
CLPractice 2.0
Tools for Learning: Computation

and Logic

Petr Manas

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H



i

Abstract
This report describes the development and improvements made on CLPractice, a tool
made to aid the teaching of the Inf1A: Computation and Logic 1st-year Informatics
course, which was designed and partially implemented last year as a part of this two-
year project. It is a web application written in Python with the help of the Django
framework and several other essential libraries. The tool provides a framework for
designing random question generators in Python as well as an interface for answer-
ing these questions. While these generators are showcased on the Inf1A course, the
tool provides a generic Course module that can be used to design any number of en-
tirely different Questions. Student answers are stored in the database to give the course
organiser a set of statistics which may help in the teaching of the course, as well as de-
signing tutorials and exams. The tool has been evaluated on around 180 Inf1A students
during the December revision week 2020 and nearly 5,000 answers were recorded. The
evaluation showed significant usefulness of the tool for practice and revision, and the
students’ eagerness to use it before their final quiz.



ii

Acknowledgements

The project report structure is loosely based on the structure from (Hepburn, 2017b),
but does largely diverge where appropriate.

I would like to thank Professor Michael Fourman, my supervisor, for the ”Duolingo
clone” idea which sparked this project, and I am grateful for all the help along the way.



Table of Contents

1 Introduction 1
1.1 Previous work carried out (2019-2020) . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Terminology Used . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Summary of Work Done . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Changes Made Due to COVID-19 . . . . . . . . . . . . . . . . . . . 8

2 System Improvements 9
2.1 User Login & Consent Gathering . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Passwordless Login . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Consent Gathering . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Practice Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Visual Improvements . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Better Randomness for Lessons . . . . . . . . . . . . . . . . 11

2.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Question Generator Improvements 14
3.1 The generic Module Structure . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 class Course(): . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 class Lesson(): . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 class Question(): . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 The Implemented cl2020 Structure . . . . . . . . . . . . . . 16

3.2 How To Implement a Question Generator . . . . . . . . . . . . . . . 17
3.2.1 Abstracting Questions Into Code . . . . . . . . . . . . . . . . 18

3.3 Validators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Improving Existing Validators . . . . . . . . . . . . . . . . . 19
3.3.2 Custom Input Form . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Karnaugh Maps Generator . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 KmapsValidator . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 A Generic K-Maps Question . . . . . . . . . . . . . . . . . . 20

3.5 Gentzen Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



TABLE OF CONTENTS iv

3.5.1 Existing Gentzen Tools . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 GentzenValidator . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3 Solving Step-By-Step . . . . . . . . . . . . . . . . . . . . . 23
3.5.4 Rendering LATEX . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.5 Algorithm Imperfections . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 27
4.1 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 ”Semester-wide” Testing . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Evaluation Conclusions . . . . . . . . . . . . . . . . . . . . 30

5 Course Administration 31
5.1 Organise Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Questions Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Measuring Difficulty . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Question Testing . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Further Work 36

7 Conclusions 38
7.1 Review of Project Goals . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Addressing Exceptional Criteria . . . . . . . . . . . . . . . . . . . . 39
7.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Project Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Semester-wide Testing A1
A.1 Participant Consent Form . . . . . . . . . . . . . . . . . . . . . . . . A2
A.2 Participant Information Sheet . . . . . . . . . . . . . . . . . . . . . . A3

Bibliography A6



Chapter 1

Introduction

This is the second part of a two-year project focusing on creating the CLPractice re-
vision and practice tool for the Informatics 1A: Computation and Logic (Inf1A:CL)
course. It is now publicly hosted on https://cltools.inf.ed.ac.uk/ using
a server provided by the School of Informatics of the University of Edinburgh.

The tool is a web application offering a number of questions and lessons the students
can practice at their own pace or as a supplement to tutorials. Each question imple-
ments a generator written as a Python class, which generates a new random instance
of that question every time the student chooses to practice it. This ensures the student
gets a varied set of questions while potentially studying only a single key concept. To
keep track of which instances have been answered before and to have the ability to
re-generate a particular instance in the future, questions are generated using an integer
seed value, which is stored in the database along with the provided answer. The student
can select any number of questions or a single prepared lesson to practice.

Last year, the tool was developed to the point where it was functional and practically
tested by several students taking the course. This year, I built upon the existing im-
plementation, completed my 2nd-year goals, and extended the tool in terms of both in
terms of features and functionality, and also increased the quantity and variety of ques-
tion generators. The generic Course module has been refactored and cleaned up, and
the Validators used for transforming and validating user input have been greatly im-
proved, with the addition of using custom templates for the input elements. A detailed
discussion of these improvements as well as specific examples of Question generators
will appear in chapters 2 and 3.

The tool was evaluated during the revision week, just before the final quiz for the
course. Nearly 5,000 answers have been recorded from around 180 students and the
gathered data has been analysed in chapter 4. From this data, a new module for the
tool stemmed called organise, which displays a summary of all the recorded answers
to the course organiser. This module and how it could be improved beyond the scope
of the project is discussed in chapter 5. The first section will discuss the work that was
done last year, and the following sections will discuss work done this year.

1

https://cltools.inf.ed.ac.uk/


Chapter 1. Introduction 2

1.1 Previous work carried out (2019-2020)

The first part of this project (Manas, 2020a) concluded with having a functional tool to
aid Inf1A CL (Computation & Logic) students in practicing key concepts and revising
for exams. A relatively small but varied set of question generators was designed which
could be useful to the students throughout the semester rather than only for exam revi-
sion. The way question generators were implemented allowed for simple extendability
and further development in the future, as well as safe and reliable code execution. Sev-
eral goals were set for this year of the project, which will be discussed in section 1.5
and reviewed in Conclusions. This section will discuss work done in the previous year
on the tool itself, as well as the generic and cl2020 modules.

CLPractice Tool

A web application was developed in Python using the Django framework consisting of
only a few pages visible to the student. These were the pages that allowed the student
to select questions or a lesson to practice (figure 1.1a), and the entire practice work-
flow. When a practice session was started, the user was guided through several views
which would first prompt the student for an answer (figure 1.1b) and then evaluate their
given answer. The state of the practice session was stored using Django’s sessions mid-
dleware which stores the data in the database and provides the user with a session id
cookie. At the end of each practice session, the student was shown a summary page
showing which questions they got right or wrong.

(a) Questions selected on the Dashboard (b) An arrow rule question being answered

Figure 1.1: The Dashboard at the end of the first part of the project with a few questions
selected for practice and one of these questions being answered.

Administrative Views

The administrative part of the tool was implemented largely using Django’s generated
admin interface. This interface was enough to look through question answers but not
to test generators, so an additional view was designed specifically for this purpose. It
allowed running questions with a random or a specified seed, essentially serving as a
debugging version of the practice interface, which did not store the provided answers
in the database.

https://project-archive.inf.ed.ac.uk/all/ug4/20201668/ug4_proj.pdf


Chapter 1. Introduction 3

Question Generator Set

Nine question generators and a single lesson were implemented within the cl2020
course package, serving largely as a proof-of-concept rather than a full syllabus. The
generators covered the arrow rule, regular expressions, and truth valuations for And/Or
Boolean expressions, giving enough variety for a showcase of the tool and providing
good grounds for further development this year.

Generic Course Interface

All implemented question generators and the entire cl2020 package followed a generic
course structure I designed last year after evaluating several different possibilities. This
structure was provided by a set of Python classes that described how a course, question,
and lesson should be defined and implemented. The generic interface or structure
allowed for simple generator implementation with good reliability.

1.2 Background

The summary of existing tools is quite similar to the version in the year one report
(Manas, 2020a), while the literature review is largely novel.

1.2.1 Existing Tools

Several tools have served as an inspiration to this project or have a similar purpose to
my tool. Each tool, however, focuses on slightly different aspects of the problems I
am solving and differs from my tool in one way or another. Where a citation is not
explicitly given, a hyperlink to the tool is included in the tool’s name.

Duolingo and Memrise are tools predominantly focused on learning languages but
Memrise, specifically, offers courses on other topics as well. The tools offer countless
questions and lessons for students to practice, but these are usually not randomly gen-
erated but manually defined. They were the original inspiration for making a similar
tool, teaching concepts efficiently and in an enjoyable way, but the concept of CLPrac-
tice has taken several turns since then.

Anki is a tool designed for revision using flashcards with the help of spaced repe-
tition. It is predominantly used for learning languages and similar heavily memory-
based topics, such as definitions. It served as an inspiration for this project because of
its simple aesthetics and the general design of questions by various Anki users.

FSM Workbench was designed and implemented by Hepburn for the ”Tools for
Learning: Computation and Logic” project in the past, also spanning a two-year MInf
project. In (Hepburn, 2016) and (Hepburn, 2017b), Hepburn created a tool for sim-
ulating finite state machines (FSMs) and teaching the associated concepts through a
set of interactive questions. Although I ended up focusing on implementing Question
generators for Karnaugh Maps and Gentzen rules instead of FSMs, this tool remains

https://www.duolingo.com/
https://www.memrise.com/
https://apps.ankiweb.net/


Chapter 1. Introduction 4

an option for future integration into CLPractice as it is open source and accessible on
(FSM Workbench Github).

Karnaugh mAPP is another past project tool for learning Karnaugh Maps, along
with several questions designed for this purpose Mikolajczak (2018b). It served as an
inspiration in designing the Karnaugh Map question generator and the widget used to
answer these questions, which are discussed in detail in section 3.4. This tool is also
available on (Karnaugh mAPP Github).

HaSchool is one of the most recent tools to have come out of this project in the
past, developed by Vazbyte (2019). It focuses on the Haskell aspect of Inf1A, hence
providing great inspiration for how my tool could potentially be used for other topics
than logic.

STACK is an online assessment package for mathematics developed by Chris Sang-
win of the University of Edinburgh. It is a computer-aided assessment tool, similar
to past tools like AiM, CalMath, or Wallis Sangwin and Grove (2006). It much more
closely resembles CLPractice in the sense that its questions are also randomly gen-
erated and students, therefore, have a wide (infinite) array of possible exercises to
practice on. The research behind this tool further informed the development and im-
provement of this tool, which is discussed in the following section. In the context of
mathematics alone, STACK is certainly more advanced than my tool is striving to be,
hence for mathematical applications, it is a better solution. However, the key difference
is that STACK is focused primarily on questions for mathematics, whereas my tool can
accommodate any sort of questions that can be generated using Python. This means
that in terms of generality and extendability, CLPractice surpasses even STACK, and
there are no other tools I know of that would allow this as well as mine.

Gentzen-specific Tools There are some available tools specifically designed for
solving and teaching Gentzen (generally, inference) rule questions. Each of the ones I
had considered had some strengths and weaknesses, which will be discussed in detail
in section 3.5.1 rather than here so that it appears closer to my implementation.

1.2.2 Literature Review

Computers in Education & E-Learning

Although computers have been used in the classroom for several decades now, they
have only moved towards the mainstream around the late 2000s, when the iPhone
was launched, the first massive open online course (MOOC) was offered, and many
new e-learning platforms were being created (Zawacki-Richter and Latchem, 2018).
Over the coming years, these platforms like Udacity, Udemy, Coursera, Skillshare,
and countless more became incredibly popular.

One of the aspects these MOOCs and other courses have in common with this tool
is the freedom it offers the students. Kidd (2010) says that ”E-learning is free from

https://www.ed.ac.uk/maths/stack


Chapter 1. Introduction 5

limitations of space and time”, and this is largely what makes it so accessible to stu-
dents, especially when considering the recent sudden transition to remote learning due
to the Covid-19 pandemic. Tools like CLPractice allow its users to take their own path
through the subject material, do as much or as little as they want, and do so whenever
and wherever they want.

Although most of the research on e-learning seems to relate to mobile readiness and
MOOCs or similar platforms (Zawacki-Richter and Latchem, 2018), there have also
been a number of studies on using intelligent tutoring systems, which are more rele-
vant to this tool. Kulik and Fletcher have found in their review that the median effect of
these systems was to raise test scores 0.66 standard deviations over conventional lev-
els (Kulik and Fletcher, 2016). Regardless of the actual numeric improvement, these
findings support the claim that a tool such as CLPractice could be a useful addition to
the students’ toolset.

