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Abstract
This report gives a view of my current progress in creating an implementation of the
“stupid computer”. This is a technique taught to students taking Informatics-1A at
the University of Edinburgh, which seeks to help them understand the structure and
execution of Haskell functions. So given the expression sum [1,2,3] a student would
produce a trace such as:

sum [1,2,3]

= 1 + sum [2,3]

= 1 + 2 + sum [3]

= 1 + 2 + 3 + sum []

= 1 + 2 + 3 + 0

= 1 + 2 + 3

= 1 + 5

= 6

This project seeks to implement a program which can carry out this process.

The produced program is capable of carrying out this process for expressions that con-
tain function calls, list comprehensions, and if-then-else statements. Functions called
can include guards and pattern matching. Implementing the stupid computer required
implementation of a formal-actual mapping system, and a method for navigating pat-
terns and guards, among others.
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Chapter 1

Introduction

1.1 The stupid computer

Haskell [10] is the first programming language taught to Informatics students at the
University of Edinburgh, namely within the course Informatics-1A: Functional Pro-
gramming [6]. The stupid computer is a concept used in this course to help students
understand the structure and execution of Haskell functions. Say for example a student
wishes to understand how the foldr function operates, the first thing to try may be
looking at the function definition, which is as follows.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)

For a beginner, this may be insufficient to convey what the function does and how it
does it.

Instead the stupid computer has the student evaluate the expression themselves, doing
each step by hand. For example, using foldr to sum a list works as follows.

foldr (+) 0 [1, 2, 3]
= 1 + (foldr (+) 0 [2,3])
= 1 + (2 + (foldr (+) 0 [3]))
= 1 + (2 + (3 + (foldr (+) 0 [])))
= 1 + (2 + (3 + 0))
= 1 + (2 + 3)
= 1 + 5
= 6

The technique is used extensively in the course, and is included within the course
textbook ”Introduction to Computation” [14]. The technique is essentially an execution
trace, though one intended to help with understanding the program, not debugging it.
This trace is presented within the context of Haskell, which can be useful for those not
familiar with the language. The goal of this project is to create a program to automate
the stupid computer process.

1



Chapter 1. Introduction 2

1.2 Summary of results

The program produced is able to produce traces for user-defined functions and list
comprehensions. These functions are able to make use of pattern matching, guards,
and if-then-else statements. Partial support is also included for lambda expressions
and arithmetic sequences. Users also have full access to functions from the Haskell
prelude, and as such they can be used within their functions and comprehensions.

This has been achieved by interfacing with the Glasgow Haskell Compiler (GHC) API
[15]. The lexer and parser it provides have been leveraged to produce Haskell parse
trees, the manipulation of these trees makes up the core of the programs implementa-
tion. Hint [1] provides access to a Haskell interpreter, which is utilised to allow users
access to functions from the Haskell prelude [19]. This functionality is also used to
implement the formal-actual mapping and function body identification components of
the program.

The program still has a number of shortcomings which I hope to address within the sec-
ond year of the project. The main shortcomings are a lack of support for representing
Haskell’s lazy evaluation and sharing.

1.3 Report summary

Chapter 2 contains a summary of existing projects with somewhat similar aims. Chap-
ter 3 sets out the design of the stupid computer, describing how various parts of Haskell
syntax are reduced. Chapter 4 sets out the implementation of the program. This in-
cludes the user interface, distribution to users, and the implementation of the under-
lying stupid computer reduction system. Implementation of this underlying system
required the parsing of Haskell source code, implementing a formal-actual mapping
system for pattern matching, and a system for determining a functions definition based
on its inputs. Chapter 5 gives an overview of my testing of the program, against a range
of code samples mainly from Informatics-1A. Finally chapter 6 includes an overview
of future developments to the program.



Chapter 2

Existing Projects

The first step on such an endeavour is to examine projects with similar functionality or
aims, and evaluate if they are suitable for adaptation to our needs.

2.1 Lambda Bubble Pop

Lambda Bubble Pop [21] aids similar aims. While it has been designed as a tool for
understanding the Lambda Calculus it does use a subset of Haskell, so may be suitable.
Notably it is delivered via a web page, making it easy to access for students. It allows
the user to select which redex to reduce on each step. This gives users the ability to
reduce the expression in any number of ways, for example in the order of the Stupid
Computer (Figure 2.1a) or another order entirely (Figure 2.1b). The expressions in
each figure appear sequentially, not at the same time. Figure 2.1c shows the input box
available to users such that they can define their own functions.

The subset of Haskell available is however limited, with no support for features such as
strings or multiplication. While it could be expanded to bring in more of the language,
this would be a laborious process. It is also implemented in JavaScript, which will
complicate any use of existing Haskell libraries and tools. One such tool would be the
Glasgow Haskell Compiler (GHC) [15], which gives access to a lexer and parser for
Haskell, not having access to it will necessitate reimplementing this functionality. This
would be time consuming, and therefore will be avoided.

3



Chapter 2. Existing Projects 4

(a) Expanding the expression in the order of the Stupid Computer.

(b) Expansion in another direction.

(c) Input box that allows users to define functions.

Figure 2.1: Lambda bubble pop.

2.2 DrRacket

DrRacket [9] includes an “algebraic stepper” for the Racket language [8]. The stepper
window has two panes, the left contains the expression before reduction, the right
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 2.2: First 4 steps of evaluating the sum function written in Racket

shows the expression after reduction. The redex selected for reduction is highlighted
in the left pane, and its reduced form highlighted in the right. Figure 2.2 shows the
first few steps of an evaluation of the sum function. Highlighting the current redex
is useful, as is the two pane approach. A drawback is the fact only one step of the
reduction can be seen at once, it would be useful to be able to see the entire process
at once. Also as seen in steps three and four often DrRacket will often not show the
entire expression to the user, this seems to negate the benefit of highlighting the next
to be reduced expression. Overall DrRacket is close to what we hope to achieve with
the stupid computer, just for another language!



Chapter 3

Design

In this chapter an overview of the design of the stupid computer, and the rationale
behind it, is given.

3.1 Overview of the stupid computer

The stupid computer process will when given the definition of a function (such as this
definition for sum).

sum :: Num a => [a] -> a
sum (x:xs) = x + sum xs
sum [] = 0

Alongside an expression, such as:

sum [1,2,3,4]

Will result in the following series of Haskell expressions:

= sum [1,2,3,4]
= 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]
= 1 + 2 + 3 + sum [4]
= 1 + 2 + 3 + 4 + sum []
= 1 + 2 + 3 + 4 + 0
= 1 + 2 + 3 + 4
= 1 + 2 + 7
= 1 + 9
= 10

The first line is the expression the user wishes to examine (in this case sum [1,2,3,4]).
The change from one line to the next represents a single reduction step. At each step a
redex is selected and replaced with its reduced form. For example sum [2,3,4] is the
selected redex on the second line, and is replaced with 2 + sum [3,4] on the third
line. This follows from the last line of the definition of sum

6



Chapter 3. Design 7

sum (x:xs) = x + sum xs

taking x = 2 and xs = [3,4]. The selected redex on line three is sum [3,4], in
line four it is sum [4] and so on. This process finishes when no more reductions are
possible, and (hopefully!) the last line will be the result of the initial expression.

The rest of this chapter describes the reduction strategy, and how reduction works for
each type of redex.

