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Abstract
Audio-visual speech recognition combines automatic speech recognition with lip read-
ing to improve recognition performance. This project focused on the lip reading aspect,
which is a challenging task due to many sources of variation found in real-world en-
vironments. The experiments investigated how well a pre-trained lip reading model
can generalise to a new dataset. The model, based on the transformer architecture, was
evaluated on the LRS2 and LRS3-TED datasets. Further training using LRS3-TED was
performed to fine-tune the model, experimenting with different combinations of batch
sizes and learning rates. The best fine-tuned model achieved a small improvement in
Word Error Rate (WER) on the LRS3-TED test dataset, achieving 78.0% WER. Future
work is suggested to further improve performance, including using a TED language
model and training for more epochs.
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Chapter 1

Introduction

1.1 Motivation

Lip reading is a technique used to understand speech by interpreting movements of
a speaker’s lips. The McGurk effect [26] demonstrates that listeners use this visual
information in addition to audio to understand what a speaker is saying. By training a
suitable model it is possible for a machine to perform lip reading. While lip reading,
or visual speech recognition, uses only the visual input, it can be combined with auto-
matic speech recognition (ASR) in a multi-modal approach, referred to as audio-visual
speech recognition (AVSR).

ASR is already used in many practical applications, such as video captioning and per-
sonal assistants on our mobile phones. In these real-world applications the input is not
always clean, potentially containing background noise or audio from another speaker.
Since lip reading uses only the visual aspect, it is unaffected by background noise in
the audio. It is therefore advantageous to make use of both sources of information:
AVSR models have been found to improve performance compared to models using
only lip reading or only ASR [4].

Lip reading is a more challenging task than ASR - even state-of-the-art lip reading
models and professional human lip readers achieve a much higher Word Error Rate
(WER) than ASR systems on audio-visual datasets. In [31], the state-of-the-art V2P
lip reading model achieved 40.9% WER on the Large-Scale Visual Speech Recognition
(LSVSR) dataset and the older LipNet model achieved 72.7%, while professional lip
readers achieved a WER of 86.4% (with context) and 92.9% (without context). In
comparison, an ASR model trained on the LSVSR audio achieved a WER of 18.3%.
These results demonstrate firstly the difficulty of lip reading, but also that lip reading
models can provide significant improvements compared to human performance.

Why is lip reading so challenging? It faces difficulties common to many image pro-
cessing tasks. The models must be able to cope with variation in lighting, background
and the appearance of speakers, as well as the possibility of occlusion and variation
in pose as the speaker moves their head. Additionally, it is difficult to distinguish be-
tween some words purely from lip reading. A phoneme is the contrasting sound that
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Chapter 1. Introduction 2

changes the meaning of a word in a pair of words which are otherwise the same. We
can perceive a difference in sound when we hear different phonemes, however, we can-
not distinguish all phonemes visually because not all articulators are externally visible.
For example the words ‘file’ and ‘vile’, or ‘ship’ and ‘chip’, sound different but look
the same on a speaker’s lips. Words that are visually difficult to distinguish tend to be
more easily distinguishable in the audio, so by using audio-visual speech recognition
this ambiguity can be more easily resolved.

Large training datasets are required for lip reading models to learn to cope with the
variation found in real-world applications. It is not easy to acquire such large quantities
of suitably pre-processed audio-visual data. The ideal scenario would be to have a
model which can generalise well to new lip reading contexts having been trained on an
existing dataset - which is the motivation for this project’s investigation into lip reading
models.

1.2 Project Goals and Achievements

Since this was the first year of a two-year project on audio-visual speech recognition,
my approach was to focus first on the visual aspect, and to incorporate the auditory
aspect next year. This year my goals were to become familiar with the current (and
historical) field of visual speech recognition and acquire a working lip reading model,
evaluate its generalisation to an unseen dataset, and improve its performance by modi-
fying the model or training it further.

I have achieved these goals: I found and set up a pre-trained lip reading model and
acquired suitable datasets for the experiments. I evaluated the lip reading model on
LRS2 [4] (a dataset it was trained on) and LRS3-TED [3] (an unseen dataset) and
compared the performance. I implemented code to train the lip reading model and
trained it on a subset of the LRS3-TED training data, achieving a Word Error Rate
(WER) of 78.0% on the LRS3-TED test set.

I had planned to also train a language model more suitable for the LRS3-TED dataset
than the LRS2 language model, and evaluate the performance using that model. How-
ever since training the lip reading model took more time than originally expected this
has been left for next year, as detailed in Section 6.2.



Chapter 2

Background

2.1 Lip reading

As deep learning techniques have become more advanced and large audio-visual datasets
have become available (see Section 2.2) there has been a shift in visual speech recog-
nition methods. Lip reading systems are moving away from using the more traditional
approaches, towards using deep learning methods which can provide improved perfor-
mance. [16] offers a detailed survey of automatic lip reading systems from 2007 to
2018.

Lip reading begins with a sequence of video frames which undergo pre-processing -
face detection and facial landmark localisation, particularly lip localisation - then vi-
sual features are extracted from each frame, and finally these features are classified into
a sequence of speech units (e.g. phonemes, characters, words) [18]. Early lip reading
methods used traditional handcrafted visual features. These included geometric fea-
tures [29], appearance-based approaches [8], image transforms [30] and combinations
of these methods. The resulting visual features were usually classified using Hidden
Markov Models (HMMs), since they are effective at modelling temporal sequences -
HMMs were also commonly used in traditional ASR systems [17].