Generating questions using Context-Free Grammar

There have been several articles and research papers written on generating simple sen-
tences using context-free grammar (CFG). The grammar essentially describes a set of
rules for a small language, which must be followed. This is particularly useful for
checking that a given sentence follows the grammar of a language, but the problem
can also be flipped and new sentences can be generated.

Both Purdom (1972) and Maurer (1990) found that this generation is possible for sim-
ple sentences. In the context of question generation, the question could therefore be
written as a set of grammar rules, and an algorithm would generate random instances
of each question.

Unfortunately, this approach does not allow a universal question generation but is
largely limited to relatively simple problems. Moreover, then computing and veri-
fying the answer to the generated question cannot be done without some amount of
code, making this approach inappropriate for my application.

Computer Aided Assessment

One of the ways to overcome the limits of a simple CFG is to use a system that resem-
bles grammar but is built with an emphasis on understanding and evaluating algebraic
problems, like the ones often used in the computer-aided assessment. There has been
significant research in computer-aided assessment (CAA), a lot of which has been done
by Sangwin and Grove while developing the STACK system. Just as preceding tools
such as AiM or CalMath, the system uses a computer algebra system (CAS), specifi-
cally Maxima, as the base for understanding student answers and generating questions.

Sangwin (2007) states that provided response questions (often multiple-choice ques-
tions) are almost always a constraint dictated by the CAA software rather than the
preferred choice of the user. What STACK set out to do was evaluate student-provided
answers rather than give multiple choices and have the student pick the correct one
because the process of doing so and the experience for the student is significantly dif-
ferent in each case (Sangwin, 2015a). The system also provides the users with quite



Chapter 1. Introduction 6

detailed feedback when they get the question wrong, which was reported to be one of
the most liked things about STACK in Sangwin (2015b).

One of the main benefits of using computer-aided assessment is the economy of it: the
more users use the system, the more economical it becomes because the development
cost stays the same (Keady et al., 2012). This is particularly relevant when considering
the Inf1A course with hundreds of students each year, all of whom can benefit from
my tool.

The one important downside of using a computer algebra system, however, is within
the name: ”algebra”. These systems are focused on mathematical problems, and al-
though they could be slightly skewed towards logic problems, a CAS alone would
never be enough for the questions relevant to this course. Most significantly, this ap-
plies to question contexts requiring complex input or output, such as Karnaugh Maps,
Finite State Machines, or Sequent Calculus.

1.3 System Overview

The tool is a web application written in Python using the Django 2.2 framework and a
PostgreSQL database. The vast majority of user interfaces and question templates are
designed using Django’s powerful templating system, and a single dashboard view is
designed with the help of the React JavaScript framework for better flexibility. A num-
ber of Python packages are also used for the purposes of random number generation
(NumPy), passwordless login (django-sesame), Boolean logic (PyEDA), and more.

The application is split into several modules, which Django often refers to as ”apps”:

• core: Responsible for user management, feedback and consent gathering, and
providing the base models for other modules.

• practice: Implements the practice workflow, displays the Course contents, and
stores user Answers.

• organise: Displays a summary of user Answers and gives insights to the course
organiser; further discussed in chapter Course Administration.

• generic: Describes an interface for the Course, Question, and Lesson classes,
while providing the code to load and execute these objects.

• cl2020: An implementation of the generic module for the purposes of Inf1A
Computation and Logic. Both the specific and generic modules will be discussed
in detail in chapter Question Generator Improvements.

1.4 Terminology Used

The reader may have noticed already that the terms Question, Lesson, and Course
are sometimes being used capitalised and in other cases lower-cased. This is because
I want to emphasize the nuanced distinction between the general meanings of these
words and the representations I have designed in the context of this project. While

https://numpy.org/
https://github.com/aaugustin/django-sesame
https://pyeda.readthedocs.io/en/latest/


Chapter 1. Introduction 7

”question”, ”lesson”, and ”course” refer to their respective meanings in the English
language, ”Question”, ”Lesson”, and ”Course” refer to the Python classes or objects
of these classes which are used to describe these concepts in code. A Question is a
class used to abstract the idea of a question (e.g., the Arrow Rule) using code that
generates random instances of such a question. In this sense, every Question is an
implementation of a question, but only a few types of question as Questions.

1.5 Project Goals

The project goals for this year were set at the end of last year:

• Semester-Wide Testing With New Inf1A Students

• Course Administration

• Making the Tool Course-Agnostic

• Other General Improvements

These goals will be discussed throughout the report and reviewed in Conclusions.

1.6 Summary of Work Done

System Improvements

Since last year’s implementation focused on the necessary functionality and having the
tool tested, several areas have been purposely neglected. While last year, users ”logged
in” using a participant ID, this year proper user management was implemented. Users
can now log in using their email (or as a guest) without the need for a password. Im-
provements were also made to the practice module, along with better randomness for
practicing Lessons. The tool has been prepared for Apache deployment on a University
server and then deployed on https://cltools.inf.ed.ac.uk/.

Question Generator Improvements

The generic module has been refactored as well as improved towards customisability.
Validators now support custom inputs other than a simple text field, and Questions can
be grouped in folders while sharing common code with other parts of the Course.

New Questions

Several Question generators were implemented in order to showcase the new abili-
ties of the generic module. The key ones include Karnaugh Maps (section 3.4) and
Gentzen Rules (section 3.5). These generators accounted for a significant portion of
this year’s efforts and will be discussed thoroughly in the aforementioned sections.

https://cltools.inf.ed.ac.uk/


Chapter 1. Introduction 8

Automated Testing

A coherent suite of tests was written to provide code consistency and assurance for
future development. These include unit tests for specific modules and classes, as well
as integration tests for the key workflows a user encounters while using the tool. A
statement coverage of 93% and branch coverage 91% was achieved using this test suite
while covering all the important parts of the application. The reasons for a below-100%
coverage and a further discussion of what was tested appear in section 4.1.

Real Scenario Evaluation

Once the tool was deployed, it was advertised to the current students of Inf1A for their
use in practice during revision week. During this single week, nearly 5,000 answers
were recorded from around 180 unique students. This data was then analysed in chap-
ter Evaluation and used to guide the implementation of a new organise module.

Course Administration

This new organise module now serves as a dashboard for course administration. The
gathered Answer data is visualised in tables and charts, giving the course organiser
greater insight into how their students are doing, which Questions are the most popular
or difficult, and how they could tailor their teaching to the students’ needs.

1.7 Changes Made Due to COVID-19

Since this project required no physical access to specific hardware or lab spaces, the
development of the tool was hardly affected by the pandemic. That being said, it had
some clear effects on the deployment and evaluation of the project.

Although communication with the IT support has been established early last year, it
took a significant amount of back-and-forth to get the University server up and running
and deploy the tool. A significant portion of the time spent on this was caused by
waiting for responses to queries due to the staff being overwhelmed. Since I lived
abroad this entire year, solving these problems in person was not an option. Similarly,
it took much longer to get an ethics approval for evaluation than it did last year, which
meant I had to accommodate for a shorter time frame available for user testing.

More importantly, this testing then had to be done completely remotely and individ-
ually, with virtually no interaction between me and the students. In contrast to last
year’s evaluation, where I had the opportunity to be in a room with tens of students,
demonstrate the tool to them, and gather valuable feedback in person, this experience
was rather impersonal and I did not gather nearly as much qualitative feedback. Thank-
fully, as described in chapter Evaluation, the data and feedback I had gathered this year
turned out to be quite useful nonetheless.



Chapter 2

System Improvements

2.1 User Login & Consent Gathering

Since last year the tool’s primary purpose was to test it in an organized study, users
could only log in using their assigned participant number or as a guest. This year, the
tool needed to be ready for a much larger number of users (all of Inf1A), and participant
number distribution would be unfeasible. For that reason, a proper login workflow was
implemented so that each user could operate as a singular entity as well as give consent
for anonymously using their answering data.

2.1.1 Passwordless Login

In order to make the login workflow smoother for students, a passwordless login was
implemented using the django-sesame1 package. Once the user enters their email ad-
dress in Figure 2.1, an email with a ”magic link” is sent to them by email. When they
click this link, they are automatically logged in without having to enter a password.

This means that a user is authenticated purely based on access to their email address,
which would be required for registration either way. It also means users do not have to
remember or store another one of their passwords, which greatly simplifies the login
workflow. Since the magic link can log anybody in as the user who originally received
it, to improve security, these links expire after 10 minutes. If a user only wants to
test the application without using their email, they can also log in to a shared ”guest”
account with a single click, which is then excluded from data statistics because consent
cannot be correctly stored for multiple users on a single account.

2.1.2 Consent Gathering

In order to ethically store and analyze user data, an application has been submitted to
the Ethics Board with RT 5333 and an ethics approval has been granted. Since paper
consent forms could not be safely distributed to and collected from students, consent
had to be given and stored electronically. To make the process as hassle-free for the

1Available on: https://github.com/aaugustin/django-sesame

9

https://github.com/aaugustin/django-sesame
https://github.com/aaugustin/django-sesame


Chapter 2. System Improvements 10

Figure 2.1: User can choose to log in using their email address or temporarily as a
guest.

users as possible, a consent form (Appendix A.1) was displayed on their first login,
which linked to a participant information sheet (Appendix A.2) with all the necessary
information.

The HTML form is a copy of the paper template along with an extra field asking if the
user 18 years or older. Although each user is asked for consent at least once, they are
free to select ”No” for all questions and their data will be excluded from the analysis.
The answer to the form is stored in the database on each User object, one Boolean field
per question. The date time of when the user last submitted the form is also stored, and
users are allowed to change their answers if they decide they want to withdraw their
consent.

2.2 Practice Module

The way a practice session is run is relatively the same as last year and can be sum-
marized into the flow diagram in Figure 2.2. A user selects a number of questions or a
lesson to practice at the Dashboard and sends a POST request to the Start view (using a
hidden-form button). They are then redirected to the Session view which both displays
the question and accepts a student answer upon form submission. When a user has an-
swered that question and wants to move on, they send a POST request to the Next view
which retrieves a new question and redirects back to Session. When they are finished
with their session, they move on to the Summary view where they can evaluate their
session and proceed back to the Dashboard.

As it was last year, the state management for this practice workflow is implemented
using Django’s session storage. This ensures the state is not directly accessible to



Chapter 2. System Improvements 11

POSTDashboard

POST
GET

Session

GET

Summary

REDIRECTStart

REDIRECT

Next

POST

Figure 2.2: Diagram of the HTTP requests while running a practice session. Rectangles
show views which show a template when loaded through a GET request. Diamonds
show action views which can only be access using a POST request and then redirect to
a different view. (Manas, 2020a)

the user and persists across browser restarts and page reloads. Another significant
benefit to this approach that became more relevant this year is its ease of testing. With
the addition of an automated test suite 4.1 I can simply check the system is running
correctly whenever I make a change. Since state is managed purely by Django sessions,
the unit tests have direct access to its values before and after performing any action,
which makes it easy to check for consistency and correct assignment. If state was
managed by React and Redux instead, for instance, a separate testing suite would be
necessary for that specific application, which is certainly feasible but also unnecessary
within the current setup.

2.2.1 Visual Improvements

Although the visuals of this workflow have not changed significantly since last year,
one notable improvement is the inclusion of ”Time to answer” in the Summary view
(Figure 2.3). This small addition now allows the user to see not only how they are
performing but also how long it takes them to answer each question and all questions
combined, which can serve as a useful metric when preparing for a timed quiz.

2.2.2 Better Randomness for Lessons

To ensure the user does not get the same question multiple times in a single practice
session, every time a question is generated, a checksum of its context is stored in the
session. The context is what is generated by a question generator and then used to
display that question and verify the user’s answer. Therefore, if two different seeds
generate the same context, the resulting questions will be identical, which is what we
want to avoid. A sha256 checksum is hence stored for every question generated within
a practice session and before a new question instance is given to the user, the system
checks it has a unique checksum, otherwise it keeps trying with new random seeds
until that happens.



