For reference, the average time spent on successful merges is
exactly equivalent to SalSSA except in the cases where LSH has drastically reduced
the ranking times in large benchmarks.

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
GMean

0

1000

2000

3000

Su
cc

es
sf

ul
 M

er
ge

s

82.4
78.5

Ours
SalSSA

Figure 4.4: Number of Successful Merges

Chapter 4. Evaluation 34

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
GMean

0

1000

2000

3000

4000

Fa
ile

d
M

er
ge

s
54.5

8264

237.0

Ours
SalSSA

Figure 4.5: Number of Failed Merges

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
GMean

0

10

20

30

40

Fa
il

Ti
m

e
(s

)

0.2
1.1

Ours
SalSSA

Figure 4.6: Time Spent on Failed Merges

What we deduce from these results is that failed merges endure disproportionately
prolonged processing times compared to successful merges. This is why they typically
still dominate the time spent in the function merging procedure despite how average
successful merges outnumber average failed merges.

The alignment algorithm has free rein over how the merged function should look and
it does not care about aligning contiguous instructions between many distinct basic
blocks. By aligning instructions in this way, the resulting merged function will need to
contain many branches to facilitate the new control flow. To do so, the code generation
steps have to work very hard to produce a function that does not break the functionality
of each original function, suffering lengthier times to complete than more straightfor-
ward alignments, as seen by the code generation and post-processing steps in Figures
3.2 and 4.7.

These merges are much more likely to fail due to exactly what makes them so difficult
to build, with escalated code sizes caused by the increased number of branches and phi-
nodes. In essence, failed merges dominate the overall time because the functions being
produced are far more complex than their component functions, causing prolonged
code generation times and reduced likelihood of profitability. We believe the reason
for this is due to how the merging procedure can produce functions that are far more
complex than their component functions, causing increased code generation times and
reduced likelihood of profitability.

Figure 4.7 shows the breakdown of the function merging pass with our method. We
see that the total time is still predominantly affected by the code generation and the
post-processing steps. We see that fingerprinting has started to come through as a
substantial step as we generate all the hashes and build the hashmap. The ranking

Chapter 4. Evaluation 35

400.perlbench

401.bzip
2

403.gcc
429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

20

40

60

80

100

B
re

ak
do

w
n

Ti
m

e
(%

)

Align
Param

CodeGen
Fingerprinting

Linearisation
Ranking

Updating
Post Processing

Figure 4.7: Proportion of Time Spent Doing X

k (Number of Hashes) GMean Code Reduction (%) Standard Deviation

50 10.3 0.3
100 10.4 0.14
200 10.4 0.08
300 10.4 0.08

Table 4.1: Varying k on Code Reduction

proportion seems in line with SalSSA, as in Figure 3.2, however, actually comparing
them relatively shows that ranking is massively reduced. In fact, everything has been
massively reduced thanks to the prevention of many failed merges.

An evaluation of our decision to use k = 200 on code reduction can be found in Table
4.1, averaging 3 distinct runs each. Due to the intricate relationship between k and
the LSH searching scheme, we modified the system and only evaluate code reduction
entirely on linear scans. It would be unfair to compare systems with un-optimised b
and r values chosen for LSH. What we ascertain is that lower hash counts achieve just
as good code reduction capabilities. However, as we include more hashes, the standard
deviation of the resulting code reduction decreases, giving more consistent results.

While lower values for k may seem promising, with the benefit of reducing similarity
computation and pre-processing times, they will impede our ability to effectively use
LSH. Recalling the discussion in subsubsection 3.5.1.3, the number of available hashes
dictate our ability to choose b and r for LSH. With lower hash counts, we are subjected
to potentially worse LSH performance as the number of acceptable thresholds avail-
able to us are considerably reduced. This is conceivably the most compelling reason
for maintaining k = 200: we get consistent code reduction and a decent selection of
thresholds for our LSH hashmap. However, there may be a compelling reason to drop
down to k = 100 and tweak b and r appropriately.