By using a deep learning approach we avoid having to use handcrafted features as de-
scribed above, and instead allow a neural network to learn the most useful features
from the data. A common combination is to use a network architecture suited to ex-
tracting visual features, such as a convolutional neural network (CNN), followed by
a network architecture suitable for modelling sequences, such as a Long Short-Term
Memory (LSTM) network or Gated Recurrent Unit (GRU) [6] [12] [10].

Lip Reading in the Wild [11] was one of the first end-to-end trainable lip reading mod-
els, using CNNs to predict at the word level. Word-level predictions are however not
ideal for a real-world application, since word boundaries must be known beforehand
and words not in the vocabulary cannot be recognised. Different levels of classification
can be used - for example, systems can output sequences of characters or phonemes
which are then decoded into words or sentences/phrases.

LipNet [6] was the first end-to-end sentence-level lip reading model. It used spatio-
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temporal CNNs and GRUs, predicting at the character level and using connection-
ist temporal classification (CTC) loss to decode the sequence of words. This model
achieved a much lower WER compared to human lip readers on the Grid corpus [13],
and was able to generalise well to unseen speakers from the dataset. However, as
detailed in Section 2.2 the Grid corpus has a very specific and limited syntax for sen-
tences. When tested on the more challenging LSVSR dataset [31] this model had a
much higher WER.

The Vision to Phoneme (V2P) neural network [31] had a similar architecture to LipNet,
but used LSTMs instead of GRUs, amongst other changes, and achieved improved per-
formance on the LSVSR dataset. V2P predicts a sequence of phoneme distributions,
which are then fed into a phoneme-to-word decoder to produce a sequence of words.
Compared to systems performing word-level predictions, this separation brings the
advantage that the vocabulary can be extended without retraining the network. This
model was found to generalise very well to the LRS3-TED dataset [3], which it had
not been trained on.

[2] compared three different DNN architectures for lip reading, predicting at the char-
acter level. One used a bidirectional LSTM architecture, another was fully convolu-
tional and the third was based on the transformer architecture [34]. The transformer
model was the best performing model out of the three, achieving the lowest WER on
the LRS2 dataset [4], and so was made publicly available - this was the lip reading
model used in this project.

The speech recognition models mentioned so far have used only lip reading - no audio.
Since lip reading is more challenging than ASR and results in higher WER, potentially
its most interesting use is in combination with ASR. As mentioned in Section 1.1,
audio-visual speech recognition enables improvements in performance in comparison
to using only one source. The Watch, Listen, Attend and Spell network (WLAS) [10]
introduced a dual attention mechanism that allowed the model to use either or both
the audio and visual input. This dual attention mechanism was also used in the trans-
former based architectures of [4]. When using both input sources the WER decreased
compared to using audio only, and this decrease in WER was larger for noisier audio.
This demonstrates the power of using both sources - lip reading allows us to make the
most of the visual information which is unaffected by the noise in the audio.

2.2 Audio-visual Datasets

The audio-visual datasets used to train and test lip reading models are central to the
task of lip reading, and their development has been closely linked with the development
of novel lip reading methods. The shift towards using deep learning techniques for lip
reading has been matched by a shift from small and constrained audio-visual datasets
towards much larger and more varied datasets. Audio-visual datasets typically contain
video clips of speakers, closely cropped to their faces, and a transcription of the audio
matching each video. The majority of datasets are for the English language, although
there are a few in other languages [28] [33]. [16] gives a comprehensive comparison
and review of audio-visual datasets up to 2018.
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The older datasets tended to be small and quite constrained. They were often produced
from scratch in a controlled lab environment, from a small number of speakers reading
from a script. Some of the earliest datasets focused on the simplest task of recognising
digits or letters of the alphabet [27] [25]. Others were more relevant for the general task
of recognising natural speech - containing words, phrases or sentences. For example
the Grid corpus [13], which has been widely used to evaluate and compare the perfor-
mance of lip reading models, contains sentences constructed from a limited vocabulary
and grammar.

The problem with many of these older datasets is that lip reading models trained on
them will not generalise well to real-world scenarios. They will be unable to cope
with environments with fewer or no constraints. For example, recordings in lab en-
vironments do not typically contain background noise that would normally be found
in an uncontrolled environment. In the presence of background noise humans sub-
consciously modify their speech production in what is known as the Lombard effect
[23]. As well as acoustic and phonetic modification, there are also articulatory adjust-
ments [5]. This means that noise in the audio can affect the visual aspect as well, and
so should be considered when creating audio-visual datasets. To help overcome this
some researchers have added speech-shaped noise in the background during recording
of the speakers [5], or recorded speech in different noise conditions such as a vehicle’s
windows being open or closed [22]. However a better solution has more recently be-
come possible. Rather than recording datasets from scratch, they can instead be built
using existing videos of real-world speech.

Lip Reading in the Wild (LRW) [11] was a key dataset that started the trend to build
larger, less constrained datasets by extracting clips from existing video content (in
particular, from BBC TV news broadcasts). Using real-world videos provides a larger
and more diverse set of speakers, larger vocabulary, and a greater variety of lighting
and backgrounds than could be produced in a controlled lab environment. The videos
capture how people naturally speak, rather than test subjects reciting a script. The size
and diversity of these datasets make them more suitable than the older datasets for
training deep learning models capable of generalisation.

LRW was built for the purpose of recognising individual words. This is quite limited
- a more interesting task is recognising sentences or phrases. The same researchers
hence followed up LRW with the Lip Reading Sentences (LRS) dataset [10], built
from a similar selection of BBC TV news broadcasts. There have since been a variety
of sentence-level audio-visual datasets created from various sources including: BBC
TV programmes (LRS2 [4]), TED and TEDx talks (LRS3-TED [3], AVSpeech [15])
and YouTube videos (LSVSR [31]). LSVSR is the most recent of these ‘in the wild’
datasets, currently the largest and containing the most diverse content.