Chapter 2. System Improvements 12

You have answered 2 questions correctly out of 3
In the time: 0�01�17

K-Maps Eliminated States (Disjunction, 4 literals)
0 correct out of 1

Answer submitted Time to answer

 ['AbCd'] 0�00�30

Arrow Rule (straight)
2 correct out of 2

Answer submitted Time to answer

 80 0�00�20

 128 0�00�13

Finish session

Figure 2.3: The Summary page displayed when a user decides to finish their practice
session. (In)correct answers are shown, as well as the time it took to answer each
question.

While this was already the case last year for questions mode, it has now also been
implemented for lesson mode. I originally expected it would be nearly impossible for
a lesson to display the same question instance twice because lessons usually contain a
variety set of questions, each of which only appears a few times, but some interactive
testing proved me wrong. This ensures that randomness is now provided for both
question and lesson practice.

How to make this even better One issue that was briefly discussed last year was
the fact that checksums of Question context are not always enough. The Arrow Rule
Question instances A → B and B → C are essentially identical but inevitably have
different checksums because different literals are used. Since every Question generator
is different and often two different instances can have the same answer, it would be
nearly impossible to get a generic measure of the ”distance” between two Question
instances. Instead, a method such as compute distance(context1, context2) or
equals(instance1, instance2) would need to be implemented for every Question
generator. Since this would need to be done manually and the method implementation
might not always be entirely clear, I decided against this solution and instead rely
purely on the fact that two instances are not identical. If this proved to be a greater issue
in the future, this solution could be easily implemented, but all Question generators
would need to be updated.

2.3 Deployment

After a few months of back-and-forth with the University’s IT support (further dis-
cussed in section 4.2), my tool is currently hosted on a University server at the address:



Chapter 2. System Improvements 13

https://cltools.inf.ed.ac.uk/. The server has 2 cores and 4 GB of RAM, which
is more than sufficient enough for the current user load, although, at times when many
students access the tool at once, the 2 cores get fully utilized.

Since I could not get root access to the machine, my options for deployment were
strictly limited to running an Apache server with the mod_wsgi2 module, which en-
ables Apache to run a WSGI Python application such as a Django server. This re-
striction also means the application is limited to use Python 3.6.8, which is the latest
version installed on the server. For that reason, Django 2.2 is used instead of the latest
3.1 release, and other minor issues with Python coverage had to be resolved. The tool
is then connected to the pgresearch PostgreSQL server, which provides a secure and
stable database connection.

Better deployment for the future Although the current deployment setup has proven
to work sufficiently, it is far from ideal for frequent updates. The server does not have
git installed, hence the current update process is to pull the repository on the ssh gate-
way and then copy the files over to the Apache directory. Having the latest Python and
Django versions would also be beneficial for future-proofing and new tools like Mem-
cached3 could be integrated to offer better speeds and higher reliability. Therefore,
should the project continue beyond my last year of study, it should ideally be docker-
ized4 and deployed on a server with Docker installed. Updating the tool would then
be significantly smoother and more consistent, as well as independent of the physical
server it would run on.

2https://modwsgi.readthedocs.io/en/master/
3https://memcached.org/
4https://www.docker.com/

https://cltools.inf.ed.ac.uk/
https://modwsgi.readthedocs.io/en/master/
https://memcached.org/
https://www.docker.com/


Chapter 3

Question Generator Improvements

Although the practice module is what the user interacts with when using the tool,
question generators are the heart of the tool which provides the substance of user inter-
action. Every question instance presented to the user is generated using Python code
which can use arbitrary installed packages and displayed using Django’s templating
system. To make the interaction between the practice module and question gener-
ators possible, each generator must implement a generic interface, or rather extend a
generic class, which provides additional functionality to make development as simple
as possible. This interface is encompassed within the generic module and the cl2020
module is an implementation of this interface for the purposes of presenting this tool
with questions for Inf1A: CL.

While the practice module has only been improved upon (discussed in section 2.2),
a large chunk of the question generator code this year has been rewritten or developed
from scratch. Firstly, the general structure of the generator interface will be discussed,
followed by specific improvements such as Validators, and finally, examples of spe-
cific generators implemented this year will be presented as a showcase of what can be
accomplished with the generic interface.

3.1 The generic Module Structure

The generic module is a simple Python package that serves as the basis for writing
question generators. It provides base classes for the Course, Lessons, and Questions,
as well as the Validators that can be used within each Question or extended. It also
provides a few utility functions useful for any generator, such as a ”coin toss” with
variable probability or a de-duplication method for a list. Lastly, it contains the base
Django HTML templates for the question form which is displayed for the user when
answering a question, and for the basic <input> tag method of answer entry, both of
which can be used as-is or extended or completely replaced in an implemented course.

This extendability provides the course designer with virtually limitless options – they
can leave everything as is and focus on implementing generators, or if they have more
specific needs (such as will be discussed in section 3.4), they can implement custom

14



Chapter 3. Question Generator Improvements 15

solutions. Consequently, the tool is not limited only to Inf1A but can accommodate a
variety of different courses, only limited by the designer’s imagination.

3.1.1 class Course():

At the very top of the hierarchy, we have the Course class, which defines the name and
other meta-information about a course, as well as the list of implemented Question and
Lesson generators. The course designer only needs to fill in this essential information
and the base class takes care of the rest. It provides methods to load (import) Questions
and Lessons based on their ID and a prescribed folder structure. It also provides meth-
ods to get a new unique Question instance based on stored checksums, as described in
section 2.2.2.

Whenever a Course class is initialized, it loads all installed Questions and Lessons in
order to verify they load correctly and without errors. Although this could be seen
as a potential waste of computation when only a single Question is needed, it ensures
consistency and only takes a fraction of a second, hence it has very little effect on
performance.

3.1.2 class Lesson():

A Lesson class is as simple to implement as Course, since it is merely an aggregate of
Questions. Apart from the basic meta-information, Lessons contain a questions list
of dictionaries, which specifies a Question ID its number of occurrences in a row. The
Questions are loaded in the order they are set, which enables the course designer to
design Lessons that have the same format for all students, yet each Question instance
is still randomly generated. The generic class only implements a method to obtain a
Question at a certain index, so that the practice module needs only worry about how
many total Questions appear in a Lesson and how many have been answered so far.

3.1.3 class Question():

Question generators are the vital building blocks of this hierarchy since they are the
one thing that actually gets randomly generated. As with the other classes, it needs to
define information like its title and description, which are then displayed to the user,
and a correctly formatted ID as well as a version. The version is key due to the random
nature of question generators since even a single line edit can cause all previously
used seeds to generate completely different question instances. For this reason, it is
stored in the Answer database model when a user answer is recorded in the format
”id@version”.

The Question ID, class name, and folder location must also be consistent for the Ques-
tion to be dynamically loadable. For instance, a Question with the ID ”arrow rule straight”
must appear in a folder with the same name and the class name must be ”ArrowRuleStraight”.
In case multiple questions are grouped in a folder, both the ID and the class name
must contain the group folder’s name. For instance, the ”eliminated and 2” ques-
tion within the ”kmaps” group folder has ID ”kmaps.eliminated and 2” and class



Chapter 3. Question Generator Improvements 16

name ”KmapsEliminatedAnd2”. When this structure is followed, it enables the Course
to load all of its installed questions simply based on their IDs using the importlib
package.

3.1.4 The Implemented cl2020 Structure

To get a better sense of what a fully implemented course looks like, the folder structure
of the cl2020 course is illustrated in figure 3.1.

cl2020
common.....................code/templates shared by multiple Questions/Lessons

includes................................HTML/JavaScript/Python snippets
templates...............Django templates for question forms and Validators
kmaps.py..........................base class for deriving K-Maps Questions
...

lessons
arrow rule complex

lesson.py....................single file, contains ArrowRuleComplex()
...

questions
arrow rule straight

answer.html...................template for displaying answer+feedback
question.html........................template for displaying question
question.py...........generator code, contains ArrowRuleStraight()

kmaps............................similar Questions can be grouped in a folder
eliminated and 2

answer.html
question.html
question.py....................contains KmapsEliminatedAnd2()

satisfied or 2
...

...
...

course.py...........definition of the Course, contains ComputationAndLogic()

Figure 3.1: Folder structure of the cl2020 module including comments about important
files.

By default, only the course.py file and lessons and questions folders are required
for a functioning course, but often several different Questions or Lessons will use
common features. These live in the common folder and include files such as HTML/-
JavaScript/Python code snippets, templates used to generate question views and Val-
idator inputs, or fully implemented question classes and methods that can be used to
write many unique questions with a few lines of code.



Chapter 3. Question Generator Improvements 17

While lessons are defined by a single lesson.py file within a folder corresponding
to the lesson’s ID, questions need two more template files and can be collected in
folders. The sub-folders allow for similar questions to be collected close to each other,
as well as potentially share code and templates specific only to this small selection of
questions. The template files are then used to make the HTML displayed to the user
using context values provided by the generator.

3.2 How To Implement a Question Generator

Now that we have a better idea of the file structure and class hierarchy of a Course,
we can look at how the actual question generator is implemented and used within the
application. While this was touched upon in last year’s report, generators have been
refined this year and no further changes will be made, so we can go into more detail
now.

The key concept for talking about generators is the notion of a ”context”. Since the
generators are random by nature, the way they are discretized is using an integer seed
value for a Numpy random number generator (RNG). Then, the generator code can use
this seeded RNG to generate a unique instance of the question, which can be described
by a single number, a list of items, or any other object. What describes a particular in-
stance is therefore called the question ”context” and it is used throughout the Question
instance to generate the question text displayed to the user, the answer and feedback,
as well as to verify a user answer against a ground truth.

Every question generator must implement the following methods:

generate context(rng): The method receives a seeded RNG and uses it to
perform random actions which lead to a unique instance of the question. For instance,
in the case of the ”Regex Match (fixed length)” question, this function returns a random
regular expression and the length of the string a user needs to submit which satisfies
the regex. The return of this function is stored on Question initialization and can later
be accessed using self.get context().

get question context(): Given the pre-generated context of the Question,
this method can either simply pass it to the question template or pre-format it for eas-
ier display. For instance, if the context contains a list of tuples of literals, they can be
formatted into a string showing they, in fact, represent a conjunction of implications.
This is necessary because, even though Django’s templating system is incredibly pow-
erful, it is still limited in what it can provide.

get answer context(): In order to be able to judge a user’s answer to the ques-
tion, we need to know what the correct answer should be, which is what this method
provides. Given the Question’s context, it computes the correct answer as well as pre-
formats what gets passed down to the template, similar to get question context.



Chapter 3. Question Generator Improvements 18

verify answer(answer): This method receives the user’s answer already cleaned
by the Question’s Validator (for instance, as an integer or a list) and checks whether it
is correct or not. In most cases, this is as simple as checking equality between the an-
swer and what get answer context returns, although more computation can be done
here if needed.

3.2.1 Abstracting Questions Into Code

Although the generic course structure has been written with simplicity, clear structure,
and rapid generator development in mind, it may not be clear just how a tutorial or
exam question can be abstracted into Python code. This is one of the major conceptual
problems of this project, and it had to be solved individually for each question simply
because every question is a little different.

For some of the regular expression questions, a regex is used to generate a random
regex, which in turn is used to generate a random string, for which the user is meant to
find a regex that satisfies it. As convoluted as it may sound, this is one of the simpler
ways a question instance is generated and the actual code is quite straightforward.
Another less complex regex question picks a random length for the final expression,
fills it with random letters from an alphabet of ”a,b,c”, and occasionally tosses a coin
for whether or not a Kleene star (*) should be added.

