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Abstract
With the end of Moore’s law firmly at hand – and modern microarchitectures tending
towards many-core designs – programmers and hardware architects alike must now
explore how parallel architectures can be fully exploited for maximum performance.
However, even with a general acceptance of the paradigm of parallel programming
by mainstream programming languages, producing both correct and bug-free software
for parallel microarchitectures is still as much a challenge as ever. Whilst generalised
automatic parallelisation is still an open problem, well defined domain specific code
generation may be well suited to known methods of automatic parallelisation.

This report continues work started last year in implementing automatic methods of
parallel code generated in DBToaster – an SQL-to-C++/Scala compiler – by way of
designing, implementing, and evaluating thread-safe MultiMap data structures which
are used to represent relations within DBToaster-generated code.

Last year, parallelisation of high-level intermediate language statements was explored
in order to produce parallelised programs utilising OpenMP’s more recent inclusion of
dependent tasks. This year parallelisation at a lower level is explored, in the context
of performance-oriented thread-safe data structures where problems universally found
shared-memory systems must be overcome.
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Chapter 1

Introduction

1.1 Motivation

Since the early 2000s microarchitectures have become increasingly parallel as single-
core performance improvements have become harder to come by. Ultimately, heat
dissipation and instruction level parallelism problems brought the demise of the single-
core computer and now almost all consumer processors consist of multiple processor
cores[1]. With this advancement in microarchitecture design it is increasingly impor-
tant for software to utilise parallelism to be scalable.

Parallel programming has come a long way since operating systems and microarchitec-
tures first exposed parallel primitives, but with many mainstream languages designed
for single-threaded workloads it is still a difficult task to design and implement parallel
code that utilises the parallelism of modern systems. With such difficulties, it makes
sense to centralise efforts in parallelisation and distributed computing to reduce the er-
rors inherent in parallel programming. Unlike serial programming, parallel program-
ming requires analysing complex interactions between multiple threads of execution
which may contain many subtle bugs.

DBToaster[2] – an SQL-to-C++/Scala code generator – is an ideal project for exploring
the automatic parallelisation of code as the code it produces can be analysed and used
to inform parallelisation efforts.

1.2 Previous Work Carried Out

Last year the problem of automatic parallelisation of DBToaster-generated code was
approached by way of adding parallel primitives to DBToaster’s intermediate language
– M3 – and implementing a parallelisation pass capable which transformed and opti-
mised M3 programs into parallel M3 programs. This approach produced mixed results
which demonstrated that this form of parallelisation could be effective, but also that it
is not universally applicable.

With this in mind, the decision was taken to adjust the approach for this year to con-
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Chapter 1. Introduction 2

tinue efforts towards automatic parallelisation by focusing on the parallelisation of
simple loop constructs generated by DBToaster. Parallel iteration is already a well
researched and supported area of parallel computing and is supported well by the
project’s parallelisation tool of choice – OpenMP[3] – making it an ideal target for
parallelisation efforts.

Whilst loops over set ranges or contiguous data structures is a solved problem, DBToaster-
generated loop constructs often iterate over the elements of MultiMaps – a custom data
structure which models relations – and may involve modifying other MultiMaps by ei-
ther adding or removing elements. For this reason, thread-safe MultiMaps are needed
to enable loop-based parallelism in DBToaster-generated code. As such, the focus of
this year’s work is to design, implement, and evaluate performant thread-safe Mul-
tiMaps capable of concurrent modification.

1.3 Goals & Achievements

This year the core goal of the project was initially to enable parallelisation of DBToaster-
generated loop constructs by way of designing, implementing, and integrating thread-
safe MultiMaps into the existing DBToaster project. As the project progressed, the
scope was adjusted to focus on the three MultiMap implementations produced over its
duration, and their evaluation over a set of microbenchmarks tailored to their potential
future use within DBToaster.

The project has succeeded in implementing three thread-safe MultiMaps inspired by
state-of-the-art key-value data structure implementations found in recent publication,
and in exploring the implications of modern microarchitectural designs and capabilities
on the performance and implementation of thread-safe data structures. Beyond the
three thread-safe MultiMap implementations, the project has also produced a wait-free
memory pool implementation supporting parallel iteration over its allocated elements,
and a suite of benchmarks for evaluating thread-safe MultiMap performance.

Finally, through evaluation of the three thread-safe MultiMap implementations, the
project has succeeded in highlighting areas of difficulty which future work can focus
on.

1.4 Overview & Organisation

The project is presented in a linear fashion, which first reviews relevant technologies
and data structure implementations before moving onto a discussion of design, imple-
mentation, and evaluation of the three thread-safe MultiMaps. Afterwards, proposals
of future work based on the final evaluation are presented, along with a reflection of
the work undertaken.
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The formal report structure is detailed below:

1. Review – A review of foundational and existing technologies which influence
the design and implementation of any thread-safe data structure, including the
thread-safe MultiMaps presented in this report.

2. Methods – A walk-through of the design of the three MultiMaps produced by
the project, the memory pool designed to support them, and a discussion of their
theoretical advantages and disadvantages.

3. Implementations – A walk-through of significant implementation details of the
three thread-safe MultiMaps and the memory pool, as well as noteworthy opti-
misations and technologies.

4. Evaluation – An evaluation of the three thread-safe MultiMap implementations
with respect to the current serial MultiMap implementation, over a set of tailored
microbenchmarks.

5. Conclusion – An reflection of work undertaken during the project, its successes
and failures, and work proposed for the future.



Chapter 2

Review

In this chapter, technologies and implementations relevant to thread-safe data struc-
ture design and implementation, and to the project are discussed. The chapter covers
relevant features of parallel microarchitectures which enable parallelism, the OpenMP
API used to implement all three thread-safe MultiMaps, DBToaster’s MultiMap im-
plementation, and existing implementations of performant thread-safe key-value data
structures representing the state-of-the-art.

2.1 Modern Microarchitectures

Understanding modern microarchitectures is an extremely important part of designing
and implementing thread-safe data structures. The capabilities of modern parallel mi-
croarchitectures vary greatly – from tiny embedded processors to huge multi-threaded
behemoths, there is no universal implementation, and so this section focuses on general
paradigms and technologies implemented across many systems.

Modern parallel microarchitectures can be divided into two paradigms – simultaneous
multi-threading (SMT) and chip multiprocessing (CMP) – which implement thread-
level parallelism in two distinct ways. SMT implements multiple threads by sharing
the resources of a single core between them, whilst CMP implements multiple threads
by way of having several processing cores which have their own dedicated resources.
For this section, the multi-cored CMP microarchitecture is the main focus, as it is the
more common of the two today and has greater performance implications. However,
an SMT system is considered during the evaluation later on (see chapter 5).

2.1.1 Shared Memory Model

Any multi-core microarchitecture requires a method of allowing multiple threads to
collaborate on the same data together – this is the core technology that allows for data
structures to be used by multiple threads. This is universally implemented using some
form of shared memory which all hardware threads have access to. For SMT this
solves the problem of sharing data between threads as cache and memory slots are
shared between SMT threads, but for CMP this presents fundamental problem: with

4



Chapter 2. Review 5

each core having its own cache, how does one ensure that all cores have a consistent
view of shared memory when multiple cores may be interacting with the same shared
memory? The solution to this problem is cache coherency protocols.

Cache coherency protocols are responsible for ensuring that cache lines in separate
caches are kept consistent with one another, such that if one core reads data from a
cache line it will always return the most up-to-date version of that data across all cores
and main memory, even if that means fetching it from another cache or main memory.
Cache coherency protocols can be implemented in a variety of ways, but among the
most popular today are the MSI and MESI protocols[4].

Universally, cache coherency protocols are implemented by utilising a shared bus be-
tween cores to communicate requests for, or modifications to, cache lines. This infor-
mation is then used by other cores to share or invalidate their own cache lines, possibly
requiring that subsequent reads or writes on that cache line invoke communications
with other cores before being executed.

In solving the cache coherency problem, cache coherency protocols add some over-
head in their communication with other cores. For every invalidation or share of a
cache line, future operations on that cache line may require that some number of cy-
cles is spent communicating with other cores before doing so. For programs utilising
many threads to operate on shared memory, this is generally unavoidable, but its effect
may be lessened by avoiding false sharing[5], where independent data is stored within
the same cache line, and thus modifications to either data element invokes a cache
invalidation. By manually aligning independent data to separate cache lines, cache
invalidations can be avoided, and thus the overheads associated.

2.1.2 Atomic Instructions

Cache coherency succeeds in maintaining a consistent view of memory across multiple
cores, but leaves an important problem unsolved. Reads and writes of memory are kept
consistent by cache coherency protocols, but instructions that need to read and write
to memory may have the corresponding memory change between their read and write,
resulting in unexpected behaviour. This problem is solved by atomic instructions –
a special set of atomic instructions provided by many ISAs[6] which disallow any
interleaved reads and writes to their corresponding memory locations for the duration
of the instruction.

Whilst atomic instructions can be used to ensure atomicity of single instructions, it
is still possible for atomic instructions to be interleaved with one another. For this
reason, the compare-and-swap (CAS) instruction sees widespread use to implement
more complex atomic operations. It is defined as:

CompareAndSwap(a,b,c) =

{
a← c, if a = b
b← a, otherwise

Where a, b, and c are in shared memory. Compare-and-swap allows us to read b from
memory, do some kind of computation to produce c, and then only write it back to
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the memory location of a if a = b. CAS has seen wide-spread utilisation in many
high-performance thread-safe data structure implementations[7, 8] for its ability to
implement more complex atomic transactions on data which may be repeated until a
CAS instruction succeeds.

Because they are implemented at the level of microarchitectures, atomic instructions
represent the lowest-level method of performing atomic transactions on data. Whilst
individual atomic instructions are fast because of this, using atomic instructions on
the same cache blocks are still prone to cache invalidations. Therefore, even though
atomic instructions afford the user a fast method of applying thread-safe modifications
to data, care must still be taken in data alignment to ensure they are used efficiently.

2.2 Locking

Though atomic instructions offer atomicity of individual operations, more generic
techniques for multi-staged transactions on shared memory are needed. These meth-
ods fall under the category of locking, wherein some object or data is used to signify
a thread’s ownership of data. Within this category, there are many implementations
of locking objects specialised for specific use-cases. Instead of delving into these,
this section covers two types of lock used commonly in parallel code – the mutex and
spinlock.

2.2.1 Mutex

A mutual exclusion object, or mutex, is an object which allows a thread to acquire it to
signify ownership over some associated data, and later release it so that another thread
can access that data[9]. Mutexes are generally provided by the operating system, and
as a result they see widespread support across a large number of systems.