Figure 4.8 shows the peak memory usage during compilation time. Surprisingly, our
improvements achieve lower average memory usages, but this is due to the obscene
memory requirements seen in gcc. Investigating this benchmark shows that SalSSA
attempts to merge two very large functions and the sequence alignment algorithm

Chapter 4. Evaluation 36

struggles to handle these functions efficiently due to its quadratic memory require-
ments. Our search strategy ignores these two functions due to their size and does not
suffer from this. However, this could also be improved by applying Hirschberg’s algo-
rithm [14], reducing the memory requirement from quadratic to linear. Omitting this
benchmark from consideration, we see that our proposed optimisation achieves more
or less equivalent memory requirements to SalSSA, further demonstrating the lack of
downsides to our method. It is intriguing to note how our optimisation achieves lower
average memory usages over the baseline.

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
GMean

0

100

200

300

400

500

600

M
em

or
y

U
sa

ge
 (M

B
)

146

2.1GB

159 152

Ours
SalSSA
Baseline

Figure 4.8: Peak Memory Usage During Compilation

Table 4.2 shows the results of applying our optimisation to the LLVM and Linux ker-
nel code-bases. While all systems were run 10 times to achieve an average on each
benchmark, SalSSA was run only once on the LLVM benchmark due to the extreme
time it takes to fully compile. The sentiment remains the same.

LLVM (OPT + GEN) Baseline SalSSA Ours

Code Reduction (%) N/A 30.2 30
Compilation Time (s) 1011.48 11139.2s 859.24

Peak Memory Usage (GB) 9.86 8.34 7.3
Linux Kernel (OPT)
Code Reduction (%) N/A N/A N/A
Compilation Time (s) 25.97 1376.34 30.13

Peak Memory Usage (GB) 1.37 1.177 1.184

Table 4.2: Results on Large-Case Programs

In the LLVM benchmark, our method achieves an average compilation time speedup of
∼13x over the current state-of-the-art in addition to providing a boost over the baseline
by ∼15%. Against SalSSA, our method comes with improved memory requirements,
for the same reason as in gcc. These improvements come at the cost of just 0.2% in
code reduction. Both SalSSA and our optimisation achieve lowered memory require-
ments against the baseline, lowering them quite significantly.

The Linux Kernel obtains similar results with a compilation time speedup of ∼45x
over SalSSA but at the cost of ∼16% against the baseline. Again, SalSSA and our op-
timisation attain lowered memory requirements against the baseline, however, SalSSA
outperforms our method by less than a per cent.

Chapter 5

Discussion

Our evaluation arises a burning question: how is it possible that we can achieve faster
than baseline compilation times while also performing function merging? Recalling
the LLVM compiler architecture discussed in chapter 2, the stages of the compiler
work serially to deliver the finalised compiled binaries. Regardless of the optimisations
performed in the optimiser, the frontend will always record the same timings. However,
the same cannot be said for the code generator.

The code generator depends on the output of the optimiser. If function merging has
managed to significantly reduce the volume of code, then the backend benefits from
this reduced workload. Consider Figure 5.1, the relative time spent in the code genera-
tor phase is drastically reduced by both SalSSA and our method when compared to the
baseline. Both achieve an average speedup of 12% over the baseline code generation
stage. But SalSSA seldom benefits from this speedup due to the length of time spent
within the optimiser performing function merging. See Figure 5.2 for the relative time
spent within the optimiser.

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
B

ac
ke

nd
 T

im
e

0.0GB

1.0

0.0GB

0.88

0.0GB

0.88

Baseline
Ours
SalSSA

Figure 5.1: Speedup in the Backend

37

Chapter 5. Discussion 38

400.perlbench

401.bzip
2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0.0

2.5

5.0

7.5

10.0

12.5

R
el

at
iv

e
O

pt
im

is
er

 T
im

e

0.0GB

1.0

0.0GB

2.37

0.0GB

6.32

Baseline
Ours
SalSSA

Figure 5.2: Optimiser Compilation Time Relative to the Baseline

Take for instance the LLVM benchmark, both SalSSA and our method achieve signif-
icant speedups in the code generator phase compared to the baseline, around 20% and
30% respectively, equating to under 4mins and 5mins. However, that speedup is com-
pletely nullified with SalSSA due to the near 3 hours it spends in the optimiser phase.
Since our method only spends, on average, 2mins 20s in the optimiser phase, we bene-
fit from the reduced workload issued to the code generator. Comparing purely the time
spent in the sequence alignment function merging pass for LLVM, the speedup of our
method over the current state-of-the-art exceeds well over 250x.1

