
Mandelbrot Maps
Types and Huskies

Are a Web App’s Best Friends

João Filipe Maio

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

April 11, 2021

i

Abstract
Creating JavaScript web applications is easy. Maintaining them can be tedious and
error-prone. We attempt to alleviate this by adding static typing to our existing open-
source JavaScript web application Mandelbrot Maps [1] using TypeScript, while also
creating a development workflow with industry-standard code-quality and automation
tools like ESLint, Prettier, and husky to simplify and accelerate development.

To ensure that a stable production version of our application is always live, we use
GitHub Actions to maintain various CI/CD pipelines which further automate the process
of building, testing, and deploying our application.

We introduce visual changes and new functionality (like Deep Zoom) to the existing
application, as well as a new mode for exploring Tan’s Theorem [2] authored by Fraser
Scott, potentially making this version of Mandelbrot Maps one of the most fully-featured
fractal explorers currently available on the Internet.

The application is available at the following URL:

jmaio.github.io/mandelbrot-maps

Source code is available on GitHub, under the GNU GPL-3.0 License:

github.com/JMaio/mandelbrot-maps

http://jmaio.github.io/mandelbrot-maps
http://github.com/JMaio/mandelbrot-maps

ii

Acknowledgements

I would like to thank:

Philip Wadler, my project supervisor, for his guidance and feedback on my work.

My parents Virginia and Filipe for their constant love and support.

Table of Contents

1 Introduction 1
1.1 Context – MInf 1 . 1
1.2 Project Aim and Summary . 2
1.3 The Internet as a Self-Documenting Resource 4
1.4 Report Overview . 4
1.5 Project Coordination . 5

2 Fractals: A Refresher 6
2.1 The Complex Plane . 7
2.2 Mandelbrot set . 7
2.3 Julia sets . 9
2.4 Quick Maths - Graphics Processing Units 9
2.5 Perturbation Theory and “Arbitrary” Precision 10

3 Architecture Definition and Workflow 13
3.1 Motivation . 13
3.2 TypeScript . 14
3.3 Testing . 16
3.4 Continuous Integration / Continuous Deployment 17

3.4.1 Linting and Style Enforcement 18
3.4.2 ESLint – Code quality . 18
3.4.3 Prettier – Code styling . 19
3.4.4 commitlint – Better commits 19
3.4.5 husky – git hooks . 19
3.4.6 Yarn – Dependency management 20
3.4.7 standard-version – Versioning and changelog 21
3.4.8 GitHub Actions – Cloud pipelines 21

3.5 Documentation . 22

4 The Application 23
4.1 Visual identity . 23
4.2 Functionality: New and Improved 23

4.2.1 Rotation . 23
4.2.2 View modes . 24
4.2.3 URL parameters . 24
4.2.4 Deep zoom . 26

iii

TABLE OF CONTENTS iv

4.2.5 Controls . 27
4.2.6 Colour picker . 27

4.3 User Interface . 28
4.3.1 Cosmetic changes . 28
4.3.2 Usability . 29

4.4 Help Menu . 30

5 Evaluation 32
5.1 Search Engine Optimization . 32
5.2 Performance . 33
5.3 Participant Survey . 34

5.3.1 Positive feedback . 36
5.3.2 Suggestions for improvement 36
5.3.3 Issues . 36
5.3.4 Deep Zoom . 36

5.4 Workflow and Collaboration . 37
5.5 The future of WebGL . 37

6 Conclusion 38
6.1 Workflow . 38
6.2 Application . 38
6.3 Future work . 39

Bibliography 40

A Project Lineage 44

Chapter 1

Introduction

1.1 Context – MInf 1

Mandelbrot Maps is an interactive fractal explorer. Last year’s version of this Mandel-
brot Maps project (MInf 1 [1]) was implemented as a web application, using React [3]
and WebGL [4]. Its primary aim was to bring the functionality of the original project –
a Java Applet created by Iain Parris in 2008 – to the modern web.

Early web technologies like Java Applets and Adobe Flash revolutionised interactive
content on the internet, paving the way to the standards which exist today:

“Since Adobe no longer supports Flash Player after December 31, 2020
and blocked Flash content from running in Flash Player beginning January

1

Chapter 1. Introduction 2

12, 2021, Adobe strongly recommends all users immediately uninstall Flash
Player to help protect their systems.”

“Open standards such as HTML5, WebGL, and WebAssembly have contin-
ually matured over the years and serve as viable alternatives for Flash
content.”

— Adobe Flash Player EOL General Information Page [5]

The modern web is an exciting and powerful platform with exceptional native support for
desktop and mobile devices, advanced gestures and controls, and hardware acceleration.
Mandelbrot Maps combines some of these technologies to provide a great experience
which is open to all, with zero installation required and independent of operating system,
requiring only a modern web browser like Chrome, Safari, or Edge.

This first version of Mandelbrot Maps fulfilled its aims by successfully showcasing how
modern web technologies could be used to create a fast, interactive fractal explorer as a
cross-platform web application.

The core functionality included displaying a split view of the Mandelbrot set and the
associated Julia set, good desktop and mobile compatibility including touch gestures,
and providing options like selecting the maximum iteration count.

1.2 Project Aim and Summary

Generally, as a software project increases in size and complexity, it inherently becomes
harder to maintain, and this has been the case with Mandelbrot Maps. To address this
common issue, the aims of this version of the project are to:

1. Define a software development and integration workflow to improve the main-
tainability of the application.

2. Improve the user experience and functionality of the application.

3. Provide information about the application and how to use it.

4. Evaluate the updated application’s usability against last year’s version.

5. Verify how effective the application’s Search Engine Optimization was in improv-
ing its visibility on popular search engines.

The application was first converted from JavaScript to TypeScript [6] by assigning
static types to functions and components. Types are checked by the TypeScript com-
piler, which provides enhanced type safety, and enables advanced code editing features
like VS Code’s IntelliSense [7] for faster development. Converting to TypeScript was
completed over eight weeks, including miscellaneous changes. Following the con-
version, a development workflow was designed using industry-standard code-quality
tools (ESLint [8] and Prettier [9]) to automatically fix issues and format code con-
sistently. Additional tools like husky [10], pretty-quick [11], lint-staged [12],
standard-version [13], and commitlint [14] were combined to give a high degree
of automation, reducing the need for contributors to manually perform some repeti-

Chapter 1. Introduction 3

tive tasks. A CI/CD pipeline implemented with GitHub Actions provides additional
guarantees that new code is correctly tested once it reaches the remote repository.

The application’s user interface (UI) has been updated to be more consistent and
intuitive, with clearer UI elements, and making greater use of colour. New functionality
includes deep zoom using perturbation theory (adapted from DeepMandelbrot, available
at github.com/munsocket/deep-mandelbrot), the ability to rotate viewers, and support for
URL parameters.

A new help menu has been added. Help topics are written using Markdown [15] and are
loaded dynamically, making it simple to extend this menu with further information. It
is currently possible to flip between the following three topics: a page with information
about fractals and the layout of the viewers, a page explaining the controls and gestures
for different devices, and a page explaining each setting where users can directly interact
with it.

A survey was created to gather opinions on the application, with questions following
last year’s questions closely to allow for direct comparisons to be drawn between them.
Questions created by Georgina and Fraser (section 1.5) were also included to maximize
the amount of data collected while only requiring a single survey to be filled out. A total
of 12 respondents completed the survey compared to 31 last year, giving the application
an overall score of 4.08 out of 5, which is marginally lower than last year’s. Responses
were completely anonymous.

Lastly, the application’s Search Engine Optimization (SEO) was tested using different
search engines and queries to estimate how likely it is to appear in relevant searches,
and if so, how far up it is displayed. When displaying search results, search engines
tend to tailor those results to the user by building a profile based on factors like their
geographical location, previous searches, and previous browsing history [16], so the
evaluation has been designed to minimize those effects. This version of the project
showcases the following achievements:

• Explicit declaration of the application architecture by converting the existing
codebase from JavaScript into TypeScript, directly improving maintainability and
reducing the barrier to entry for potential contributors.

• Definition of a development workflow which enforces consistent code quality and
style, and automatically tests new code before it is pushed to a central repository.

• Creation of a continuous integration pipeline, enabling independent testing of
new code after it has been pushed to a central repository.

• Implementation of new features, notably deep zoom, viewer rotation, URL param-
eters, and a help menu, giving the application a solid basis for further development
in future.

• Improved search engine optimization, giving it first-page placement and even
making it the top result in certain queries.

http://github.com/munsocket/deep-mandelbrot

Chapter 1. Introduction 4

1.3 The Internet as a Self-Documenting Resource

This report details multiple concepts and technologies which are under active develop-
ment, and as such are subject to constant change. Most of these technologies also see
most of their use in commercial applications, and as such, they should be valued by
their adoption and commercial success.

An Internet citing guide from Yale University explains how some professors discourage
the use of “sources found or accessed over the Internet”, and how these restrictions,
even if sometimes justified, “may be excessive” [17].

Take Google’s Material Design which is based on extensive Human-Computer Inter-
action research and design yet is published online through material.io as a living,
breathing specification rather than a published paper. To refer to this and other technolo-
gies by pointing to a URL instead of a published journal resource may come across as
carelessness, laziness, or both, but in cases where an online URL may legitimately be
the primary, or perhaps even the only publishing medium, an Internet resource should
not be frowned upon simply because it is an Internet resource.

In Mistry and Patel’s “A Guide to Material Design, a Modern Software Design Lan-
guage” [18], all references contained point to online URLs, which is completely justified
because that is where the ground-truth specifications for Material Design and other
resources are published. In “Understanding TypeScript” [19], Bierman, Abadi, and
Torgersen also reference TypeScript (and Google’s Dart programming language) by
URL, once again citing primary sources which happen to be URLs.

The point to raise is that because the Internet is such a popular and easily accessible
publishing medium, projects targeting an Internet audience will undoubtedly make use
of those key strengths to reach said audience. Similarly, some articles cited within this
report present recommendations on how to use and string together multiple technologies,
and as such those are referenced as an opinion piece of how an end-goal may be achieved,
not necessarily because they are a primary source, but because they help in reaching
that end-goal by providing valuable insight which can only be gained by using said
technology.

1.4 Report Overview

The rest of this chapter contains some more information about the logistics of the
project, along with honourable mentions of those who have previously contributed to
another version of Mandelbrot Maps as part of their projects.

Chapter 2 is intended as a quick recap of the topic of fractals, introducing some new
concepts for this year’s project update, and the basics of perturbation theory.

Chapter 3 explains the development and integration workflow proposed, and each of the
technologies used in defining it.

Chapter 4 lists new updates to the application’s looks and functionality.

http://material.io

Chapter 1. Introduction 5

Chapter 5 contains different metrics to evaluate the success of the development workflow
and updates to the application, as well as the results from the user survey.

Chapter 6 gives a summary of the key features of the project and how it might be
improved in future.