Behind the scenes, operating systems often make some optimisations around mutexes
to maximise use of resources, such as sending threads to sleep that are waiting on
mutexes so that another thread can use the processor’s resources. Whilst this is a
good policy for maximising throughput via executing many programs in parallel, it is
a detriment for the thread being put to sleep as it requires a context switch wherein
state must be saved for restoration later when the threads’ execution is resumed, and
allows the next thread that is executed on the core to evict cache lines and affect other
caching components such as the TLB[10, 11]. This means that when a thread resumes
it may have to re-read cache lines and rebuild its TLB.

In this project, only Linux’s implementation of the mutex – the futex – is relevant. The
futex is an optimised mutex which attempts to avoid context switches by attempting to
acquire the underlying mutex several times before giving up and yielding to a context
switch. For sufficiently short locking periods this results in far fewer context switches.
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2.2.2 Spinlock

Like the mutex, a spinlock can be acquired and released by a thread to indicate owner-
ship of associated data. Unlike the mutex, a core design choice of the spinlock is that
context switches are avoided at all costs. As a result, spinlock will never put a thread
to sleep, instead preferring that a thread continue looping (or spinning) to eventually
acquire it.

Spinlocks are usually implemented with just a single flag which is atomically modified
to declare that the spinlock is currently owned or free. This can be implemented using
the compare-and-swap instruction by utilising its expected value parameter such that it
only succeeds if the actual value of the flag used to implement the spinlock indicates it
is not locked. Whilst simple, a well optimised spinlock can be extremely performant,
even outperforming pure atomic compare-and-swap instructions[12].

2.2.3 Contention

Unlike atomic instructions, both mutexes and spinlocks are capable of supporting
atomicity of arbitrary operations on arbitrary data. However, locking methods in gen-
eral suffer from performance issues when under contention. Contention is when several
threads are trying to acquire the lock concurrently, and causes different problems for
mutexes and spinlocks. For mutexes, high contention means that threads may need to
wait until several threads have completed their use of the mutex before being able to
do its own operation, causing context switches even for adaptive designs such as the
futex. For the spinlock, contention means that many modifying atomic operations are
being attempted on the lock’s flag concurrently, causing many cache invalidations, thus
increasing the latency of locking and unlocking the spinlock.

The effect of contention is much more detrimental for the spinlock than the mutex
because cache invalidation also affects the latency of unlocks, and whilst this can be
somewhat offset using special pause instructions supported by some ISAs[13, 14], the
best spinlock designs are generally far more inefficient in high-contention scenarios
than mutexes[15].

2.3 OpenMP

OpenMP is an API implemented by various compilers which allows C, C++, and For-
tran programmer to decorate code with special annotations in order to enable paral-
lelisation of that code. Last year, the OpenMP parallelisation API was selected for
its performance, ergonomics, and general availability through a number of compilers.
This year continues the use of OpenMP for the same reasons, but for different tasks.
This section serves as a refresher of what OpenMP is, and how its features support this
year’s project. Specific applications of OpenMP are discussed inline in future chap-
ters, namely chapters 4 and 5. This section is limited to discussing OpenMP’s lock and
atomic support.
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2.3.1 Atomics & Locks

Being a universal parallelisation API, OpenMP provides a high-level implementation
of a lock object, as well as annotations for specifying operations as atomic. The lock
object is typically implemented in terms of operating-system supplied mutexes, and
thus on Linux platforms it is implemented internally as a futex.

Atomic annotations can take on several forms, allowing the programmer to specify if
an operation is an atomic read, an atomic write, or simply atomic, in which case
the compiler will infer what instruction can be used to implement it.

Currently supported versions of OpenMP[16] do not implement the compare-and-swap
instruction, which was added in the more recent OpenMP v5.0 specification[17]. As
compare-and-swap is such an integral operation for many concurrent data structure or
spinlock implementations, the the GCC compiler’s atomic builtin[18] is utilised the
presented implementations when the CAS instruction is needed.

2.4 DBToaster

DBToaster is an SQL-to-C++/Scala compiler capable of transforming input SQL schemas
and queries into an intermediate language – M3 – which is optimised before being
transformed into a lightweight query engine program which is capable of applying
efficient incremental updates to associated queries’ results[2].

Whilst the MultiMap data structure used to represent database relations within DBToaster
is main focus of this project, understanding how DBToaster beyond what has already
been discussed does not play a large role in the understanding the project. Instead,
a greater focus is given to the specific implementation of DBToaster’s MultiMap and
supporting memory pool which are continuously referred back to throughout the re-
port. Furthermore, only the C++ implementation of the MultiMap is considered for
this project.

2.4.1 MultiMap

The MultiMap is the data structure used within DBToaster-generated code to represent
relations. As previously discussed, DBToaster code is expressed in terms of MultiMap
instances and therefore, a performant thread-safe MultiMap is essential for parallelisa-
tion of loop constructs.

A MultiMap encodes not only the tuples in a relation, but also a primary hash index
for direct single-element lookups. In addition, optional secondary hash indexes for
looking up lists of tuples satisfying an associated condition can also be maintained
by a MultiMap. As a result, DBToaster’s MultiMap implementation is a composite
data structure containing a hashmap for the primary hash index, and hashmap-like data
structure for the secondary hash indexes.

The primary hash index is a standard open-addressed hashmap consisting of a single
bucket array which items are placed into using their hash. Each bucket is either empty,
or contains a linked list of nodes containing reference to elements in the associated
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relation, along with a count of how many of that element the relation contains so as to
avoid duplicates. The first node in any bucket is placed directly inside the bucket array
as to avoid a separate allocation for every single element.

The hashmap used to implement the secondary indexes is almost identical to the pri-
mary hash index’s hashmap with the exception that the nodes forming chains at each
bucket are headers for the linked lists of elements conforming to a condition associ-
ated with the secondary index. For example, the associated condition could be that all
elements with an identical field x are grouped together. These groups are called slices.

Figure 2.1 gives a simple example of the structure of the primary and secondary indexes
with a handful of elements.

Figure 2.1: Example of MultiMap primary and secondary index structure.

All relation elements are allocated via an associated memory pool and stored as a
linked list by the MultiMap. All other type of elements – such as bucket chain nodes –
are allocated using their own associated memory pools. as an additional optimisation,
memory pool for the same type are shared throughput all MultiMap instances via the
singleton pattern.

To manipulate the primary and secondary hash indexes, a few basic hashmap opera-
tions are defined on them which are composed to form operations on the entire Mul-
tiMap data structure. These operations are: insert, erase, and clear. In addition,
the primary hash index defines get, and secondary hash indexes define slice. These
operations are implemented as they would be for a conventional hashmap, and slice
is implemented almost identically to get. These are defined in greater detail below:

• get(e) – Gets an element and its count from the associated primary hash index
such that e and its hash are equal to the element and its hash.

• slice(e) – Gets the slice of elements corresponding to the same condition sat-
isfied by e as defined by the condition associated with the secondary hash index.

• insert(e) – Inserts the element e into the primary or secondary hash index.

• erase(e) – Removes the element e from the primary or secondary hash index.

• clear() – Removes all elements from the primary or secondary hash index.

The MultiMap data structure’s core operations are defined with respect to these oper-
ations on the primary and secondary hash indexes. For the project, the foreach and
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slice operations were formalised to be encapsulated by the MultiMap. The composite
operations are defined in detail below:

• get(e) – Gets an element equal to e if it exists in the MultiMap. Otherwise,
returns NULL.

• getOrDefault(e, v) – Gets an element equal to e if it exists in the MultiMap.
Otherwise, returns the given default v.

• foreach(f) – Applies the function f to each element in the MultiMap.

• slice(e, i, f) – Applies the function f to each element of the slice corre-
sponding to the same condition satisfied by e associated with the ith secondary
index of the MultiMap.

• add(e, n) – Inserts the given element e into the MultiMap’s primary and sec-
ondary indexes if it does not exist, and adds n to its count.

• addOrDelOnZero(e, n) – Inserts the given element e into the MultiMap’s pri-
mary and secondary indexes if it does not exist, and adds n to its count. If the
final count of the element is zero, then it removes it from the primary and sec-
ondary indexes.

• setOrDelOnZero(e, n) – Inserts the given element e into the MultiMap’s pri-
mary and secondary indexes if it does not exist, and sets its count to n. If the final
count of the element is zero, then it removes it from the primary and secondary
indexes.

• clear() – Clears the underlying primary and secondary indexes of the Mul-
tiMap.

Because the MultiMap is essentially a collection of hashmaps, its operations inherit
their complexities from the conventional hashmap data structure, multiplied by the
number of hash indexes accessed by each operation. Appendix A presents the Mul-
tiMap’s operations as pseudocode in terms of its primary index and secondary indexes.
We omit foreach and clear as their implementations are trivial.

2.4.2 Memory Pool

As previously mentioned, a memory pool is used for allocating MultiMap elements
and nodes within the primary and secondary hash indexes. The memory pool utilised
for all such allocations is implemented as a linked list whose blocks exponentially in-
crease with each new block allocated. Each block is split into a number of slots which
can each hold an instance of the type associated with the memory pool, such as a Mul-
tiMap’s element or primary hash index bucket node. The memory pool’s API consists
of three operations – acquire, release, and releaseChain. acquire allows the
user to acquire a new instance of the type associated with the memory pool, release
allows data acquired from the memory pool to be released, and releaseChain allows
the user to release a chain of elements with a single operation. In addition to its list
of chunks, a free-list which tracks previously released slots is maintained, and used to
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allocate previously released before new ones. Figure 2.2 presents the structure of the
memory pool.

Figure 2.2: DBToaster memory pool structure.

2.5 Thread-Safe Data Structures

Given that the MultiMap’s hash indexes are implemented as hashmaps, the most rele-
vant existing implementations of thread-safe data structures to the project are hashmaps
and other key-value store data structures. This section reviews state-of-the-art hashmap
and trie implementations which have heavily influenced the thread-safe MultiMap im-
plementations presented in this report.

2.5.1 HashMaps

HashMaps are one of the most widely used data structures in modern programming
languages, and, as a result, significant research and implementations exist for both se-
rial and thread-safe variants. In the realm of serial hashmaps, most high-performance
implementations have settled on closed-hashed, open-addressed designs which utilise
SIMD for fast searches across their bucket arrays[19]. For thread-safe hashmaps,
there are several state-of-the-art designs with different performance characteristics and
trade-offs.

The core problem for any thread-safe hashmap is handling resizes of the underlying
bucket array – an operation which takes exponentially longer as the bucket array grows
(assuming an exponential resizing scheme). How an implementation handles this tends
to one of two options: the bucket array size is never resized and buckets are imple-
mented as chains, or the hashmap is split into segments that are resized independently
and can host any particular hashmap design.