Arrow rule questions, on the other hand, usually start with a set of literals that can
be used (mostly 8 literals ”ABCDEFGH” for 256 possible valuations) and then need
to generate a list of tuples of literals, which finally corresponds to a conjunction of
implications for the question. Depending on how complex the question should be,
e.g., whether or not implication loops and branches can occur, the generator needs to
preserve the desired properties while still generating something random. This is done
by generating the implications sequentially in a for loop and keeping track of which
literals have been used already and which not.

The key takeaway from this section should be that writing a random question generator
highly depends on the designer’s imagination and abstraction ability and that many
different ways exist to abstract the same problem. Two of the most complex question
generators on Karnaugh maps and Gentzen rules will be described in further sections,
but there is no strict limit as to just how complex a generator can be.

3.3 Validators

Similar to section 3.2, Validators have appeared in my last year’s implementation but
in a much more basic state. While Validators for the basic forms of input such as
numbers or strings of text were provided, it was unclear how a custom Validator could
be written, and more importantly, how it could be used to display a completely different
form of input to the user. Examples of such custom Validators will be discussed in
sections 3.4 and 3.5, while this section will focus on the general improvements of
Validators and how their extendability was made possible.



Chapter 3. Question Generator Improvements 19

The purpose of a Validator is to abstract out the validation and parsing of a user’s input
for an answer. Since all answers initially arrive as HTTP POST data, they need to
be converted to their appropriate data type (e.g.: an integer) and check that they make
sense in the Question’s constraints. Validators have a clean(data) method to perform
any necessary value parsing and to check constraints, which also calls clean(data)
recursively on the extended class, finally getting to a base Validator(). The base
class can then be extended and the designer can write a custom Validator, or they can
use one of the pre-defined Validators for common cases such as constrained numeric
input.

3.3.1 Improving Existing Validators

The main improvement was the streamlining of Validator extension and making it pos-
sible to use custom templates for new Validators. This was achieved by adding the
form class variable and the get form context() method.

Every Validator needs to have form set to the template file with the HTML elements
taking in user input. For classes inheriting from the InputValidator, this template
contains an <input> tag with most of its attributes (e.g.: type, pattern, name) set to
context variables provided by the Validator class. The get form context() method
provides the values for this context depending on the nature of the Validator, i.e., if
it is expecting an integer or a string satisfying a regex, and the initialized parameters
for a particular Question. One of the improvements this year is that thanks to this
method, when an IntegerValidator is used with minimum and/or maximum value
set, the input help text contains this information, e.g., ”Enter an integer lower than
256”. Similarly, the RegexValidator can also display the regex pattern it uses for
validation or have it replaced with a manually-entered help text.

3.3.2 Custom Input Form

Loading the Validator input form template and context from a variable made it possi-
ble to write entirely custom Validators which did not rely on a simple <input> tag.
Since proper Django templates are used for this, the template can be as simple as plain
HTML and as complex as a combination of back-end Python pre-formatting, native and
custom template functions, template inheritance, and interactive elements such as im-
ages, generated LATEX, and JavaScript. This means, again, that the Question designer’s
imagination and needs are the only limits when it comes to tackling user input.

3.4 Karnaugh Maps Generator

The first Question generator to take full advantage of these improvements was one for
Karnaugh Maps (K-Maps). While questions on the Arrow Rule or Regular Expressions
are more than happy with a simple number/text input field, K-Maps require a 4x4 input
grid (for four literals) to be comprehensible. Figure 3.2 shows how K-Map questions
typically look in tutorials and exams and how they have been closely recreated as a
part of a custom Validator.



Chapter 3. Question Generator Improvements 20

(a) Tutorial Solution (b) CLPractice Question

Figure 3.2: Comparison of the question ”mark the states eliminated by ¬A∨C” in
tutorial solutions and in CLPractice using a custom Validator input.

3.4.1 KmapsValidator

The input 4x4 grid is an HTML table with simple CSS styling and it is controlled by
JavaScript; when a user clicks a table cell, the selected attribute is added and these
cells are displayed with a green background. Each cell has a data attribute describing
what literal valuation it corresponds to. For instance, <td data-expr=’abCD’></td>
corresponds to A and B being false and C and D being true. Although this is certainly
not the only possible solution, it is one that worked very well for me, since it made it
easy to compare the user’s answer to the generated correct answer.

Since the user’s answer is essentially encoded in a table rather than a form input, it
needs to be mirrored in a hidden input field containing the selected cell data attributes
separated by commas. When an answer is submitted, the Validator takes this hidden
string and splits it on the commas to get a list of selected cells again. Thanks to
template inheritance and extension, the same K-Maps table that is used for user input
is used in the next step for displaying the correct answer as a part of the feedback.

3.4.2 A Generic K-Maps Question

Tutorials and exams most frequently ask for K-Map states eliminated by a disjunction
of two literals. However, there are instances where the question asks for satisfied states
instead, or the expression is a conjunction of more than two literals. In essence, it does
not make much sense to design a Question generator for a single case, but rather it
should be able to handle all cases.

The KmapsBaseQuestion abstract class does exactly this: it sets basic constraints
which all extended Questions must adhere to, such as the literals available, and leaves



Chapter 3. Question Generator Improvements 21

three variables to be filled in: connect, num literals, and question type. The
connect variable is set to a ”disjunction” or a ”conjunction”, i.e., whether the literals
are connected with an ∨ or an ∧. We can have 1-4 num literals generated as part of
the question, which affects how many cells will need to be selected due to the nature
of the expression. And lastly, question type is either ”eliminated” or ”satisfied”, in
order to be able to cater to both types of questions.

The initialized preferences are then passed to the Kmaps class which generated random
Question instances and produces correct solutions for them. Thanks to this abstraction,
creating a specific type of such a Question is then a matter of 6 lines, hence many
such Questions can be created. Figure 3.3 shows the implementation code for a K-
Maps Question asking for states eliminated by a disjunction of two literals. Since
the question and answer templates are also generated automatically, this is all that is
needed. Of course, it must be clear that this simple implementation is enabled by the
230 lines of code for the generic implementation in cl2020.common.kmaps.

from c l 20 20 . common . kmaps import ( Kmaps , KmapsBaseQuest ion )

c l a s s KmapsEl iminatedOr2 ( KmapsBaseQuest ion ) :
i d = ’ kmaps . e l i m i n a t e d o r 2 ’

q u e s t i o n t y p e = KmapsBaseQuest ion . QUESTION ELIMINATED
c o n n e c t = Kmaps . CONNECT OR
n u m l i t e r a l s = 2

Figure 3.3: Code for the Question generator for K-Maps: ”mark the states eliminated by
a disjunction of two literals”.

3.5 Gentzen Generator

Another clear candidate for a customised Question and Validator were Gentzen Rules,
which require a Boolean expression tree structure to be rendered, ideally using LATEX.
Since the typical tutorial/exam question on this topic gives an entailment and asks the
student to say whether it is universally valid or give a counterexample, we also need to
consider two different types of possible inputs, not only a single custom input.

3.5.1 Existing Gentzen Tools

While this Question generator was built from the ground up, it should be noted there
are several existing tools for Gentzen rules (or sequent calculus) available. The imple-
mentation approach I took is different from these tools in many ways, but they served
as an initial inspiration and a reference of what has been done already.

UMSU Tree Proof Generator

The Tree Proof Generator by Schwarz (2021) takes an entailment or another Boolean
expression and computes whether it is universally valid or not. If it is, it also generates



Chapter 3. Question Generator Improvements 22

a proof tree with all necessary steps; however, this is in a form significantly different
from the Gentzen rules used in the course. The resulting tree does not use LATEXbut
rather HTML with additional CSS-transformed borders to display branches. Although
for other courses, this might be a useful tool, its notation is not standard within Inf1A.

Seqcalc

The Seqcalc tool by Mehta (2019) takes a very different approach by suggesting the
available rules within a language and letting the users instantiate them and then drag
them into the proof tree. However, these rules are again more general than Gentzen
rules, and the tool likely cannot be used for our purposes at all. On top of that, it has
a long list of available shorthands for symbols such as implies, but these are hidden
out of sight by default. All entered expressions also must use capital letters for literals,
otherwise, it is not correctly parsed, which made the tool quite confusing to use.

Logitext

Logitext by Yang (2012), on the other hand, despite being the oldest tool on the list, is
by far the best I have found. After entering an entailment using keyboard characters
such as -> for→, the entailment is parsed and displayed in an interactive form. The
user can then select the operator they want to apply a Gentzen rule to, and the tree
grows upwards. This tool is certainly a great example of what an interactive version
of my Question generator could look like, even if that is not its primary purpose at the
moment. Because of this interactivity, the tool generates styled HTML operated with
JavaScript instead of LATEX, which seems to be an efficient approach. Since the tool
is quite old and almost entirely written in Haskell, it would be quite challenging to
integrate it into CLPractice despite it being open-source.

Wolfram MathWorld Sequent Calculus

As a notable mention, Wolfram MathWorld also seems to have support for sequent
calculus (Sakharov), but it was unclear to me how to use it. This may be only offered
as an explanation of the concept rather than an actual tool, or potentially this is only
available in Wolfram’s Mathematica system, which is not easily accessible to students.

3.5.2 GentzenValidator

The custom Validator class extends the RegexValidator and simply builds upon it.
For the counterexample user input, the default regex pattern validation is used, while
treating the unique case of a universally valid entailment differently through the use of
a string constant ”VALID” which can be entered instead of the counterexample.

To let the user simply select the entailment is universally valid rather than type ”VALID”,
the input form template is also extended to contain a set o two radio buttons and only
displaying the <input> field when ”I have a counterexample” is selected. In that case,
the original regex input field is displayed since it fits the requirements well enough.
This scenario is visible at the bottom of figure 3.4, where the HTML-formatted help
text guides the user towards what input is expected from them.



Chapter 3. Question Generator Improvements 23

Gentzen Valid or Find Counterexample

Use the Gentzen rules to construct a formal proof with the goal as conclusion.

Label each step in your proof with the name of the rule being applied.

Either show that the sequent is universally valid, or provide a counterexample.

CLPractice fasand Feedback 

Γ,A ⊨ Δ,A
(I )

Γ,A ∧ B ⊨ Δ

Γ,A,B ⊨ Δ
(∧L)

Γ,A ∨ B ⊨ Δ

Γ,A ⊨ Δ Γ,B ⊨ Δ
(∨L)

Γ,A → B ⊨ Δ

Γ ⊨ A, Δ Γ,B ⊨ Δ (→L)

Γ, ¬A ⊨ Δ

Γ ⊨ A, Δ (¬L)

Γ ⊨ A ∨ B, Δ

Γ ⊨ A,B, Δ
(∨R)

Γ ⊨ A ∧ B, Δ

Γ ⊨ A, Δ Γ ⊨ B, Δ
(∧R)

Γ ⊨ A → BΔ

Γ,A ⊨ B, Δ (→R)

Γ ⊨ ¬A, Δ

Γ,A ⊨ Δ (¬R)

⊨ (¬b∧ a) ∨ (b∧ ¬a)

Enter your answer

 Universally valid  I have a counterexample

a, ~b

Enter as e.g. "p, ~q, r", where "~q" means "q" is False 
The "~" in "~q" is a tilde but you can also use a hyphen.

Finish session Verify answer

Question 1

Figure 3.4: An example of a ”Gentzen Valid or Find Counterexample” Question, as
displayed to the user.

3.5.3 Solving Step-By-Step

Gentzen inference rules, more than any other implemented Question generators, are
about the journey rather than the destination. In many ways, these questions are about a
few simple principles and then applying the inference rules in a sensible order. Because
of this, it is often more important for the student to see how these rules should be
applied and what the inference tree should look like instead of simply getting a correct
answer to the question. For this reason, this Question generator has been designed
from the ground up to solve the question just as a student would, while also keeping
track of the steps performed before a result is reached.

Rules And Data Types There are currently 10 possible rules that can be applied to
any given entailment: left and right hand variants of Not, Or, And, and Implies, the
Identity and an End rule for when no more rules can be applied. An Entails object



Chapter 3. Question Generator Improvements 24

contains a left and right side, each of which is a list of expressions from the pyeda
package. A TreeNode object is used to store the entailment at any given point, the
rule that is being applied to it, and the result of that rule being applied. That result can
be another TreeNode, a TreeBranch, or None if it is a final step. A TreeBranch is
simply a TreeNode which has two separate results instead of one, hence is branched.