3.2 Reduction strategy

The reduction strategy determines which redex will be reduced at a given step. The
stupid computer’s strategy generally attempts to reduce the leftmost innermost redex
at each step, in what is essentially a call-by-value strategy. This means a functions ar-
guments must be reduced before the function itself. So for example given the function
add as follows:

add :: Int -> Int -> Int
add x y = x + y

If the expression at the current reduction step is:

add (2*3) (4*5)

then the leftmost innermost regex is (2*3), which is reduced to 6 giving the following:

= add 6 (4*5)

The next regex is (4*5) which is reduced to 20.

= add 6 20

At this point add can finally be reduced giving the final two steps of the reduction.

= 6 + 20
= 26

Notably this approach differs from Haskell’s call-by-name approach, where function
applications are evaluated before their arguments. Following Haskell’s strategy for add
(2*3) (4*5) would result in the following reduction.

add (2*3) (4*5)
= (2*3) + (4*5)
= 6 + (4*5)
= 6 + 20
= 26

Here add is reduced before its arguments, unlike in call-by-value. Unfortunately it has
not been possible to implement a call-by-name strategy for this year of the project.
This is due to difficulties implementing a system to deal with pattern matching against
function arguments. The current system requires the full evaluation of arguments be-
fore they can be matched (see Section 4.7), but I have plans to remedy this in the
second year of the project (see Section 6.1.1). Sharing [11] is also not represented at
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this stage of the project, but I plan to do so in the next year of the project (see Section
6.1.2).

There are two situations which call for deviation from the leftmost innermost strategy.
Firstly in the sum example seen previously (Section 3.1) some apparently reducible
redexes were passed over, such as in line 2 (1 + 2 + sum [3,4]) the redex 1 + 2 is
ignored in favour of sum [3,4]. This is done because reducing 1 + 2 at this stage
would misrepresent the nature of Haskell’s recursion, due to the way the function calls
have occurred line 2 is somewhat equivalent to 1 + (2 + sum [3,4]).

The other situation in which the strategy differs are if-then-else statements ([10], Chap-
ter 3.6), as errors are very likely if arguments are reduced before the if-then-else, more
details about this are given in section 3.3.2.

3.3 How reductions work

This section outlines how different types of expressions are reduced. These methods
were decided taking the following goals into account.

• At each step the output should be valid Haskell, such that the user could, if they
wished, execute it with the Haskell compiler (GHC).

• Identifiers should also be kept the same, such that users can relate the output
easily back to their own code.

• The structure of the users code should be represented in the output, for example
don’t change an if-then-else statement to the guarded equivalent.

• Only show the evaluation of code that the user wishes to examine. This is to en-
sure that the output stays useful, and doesn’t overload the user with information.

3.3.1 User defined functions

Function applications (where the function is user-defined) are expanded. This involves
replacing the application with the functions body, where the formal arguments within
it have been replaced by the actual arguments from the application. So for example say
the user wishes to examine pyth, which is defined as:

pyth :: Int -> Int -> Int
pyth x y = (x*x) + (y*y)

And their starting expression is pyth 3 4, then the reduction of the function applica-
tion will be as such:

= pyth 3 4
= (3*3) + (4*4)

Here the formal variable x has been replaced with the actual value of 3, and the formal
y with 4.
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3.3.1.1 Pattern Matching

Pattern matching ([10], Chapter 3.17) complicates expansion in two ways. Firstly it
means a single function may have multiple bodies it can be expanded to. Secondly it
requires a more complex mapping between formal variables and actual parameters.

So for example with the following definition of sum the (x:xs) means the body x +
sum xs will be chosen if the input is a non-empty list, and [] means the body 0 will
be chosen if the input list is empty. In the first definition (x:xs) means the head of the
list will be bound to x, and the tail to xs.

sum :: Num a => [a] -> a
sum (x:xs) = x + sum xs
sum [] = 0

If pattern matching is encountered the stupid computer simply substitutes in the defini-
tion corresponding to the pattern which matches the inputs. This process is not shown
to the user in any explicit way, so given the first case (with the argument [1,2,3,4,5])
the output will be as such:

= sum [1,2,3,4,5]
= 1 + sum [2,3,4,5]

And in the second case (with the argument []):

= sum []
= 0

3.3.1.2 Guards

Guards ([10], Chapter 4.4.3) are a further way function bodies can be selected, after
pattern matching has occurred. Guards associate a single pattern with multiple function
bodies, of these each is associated with a condition expression, these conditions are
evaluated in turn and the first that evaluates to a True value is selected. In the following
definition of sum the first condition evaluated is not (null xs), if the result is True
then the body head xs + sum (tail xs) is selected. If the result was False then the
next condition to be evaluated will be otherwise, which in guards always evaluates to
True, and therefore the body 0 will be selected.

sum xs | not (null xs) = head xs + sum (tail xs)
| otherwise = 0

Representation of guards takes a little more thought than pattern matching, initially
it seems they could be dealt with as if they were if-then-else statements (see Section
3.3.2), but alas this is not the case. I will show this by now reducing sum with this
strategy.

sum [1, 2, 3]
= | not (null [1, 2, 3]) = head [1, 2, 3] + sum (tail [1, 2, 3])
| otherwise = 0

= | not (False) = head [1, 2, 3] + sum (tail [1, 2, 3])
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| otherwise = 0
= | True = head [1, 2, 3] + sum (tail [1, 2, 3])
| otherwise = 0

= head [1, 2, 3] + sum (tail [1, 2, 3])
= 1 + sum (tail [1,2,3])
= 1 + sum ([2, 3])
= 1 + | not (null [2, 3]) = head [2, 3] + sum (tail [2, 3])

| otherwise = 0
...

Unfortunately nearly every line here is not valid Haskell. Guards should only appear
as part of a function definition, not within standalone Haskell expressions. Therefore
this method is not suitable, I have considered four alternatives.

1. Skip directly to the appropriate definition, similar to how pattern matching is
dealt with. This would result in a loss of detail, but the output will be valid
Haskell.

2. Replace the guards with equivalent if-then-else statements. This would keep it
as valid Haskell, but changing syntax could be confusing for users.

3. Replace the guards with multi-way if [17]. The sum example would be as follows
after the replacement:

sum :: Num a => [a] -> a
sum xs = if | not (null xs) -> head xs + sum (tail xs)

| otherwise -> 0

So in this case the first few reduction steps of sum [1,2,3] would be:

sum [1,2,3]
= if | not (null [1,2,3]) -> head [1,2,3] + sum (tail [1,2,3])

| otherwise -> 0
= if | not False -> head [1,2,3] + sum (tail [1,2,3])

| otherwise -> 0
= if | True -> head [1,2,3] + sum (tail [1,2,3])

| otherwise -> 0
= head [1,2,3] + sum (tail [1,2,3])
= 1 + sum (tail [1,2,3])
= 1 + sum [2,3]
= 1 + if | not (null [2,3]) -> head [2,3] + sum (tail [2,3])

| otherwise -> 0
...

This would be less confusing and show the full reduction of the conditions, how-
ever multi-way if syntax is not part of standard Haskell and only available as a
GHC extension. This option would therefore not be particularly in the spirit of
keeping the output valid Haskell.
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4. Output an error message telling the user guards aren’t supported.

Not supporting guards (4) would be a major shortcoming as guards are a widely used in
Informatics-1A, so supporting them is preferable. Solutions two and three both involve
modifying the users code, and three involves non-standard Haskell syntax. With these
considerations I opted for solution one, while it doesn’t show the detail of reducing the
guard conditions, it avoids modifying the users code, or using non-standard syntax.