While many datasets focus on frontal or near-frontal views of faces [13] [11] [10],
it is realistic to assume that the angle of a speaker’s face may vary due to natural
head movements. One approach to provide robustness to this variation in viewpoint
is to record both frontal and profile views of speakers [5]. However, this requires
storing twice as much video data for each utterance and the videos show only two
views and no angles in between. Recent improvements in face and facial landmark



Chapter 2. Background 6

detection have allowed better detection of profile faces in existing videos, allowing the
‘in the wild’ datasets to contain a wider range of viewpoints within each video clip
[12] [4] [3]. It was found that lip reading in profile is more difficult than lip reading
frontal views, but performance can be significantly improved by training on a variety
of viewpoints, compared to training only on frontal views [12]. Therefore, datasets
containing multiple viewpoints are more challenging but can generalise better to real-
world scenarios.

In this project the LRS2 and LRS3-TED datasets were used. They were chosen as they
can be readily acquired for use, unlike for example the larger and more varied LSVSR
dataset. LRS3-TED has the benefit that it is built from publicly available TED data, so
its use is not as restricted as LRS2 which uses data from the BBC. The ‘in the wild’
nature of the data makes them preferable to the older more constrained datasets such
as the Grid corpus. They both contain a variety of viewpoints. Both are challenging
datasets which were produced by the same group, using a similar pipeline, but from
different sources, which makes them interesting to compare.



Chapter 3

Technical Background

This chapter describes a few deep learning architectures relevant to lip reading. Each
architecture builds upon the previous, aiming to solve its issues and improve perfor-
mance.

3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [14] are a neural network architecture that is use-
ful for modelling sequences. Unlike feedforward neural networks, RNNs contain feed-
back loops that allow them to remember information between time steps, by passing a
hidden state from one time step to the next. This hidden state acts as the memory of the
network - it is a representation of all the previous inputs - and so allows the modelling
of dependencies in the sequence.

RNNs however suffer from the vanishing gradient problem. The weights in the net-
work are updated using backpropagation through time. As the gradients are propagated
back through the layers (time steps) they get smaller and smaller, so that the early lay-
ers learn much more slowly than later layers. As a result the network ‘forgets’ the in-
formation from the early inputs - the later hidden states will contain little information
from these early inputs. This short-term memory problem means that RNNs cannot
model long range dependencies very well.

3.1.1 Long Short-Term Memory

The Long Short-Term Memory (LSTM) [20] architecture is a variation of the RNN
architecture introduced to solve the vanishing gradient problem and allow modelling
of longer sequences with long term dependencies.

In addition to the hidden state, the LSTM has a memory cell which uses a gradient
of 1 between time steps, and so does not suffer from the vanishing gradient problem.
The LSTM uses gates to decide what information from the current input and previous
hidden state to store in the memory cell at each time step. This means that only relevant
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information is kept while less relevant information can be forgotten. Each gate is a
neural network layer.

The forget gate regulates what information to keep and what to remove from the previ-
ous memory cell. The input gate is used to update the current memory cell, and finally
the output gate computes the next hidden state. The separation of the memory cell and
hidden state allows information from early inputs to be retained for later in the memory
cell, without necessarily being passed immediately to the hidden state, which is used
for predictions.

3.2 Encoder-Decoder Architectures

Lip reading involves transforming sequences of video frames into sequences of speech
units (e.g. phonemes, characters, words). Usually the number of input video frames
will not be the same as the number of output speech units, and this difference in input
and output length is also the case for other sequence processing tasks, such as machine
translation. A single RNN or LSTM is therefore not suitable for these tasks, because it
cannot be used to map an input sequence to an output sequence of a different length.

The solution to this is using a sequence-to-sequence model [32], which uses two neural
networks (e.g. LSTMs). One acts as an encoder, mapping the entire input sequence to
a fixed-size vector (the hidden state that the encoder outputs at the final time step). The
second acts as a decoder, taking the encoder vector as input and predicting a sequence
of outputs.

3.2.1 Attention

A problem with the basic encoder-decoder architecture is that the internal represen-
tation of the input produced by the encoder is a fixed size. This means that long se-
quences are represented by the same size of vector as shorter sequences. Some useful
information about the long sequences may be lost due to this limited representation.
To improve the performance, particularly for decoding long sequences, the attention
mechanism [7] can be used.

Instead of mapping the entire input sequence to one vector representation, a context
vector is created to represent each item in the input sequence. Different lengths of
input sequences will therefore be represented by different numbers of vectors. The
attention mechanism uses an alignment model to allow the decoder to focus on only
the most relevant parts of the input sequence at each time step. To predict the next
output the decoder uses the context vectors for the parts of the input that are most
relevant to the previous output.

3.2.2 Transformers

[34] proposed the transformer architecture which removes the use of RNNs, instead us-
ing only the attention mechanism. Removing the sequential nature of the model makes
it more efficient and scalable. This architecture is also better at modelling long range
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dependencies, since it reduces the path length between input and output positions, and
therefore less information is lost.

The transformer architecture uses two types of the attention mechanism described in
the previous section. Self-attention [9] allows the model to transform an input sequence
into a representation which relates different items in the input sequence to each other.
Multi-head attention means that there are multiple parallel attention layers, which en-
ables the model to attend to multiple different parts of the input at once.