1.5 Project Coordination

This year, two others were assigned this project: Georgina Medd and Fraser Scott.
While my focus was set on defining a workflow and making general improvements,
Georgina chose to explore the educational side of fractals, and Fraser researched and
implemented a visualisation of Tan’s theorem on top of this application.

Fraser’s contribution has been tested and fully integrated into the main branch of the
application, which is now live. By setting up a development workflow as proposed in
chapter 3, it was easy to validate these new additions to the project, since they would
have automatically been formatted, checked, and tested for compatibility both on the
developer’s local machine and separately on GitHub as a sanity check before being
merged.

Chapter 2

Fractals: A Refresher

Figure 2.1: Peacock feathers exhibit fractal properties.
(L) The centre portion of the feather somewhat resembles the main bulb of the Mandelbrot
set. © Caleb Minear (@calebminear) – unsplash.com/photos/BwMtUpBYLIs

(R) A beautiful close-up view of a peacock feather: its alternating, repeating series of
strands made of smaller strands clearly visible. © Waldo Nell (pwnell) – flickr.com/

photos/pwnell/25549906864

In Part 1 of the project report, the concept of fractals was introduced: fractals are
“structures which exhibit some kind of self-similarity at different scales”. Some real-life
examples include Romanesco broccoli, mountains, lightning, and peacock feathers.
As stunning as these look, they only exhibit approximate fractal properties – they are
“approximate fractals” – since the real world has physical limitations dictating that
self-similarity can only be observed over a finite range [20].

The domain of mathematics, however, has at its disposal a powerful instrument: the
continuous real number line, which can be infinitely zoomed into further and further,
only to reveal ever increasing detail.

6

http://unsplash.com/photos/BwMtUpBYLIs
http://flickr.com/photos/pwnell/25549906864
http://flickr.com/photos/pwnell/25549906864

Chapter 2. Fractals: A Refresher 7

2.1 The Complex Plane

Im

Re

b
a+bi

a0

Figure 2.2: A plot of a complex
number (© Wolfkeeper at English
Wikipedia, CC BY-SA 3.0)

As a quick reminder, complex numbers are defined
by a Real component and an Imaginary component,
and can be represented in the form:

z = a+bi where a,b ∈ R and i =
√
−1 (2.1)

Plotting a and b on a two-dimensional plane with
a as the horizontal axis and b as the vertical axis
yields a visual representation of a complex number
on the complex plane, shown in figure 2.2.

The magnitude of a complex number is the square
root of the sum of the squares of its a and b com-
ponents:

|z|=
√

a2 +b2 (2.2)

Complex numbers support addition and multiplication:

z+w = (a+bi)+(c+di) = (a+ c)+(b+d)i (2.3)

z×w = (a+bi)× (c+di) = ac+adi+bci+bdi2 = (ac−bd)+(ad +bc)i (2.4)

2.2 Mandelbrot set

Figure 2.3: An image of the Mandelbrot set rendered by this application:
jmaio.github.io/mandelbrot-maps/#/m@-0.751842,0.287638,9,1.17

The Mandelbrot set is a fractal defined by the quadratic recurrence in equation 2.5:

zn+1 = z2
n + z0 where z ∈ C (2.5)

https://creativecommons.org/licenses/by-sa/3.0/
http://jmaio.github.io/mandelbrot-maps/#/m@-0.751842,0.287638,9,1.17

Chapter 2. Fractals: A Refresher 8

Iterating according to this equation yields the following:

z0 = z0

z1 = (z0)
2 + z0 = (z0)

2 + z0 = z2
0 + z0

z2 = (z1)
2 + z0 = (z2

0 + z0)
2 + z0 = z4

0 +2z3
0 + z2

0 + z0

z3 = (z2)
2 + z0 = (z4

0 +2z3
0 + z2

0 + z0)
2 + z0 = . . .

Instinctively, this recurrence in zn might already indicate a form of self-similarity since
each iteration is dependent on the previous value in the series. For point z0 to be in the
Mandelbrot set, it must remain bounded (not diverge) under iteration [21]. Divergence is
guaranteed if the magnitude of zn is ever greater than 2, such that it satisfies |zn|> 2 [22].
Note that starting with z0 = 0 or with an initial point z0 = c is roughly equivalent, with
the only difference being that starting with z0 = 0 produces equivalent results with a
delay of one iteration compared to the other method.

The number of iterations n until divergence (or up to a limit Imax if the point does not
diverge) is then used to colour the point - this constitutes the escape-time algorithm [21].
In figure 2.3, the dark blue-black colouring along the left and bottom edges denotes
regions where the points contained do not diverge, whereas the orange and light blue
colouring denotes regions which diverge at different speeds, with regions in lighter blue
diverging within fewer iterations than those in orange.

On a digital display, which can be thought of as a finite rectangular grid of square pixels,
the centre of each pixel is mapped to a complex number. All the pixels will then follow
this iterative process, being assigned a different colour which represents how quickly
they diverge, and will eventually form the patterns above.

Figure 2.4: An image of a Julia set rendered by this application:
jmaio.github.io/mandelbrot-maps/#/m@-0.03997,0.98612,6500,0/j@0,0,23,1

http://jmaio.github.io/mandelbrot-maps/#/m@-0.03997,0.98612,6500,0/j@0,0,23,1

Chapter 2. Fractals: A Refresher 9

2.3 Julia sets

Julia sets – note, plural – are similar to the Mandelbrot set. They follow roughly the
same recurrence:

zn+1 = z2
n + c where c ∈ C (2.6)

The constant c is fixed for a single Julia set – or, inversely, there is a single Julia set
associated with every complex number c∈C. By extension, if every point c is associated
with a Julia set, then every point on the Mandelbrot set will have an associated Julia set.
This can be shown visually by “choosing” a point from the Mandelbrot set to represent
the fixed constant c.

This set of points which do not diverge under iteration is called a “filled-in” Julia set
Jr, where the true Julia set J is the boundary of the filled-in set Jr [23]. Note that for
simplicity, we use the term “Julia set” to refer to the “filled-in” Julia set, as that is the
only one which we refer to in this context.

2.4 Quick Maths - Graphics Processing Units

Figure 2.5: “While a modern CPU might be good at running four dissimilar tasks at once,
a GPU is good at running many hundreds of tasks at once (as long as those tasks are
very similar).” – Chapter 1, Graphics Programming Compendium, Ian Dunn and Zoë
Wood (graphicscompendium.com). In Mandelbrot Maps, the “task” is to iterate different z
according to equation 2.5.

Iteratively computing whether a point is a member of the Mandelbrot set using the
escape-time algorithm is computationally intensive, primarily due to having to iterate
multiple times on a previous result. Despite this limitation, it is possible to speed up
overall execution by performing multiple of these computations simultaneously, using
parallelism.

Unlike regular general-purpose processors (Central Processing Units, or CPUs) found
in desktop and laptop computers, Graphics Processing Units (GPUs) are specialized
hardware accelerators designed for highly parallel workloads. A GPU will gener-
ally perform better than a CPU in this specific task, since it can spread the work of

http://graphicscompendium.com

Chapter 2. Fractals: A Refresher 10

iterating multiple points over hundreds to thousands of individual processing cores
simultaneously.

2.5 Perturbation Theory and “Arbitrary” Precision

One of the limitations presented in last year’s version of the project was the reduced
amount of zoom offered by that version of Mandelbrot Maps when compared to tradi-
tional CPU-based implementations, which tend to use 64-bit floating-point numbers.
To get around this limitation, CPU-based implementations usually switch to arbitrary-
precision numbers after a certain zoom level, which reduces performance significantly.
Due to WebGL’s comparatively lower precision 32-bit floating-point numbers, zooming
into a region of the Mandelbrot set viewer quickly reaches this precision limit, after
which the viewer loses detail and becomes pixelated (figure 2.6).

Figure 2.6: WebGL has limited, 32-bit precision compared to traditional, 64-bit preci-
sion CPU renderers. In Mandelbrot Maps, blocky, pixelated structures begin to appear
at large factors of magnification. The centre of the structure on the right appears
hyperbolic, likely due to floating-point precision which transitions abruptly around cer-
tain points. jmaio.github.io/mandelbrot-maps/#/m@0.366363,0.5915338,870293.2,0.2/j@
-0.0294855,-0.7480627,1353.36,2.12

DeepFractal was a WebGL-based Mandelbrot set explorer reviewed in the previous
MInf 1 report which was able to achieve a much deeper level of zoom than other WebGL
applications by using “perturbation theory”, a technique proposed by K. I. Martin which
uses series approximations to accelerate fractal rendering in SuperFractalThing. [24]
This technique leverages the fact that the standard implementation of floating-point
numbers – the IEEE Standard for Floating-Point Arithmetic (IEEE 754) – is not evenly
distributed across the full range of numbers, but rather is “denser” around zero, which
can be seen in figure 2.7. Hardware floating-point numbers trade accuracy for speed
while still being sufficiently accurate for most purposes but tend to require workarounds
for those purposes where high-precision arithmetic is essential. [25]

The mathematics behind this technique is summarised and adapted to our naming
convention in definition 1.

http://jmaio.github.io/mandelbrot-maps/#/m@0.366363,0.5915338,870293.2,0.2/j@-0.0294855,-0.7480627,1353.36,2.12
http://jmaio.github.io/mandelbrot-maps/#/m@0.366363,0.5915338,870293.2,0.2/j@-0.0294855,-0.7480627,1353.36,2.12

Chapter 2. Fractals: A Refresher 11

Figure 2.7: Non-uniform Distribution of (64-bit) Floating-Point Numbers. “Floating-point
numbers are non-uniformly distributed over the real line. The spacing of the floating-point
numbers is magnified by a factor 2 at each power of 2.” (ElShaarawy and Gomaa) [26]

Definition 1 (from SuperFractalThing Maths by K. I. Martin, [24] adapted to follow
this project’s convention, and supplemented by Neal Lawton’s answer on Mathematics
Stack Exchange: math.stackexchange.com/a/1071945/757765)

We consider two nearby points z0 and w0 in the complex plane, and attempt to compute
whether each is in the Mandelbrot set. The Mandelbrot set equation can be written as in
equation 2.5:

zn+1 = z2
n + z0

where the complex number z0 is in the Mandelbrot set if zn stays finite as n tends to
infinity. Consider another point given by wn:

wn+1 = w2
n +w0

The difference between these two points at a given iteration is given by ∆n such that:

∆n = wn − zn (2.7)

(wn = zn +∆n or zn = wn −∆n)

Iterating the difference ∆n yields:

∆n+1 = wn+1 − zn+1

∆n+1 = (w2
n +w0)− (z2

n + z0)

∆n+1 = ((zn +∆n)
2 +(z0 +∆0))− (z2

n + z0) [by wn = zn +∆n, equation 2.7]

∆n+1 = (z2
n +2zn∆n +∆

2
n + z0 +∆0)− (z2

n + z0)

∆n+1 = 2zn∆n +∆
2
n +∆0 (2.8)

All the numbers in equation 2.8 are “small”, allowing it to be calculated with hardware
floating point numbers. The values zn can then be used to calculate wn without having
to use arbitrary precision calculations.