Static bucket array based thread-safe hashmaps prioritise performance of operations
under the assumption that the user can make a good choice of bucket array size. Un-
der such an assumption, this design is able to leverage atomic instructions – mainly
compare-and-swap – to implement fast operations on it’s buckets’ chains of elements
which are implemented as linked lists. If practice, this type of design can result in
great throughput thanks to its use of atomics, but there are many workloads where the
number of elements that will be stored within a hashmap is not known ahead of time,
including our own. Though not in use today, such a design has been a part of the
development of rust’s crossbeam library[20].
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Segment-based hashmaps are a more practical approach to thread-safe hashmap design
as they allow bucket arrays to be resized by separating the hashmap into segments
which function as independent sub-hashmaps. Concurrent operations are supported by
locking segments, but concurrent operations on the same segment are disallowed as a
result. Implementation of this design can be seen in the Java 1.7 standard library as its
ConcurrentHashMap data structure[21, 22], and it has also been applied to Google’s
own flat hash map[23] – a state-of-the-art serial hashmap – to produce a performant
thread-safe one[24].

Beyond these two paradigms, there exist designs which attempt to combine fast atomic
operations with dynamic resizing, but these designs often require methods to solve a
fundamental problem in atomic data structures – the ABA problem[25]. The ABA
problem is out of scope for this project as we no solely atomics-based MultiMaps are
implemented, but there exists a large field of work covering methods of solving it for
thread-safe data structures.

2.5.2 Tries

Tries are not as ubiquitous as hashmaps, but within the realm of thread-safe key-value
data structures they have some ideal characteristics. Unlike hashmaps, tries do not
require lengthily resize operations, instead extending their branches with new arrays
to accommodate more elements as collisions occur. This feature alone solves the core
problem that any thread-safe hashmap needs to solve to be practical. Unlike hashmaps
though, tries inherit their characteristics from trees, and thus aren’t usually as cache-
friendly and have greater average operation runtime complexities. Most relevant to
this project is the hash-array-mapped-trie (HAMT) variant, which utilises its hierarchy
of arrays as bucket arrays[26]. Using a portion of an element’s hash for each level of
the HAMT’s hierarchy, an element can be located, inserted, or erased quickly and in a
manner similar to a hashmap.

The state-of-the-art in thread-safe HAMT implementation is the concurrent trie, or
Ctrie[27], whose current implementation targets the JVM[28]. The Ctrie utilises atomic
instructions – namely compare-and-swap – to insert, modify, and erase elements within
its structure without any form of locking. For efficiency, the Ctrie’s branches grow and
shrink as elements are inserted and removed, and because all bucket arrays used within
the structure are of a uniform size, they can be reused when the structure later grows.

Elements within the Ctrie are mapped to buckets using their hash, with each level using
a portion offset from the hash’s least significant bits, such that more bits used to locate,
insert, and erase elements deeper in the trie’s bucket array hierarchy. A later version of
the data structure added support for atomic snapshots, as well as solving some of the
initial design’s implementation issues[29].

Though its structure should handicap the trie data structure, its reuse of bucket arrays,
along with its atomics-based implementation means that the Ctrie represents one of
the fastest concurrent key-value data structure implementations today. However, its
implementation requires a garbage collector to solve problems inherent in any atomics-
based data structure – the ABA problem being one of them.



Chapter 3

Methods

This chapter presents the project’s three thread-safe MultiMap designs: a single-lock
based design which forms a baseline for later evaluation, a multi-lock design influenced
by segment-based thread-safe hashmaps (see section 2.5.1), and a hash-array-mapped-
trie design which departs from the Ctrie’s atomics-based lock-free design to be more
practical for the MultiMap’s constraints. The chapter also presents a lockless thread-
safe memory pool design to support the three thread-safe MultiMaps.

3.1 Design Considerations

To be practical, the presented thread-safe MultiMap design were produced under some
constraints. Firstly, the interface of all thread-safe MultiMaps are identical and con-
sistent with DBToaster’s current MultiMap implementation. Secondly, DBToaster’s
current MultiMap implementation is used as a basis for comparison and implementa-
tion, so designs were chosen as to not stray too far from the current implementation. As
such, all presented implementations maintain the composition of several hash indexes
– as discussed in section 2.4.1 – as a core design feature.

Though these constraints make implementation more feasible, the use of multiple hash
indexes means that an atomics-only MultiMap cannot be designed, as such a design
would have to be capable of modifying entries across all hash indexes within a single
atomic operation – something which by definition is impossible. This may be made
possible by a future design which consolidates all hash indexes into a single cohesive
structure, but this was not explored during the project.

Another important consideration is which MultiMap operations need to be thread-safe
with respect to one another. For practical purposes only modifying operations need
be thread-safe with respect to each other, as read-only operations may already be per-
formed concurrently. There are very few use-cases for read-only operations that can be
safely executed concurrently with modifying operations. This can be demonstrated by
considering the result of an operation reading a value x while x is being concurrently
modified by another operation – the result depends on the order of operations which
is non-deterministic and thus essentially random. Such a design referred to as phase
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concurrent and ensures determinism so long as the two types of operations – read-only
and modifying (add, addOrDelOnZero, and setOrDelOnZero) – are not executed con-
currently. However, the implementations later presented in chapter 4 are made flexible,
and enable a trivial implementation path for allowing concurrency among all types of
operations.

Finally, a state-of-the-art memory pool is outside the scope of this project, and a more
sophisticated design and implementation than that presented here is left as future work.

3.2 Single-Lock MultiMap

The first and most simple of the three thread-safe MultiMap designs is the Single-
Lock MultiMap, which utilises a single lock to allow exclusive access to the entire
data structure for a single thread at a time. For any modifying operation on the data
structure, the lock is acquired, held whilst the operation is completed, then released
afterwards. Such a design takes influence from Monitors – a concurrency abstraction
which wraps data with a monitoring object which manages a lock for that data[30].

This design is incredibly simple, not requiring any changes to the original MultiMap
structure presented in section 2.4.1, figure 2.1. As such, its operations on the underly-
ing hash index structures are defined identically.

3.2.1 Discussion

The simplicity of the Single-Lock MultiMap design is a boon to implementation, as
well as providing a good baseline for more sophisticated designs. However, its sim-
plicity also means that no true concurrency is enabled and so it is expected that such
a design would not perform well for locking modifying operations, where individual
threads will be forced into operating on the data structure in a sequential order. More-
over, it is expected that the single lock associated with the data structure will be put
under contention by any attempted concurrent operations, resulting in poorer perfor-
mance as more threads attempt to operate on it. Because of this, the Single-Lock
MultiMap design is expected to perform poorly for concurrent modifying operations
with more than a single thread.

The design is ideal for application of concurrent read-only operations as phase-concurrency
means that these operations do not require locking, and thus can be executed with
true concurrency. The Single-Lock design does not involve any extra complexity over
DBToaster’s current MultiMap design for read-only operations, and thus it is expected
that this design will be able to utilise the cache-friendliness and fast operations on the
single bucket array structures of its hash indexes to demonstrate good performance for
multiple threads applying read-only operations on the design.

3.3 Multi-Lock MultiMap

The second of the three thread-safe MultiMap designs is the Multi-Lock MultiMap,
which implements a segmented hashmap design as discussed in section 2.5.1 for its
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Figure 3.1: Example of Multi-Lock MultiMap primary and secondary index structure.

underlying hash indexes. Each hash index is split into several segments which may
be independently locked and concurrently operated on as if they were hashmaps of
their own. To map elements to segments a secondary hash function is to produce
a secondary hash from the initial hash of the element. Using this secondary hash,
the segment associated with the element is found and then locked whilst a modifying
operation is completed on it. Because each segment acts as its own hashmap, the core
hash index operations – get, slice, insert, and erase – are defined identically as
for the DBToaster’s current Multimap implementation, with the small difference that
they are applied to individual segments instead of a single shared bucket array.

Figure 3.1 gives a simple example of the structure of the primary and secondary hash
indexes of the Multi-Lock MultiMap for a small number of elements.

Unlike the Single-Lock MultiMap design which requires a single lock for all indexes,
the Multi-Lock MultiMap design requires that all indexes have their own set of locks
– one for each segment. This is due to separate indexes using different hash functions,
and thus the segments that are locked at each hash index for a composite operation
modifying multiple indexes – such as addOrDelOnZero – do not correlate directly
with one another.

3.3.1 Discussion

The Multi-Lock MultiMap design’s foremost benefit over the Single-Lock MultiMap
is can support true concurrency for all operations. Its multiple hash index segments
allow for modifying operations to be executed independently and in parallel with one
another, so long as the set of locks that they need to acquire for an operation do not
overlap. However, this also means that concurrency is limited by the number segments
of each hash index, and the distribution of elements between them. In an ideal scenario
it is possible that multiple threads operate on distinct sets of segments and never cause
contention on their locks. However, this is not realistic, and it is extremely likely
that concurrent modifying operations on the underlying hash indexes will sometimes
collide.

Like any resizing bucket array design, the Multi-Lock MultiMap’s hash indexes’ seg-
ments will require occasional lengthily resizes whilst undergoing modifying opera-
tions, causing their associated locks to be held for a prolonged period of time, resulting
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in a greater likelihood of contention on that lock as other threads perform modifying
operations on segments with an assumed uniform distribution. So, despite true concur-
rency being afforded by the design, it is expected that the Multi-Lock MultiMap will
perform better than the Single-Lock MultiMap designs but will not be able to sustain
a high throughput of modifying operations whilst resizes are involved.

Like the Single-Lock design, it is expected that the Multi-Lock design will be able to
sustain a high throughput of read-only operations which scales with a larger number of
threads. However, the extra complexity of a secondary hash function does mean that it
is not expected to perform as well as the Single-Lock MultiMap in this case.

A less obvious benefit of the Multi-Lock MultiMap is smaller bucket array growth
increments. When a design, such as the Single-Lock MultiMap, utilises a single bucket
array, resizing it means allocating twice its size in memory for the new bucket array.
For a segmented design, memory usage is split between each segment, and although
twice the memory of a single segment needs to be allocated for a resize, segments tend
to be smaller and thus the memory overhead during a resize is much smaller than that
of single bucket array designs. Thus the Multi-Lock MutliMap is also more suitable
for systems with stricter memory constraints, though such a feature does also mean
that more resizes are required for the same capacity as a Single-Lock design which
may reduce performance.

3.4 HAMT MultiMap

The third and final thread-safe MultiMap design is the Hash-Array-Mapped-Trie (HAMT)
MultiMap which departs from previous designs by implementing its hash indexes as
tries – a design which is largely influenced by the Ctrie as presented in section 2.5.2.
Like the Ctrie, the HAMT MultiMap implements its hash indexes as a hierarchy of
bucket arrays which use portions of an elements hash to locate its corresponding bucket
at each level. However, because the Ctrie is a design based on atomic instructions –
decidedly infeasible for the MultiMap – locks are used at each individual bucket which
must be acquired to modify to that bucket or its elements. Whilst not as granular as
atomic instructions, a lock-per-bucket scheme guarantees that only modifying opera-
tions that explicitly need to access the same bucket will contend a lock.