The first few steps of the reduction of sum are therefore as follows:

sum [1, 2, 3]
= head [1, 2, 3] + sum (tail [1, 2, 3])
= 1 + sum (tail [1, 2, 3])
= 1 + sum [2,3]
= 1 + head [2,3] + sum (tail [2,3])
= 1 + 2 + sum (tail [2,3])
...

3.3.2 If-then-else

If-then-else statements ([10], Chapter 3.6) are essentially syntactic sugar for the fol-
lowing function:

if :: Bool -> a -> a -> a
if True x _ = x
if False _ y = y

If-then-else statements could therefore be simply treated as a function, however this
would present an issue. Say for example a user defined sum as follows:

sum :: [Int] -> Int
sum xs = if (not (null xs)) then head xs + sum (tail xs) else 0

If the user wanted to reduce sum [] this would involve reducing head [], which as
head is only defined for non-empty lists is impossible. To avoid this issue the leftmost
innermost strategy is departed from, only the condition argument will be reduced be-
fore the if-then-else statement. Therefore the trace of sum [1,2,3] begins as follows.

sum [1, 2, 3]
= if (not (null [1, 2, 3]))

then head [1, 2, 3] + sum (tail [1, 2, 3])
else 0

= if (not (False))
then head [1, 2, 3] + sum (tail [1, 2, 3])
else 0

= if (True)
then head [1, 2, 3] + sum (tail [1, 2, 3])
else 0

= head [1, 2, 3] + sum (tail [1, 2, 3])
...
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3.3.3 List Comprehensions

List comprehensions [20] are are widely used in Informatics-1A, so it is desirable to
be able to include them in traces. There are three types of components in a Haskell list
comprehension - generators, guards, and a body. Using the comprehension

[x*x | x <- [1,2], x > 1]

as an example, in this case x*x is the body - this expression produces each element
in the resulting list. Generators, in this case x <- [1,2], feed each value from their
list into the body. Multiple generators can be used, in which case all combinations of
values from their lists are fed into the body. Each generated body expression is only
included in the resulting list if it satisfies all of the guard expressions, in this case x >
1 is a guard. The resulting list of expressions therefore would be [2*2], and the actual
result [4].

At each reduction step the first generator or guard on the right hand side the compre-
hension is used to determine the appropriate reduction for the comprehension.

• If the first expression on the right hand side is a generator then create two new
list comprehensions, such that:

– The first is the original comprehension, but with the variable being gener-
ated replaced by the first item in the generator, and that generator removed.

– The second is the original comprehension but the generator has been re-
placed with its tail. Note that if the tail is empty then this comprehension
shouldn’t be included.

These lists are then concatenated together in place of the original comprehen-
sion. As an example:

[x*x | x <- [1,2], x > 1]
[1*1 | 1 > 1] ++ [x*x | x <- [2], x > 1]

• Otherwise the first expression on the right hand side will be a guard. If possible
the guard will undergo a reduction step. Once no further reductions of the guard
are possible, then there are two possibilities:

– If the guard reduced to True then remove the guard from the comprehen-
sion.

– Otherwise it was reduced to False. In this case the comprehension is re-
placed with an empty list.

An example of both cases follows:

[2*2 | 2 > 1]
[2*2 | True]
[2*2]

[1*1 | 1 > 1]
[1*1 | False]
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[]

Once the comprehension has no generators or guards remaining it is converted to a
normal Haskell list, which contains just the body expression.

So a full reduction of this list comprehension is as follows:

= [x*x | x <- [1,2], x > 1]
= [1*1 | 1 > 1] ++ [x*x | x <- [2], x > 1]
= [1*1 | False] ++ [x*x | x <- [2], x > 1]
= [] ++ [x*x | x <- [2], x > 1]
= [] ++ [2*2 | 2 > 1 ]
= [] ++ [2*2 | True]
= [] ++ [2*2]
= [] ++ [4]
= [4]

3.3.4 Lists and Tuples

As may be expected, the redexes inside a list or tuple are reduced left to right, each
being fully reduced before moving onto the next. So for example this looks like:

= [1*1, 2*2, 3*3]
= [1, 2*2, 3*3]
= [1, 4, 3*3]
= [1, 4, 9]

3.3.5 Undefined functionality

In the case of a redex that has no defined reduction it is immediately reduced to nor-
mal form. The primary example of this are function applications which make use of
functions which are not user-defined, but instead come from the Haskell prelude [19].
For example in the following “*” comes from the prelude, not a user definition, and
therefore is immediately reduced to normal form.

3 * 3
= 9

This also occurs for Haskell syntax that does not have a defined reduction strategy, for
example lambda expressions ([10], Chapter 3.3). In the following the application of
the lambda expression is immediately reduced to normal form.

(\x -> x*x) 3
= 9

This is implemented by evaluating the undefined redex with the GHC interpreter pro-
vided by hint [1] (also see Section 4.8). This gives users the flexibility to use a wide
range of Haskell functions and syntax, without them needing to be explicitly accounted
for.



Chapter 4

Implementation

This chapter covers the current implementation of the stupid computer. Haskell has
been used for the implementation, as it gives access to a wide range of existing tools
for working with Haskell source code.

4.1 Approach overview

My approach is based on manipulations of abstract syntax trees. The users main ex-
pression is parsed into such a tree, and each reduction step is implemented as a manip-
ulation of this tree. Below are the first three steps of reducing sum [1,2,3,4] and the
corresponding series of ASTs (see Figure 4.1).

= sum [1,2,3,4]
= 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]

At each of these reduction steps the following needs to occur:

1. The redex must be identified, within the AST this means finding the root node
of the subtree that represents it.

2. The AST of the reduced redex is constructed.

3. This AST is substituted into the main tree in the place of the redex root node.

4. The updated main AST is then printed back to Haskell source code, and shown
to the user.

This process repeats until no more redexes exist within the AST. The following sections
lay out the full detail of each part of this implementation.

4.2 Parsing

Before any of the reduction steps can occur the users input must be parsed into an AST.
I considered using the Alex [7] lexer generator, and the Happy [12] parser generator

14
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HsApp

sum [1,2,3,4]

(a) sum [1,2,3,4]

1 +

OpApp

HsApp

sum [2,3,4]

(b) 1 + sum [2,3,4]

1

2

+

+

OpApp

OpApp

HsApp

sum [3,4]

(c) 1 + 2 + sum [3,4]

Figure 4.1: Series of (simplified) ASTs, each representing a reduction step.

along with my own grammar to implement the parsing. However I instead decided
to use the lexer and parser belonging to GHC, which conveniently makes these tools
available as a library via the GHC API [15]. After the parsing stage the user-defined
functions are identified. For each a record is created, containing the ASTs for its type
signature and function definition, alongside its identifier, and the number of arguments
it requires. The AST [16] which represents the main expression is also extracted, for
reduction by the rest of the program.

Using GHC has several benefits over implementing my own solution.

• Eliminates the development time of developing a lexer and parser.

• As Haskell is updated, the GHC API will reflect those changes, this will make it
easier to keep the stupid computer up to date with new Haskell versions.

• It has full coverage of the Haskell specification.

• The GHC API has functionality for pretty-printing GHC ASTs back to Haskell
source code.

Though there are a few drawbacks.

• The produced AST has more complexity than the stupid computer needs.

• It means the stupid computer is constrained by the rules of the GHC AST. It
could be useful to have the AST represent non-valid Haskell, but as I am using
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the GHC AST this is often not possible.