http://math.stackexchange.com/a/1071945/757765

Chapter 2. Fractals: A Refresher 12

Let δ = ∆0; by equation 2.8, collecting by δn terms:

(n = 0) ∆1 = 2z0∆0 +∆
2
0 +δ

= 2z0δ+δ
2 +δ

= (2z0 +1)δ+δ
2

(n = 1) ∆2 = 2z1∆1 +∆
2
1 +δ

= 2z1((2z0 +1)δ+δ
2)+((2z0 +1)δ+δ

2)2 +δ

= 2z1(2z0 +1)δ+2z1δ
2 +((2z0 +1)δ)2 +2(2z0 +1)δδ

2 +(δ2)2 +δ

= (4z1z0 +2z1 +1)δ+2z1δ
2 +(2z0 +1)2

δ
2 +(4z0 +2)δ3 +δ

4

= (4z1z0 +2z1 +1)δ+2z1δ
2 +(2z0 +1)2

δ
2 +(4z0 +2)δ3 +δ

4

= (4z1z0 +2z1 +1)δ+(2z1 +(2z0 +1)2)δ2 +(4z0 +2)δ3 +δ
4

(N.B. the final δ3 coefficient above is “(4z0 + 2)”, where the original paper contains
“(4z0 −2)” in its derivation, which is incorrect as pointed out by Neal Lawton on Stack
Exchange [27])

Let ∆n = Anδ+Bnδ
2 +Cnδ

3 +O(δ4) (2.9)
Then:

∆0 = δ = 1δ+0δ
2 +0δ

3

∴ A0 = 1, B0 = 0, C0 = 0

∆n+1 = 2zn∆n +∆
2
n +∆0

= 2zn(Anδ+Bnδ
2 +Cnδ

3 +O(δ4))+(Anδ+Bnδ
2 +Cnδ

3 +O(δ4))2 +δ

= 2znAnδ+2znBnδ
2 +2znCnδ

3 +2znO(δ4)+(Anδ+Bnδ
2 +Cnδ

3 +O(δ4))2 +δ

(terms of order δ
4 or higher are small)

= (2znAn +1)δ+(2znBn)δ
2 +(2znCn)δ

3 +A2
nδ

2 +2AnBnδ
3 +O(δ4)

= (2znAn +1)δ+(2znBn +A2
n)δ

2 +(2znCn +2AnBn)δ
3 +O(δ4)

Finally:

An+1 = 2znAn +1 (A0 = 1) (2.10)

Bn+1 = 2znBn +A2
n (B0 = 0) (2.11)

Cn+1 = 2znCn +2AnBn (C0 = 0) (2.12)

Equations 2.10 to 2.12 can be applied iteratively to calculate the coefficients for equa-
tion 2.9, which can then be used to calculate the value for the nth iteration for all the
points around z0. The approximation should be good as long as the δ3 term has a
magnitude significantly smaller than the δ2 term.

Chapter 3

Architecture Definition and Workflow

Agile is an iterative approach to project management and software devel-
opment that helps teams deliver value to their customers faster and with
fewer headaches. Instead of betting everything on a "big bang" launch, an
agile team delivers work in small, but consumable, increments.

— Atlassian Agile Coach [28]

Figure 3.1: GitHub project board for Mandelbrot Maps, like a Kanban board [29].
Columns correspond to a status, cards within columns indicate tasks, and tasks move
towards the right as they progress.

3.1 Motivation

The primary aims of Mandelbrot Maps are well-defined, but its development process has
seen the codebase undergo constant change as new design and functionality is trialled.
Given the constrained development timeframe of an honours project, iterating quickly
is a necessity. As explained by Atlassian, adopting an Agile methodology is generally a

13

Chapter 3. Architecture Definition and Workflow 14

good way to start managing the complexity of a software engineering project, and as
Mandelbrot Maps has grown and become more complex, it reached the point where it
was necessary to acknowledge and address this complexity by fully embracing Agile.
While last year’s version of the project loosely followed an Agile methodology, this
year’s version does so more rigorously by having it more explicitly defined.

After the first part of the project was completed last year, the pause between then and the
start of the next semester was dedicated to researching possible approaches that would
minimise the complexity of maintaining or contributing to the project. Approaches
like Scrum [30] were considered but not pursued since they mostly consider teams of
developers as opposed to a single developer. As an iterative process in itself, defining
and refining the workflow for this part of the project has seen it make heavy use of core
GitHub features [31] like Issues and Pull Requests, Boards, and Actions (for CI/CD,
section 3.4), and it has evolved to resemble a Kanban workflow [29].

Another consideration is that the application has been open-source and live on the
internet for a year, so every effort has been made to ensure that the live “production”
version of the application remains online and stable during development, even as new
functionality is added. If the production version of the application breaks, the page
will be unavailable: this might be an inconvenience to users, but it could also hurt the
application’s rank on search engines since broken pages are less likely to be indexed
correctly. Breaking the application in a production environment must be avoided at all
costs. Reverting back to an older working version is the current safeguard in case this
ever happens.

3.2 TypeScript

Writing types helps programmers be more confident about their code be-
cause types catch mistakes.

— TypeScript Docs: Why does TypeScript exist? [6]

Last year, the project was implemented using plain JavaScript, which is dynamically
typed [32], and can make it difficult to detect potential errors during an application’s
development phase.

TypeScript is “a superset of JavaScript that compiles to clean JavaScript output” [33]
which is developed and maintained by Microsoft. Using TypeScript makes it possible to
explicitly declare static type definitions for existing JavaScript code to clearly “describe
the shape of objects and functions” [6]. These static types are then verified by the
TypeScript compiler which ensures that type errors are identified during compilation,
and subsequently transforms that code into plain JavaScript code. TypeScript enables
detection of potential issues during development rather than after they are already
affecting users.

Converting Mandelbrot Maps to TypeScript was therefore considered a valuable way
to spend the initial part of the project. Migrating the project to TypeScript could have
proved time-consuming at first, but the potential for faster future development would

Chapter 3. Architecture Definition and Workflow 15

Figure 3.2: An internet comic depicting the common sentiment towards JavaScript’s
lack of static typing. TypeScript alleviates this by performing static type checking at
compile-time, making it far more robust than was previously possible. From:
javascript.plainenglish.io/webgl-frameworks-three-js-vs-babylon-js-36975d915694

offset the initial time investment, so this migration was given a higher priority over
implementing new functionality.

The trade-off equated to either spending time at the start of the semester converting to
TypeScript, or, alternatively, not converting to TypeScript, but then potentially having to
deal with obscure issues that could arise later in development, inevitably spending time
looking for and fixing errors which could have easily been prevented if static typing
had been in place from the start.

Such a commitment could have carried considerable risk if the conversion process
proved unsuccessful. However, since TypeScript is designed for gradual adoption, it is
possible to migrate gradually and still enjoy its benefits, as opposed to being forced into
an all-or-nothing situation where either none of the code is converted or all of it is for
the application to function. Initial testing of TypeScript conversion was carried out on
simpler components to become familiar with the TypeScript syntax and tooling, which
required establishing basic static types such as those used to represent viewer locations:

• XYType = [number, number]

• ZoomType = number

• ThetaType = number

Once some basic types had been established, more complex types and interfaces could
be composed using those types and others from existing libraries (like react-spring’s
SpringConfig [34]):

• interface ViewerLocation {xy: XYType; z: ZoomType; theta: ThetaType}

• interface SpringControl {config?: SpringConfig}

• interface ViewerXYControl extends SpringControl {xy: XYType}

http://javascript.plainenglish.io/webgl-frameworks-three-js-vs-babylon-js-36975d915694

Chapter 3. Architecture Definition and Workflow 16

• interface ViewerControls {xy: ViewerXYControl; ...}

Declaring types has given each part of the existing application a set of constraints
which it must adhere to, extracting the underlying architecture which had already been
designed last year and formalising it in the process. For Mandelbrot Maps, being a
small project, this process was completed, part-time, in about eight weeks.

function MandelbrotRenderer(props) {
 ...
}

function MandelbrotRenderer({
 precision,
 ...props
}: MandelbrotRendererProps): JSX.Element {
 ...
}

interface MandelbrotRendererProps extends RendererProps {
 showCrosshair: boolean;
}

interface RendererProps extends React.StyleHTMLAttributes<HTMLDivElement> {
 controls: ViewerControlSprings;
 maxI: number;
 useDPR: boolean;
 DPR: number;
 useAA: boolean;
 colour: RgbColor;
 precision: precisionSpecifier;
}

Figure 3.3: Converting to TypeScript requires declaring multiple types, which involves an
initial time investment that can save time later in development.
Left: JavaScript; Right: TypeScript

Other projects such as Babylon.js (a web rendering engine) have also undertaken
the migration to TypeScript to improve their tooling, both for existing developers to
streamline their development process, but also for new developers to get started with the
project more quickly because of the additional context that is provided by TypeScript,
while simultaneously preparing their projects for the future of JavaScript [35].

3.3 Testing

As happened last year, most feature testing has been done manually. Automated testing
of a WebGL-based application is not straightforward due to the nature of the drawing
process performed by the GPU happening directly to an HTML canvas element, as
opposed to creating DOM elements as is most common with user interfaces. This
limitation is explained in detail by Rockwood in Automated Cross-Browser Testing for
WebGL – It’s Not Going to Happen [36].

The existing unit testing only gives some basic assurance that the application runs
without crashing, but cannot test certain features affecting the display of the fractal
viewers. This testing has been automated locally using husky (see section 3.4.5), which
will require that all test suites pass on pre-push. Currently, husky will perform the
following actions for testing:

Chapter 3. Architecture Definition and Workflow 17

• pre-push – After committing, but before pushing code to the repository, the
project will be rebuilt to ensure that it compiles without errors, followed by
running unit tests with the CI environment variable, which halts on error. If any
errors are raised as part of the pre-push checks, husky will cancel the push.

Figure 3.6b shows the error produced by a failing test suite. After the code has been
successfully tested locally, the push is approved. Once newly pushed code reaches
the remote GitHub repository, it is once again put through a similar testing pipeline
using GitHub Actions, which will independently validate that the project is able to
successfully build and pass all tests.

3.4 Continuous Integration / Continuous Deployment

Figure 3.4: An example CI/CD pipeline

CI/CD, as it is often abbreviated, “introduces automation into the stages of app develop-
ment,” helping with the integration of new code into existing projects. The literature
from Red Hat explains:

The “CI” in CI/CD always refers to continuous integration, which is an
automation process for developers.
The “CD” in CI/CD refers to continuous delivery and/or continuous deploy-
ment, which are related concepts that sometimes get used interchangeably.
Continuous delivery means changes to an application are automatically
bug tested and uploaded to a repository (like GitHub).
Continuous deployment (the other possible “CD”) can refer to automati-
cally releasing a developer’s changes from the repository to production.

— What is CI/CD? – Red Hat [37]

Red Hat considers that “successful” CI means that code is “regularly built, tested, and
merged to a shared repository”. Regular testing is crucial as it ensures that new changes
do not break the existing application. Regular merging also encourages a reduction in
the number of branches in development at any one time.