Figure 3.2 gives a simple example of the structure of the primary and secondary indexes
of the HAMT MultiMap for a small number of elements.

Each bucket within the HAMT MultiMap’s hash indexes’ bucket array hierarchy can
either be empty, locked, or contain a pointer to a chain of elements or another bucket
array. The lowest-level bucket corresponding to an element within the HAMT’s hash
indexes is used to store that element. All bucket arrays are of uniform size 2N , and
thus N bits from the hash are used to index into the bucket array at each level, starting
from the lowest N bits for the root bucket array, and using the next N bits for each
subsequent level. The first bucket encountered when traversing the trie structure using
this method that does not reference another bucket array is the bucket corresponding
the element whose hash was used to locate it.
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Figure 3.2: Example of HAMT MultiMap primary and secondary index structure.

Unlike the Single-Lock and Multi-Lock designs, operations on the HAMT MultiMap’s
hash indexes may cause their structure to change. On an insert operation, the trie
structure is traversed using the elements hash, and then once its associated bucket is
located, once of three things happen:

1. Direct Insert (empty bucket) – The element is inserted into the bucket.

2. Displacement (nonempty bucket, maximum depth not reached) – The ele-
ment in the bucket is exchanged with a reference to a new bucket array which it
is inserted into. The insert operation is then retried on the new bucket array.

3. Chain Insert (nonempty bucket, maximum depth reached) – The element is
added to the chain of elements in the bucket.

In cases 1 and 3, the structure of the hash index is maintained, but in case 2 it is ex-
panded with a new bucket array which further differentiates elements by more bits of
their hash. These three cases on primary and secondary hash indexes are visualised
by figures by appendices B and C, and are analogous with the Ctrie’s ability to dy-
namically resize its bucket array branches. As hashes have a finite number of bits, the
HAMT MultiMap’s hash indexes are of finite depth, and thus as the maximum depth
elements are chained rather than being given their own bucket.

Unlike the insert operation, the erase operation of the HAMT MultiMap’s hash
indexes does not shrink the underlying trie structure, instead leaving empty bucket
arrays in-place. This choice is made to simplify implementation, but could be added
in a more sophisticated implementation. An example of mixed insert and erase
operations on a primary index is presented in appendix D.

get and slice operations can be implemented trivially by first traversing the trie struc-
ture using the desired element’s hash, then accessing the associated bucket to find the
desired element or slice of elements.
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3.4.1 Discussion

The core advantage of the HAMT MultiMap’s design over the Single-Lock and Multi-
Lock designs is its more granular locking scheme along with avoiding lengthily resize
operations. With a more granular locking scheme it is less likely that arbitrary opera-
tions on the data structure will result in the same lock being contested, and thus it is
more likely that operations will not conflict with one another. Dynamic resizing of the
underlying trie structure as elements are inserted also has the positive side-effect of
differentiating elements with similar hashes, and thus should reduce lock contention as
more elements are added to the hash indexes.

Being able to avoid resize operations is a boon to performance as previously discussed
in section 2.5, and static bucket array sizes mean that bucket arrays may even be pooled
for more efficient allocation, in a similar manner to the original Ctrie design. This
feature serves to offset the effect of allocations and indirection in traversing the data
structure. Despite operations being more complex than the hashmap-based designs, it
is expected that optimisations such as bucket array pooling, dynamic resizing, and the
lack of resizes will allow the HAMT MultiMap to be extremely competitive with the
Single-Lock and Multi-Lock designs.

Due to the above reasons, it is expected that the HAMT MultiMap will provide consis-
tent improvements in throughput of both modifying and read-only operations. De-
spite the extra complexity involved, it is expected that it will be competitive with
DBToaster’s current MutliMap implementation, as well as the Single-Lock and Multi-
Lock MultiMaps. However, it is difficult to judge how the extra complexity of the
HAMT MultiMap’s operations will affect it for small thread counts, even with the
above optimisations. Read-only operations are also expected to be a problem for the
design as the extra complexity overheads incurred in allowing for fast fine-grained
concurrency of modifying operations does not explicitly improve the performance of
read-only operations.

3.5 Thread-Safe Memory Pool

The memory pool used to support the three thread-safe MultiMaps is designed to add as
little runtime overhead as possible in order to better evaluate the three designs’ perfor-
mance, and to avoid any performance characteristics or limitations imposed by a more
restrictive design. The design features a separate sub-memory-pool per thread within
the memory pool itself, allowing each thread to manage their own chunks and slots
identically to DBToaster’s current memory pool implementation (see section 2.4.2)
with the exception that a free-list is not used as managing one would introduce a point
of contention between threads. Instead, an additional operation – releaseAll – is
added to reclaim all previously acquired and/or released slots.

In addition, a core goal of the project is allowing for parallel iteration over MultiMap
elements, and this is implemented via a foreach operation on the memory pools
utilised to allocate MultiMap elements. The utilisation of a separate sub-memory-pool
per thread gives a natural division of work, wherein threads are given the responsibil-
ity of iterating over elements that they have allocated. This does mean, however, that
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Figure 3.3: Thread safe memory pool structure.

pools cannot be shared among MultiMaps as is currently implemented in DBToaster.

To support releaseAll and foreach operations on the memory pools, a flag is associ-
ated with each slot to indicate if a slot is in use. During the execution of a releaseAll
or foreach operation the flag may be utilised to correctly deconstruct and iterate across
only allocated elements respectively.

Finally, because not all memory pools within DBToaster need to deconstruct allocated
objects (because they are trivially destructible), nor need to iterate over them, the flag
used to indicate used slots is not always needed. For these cases an alternative design
which removes these flags is used.

The structure of the thread-safe memory pool is presented by figure 3.3.

3.5.1 Discussion

The implementation of a performant, practical thread-safe memory pool is not a core
goal of this project, but despite this the presented memory pool design allows for
threads to manage their own memory such that they are never blocked by other threads
whilst maintaining the benefits of the exponential block allocation scheme used by
DBToaster’s current memory pool implementation. The core feature missing from
this design is the free-list which allows for slots to be reused after they are released.
This may be solved by implementing an efficient thread-safe multi-producer multi-
consumer queue to hold references to free slots. Many state-of-the-art thread-safe
queue designs exist already[31], and could be explored in a future extension to the
project.

Though giving each thread its own memory to manage an allocate will increase the
overall number of allocations, it is expected that this effect will be offset by allocations
being performed in parallel but a future design may consider centralising allocations
for greater efficiency.
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Implementation

The performance of a data structure is not just determined by its design, but also its
implementation. This section covers significant details of the implementation which
enable core capabilities of the three presented thread-safe MultiMap designs, improve
their performance, or demonstrate the use of relevant technologies in the project.

All three thread-safe MultiMaps – and the supporting thread pool – are implemented
using C++, OpenMP, and, in some cases, GCC’s atomic compiler builtin.

4.1 Transaction Objects

In order to implement operations on the MultiMap modifying both its primary and
secondary hash indexes, a method of ensuring exclusive access to its associated data
throughout the operation is needed. For each MultiMap designs, chapter 3 presented
the basic way in which locks are utilised for operations on the variety of MultiMap
designs, but not how they are implemented in practice. For each thread-safe MultiMap
implementation, a transaction object is implemented, which utilises a design’s locks to
block conflicting operations. Using the C++ RAII idiom[32], these objects acquire the
lock relevant to ensuring a given operation’s atomicity then, once out of scope, releases
it – allowing another transaction object to acquire the lock for its own operation.

In the implementation of all three thread-safe MultiMaps, transaction objects are asso-
ciated with the subject element of a MultiMap operation, and takes ownership of the
relevant lock in the MultiMap’s primary hash index. By requiring that a transaction
object is created at the beginning of each locking operation, it is ensured that opera-
tions on the same data are performed safely, as they will necessarily need to acquire
the same lock beforehand. Instead of a transaction object, secondary hash indexes
implement locking within their individual operations, as taking the relevant lock in
the primary hash index means that other concurrent operations will never modify the
element associated with the transaction object.

As a further optimisation, transaction objects implement get, insert, and erase op-
erations on the primary hash index they correspond to, for the element they are associ-
ated with. This allows for an arbitrary number of operations to be performed safely on
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the primary index whilst the transaction object is in scope. This API allows for some
optimisations to operations as discussed in subsequent sections.

Finally, this abstraction is important as it allows for a uniform implementation of
MultiMap operations among all thread-safe MultiMap designs. Modified pseudocode
demonstrating this is presented under appendix E, and may be contrasted with that in
appendix A.

4.1.1 Single-Lock Transaction Object

The transaction object for the Single-Lock MultiMap implementation acquires the sin-
gle lock associated with the MultiMap and then releases it again when it goes out of
scope. As previously discussed (see section 3.2), this means blocking all other oper-
ations on the MultiMap whilst the object remains in scope. As a consequence of this
design decision, the single lock of the Single-Lock MultiMaps design is placed within
its primary hash index. This does not affect the functionality of the implementation.

4.1.2 Multi-Lock Transaction Object

The transaction object for the Multi-Lock MultiMap implementation determines which
segment within the primary hash index its associated element corresponds to using its
secondary hash function, and acquires the lock associated with its lock for its lifetime.
The transaction object also tracks the segment its associated element correspond to,
allowing subsequent operations using the transaction object’s API to avoid applying
the design’s secondary hash function to the element for every operation, thus avoiding
some associated overheads in doing so.

4.1.3 HAMT Transaction Object

The transaction object for the HAMT MultiMap implementation traversed the primary
hash index’s underlying trie structure to find the lowest-level bucket associated with
the given element, and then locks that bucket only for the lifetime of the object. The
transaction object tracks the bucket it has locked, allowing operations applied through
its API to be applied directly rather than traversing the trie every time. As previously
mentioned, insert operations applied to the HAMT’s hash indexes may result in a
new bucket array being inserted. If this occurs by using the insert operation through
the transaction object’s API then once the resulting new bucket array is inserted, the
bucket corresponding to the transaction’s associated object is locked and the previ-
ous lock is released, allowing other operations to be applied on the new bucket array
concurrently.

4.2 Locks

For the implementation of the three MultiMap designs, two different types of locks
were used – OpenMP provided lock objects, and a custom spinlock. Both the Single-
Lock and Multi-Lock MultiMap implementations utilise OpenMP locks as periods of
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high contention on them is expected due to bucket array resizes, thus making a mutex-
based implementation preferable over a spinlock. For the HAMT MultiMap, a custom
spinlock implementation is used which utilises the pointer used by each bucket to point
to elements or other bucket arrays. A spinlock implementation was selected for this
purpose as the more granular locking scheme used by the HAMT MultiMap means
that contention should be less common, and thus a lightweight lock implementation
which utilises pointers that are already present is optimal. Using bucket pointers as the
basis for the spinlock does mean that the pointers need to support atomic operations
on them, which is discussed in greater detail in section 4.3.