Since the sequential nature of the model has been removed the encoder is given an
embedding of the whole input sequence at once, alongside a positional encoding vec-
tor to provide information about the order of the input sequence. The encoder uses
multi-head self-attention to encode the input sequence into an internal representation
made up of key, value pairs. The decoder is fed the previous decoder output and corre-
sponding positional encoding vector and performs multi-head self-attention to produce
a query vector. A third multi-head attention block is used to compare the decoder query
vector to the encoder key vectors to find the most relevant values to use. In this way
the decoder can attend to any and all important positions in the input sequence and use
this information to predict the next output.



Chapter 4

Experimental Setup

In this project I aimed to train a lip reading model suitable for the LRS3-TED dataset,
by adapting a pre-trained LRS2 lip reading model from [2]. This chapter introduces
the datasets and lip reading model that were used in more detail.

4.1 Datasets

The audio-visual datasets used in this project were LRS2 and LR3-TED (first intro-
duced in Section 2.2). The datasets are very large, taking up 51GB and 135GB of
space respectively. LRW was also acquired, but finally was not used since this project
focused on recognising full sentences.

Figure 4.1: Video frames extracted
from two different videos in the LRS3-
TED test set [3].

The datasets consist of square video clips
of speakers’ faces and corresponding text
files containing the transcription. See Fig-
ure 4.1 for example video frames extracted
from two different videos in the LRS3-TED
test dataset. The top row shows a vary-
ing viewpoint within a single clip, while
the bottom row shows a frontal view of
the speaker’s face throughout the clip. The
transcription for the top row example is:
HOW DO YOU KNOW FOR SURE.

LRS2 contains sentences up to 100 characters
in length, while LRS3-TED contains longer
sentences. The longest sentence in the LRS3-
TED data used in this project has 149 charac-
ters (see Table 4.2).

LRS2 is split up into pre-train, train, validation and test sets. LRS3-TED is split up
into pre-train, trainval and test sets, and the data is structured into folders where each
folder contains videos from the same TED talk (hence, the same speaker). The number

10
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Table 4.1: Number of speakers, utterances, words and vocabulary in the different parti-
tions of the LRS3-TED and LRS2 datasets. [3] [4]

Dataset # speakers # utterances # word instances Vocab
LRS3-TED Pre-train 5,090 118,516 3.9M 51k
LRS3-TED Trainval 4,004 31,982 358k 17k
LRS3-TED Test 412 1,321 10k 2k
LRS2 Pre-train - 96,318 2,064,118 41,427
LRS2 Train - 45,839 329,180 17,660
LRS2 Validation - 1,082 7,866 1,984
LRS2 Test - 1,243 6,663 1,698

Table 4.2: Number of utterances, speakers and longest videos and transcriptions of the
datasets used in the experiments.

Dataset # utterances # speakers
Longest
video
(frames)

Longest
transcription
(characters)

LRS3-TED training 10000 1172 157 149
LRS3-TED validation 500 499 157 142
LRS3-TED test 1321 412 157 129
LRS2 test 1243 - 145 96

of utterances and speakers in each partition of the datasets, amongst other details, are
given in Table 4.1.

Since in this project I was adapting a pre-trained lip reading model it was not necessary
to train on the entire LRS3-TED trainval set. Using all the data would have led to large
training times unfeasible for this project, so I used a subset of the LRS3-TED trainval
data. The training and validation sets used in my experiments were created by selecting
training data from the top and validation data from the bottom of an ordered list of the
trainval files. This ensured that the two sets contained no overlapping speakers.

The training set was formed by selecting the first 10,000 samples of the ordered list.
Their order was then shuffled so that samples from the same speakers were not next
to each other in training. In that way, each training batch contained samples from a
variety of speakers, rather than all of the samples from just a few speakers.

The validation set was formed by selecting the last 5,000 samples from the ordered
list, shuffling them, then selecting the bottom 500 samples. This was done so that the
set contained a large variety of speakers, to better represent unseen data. The size of
the validation set was chosen to be 500 so that it was fast to evaluate the model on.

Since the lip reading model does not generalise well to longer sentences than it has
seen in training [2], it was ensured that the training set contained some sentences with
length greater than or equal to the longest sentences in the validation and test sets. The
sizes of the datasets used in the experiments and the lengths of the longest samples are
given in Table 4.2.



Chapter 4. Experimental Setup 12

Figure 4.2: The architecture of the lip reading model. K, V and Q denote the Key, Value
and Query tensors for the multi-head attention. Diagram adapted from [2].

4.2 Lip reading model

The lip reading model used in this project is the best performing model from [2], based
on the transformer architecture [34]. The model architecture can be seen in Figure 4.2.
It works by passing a sequence of input video frames cropped to the lip region through
the visual frontend (a spatio-temporal residual network) which outputs feature vectors.
The sequence of feature vectors is then input to the sequence-to-sequence transformer
model which outputs character probabilities. Beam search is then used to decode the
output character probabilities into the final predicted sentence. Optionally, an external
language model can be used during decoding to improve performance.

[2] trained the lip reading model using the LRW, MV-LRS and LRS2 datasets. They
used the Adam optimiser [21] with an initial learning rate of 10-3, reduced to 10-4 upon
plateau, and all other Adam parameters were set to the default. The transformer model
took the longest time to train compared to their other two proposed architectures - for
full details of training see [2]. The character-level language model provided by [2] uses
LSTMs and was trained on the subtitles of the full source videos used to generate the
LRS2 training set. The language model is optional since the transformer lip reading
model learns a language model internally via the teacher forcing training method.

4.3 Implementation details

[2] implemented the model using TensorFlow and the original implementation is avail-
able in their GitHub repository [1]. Modifications made during the project can be found
in the submitted code repository.