• The parser parses all infix operations as left-associative, meaning the expression
2+3*4 is parsed as (2+3)*4 rather than 2+(3*4). Only after parsing does GHC
re-associate the infix operations correctly, using the renamer [13]. The main
effect of the renamer however is fully resolving all qualifiers, so for example sum
becomes Data.Foldable.sum, and + becomes GHC.Num.+ . Using the renamer
would therefore require undoing this change. As I only discovered this left-
associative parsing issue during my evaluation of the system I have not yet been
able to implement a solution, whether using the renamer or otherwise. Details
of possible solutions can be found in section 6.1.4.

4.3 Searching for a redex

The first step of each reduction is identifying the redex to be reduced, and the node
within the AST at the root of its subtree. This is done by traversing the tree in dept-
first post-order searching for such nodes. Table 4.1 is a summary of the types of nodes
of interest, and which kinds of redexes they may represent.

Node Redex
HsVar Function or constructor
HsApp Prefix function application
OpApp Infix function application
HsIf If-then-else
HsDo List comprehension

Table 4.1: A summary of node types of interest, and the redexes they may represent.

When a node is traversed not only is a new node returned, so is a TraverseResult.
This is a bespoke data type used to communicate the result of the traversal, this is
needed to ensure only one reduction happens in each reduction step. For example if a
parent traverses one of its child nodes and the TraverseResult is marked as Reduced
then some redex within that subtree has been reduced. As only one reduction can occur
at each reduction step the parent knows not to traverse any of its other children or
reduce itself. There are four possible values of TraverseResult.

1. Reduced - This indicated that a regex within the subtree has been reduced. This
indicates to the parent nodes that they should not attempt any reduction until the
next reduction step.

2. Found args name - Indicates a user-defined function has been located, but does
not yet have enough arguments to be reduced. args indicates the number of
arguments already found in the subtree, and name is simply the name of the
function. When enough arguments have been found this function application
can be reduced.

3. NotFound - Indicates no reducible regex has been found in the subtree. In this
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case the stupid computer may attempt to reduce the entire subtree via GHC eval-
uation.

4. Constructor - Returned when the subtree represents the application of a con-
structor, in this case no GHC evaluation should be attempted.

When the traverse of the main expression root node returns any value other than a
Reduced then no further redexes exist in the main expression, and the reduction halts.

4.4 Reducing a redex

Once a node at the root of a possible redex has been found two conditions must be
fulfilled before it can be reduced.

• The subtree does in fact represent a redex.

• The redex is next in line for reduction.

The rest of this section details the checking of these conditions, how the reduction
occurs, and the TraverseResult values in each case.

4.4.1 HsVar

This node represents the name of a function or constructor. There are three cases for
what the TraverseResult could be.

• If the name begins with an uppercase letter than the HsVar represents a con-
structor. In this case Constructor is returned, so no reduction of the constructor
application is attempted.

• If the name is that of a user defined function then the number of arguments
needed by the function is checked.

– If zero arguments are required by the function (for example if it is a con-
stant), then the HsVar is replaced with the HsExpr representing the func-
tions body. Replaced is the traverse result in this case.

– Otherwise more arguments are required, the traverse result is (Found 0
FunctionName)

• Finally if the function is not user defined, an NotFound traverse result is re-
turned.

4.4.2 HsApp or OpApp

Both of these nodes represent a function application. As a call-by-value strategy is
being followed their arguments must be fully reduced before the application.

First the nature of their operator must be determined, to ensure it is fully reduced,
and to determine if it is user-defined. This is done by traversing the operator, for an
HsApp this is its left-hand side child, for an OpApp its middle child. In either case if
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the traverse returned a Reduced then their operator was not fully reduced, and so the
application cannot be reduced on this iteration. Otherwise the other children of the
node are traversed, for an HsApp just the right-hand side child, for a OpApp both the
left and right child. If any of those traversals returned a Reduced then a reduction of
the application is still not possible on this iteration.

If no reduction has yet occurred then based on the result of the traversal of the operator
there are three possibilities.

4.4.2.1 Constructor

As this is a constructor application no reduction is possible, therefore the Constructor
value is returned back up the tree.

4.4.2.2 (Found args name)

This indicates that the operator contains a user-defined function. The number of ar-
guments within the operator is stored within args, and the name of the user-defined
function within name.

Reduction of the application can only occur once the function has enough arguments.
If args+appArgs == argsNeeded then the reduction can proceed. (appArgs = 1 iff at
a HsApp node, 2 otherwise.) Otherwise more arguments are needed, this is communi-
cated by returning (Found (args+appArgs) name) up the tree.

If the function can be reduced then the application node must be replaced with the body
of the function being called, with its formal variables substituted for the appropriate
actual parameters. For example the following reduction step is implemented with the
AST manipulation in figure 4.2.

= 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]

To generate the AST which represents the reduced application takes four steps:

1. Identify the function arguments, this is achieved with a depth first search of the
function application subtree.

2. Identify the appropriate function body for substitution. As seen previously a sin-
gle Haskell function can have many possible bodies to substitute into the AST,
depending on the outcomes of pattern matching and guards. The following func-
tion has three such possible bodies.

gt :: Ord a => a -> [a] -> [a]
gt x [] = [] -- Body #0
gt x (y:ys) | y > x = y : gt x ys -- Body #1

| otherwise = gt x ys -- Body #2

The stupid computer must determine which of these will be substituted into the
AST, section 4.6 describes in detail how this is achieved.
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OpApp

1 + HsApp

sum [2,3,4]

(a) Main AST, the red subtree is the
function call to be reduced.

sum [3,4]

OpApp

2 + HsApp

(b) AST representing the reduction of
sum [2,3,4].

1 +

OpApp

OpApp

2 + HsApp

sum [3,4]

(c) AST after reduction.

Figure 4.2: Single step of reduction, as implemented as a manipulation (of a much
simplified) AST.

3. Acquire a mapping between the functions formal arguments, and its actual pa-
rameters. For example the function call gt 0 [5,10,15] (using the definition
of gt above) results in the formal-actual map seen in Table 4.2.

Formal Actual
x 0
y 5
ys [10,15]

Table 4.2: Formal-Actual Map for gt 0 [5,10,15].

The system to achieve this mapping is detailed in section 4.7.

4. Substitute the formals in the function body AST for the actual values. This is
achieved by traversing the AST, and replacing any encountered formal variables
with the actual value that has been mapped to it.

The HsApp or OpApp node is then replaced with this new AST, and a Replaced value
of TraverseResult communicated up the tree.
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4.4.2.3 NotFound

A NotFound traverse result indicates that the operator contains either a function that is
not user-defined, or some syntax that does not have a defined reduction strategy (such
as lambda expressions). Therefore an attempt is made to reduce this application di-
rectly to normal form, this is done by trying to evaluate the application using GHC
(see Section 4.8). If this fails then the application does not yet have enough arguments,
and the same NotFound traverse result is propagated up the tree so more can be found.
If the execution succeeds then the result is placed within a HsVar in place of the ap-
plication node. This gives the user the flexibility to use all functions from the Prelude
[19], but much like the formal-actual mapping system the result loses any structure
within the AST (see Section 4.7).

4.4.3 HsIf

If-then-else expressions are represented by a HsIf node. As seen in section 3.3.2 only
the condition must be fully reduced before the HsIf itself. Therefore first the condition
is traversed, if the result is Reduced then the condition was not yet fully reduced,
therefore the HsIf cannot be reduced at this step. Otherwise no reduction occurred in
the condition, and reduction of the if-then-else is possible. If the condition is equal to
”True” then the expression is reduced to its True-value, if equal to ”False” it is reduced
to its False-value. This makes the assumption the condition reduces to either ”True”
or ”False” - this will always be the case as the condition must have a Bool type. A
Reduced traverse result is then returned up the tree.