4.3 HAMT Pointer

A central design feature of the HAMT MultiMap is its use of bucket pointers to selec-
tively point to nothing, a chain of element nodes, or another bucket array. As discussed
in section 4.2, another role of the bucket pointer is to support the implementation of
a spinlock for its associated bucket. To determine what a pointer is being used for,
additional information is required to indicate the type of what is being pointed to, and
whether the bucket is locked.

The solution to such a problem is a tagged union – a tag-value pair where the tag
determines the type of the associated value. Because bucket pointers need to support a
spinlock implementation, the value of the pointer and its tag need to be able to be read
or modified in one atomic operation, else either the tag or pointer could be modified in
between reads of the two, even if these individual reads or writes are atomic. To solve
this problem, the implementation of this pointer tagged-union utilises the lower two
bits of bucket pointers to store the tag, allowing for both to be read or written with a
single atomic instruction. This solution takes inspiration from LLVM’s PointerUnion
type, which also utilises lower bits to store type information, but does not support
atomic operations[33]. This implementation is made possible by the fact that all data
pointer to within the implementation is aligned to at least four bytes by default, leaving
the two least-significant bits free to use.

To support storage of type information in the lower bits, a special PointerSum class
was implemented. The class not only supports extracting the pointer and tag separately,
but also atomic load, store, swap, and compare-and-swap operations on the underlying
pointer-tag pair. This final addition enables the use of the pointer-tag pair as a spinlock
where the tag is used to store a value to indicate the pointer is locked, which may be set
atomically, and later replaced atomically with the result of an operation on the bucket.

The full C++ class implementation can be found under appendix F.

4.4 Parallel Iteration

Parallel iteration over MultiMap elements, as per the memory pool design presented in
section 3.5, is implemented via the memory pool using slot-associated flags with work
divided by way of a thread’s own allocations.
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This is enabled using OpenMP’s parallel construct which executes a block of code
once for every available thread. In the implementation of the memory pool’s foreach
method, the omp get thread num() OpenMP function is used within the parallelised
code block to index into each thread’s sub-memory-pool to access their allocations.
An abbreviated implementation of this can be seen below:

1 // Execute the code within the block with each thread independently
2 #pragma omp parallel
3 {
4 // Get a thread’s sub-memory-pool entry
5 ThreadEntry& thread_entry = thread_entries[omp_get_thread_num ()];
6
7 // Iterate over each allocated slot in the thread’s chunk list
8 ...
9 }

4.5 Micro Optimisations

Though each individual MultiMap design has its own set of performance benefits and
drawbacks as a result of its structure and design-specific overheads, there are some
optimisations which were applied universally to improve the performance of all imple-
mentations.

Firstly, alignment was applied in places within all implementations to reduce the effect
of false sharing, mainly in the form of aligning data to independent cache lines. This
technique was applied to the entries for each segment in the Multi-Lock MultiMap to
prevent modifications to other segment entries to cause cache invalidations of others,
and in the memory pool implementation to do the same for each thread’s sub-memory-
pool entry.

Secondly, atomic instructions targeting the same data across multiple threads were
eliminated where possible. The most important application of this was to remove
global counts of elements throughout the MultiMap implementations and replacing
them with thread-local counts or, in the case of the Multi-Lock implementations, only
keeping segment-local counts. Atomic operations on the same data are, by definition,
serialised across a system, and prevent thread-safe data structures from scaling their
operation throughput with increasing numbers of threads.
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Evaluation

This chapter presents the results of benchmarking the three thread-safe MultiMaps pre-
sented in previous chapters for a range of configurations on a selection of two distinct
microarchitectures, and discusses the observed outcomes, their alignment with expec-
tations, and how they influence future work in the area of thread-safe MultiMaps.

5.1 Approach

For the purposes of evaluating the three thread-safe MultiMap implementations, a mi-
crobenchmark suite was implemented, which enables repeated runs of benchmarks
targeting individual MultiMap operations. For all benchmark results presented, 1000
runs of the chosen benchmark were performed, then the mean runtime was taken and
used to compute a number of operations per second. Before each set of 1000 runs,
10 runs are executed to warm-up the cores and caches to give more consistent results.
OpenMP’s parallel for construct was used to implement parallelisation for each
benchmark, and an example of this can be seen below:

1 #pragma omp parallel for schedule(runtime)
2 for (int i = 0; i < N; ++i) {
3 // Benchmark code
4 }

Elements used for each benchmark were constructed using the loop index variable,
which was also used as the hash for each element. This gives a uniform distribution
of hashes, representing the ideal case for the thread-safe MultiMaps. For benchmarks
requiring other operations – such as those to clear – these operations are performed
outside of measurements.

5.1.1 Configurations

For each benchmark, several configurations are considered consisting of two element
types of varying complexity, two MultiMap setups, and two microarchitectures.

24



Chapter 5. Evaluation 25

The two element types considered are a trivial type consisting of a single integer, and
a complex type consisting of both an integer and a C++ standard library string. The
trivial type represents elements that take little work to copy, construct, and destruct,
whilst the complex type represents elements that require extra work such as allocations
to copy, construct, and destruct.

The two MultiMap configurations considered are a simple setup where MultiMaps
are composed of only a primary hash index, and a setup where MultiMaps consist of
both a primary and secondary hash index. The condition chosen for the secondary
hash index ensures all slices are of length 4 so as to induce iteration over slices to
locate elements within the secondary hash index. The two setups represent realistic
MultiMaps seen in DBToaster-generated code for general-purpose benchmarks such
as the TPC-H benchmark suite[34].

The two microarchitectures considered for evaluation are the AMD Ryzen 5-2500U
with 4 cores and 8 threads[35], and the Intel i5-6500 with 4 cores and 4 threads[36],
of which both run similar Linux distributions.

The Ryzen 5-2500U implements 2-way SMT which, as previously discussed in section
2.1, means that pairs of threads share the same cache and memory slots. The Ryzen
5-2500U also implements a chiplet design, which means that cores are all an approxi-
mately uniform distance from memory and thus the performance of cores with respect
to memory should be uniform.

The i5-6500 does not implement SMT, and implements a ring design rather than chiplet
one. This means that cores are a non-uniform distance from memory, and thus perfor-
mance with respect to memory varies depending on the core. Ring designs perform
well for single-threaded workloads on the core closest to memory, but multi-threaded
workloads may not scale as they would otherwise be expected to.

5.1.2 Standardisation

For all benchmarks, environment variables and other settings are chosen to give best
performance and stable measurements. For all thread-safe MultiMap benchmarks,
OpenMP environment arguments are set to:

• OMP DYNAMIC=’FALSE’ – Prevents the OpenMP runtime from dynamically choos-
ing the number of threads in use.

• OMP SCHEDULE=’STATIC’ – Sets the OpenMP schedule to static, meaning that
parallel loop iterations are shared evenly among threads.

• OMP PROC BIND=’CLOSE’ – Groups threads close together on hardware to re-
duce communication latency between cores.

For compiling the benchmark suite, the following GCC compiler options were used:

• -DNDEBUG – Removes uses of assert(...) from the executable.

• -O3 – Enables aggressive optimisation.

• -flto – Enables link-time optimisation.
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• -march=native – Specifies the native architecture as the target.

• -fopenmp – Enables OpenMP.

For each set of benchmarks, the niceness of each benchmark process was set to the
lowest value possible to reduce disruption by other processes run on the same system.
This makes benchmarks more reproducible and stable, but it should be acknowledged
that the systems being used to benchmark are running desktop environments and com-
mon Linux daemons which may cause small disruptions to measurements.

The MultiMap designs presented earlier require some parameters for their implemen-
tation and evaluation. For the Multi-Lock MultiMap, 16 segments are used per hash
index so as to ensure that a restrictive number of segments is not a factor in its perfor-
mance. For the HAMT MultiMap, bucket arrays consist of 16 buckets, and thus use
4 bits of hash per trie layer, up to a maximum depth of 16 layers. The hash function
used by the Multi-Lock MultiMap for producing secondary hashes is the lowest-bias
hash function found at time of writing by the Hash Function Prospector[37] – a tool
used for discovering simple but performant integer hash functions. This hash function
is shown in appendix G.

5.1.3 Choice of Benchmarks

Though the three thread-safe MultiMaps presented in this report support a number of
operations, evaluating them for all configurations and situations would take far too
much time. So instead, only results for a selection of operations, for all configurations
and situations, are presented and discussed.

In order to represent the thread-safe MultiMaps’ performance with respect to modify-
ing operations, addOrDelOnZero alone is used for the evaluation, as its implementa-
tion encapsulates the functionality of add, and is extremely similar to setOrDelOnZero.
With addOrDelOnZero, the insertion of new elements, removal of elements, and rein-
serting of elements can be evaluated.

For read-only operations, the get operation’s throughput is evaluated, as well as the
use of foreach for iterating over a MultiMap’s elements.

5.2 Results

This section presents and discusses the results of the benchmarks performed on the
three thread-safe MultiMap implementations for the chosen configurations, as well as
for some additional scenarios that are of interest for practical application.

5.2.1 get – Element Lookups

The first case for evaluation is the throughput of get operations on the three thread-safe
MultiMap implementations. As previously discussed in section 3.1, the get operation
is non-locking, so the complexity of each data structure is the main source of overhead.
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For each benchmark, 100,000 distinct elements were inserted into a MultiMap, then
get was used to lookup each element exactly once.

Figures 5.1 and 5.2 present a comparison of throughputs for the get operation for
all three thread-safe MultiMap implementations and DBToaster’s MultiMap imple-
mentation for trivial and complex elements. Figure 5.1 presents results for the Ryzen
5-2500U, and figure 5.2 presents results for the i5-6500. A total of 100,000 get oper-
ations are executed per benchmark run to target every element within the target Mul-
tiMaps exactly once.

Figure 5.1: get operations per second for 1–8 threads on the AMD Ryzen 5-2500U.
Blue line is throughput for DBToaster’s current MultiMap implementation with a single
thread. Left plot: trivial elements. Right plot: complex elements.

Figure 5.2: get operations per second for 1–4 threads on the Intel i5-6500. Blue line is
throughput for DBToaster’s current MultiMap implementation with a single thread. Left
plot: trivial elements. Right plot: complex elements.