The “CD” steps of the pipeline also contribute to seamless deployment of new code with
minimal effort, largely because they “address [the issues] that slow down app delivery”
by automating parts of the workflow between code being merged into a repository and
being deployed to a production environment. The following sections detail how this
was put into practice by automating the checking, testing, and subsequent deployment
of new code.

Chapter 3. Architecture Definition and Workflow 18

3.4.1 Linting and Style Enforcement

Every major open-source project has its own style guide: a set of conven-
tions (sometimes arbitrary) about how to write code for that project. It is
much easier to understand a large codebase when all the code in it is in a
consistent style.

“Style” covers a lot of ground, from “use camelCase for variable names”
to “never use global variables” to “never use exceptions”.

— Google Style Guides [38]

return (
 <animated.canvas
 className="renderer"
 ref={refAny}
 id={props.id}
 style={{
 cursor: props.dragging ? 'grabbing' : 'grab',
 ...props.style,
 }}
 />
);

return <animated.canvas className="renderer" ref={refAny} id={props.id}
 style={{ cursor: props.dragging ? 'grabbing' : 'grab', ...props.style }}
/>

Save

Figure 3.5: Code editor on-save example. A supported code editor will call ESLint and
Prettier for formatting as the file is being saved, removing the need to manually format
code. Source file: src/components/render/WebGLCanvas.tsx

As evidenced by Google, creating and following a set of conventions for how to
write code is imperative. The code in Mandelbrot Maps had previously consisted of
JavaScript written mostly following a “best-guess”, personal style, which itself inherits
from existing styles like that of the React documentation, StackOverflow answers, or
other projects, but without explicitly following a style convention.

Complementing the shift to TypeScript, this version of the project has adopted powerful
tooling to enforce style while also finding and fixing code issues using ESLint [8] and
Prettier [9]. These steps have been automated for local development using husky [10].
These and other tools listed below are distributed and executed in the same Node.js
environment as the existing packages used for development (like React), meaning that
no additional software should need to be installed for the workflow to function correctly,
making it highly portable and easy to use.

3.4.2 ESLint – Code quality

ESLint is a tool which can “find and fix problems in your JavaScript code” – linting
– by performing syntax-aware static analysis [8]. Through a system of rules, ESLint
can be configured to specify the desired code style, and this can be extended with

Chapter 3. Architecture Definition and Workflow 19

plug-ins. These plug-ins allow for ESLint to find common React issues, such as
eslint-plugin-react-hooks which helps in correctly applying the rules of React
hooks used in Mandelbrot Maps.

Our configuration includes the standard “recommended” rules, as well as rules for React
apps and TypeScript apps. Prettier is also included in the configuration to allow it to
be executed together with ESLint, giving it rich code editor integration for making
suggestions.

3.4.3 Prettier – Code styling

Prettier describes itself as “an opinionated code formatter” [9]. It uses predefined rules
to automatically apply consistent code styling, and has been configured to run across
the entire Mandelbrot Maps project, mostly for TypeScript and JavaScript files, but also
on other supported file types like JSON, Markdown, or HTML. Its tight integration
with editors like VS Code enables it to apply these rules on-save, making it effortless
to use. Since VS Code can be configured by using a file named settings.json , this
project stores its project-level preferences on version control to distribute them to all
contributors, automatically enabling integrations like on-save linting. An example is
shown in figure 3.5.

3.4.4 commitlint – Better commits

To aid versioning and encourage informative commit messages, we have adopted
commitlint [14] to lint commit messages according to the Conventional Commits
specification [39], which defines a set of guidelines for assigning a type, scope, and
summary to all commit messages. Simple commit messages should be defined according
to the format:

<type>[optional scope]: <description>

We follow the Angular commit convention [40], where the <type> should be a keyword
from the set build|ci|docs|feat|fix|perf|refactor|test , which indicates the
context of the commit. The [optional scope] consists of a noun describing a section
of the codebase, which in our case has included controls , settings , perturbation-
theory , and others as required. The <description> should be a short summary of the
code changes, such as “add rotation indicator and reset to minimaps”. The commit
message below (SHA 098d24f) indicates that a new feature has been added within the
scope of the application’s controls:

feat(controls): add rotation indicator and reset to minimaps

3.4.5 husky – git hooks

Linting and style enforcement have been automated using husky [10], which uses git
hooks [42, 8.3 Git Hooks] to perform predefined commands when certain events are
triggered in a local git repository. If a new action such as a commit or push is detected,
husky will intercept that action and execute commands which have been defined in

https://github.com/JMaio/mandelbrot-maps/commit/098d24f

Chapter 3. Architecture Definition and Workflow 20

(a) husky throws an error after attempting to
lint a commit with a nonconformant commit
message (“this is a generic commit message”).
commitlint requires the commit to contain at
least a subject and type.

(b) husky runs all tests before pushing code to a
remote repository. Attempting to push with failing
tests will fail.

Figure 3.6: husky automates testing and prevents errors from being committed.
GitHub Desktop [41] displays errors as popup alerts.

its configuration file. Currently, husky has been configured to perform the following
actions for linting and style enforcement on the following git hooks:

• pre-commit – Before a new commit is created, the lint-staged [12] utility
is executed, which then runs the pretty-quick [11] utility to automatically
re-apply the desired code style to selected files using the existing Prettier con-
figuration. This step guarantees that even if Prettier had not been able to format
the code in the editor on-save, which could happen if the editor used does not
support on-save actions, then that code will now be correctly formatted outside
of the editor by pretty-quick .

• commit-msg – When a new commit is created, its commit message is checked by
commitlint [14], which requires the message to conform to the Angular commit
convention [40].

Once all these checks have completed successfully, the commit is considered valid.
Figure 3.6a shows the error produced by attempting to create a commit without the
required structure.

3.4.6 Yarn – Dependency management

Dependencies have been managed using Yarn, a popular Node.js package manager
originally developed by Facebook which focuses on speed and security [43]. Yarn
provides improvements over the default npm package manager, and the most recent
version Yarn 2 is even more stable and efficient [44].

Chapter 3. Architecture Definition and Workflow 21

Ensuring that dependencies stay up to date is a continuous process as dependencies
are also updated periodically, which can happen because of feature updates, bugfixes,
critical security updates, or other reasons. Part of this process can be automated using
Dependabot [45], which scans the package files created by Yarn (it also supports npm)
to determine the versions of dependencies used by the application, and automatically
creates pull requests to update any dependencies where security vulnerabilities are
identified. As part of its acquisition of Dependabot, GitHub now provides this feature
free of charge for public repositories.

Because Mandelbrot Maps is a stateless application without connection to a central
server, dependency security vulnerabilities are unlikely to cause any harm. All the code
in Mandelbrot Maps is only ever executed locally in a web browser, and not having a
central server means that there is no attack vector to be exploited by a potential attacker.
Regardless, every project should maintain its dependencies up to date, especially those
which are flagged for potential security vulnerabilities, and Mandelbrot Maps has been
configured to encourage this.

3.4.7 standard-version – Versioning and changelog

Versioning has become more important in Mandelbrot Maps as more functionality
was added. As a safeguard, versioning acts as a checkpoint for when the application
is known to work as expected. When prototyping the application last year, proper
versioning was not as relevant because the project was still subject to major changes
without notice. However, after having completed that first implementation, that was
taken as the de facto “v1.0”, with some changes then justifying version v1.0.1 towards
the end of that project.

Already when experimenting with releases in the past, manual creation of versions
was considered less than ideal, so we have automated this in Mandelbrot Maps with
standard-version [13], which updates version numbers in files, creates new git
tags, and generates changelogs when called to create a release. New versions follow
Semantic Versioning 2.0 [46] as is common among software projects, and automatic
changelog generation is done by retrieving information from commit messages, which
as above should now follow the Conventional Commits specification.

3.4.8 GitHub Actions – Cloud pipelines

GitHub Actions provides a Continuous Integration pipeline which acts as a secondary
testing mechanism that is configured to run whenever a new commit or pull request is
created. The remote repository uses fresh environments when testing, which ensures that
new code is built and tested in isolation. Specifically, a GitHub Actions configuration
named “Yarn CI” has been created for the Mandelbrot Maps GitHub repository to build
and test the application by performing the following:

1. Set up job environment
2. Checkout new code
3. Set up Node.js

Chapter 3. Architecture Definition and Workflow 22

4. Install all required packages using Yarn
5. Build the project using React
6. Test: run the project’s unit tests
7. Clean up job
8. Complete job

After this job has completed successfully, the status of the commit or pull request is
updated. If the job fails, the commit is labelled as “failing”; if this commit is the latest
in a pull request, the pull request will also be labelled as “failing”, and merging will be
discouraged.

Another GitHub Actions job named “Auto-deploy new tag” has been configured to
automatically deploy the application when a new version is pushed to the master
branch. This job installs and builds the project like the “Yarn CI” job, but proceeds to
deploy that new build to the gh-pages branch of the repository, which is then served
by GitHub Pages to the application’s URL at jmaio.github.io/mandelbrot-maps.

Figure 3.7: GitHub Actions acts as the remote CI/CD pipeline.

3.5 Documentation

Additional documentation has been written to include an outline of the steps required to
deploy a public fork of the main Mandelbrot Maps repository to GitHub pages, so that
those forks can be tested outwith the main application repository.

A Wiki has also been added to the GitHub repository, which currently contains a section
titled “Committing guide” whose purpose is to act as a shortcut to the commitlint
conventional configuration, so that it can quickly be referenced for available commit
message types as set out by the Conventional Commits spec.

http://jmaio.github.io/mandelbrot-maps

Chapter 4

The Application

4.1 Visual identity

New (2021)Previous (2020)

Figure 4.1: Last year’s logo has been refreshed with a more modern look. The new icon
is in the shape of a squircle [47] – a portmanteau of square and circle.

As part of improving the branding of the application, its logo has been updated to look
more modern and professional, while also abiding by the standard for maskable icons
defined in the Web Application Manifest [48, 2.3 - Icon masks and safe zone] set by the
World Wide Web Consortium. Maskable icons can adapt to different icon styles set by
a target device, be it a square, rounded square, teardrop, “squircle” (figure 4.1), circle,
or other mask shape.

4.2 Functionality: New and Improved

4.2.1 Rotation

Both viewers have been updated with the ability to rotate around the complex plane.
Rotation is obtained from the existing react-use-gesture controls, with rotation of
the Mandelbrot set shader being one of my contributions, and rotation for the Julia set
shader having been contributed by Fraser. Rotating a viewer can be achieved by rotating

23

Chapter 4. The Application 24

Figure 4.2: Viewers now support rotation. Minimaps update accordingly.

while performing a two-finger pinch gesture on a touch screen device, or by holding the
Shift key while scrolling for larger devices.

Both fractal viewers have also been changed to allow for programmatically controlling
their positions from within the code, which acts like an API for warping to specific
points since it can be called from other components.