4.4.4 HsDo

HSDo nodes which have their HsStmtContext field set to ListComp represent a list
comprehension within the AST. If it does represent a comprehension then the com-
ponents of the comprehension are stored in a list of ExprLStmt expressions. Each
contains a LStmt, which each contain a StmtLR. Which type of StmtLR represents
each part of a comprehension is summarised below.

• Generators - BindStmt, this contains both the source of the values, and the pat-
tern they will be matched against.

• Guards - BodyStmt

• Body - LastStmt, the GHC parser always places this as the end of the list.

So for example the following list comprehension;

[(x,y) | 1<2, x<-[1,2,3], odd x, y<-[1,2,3], x<y ]

will be represented by the following list of ExprLStmt expressions:

[BodyStmt{1<2}, BindStmt{x<-[1,2,3]},
BodyStmt{odd x}, BindStmt{y<-[1,2,3]},
BodyStmt{x<y}, LastStmt{(x,y)}]
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The nature the reduction depends on which kind of ExprLStmt is at the head of the
list.

• BindStmt (Generator). The HsExpr that represents the list within the bind is
traversed, following this there are two cases.

– If the result of the traverse was a Reduced then no reduction happens to
the comprehension, and the Reduced is returned up the tree.

– Otherwise the generator was already fully reduced, in this case the assump-
tion is made that the generator list is represented as an ExplicitList. This
list is used to create the two new list comprehensions.

* In the first the identifier being bound is substituted for the head of
the generator list and the generator removed. If only a LastStmt
(Body expression) remains then the comprehension is converted to a
HsExplicitList containing just the HsExpr within the LastStmt.

* The other is essentially identical, but with the tail of the generator
replacing the original.

This assumption about the list being in the form of an ExplicitList does
present a limitation, if the list is a result of a GHC interpretation it will have
been squashed to a HsVar. If the list is not in the form of an ExplicitList
then the comprehension cannot be properly reduced, and therefore will be
evaluated with GHC (see Section 4.8). The solution for this issue will be to
keep the proper structure of the AST throughout reduction, details of this
are specified in sections 6.1.1 and 6.1.3. Additionally the stupid computer
is currently lacking support for BindStmt nodes which make use of pattern
matching, for example in the following comprehension:

[x |(x,y) <- [(’H’,0),(’e’,1)]]

The formals within the pattern will not be substituted for the actuals within
the list, causing an improper reduction. This is further discussed in section
5.6.

• BodyStmt (Guard). The HsExpr within which represents the condition is tra-
versed, following this there are two cases.

– If the result of the traverse was a Reduced then no reduction happens to
the rest of the comprehension, and the Reduced is returned up the tree.

– Otherwise the guard has been fully reduced already, to either a “True” or
“False” value. So in each of the two cases:

* “True” - The list comprehension is retained with the guard removed.
Again if no generators or guards remain then the comprehension is
converted to an HsExplicitList containing the LastStmt.

* “False” - The comprehension is replaced with an empty HsExplicitList.
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This does make the assumption the result of the guards reduction is either
“True” or “False”, which will always be the case as guards must always
have a Bool type. In both cases a Reduced result is returned up the tree.

• LastStmt (Body expression). This won’t be encountered as the head of the list,
as in the previous two cases whenever only a LastStmt remains in the compre-
hension it is converted to an HsExplicitList.

4.4.5 Other node types

As mentioned in section 3.3.5 when a node is encountered with no specific reduction
strategy then an attempt is made to reduce it to normal form. This is done by attempting
to evaluate the node using the GHC interpreter (see Section 4.8). If the evaluation
succeeds then the returned value is placed within an HsVar which replaces the original
node, and a Reduced result can then be returned up the tree. However a direct reduction
to normal form is not always possible, for example if the node is a lambda expression
which doesn’t have any provided arguments. In this case the evaluation will fail, and a
NotFound result will be returned up the tree.

This gives users the flexibility to use Haskell syntax that has not been explicitly ac-
counted for, such as ArithSeq nodes [16], which represent arithmetic sequences, for
example [1..5] ([10], Chapter 3.10). However this does not work for all undefined
statements, for example if the node contains formal variables they will not have been
substituted for actual values, and therefore the evaluation will fail.

4.5 Printing the AST

The GHC API includes a pretty printer [2] for displaying the AST as Haskell source
code. This works mostly as expected, though sometimes it can format the results oddly.
One example of this is its auto-insertion of line breaks, often this works well and helps
make the code more readable, such as below:

= if (not (null [1, 2, 3])) then
(head [1, 2, 3]) + sum (tail [1, 2, 3])

else
0

In this example the line breaks work fairly well to make the code more readable by the
user, and are somewhat similar to how code may actually be formatted. However in
the following the line breaks are inserted somewhat strangely:

= []
++
[8] ++ [10] ++ [12]

For reasons unbeknownst to me it has decided to give [] and ++ their own lines, what
may be expected instead is for the output to all be on one line. It would be possible to
resolve this by removing all newlines from the output, though I have decided against
this, as I feel that having spurious line breaks is much better than having none at all.
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One step that is being taken to improve readability of output is removing some un-
necessary parenthesis. For example if a user writes the map function in the following
way:

map :: (a -> b) -> [a] -> [b]
map f (x:xs) = (f x) : (map f xs)
map _ [] = []

The output without removing parenthesis if called as map square [1,2,3] is:

map square [1,2]
= (square 1) : (map square [2])
= (1 * 1) : (map square [2])
= (1) : (map square [2])
= (1) : ((square 2) : (map square []))
= (1) : ((2 * 2) : (map square []))
= (1) : ((4) : (map square []))
= (1) : ((4) : ([]))
= (1) : ([4])
= [1,4]

The parenthesis around f x in the definition are around 1 and 4 in the trace. This isn’t
particularly pleasant to read. Of course it is not desirable to remove all parenthesis,
as they are sometimes needed to show precedence, and can often make the code more
readable. As a compromise only parenthesis that surround a single value, such as an
integer or list, are removed. If an expression within parenthesis is reduced the result is
checked to see if it is a single value, for example if it is a HsVar or HsLit. If so the
parenthesis are removed. The same process happens whenever a variable is substituted
for an actual value. The output will therefore be:

map square [1,2]
= (square 1) : (map square [2])
= (1 * 1) : (map square [2])
= 1 : (map square [2])
= 1 : ((square 2) : (map square []))
= 1 : ((2 * 2) : (map square []))
= 1 : (4 : (map square []))
= 1 : (4 : [])
= 1 : [4]
= [1,4]

Now the parenthesis are far less overwhelming, and the output more easily parsed by
the user.

4.6 Function body identification

As seen previously a single Haskell function can have many possible bodies to sub-
stitute into the AST, depending on the outcomes of pattern matching and guards. The
following function has three such possible bodies.
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gt :: Ord a => a -> [a] -> [a]
gt x [] = [] -- Body #0
gt x (y:ys) | y > x = y : gt x ys -- Body #1

| otherwise = gt x ys -- Body #2

To determine which of these bodies are appropriate given the arguments, a new func-
tion is defined. It is identical to the function being expanded except each of the possible
bodies is replaced with its numbering. The name of the new function has been prefixed
with defget to avoid clashes with the definition of the original function. The func-
tion’s type has been removed, and GHC’s type inference relied upon instead. For the
gt function above this function would be:

defgetgt x [] = 0
defgetgt x (y:ys) | y > x = 1

| otherwise = 2

A map is also created between these numberings and the AST of the function body
they represent. This function is then executed via GHC (see Section 4.8) with the
same arguments as the original, the result is then used to determine the appropriate
definition for substitution, such as in table 4.3.