For all configurations of elements, MultiMaps, microarchitectures and threads, the
Single-Lock MultiMap provides the greatest throughput. Even when compared to the
throughput provided by DBToaster’s current MultiMap implementation, it performs
identically at worst. This was expected as the non-locking nature of get means that
the Single-Lock MultiMap’s implementation of it is identical to that of DBToaster’s
current MultiMap implementation. Moreover, its simple design allows it to outperform
the more complex Multi-Lock and HAMT MultiMaps which incur some overhead in
their operations to enable true concurrency of modifying operations.
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Whilst the Multi-Lock and HAMT MultiMap implementations appear to perform poorly
when compared to the Single-Lock MultiMap, they do still succeed in enabling greater
throughput than DBToaster’s current MultiMap implementation in the case of complex
elements. The increased work involved with complex elements means that perfor-
mance can be gained by parallelising operations involving them, offsetting the com-
plexities of the MultiMap designs themselves. However, the complexity of the two
designs is clearly too much to achieve the same for trivial elements.

5.2.2 addOrDelOnZero – Inserting New Elements with Resizes

The second case for evaluation is the use of addOrDelOnZero operations to populate
an empty MultiMap with 100,000 distinct elements. With each run of the benchmark, a
new MultiMap instance is created, thus requiring that the Single-Lock and Multi-Lock
MultiMap implementations resize their underlying bucket arrays as items are inserted.

Figures 5.3 and 5.4 presents a comparison of throughputs for the addOrDelOnZero
operation for all three thread-safe MultiMap implementations where a new element
is inserted with each operation, and resizes of underlying bucket arrays are present.
Results cover configurations with trivial and complex element types, and MultiMaps
with only a primary index and MultiMaps with both a primary and secondary index.
Figure 5.3 presents results for the AMD Ryzen 5-2500U, and figure 5.4 presents results
for the Intel I5-6500. As with the get benchmarks, this set of benchmarks consists of
100,000 inserts per run.

For all but one configuration of elements, MultiMaps, and microarchitectures, the
HAMT MultiMap demonstrates the greatest throughput of all MultiMaps when allo-
cated a sufficient number of threads. Over most configurations it demonstrates scaling
of throughput with threads – something that both the Single-Lock and Multi-Lock
MultiMaps lack. Despite the good performance overall, there are still cases where the
design does not scale as well as expected – particularly for complex elements on the
Ryzen 5-2500U – and where it does not achieve a better throughput than DBToaster’s
current MultiMap implementation.

As expected, the Single-Lock design performs extremely poorly in all cases. Its through-
put scales negatively as more threads are allocated to it, due to the increased con-
tention around its single lock, and the occasional cache invalidations as more threads
access the same structure. Overall, the Single-Lock MultiMap performs best with a
single thread, though on the Ryzen 5-2500U it demonstrates peak throughput with two
threads for trivial elements. This is due to SMT, which allows two threads to share
the same cache and memory slots and thus not experience the performance regressions
observed for greater thread counts. As complex elements require more interactions
with memory due to their use of C++ standard library strings, SMT does not aid per-
formance.

The Multi-Lock MultiMap’s performance is generally consistent for all thread counts,
neither improving nor regressing. Like the Single-Lock MultiMap, the Multi-Lock
MultiMap’s peak performance is observed with two threads on the Ryzen 5-2500U for
trivial elements, for similar reasons.
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Figure 5.3: Inserting addOrDelOnZero operations per second for 1–8 threads on the
AMD Ryzen 5-2500U with resizes. Blue line is throughput for DBToaster’s current Mul-
tiMap implementation with a single thread. Left plots: trivial elements. Right plots:
complex elements. Top plots: Primary index only. Bottom plots: Primary and secondary
indexes.

5.2.3 addOrDelOnZero – Inserting New Elements without Re-
sizes

The third case for evaluation is the use of addOrDelOnZero operations to populate an
empty MultiMap with 100,000 distinct elements, except that resizes are not performed.
The set of benchmarks utilise the microbenchmark suite’s warm-up runs to resize un-
derlying bucket arrays, which are cleared between runs and reused. This is a common
pattern in DBToaster-generated code for relations which are used to store intermediate
results and then cleared afterwards. Note that reusing MultiMaps between runs also
means reusing memory allocated by memory pools, thus the HAMT will still benefit
from this change.

Figures 5.5 and 5.6 present a comparison of throughputs for the addOrDelOnZero
operation for all three thread-safe MultiMap implementations where a new element is
inserted with each operation, and resizes of underlying bucket arrays are not present.
Results cover configurations with trivial and complex element types, MultiMaps with
only a primary index, and MultiMaps with both a primary and secondary index. Figure
5.5 presents results for the AMD Ryzen 5-2500U, and 5.6 presents results for the Intel
I5-6500.

With resizes now discounted, the Multi-Lock MultiMap now demonstrates the greatest
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Figure 5.4: Inserting addOrDelOnZero operations per second for 1–4 threads on the
Intel i5-6500 with resizes. Blue line is throughput for DBToaster’s current MultiMap
implementation with a single thread. Left plots: trivial elements. Right plots: complex
elements. Top plots: Primary index only. Bottom plots: Primary and secondary indexes.

throughput for almost all configurations of elements, MultiMaps, and microarchitec-
tures. In cases involving trivial elements, the HAMT MultiMap demonstrates similar
or better performance than the Multi-Lock MultiMap, but overall the Multi-Lock Mul-
tiMap clearly produces the best results.

The HAMT MultiMap demonstrates scaling similar to how it did before, but this time
the margin between it and DBToaster’s current MultiMap implementation is much
smaller, and in some cases it fails to produce greater throughput, particularly for cases
involving trivial elements. Whilst removing resizes improved the performance of the
Multi-Lock MultiMap’s throughput greatly, it did not have such an effect on the HAMT
MultiMap. Thus, despite enabling throughputs beyond those produced by resizing
MultiMaps, the throughput of the design does not remain as competitive once resizes
are discounted.

As expected, the Single-Lock MultiMap still performs poorly for more than a single
thread, as concurrent operations are not enabled by removing resizes and thus the same
problems as in the previous benchmark remain. Similarly, the same effects of SMT can
be observed for cases involving trivial elements on the Ryzen 5-2500U.
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Figure 5.5: Inserting addOrDelOnZero operations per second for 1–8 threads on the
AMD Ryzen 5-2500U without resizes. Blue line is throughput for DBToaster’s current
MultiMap implementation with a single thread. Left plots: trivial elements. Right plots:
complex elements. Top plots: Primary index only. Bottom plots: Primary and secondary
indexes.

5.2.4 addOrDelOnZero – Reinserting Elements

The fourth case for evaluation is the reinserting of 100,000 distinct elements already
present within a MultiMap. Unlike inserting new elements into a MultiMap, this only
requires incrementing the element’s associated count, and thus means that overheads
incurred by more complex designs are expected to result in particularly poor perfor-
mance. Before each benchmark is executed, a MultiMap is prepared by inserting
100,000 distinct elements into it, and is then used for all subsequent runs.

Figure 5.7 presents a comparison of throughputs for the addOrDelOnZero operation
for all three thread-safe MultiMap implementations where every element inserted is
already present. Results cover configurations for trivial elements and MultiMaps with
only a primary index, as the secondary index is not accessed for such operations. Re-
sults for complex elements can be found under appendix H and are omitted here be-
cause of their similarity.

As expected, all three thread-safe MultiMap implementations perform poorly when
compared to DBToaster’s MultiMap implementation. Despite the Multi-Lock and
HAMT MultiMaps scaling their throughput as more threads are put to use, they never
overtake the DBToaster MultiMap implementation in throughput. In fact, in both pre-
sented cases the Single-Lock MultiMap’s throughput with a single thread is similar to
peak throughput achieved by either the Multi-Lock or HAMT MultiMap.
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Figure 5.6: Inserting addOrDelOnZero operations per second for 1–4 threads on the
Intel i5-6500 without resizes. Blue line is throughput for DBToaster’s current MultiMap
implementation with a single thread. Left plots: trivial elements. Right plots: complex
elements. Top plots: Primary index only. Bottom plots: Primary and secondary indexes.

Figure 5.7: Reinserting addOrDelOnZero operations per second for 1–8 and 1–4
threads with complex elements. Blue line is throughput for DBToaster’s current Mul-
tiMap with a single thread. Left plot: AMD Ryzen 5-2500U. Right plot: Intel i5-6500.

For the first time, a significant performance difference is observed between the two
microarchitectures. In the case of the Ryzen 5-2500U, the Multi-Lock MultiMap and
HAMT perform near-identically for all thread counts. However, for the i5-6500, the
throughput of the Multi-Lock MultiMap at all thread counts is significantly lower. This
may be due to SMT allowing threads to more efficiently utilise the capabilities of each
core, but the exact reason is unclear.
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5.2.5 addOrDelOnZero – Removing Elements

The fifth case for evaluation is the use of addOrDelOnZero operations to remove each
element from a MultiMap containing 100,000 elements. Such operations require less
work than an inserting addOrDelOnZero operation as no memory must be allocated.
As a result, it is expected that MultiMaps will exhibit throughputs somewhere between
those observed for inserting addOrDelOnZero and reinserting addOrDelOnZero op-
erations. Before each run of each benchmark, the target MultiMap is prepared by
inserting 100,000 distinct elements which are entirely removed by the subsequent run.

Figures 5.8 and 5.9 present a comparison of throughputs for the addOrDelOnZero op-
eration for all three thread-safe MultiMap implementations where all elements erased
are distinct and present in the MultiMap. Results cover configurations for trivial and
complex elements, MultiMaps with only a primary index, and MultiMaps with both a
primary and secondary index. Figure 5.8 presents results for the AMD Ryzen 5-2500U,
and figure 5.9 presents results for the Intel I5-6500.

Figure 5.8: Erasing addOrDelOnZero operations per second for 1–8 threads on the
AMD Ryzen 5-2500U. Blue line is throughput for DBToaster’s current MultiMap imple-
mentation with a single thread. Left plots: trivial elements. Right plots: complex ele-
ments. Top plots: Primary index only. Bottom plots: Primary and secondary indexes.

As expected, all three MultiMap implementations exhibit throughputs similar to that of
reinserting addOrDelOnZero operations. Like benchmarks prior, both the Multi-Lock
and HAMT MultiMaps scale their throughput with increasing numbers of threads,
but fail to demonstrate significant improvements beyond DBToaster’s MultiMap im-
plementation’s throughput. This is true with the exception of the complex-element,
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Figure 5.9: Erasing addOrDelOnZero operations per second for 1–4 threads on the
Intel i5-6500. Blue line is throughput for DBToaster’s current MultiMap implementation
with a single thread. Left plots: trivial elements. Right plots: complex elements. Top
plots: Primary index only. Bottom plots: Primary and secondary indexes.

primary-index-only case on the i5-6500, where the HAMT MultiMap produces signif-
icantly more throughput than the DBToaster MultiMap.

Once again, a difference in microarchitectures is observed, as the Multi-Lock Mul-
tiMap and HAMT MultiMaps have almost identical performance on the Ryzen 5-
2500U, whilst on the i5-6500 their performance is far more distinct. This is likely
for the same reasons as the previous benchmark.