In order to run my experiments which involved training the lip reading model, I had
to implement code to run the training. The code to evaluate the model was already
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provided. The model can be run in the training mode or the evaluation mode by running
main.py with command line arguments specified in config.py.

To implement the training I edited lip_model/training_graph.py, main.py and
config.py - setting up a training graph with an optimiser, updating the model weights
after each batch and saving model checkpoints. I also added a decaying learning rate,
and implemented gradient accumulation to allow larger batch sizes.

4.3.1 Training code

I added code to the training graph to create an Adam optimiser. The optimiser was
then used to update the weights to minimise the loss during training.

The original implementation contained code to restore a model from a checkpoint. I
added code to save model checkpoints during training. The saved checkpoints could
then be restored later to evaluate the trained model.

At first I passed the optimiser a learning rate which remained the same throughout
training. I later decayed the learning rate by passing the initial learning rate into an
inverse_time_decay function. There are several different learning rate decay func-
tions available in TensorFlow, including exponential decay, polynomial decay and co-
sine decay. However I decided that for this project it was not important to investigate
which of these would work best, and instead chose one and used it throughout.

4.3.2 Gradient Accumulation

Due to limitations of GPU memory it was only possible to run training with a maxi-
mum batch size of 8 samples. Small batch sizes have been found to produce a lower
generalisation error compared to large batches, however when batch normalisation and
a large dataset is used, a slightly larger batch size has been found to be useful [24].
Larger batch sizes also reduce the training time, since the weights are updated fewer
times. It is therefore beneficial to be able to train the model using a batch size larger
than 8.

I implemented gradient accumulation to allow larger batch sizes than the GPU can
handle at once. This works by computing the gradients for each minibatch (maximum
size 8) but only applying the gradients (updating the weights) after accumulating the
gradients of a certain number of minibatches. Instead of using the Adam optimiser’s
minimize() function which computes and applies the gradients in one step, this can
be split into compute_gradients() and apply_gradients(). A command line ar-
gument n_minibatches was added to enable configuration of the batch size. The total
batch size is the batch_size (e.g. 8) multiplied by n_minibatches.

4.4 Problems

Several issues were encountered which meant that the lip reading model was first eval-
uated on the full LRS3-TED dataset several weeks after I decided to use it and down-
loaded the code.
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A disadvantage of this implementation of the model is that it is written in Python 2,
which is no longer supported, and uses an old version of TensorFlow (version 1.12).
This caused issues when setting up the Conda environment for running the model -
due to deprecation, there were some package dependencies that could not be met. This
was resolved by not including the dependencies required for optional visualisation of
the input videos, attention matrices and predictions. While it is unfortunate that these
cannot be visualised, it is preferable to the model not running at all. It is however not
sustainable to keep using this implementation in the long run, and the code would at
some point need to be ported to Python 3 and TensorFlow 2.0. Due to the size and
complexity of the code it was deemed that this would take more time out of the project
than it would be worth. There were additional issues with exceeding my allocated disk
quota when installing the large TensorFlow dependencies, but these were resolved by
clearing out unused packages.

Incorrectly set arguments led to a couple of errors when first running the model. The
LRS3-TED videos are larger than the LRS2 videos, with a width and height of 224 pix-
els as opposed to 160 pixels. I initially resized the LRS3-TED videos to 160x160 pixels
so that the model would run, before realising that the img_width and img_height ar-
guments could be set to the appropriate size (224) instead. The other error occurred
because the longest video in LRS3-TED was longer than the longest video in LRS2
(see Table 4.2). The arguments time_dim and maxlen had to be set appropriately to
the maximum input video length in video frames or the maximum output sequence
length in characters (whichever was larger).
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Experiments and Results

The lip reading model can be evaluated with or without using beam search, and with
or without using the LRS2 language model. Table 5.1 shows the three different model
setups used in the following experiments. The parameter values shown were the best
values determined in [2].

5.1 Evaluating the LRS2 lip reading model

The aim of this experiment was to investigate and compare the performance of the
LRS2 lip reading model on the LRS2 test set and the LRS3-TED test set.

The experiments were run on a single GeForce GTX TITAN GPU with 6083MiB mem-
ory.

5.1.1 Results

The WER, Character Error Rate (CER) and the time taken to run the model on the
LRS2 test set, LRS3-TED test set and LRS3-TED validation set are shown in Table
5.2. The results for the LRS2 and LRS3-TED test sets are also visualised in Figure 5.1
for easier comparison.

Below are a few examples of predictions from the LRS3-TED test set using the LM
model setup, in the format: (wer) <true-transcription> --> <model-prediction>.

Table 5.1: Three different setups used to evaluate the lip reading model.

Model
setup

Language
model (LM)
(y/n)

beam
search
(y/n)

Beam
width

Test
Augmentation
Times

Length
penalty

LM
penalty

no beam,
no LM n n 0 0 - -

no LM n y 5 2 0.6 0
LM y y 15 2 0.7 0.1

15
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Examples with 0% WER (49 in total):

(wer=0.0) YOU-WANT-TO-WORK-FOR-HIM --> YOU-WANT-TO-WORK-FOR-HIM

(wer=0.0) NOW-I’M-READY-FOR-MY-INTERVIEW --> NOW-I’M-READY-FOR-MY-INTERVIEW

(wer=0.0) SO-IT’S-REALLY-IMPORTANT-THAT-YOU-KNOW-THAT-RIGHT-NOW-WE-HAVE-OVER
--> SO-IT’S-REALLY-IMPORTANT-THAT-YOU-KNOW-THAT-RIGHT-NOW-WE-HAVE-OVER