Sample arguments Function call Function result Body
10 [] defgetgt 10 [] 0 []

10 [15,5] defgetgt 10 [15,5] 1 y : gt x ys
10 [5,15] defgetgt 10 [5,15] 2 gt x ys

Table 4.3: Possible function inputs, the call evaluated by GHC, the value returned by
the new function, and the relevant function bodies for substitution.

As this function is executed with GHC it gives the user the flexibility to use any patterns
they wish, alongside being able to use all of standard Haskell within guards. This does
mean that GHC has to be invoked every time this process takes place which is an
expensive operation. While a system for dealing with the pattern matching element of
this operation could have been implemented, doing an equivalent for guard conditions
would have been impractical.

4.7 Formal-Actual mapping

Generating this mapping is complicated by pattern matching ([10], Chapter 3.17). If
Haskell lacked pattern matching achieving this mapping would be fairly simple, it
could be created using the ordering of the formals and actuals. This is not the case
of course, so to deal with this another function is generated which will return a list
of tuples, each containing the name of a formal and the actual value it is bound to.
The AST of the pattern is traversed in order to extract the names of the formals, so for
example the function generated for the gt example (see in Section 4.6) will be:

formalactualfuncgt :: Show a => Ord a => a -> [a] -> [(String, String)]
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formalactualfuncgt x [] = [("x",show x)]
formalactualfuncgt x (y:ys) = [("x",show x),("y",show y),("ys",show ys)]

The type of the function has also been changed, the return type now being [(String,
String)]. Another change is that all type variables must now be a member of the Show
typeclass, this is necessary to allow all inputs to be converted to strings by show. This
function is then executed with GHC (see Section 4.8) with the applications arguments,
the list it returns is then converted to a map. This means that the actual arguments are
now represented by strings, which are placed within HsVar nodes in order that they
can be substituted into the AST.

While in this case this method works perfectly, it has a fatal flaw, what if we want to
pass a function? A function cannot be a member of Show, so would result in a type
error. This is dealt with by only including those arguments which are pattern matched
in the new function, and instead adding the other arguments to the map directly. This
requires a separate function to be generated for each of the functions patterns, as each
could have a different number of arguments being matched against. So for the gt
example the two new functions generated will be (for the first pattern, and the second
respectively):

formalactualfuncgt :: [(String,String)]
formalactualfuncgt = []

formalactualfuncgt :: Show a => Ord a => [a] -> [(String, String)]
formalactualfuncgt (y:ys) = [("y",show y),("ys",show ys)]

The appropriate of these functions will then be executed with GHC, with the arguments
that need mapping. Which function is used depends on the outcome of function body
identification as seen in section 4.6.

While this approach is able to carry out the formal-actual mapping for all of Haskell’s
pattern matching structures it does suffer from several issues:

1. It requires a call to GHC each time a map has to be generated.This is quite an
expensive operation, however not in itself a fatal flaw, as performance is still
good enough to be usable.

2. It forces all arguments to be fully evaluated when they are passed to show. This
makes it impossible to support lazy evaluation with this system, as such all func-
tions are call-by-value.

3. It is not possible to map infinite data structures, for example if mapping [0..]
to (x:xs) the attempts to evaluate show [1..]. This would take infinite time
and memory, and as such the reduction fails.

4. GHC type inference can fail when type variables are used, this can cause GHC
to return the user a type error even though none exists in their code! For exam-
ple given the following definition of length. and attempting to reduce length
[[]].

length :: [a] -> Int
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length (x:xs) = 1 + (length xs)
length [] = 0

If the user wishes to reduce length [[]] the following function is generated:

formalactualfunclength :: Show a => [a] -> [(String, String)]
formalactualfunclength (x:xs) = [("x", show x),("xs", show xs)]

Evaluating formalactualfunclength [[]] via GHC should return the formal-
actual map for the length [[]] function application. However in this case this
fails, GHC is unable to derive the type of a, and therefore ensure it is a member
of Show. This failure occurs because GHC has no non-empty instances of a, for
all it knows a may not actually be showable! This results in a compiler error, and
the GHC evaluation fails, so no formal-actual map can be generated. This input
should be valid, so therefore this is a major bug. Currently students can resolve
this issue by replacing type variables with concrete types, this is communicated
to them via an error message when the issue occurs (see Section 4.9.3). A po-
tential replacement system which should resolve this issue is outlined in section
6.1.1.

5. The returned results are seen purely as strings, no longer their proper types.
For example if the list [2,3,4] is mapped to a formal with this system it will
be represented in the AST as a HsVar node with the name ”[2,3,4]”. Ideally it
would be stored as an HsExplicitList node, with a HsLit child representing
each value. This causes issues with the implementation of list comprehensions,
as they expect their generators to be in the form of a HsExplicitList (see
Section 4.4.4).

6. The system is not capable of dealing with situations where functions are matched
against, such as in the following:

compose :: [(a -> a)] -> a -> a
compose [] = id
compose (f:fs) = f . compose fs

With the initial expression:

compose [(map ((+) 1)), (map ((*) 2))] [1, 2, 3]

In this case the system will attempt to evaluate the following to produce the
formal-actual map:

[("f", show (map (+) 1)), ("fs", show [(map ((*) 2))])]

This results in a type error, and the mapping fails. This failure is communicated
to the user, along with an explanation to the source of the failure (see Section
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4.9.3). A potential replacement system which should resolve this issue is out-
lined in section 6.1.1.

A potential new system which deals with these issues is outlined in section 6.1.1.

Formal-actual mapping and definition identification could have been implemented with
a single newly defined function, I decided against such a design so that the two com-
ponents could be implemented and tested separately. It also allows for the replacement
of one system without having to modify the other, which will be of benefit when im-
plementing the system seen in section 6.1.1. Despite its flaws this initial system did
prove sufficient for the rest of the stupid computer to be developed.

4.8 Evaluating with GHC

I have previously mentioned executing code via GHC, this is achieved using the hint
[1] library. It makes use of the users installation of GHC to allow for interpretation of
Haskell code at runtime. This gives users access to every function within the prelude.
It also gives the ability to use some syntax, such as lambda expressions, which have
not as of yet been properly implemented for the stupid computer.