As before, the Single-Lock MultiMap performs poorly on this benchmark, achiev-
ing best throughput for a single thread, which is sometimes the greatest throughput
amongst thread-safe MultiMaps.

5.2.6 foreach – Aggregation

The fifth case for evaluation is the calculation of the sum of a MultiMap’s trivial el-
ements’ integers using the foreach operation. because foreach is implemented for
all thread-safe MultiMaps via the memory pool used to allocate elements, the perfor-
mance of parallel iteration across a MultiMap’s elements is independent of their de-
sign. For the serial foreach implemented by DBToaster, the benchmark is carried out
by accumulating the sum in a single variable, whilst for the parallel foreach, separate
thread-local variables are used to compute subtotals, which are then summed together
to give a total. This benchmark is representative of aggregate computation.
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Figure 5.10 presents a comparison of throughputs for addition operations carried out
on elements of a MultiMap via foreach for serial and parallel iteration. In both cases
100,000 elements are inserted into a MultiMap then the its element’s associated integer
fields are summed. Elements are uniformly distributed between threads in the case of
parallel iteration.

Figure 5.10: Addition operations per second for 1–8 and 1–4 threads. Blue line is
throughput for DBToaster’s current MultiMap with a single thread. Left plot: AMD Ryzen
5-2500U. Right plot: Intel i5-6500.

For both microarchitectures, parallel iteration shows a slight improvement in aggregate
computation over serial iteration. This indicates that parallel iteration can at least be
competitive with serial iteration for simple aggregates which extenuate the inherent
overheads of parallel computation.

5.2.7 foreach – Inserting New Elements without Resizes

The sixth and final case for evaluation is a combination of foreach and addOrDelOnZero
to insert elements from one MultiMap into another. The benchmark is selected to show
whether or not the previous benchmarks are indicative of throughput when applied
whilst iterating over MultiMap. Instead of evaluating this for all previous benchmarks,
the case of inserting new complex elements into a MultiMap with a single primary
index was chosen as it demonstrated a significant improvement in throughput for the
Multi-Lock and HAMT MultiMaps with respect to DBToaster’s MultiMap implemen-
tation. Like the agregation benchmark, 100,000 elements are iterated across.

Figure 5.12 presents a comparison of throughputs for the addOrDelOnZero operation
for all three thread-safe MultiMap implementations where the elements inserted are
supplied by iterating across another MultiMap’s elements using the foreach opera-
tion. Results for both the AMD Ryzen 5-2500U and Intel i5-6500 are presented.

The results for this benchmark are almost identical to those for the original bench-
mark where iteration was performed using a parallelised for-loop instead of by iterat-
ing over a MultiMap’s elements in parallel. Unlike the aggregation benchmarks, this
set of benchmarks – though an ideal case for the thread-safe MultiMaps – demonstrates
that combining parallel iteration across MultiMap elements with concurrent MultiMap
operations can result in significant throughput improvements for the Multi-Lock and
HAMT MultiMap implementations.
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Figure 5.11: Reinserting

Figure 5.12: Inserting addOrDelOnZero operations per second for 1–8 and 1–4 threads
for complex elements and MultiMaps with only a primary index. Left plot: AMD Ryzen
5-2500U. Right plot: Intel i5-6500.

5.3 Summary

Across all benchmarks, the HAMT MultiMap is the most consistent in demonstrating
throughput scaling with increasing thread counts. However, it does not always provide
greater throughput than the other thread-safe MultiMaps, or DBToaster’s MultiMap
implementation. In situations where inserts are common, erases are rare, and complex
elements are being stored, the HAMT MultiMap is a good fit. However, the Multi-
Lock MultiMap is a close contender, and when resizes are factored out it appears to be
the best choice for insert-based workloads. For scenrios where lookups are common,
the Single-Lock MultiMap would be a good choice, though its lack of performance in
other areas is offputting for practical application.

None of the three thread-safe MultiMap designs demonstrated an improvement upon
DBToaster’s current MultiMap implementation across all benchmarks, and in come
cases, no thread-safe MultiMap was able to beat it. It is clear that in cases where
less work was involved for a single operation – such as those involving trivial ele-
ments, erasing addOrDelOnZero operations, or reinserting addOrDelOnZero opera-
tions – were less effectively parallelised by the thread-safe MultiMaps. It is difficult to
effectively parallelise these operations, as the complexities and overheads involved in
ensuring thread-safety for these operations may overshadow the work involved in the
operation itself. This may suggest that a hybrid approach of both serial and thread-safe
MultiMaps may be able to give the best performance in a practical setting.

The presented results have shown that different architectures designs may also produce
different results for some MultiMap designs – namely the Multi-Lock MultiMap – and
that this should be taken into account for future designs. Given the complexity of
designing around hardware like this, it may be a better choice to implement a design
which limits the sharing of data between threads further than the presented designs so
as to reduce the effects of different microarchitectural layouts.

Finally, the results presented here are by no means comprehensive, and it is clear that
further evaluation is needed to pin down the exact reasons behind some throughput
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observations on separate microarchitectures. For example, all workloads presented are
well balanced between threads and are not necessarily indicative of the throughputs
achievable for other workloads. Future evaluations may consider constructing work-
loads with more biased hashing, or with mixed operations which may be more instruc-
tive of the practical performance of each implementation. Furthermore, the evaluation
was limited by a lack of permissions for the target systems, meaning that more in-depth
analysis using hardware counters could not be carried out.
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Conclusion

This chapter discusses the various successes of the project, as well as shortcomings in
the approaches taken, and possible directions for work in the future.

6.1 Achievements

The project succeeded in producing three thread-safe MultiMaps which demonstrate
promising results for a range of cases. It demonstrated how state-of-the-art techniques
used in thread-safe hashmaps and tries can be applied to more general data structures
such as the MultiMap, and that even more simplistic designs – such as the Multi-Lock
MultiMap – can beat out more complex designs – such as the HAMT MultiMap –
under the right conditions.

Furthermore, although the project failed to produce a MultiMap with better throughput
than DBToaster’s current implementation for all cases, it succeeded in highlighting
areas of difficulty for future thread-safe implementations to be focused on.

Finally, the project demonstrated that different parallel architectures can have a signif-
icant impact on performance of thread-safe data structures, which should be accounted
for in their design.

6.2 Future Work

Despite all three thread-safe MultiMap implementations demonstrating that they can
be used to achieve greater throughput for some operations, no implementation is uni-
versally better than DBToaster’s serial MultiMap. Each implementation has its weak-
nesses, characterised by their design decisions and complexity trade offs. Moreover,
there are still components of the implementations which will need to be revisited for
practical application, such as the thread-safe memory pool used throughout. For ex-
ample, the slice operation was not parallelised during the project, though for a final
implementation this would be desirable.

This project only explored locking data structures, which require that threads block

38
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others while they complete their operations. This is because the MultiMap is defined
as a composite of several hash indexes which need to be operated on separately. For
now, lock-free data structures that use atomic instructions to complete their operations
are infeasible because of this. Its possible that restructuring the MultiMap could make
this possible but determining how this could be done is far out of scope of this project.
Alternatively, its possible that the project could be continued in two directions: im-
plementing specialised thread-safe MultiMaps for specific cases, or implementing an
alternative form of code generation to support alternative designs.

Specialisation is quite common in performant thread-safe data structures, and if possi-
ble – such as in the case of hashmaps requiring static bucket array sizes – it can be a
powerful tool for improving performance. The MultiMap is described as being com-
posed of multiple hash indexes, but it is not uncommon in DBToaster-generated code
for a MultiMap to consist of only a primary hash index. In this case, a specialised
design could leverage atomics-based designs as it only have to operate on the single
hashmap, potentially allowing for a faster specialised implementation. This kind of
data structure specialisation could be leveraged to create an ensemble of performant
thread-safe MultiMaps which, together, cover all cases.

Code generation, on the other hand, is another potential route to better performing par-
allel code in general. Because all MultiMap implementations presented in this report
work on shared memory, overheads incurred by cache invalidations will always be a
problem, and may result in poorer performance than presented for other workloads.
Whilst alignment techniques can help mitigate cache invalidations, cache invalidations
they are an inherent problem of working with shared memory. The only way to uni-
versally reduce cache invalidations is to reduce the data shared among threads. For
this purpose there is an entire class of wait-free data structures which achieve this by
separating the data each thread has access to. The drawbacks of these designs tend
to be that they invoke much greater complexity for their operations and rely on better
cache behaviour making up for this. Techniques for constructing such data structures
have been presented in the last decade[38], but practical applications are still lacking.
Instead, by modifying the current code generation of DBToaster each thread could be
given its own MultiMap which it works on independently. Then, when a combined re-
sult is needed, each thread-local MultiMap could be efficiently merged with each other
to construct a single MultiMap. This would allow for perfect scaling of parallelised
loops operating on MultiMaps, but would require that merging is implemented such
that it does not nullify the throughput gained by parallel cache-invalidation-free loop
execution.

Finally, there may just be more work to do on the implementations of the three thread-
safe MultiMaps produced by the project. High performance thread-safe data structures
such as Aleksandar Prokopec’s Ctrie[27] took more than a single revision to become
practical[29], and its possible that the project’s implementations simply need addi-
tional time for further evaluation and optimisation.



Chapter 6. Conclusion

6.3 Reflection

In reflection, this project required a lot of research and experimentation to get to the
state is in. For widely used data structures such as queues, lists, hashmaps, and trees,
there is a wealth of material covering all kinds of performant thread-safe implemen-
tations, but many techniques used in these implementations are simply not applicable
to more complex structures such as the MultiMap, and in most cases state-of-the-art
techniques researched during the project were discounted for this reason. Despite this,
it appears that there are many more possible directions to take this project in future.

Whilst the future work detailed above covers several possible implementations for fu-
ture investigation, there would may be benefit in spending additional time characteris-
ing the short comings of the presented implementations, particularly those uncovered
by the evaluation benchmarks. Furthermore, extending benchmarks to include differ-
ent types of workloads and distributions of elements’ hashes would be desirable to
really identify whether future implementations are practical.