Recursive Reduction The production of the reduction tree (see figure 3.6 for ex-
ample) is done using a single function reduce gentzen which is called recursively
on an entailment and uses 10 inner functions, one for each rule. These rules are ap-
plied in the order that minimizes unnecessary branches, i.e.: Identity, ∧L, ∨R, ¬L, ¬R,
→ R, followed by rules that produce branches: → L, ∨L, ∧R, and lastly the End rule
which means no other rule can be applied. The first rule to return a non-empty result
is marked as the correct/best one and is returned. Since at the end an Identity or End
must be returned, all other rules call reduce gentzen recursively on the result of the
applied rule.

def l o r ( e n t : E n t a i l s ) −> O p t i o n a l [ TreeBranch ] :
l e f t , r i g h t = e n t
f o r i , x in enumerate ( l e f t ) :

i f type ( x ) == OrOp :
# S p l i t i n t o a and b
a = x . xs [ 0 ]
b = Or (* x . xs [ 1 : ] )
n e w a l e f t = l e f t [ : i ] + [ a ] + l e f t [ i + 1 : ]
n e w b l e f t = l e f t [ : i ] + [ b ] + l e f t [ i + 1 : ]
re turn TreeBranch (

Ru les . L OR , en t ,
r e d u c e g e n t z e n ( E n t a i l s ( n e w a l e f t , r i g h t ) ) ,
r e d u c e g e n t z e n ( E n t a i l s ( n e w b l e f t , r i g h t ) )

)

(a) Code performing the ∨L rule within reduce gentzen()

Γ,A |= ∆ Γ,B |= ∆
(∨L)

Γ,A∨B |= ∆

(b) The ∨L rule definition, as given in an exam

Figure 3.5: Example of a function within reduce gentzen() for the ∨L rule, which
produces a branched result. After the two new branches are computed, the method is
recursively applied to keep reducing until the end.

Figure 3.5 shows one of the rule function’s code as well as what the common definition
of the rule looks like. The function definition includes types thanks to Python’s typing
package, to make its input and output clear. It is not necessary to understand exactly
what each line does but rather see the bigger picture of what such a rule function looks
like since the functions for other rules look very similar and follow similar principles.



Chapter 3. Question Generator Improvements 25

3.5.4 Rendering LATEX

Producing a reduction tree in Python is one thing, but then displaying it to the user in a
clear manner is another. Although some existing tools produce their own styled HTML
to mimic LATEX, in my opinion using native LATEXwas the best option for my needs.
The tree structure, branches, and rule annotations are generated using the bussproofs
package, which was chosen partly because it closely mimics the style used in tuto-
rials and exams. More importantly, though, it was available for import on MathJax,
a JavaScript display engine for LATEX, which enabled the code to be rendered on the
client-side as well as allow the users to look at the source code itself if they desired.

MathJax JavaScript import with bussproofs installed is loaded from a CDN and a
loading screen is displayed until the code is fully rendered. This is done using the
plug-and-play cl2020/common/includes/mathjax.html file which can be included
anywhere LATEXneeds to be used. The result can be seen in figure 3.6 which shows
feedback given to a wrong answer in the form of what a possible correct reduction tree
could look like and what the resulting counterexamples are.

Gentzen Valid or Find Counterexample

Use the Gentzen rules to construct a formal proof with the goal as conclusion.

Label each step in your proof with the name of the rule being applied.

Either show that the sequent is universally valid, or provide a counterexample.

CLPractice fasand Feedback 

Γ,A ⊨ Δ,A
(I )

Γ,A ∧ B ⊨ Δ

Γ,A,B ⊨ Δ
(∧L)

Γ,A ∨ B ⊨ Δ

Γ,A ⊨ Δ Γ,B ⊨ Δ
(∨L)

Γ,A → B ⊨ Δ

Γ ⊨ A, Δ Γ,B ⊨ Δ (→L)

Γ, ¬A ⊨ Δ

Γ ⊨ A, Δ (¬L)

Γ ⊨ A ∨ B, Δ

Γ ⊨ A,B, Δ
(∨R)

Γ ⊨ A ∧ B, Δ

Γ ⊨ A, Δ Γ ⊨ B, Δ
(∧R)

Γ ⊨ A → BΔ

Γ,A ⊨ B, Δ (→R)

Γ ⊨ ¬A, Δ

Γ,A ⊨ Δ (¬R)

⊨ (¬b∧ a) ∨ (b∧ ¬a)

Wrong answer

One possible Gentzen reduction tree for the given entailment is:

Remember: there are often multiple possible solutions. This is just the one my algorithm finds the most sensible.

Therefore, the conclusion is not universally valid.

The possible counterexamples are:

¬a, ¬b

a, b

⊨ (¬b∧ a) ∨ (b∧ ¬a)

⊨ ¬b∧ a, b∧ ¬a

⊨ ¬b, b∧ ¬a

b ⊨ b∧ ¬a

b ⊨ b

(I )

b ⊨ ¬a

a, b ⊨
(¬R)

(∧R)

(¬R)
⊨ a, b∧ ¬a

⊨ a, b ⊨ a, ¬a

a ⊨ a

(I )

(¬R)

(∧R)

(∧R)

(∨R)

Finish session Next question

Question 2

Figure 3.6: Feedback on a wrong answer to the ”Gentzen Valid or Find Counterexam-
ple” Question.

The LATEXcode itself is generated recursively from the beginning TreeNode (the as-
signed entailment) to the final Indentiy and End leaves. Since the initial entailment is
at the bottom of the reduction tree which grows up, the returns from recursive calls are
added on top of what has been gathered so far. While the code to perform this con-
version is not particularly complex, it is also relatively long and not very informative. It
and the rest of the Gentzen implementation are located in cl2020/common/gentzen.py.



Chapter 3. Question Generator Improvements 26

3.5.5 Algorithm Imperfections

Even though the Gentzen algorithm has been tested on a large number of different
entailments, including randomly generated ones provided by the generator, it has room
for improvement. The most obvious issue that sometimes manifests itself is that the
algorithm is smart, but not smart enough. In some cases, especially when one rule can
be applied to multiple different elements, one of these elements is a better choice than
the rest, while the algorithm simply selects the first one.

To give a specific example, take the entailment: x,z |= x∧ y,x∧ z. If the ∧R rule is
applied on x∧z, it produces a single branch, where both sides immediately produce the
Identity, hence the final reduction tree is produced in a single step. On the other hand,
since x∧ y appears first on the right-hand side of the entailment, the algorithm decides
to apply the rule to that instead, which means an additional∧R rule must be applied and
the resulting reduction tree is not ideal. While the effect of this imperfection is subtle in
this example, on larger entailments, the algorithm can produce much wider reduction
trees than are necessary, which start to overflow the bounding feedback container.

This could be solved, for instance, by trying every combination of the possible rules
to apply and picking the one with the shallowest reduction tree (fewest branches and
rules applied). While it would result in additional computation, which could prove to
be an issue for more complex entailments, it is a realistic solution for this problem. On
the other hand, showing the user a potentially imperfect but correct solution can be a
part of the learning process since in most cases, several different reduction trees can be
produced for the same entailment, all of which are correct.



Chapter 4

Evaluation

4.1 Automated Testing

Several unit and integration tests were written to guarantee consistency and reliability
across code changes. The application is tested as a whole using the URLAccessor
class I have written in the past for a work-related project (Manas, 2020b). The class,
given a Django application name (e.g.: ”practice” or ”core” in our case), fetches all its
registered URL routes, and given additional URL parameters accesses each of these
URLs as a virtual user. Since Django runs tests on a fresh empty database, a new user
must be created and logged-in in order to access all parts of the application. This part
of the testing suite does not necessarily guarantee the code is running as expected but
rather that no errors are preventing a user from simply loading a page.

The second, more important part of the test suite is located in the tests.py of each of
the modules (core, practice, organise), and checks if each module is working correctly.
This includes loading the installed Course and running its automatic checks, starting
a new practice session and checking that the browser session is correctly updated, as
well as running a full practice session including answering the generated question and
viewing the Summary page. All question generators are tested by loading them through
the organise module and answering them as a virtual user. Some of the tests also check
for occasions when a bad POST request is sent and the application is expected to return
an error message and redirect the user. The Course loader itself loads all installed
Questions and Lessons when initialized to get the necessary meta information, hence
the Course code is tested on nearly every request by default.

The statement coverage of these tests is 93% and branch coverage 91%. Although
these numbers do not guarantee the code is tested well, they serve as a good measure
of which parts of the code were given thought while testing and which could still be
improved upon. Most of the code that is not yet tested is either exception handling for
unlikely cases (e.g.: where the user manipulates a POST request or tries to otherwise
break the application on purpose) and for unused code. This, for instance, includes
some code for Validators that are not necessary for my generator purposes but could be
used for new generators, or error handling for when a question generator is incorrectly
defined and cannot be loaded, which is a burden placed on the course designer (me).

27



Chapter 4. Evaluation 28

4.2 ”Semester-wide” Testing

Last year, I set one of my goals for this year to be a ”Semester-wide testing with new
Inf1A students” in order to evaluate the tool in a real setting. At the beginning of the
first semester of this year, the tool was ready to be deployed but the situation at that
time made this harder than expected.

Although I have been in contact with IT support about hosting my tool on a Univer-
sity server since January 2020, communication came to a halt around March due to
COVID-19. After reopening the ticket, a significant amount of ”back-and-forth” was
necessary before the tool was finally deployed towards the end of November. Stu-
dent testing has then been further delayed by the ethics approval for this study taking
significantly longer than usual since the ethics board was overwhelmed.

For these reasons, the evaluation finally took place during the revision week, specifi-
cally from 04. 12. 2020 to 10. 12. 2020. This was still favourable since the students
had their final Inf1A: CL test on Thursday 10. 12., meaning they had a full week to
use my tool for practice. Students logged in with their email of choice, upon which
they were given a web consent form (Appendix A.1), which linked to a PDF of the
Participant Information Sheet (Appendix A.2).

Results at a glance

During the 7 days, 4935 question answers have been recorded from 179 distinct users
and 4 pieces of general text feedback were given. Students started logging in from the
first day the tool was available but the vast majority of answers were recorded in the
last two days of the evaluation period.

4.2.1 Quantitative Analysis

04/12 05/12 06/12 07/12 08/12 09/12 10/12
Date

0%

5%

10%

15%

20%

25%

30%

35%

40%

Pe
rc

en
ta

ge
 n

ew

# of users joined
# of answers

04/12 05/12 06/12 07/12 08/12 09/12 10/12
Date

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 a

gg
re

ga
te

d

# of users joined (aggregated)
# of answers (aggregated)

Figure 4.1: Percentage of students joining vs. percentage of answers by date, and the
same data aggregated up to 100%.

Figure 4.1 shows what percentage of the final number of users joined on each day as
well as what percentage of total answers were recorded. The right subfigure shows this
data aggregated from start to finish.



Chapter 4. Evaluation 29

Key observations from this figure are:

• Although by 08/12 over 50% of users have joined and logged into the tool, only
around 40% of the total answers have been recorded.

• On 09/12, there was a leap in the use of the tool: nearly 40% of all answers
(specifically, 1944), submitted by 67 unique users, were recorded on that day.

• This leap in the number of answers shows that the tool met its greatest success
just before the final quiz on 10/12.

• Nearly 20% of users joined even on the final day of evaluation and used the tool
to revise, and the percentage of answers is lower than usual since most users
stopped revising around 16:00, with the last answer being around 20:00.

It is also notable that between 07/12 and 09/12, the last submitted answer of the day
was within 15 minutes of midnight. In particular, the time of the last submission on
09/12 was 23:59:59, suggesting users were keen on using the tool as much as they
could before the quiz.