Interpreting calls to prelude functions is very simple, the expression is simply pretty
printed and passed to the interpreter. Calls to custom functions, such as when identify-
ing function definitions, are more complex. The function in question, along with all of
the user defined functions, must be provided to the interpreter. User defined functions
must be included as they may have been used in guards. The interpreter only accepts a
single line expression however, so all of these functions must be combined into a single
string. Fortunately Haskell allows for this, indentation can be replaced by surrounding
blocks in curly braces ’’, and newlines can be replaced with semicolons ’;’. So each
function is pretty printed, and each of its lines concatenated together, each separated
with a ’;’. This string is placed within curly braces, and then combined a let statement
and the function call. I will now run through an example of how the interpreter is set
up for a definition identification. Say the identification is happening for the following
function:

sum :: Num a => [a] -> a
sum xs | not (null xs) = head xs + sum (tail xs)

| otherwise = 0

Then the definition identification function is:

defgetsum :: Num a => [a] -> Int
defgetsum xs | not (null xs) = 0

| otherwise = 1

If the argument the definition is being identified for is [1,2,3], then the string passed
to the interpreter would be:

let {sum :: Num a => [a] -> a; sum xs | not (null xs) = head xs + sum
(tail xs); | otherwise = 0; defgetsum :: Num a => [a] -> Int; defgetsum
xs | not (null xs) = 0; | otherwise = 1} in defgetsum [1,2,3]
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Of course GHC evaluation has downsides, firstly it relies on the users install of GHC,
this forces the program to be dynamically compiled, which complicates distribution.
It also requires that the users entire input file be recompiled every time this system is
invoked, which is fairly expensive, though the program’s performance is still accept-
able. Additionally each time a call is made the entire input (including the functions not
used) must be compiled by GHC

Another downside is that the output of the interpreter will always be a string, and sub-
stituted into the AST within a HsVar. For operations such as evaluating list comprehen-
sions this can be fatal, as my implementation of those is expecting an HsExplicitList.
I have plans to deal with this as laid out in 6.1.3

4.9 User Interface

The user interface of the stupid computer is currently a command line interface (CLI).
I have decided against implementing a graphical user interface, this would be time
intensive and distract from the main purpose of the project - implementing the logic
of the stupid computer. Although developing such an interface is certainly possible in
the future. It is also worth noting that students already tend to interact with Haskell
through the GHCi CLI [18], and as such are likely to be familiar with CLIs.

This CLI takes a single Haskell source file as input. Such files contain the definitions
of every function the user wants expanded, alongside the expression they wish to see
reduced. Figure 4.3 shows such an input file, which when evaluated with the stupid
computer gives the output seen in figure 4.4. It must be noted that this differs from
standard Haskell source files, which contain only definitions. This is inconvenient for
users as it means standard Haskell source files cannot be directly used by the stupid
computer. It also means that stupid computer input files cannot be directly loaded into
GHCi. However this design was relatively simple to implement, and as such allowed a
focus on getting the rest of the system up and running.

Figure 4.3: Example input file, here both map and square are expanded. map square
[1..3] will be reduced.

Additionally the CLI will accept --help as an input, and then show usage instructions
to the user, see figure 4.5.
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Figure 4.4: Output of the stupid computer when run on the input file shown in figure 4.3

Figure 4.5: Stupid computer --help message.

4.9.1 Specifying which functions will be fully reduced

As seen previously users specify in their input file which functions have their full
reduction shown, rather than being immediately collapsed to normal form. It is worth
noting that other options were considered.

• Show the full reductions of only the functions in the users main expression. In
this case if the user is examining the expression map square [1,2,3] map and
square would be reduced fully. This does not give the user much flexibility
with regards to which functions they want to have reduced, as all such functions
would have to be in the initial expression.

• Fully reduce all functions encountered. This would deal with the previous issue,
but would cause the reduction of some functions to be so detailed as to be un-
readable. For example a function making use of length ([10], Chapter 8.1), on
a list of length N would have to take 2N+2 reduction steps just to get that length
value!

These two potential systems fail to give the user much control over what they want to
see the full reductions, and as such the system wherein only functions defined by the
user are fully reduced has been implemented.
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Figure 4.6: Output when the users input has a syntax error, in this case sum [1,2,3,4.

4.9.2 Specifying which definitions functions have

Also above the implementation relies on the users input file to find the definitions
of functions being fully reduced. While it would be impossible to do otherwise for
user-defined functions, for those in the GHC prelude I considered instead using their
definitions from the standard library. This would save a fair bit of legwork for users,
they would not have to redefine every function they wanted expanded, however I de-
cided it was not suitable due to the unexpected way many functions are defined in the
prelude. For example sum is defined (in base-4.14.1.0 [5]) as such:

sum :: Num a => t a -> a
sum = getSum #. foldMap Sum

This definition is unexpected to say the least! For a user unfamiliar with Haskell the
reduction of this will likely be of little to no use. Another issue is that the prelude
definitions of standard functions change over time, for example the Haskell-98 version
of sum ([10], Chapter 8.1) is defined as:

sum :: (Num a) => [a] -> a
sum = foldl (+) 0

This is a far more usual way to define the function. While it would be possible to pick
such a version of the prelude and stick with it, it would slowly become out of date,
and could end up missing functions that a student of the future might expect to find.
Ultimately given these considerations I decided upon using the users definitions.

4.9.3 Communicating errors

Several types of errors can occur, these must be communicated to the user. The first is
a syntax error in the users input - such as mismatched brackets. The following figure
4.6 shows the output when a user gives an input file containing such an error, in this
case the main expression is sum [1,2,3,4 - which is missing a final ].

A users code may also be invalid because it has some logical error, for example if a
user defined sum as:

sum :: Num a => [a] -> a
sum (x:xs) = x + sum x
sum [] = 0

In this case there are no syntax errors, but a type error due to sum x in line 2 - the user
is trying to sum a single number! The stupid computer output in this case is shown in
figure 4.7a. Type errors are detected by the interpreter [1], but unfortunately its error
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messages are not particularly easy to read (see Figure 4.7b). Therefore these messages
have not currently included, and the user directed to GHCi.

(a) Output when the users input has a logical error, in this case sum (x:xs) = x +
sum x.

(b) The error message given by Hint, this is not currently being used on account of its
confusing formatting.

The final kind of error is one due to a failing of the stupid computer implementation.
Figure 4.8 shows the output when the type variable issue or function matching issue has
occurred (see Section 4.7), and suggests a course of action to the user for remedying
it.

4.10 Application distribution

The distribution of the program to students must be considered. The easiest method
would be to simply pre-compile executables for each platform (Windows/macOS/Linux)
and make them available for students to download. Unfortunately the use of hint [1]
prevents statically linking the executables; they must be dynamically linked instead.
This means users must build the tool locally, and this is therefore done Stack [4]. This
also allows the tool to be distributed via Hackage [3] in the future, so all students will
need to do is run “stack install stupid-computer” in their terminal.

Figure 4.8: Output when the stupid computer encounters a type variable error, or func-
tion matching error 4.7.
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Evaluation

The stupid computer has been tested against a number of code samples. These have
been taken from the slides and quizzes of the course Informatics-1A [6], such that
they are representative of the type of code that students are likely to write. Not all
samples from the course were tested against, those where a stupid computer trace has
been shown or asked for have been focused on. Efforts have also been made to avoid
repeating similar samples. Some of the samples have been lightly modified to remove
where statements as they are not supported by the program at present, though one has
been retained to ensure the tests do cover where statements. Alongside these are a
lesser number of code samples written by myself. Overall there were 46 code samples,
with 31 taken from Informatics-1A. Out of these 11 failed to run, and 5 ran but had
unexpected (but somewhat functional) outputs. While this seems a high number of
failures most come from the same few root issues, a summary of which can be seen in
table 5.1.

Root cause Tests failed Unexpected results
Forced evaluation of arguments (Section 5.1) lect04-5

lect04-8
lect05-1
lect05-3

Loss of AST structure (Section 5.2) lect04-6
lect09-02

Type variable issues (Section 5.3) ‘typeissue’
Pattern matching against functions (Section 5.4) ‘compose’

Incorrect operator precedence (Section 5.5) ‘operators’
Support for patterns in comprehensions (Section 5.6) ‘listpattern’

Lack of feature support (Section 5.7) lect05-4 lect10a-2
lect09-1
lect10a-3
lect14-1

‘sumcase’

Table 5.1: Summary table of testing results

32
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In the rest of this chapter I will outline these issues and their root causes.