Throughout the project many other designs were considered, implemented, and dis-
carded. Custom thread pools, alternate lock implementations, memory pools, and sup-
porting data structures were implemented but ultimately not included in this report due
to its limited size. Such efforts were not wasted, and helped build a much greater un-
derstanding of the project area, without which the results of the projects would likely
not be the quality they are. With so many interacting components, one of the only ways
to truly know how well parallel code performs is to run it.
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Appendix A

Pseudocode for MultiMap Operations

Operation get(k):
return primary index.get(k);

Operation getOrDefault(k):
elem← primary index.get(k);
if elem 6= NULL then

return elem.count;
else

return 0;
end

Operation slice(k, i, f):
elem← secondary indexes[i].slice(k);
while elem 6= NULL do

f(elem);
elem← elem.next;

end
return;

Operation add(k, v):
if v 6= 0 then

elem← primary index.get(k);
if elem 6= NULL then

elem.count← elem.count + v;
else

k.count← v;
primary index.insert(k);
secondary indexes.insert(k);

end
end
return;



Appendix A. Pseudocode for MultiMap Operations

Operation addOrDelOnZero(k, v):
if v 6= 0 then

elem← primary index.get(k);
if elem 6= NULL then

elem.count← elem.count + v;
if elem.count = 0 then

primary index.erase(elem);
secondary indexes.erase(elem);

end
else

k.count← v;
primary index.insert(k);
secondary indexes.insert(k);

end
end
return;

Operation setOrDelOnZero(k, v):
if v 6= 0 then

elem← primary index.get(k);
if elem 6= NULL then

if v = 0 then
primary index.erase(elem);
secondary indexes.erase(elem);

else
elem.count← v;

end
else

k.count← v;
primary index.insert(k);
secondary indexes.insert(k);

end
end
return;
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Example Insert Operations On HAMT
Primary Hash Index
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Example Insert Operations On HAMT
Secondary Hash Index
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Example Operations On HAMT
Primary Hash Index



Appendix E

Pseudocode for Thread-Safe MultiMap
Operations

Operation get(k):
return primary index.get(k);

Operation getOrDefault(k):
elem← primary index.get(k);
if elem 6= NULL then

return elem.count;
else

return 0;
end

Operation slice(k, i, f):
elem← secondary indexes[i].slice(k);
while elem 6= NULL do

f(elem);
elem← elem.next;

end
return;

Operation add(k, v):
if v 6= 0 then

transaction←
primary index.transaction(k);

elem← transaction.get(k);
if elem 6= NULL then

elem.count← elem.count + v;
else

k.count← v;
transaction.insert(k);
secondary indexes.insert(k);

end
end
return;
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Operation addOrDelOnZero(k, v):
if v 6= 0 then

transaction←
primary index.transaction(k);

elem← transaction.get(k);
if elem 6= NULL then

elem.count← elem.count + v;
if elem.count = 0 then

transaction.erase(elem);
secondary indexes.erase(elem);

end
else

k.count← v;
transaction.insert(k);
secondary indexes.insert(k);

end
end
return;

Operation setOrDelOnZero(k, v):
if v 6= 0 then

transaction←
primary index.transaction(k);

elem← transaction.get(k);
if elem 6= NULL then

if v = 0 then
transaction.erase(elem);
secondary indexes.erase(elem);

else
elem.count← v;

end
else

k.count← v;
transaction.insert(k);
secondary indexes.insert(k);

end
end
return;
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PointerSum Source Code

1 #ifndef POINTER_SUM_HPP
2 #define POINTER_SUM_HPP
3
4 /**
5 * This file contains the implementation of the PointerSum class

used within the
6 * HAMT MultiMap to implement its bucket pointers and spinlocks.
7 */
8
9 #include "macro.hpp" // Supplied with DBToaster

10
11 #include <cassert >
12 #include <cstdint >
13 #include <iostream >
14
15
16 // DBToaster project namespace
17 namespace dbtoaster {
18
19
20 // Anonymous namespace, used for implementation details
21 namespace {
22
23 /**
24 * Template meta programming struct, used to compute the bitmask

required to extract
25 * a tag with N different values from a pointer.
26 */
27 template <std::size_t N, std::size_t M = 0>
28 struct Mask {
29 constexpr static const std::size_t value = Mask <N / 2, (M * 2) |

1>::value;
30 };
31
32 template <std::size_t M>
33 struct Mask <0, M> {
34 constexpr static const std::size_t value = M;
35 };
36
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37 /**
38 * Template metaprogramming struct, used to find the index of a type

in a list of
39 * types.
40 */
41 template <typename S, typename... Ts>
42 struct IndexOf;
43
44 template <typename S, typename T, typename... Ts>
45 struct IndexOf <S, T, Ts...> {
46 constexpr static const std::size_t value = 1 + IndexOf <S, Ts...>::

value;
47 };
48
49 template <typename S, typename... Ts>
50 struct IndexOf <S, S, Ts...> {
51 constexpr static const std::size_t value = 0;
52 };
53
54 } // anonymous namespace
55
56 /**
57 * PointerSum class. Implements a special pointer type which can

store both a pointer
58 * and a tag within the size of a single pointer by using lower bits

of the pointer.
59 *
60 * Ts... defines the types that the pointer supports.
61 */
62 template <typename... Ts>
63 class PointerSum {
64 private:
65
66 // Assert that there is at least one type defined.
67 static_assert(sizeof...(Ts) > 0, "Nonzero number of types must be

specified");
68
69 // Compute tag and pointer masks
70 constexpr static const std::uintptr_t TAG_MASK = Mask <sizeof...(Ts

) - 1>::value;
71 constexpr static const std::uintptr_t PTR_MASK = ˜TAG_MASK;
72
73 // Integer used to store pointer and tag
74 std::uintptr_t ptr_;
75
76 public:
77
78 // Disallow the default construction of a PointerSum instance
79 PointerSum() = delete;
80
81 /**
82 * Constructs a PointerSum from the given pointer and type.

Derives the needed
83 * tag from the given type.
84 *
85 * - T -- The given type.
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86 * - ptr -- The given pointer.
87 */
88 template <typename T>
89 FORCE_INLINE PointerSum(T* ptr) noexcept : ptr_{(reinterpret_cast<

std::uintptr_t >(ptr) & PTR_MASK) | IndexOf <T, Ts...>::value} {}
90
91 /**
92 * Atomically assigns the value of another PointerSum to this one.
93 *
94 * - other -- The given PointerSum.
95 */
96 template <typename T>
97 FORCE_INLINE PointerSum& operator=(const PointerSum& other) {
98 #pragma omp atomic write
99 ptr_ = other.ptr_;

100 return *this;
101 }
102
103 /**
104 * Atomically assigns the given pointer of the given type. Derives

the needed
105 * tag from the given type.
106 *
107 * - T -- The given type.
108 * - ptr -- The given pointer.
109 */
110 template <typename T>
111 FORCE_INLINE PointerSum& operator=(T* ptr) noexcept {
112 std::uintptr_t next_ptr = (reinterpret_cast<std::uintptr_t >(ptr)

& PTR_MASK) | IndexOf <T, Ts...>::value;
113 #pragma omp atomic write
114 ptr_ = next_ptr;
115 return *this;
116 }
117
118 /**
119 * Atomically gets the current tag value.
120 */
121 FORCE_INLINE std::uintptr_t tag() const noexcept {
122 std::uintptr_t curr_ptr;
123 #pragma omp atomic read
124 curr_ptr = ptr_;
125 return curr_ptr & TAG_MASK;
126 }
127
128 /**
129 * Gets the tag value associated with the given type.
130 *
131 * - T -- The given type.
132 */
133 template <typename T>
134 FORCE_INLINE constexpr static std::uintptr_t tag_of() noexcept {
135 return IndexOf <T, Ts...>::value;
136 }
137
138 /**
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139 * Atomically swaps with the given PointerSum instance.
140 *
141 * - other -- The given PointerSum instance.
142 */
143 FORCE_INLINE void swap(PointerSum& other) noexcept {
144 std::uintptr_t temp = other.ptr_;
145 #pragma omp atomic capture
146 { other.ptr_ = ptr_; ptr_ = temp; }
147 }
148
149 /**
150 * Performs a compare-and-swap on this pointer with another

pointer if and only
151 * if the current tag corresponds to the given type. Returns true

if and only if
152 * the compare-and-swap succeeds.
153 *
154 * - T -- The given type.
155 * - other -- The other pointer.
156 * - weak -- Specifies if the compare-and-swap operation should

be weak or strong,
157 * weak is true by default.
158 */
159 template <typename T>
160 FORCE_INLINE bool compare_and_swap(PointerSum& other , bool weak =

true) noexcept {
161
162 // Atomically ready tag-pointer pair.
163 std::uintptr_t curr_ptr;
164 #pragma omp atomic read
165 curr_ptr = ptr_;
166
167 // Return false if the tag is not of the expected type
168 if ((curr_ptr & TAG_MASK) != IndexOf <T, Ts...>::value) return

false;
169
170 // Attempt a compare-and-swap
171 std::uintptr_t next_ptr = other.ptr_;
172 bool success = __atomic_compare_exchange(&ptr_ , &curr_ptr , &

next_ptr , weak , __ATOMIC_RELEASE , __ATOMIC_ACQUIRE);
173 other.ptr_ = curr_ptr;
174
175 // Return whether the compare-and-swap was successful
176 return success;
177 }
178
179 /**
180 * Returns true if the current tag corresponds to the given type.
181 *
182 * - T -- The given type.
183 */
184 template <typename T>
185 FORCE_INLINE bool contains() const noexcept {
186 std::uintptr_t ptr;
187 #pragma omp atomic read
188 ptr = ptr_;
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189 return (ptr & TAG_MASK) == IndexOf <T, Ts...>::value;
190 }
191
192 /**
193 * Gets the current value of the pointer casted to the given type.
194 *
195 * - T -- The given type.
196 */
197 template <typename T>
198 FORCE_INLINE T* get() noexcept {
199 return reinterpret_cast<T*>(ptr_ & PTR_MASK);
200 }
201
202 /**
203 * Gets the current value of the pointer casted to the given type.
204 *
205 * - T -- The given type.
206 */
207 template <typename T>
208 FORCE_INLINE const T* get() const noexcept {
209 return reinterpret_cast<T*>(ptr_ & PTR_MASK);
210 }
211
212 };
213
214 } // namespace dbtoaster
215
216 #endif // POINTER_SUM_HPP
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Multi-Lock MultiMap Secondary Hash
Function

1 std::size_t secondaryHash(HashType h1) const {
2 std::size_t h2 = h1;
3 h2 ˆ= h2 >> 16;
4 h2 *= 0x7feb352d;
5 h2 ˆ= h2 >> 15;
6 h2 *= 0x846ca68b;
7 h2 ˆ= h2 >> 16;
8 return h2 % N;
9 }
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Full addOrDelOnZero Reinsert
Microbenchmark Results

Figure H.1: Reinserting addOrDelOnZero operations per second for 1–8 and 1–4
threads with trivial elements. Blue line is throughput for DBToaster’s current MultiMap
with a single thread. Left plot: AMD Ryzen 5-2500U. Right plot: Intel i5-6500.

Figure H.2: Reinserting addOrDelOnZeros per second for an increasing number of
threads. Blue line represents serial MultiMap with a single thread. Left: Complex ele-
ments on the AMD Ryzen 5-2500U. Right: Complex elements on the Intel i5-6500.