4.2.2 Qualitative Analysis

Performing qualitative analysis was difficult since I couldn’t interact with students in
person. I had hoped that more students would use the feedback form in the tool and
was a little surprised to see that did not happen. Due to this, frankly, bad assump-
tion and planning on my part, other means of measuring the tool’s effect on students’
performance had to be found. Comparing this year’s test results with last year’s was
not an option since the course was run very differently from last year, hence there
were too many factors to consider. Instead, I opted to measure the students’ change in
performance while using the tool itself over time.

For each user, the times-to-answer (TTAs) of each Question were aggregated, grouped
by Question ID, and ordered by the date time of when each answer was submitted.
Since many Answers showed absurdly small or large TTAs due to the user being away-
from-keyboard or submitting almost instantly, the 10th and 90th percentiles of TTAs
for each Question across all users were computed, and only the TTAs falling in that
range were considered. For each user separately, a linear regression model was fit to
the progression of their TTAs for each Question and the linear coefficient extracted.
These coefficients were then averaged across each Question and are displayed in table
4.1.

To my pleasant surprise, the linear coefficients for every Question except for two were
negative, meaning students got faster at answering the questions as they used the
tool more. Using an average as a measure means that the final results include instances
where users got slower, yet despite this, the majority of the questions have seen an
average increase in speed. The coefficient can be interpreted as an average change
in seconds for TTA with each subsequent Question instance. When that coefficient is
negative, it means that the average linear slope of that Question’s TTAs is decreasing,
hence users are getting faster by that number of seconds. It should be noted that this
data is not rigorous statistics but rather an interesting metric for the success of the



Chapter 4. Evaluation 30

Question ID Linear coefficient
arrow rule branches -28.51
arrow rule complex -8.80
arrow rule straight -14.48
arrow rule straight random -4.21
gentzen.counterexamples -55.03
gentzen.random counterexamples 0.09
kmaps.eliminated and 2 0.81
kmaps.eliminated or 1 -2.43
kmaps.eliminated or 2 -1.16
kmaps.eliminated or 3 -5.72
kmaps.eliminated or 4 -1.39
kmaps.satisfied and 2 -2.47
kmaps.satisfied and 3 -2.43
kmaps.satisfied or 2 -2.21
regex any length -1.33
regex find expression -3.98
regex fixed length -0.89
truth valuations andor -2.90

Table 4.1: The average coefficients from linear regression on the progression of time
it took users to answer each question. The linear coefficient can be interpreted as the
change in number of seconds for each new answer.

tool. For instance, it does not include whether or not the answers were more frequently
correct with decreased TTA.

4.2.3 Evaluation Conclusions

The data collected over the revision week led to a very important conclusion: students
find the tool useful and are keen to use it for revision before quizzes or exams. This is
supported both by the sheer number of submitted answers and signed-up users, as well
as by the spike in answering on the day before the final quiz. Table 4.1 also suggests
that users’ performance increases on average after using the tool. Since students were
joining up to the very end of the evaluation period, this suggests that perhaps not all
Inf1A students knew about the existence of the tool and would have benefited from it
being available sooner. Having the students use this tool in their tutorials could have
perhaps helped this onboarding process and given them time to get acquainted with it.

It also became clear that the data shown in figure 4.1 and table 4.1 was only a part of
the story and other useful information could be gathered. In particular: what questions
users struggled with the most, how long it took them to answer each question, and
what was the success rate for each question. These questions could be answered in the
Course Administration, and the course organiser could draw their own conclusions.
The data collected through this evaluation made developing such a module possible.



Chapter 5

Course Administration

As discussed in section 4.2, the data collected through evaluation needed to be visual-
ized somehow. More importantly, this should not be a one-time action but rather some-
thing the course organiser can do continually whenever they want. The Course Admin-
istration module aims to address exactly that: give the course organiser a brief anal-
ysis of how popular and difficult various questions are, and simply give an overview
of how students are doing. Since the options for data analysis are nearly endless, I
will be showcasing the few metrics I have found important and realistic to implement
within the scope of this project, and I will discuss further potential improvements in
section 5.3.

5.1 Organise Dashboard

Most of the Organise module can be seen on the dashboard which is shown split up
in figures 5.1 and 5.2. The purpose of the dashboard is to display all the relevant
information to the course organiser while remaining coherent. At some point, if the
amount of information grew beyond what could comfortably be displayed on a single
page, the dashboard could either be scaled vertically, i.e., simply more sections would
be added to the bottom, or horizontally, i.e., by splitting sections into separate tabs and
adding additional navigation elements.

The top of the page (figure 5.1) contains an ”at a glance” overview of the installed
course and how it is doing. We can notice the number of Questions and Lessons in the
course, but also how many users have registered so far, and how many answers have
been recorded, including the percentage of correct and incorrect answers as a pie chart.

Further down, we see a 14-day plot of the number of answers on each day to gauge
user interest and the increasing or stagnating trend of using the tool. Since this example
uses data from the evaluation in section 4.2, the peak number of answers appears on
December 9 and far surpasses all other days. This section of the page also includes any
feedback that users had given recently. During the evaluation, the feedback was very
helpful, so it is useful to have it quite visible on the dashboard.

31



Chapter 5. Course Administration 32

INF1A: Computation and Logic

Questions
Tags: Truth Valuations, Regular Expressions, Gentzen, Arrow Rule, Karnaugh Maps

Question ID # of Answers Correct Unique Difficulty Median Time

truth_valuations_andor 475 8% 78% 16.7s

kmaps.eliminated_and_2 469 13% 78% 21.6s

gentzen.counterexamples 438 14% 89% 197.2s

regex_find_expression 400 87% 78% 23.1s

arrow_rule_straight 330 9% 67% 23.8s

regex_any_length 276 64% 33% 9.2s

kmaps.eliminated_or_2 275 16% 67% 19.1s

kmaps.eliminated_or_4 267 9% 78% 24.5s

regex_fixed_length 265 94% 56% 12.5s

arrow_rule_complex 256 30% 100% 169.5s

kmaps.eliminated_or_1 252 4% 11% 11.9s

kmaps.eliminated_or_3 226 23% 67% 23.5s

arrow_rule_branches 218 28% 89% 123.4s

kmaps.satisfied_and_3 212 23% 56% 18.9s

kmaps.satisfied_and_2 200 19% 56% 15.5s

kmaps.satisfied_or_2 190 24% 78% 21.3s

arrow_rule_straight_random 186 11% 67% 27.7s

Lessons
Tags: Karnaugh maps, Truth Valuations, Gentzen, Arrow Rule, Logic

ID cl2020

Version 0.1

Author Petr Manas (peter@petermanas.com)

Maintainers Michael Fourman

(michael.fourman@ed.ac.uk)

# of Questions

18
# of Lessons

5

Total users

182
Including you

Total feedback
notes

4
Total answers:

4982

Feedback Date

When doing questions, add a counter telling you how

many questions are left, how many you've done, how

many were right, etc.

10. 12. 2020

maybe show -> and <-> rules for Gentzen questions 08. 12. 2020

It seems when typing the regex, it does not accept any

non letter characters. I have tried using *, not

accepted, neither is ? or ()

05. 12. 2020

it says use the requested format but I have no idea

what that is

04. 12. 2020

Figure 5.1: The first half of the Organise module dashboard, showing data from the
semester evaluation described in section 4.2. Information displayed includes total num-
ber of users and answers, as well as recent feedback.

5.2 Questions Table

The Questions section contains a table that is meant to summarize the state of all
installed Questions and how they are being answered. Some of the simplest metrics we
can find are the number of answers for a Question and what proportion of these answers
were correct and incorrect. This measure alone can give the course organiser an idea of
which questions (or topics) are the most popular, and which Questions students often
answer correctly or make mistakes in. Based on this knowledge, they can then pick
specific topics for the next tutorial in order to challenge or test their students.

The ”Unique” column measures what percentage of all the answers for a Question
was unique. A high number such as 94% means that nearly all submitted answers were
different from each other, as is the case for regex fixed length, where users have
countless possible correct answers. On the other hand, 4% in kmaps.eliminated or 1
means that only extremely few sensible answers exist1, hence the bulk of the submitted
answers are not unique.

1In fact, there are only 6 possible correct answers for this particular Question, hence nearly half of
the unique answers were incorrect.



Chapter 5. Course Administration 33

INF1A: Computation and Logic

Questions
Tags: Truth Valuations, Regular Expressions, Gentzen, Arrow Rule, Karnaugh Maps

Question ID # of Answers Correct Unique Difficulty Median Time

truth_valuations_andor 475 8% 78% 16.7s

kmaps.eliminated_and_2 469 13% 78% 21.6s

gentzen.counterexamples 438 14% 89% 197.2s

regex_find_expression 400 87% 78% 23.1s

arrow_rule_straight 330 9% 67% 23.8s

regex_any_length 276 64% 33% 9.2s

kmaps.eliminated_or_2 275 16% 67% 19.1s

kmaps.eliminated_or_4 267 9% 78% 24.5s

regex_fixed_length 265 94% 56% 12.5s

arrow_rule_complex 256 30% 100% 169.5s

kmaps.eliminated_or_1 252 4% 11% 11.9s

kmaps.eliminated_or_3 226 23% 67% 23.5s

arrow_rule_branches 218 28% 89% 123.4s

kmaps.satisfied_and_3 212 23% 56% 18.9s

kmaps.satisfied_and_2 200 19% 56% 15.5s

kmaps.satisfied_or_2 190 24% 78% 21.3s

arrow_rule_straight_random 186 11% 67% 27.7s

Lessons
Tags: Karnaugh maps, Truth Valuations, Gentzen, Arrow Rule, Logic

ID cl2020

Version 0.1

Author Petr Manas (peter@petermanas.com)

Maintainers Michael Fourman

(michael.fourman@ed.ac.uk)

# of Questions

18
# of Lessons

5

Total users

182
Including you

Total feedback
notes

4
Total answers:

4982

Feedback Date

When doing questions, add a counter telling you how

many questions are left, how many you've done, how

many were right, etc.

10. 12. 2020

maybe show -> and <-> rules for Gentzen questions 08. 12. 2020

It seems when typing the regex, it does not accept any

non letter characters. I have tried using *, not

accepted, neither is ? or ()

05. 12. 2020

it says use the requested format but I have no idea

what that is

04. 12. 2020

Figure 5.2: The Questions table at the bottom of the Organise module dashboard show-
ing data from the semester evaluation described in section 4.2.

The following column ”Difficulty” attempts to measure exactly what it sounds like
and will be discussed further in section 5.2.1. The last column shows the median time
to answer the question (regardless of whether or not the answer was correct). Since
there were many away-from-keyboard instances in the data, mean and maximum mea-
sures are useless without at least limiting the data up to the 90th percentile, whereas
median shows representative values without pre-processing. The timing in particular
shows which Questions take the most effort and can often be seen as the most diffi-
cult. It could also be used to estimate how long each question will take students on a
tutorial/exam and plan them accordingly so that they are accomplishable within a time
limit.

It should be noted that the page also contains a similar table for Lessons but this is not
shown because with the current data it is simply not as interesting – Lessons were not
very popular during the evaluation, so very few conclusions can be drawn.

5.2.1 Measuring Difficulty

How to measure a Question’s difficulty solely based on the gathered data was a con-
ceptual problem that was largely solved heuristically. Looking at the Questions table,
there are three primary metrics related to how difficult a Question is: percentage of
incorrect answers, percentage of unique answers, and median time to answer.