There is a strong correlation between the bitcode size reduction, achieved by the func-
tion merging optimiser when compared to the baseline optimiser, and the relative
speedup in the code generator phase. Figure 5.3 displays this correlation. As more
savings are made through function merging, there is a decrease in time spent in the fi-
nal stage of the compiler. So long as the function merging procedures can be performed
swiftly, the whole compilation process will benefit from this reduced time.

10 15 20 25 30 35 40
Bitcode Size Reduction (%)

1.0

1.2

1.4

1.6

1.8

B
ac

ke
nd

 S
pe

ed
up

 (x
bl

)

Corr Coef: 0.7501

Figure 5.3: Bitcode Reduction vs Backend Speedup

1We average∼35s for the function merging by sequence alignment pass whereas SalSSA sees∼2hrs
and 50mins.

Chapter 5. Discussion 39

Furthermore, the effect of the code generator on the total compilation time is far more
significant than the optimiser. See Figure 5.4 for the proportion of time spent within
each compiler phase with our method, after having significantly reduced the time spent
within the optimiser compared to SalSSA. Knowing that the backend is responsible
for much of the compilation time, it is actually beneficial to brunt slower optimisa-
tion times in an attempt to maximise code reduction so that the backend stage may
be sped up as much as possible. In fact, we experimented with this a little and found
that we could scarcely gain much performance, through raising the threshold etc., and
promptly found deteriorating performance as the gains in the backend started to di-
minish. If we wished to show off speed in the optimisation phase, this would not be
challenging to achieve, however, the performance of the entire compilation process
would suffer as we lose the code reduction that boosts the backend.

400.perlbench

401.bzip
2

403.gcc
429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lbm

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

20

40

60

80

100

(%
) T

im
e

Sp
en

t i
n

E
ac

h
St

ag
e

Frontend Optimiser Backend

Figure 5.4: Proportion of Time Spent in Each Compiler Phase with Our Method

We equally observe similar results when it comes to the memory requirements of the
whole compilation process. In many instances, the peak memory usage is dictated
by the backend of the compiler. By reducing the total code volume in this phase, we
see reduced peak memory usages compared to the baseline. Again using the LLVM
benchmark as the most evident example, both SalSSA and our method achieve lower
memory requirements, dropping the baseline peak size from near 10GB to 8.3GB and
7.3GB respectively, resulting in drops of around 15% and 25%. As with the gcc bench-
mark, our method lowers the required memory of SalSSA by ignoring the merging of
exceptionally large functions and their associated quadratic memory cost.

It is for these reasons why the Linux benchmark doesn’t achieve faster than baseline
compilation times with our method. Because we don’t apply the backend stage in
compilation, we never enjoy the boosted speeds that allow total compilation time to
overtake the baseline. Interestingly, SalSSA and our method still display better mem-
ory requirements over the baseline even though the backend plays no role. It is possible
that there is a particular stage within the optimiser, which is performed after function
merging, that benefits just as the backend would.

These extraordinary results allow us to present our method, not only as an optimiser
for code size but also for improving both the performance of the compiler itself and
the resources required to compile programs.

Chapter 6

Conclusion

In this work, our primary goal was to improve the performance of the current state-
of-the-art in optimising compilation for code size. Through implementing a search
strategy based on the MinHash and Locality Sensitive Hashing techniques, we have
achieved vastly superior performance with notable improvements in code reduction
and memory requirements. We have also shown that function merging can serve to
reduce the workload of the backend stage in compilation, allowing for quicker overall
compile-times and reduced memory requirements.