(wer=0.0) WE-CAN-DO-THIS --> WE-CAN-DO-THIS

Examples of long sentences:

(wer=84.6) SO-PEOPLE-HEAR-ABOUT-THIS-STUDY-AND-THEY’RE-LIKE-GREAT-IF-I-
WANT-TO-GET-BETTER-AT-MY-JOB-I-JUST-NEED-TO-UPGRADE-MY-BROWSER
--> PEOPLE-HEAR-ABOUT-THIS

(wer=70.0) AND-SO-ONE-OF-THE-MAJOR-CHALLENGES-OF-OUR-PROJECT-REALLY-
IS-TO-FIND-PHOTOGRAPHS-THAT-WERE-TAKEN-BEFORE-SOMETHING
--> AND-ONE-OF-THE-MAJOR-CHALLENGES

(wer=60.0) WHEN-YOU-REALLY-LOOK-AT-IT-HOW-IS-IT-THAT-YOUNG-PEOPLE-
SPEND-MOST-OF-THEIR-TIME-USING-NEW-TECHNOLOGIES
--> WHEN-YOU-REALLY-COULD-LOOK-AT-HOW-HE’S-GOING-TO-COME-AND-SPEND-
MOST-OF-THINGS-BECAUSE-YOU-COULD

(wer=38.1) SO-YOU-WANT-TO-GO-TO-THAT-BOARD-MEETING-BUT-YOU-ONLY-WANT-
TO-PAY-ATTENTION-TO-THE-BITS-THAT-INTEREST
--> SO-YOU-WON’T-GO-TO-THAT-POINT-ME-BUT-YOU-ONLY-WANT-TO-PAY-
ATTENTION-TO-MISS

5.1.2 Discussion

It can clearly be seen from Figure 5.1 that the LRS2 lip reading model did not gener-
alise well to the unseen dataset, LRS3-TED. The WER and CER on the LRS3-TED
datasets were higher by at least an absolute value of 30% and 23% respectively, com-
pared to the LRS2 dataset. Therefore, the experiment in Section 5.2 aimed to tune the
LRS2 lip reading model to better fit the LRS3-TED data.

It is important to note that in [4], a similar sequence-to-sequence transformer model
(pre-trained on MV-LRS, LRS2 and LRS3-TED) achieved a WER of 48.3% on LRS2
after being fine-tuned on LRS2 training data, and 58.9% on LRS3-TED after being
fine-tuned on LRS3-TED. This suggests that LRS3-TED is a more challenging dataset,
perhaps due to containing a larger vocabulary and longer sentences. Therefore, a higher
WER (and CER) on LRS3-TED is to be expected, although perhaps not as much as
30% higher. Additionally, I would suggest one difference between the datasets that
may make it more difficult to generalise from LRS2 to LRS3-TED: microphones. In
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Table 5.2: CER and WER on the LRS2 and LRS3-TED test sets and LRS3-TED valida-
tion set using the LRS2 lip reading model.

Dataset Model Setup CER (%) WER (%) Runtime (mins)

LRS2 test

no beam,
no LM 38.3 58.4 19

no LM 33.8 51.2 97
LM 33.0 48.8 202

LRS3-TED
test

no beam,
no LM 61.8 89.3 36

no LM 58.2 82.1 130
LM 58.1 80.7 240

LRS3-TED
validation

no beam,
no LM 62.1 90.5 12

no LM 60.0 83.2 24
LM 63.0 82.7 38

Figure 5.1: CER and WER on the LRS2 and LRS3-TED test datasets using the LRS2
lip reading model.
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Figure 5.2: Distribution of LRS2 and LRS3-TED test set transcription lengths

many of the LRS3-TED videos the speakers have a microphone visible near their lips
(see Figure 4.1) - this could potentially affect feature extraction, since the model is not
used to recognising faces with microphones.

Table 5.2 shows the time taken to run each evaluation of the model, alongside the WER
and CER, in different setups. The speed of running the most basic setup (no beam, no
LM) makes it perfect for quickly evaluating performance, for example checking the
WER of the validation set at various points during training (see Section 5.2), which
takes only 12 minutes. Using beam search (and no LM) takes longer to run but im-
proves the WER by around 7% for all the datasets, making it worth the time trade-off
when evaluating on a test set. The wider the beam width, the lower the WER, but the
longer it takes to run. Wider beam widths were briefly experimented with but it was
concluded that the small decrease in WER that this achieved was not worth the much
longer evaluation time. For example, increasing beam width from 15 to 35 (while using
the LM) increased the runtime by around 3 hours, for a decrease in WER of just 0.05%
on LRS2. Hence for all experiments the beam widths chosen in [2] and specified in
Table 5.1 were used.

Figure 5.2 shows the distribution of the LRS2 and LRS3-TED test set transcription
lengths (note that the LRS3-TED test set has 78 more sentences in total compared to
the LRS2 test set). From this chart we can see that LRS2 has larger number of very
short sentences (11-30 characters) compared to LRS3-TED, while LRS3-TED contains
sentences longer than any found in LRS2 (above 100 characters) and also has a larger
number of sentences in each length category above 31 characters. This suggests that the
length penalty parameter used during decoding may not have the same optimal value
for the LRS3-TED data as the value found in [2] for the LRS2 data. A value which
favours slightly longer sentences may result in a reduction in WER on the LRS3-TED
test set. It would be worth investigating the effect of changing the length penalty on
the WER in a future experiment.