• Higher % of incorrect answers→ higher chance to answer incorrectly→ higher
difficulty



Chapter 5. Course Administration 34

• Higher % of unique answers → more potential answers to choose from (less
straightforward question)→ higher difficulty

• Higher median time to answer→ more time required to think about the answer
→ higher difficulty

With that being said, we cannot say that each of these metrics has the same effect on
the difficulty, let alone that they are linearly proportional to difficulty. For instance, if
the median time to answer is 200s for Question A and 20s for Question B, it does not
mean that Question A is 10x as difficult. Similarly, the percentage of unique answers
can be correlated with difficulty but a Question like regex fixed length is quite
simple despite its 94% unique answers. For this reason, many different approaches
with scaling and modifying the individual metrics were tested, which finally led to the
formula in figure 5.3.

log2(
I2

100 × log2(U)× log2(T ))

WHERE I (Incorrect) ∈ [0,100],U (Unique answers) ∈ [0,100],T (Time median) > 0

Figure 5.3: Difficulty formula displayed in the Questions table. Resulting values are
scaled to [0,100]% by dividing by the maximum.

Since % of incorrect answers proved to be the most correlated with how difficult a
Question was, it was squared before scaling down again. This meant that if 20% of
answers were incorrect, this factor would equate to 4, while if 40% were incorrect,
which is much more significant despite being only double, the factor would be 16.
Unique answers and time medians, on the other hand, were found to be relevant but not
intensely important, hence both are scaled down logarithmically. The product of these
factors is then again scaled logarithmically so that the difficulty curve is more linear
than exponential, and the results for all Questions are scaled to the range [0,100]%.

Clearly, this formula is not perfect and only serves as a heuristic for the course organ-
iser rather than ground truth, while still being a useful metric. One potential way to
improve our gauge of how difficult Questions are is to simply ask the users. If users are
asked this right after they had answered a Question or at the final summary page, we
might get a better idea of the perceived difficulty of these Questions. Unfortunately,
these answers could also be inflated or deflated based on whether the user answered
correctly or not. Ultimately, however, this would likely be a more relevant and useful
metric than the heuristic that is in place now. The simple reason why this has not been
implemented yet is that it has not occurred to me as a possibility until all data was
already collected and it was too late.

5.2.2 Question Testing

Each of the Question ID links within the table directly to a simple Question testing
interface. This is the same view that has been implemented last year but now has
been integrated into the Organise module. The course organiser can view and answer
the Question as a student would, as well as see its full context and the seed that was
used to generate it. They can also generate the Question for a particular seed, for



Chapter 5. Course Administration 35

instance, one that a student has answered incorrectly in the past, and see the exact
Question instance. Alternatively, they can simply keep reloading and see the various
possible Question instances and get a feel for them before releasing the Question to
the students.

I have personally used this mini-tool while designing nearly every single Question gen-
erator because it made my work significantly easier than manually running code in a
Python shell. It still has room for improvements, however. The mini-tool could, for
instance, run the generator thousands of times and measure the uniqueness of the gen-
erated instances. This, however, re-opens an issue of what makes an instance unique
that was discussed in section 2.2.2. Alternatively, it could help the course designer
run unit tests on individual Questions which could ensure consistency among imple-
mentation changes. Unfortunately, as sensible and straightforward as this sounds, the
randomness of each generator means that changing a single line of code can change
all the results for given seeds. Therefore, simply storing seed-result pairs would only
make sense if the Question was never updated, which in turn would significantly reduce
the usefulness of unit testing in the first place.

5.3 Possible Improvements

When this system would truly be put to regular use, many potential usability improve-
ments would certainly become apparent as with any tool. One clear improvement
would be greater control over the filtering of visible data. A straightforward example
of this is being able to view a summary of data from a specific time period, such as the
past week, month, or the entire semester, as well as manually inputting start and end
dates to observe the effects of a specific change. More than that, the course organiser
could pick a specific question or lesson and combine it with the date selection, to get
even more specific data.

Another obvious improvement is better-computed metrics, for instance: average im-
provement of success rate for students over time, development of time to answer for
each question over time, or finding correlations between success at multiple questions.
The latter could be used to check if questions are similar or not, or rather if there are
any correlations between being good at one question and the rest. Many more metrics
could be implemented based on the preferences of the course organiser when the tool
would be used for a certain amount of time.

Although many of these improvements would be implemented when this tool would
be put to real use, they were simply not a priority for the purposes of this project.
Despite having a significant amount of data from user testing (Section 4.2), all this
data falls within a single week and a single context which is the revision week. This
means that it would not be possible to meaningfully showcase any of these features,
yet implementing them would take a significant amount of time.



Chapter 6

Further Work

With this project coming to an end, there are several possible paths it can take in the
future, each of which would involve further improvements outside of the scope of this
report. The source code for this project could be made open-source for others to use it
at their own will, it could be extended for public use and hosted at my expense, or it
could be kept private and used solely by the Inf1A course. Each of these scenarios or a
combination of them is possible but they all come with different problems to consider.

Open-sourcing the Project

This would be by far the simplest and most likely solution since it involves the fewest
changes. After adding instructions for how to deploy the tool, as well as potentially
dockerizing it for simple deployment, the GitHub repository on which the project is
hosted could be made public and potentially lightly advertised through University ser-
vices.

The tool is usable as-is with very little setup, but since it is currently targeted at a
selected portion of the Inf1A curriculum, anyone interested in using it would likely
need to write several of their own Question generators. Because of this, adding more
detailed documentation for the generic module would prove invaluable for potential
users. Since effort was already put into writing simple documentation for the module
in section 3.1, this would not be a significant amount of extra work.

Hosting It Publicly

Although the tool is currently hosted publicly at https://cltools.inf.ed.ac.uk,
making this public version of the tool any useful for users outside of the University
would again involve extending the tool. Either simply a greater variety of Question
generators could be implemented, which would be time-consuming in its own right, or
the tool could be rewritten to support Course and Question design from the browser.

Since the security and problematics of that approach have already been discussed in last
year’s report, this would understandably be a large conceptual problem. On the other

36

https://cltools.inf.ed.ac.uk


Chapter 6. Further Work 37

hand, giving this ability to the users could move the tool closer to the likes of Mem-
rise, and potentially further thanks to the ability to write generators in native Python.
However, due to the outlined potential issues with this approach and a significant time
effort, this is likely not going to be a likely scenario.

Keeping It Within the University

Similar to the first scenario, keeping this tool hosted on a University server and simply
extending it or educating someone else on how to extend it would be a viable option.
Since the Question set is designed for Inf1A and has proven to be useful and favored
by the students in section 4.2, the tool would be nearly ready-to-go with the initial
work to implement a few more Question generators. Alternatively, open-sourcing the
project and this scenario could be combined, and other Universities could be contacted
about also hosting this tool.

At the very least, I would certainly like to discuss the possibility of using this tool
within the Inf1A course in the coming years with the new course organiser. The neces-
sary changes and improvements for using the tool actively in-class could be done over
the summer and I would be happy to guide the course organiser on how to implement
new Questions, as well as implement a few of them myself. Especially after seeing the
positive responses from the students this year, I believe a tool like CLPractice could
be incredibly useful for 1st-year students struggling with Inf1A or simply wanting to
practice outside of the tutorials.



Chapter 7

Conclusions

7.1 Review of Project Goals

Semester-Wide Testing With New Inf1A Students

This project goal was set last year with very different expectations of what this year
would look like. Due to the difficult continuing COVID-related situation, it was impos-
sible to achieve this goal as planned for reasons outlined in section 4.2, but a smaller
and nonetheless useful evaluation took place instead. Having students use this tool
during the revision week made it potentially even clearer just how useful it could be
for revision since the number of answers grew as the final quiz grew closer. Hence, de-
spite having to change this goal from ”semester-wide” to ”revision week” still proved
to be a success and provided me with sufficient data for constructing the organise
module.

Course Administration

This goal stems from the previous one and a Course Administration has indeed been
successfully implemented this year. Thanks to the revision week evaluation, there
was enough data gathered for display in the new administrative module. This module
now serves as a summary of the students’ performance and has great potential to be
extended by additional metrics and data analyses.

The sub-goal ”Testing Question Generators” has also been partially achieved by in-
tegrating the generator tester from last year into the organise module. Since it was
found that more a complex testing suite was not necessary for this project’s purposes,
additional improvements such as observing patterns from generating large numbers of
random instances have not been implemented. These still remain as potential further
work if they are found to be useful when deployed as a part of the course but at the
moment fall outside of the scope of this project.

38



Chapter 7. Conclusions 39

Making the Tool Course-Agnostic

As the generic module was refactored and improved upon this year, a part of these
improvements was to make it easy for whoever deploys this tool to use a different
Course from the provided ComputationAndLogic. All direct mentions of the installed
Course have been replaced by a loading function that uses the Course specified in the
project settings. This means that to use a different Course, it simply needs to be present
in the project folder and a single line in the settings must be updated.

A potential further improvement to this could be to enable the simultaneous installation
of several different courses and letting the user chose which one they want to practice.
While this would not require significant effort, it was deemed unnecessary for the
purposes of this project since only the single Course is being showcased.

Other General Improvements

While this was set as a rather vague goal last year, some of the specifics outlined
then were indeed achieved this year and more. General system improvements such
as passwordless user login using an email address and several improvements to the
practice module were outlined in chapter 2.

More improvements came specifically for the Question generator portion of this tool,
which was discussed in detail in chapter 3. The generic Course module has been
refactored and Validators were extended to support using custom inputs by allowing
for writing new templates for them. This made it possible to achieve a completely
custom interface and experience for questions that could truly benefit from it, such as
Karnaugh Maps.

7.2 Addressing Exceptional Criteria

While I hope that the achievement of the basic and additional criteria has been clear
throughout the report, I believe separate attention should be given to the exceptional
criteria.

Outstanding scholarship or engineering, and/or publishable research

Since this was not a research project but rather a software engineering one, no pub-
lishable research has been conducted within the project’s scope. Beyond the scope,
however, I believe there is potential for publishable research on the effect of using this
tool for revision as compared to relying solely on tutorials and past papers. Seeing
as this year’s teaching circumstances were far from the norm and the tool was made
available to the students only at the end of the course, not enough qualitative data could
have been gathered. Despite that, reasonable conclusions about the usefulness of the
tool were achieved in chapter 4, and with a more directed study in the coming year,
this could potentially be extended into findings relevant to a small journal article.

Moreover, the software itself has already been published on https://cltools.inf.
ed.ac.uk and used by a significant number of target users – around 180. For that

https://cltools.inf.ed.ac.uk
https://cltools.inf.ed.ac.uk


Chapter 7. Conclusions 40

reason, I believe this project has achieved this criterion at the very least partially.

Evidence of originality

Although there have been many Inf1A CL tools in the past, and more tools are avail-
able outside of the course but relevant to it, most of them generally focus on a single
area. Even the mathematically-focused tool STACK can be used for many areas within
Mathematics but is still limited to that domain. I believe that CLPractice, despite be-
ing currently showcased for Inf1A, could be used for any number of different areas
and domains, which makes it unique. The flexibility of being able to design custom
Question generators using Python and all its available packages, while these generators
are encompassed by the tool which takes care of executing them, cannot be seen even
in the most general tools I have discussed in section 1.2.1 such as Memrise. For this
reason, I believe the project demonstrates sufficient evidence of originality.

7.3 Lessons Learned

This project taught me many valuable lessons about software development as well as
evaluating my software. While this was not my first interaction with the toolset I had
used, the project served as a very good practice of what I already knew and a permissive
environment for learning new things. I got to deploy my first Django web application
using Apache’s mod wsgi and I now know I would rather never do that again. I also
had a good reason for dynamically importing Python packages for the first time, which
I am sure will be useful in the future.

Another lesson was that the tool’s deployment and evaluation should have been started
much sooner, especially given that communication with the University’s IT support
and Ethics board took well over a month alone. It was, however, also a valuable les-
son in making this delay work in my favour by evaluating in a different time frame
from what I had planned and yet getting potentially more useful results. Overall, this
project certainly improved my abilities as a software engineer and will serve as a good
foundation for my future projects.

7.4 Project Outcome

The project as a whole was a success. The second year of the MInf project seamlessly
continued from the foundation I had laid last year, and I was able to get the tool prop-
erly tested by nearly 180 students of the course. Since the students seem to have found
the tool useful and there is always more work to do, I am open to continuing the de-
velopment of this tool in the future and potentially having it integrated more closely
with the Inf1A course. In conclusion, I am more than happy with the outcome of this
project and I am looking forward to seeing how its future unfolds.