Applied to the SPEC2006 benchmark suite, we average faster than baseline results by
4%, with increased code reduction against the state-of-the-art, and improved memory
requirements against both the baseline and SalSSA. Applied to real-world large-case
programs including the LLVM code-base and the Linux kernel, we see dramatically
improved performance and memory requirements, at little cost to code reduction. In
effect, we have established practicality for all applications, eliminating almost all mis-
givings that currently impede widespread adoption.

6.1 Future Work

Considering Figure 4.3 from chapter 4, the next opportunity for further optimisation
would be to minimise the disproportionate amount of time that is squandered on failed
merges. However, as discussed in the same chapter, we believe that this is likely caused
by the merging of functions into an extremely complex merged function, requiring
exceptionally large code generation times, as seen in Figures 3.2 and 4.7. And as it
currently stands, a recent paper has been submitted for review that combats this issue
by reducing the alignment algorithm to the basic block level, allowing two complex
functions to be merged without constructing a merged function that is increasingly
complex. Currently, we are working with the authors of SalSSA, and this new paper,
to combine our work in an upcoming research paper.

40

Bibliography

[1] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, September 2006.

[2] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Califor-
nia, Mar 2004.

[3] Andrei Z. Broder. On the resemblance and containment of documents. In In Com-
pression and Complexity of Sequences (SEQUENCES’97, pages 21–29. IEEE
Computer Society, 1997.

[4] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh
Leather. Effective function merging in the ssa form. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2020, page 854–868, New York, NY, USA, 2020. Association for
Computing Machinery.

[5] Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler
techniques for code compaction. ACM Trans. Program. Lang. Syst., 22:378–415,
03 2000.

[6] Pinaki Chakraborty. Fifty years of peephole optimization. Current Science,
108(12):2186–2190, 2015.

[7] Chris G. Demetriou. Safe icf : Pointer safe and unwinding aware identical code
folding in the gold linker. 2010.

[8] Ian Lance Taylor. A new elf linker.

[9] Tobias J. K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and Anshuman
Dasgupta. Exploiting function similarity for code size reduction. In LCTES ’14,
2014.

[10] Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh
Leather. Function Merging by Sequence Alignment. In Proceedings of the 2019
International Symposium on Code Generation and Optimization, pages 149–163,
United States, 2 2019. Institute of Electrical and Electronics Engineers (IEEE).
Date of Acceptance: 29/10/2018.

41

Bibliography 42

[11] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

[12] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443–453, 1970.

[13] T.F. Smith and M.S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195–197, 1981.

[14] D. S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Commun. ACM, 18(6):341–343, June 1975.

[15] Osamu Gotoh. An improved algorithm for matching biological sequences. Jour-
nal of Molecular Biology, 162(3):705–708, 1982.

[16] Eugene W. Myers and Webb Miller. Optimal alignments in linear space. Bioin-
formatics, 4(1):11–17, 03 1988.

[17] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology,
215(3):403–410, 1990.

[18] Robert D. Fleischmann Jeremy Peterson Owen White Steven L. Salzberg Arthur
L. Delcher, Simon Kasif. Alignment of whole genomes, 14-03-2020. http:
//mummer.sourceforge.net/MUMmer.pdf.

[19] Chakraborty Angana and Bandyopadhyay Sanghamitra. FOGSAA: Fast Optimal
Global Sequence Alignment Algorithm. Scientific Reports, 3(1):1746, 2013.

[20] R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, 1950.

[21] Lee R. Dice. Measures of the amount of ecologic association between species.
Ecology, 26(3):297–302, 1945.

[22] Jaccard. The distribution of the flora of the alpine zone. In New Phytologist,
volume 11, pages 37–50, 1912.

[23] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[24] Yiqiu Wang, Anshumali Shrivastava, and Junghee Ryu. FLASH: random-
ized algorithms accelerated over CPU-GPU for ultra-high dimensional similarity
search. CoRR, abs/1709.01190, 2017.

[25] Anshumali Shrivastava and Ping Li. Densifying one permutation hashing via ro-
tation for fast near neighbor search. In Eric P. Xing and Tony Jebara, editors, Pro-
ceedings of the 31st International Conference on Machine Learning, volume 32
of Proceedings of Machine Learning Research, pages 557–565, Bejing, China,
22–24 Jun 2014. PMLR.

http://mummer.sourceforge.net/MUMmer.pdf
http://mummer.sourceforge.net/MUMmer.pdf

Bibliography 43

[26] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate near-
est neighbor search using hierarchical navigable small world graphs. CoRR,
abs/1603.09320, 2016.