4.2.2 View modes

A new viewing mode switcher has been added, which allows for two layouts: the default
split view, or a full-screen view which maximizes only one of the viewers. The switcher
becomes hidden when a viewer is maximized, providing immediate user feedback by
not allowing the user to perform the same action again as that would not be possible.

(a) Mandelbrot only (b) Split view (c) Julia only

Figure 4.3: New available view modes in Mandelbrot Maps.

4.2.3 URL parameters

Taking inspiration from Google Maps’ URL parameter scheme, Mandelbrot Maps can
now encode viewer locations within a URL. Google Maps encodes its parameters after
the last forward slash, with an ‘@’ symbol followed by the <latitude> , <longitude> ,
and <zoom> level (note the z suffix) delimited by commas:

google.com/maps/@55.944781,-3.187282,17z (/@<lat>,<lng>,<zoom>z)

http://google.com/maps/@55.944781,-3.187282,17z

Chapter 4. The Application 25

This format benefits from being remarkably easy to read when compared to other
encoding schemes – the example below encodes data using a JSON format which is
highly verbose:

mandelbrot.ophir.dev/#{"pos":{"x":-0.745,"y":0.125},"zoom":128000}

Another consideration is that a URL encoding scheme for Mandelbrot Maps would need
to support encoding two viewer locations: one for the location of the Mandelbrot set
viewer and one for the location of the Julia set viewer. To accommodate this requirement,
the Google Maps encoding scheme was adapted to explicitly denote whether an encoded
location belonged to the Mandelbrot viewer (m) or the Julia viewer (j). With this, a
URL for Mandelbrot Maps will encode each viewer’s coordinates, zoom, and rotation:
<x> , <y> , <z> , and <t> , respectively, by prefacing the @ symbol with the viewer letter
<v> (which is replaced with the letter m or j) in the following format:

/<v>@<x>,<y>,<z>,<t>

Encoding both viewers’s positions with this scheme requires only concatenating the
two resulting strings, producing a URL which can encode partial information either for
a single viewer, or both viewers. In our case, these must be encoded as a “hash” route
after the hash character # , to tell the browser that we are navigating to a location within
the page and prevent it from navigating away. All the following URLs are valid:

• jmaio.github.io/mandelbrot-maps/#/m@-0.5,0.6,8,0.2

• jmaio.github.io/mandelbrot-maps/#/j@0.4,-0.2,4.5,1.25

• jmaio.github.io/mandelbrot-maps/#/m@-0.6,-0.5,5,-0.1/j@0.4,0.3,5.1,0.85

Figure 4.4: Google Chrome can generate QR codes for quickly sharing webpages. The
code points to jmaio.github.io/mandelbrot-maps/#/m@-0.6,-0.5,5,-0.1/j@0.4,0.3,5.1,

0.85

Thanks to the information embedded in these URLs, they can easily be shared, for exam-
ple using Google Chrome’s share via QR code feature (available since Chrome 85 [49])
as shown in figure 4.4. When navigating to a Mandelbrot Maps URL with encoded
coordinates, the application smoothly animates the viewers to that location.

When either viewer changes position, the new coordinates are encoded again and the
URL is updated, constantly changing to display the current location. Initially, because
the URL is also used to drive the controls to the correct location, this resulted in an
infinite loop where the URL would be updated, causing the application to warp to the
location specified, which would trigger a URL update, again causing the application to

http://mandelbrot.ophir.dev/#{"pos":{"x":-0.745,"y":0.125},"zoom":128000}
http://jmaio.github.io/mandelbrot-maps/#/m@-0.5,0.6,8,0.2
http://jmaio.github.io/mandelbrot-maps/#/j@0.4,-0.2,4.5,1.25
http://jmaio.github.io/mandelbrot-maps/#/m@-0.6,-0.5,5,-0.1/j@0.4,0.3,5.1,0.85
http://jmaio.github.io/mandelbrot-maps/#/m@-0.6,-0.5,5,-0.1/j@0.4,0.3,5.1,0.85
http://jmaio.github.io/mandelbrot-maps/#/m@-0.6,-0.5,5,-0.1/j@0.4,0.3,5.1,0.85

Chapter 4. The Application 26

warp, and so on. This issue was fixed by changing the behaviour so that the URL is only
updated when the view stops animating. By hooking into react-spring , it is possible
to run a callback function when a spring stops animating as required. This callback now
fires only once after the view has stopped animating, which prevents infinite update
loops and is more efficient by not constantly refreshing the browser URL.

4.2.4 Deep zoom

Figure 4.5: (Top) Deep zoom disabled. (Bottom) Deep zoom enabled. Deep zoom
brings better magnification performance to most regions of the Mandelbrot set while
maintaining the speed of WebGL.
jmaio.github.io/mandelbrot-maps/#/m@-0.0399693,0.9861198,2005827.84,-1

One of the standout features of a previously reviewed fractal explorer was the deep
zoom in DeepFractal (now “DeepMandelbrot”: deep-mandelbrot.js.org). Adding deep
zoom posed several challenges, since the existing architecture needed to be tweaked
before it could carry out the steps required for deep zoom to function correctly.

Integrating deep zoom required creating a new Mandelbrot renderer component with
a different WebGL shader and toggling between the two when the feature is enabled.
The deep zoom component then uses the CPU to perform a search for a reference point
within the bounds of the Mandelbrot viewer. Finding a reference point involves iterating
over multiple candidate points to obtain one which does not quickly diverge, such that
it can be used in iterating other nearby points with the approximation in equation 2.9.

The results using deep zoom are extraordinarily detailed as shown in figure 4.5, but
it can unfortunately suffer from random visual glitches if no good reference point is
found as described above [50]. Since deep zoom can maintain detail up to immensely
large factors of magnification, the precision of the react-spring controls needs to
be able to change dynamically between a default level of precision (1e-7) and and an

http://jmaio.github.io/mandelbrot-maps/#/m@-0.0399693,0.9861198,2005827.84,-1
http://deep-mandelbrot.js.org

Chapter 4. The Application 27

enhanced level of precision (1e-15). Additionally, in situations where it does function
correctly, deep zoom can reach such a high level of magnification that the precision of
the controls themselves causes the view to feel like it snaps to certain points on a grid;
it may be possible to mitigate this by specifying a higher precision for the controls, but
testing this did not produce better results past this scale.

4.2.5 Controls

ScrollDrag Pinch Out Pinch In Rotate

Figure 4.6: Multi-touch gestures illustrated.

The ability to rotate a viewer had previously not been implemented due to issues with
rotation when using the two-finger touch gesture. The first attempt at adding rotation
last year was not reliable because the method for calculating the desired rotation angle
did not correctly consider full rotations, causing it to wrap around between 0 and 360
degrees with a sudden jump between the two. That issue has since been addressed by
using the correct two-finger rotation calculation provided by react-use-gesture .

Another issue raised during the evaluation was the instability of the panning gesture
after releasing from a mouse click, where the view would suddenly move even though
there was no residual velocity in the gesture. This has been fixed by changing the
precision of the spring as described in the documentation for react-spring .

When zooming, some users have also reported differences when using a touchpad to
zoom. Some touchpads support two methods for zooming: scrolling with two fingers,
which is equivalent to using a scroll wheel on a mouse; or using a two-finger pinch,
which is equivalent to a pinch gesture on a phone. Unfortunately, there does not appear
to be a consistent way to identify the difference in gesture, which can result in very slow
zooming when using the two-finger gesture on a touchpad where it may be perfectly
fine on a mobile device.

4.2.6 Colour picker

A simple colour picker widget (from react-colorful) has been added to the settings
menu, allowing users to select the primary colour for displaying the fractals. The
colours are applied to both the regular and deep zoom modes, and the primary colour is
complemented by its inverse: blue with orange, green with purple, black with white.
The colour picker can be seen in figure 4.8 below the iterations slider.

Chapter 4. The Application 28

Figure 4.7: The User Interface of the final version of last year’s application. (v1.0.1)

4.3 User Interface

4.3.1 Cosmetic changes

The UI features rounder corners for a more modern look. For clarity, “mini-viewer”
has been renamed to “minimap”, and minimaps have changed from a circular shape to
a rounded rectangular shape, mimicking Google Maps’ Satellite/Map view switcher.
More colour has been added to provide better context, such as the information buttons
and the reset button. This includes the settings menu, which has been renamed from
Configuration to Settings, and its layout and spacing have been tweaked.

The settings icon on the bottom right of the main screen now has an animation which
makes it slowly rotate around its centre. This slow rotation provides a visual cue that
draws attention towards the settings button without being too distracting. Animating this
icon has an additional benefit that the rotation will continue as long as the application
is responding, signalling to a user that it is not frozen if the icon is still rotating, or
conversely that it is not responding (and should be refreshed) if the icon stops rotating.
The rotation may also become less smooth if the current rendering settings are too
demanding for the device, which is an unintended side-effect, but one which provides
good insight into how much computation the device is expending for rendering. A
smoother rotation indicates a faster, more capable device, whereas a choppy rotation
indicates a device which may be struggling to keep up with the application.

Chapter 4. The Application 29

Figure 4.8: The application’s User Interface has had multiple additions and visual
changes to make it more appealing. (v1.2.0)

4.3.2 Usability

Minimaps

The minimap was intended to show a zoomed-out view of the region where a user was
zoomed into on the fractal, similarly to Google Maps’ Satellite/Map view switcher, or
even a video game minimap [51]. Minimaps would previously become gradually more
transparent or “fade out” as the viewer approached a zoom level of 1 or lower to remove
clutter from the view, since the minimap would look almost the same as the regular
view. This fading behaviour was not obvious or documented and caused confusion to
some users, so it has been removed, giving only the option of always showing or hiding
the minimaps.

Rotation indicator

Minimaps have also been updated with a small visual element on the top-right corner
which displays the current rotation level of a viewer. This visual element is shaped like
a compass: a large red and white needle inside a disc of contrasting colour, similarly
to how popular maps applications convey the orientation of the map to the user. The
compass element is clickable – doing so resets the rotation of the viewer and sets the
red half of the compass needle pointing North, equivalent to a rotation of zero radians.

Mouse cursor context

Both viewers have been updated to display a more contextual mouse cursor. Previously,
if a user hovered over or interacted with a viewer, their mouse cursor would not change,

Chapter 4. The Application 30

remaining the default system mouse cursor. This has been improved so that the mouse
cursor is now changed using the cursor CSS property [52], setting it to grab when
hovering over a viewer or grabbing when clicking and dragging to pan around the
view. When using a mouse, this small change provides a much clearer visual metaphor
of what action is currently being performed.

Normal Grab Grabbing

Figure 4.9: The mouse cursor changes contextually based on what action a user is
performing on a viewer. Grab hints that the viewer’s content can be moved around, and
Grabbing shows that the content is actively being moved by the user.

Explicit updates

An issue found towards the end of last year’s project was that updating the application
was difficult. The application relies on its Progressive Web App service worker [53]
to store the application offline, after which it periodically checks if a new update is
available online. If an update is available, the worker downloads and applies it over the
existing version.