Although using an external language model is not necessary due to the sequence-to-
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sequence transformer architecture (see Section 4.2), adding the LRS2 language model
resulted in a small improvement in performance on all datasets compared to using
beam search with no LM. There was an absolute decrease of 2.4% in WER for the
LRS2 test set, 1.4% for the LRS3-TED test set and 0.5% for the LRS3-TED validation
set. Using beam search with the LM took longer than running beam search without the
LM. Since the language model is trained on transcriptions of the source BBC videos
for the LRS2 training set it is well suited to predicting LRS2 data, which explains why
its use results in a greater decrease in WER for the LRS2 data than for the LRS3-
TED data. TED talks are a different genre to BBC TV programmes, and may contain
more technical jargon. A language model trained on TED talk transcriptions would
therefore be more suitable for predicting the LRS3-TED data and may give a greater
improvement in WER.

In Section 5.1.1 there are a few examples listed of LRS3-TED transcriptions predicted
by the model. The samples which the model predicted perfectly (0% WER) tended
to be fairly short, although there were a few longer exceptions. It is known that the
model does not generalise well to longer sentences than it has seen in training. This
can be seen by a few long sentences (usually longer than any sentence in LRS2) whose
prediction was only a few words long. These first few words were often correct or
close to the actual transcription, and it seemed as if the sentence had been cut off short.
However, this was not the case for all long sentences - there were also long samples
which were predicted with a low WER.

5.2 Training an LRS3-TED lip reading model

The aim of this experiment was to fine-tune the LRS2 lip reading model to better pre-
dict LRS3-TED data, by training it further using the LRS3-TED training set. Different
batch sizes and learning rates were investigated.

The experiments were run on a single GeForce GTX 1080 Ti GPU with 11178MiB
memory. This larger memory compared to the GPU used in Section 5.1 allowed larger
batch sizes and faster run time.

5.2.1 Results

Table 5.3 gives the CER and WER on the LRS3-TED test set for three models trained
with different batch sizes and learning rates, as well as the time taken to train each
model.

Figures 5.3a and 5.3b show the training and validation WER during training of models
with the same batch size (50) and different learning rates. A model checkpoint was
saved after every 20 batches of training, and the WER of the validation set was eval-
uated at each checkpoint. The values shown for the training WER are the cumulative
WER on the training data used so far, measured every 20 batches.
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Table 5.3: Training time for models trained with different batch sizes on the LRS3-TED,
and their CER and WER on the LRS3-TED test dataset. The models all had initial
learning rate 10-6, the models trained with a decaying learning rate used inverse time
decay with decay step 10 and decay rate 0.1.

Batch
size

Decay
(y/n)

Training
time (hrs)

Model
setup CER (%) WER (%)

8 y 15.7

no beam,
no LM 61.5 88.7

no LM 58.0 78.4
LM 60.0 78.3

50 n 7.4

no beam,
no LM 61.9 88.3

no LM 59.2 78.7
LM 60.6 78.6

50 y 7.6

no beam,
no LM 60.8 87.8

no LM 57.5 78.8
LM 58.5 78.0

(a) Deteriorating model. Initial learning rate
10-5 and using inverse time decay with de-
cay rate 0.1 and decay step 10.

(b) Successful models. Initial learning rate
10-6, one using inverse time decay with de-
cay rate 0.1 and decay step 10 and the
other no decay.

Figure 5.3: Training and validation WER during one epoch of training for three different
models, each using batch size 50 and different learning rates.
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5.2.2 Discussion

The best performance achieved on the LRS3-TED test set in this project was a WER
of 78.0%, which was achieved by the model trained using a batch size of 50, initial
learning rate 10-6 and decaying the learning rate with inverse time decay (see Table
5.3). This was achieved when evaluating using beam search and the external language
model. This is an absolute decrease of 2.7% compared to WER achieved in Section
5.1 by the original LRS2 lip reading model.

As mentioned in Section 4.2, the final learning rate used in [2] was 10-4. I hence began
my experiments using an initial learning rate of 10-4, however, this caused the model’s
performance to deteriorate rapidly. After training a few batches the model started pro-
ducing very odd results - a couple of examples are shown below. The predictions began
to contain repeated words, often beginning with ‘AN’ - even if the true transcription
was not even vaguely similar - including words that are not in the English language.
Eventually the performance degraded even further, with the model producing long se-
quences of repeated characters. This correspondingly resulted in a large WER on the
training data.

Deteriorating model predictions:

(wer=100.0) SO-THE-BEST-THING-THAT-HAPPENED-TO-US-SO-FAR-IN-THE-
MEDICAL-ARENA-IN-CANCER-RESEARCH-IS-THE-FACT-THAT-THE
--> AND-AN-AREA-AND-AN-AREA-ANITA-ANITA-ANNESO-ANTIONESEANITE

(wer=100.0) I-AM-CONVINCED-THAT-AFRICA’S-FURTHER-TRANSFORMATION-
AFRICA’S-ADVANCEMENT-RESTS
--> AN-ARTINITAN-ANNINA-ANTIOCOINEEEEEIANEEEEEEEEEEEEEEAIAIOIEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEIIAIEEEEEEEEEEEEEEEEEEEEE

Reducing the learning rate to 10-5 and to 10-6 still resulted in the model deteriorating,
but at a later stage in training. Using an initial learning rate of 10-6 and decaying the
learning rate throughout training fixed this, resulting in a successfully trained model.
Figure 5.4 demonstrates how the learning rate changes over the course of 200 batches
of training when using inverse time decay with the decay parameters used in these
experiments. Although using this learning rate worked, it is a very small value so the
weights do not change by very much with each update. It is possible that this is why
the improvement in WER achieved by the model compared to the LRS2 model was
quite small.