[27] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
Min-wise independent permutations (extended abstract). In IN STOC ’98: PRO-
CEEDINGS OF THE THIRTIETH ANNUAL ACM SYMPOSIUM ON THEORY
OF COMPUTING, pages 327–336. ACM, 1998.

[28] Tyler Neylon. Introduction to locality-sensitive hashing. http://tylerneylon.
com/a/lsh1/. Accessed: 2021-04-09.

[29] Jure Leskovec, Jeffrey D. Ullman, and Anand Rajaraman. Mining of Massive
Datasets, page 73–134. Cambridge University Press, 2020.

[30] Tessil. Benchmark of major hash maps implementations. https://tessil.
github.io/2016/08/29/benchmark-hopscotch-map.html. Accessed: 2021-
04-09.

[31] Tessil. Tessil robin-map. https://github.com/Tessil/robin-map. Ac-
cessed: 2021-04-09.

http://tylerneylon.com/a/lsh1/
http://tylerneylon.com/a/lsh1/
https://tessil.github.io/2016/08/29/benchmark-hopscotch-map.html
https://tessil.github.io/2016/08/29/benchmark-hopscotch-map.html
https://github.com/Tessil/robin-map

Bibliography 44

.1
Quick Abort

The next place we can find optimisations in the MinHash process is the pairwise sim-
ilarity computation. Given the two sorted lists of hashes, we simply need to iterate
through them, only incrementing a set’s iterator when a match occurs or their current
hash is less than the opposite set’s current hash. For interest, we couldn’t find much
optimisation opportunity in the sorting mechanism, opting to use the C++ standard
library std::sort as it is fast, reliable, and requires no development time.

We can do better. The observation we can make here is that we don’t want to carry
on calculating the similarity between two functions when, according to the current
stage they’re at in the calculation, the maximum possible similarity is below a certain
threshold. If we determine that the two functions are guaranteed a similarity below this
threshold then we wouldn’t want to bother with the rest of the calculation. This way,
only similarities between functions larger than this threshold are fully calculated.

If we assume we have already processed pos1 and pos2 hashes in the first and second
fingerprints respectively, len1 and len2 define the number of hashes in each fingerprint
respectively, and the number of matching hashes is nintersect. Then the Jaccard Index
estimate J(s1,s2) is subject to this boundary:

max(J(s1,s2)) =
nintersect +min(len1− pos1, len2− pos2)

len1 + len2−nintersect−min(len1− pos1, len2− pos2)
(1)

Constraining our consideration of Jaccard estimations greater than or equal to some
threshold, α, we can assert that any pairwise computation which satisfies this condition
should be aborted, max(J(s1,s2))< α. We can rearrange this equation to:

nintersect +min(len1− pos1, len2− pos2)<
α

1+α
(len1 + len2) (2)

If this condition is ever satisfied during the similarity calculation, then we can abort
knowing that the two functions were never going to be similar enough to be worth
considering. We can pre-compute the RHS of the condition and carry out the check on
each loop of the algorithm.

	Introduction
	Project Description
	Motivation
	Objectives
	Contributions and Results Summary

	Background Review
	Code Size Optimisation
	LLVM Compiler Architecture
	LLVM Intermediate Representation
	Static Single Assignment

	SalSSA
	Component Steps

	Sequence Alignment
	Set and Sequence Similarity
	Jaccard Index
	MinHash

	Nearest Neighbour Search
	Locality Sensitive Hashing

	The Search Strategy
	Previous Search Strategy
	Overview of the New Search Strategy
	Instruction to Integer
	MinHash
	Efficient Implementation of MinHash

	Locality Sensitive Hashing and Searching
	Efficient LSH and Searching
	Memory Usage

	Cost Profitability Fine-Tuning

	Evaluation
	Discussion
	Conclusion
	Future Work

	Bibliography
	Quick Abort