This update process would complete in the background, but the existing version would
still be displayed until the page was reloaded to display the new version, making it
appear to the user as though nothing had happened.

To make updates more explicit, the application now hooks into the service worker’s
lifecycle to determine when an update is available and has been applied. The service
worker emits an event if it has found and applied a new update, which the application
then actions by displaying a persistent pop-up snackbar to the user, informing them that
an update is available and prompting them with a button that can be clicked to reload
the page and apply the update.

4.4 Help Menu

A new pop-up dialog has been added containing helpful information about the layout of
the Mandelbrot and Julia sets, the available ways of controlling viewers, and information
about each of the settings available in the settings menu. Ideally, first-time users would
be prompted to view this menu on their first visit, such as with a snackbar, but this
feature is not currently available. To reach this menu, a user must first enter the Settings
menu, then click the Help button on the top right corner of the popover to reveal the
pop-up dialog consisting of three pages (figure 4.10).

The first page of the help menu contains basic information about the application, such as
how to re-enter the help menu, what the application does, and a short line about fractals.

Chapter 4. The Application 31

Figure 4.10: The top of the three help menu pages.

Further down, the viewer layouts are explained using figure 4.11. On the second page,
the control schemes for different devices are explained.

The third page contains the same settings widgets as the Settings menu. Settings can
be toggled from here instead of having to alternate back and forth. Reusing the actual
control component was considered a clearer, simpler design decision, as opposed to
displaying the control using, say, a static image. This also means that new controls are
automatically added to the help menu without any additional input required.

M: Mandelbrot set
J: Julia set

Landscape

JM

Portrait

M

J

Figure 4.11: The diagram explaining the layout of the viewers in the first help page.

Chapter 5

Evaluation

5.1 Search Engine Optimization

Figure 5.1: Search results for popular search engines with the query “mandelbrot maps”
on a simulated mobile device (Pixel 2 XL). (Left to right: Google, DuckDuckGo, Bing,
Yahoo)

Depending on certain factors, search results can appear in different positions on search
engines. Geographical location, for example can affect how a search engine ranks
results based on local trends [16]. Searches were therefore carried out using the School
of Informatics’ VPN service, and location was set to United Kingdom where possible,
to simulate a query performed in Edinburgh. The search query “Mandelbrot Maps”
ranks our application at number 1 on both Google and DuckDuckGo (discounting image
search suggestions). Bing and Yahoo rank it in second place in terms of webpages,
with both suggesting “Mandelmap” as the most relevant result. Bing also suggests the
existing Android application “Mandelbrot Maps” developed by Alasdair Corbett (see

32

Chapter 5. Evaluation 33

appendix A). According to Google search console, the most popular search term leading
to the application being seen by users is “mandelbrot map”, which resulted in 225 views
out of 719 total views (∼ 30%) over the past 16 months on Google search.

5.2 Performance

Figure 5.2: Desktop benchmarking results for Mandelbrot Maps using popular screen
resolutions from StatCounter (gs.statcounter.com).

Figure 5.3: Mobile phone benchmarking results for Mandelbrot Maps using a OnePlus 6
mobile device. Tests carried out both while charging and on battery for completeness.
(DPR = Device Pixel Ratio [enabled], AA = Anti-Aliasing [enabled])

Raw graphics performance of the application was tested to verify that its performance
has remained fast despite the addition of new functionality. Statistics obtained with
stats.js (github.com/mrdoob/stats.js).

Benchmarking on a mobile phone was done both while charging and on battery to
ensure that this variable was removed, since overall performance could be lowered by
power-saving features or by heat generated by the charging process throttling the device.
As tested, the device performed almost identically in both scenarios (within a small
margin of error), indicating that performance was unaffected by the charging status.

http://gs.statcounter.com
http://github.com/mrdoob/stats.js

Chapter 5. Evaluation 34

The application once again performs smoothly in benchmarks, capping out at the
screen’s native refresh rate in most tests, which indicates that there is still a lot of
performance available beyond that, and that this year’s additions have not noticeably
lowered its performance. Deep zoom has not been tested extensively as it provides
unpredictable performance, tends to be subject to glitches (figure 5.4).

Figure 5.4: Deep zoom can suffer from glitches which lead to reduced perfor-
mance: jmaio.github.io/mandelbrot-maps/#/m@-1.2532036,0.3850113,25253719.3,0/j@

0.4364131,-0.6468786,4,2.12

5.3 Participant Survey

Overall Experience

4.08
Deep Zoom 3.25

Help Menu 4.44

Performance 4.25

User Interface 4.17

Figure 5.5: Survey statistics collected using a star scale ranging from one to five.

A participant survey was circulated where anyone could anonymously submit feedback,
and 12 responses were submitted. The key statistics are highlighted in figure 5.5.

Overall, the results from only twelve participants carry a larger margin of error compared
to last year’s 31 participants, but remain comparable, if marginally lower (table 5.1).
Reception was once again positive, with diverse feedback from multiple areas of
the application. Responses indicated that 5 respondents encountered issues using the
application, mostly with the controls when zooming on the viewers or due to overlapping
UI elements. Despite this, 8 respondents indicated that they would be interested in
using the application again, 1 would not be interested, and 3 were not sure.

http://jmaio.github.io/mandelbrot-maps/#/m@-1.2532036,0.3850113,25253719.3,0/j@0.4364131,-0.6468786,4,2.12
http://jmaio.github.io/mandelbrot-maps/#/m@-1.2532036,0.3850113,25253719.3,0/j@0.4364131,-0.6468786,4,2.12

Chapter 5. Evaluation 35

Rating

C
ou

nt

0

2

4

6

8

1 2 3 4 5

Overall UI Performance Help Menu Deep Zoom

User rating distribution (12 responses)

Figure 5.6: Distribution of user ratings per category. The first three questions were
required; the last two were not and therefore do not add up to 12.

Measure Last year σ This year σ

Overall 4.13 0.72 4.08 0.67

User Interface 4.23 0.84 4.17 0.72

Performance 4.45 0.72 4.25 0.97

Help Menu – – 4.44 0.88

Deep Zoom – – 3.25 1.58

Table 5.1: Comparison of last year’s user survey results with this year’s survey.

Feedback for individual components was positive overall. Choosing between the ratings
of “Don’t know / Did not use”, “Not good”, “Okay”, and “Great!”, 75% of respondents
rated the Mandelbrot set, Julia set, and Minimaps as “Great!”. Most feedback fell
between “Okay” and “Great!”, although some respondents noted that they did not know
or did not use certain functionality, most notably the Coordinates card, Iteration slider,
Colour changer, and Frames per second (FPS) meter.

Regarding controls, feedback was overwhelmingly positive. All ratings for Touchscreen
input were “Great!” Nearly all other ratings given were “Great!”, with only one user
rating Mouse input as “Not good”, and one other rating Touchpad as “Okay”. As
outlined in section 4.2.5, the improvements made appear to have fixed most remaining
issues, greatly improving the user experience as a result.

Survey responses also showed that users were happy with the level of performance,
even if at times they may have encountered some issues with zooming around for a
while, especially if Deep Zoom was enabled. Unfortunately, it is not always possible
to test on extensive numbers of devices ahead of release, and as discussed previously,
unit testing WebGL applications cannot give accurate insight into what potential issues
different users will experience on their own devices, which makes testing the application
a highly manual, time-consuming process that will inevitably not find all existing bugs.

Chapter 5. Evaluation 36

Insightful feedback snippets from the survey respondents are included in the subsections
below.

5.3.1 Positive feedback

• information in the “Help” menu was super helpful, although I don’t understand what half the
settings do as they were technical terms

• things are explained well and I like the interface and look of the help menu - suits the app
well!

5.3.2 Suggestions for improvement

• perhaps hovering over the different features could display a short help card (for a quick
reminder/explanation) - and then a pointer to the help section for more help?

• didn’t really use the help menu, the descriptions of each setting would be more useful if
accessible directly next to that setting

• the features I used so far are great, you should think about performance
• maybe change the colour of the crosshair, sometimes it blends in with the Mandelbrot set

5.3.3 Issues

• got stuck when zooming in, reloading worked
• I couldn’t zoom infinitely
• scroll wheel was not that sensitive: I had to resort to use pinch to zoom to zoom faster
• pinching to zoom often rotated everything almost 180◦, it would be nice to have an option to

disable rotation
• the map freezes after I zoom in and out it for a while (about 1 min) on iPad
• after exploring and zooming for a few minutes, the graphics freeze (but the settings menu still

responds)
• when I started the “Tans Theorem Explorer” I couldn’t expand the Julia set because the

arrow was overlapped by the explorer popup, then I didn’t find a way to close the explorer
because the cross is at the very top left and was covered by the FPS display; maybe some
rearrangement of the components would be useful

• it was pixelated, only soon after I found that I could change the DPI; you might want to
configure the DPI behind the scenes to keep things sharp by default: if framerate [is low], fall
back to a smaller resolution; this is what many games do behind the scenes when they render
the 3D scene (and keep the UI high resolution to fool you)

5.3.4 Deep Zoom

• really loved deep zoom: information was super helpful, good to know performance can be
affected as it definitely was but didn’t surprise me since I knew

• it was slow, but yes, that was mentioned in the help menu already
• I didn’t know there was this functionality; maybe when you reach a zoom limit, you could

make a pop up that suggests to activate Deep Zoom or keep it on by default
• (on mobile) unusually glitchy with the Mandelbrot fractal shapes moving around as I zoom

Chapter 5. Evaluation 37

5.4 Workflow and Collaboration

The workflow presented in chapter 3 has undoubtedly made the development process
easier, but this measure can be subjective and difficult to quantify. A good way to
demonstrate the efficiency of this workflow is to look at the new functionality added,
especially from external contributions. Despite not having worked on the project
before, Fraser contributed functionality which was merged into the main branch of the
repository from 22 March 2021 (Tan’s theorem explorer).

It was really easy! The code is laid out into understandable folders, and
it’s easy to find e.g. the settings menu, shaders or UI, plus there are setup
instructions in the README.
TypeScript was great, especially because there are custom types. For
instance, XYType made it clear I should be passing in coordinates.
I LOVE Prettier... the code looks consistent and you spend less time tabbing
lines out.
husky gave me reassurance because I was working on a public repo,
although initially part of it couldn’t handle my username having a space in
it. :’(

— Fraser Scott on extending Mandelbrot Maps

5.5 The future of WebGL

Upgrading to WebGL 2 was considered, and has been implemented and tested to work,
but this feature has not been integrated into the main branch because it is not supported
by the mobile Safari browser, which represents 24.85% of the global mobile browser
market share as of March 2021 [54]. Updating to alienate about 25% of the potential
user base in our case is not a justifiable business decision. While WebGL 2 brings
significant improvements for 3D content on the web, in the context of Mandelbrot Maps,
it does not contribute any appreciable benefits since we only make use of a basic subset
of the existing WebGL features.