Figure 5.3a shows the training and validation WER for one model which deteriorated
as explained above. One would expect to see the training WER decrease as train-
ing progresses, and would hope to see validation WER decreasing at the same time.
Instead, the training and validation WER both increase as the training progresses -
slowly at first, and then faster after about 100 batches. The validation WER increases
to over 300%, much higher than the WERs achieved on the same dataset in Table 5.2,
indicating that the training went badly wrong.

Figure 5.3b shows the training and validation WER for two successful models. The
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Figure 5.4: Learning rate value over 200 batches, using inverse time decay with decay
rate 0.1, decaying every 10 batches.

validation WER shows a decreasing trend for both models, which indicates the train-
ing is progressing successfully. The training WER begins to increase slightly in the
late stages of training for the model with no learning rate decay, which could be a sign
that the model is on the verge of deteriorating like the model in Figure 5.3a. However,
while the validation WER is calculated over a fixed set of samples at different stages
of training, the training WER is measured on different sets of samples, since it is mea-
sured at different stages of one epoch of training. The training WER should therefore
be used as more of a sanity check that the model is not deteriorating rapidly, rather
than a trend that can be analysed in the same way as the validation WER. The model
only sees each sample once during the training, and it is possible that the samples at
the end of the training set are simply more challenging than the ones at the beginning,
which would cause the cumulative WER to increase slightly near the end of training.
If the model were to be trained for more than one epoch then the training WER at the
end of each epoch could be measured and analysed more usefully.

For the successful models we can compare the WER and CER achieved and the time
taken to train (see Table 5.3). Increasing the batch size from 8 to 50 led to a significant
reduction in the time taken to train a model - the time was reduced by over half, from
almost 16 hours to around 7 and a half hours - which is much more reasonable for
running multiple training experiments. When the batch size is larger the weights are
updated fewer times, which leads to the reduction in time. Increasing the batch size
(while keeping the learning rate decay the same) resulted in a very slight decrease in
CER and WER, with the exception of the WER for the model setup with beam search
and no LM, which increased very slightly. Using a decaying learning rate decreased
the CER and WER compared to using no decay. This can be seen for batch size 8,
since when no decay was used, the model deteriorated as explained above (and hence
is not shown in the table). For batch size 50, decaying the learning rate caused a slight
decrease in CER and WER (except, again, for the model setup with beam search and
no LM, which increased very slightly), which can be seen in the table.
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Assuming that the training sets have a similar distribution of sentence lengths as the
test sets (see Figure 5.2), then even though LRS3-TED does have sentences above
100 characters in length (longer than LRS2) the number of these sentences is very
small compared to the number of shorter sentences. It is known that the lip reading
model does not generalise well to longer examples than it has seen in training. I hoped
that by training on LRS3-TED, the performance on longer sentences would have im-
proved. However, the long sentences whose predictions were cut off (mentioned in
Section 5.1.2), were still predicted similarly with the trained models. This may be be-
cause the number of very long sentences seen is so small compared to the number of
short sentences, that predictions of long sentences are given a higher cost than shorter
sentences.

The improvement in WER achieved by training the LRS2 lip reading model on LRS3-
TED data was very small. This may be because it was only trained on a subset of
the available LRS3-TED training data and only trained for one epoch. I chose to do
this because the LRS2 lip reading model had already been trained for 12 epochs, and
I thought that just a small amount of training would be enough to adapt the model to
better predict the LRS3-TED data. Possible changes that could be made in the future
to decrease the WER further would be to train on the full training set and to train for
more than one epoch. It would also be worth experimenting further with changing the
batch size, changing the initial learning rate and the learning rate decay parameters.
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Conclusions

6.1 Summary of results

In this project I evaluated how well a lip reading model generalised to an unseen
dataset, and further fine-tuned the model to improve performance on that dataset.

As discussed in Section 5.1, the lip reading model pre-trained on the LRS2 dataset did
not generalise well to the unseen LRS3-TED dataset. The lowest WER on the LRS2
test set was 48.8% while on LRS3-TED it was 80.7% - a considerable difference.
Using the LRS2 language model during decoding was found to improve performance
on both datasets, but had a greater impact on the LRS2 test data, reducing WER by an
absolute value of 2.4% compared to 1.4% for the LRS3-TED data.

By training the lip reading model for one epoch on a 10,000 sample subset of the
available LRS3-TED training data the WER on the LRS3-TED test set was reduced
to 78.0% - an absolute decrease of 2.7%. As presented in Section 5.2, it was found
that using an initial learning rate higher than 10-6 caused the model to deteriorate and
produce strange predictions, meanwhile decaying the learning rate proved beneficial.
Increasing the batch size from 8 to 50 had little impact on the WER, but roughly halved
the training time and hence was useful for running experiments efficiently.

6.2 Future Work

Next year, in the second half of this MInf Project, I will continue to improve and work
with the lip reading model from this year. I intend to perform the following further
work:

• Train a language model on TED talk transcriptions (e.g. using TED-LIUM cor-
pus [19])

• Test the performance of the lip reading model on the LRS3-TED dataset when
using the TED language model, compared to using the LRS2 language model

• Link up to the video pre-processing pipeline created by another student to test

24



Chapter 6. Conclusions 25

the whole process of:

– starting with full, uncropped videos of speakers

– producing a dataset of cropped videos

– training a lip reading model on the dataset

– evaluating the model on the dataset

In addition, I intend to bring the audio into this audio-visual speech recognition project,
by combining the lip reading model with an ASR model.

Finally, I am intrigued by the possibility of working with datasets in other languages.
The authors of LRS3-TED [3] have stated that they are creating an LRS3-Lang dataset
containing 13 different languages. I will keep an eye out for progress on this dataset
and consider whether it can be used in my project.
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