Appendix A

Semester-wide Testing

A1



This may look scary but it really isn't...
Because this app is a part of an MInf honours project, and in order to allow you to log in using your email, I need your informed

consent – similar to websites asking for cookies consent, just a bit longer.

You may use the app without giving consent but you must submit this form.

If you cannot or choose not to give consent, you may lose saved progress and some functions may not work for you.

Please read the Participant Information Sheet to learn more about the goals of this project and how data is collected.

Project title CLPractice: Semester-wide testing

Principal investigator (PI) Michael Fourman

Researcher Petr Manas

PI contact details michael.fourman@ed.ac.uk

Please tick yes or no for each of these statements.

CLPractice fasand Feedback 

1. I confirm that I have read and understood the Participant Information Sheet for the above study, that I have

had the opportunity to ask questions, and that any questions I had were answered to my satisfaction.

Yes No

2. I understand that my participation is voluntary, and that I can withdraw at any time without giving a reason.

Withdrawing will not affect any of my rights.

Yes No

3. I consent to my anonymised data being used in academic publications and presentations. Yes No

4. I understand that my anonymised data can be stored for a minimum of two years Yes No

5. I allow my data to be used in future ethically approved research. Yes No

6. I agree to take part in this study (i.e. use this app). Yes No

7. I am 18 years or older. Yes No

Submit consent form

A.1 Participant Consent Form

A screenshot of the web participant consent form from the perspective of a logged in
user (”fasand” = me) who has not yet submitted the form.



  Page 1 of 3 
 

 

Participant Information Sheet 

Project title: CLPractice: Semester-wide testing 

Principal investigator: Michael Fourman 

Researcher collecting data: Petr Manas 

Funder (if applicable): N/A 

 

This study was certified according to the Informatics Research Ethics Process, RT 

number 5333. Please take time to read the following information carefully. You 

should keep this page for your records.  

Who are the researchers? 

Petr Manas, Michael Fourman (supervisor). 

What is the purpose of the study? 

To allow INF1A students to use the CLPractice web app along with progress tracking 

and statistics. To identify which generated questions are the most popular and 

assess each question’s difficulty based on in/correct student answers. To evaluate 

how often students will use the app for tutorial and exam practice. 

Why have I been asked to take part? 

This app is targeted towards 1st year informatics students taking the 

INF1A: Introduction to Computation course. The app aims to aid revision and 

practice of key concepts. It can be used in combination with tutorials in order to 

practice for small tests, which is why it will be running throughout the semester. 

Do I have to take part? 

No – participation in this study is entirely up to you. You can withdraw from the study 

at any time, without giving a reason. Your rights will not be affected. If you wish to 

withdraw, contact the PI. We will stop using your data in any publications or 

presentations submitted after you have withdrawn consent. However, we will keep 

copies of your original consent, and of your withdrawal request. 

 

  

A.2 Participant Information Sheet



  Page 2 of 3 
 

 

What will happen if I decide to take part?  

You will be given access to an app using your login email of choice, which will be 

able to track your progress as you answer randomly generated questions related to 

the INF1A course, particularly Computation and Logic. 

You may use the app as often as you want, either as a helper tool for tutorial tests or 

for exam practice. Since every answer you give is stored in the database (only 

accessible to you and the researchers), you will be able to track your progress and 

see improvement or which areas you might want to focus on. The data collected 

includes which questions you have chosen to answer and the answer you provided, 

how long it took you to answer each question, and how long you spent using the app 

as a whole. 

At any point while using the app, you can submit feedback concerning your 

experience with the app and generated questions through a form within the app itself 

or through an external short questionnaire. 

Are there any risks associated with taking part? 

There are no significant risks associated with participation. 

Are there any benefits associated with taking part? 

You will have a chance to use a unique app targeted at helping students with 

studying and question practice for INF1A. The anonymous data and feedback 

collected during this study will help with further development of the app in order to 

better help students in the future. 

What will happen to the results of this study?  

The results of this study may be summarised in published articles, reports and 

presentations. Quotes or key findings will be anonymized: We will remove any 

information that could, in our assessment, allow anyone to identify you. With your 

consent, information can also be used for future research. Your data may be 

archived for a minimum of 2 years.  

  



  Page 3 of 3 
 

 

Data protection and confidentiality. 

Your data will be processed in accordance with Data Protection Law.  All information 

collected about you will be kept strictly confidential. Your generated question 

answers (un-identifiable data) will be tied to the email you used for login. Any 

potentially identifiable data will be referred to by a unique participant number rather 

than by name. Your data will only be viewed by the researcher/research team. 

All electronic data will be stored on a password-protected encrypted computer, on 

the School of Informatics’ secure file servers, or in a School of Informatics’ database. 

No paper records will be stored. Your consent information will be kept separately 

from your responses in order to minimise risk.  

What are my data protection rights? 

The University of Edinburgh is a Data Controller for the information you provide. You 

have the right to access information held about you. Your right of access can be 

exercised in accordance Data Protection Law. You also have other rights including 

rights of correction, erasure and objection. This does not include anonymous usage 

data which is not associated with your participant number. For more details, 

including the right to lodge a complaint with the Information Commissioner’s Office, 

please visit www.ico.org.uk. Questions, comments and requests about your personal 

data can also be sent to the University Data Protection Officer at dpo@ed.ac.uk.  

Who can I contact? 

If you have any further questions about the study, please contact the lead 

researcher, Petr Manas (s1652610@sms.ed.ac.uk).  

If you wish to make a complaint about the study, please contact  

inf-ethics@inf.ed.ac.uk. When you contact us, please provide the study title and 

detail the nature of your complaint. 

Updated information. 

If the research project changes in any way, an updated Participant Information Sheet 

will be made available on https://web.inf.ed.ac.uk/infweb/research/study-updates. 

Alternative formats. 

To request this document in an alternative format, such as large print or on coloured 

paper, please contact Petr Manas (s1652610@sms.ed.ac.uk). 

General information. 

For general information about how we use your data, go to: edin.ac/privacy-research 



Bibliography

M. Hepburn. Tools for learning: Computation and logic, 2016. MInf Project (Part 1)
Report.

M. Hepburn. Fsm-workbench, 2017a. URL https://github.com/
MatthewHepburn/FSM-Workbench.

M. Hepburn. Refining the fsm workbench, 2017b. MInf Project (Part 2) Report.

G. Keady, G. Fitz-Gerald, G. Gamble, and C. Sangwin. Computer-aided assessment
in mathematical sciences. In Proceedings of The Australian Conference on Science
and Mathematics Education (formerly UniServe Science Conference), 2012.

T. T. Kidd. A brief history of elearning. In Web-based education: Concepts, method-
ologies, tools and applications, pages 1–8. IGI Global, 2010.

J. A. Kulik and J. D. Fletcher. Effectiveness of intelligent tutoring systems: A meta-
analytic review. Review of Educational Research, 86(1):42–78, 2016. doi: 10.3102/
0034654315581420. URL https://doi.org/10.3102/0034654315581420.

P. Manas. Clpractice – tools for learning: Computation and logic, 2020a. URL https:
//project-archive.inf.ed.ac.uk/all/ug4/20201668/ug4_proj.pdf. MInf
Project (Part 1) Report.

P. Manas. Urlaccessor test class for webarchivcz/seeder,
2020b. URL https://github.com/WebarchivCZ/Seeder/blob/
3c37eb581d66bd5d31ac653e58a4ec767a75e66e/Seeder/www/tests.py.
part of my work project, commit 3c37eb5.

P. M. Maurer. Generating test data with enhanced context-free grammars. IEEE Soft-
ware, 7(4):50–55, 1990. doi: 10.1109/52.56422. URL https://doi.org/10.
1109/52.56422.

F. Mehta. The sequent calculus calculator, 2019. URL https://seqcalc.io/.

A. Mikolajczak. Karnaugh-mapp, 2018a. URL https://github.com/Arcadius19/
Karnaugh-mAPP.

A. Mikolajczak. Tools for learning: Computation and logic: Karnaugh mapp, 2018b.
4th Year Project Report.

P. Purdom. A sentence generator for testing parsers. volume 12, pages 366–375, 1972.
doi: 10.1007/BF01932308. URL https://doi.org/10.1007/BF01932308.

A6

https://github.com/MatthewHepburn/FSM-Workbench
https://github.com/MatthewHepburn/FSM-Workbench
https://doi.org/10.3102/0034654315581420
https://project-archive.inf.ed.ac.uk/all/ug4/20201668/ug4_proj.pdf
https://project-archive.inf.ed.ac.uk/all/ug4/20201668/ug4_proj.pdf
https://github.com/WebarchivCZ/Seeder/blob/3c37eb581d66bd5d31ac653e58a4ec767a75e66e/Seeder/www/tests.py
https://github.com/WebarchivCZ/Seeder/blob/3c37eb581d66bd5d31ac653e58a4ec767a75e66e/Seeder/www/tests.py
https://doi.org/10.1109/52.56422
https://doi.org/10.1109/52.56422
https://seqcalc.io/
https://github.com/Arcadius19/Karnaugh-mAPP
https://github.com/Arcadius19/Karnaugh-mAPP
https://doi.org/10.1007/BF01932308


Bibliography A7

A. Sakharov. ”sequent calculus.” from mathworld–a wolfram web resource. URL
https://mathworld.wolfram.com/SequentCalculus.html. created by Eric W.
Weisstein.

C. Sangwin. Computer aided assessment of mathematics using stack. In Selected
regular lectures from the 12th international congress on mathematical education,
pages 695–713. Springer, 2015a.

C. J. Sangwin. Assessing elementary algebra with stack. International journal of
mathematical education in science and technology, 38(8):987–1002, 2007.

C. J. Sangwin. Who uses stack? a survey of users of the stack caa system, may 2015.
2015b.

C. J. Sangwin and M. Grove. Stack: addressing the needs of the neglected learners. In
Proceedings of the Web Advanced Learning Conference and Exhibition, WebALT,
pages 81–96, 2006.

W. Schwarz. Tree proof generator, 2021. URL https://www.umsu.de/trees/.

N. Vazbyte. Haschool: an online tool for accelerating haskell learning, 2019. Fourth
Year Project Report.

E. Z. Yang. Logitext, 2012. URL http://logitext.mit.edu/main.

O. Zawacki-Richter and C. Latchem. Exploring four decades of research in computers
& education. Computers & Education, 122:136–152, 2018.

https://mathworld.wolfram.com/SequentCalculus.html
https://www.umsu.de/trees/
http://logitext.mit.edu/main

	Introduction
	Previous work carried out (2019-2020)
	Background
	Existing Tools
	Literature Review

	System Overview
	Terminology Used
	Project Goals
	Summary of Work Done
	Changes Made Due to COVID-19

	System Improvements
	User Login & Consent Gathering
	Passwordless Login
	Consent Gathering

	Practice Module
	Visual Improvements
	Better Randomness for Lessons

	Deployment

	Question Generator Improvements
	The generic Module Structure
	class Course():
	class Lesson():
	class Question():
	The Implemented cl2020 Structure

	How To Implement a Question Generator
	Abstracting Questions Into Code

	Validators
	Improving Existing Validators
	Custom Input Form

	Karnaugh Maps Generator
	KmapsValidator
	A Generic K-Maps Question

	Gentzen Generator
	Existing Gentzen Tools
	GentzenValidator
	Solving Step-By-Step
	Rendering LaTeX
	Algorithm Imperfections


	Evaluation
	Automated Testing
	"Semester-wide" Testing
	Quantitative Analysis
	Qualitative Analysis
	Evaluation Conclusions


	Course Administration
	Organise Dashboard
	Questions Table
	Measuring Difficulty
	Question Testing

	Possible Improvements

	Further Work
	Conclusions
	Review of Project Goals
	Addressing Exceptional Criteria
	Lessons Learned
	Project Outcome

	Semester-wide Testing
	Participant Consent Form
	Participant Information Sheet

	Bibliography