Although this Mandelbrot Maps project makes direct use of WebGL, there are other
projects such as Babylon.js [55] and Three.js [56] which provide wrappers around
the base WebGL functionality to make it easier to create 2D and 3D content on the
Internet. As these engines look to provide more functionality, they have inevitably run
into the limitations of the underlying WebGL technology (which is seeing development
winding down) [57]. This is also true of other projects looking to make use of advanced
graphics on the web, which has led to the joint development of WebGPU: a new web
standard for “modern 3D graphics and computation capabilities” [58]. WebGPU is still
a work-in-progress, but a future version of Mandelbrot Maps could see more advanced
functionality by transitioning to WebGPU if the specification becomes widely adopted.

Chapter 6

Conclusion

This report has showcased updates made to Mandelbrot Maps which have made it
easier to develop for, maintain, and extend with new functionality. The conversion to
TypeScript and the workflow proposed serve as a demonstration of how an existing
JavaScript application could be adapted to follow a streamlined workflow and maximize
developer productivity by leveraging process automation.

6.1 Workflow

As it stands, this project could serve as a “demo project” for new and existing JavaScript
and TypeScript projects to reference how to:

• use React and TypeScript (together or separately)
• use Yarn 2 (with Plug’n’Play) for project and dependency management
• set up linting and style rules with ESLint and Prettier
• create git hooks using husky

• enforce commit message format with commitlint

• release new versions with standard-version

• create CI/CD pipelines for testing and deployment, using GitHub Actions
• detect dependency vulnerabilities using Dependabot

6.2 Application

The application has proved to be a solid base to build upon, as shown by the new
functionality, including Fraser’s contribution of the Tan’s Theorem Explorer. After
extensively searching for and evaluating existing fractal viewers on the Internet over
the past two years, we believe that this new version of Mandelbrot Maps combines the
functionality from some of the best, most unique fractal viewers into a single application,
making it one of the most complete fractal viewers currently available online. Its key
features are:

• Supports Mandelbrot set and Julia set

38

Chapter 6. Conclusion 39

• High performance using GPU acceleration (WebGL)
• Native support desktop and mobile devices and gestures (React)
• Deep Zoom (Perturbation theory)
• Movement: Pan, Zoom, Rotate
• Modern, simple User Interface
• Fractal options: iteration control, colour selection
• Progressive Web App: works like a native app, including offline
• Embedded help menu

6.3 Future work

The user survey showed that most users feel positively towards the application, but that
some control issues and rendering bugs are still lingering. As suggested by one of the
respondents, having an educational component that is “99% visual representation and
1% text” would be a good addition. The application could be made more accessible to
younger audiences by including a didactic component that assumes little to no prior
knowledge, taking steps to teach the basics and aiming to provide a better understanding
of the mathematics behind the fractal shapes. Adding support for more exploration
possibilities, which could include other fractals such as the Burning Ship [59], or even
allowing arbitrary functions may make the application more attractive for education
purposes.

With WebGL potentially becoming less relevant as the WebGPU specification gets
closer to release, it may be useful to migrate to a graphics engine such as Babylon.js or
Three.js, as they would be be updated internally to bring support for newer features and
specifications.

Although Deep Zoom is currently only available on the Mandelbrot set viewer, adding
this to the Julia set will likely require just a few minor tweaks to the existing code.
The application’s Deep Zoom functionality may also benefit from experimenting with
other techniques for fast arbitrary precision calculations. Fractalforums (previously
fractalforums.com, now fractalforums.org) is a high-quality resource where some amaz-
ing fractal-specific improvements have been proposed.

Regarding automation, the current configuration works well as is. In future, new
functionality may require manually triggering certain tasks, such as packaging the
application before release. A tool that could help with this is gulp [60], which lets
developers automate parts of their workflow by defining arbitrary tasks that can be
declared as JavaScript code.

http://fractalforums.com
http://fractalforums.org

Bibliography

[1] João Filipe Maio. Mandelbrot Maps: WebGL Application for Exploring Fractals.
2020.

[2] Lei Tan. “Similarity between the Mandelbrot set and Julia sets”. In: Comm. Math.
Phys. 134.3 (1990), pp. 587–617. URL: https://projecteuclid.org:443/euclid.
cmp/1104201823.

[3] React - A JavaScript library for building user interfaces. URL: http://reactjs.
org/.

[4] WebGL - OpenGL ES for the Web. 2011. URL: http://khronos.org/webgl/.
[5] Adobe Flash Player EOL General Information Page. URL: https://www.adobe.

com/products/flashplayer/end-of-life.html.
[6] Microsoft. TypeScript: Typed JavaScript at Any Scale. URL: https : / / www .

typescriptlang.org/.
[7] Microsoft. IntelliSense in Visual Studio Code. URL: https://code.visualstudio.

com/docs/editor/intellisense.
[8] OpenJS Foundation. ESLint - Pluggable JavaScript linter. URL: https://eslint.

org/.
[9] Prettier – Opinionated Code Formatter. URL: https://prettier.io/.

[10] @typicode. typicode/husky: Git hooks made easy - woof! URL: https://github.
com/typicode/husky.

[11] @azz. azz/pretty-quick: Get Pretty Quick. URL: https://github.com/azz/pretty-
quick.

[12] @okonet. okonet/lint-staged: Run linters on git staged files. URL: https://github.
com/okonet/lint-staged.

[13] @conventional-changelog. conventional-changelog/standard-version: Automate
versioning and CHANGELOG generation, with semver.org and conventionalcom-
mits.org. URL: https://github.com/conventional-changelog/standard-version.

[14] @conventional-changelog. conventional-changelog/commitlint: Lint commit mes-
sages. URL: https://github.com/conventional-changelog/commitlint.

[15] John Gruber and Aaron Swartz. Markdown – text-to-HTML conversion tool for
web writers. URL: https://daringfireball.net/projects/markdown/.

[16] Wikipedia contributors. Google Personalized Search — Wikipedia, The Free En-
cyclopedia. [Online; accessed 7-April-2021]. 2021. URL: https://en.wikipedia.
org/w/index.php?title=Google_Personalized_Search&oldid=1003846204.

[17] Poorvu Center for Teaching and Learning. Citing Internet Sources | Poorvu Cen-
ter for Teaching and Learning. URL: https://poorvucenter.yale.edu/writing/
using-sources/citing-internet-sources.

40

https://projecteuclid.org:443/euclid.cmp/1104201823
https://projecteuclid.org:443/euclid.cmp/1104201823
http://reactjs.org/
http://reactjs.org/
http://khronos.org/webgl/
https://www.adobe.com/products/flashplayer/end-of-life.html
https://www.adobe.com/products/flashplayer/end-of-life.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://eslint.org/
https://eslint.org/
https://prettier.io/
https://github.com/typicode/husky
https://github.com/typicode/husky
https://github.com/azz/pretty-quick
https://github.com/azz/pretty-quick
https://github.com/okonet/lint-staged
https://github.com/okonet/lint-staged
https://github.com/conventional-changelog/standard-version
https://github.com/conventional-changelog/commitlint
https://daringfireball.net/projects/markdown/
https://en.wikipedia.org/w/index.php?title=Google_Personalized_Search&oldid=1003846204
https://en.wikipedia.org/w/index.php?title=Google_Personalized_Search&oldid=1003846204
https://poorvucenter.yale.edu/writing/using-sources/citing-internet-sources
https://poorvucenter.yale.edu/writing/using-sources/citing-internet-sources

BIBLIOGRAPHY 41

[18] Samvid Mistry and Prakash Patel. “A Guide to Material Design, a Modern
Software Design Language”. In: Open Source For You (Apr. 2016), pp. 64–66.

[19] Gavin Bierman, Martín Abadi, and Mads Torgersen. “Understanding TypeScript”.
In: ECOOP 2014 – Object-Oriented Programming. Ed. by Richard Jones. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 257–281. ISBN: 978-3-662-
44202-9.

[20] Wikipedia contributors. Patterns in nature > Trees, fractals — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Patterns_in_
nature&oldid=1011041441. [Online; accessed 24-March-2021]. 2021.

[21] Eric W. Weisstein. “Mandelbrot Set”. In: From MathWorld–A Wolfram Web
Resource. (2020). [Online; accessed 11-April-2020]. URL: https://mathworld.
wolfram.com/MandelbrotSet.html.

[22] Mike Hurley (mgh3@po.cwru.edu). Proof that 2.0 is sufficient. URL: http://
mrob.com/pub/muency/escaperadius.html.

[23] Eric W. Weisstein. “Julia Set”. In: From MathWorld–A Wolfram Web Resource.
(2020). [Online; accessed 11-April-2020]. URL: https://mathworld.wolfram.com/
JuliaSet.html.

[24] Kevin I. Martin. SuperFractalThing – Arbitrary precision Mandelbrot set ren-
dering in Java. Paper: science.eclipse.co.uk/sft_maths.pdf. URL: http://www.
science.eclipse.co.uk/SuperFractalThing.html.

[25] D.H. Bailey, R. Barrio, and J.M. Borwein. “High-precision computation: Math-
ematical physics and dynamics”. In: Applied Mathematics and Computation
218.20 (2012), pp. 10106–10121. ISSN: 0096-3003. DOI: https://doi.org/10.
1016/j.amc.2012.03.087. URL: https://www.sciencedirect.com/science/article/
pii/S0096300312003505.

[26] Islam ElShaarawy and Walid Gomaa. “Ideal Quantification of Chaos at Finite
Resolution”. In: Computational Science and Its Applications – ICCSA 2014.
Ed. by Beniamino Murgante et al. Cham: Springer International Publishing, July
2014, pp. 162–175. ISBN: 978-3-319-09144-0. DOI: 10.1007/978-3-319-09144-
0_12.

[27] Mathematics Stack Exchange: Perturbation of Mandelbrot set fractal (NightElfik).
URL: https://math.stackexchange.com/a/1071945/757765.

[28] Atlassian. Atlassian Agile Coach – What is Agile? URL: https://www.atlassian.
com/agile.

[29] Atlassian. Kanban - A brief introduction. URL: https : / / www . atlassian . com /

agile/kanban.
[30] Jeff Sutherland and Ken Schwaber. The 2020 Scrum Guide. URL: https : / /

scrumguides.org/.
[31] GitHub. Features | GitHub – GitHub. URL: https://github.com/features.
[32] Mozilla. MDN Web Docs Glossary: Dynamic typing. URL: https://developer.

mozilla.org/en-US/docs/Glossary/Dynamic_typing.
[33] @microsoft. microsoft/TypeScript: TypeScript is a superset of JavaScript that

compiles to clean JavaScript output. URL: https : / / github . com / microsoft /

TypeScript.
[34] Poimandres. react-spring – bring your components to life with simple spring

animation primitives. URL: https://www.react-spring.io/.

https://en.wikipedia.org/w/index.php?title=Patterns_in_nature&oldid=1011041441
https://en.wikipedia.org/w/index.php?title=Patterns_in_nature&oldid=1011041441
https://mathworld.wolfram.com/MandelbrotSet.html
https://mathworld.wolfram.com/MandelbrotSet.html
http://mrob.com/pub/muency/escaperadius.html
http://mrob.com/pub/muency/escaperadius.html
https://mathworld.wolfram.com/JuliaSet.html
https://mathworld.wolfram.com/JuliaSet.html
http://science.eclipse.co.uk/sft_maths.pdf
http://www.science.eclipse.co.uk/SuperFractalThing.html
http://www.science.eclipse.co.uk/SuperFractalThing.html
https://doi.org/https://doi.org/10.1016/j.amc.2012.03.087
https://doi.org/https://doi.org/10.1016/j.amc.2012.03.087
https://www.sciencedirect.com/science/article/pii/S0096300312003505
https://www.sciencedirect.com/science/article/pii/S0096300312003505
https://doi.org/10.1007/978-3-319-09144-0_12
https://doi.org/10.1007/978-3-319-09144-0_12
https://math.stackexchange.com/a/1071945/757765
https://www.atlassian.com/agile
https://www.atlassian.com/agile
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://scrumguides.org/
https://scrumguides.org/
https://github.com/features
https://developer.mozilla.org/en-US/docs/Glossary/Dynamic_typing
https://developer.mozilla.org/en-US/docs/Glossary/Dynamic_typing
https://github.com/microsoft/TypeScript
https://github.com/microsoft/TypeScript
https://www.react-spring.io/

BIBLIOGRAPHY 42

[35] David Catuhe. Why we decided to move from plain JavaScript to TypeScript for
Babylon.js. URL: https://www.eternalcoding.com/why-we-decided-to-move-from-
plain-javascript-to-typescript-for-babylon-js/.

[36] Amber Rockwood. Automated Cross-Browser Testing for WebGL – It’s Not Going
to Happen. 2018. URL: https : / / www . eventbrite . com / engineering / automated -

cross-browser-testing-webgl-not-going-happen/.
[37] Red Hat. What is CI/CD? URL: https://www.redhat.com/en/topics/devops/what-

is-ci-cd.
[38] @google. google/styleguide: Style guides for Google-originated open-source

projects. URL: https://github.com/google/styleguide.
[39] OpenJS Foundation. Conventional Commits – A specification for adding hu-

man and machine readable meaning to commit messages. URL: https : / / www .

conventionalcommits.org/.
[40] @angular. Angular – Contributing to Angular > Commit Message Format. URL:

https : / / github . com / angular / angular / blob / master / CONTRIBUTING . md# - commit -

message-format.
[41] GitHub. GitHub Desktop | Simple collaboration from your desktop. URL: https:

//desktop.github.com/.
[42] Scott Chacon and Ben Straub. Pro Git. Expert’s voice in software development.

Apress, 2009. ISBN: 9781430218340.
[43] @yarnpkg. Yarn - Package Manager. URL: https://yarnpkg.com/.
[44] Yarn. Why should you upgrade to Yarn Modern? URL: https : / / yarnpkg . com /

getting-started/qa.
[45] Dependabot. Automated dependency updates. URL: https://dependabot.com/.
[46] Tom Preston-Werner. Semantic Versioning 2.0.0. URL: https://semver.org/.
[47] Eric W. Weisstein. “Squircle”. In: From MathWorld–A Wolfram Web Resource.

(2021). [Online; accessed 9-April-2021]. URL: https://mathworld.wolfram.com/
Squircle.html.

[48] World Wide Web Consortium. Web Application Manifest. URL: https : / / w3c .

github.io/manifest/.
[49] Abner Li. “Chrome 85 for Android adds share menu, desktop QR codes”. In:

9to5Google (Aug. 2020). URL: https://9to5google.com/2020/08/25/chrome-85-
share/.

[50] Fractal Wiki Contributors. Perturbation theory – Fractal Wiki. URL: https :

//fractalwiki.org/index.php?title=Perturbation_theory&oldid=29.
[51] Wikipedia contributors. Mini-map — Wikipedia, The Free Encyclopedia. [Online;

accessed 6-April-2021]. 2021. URL: https : / / en . wikipedia . org / w / index . php ?

title=Mini-map&oldid=1002395177.
[52] cursor - CSS: Cascading Style Sheets | MDN. URL: https://developer.mozilla.

org/en-US/docs/Web/CSS/cursor.
[53] Service Worker API. URL: https://developer.mozilla.org/en-US/docs/Web/API/

Service_Worker_API.
[54] Can I use WebGL 2.0? URL: https://caniuse.com/webgl2.
[55] Babylon.js: Powerful, Beautiful, Simple, Open - Web-Based 3D At Its Best. URL:

https://www.babylonjs.com/.
[56] Three.js JavaScript 3D Library. URL: https://threejs.org/.

https://www.eternalcoding.com/why-we-decided-to-move-from-plain-javascript-to-typescript-for-babylon-js/
https://www.eternalcoding.com/why-we-decided-to-move-from-plain-javascript-to-typescript-for-babylon-js/
https://www.eventbrite.com/engineering/automated-cross-browser-testing-webgl-not-going-happen/
https://www.eventbrite.com/engineering/automated-cross-browser-testing-webgl-not-going-happen/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://github.com/google/styleguide
https://www.conventionalcommits.org/
https://www.conventionalcommits.org/
https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-commit-message-format
https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-commit-message-format
https://desktop.github.com/
https://desktop.github.com/
https://yarnpkg.com/
https://yarnpkg.com/getting-started/qa
https://yarnpkg.com/getting-started/qa
https://dependabot.com/
https://semver.org/
https://mathworld.wolfram.com/Squircle.html
https://mathworld.wolfram.com/Squircle.html
https://w3c.github.io/manifest/
https://w3c.github.io/manifest/
https://9to5google.com/2020/08/25/chrome-85-share/
https://9to5google.com/2020/08/25/chrome-85-share/
https://fractalwiki.org/index.php?title=Perturbation_theory&oldid=29
https://fractalwiki.org/index.php?title=Perturbation_theory&oldid=29
https://en.wikipedia.org/w/index.php?title=Mini-map&oldid=1002395177
https://en.wikipedia.org/w/index.php?title=Mini-map&oldid=1002395177
https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://caniuse.com/webgl2
https://www.babylonjs.com/
https://threejs.org/

BIBLIOGRAPHY 43

[57] WebGL Happenings – The Khronos Group Inc. URL: https://www.khronos.org/
blog/webgl-happenings.

[58] W3C – GPU for the Web Community Group. URL: https://www.w3.org/community/
gpu/.

[59] Fractal Wiki Contributors. Burning Ship – Fractal Wiki. URL: https://fractalwiki.
org/wiki/Burning_Ship.

[60] @gulpjs. gulp – A toolkit to automate & enhance your workflow. URL: https:
//github.com/gulpjs/gulp.

https://www.khronos.org/blog/webgl-happenings
https://www.khronos.org/blog/webgl-happenings
https://www.w3.org/community/gpu/
https://www.w3.org/community/gpu/
https://fractalwiki.org/wiki/Burning_Ship
https://fractalwiki.org/wiki/Burning_Ship
https://github.com/gulpjs/gulp
https://github.com/gulpjs/gulp

Appendix A

Project Lineage

This section is dedicated to those who have previously worked on versions Mandelbrot
Maps. GitHub @usernames are included where available.

• 2008 – Iain Parris creates the first version of Mandelbrot Maps, a Java applet
which can display the Mandelbrot set and the Julia set side-by-side.

• 2009 – Edward Mallia improves upon Parris’ applet by adding multithreading,
among others; notably, the introduction includes an email exchange between
Edward and the late Professor Benoît Mandelbrot.

• 2010 – Taige Liu builds upon Mallia’s version of the applet.

• 2012 – Alasdair Corbett (@withad) creates a version of Mandelbrot Maps for
Android, available on the Google Play Store at the time of writing: play.google.
com/store/apps/details?id=uk.ac.ed.inf.mandelbrotmaps

• 2015 – Skye Welch (@CarrotCodes) updates Corbett’s version of Mandelbrot
Maps for Android with faster rendering and other improvements

• 2019 – Joseph Hunter further updates the Android version to display Tan Lei’s
theorem (Similarity between the Mandelbrot set and Julia sets)

• 2020 – Freddie Bawden (@freddiejbawden) creates a web version of Mandelbrot
Maps using React and WebAssembly + Rust (http://mmaps.freddiejbawden.com/);
Joao Maio (@JMaio) creates a web version of Mandelbrot Maps using React and
WebGL.

• 2021 – Joao Maio updates and ports the project to TypeScript, proposing a new
development and CI/CD workflow, and adding perturbation theory deep zoom.
Fraser Scott (@fraserdscott) builds on the existing WebGL version of Mandelbrot
Maps to add a demonstration of Tan’s theorem, displaying the similarity between
the Mandelbrot set and Julia sets, which is integrated into the main application.
Georgina Medd (@GeorginaMedd) researches and implements an educational
component to Mandelbrot Maps.

44

https://github.com/withad
http://play.google.com/store/apps/details?id=uk.ac.ed.inf.mandelbrotmaps
http://play.google.com/store/apps/details?id=uk.ac.ed.inf.mandelbrotmaps
https://github.com/CarrotCodes
https://github.com/freddiejbawden
http://mmaps.freddiejbawden.com/
https://github.com/JMaio
https://github.com/fraserdscott
https://github.com/GeorginaMedd

	1 Introduction
	1.1 Context – MInf 1
	1.2 Project Aim and Summary
	1.3 The Internet as a Self-Documenting Resource
	1.4 Report Overview
	1.5 Project Coordination

	2 Fractals: A Refresher
	2.1 The Complex Plane
	2.2 Mandelbrot set
	2.3 Julia sets
	2.4 Quick Maths - Graphics Processing Units
	2.5 Perturbation Theory and ``Arbitrary'' Precision

	3 Architecture Definition and Workflow
	3.1 Motivation
	3.2 TypeScript
	3.3 Testing
	3.4 Continuous Integration / Continuous Deployment
	3.4.1 Linting and Style Enforcement
	3.4.2 ESLint – Code quality
	3.4.3 Prettier – Code styling
	3.4.4 commitlint – Better commits
	3.4.5 husky – git hooks
	3.4.6 Yarn – Dependency management
	3.4.7 standard-version – Versioning and changelog
	3.4.8 GitHub Actions – Cloud pipelines

	3.5 Documentation

	4 The Application
	4.1 Visual identity
	4.2 Functionality: New and Improved
	4.2.1 Rotation
	4.2.2 View modes
	4.2.3 URL parameters
	4.2.4 Deep zoom
	4.2.5 Controls
	4.2.6 Colour picker

	4.3 User Interface
	4.3.1 Cosmetic changes
	4.3.2 Usability

	4.4 Help Menu

	5 Evaluation
	5.1 Search Engine Optimization
	5.2 Performance
	5.3 Participant Survey
	5.3.1 Positive feedback
	5.3.2 Suggestions for improvement
	5.3.3 Issues
	5.3.4 Deep Zoom

	5.4 Workflow and Collaboration
	5.5 The future of WebGL

	6 Conclusion
	6.1 Workflow
	6.2 Application
	6.3 Future work

	Bibliography
	A Project Lineage