These tests, alongside their stupid computer trace, can be found in tests/ in the
project directory.

5.1 Forced evaluation of arguments

One source of error is the forced evaluation of function arguments, as previously dis-
cussed in section 4.7. This is a cause of failed evaluation for; lect04-5, lect04-8, lect05-
1, and lect05-3.

Taking lect04-5 as an example:

zip :: [a] -> [b] -> [(a,b)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [0..] "abc"

In this case the formal-actual mapping system has to try and evaluate show [1..], this
will of course take an infinite amount of time (and memory). Therefore the formal-
actual mapping cannot be completed, and the program loops forever. Section 6.1.1
describes a new formal-actual mapping system that should deal with this issue.

5.2 Loss of AST structure

Another issue is a loss of structure in the AST, as discussed in section 4.7 and section
4.4.2.3. This causes unusual output for lect04-6 and lect09-02.

The code sample and output for lect04-6 are as follows:

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum [x*y | (x,y) <- zipHarsh xs ys]

zipHarsh :: [a] -> [b] -> [(a,b)]
zipHarsh [] [] = []
zipHarsh (x:xs) (y:ys) = (x,y) : zipHarsh xs ys

dot [2,3,4] [5,6,7]

dot [2, 3, 4] [5, 6, 7]
= sum [x * y | (x, y) <- zipHarsh [2, 3, 4] [5, 6, 7]]
= sum [x * y | (x, y) <- (2, 5) : zipHarsh [3,4] [6,7]]
= sum [x * y | (x, y) <- (2, 5) : (3, 6) : zipHarsh [4] [7]]
= sum [x * y | (x, y) <- (2, 5) : (3, 6) : (4, 7) : zipHarsh [] []]
= sum [x * y | (x, y) <- (2, 5) : (3, 6) : (4, 7) : []]
= sum [x * y | (x, y) <- (2, 5) : (3, 6) : [(4,7)]]
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= sum [x * y | (x, y) <- (2, 5) : [(3,6),(4,7)]]
= sum [x * y | (x, y) <- [(2,5),(3,6),(4,7)]]
= sum [10,18,28]
= 56

The current implementation of list comprehensions expects generators to be repre-
sented in the AST with an HsExplicitList. However in this case because [(2,5),(3,6),(4,7)]
is a result of GHC evaluation it is represented as the string "[(2,5), (3,6), (4,7)]"
within an HsVar node. This causes a failure when attempting to reduce the list compre-
hension, so the entire list comprehension is reduced directly to normal form instead.
This results in skipping directly to sum [10,18,28], rather than showing the full se-
ries of reduction steps. While the list comprehension implementation could be updated
to attempt to deal with this, I consider it better to fix the root cause of the issue. Sec-
tions 6.1.1 and 6.1.3 outline two future developments which together should fix this
problem.

5.3 Type variable issues

The type variable issue discussed in section 4.7 causes a failure for the ‘typeissue’ test,
which is as follows:

length :: [a] -> Int
length (x:xs) = 1 + (length xs)
length [] = 0

length [[]]

In the formal-actual mapping system the following function is generated:

formalactualfunclength :: Show a => [a] -> [(String, String)]
formalactualfunclength (x:xs) = [("x", show x), ("xs", show xs)]

Evaluating formalactualfunclength [[]] via GHC should return the formal-actual
map for the length [[]] function application. However in this case this fails, GHC is
unable to derive the type of a, and therefore ensure it is a member of Show. This failure
occurs because GHC has no non-empty instances of a, for all it knows a may not actu-
ally be showable! This results in a compiler error, and the GHC evaluation fails. This
prevents the map from being generated, which means the reduction fails, this should be
resolved by the replacement for the formal-actual mapping system described in section
6.1.1.

5.4 Pattern matching against functions

The issue with pattern matching against functions as seen in section 4.7 causes the test
‘compose’ to fail, which is a follows:

compose :: [(a -> a)] -> a -> a
compose [] = id
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compose (f:fs) = f . compose fs

compose [(map ((+) 1)), (map ((*) 2))] [1,2,3]

In the formal-actual mapping system the following function is generated:

formalactualfunccompose :: Show a -> [(a -> a)] -> [(String, String)]
formalactualfunccompose (f:fs) = [("f", show f), ("fs", show fs)]

Evaluating formalactualfunccompose [(map ((+) 1)), (map ((*) 2))] via GHC
should return the formal-actual map for the
compose [(map ((+) 1)), (map ((*) 2))] [1,2,3] function application. This
fails as it requires the evaluation of show (map ((+) 1)), which as Haskell func-
tions are not members of Show results in a type error. Therefore the map cannot be
generated and the reduction fails. This should be resolved by the replacement for the
formal-actual mapping system described in section 6.1.1.

5.5 Incorrect operator precedence

As mentioned in section 4.2 the parser does not properly respect mathematics operator
precedence. One such example is the ‘operators’ test, in which the initial expression is
2 + 3 * 4. This is reduced as:

2 + 3 * 4
= 5 * 4
= 20

As Haskell follows standard operator precedence the result should (and if executed
with GHCi is) be 14! So the reduction should instead be:

2 + 3 * 4
= 2 + 12
= 14

This occurs because the GHC parser parses all infix applications as left-associative,
resulting in the above situation. So the expression is parsed as (2 + 3) * 4 rather
than 2 + (3 * 4). Details of a possible remedy are detailed in section 6.1.4.

5.6 Support for patterns in comprehensions

As discussed in section 4.4.4 pattern matching is not supported within the binds of a list
comprehension. The formals within the pattern will not be replaced with those from
the list feeding the bind. This is seen in test ‘listpattern’, in which the comprehension
is:

[x |(x,y) <- [(’H’,0),(’e’,1)]]

This results in the following reduction steps:

[x | (x, y) <- [(’H’, 0), (’e’, 1)]]
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= [x] ++ [x | (x, y) <- [(’e’, 1)]]
= [x] ++ [x]

Here the reduction of [x] ++ [x] fails, because the formal variables have no values
bound to them it cannot be evaluated by GHC. This causes the reduction to halt early,
although due to the failure to replace the formal variables with actual values it was
already nonsensical. This issue will be resolved by applying the new formal-actual
mapping system detailed in section 6.1.1.

5.7 Lack of feature support

The remaining issues are caused by a lack of support for various Haskell features. In
the case of lect05-4, lect09-1, lect10a-3, lect14-1, and ‘sumcase’ this results in the
reduction failing completely. This is due to a lack of support for redefining operators,
custom data types, function composition, where, and case statements respectively.

Additionally in the case of lect10a-2 the reduction doesn’t fail, it simply skips detail.
The code in question is a lambda expression:

(\x -> x > 0) 3

And the output is:

(\ x -> x > 0) 3
= True

Whereas the expected output would be something like this:

(\ x -> x > 0) 3
= 3 > 0
= True

As lambda expressions are not yet supported, the stupid computer interprets it via GHC
resulting in this skipped step. The issues outlined in this section will be rectified simply
with more development time.
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Conclusions

The main achievement of the project so far has been implementing the core function-
ality of the stupid computer. The current program has many limitations, but these can
be overcome now that core functionality is in place.

6.1 Future developments

This section contains a number of more detailed possible resolutions to some of the
limitations seen previously.

6.1.1 Representing call-by-name

Currently the stupid computer cannot represent Haskell’s call-by-name reduction strat-
egy, it would be useful for users if this feature could be properly represented. A major
reason for this issue is that the current formal-actual mapping system forces the eval-
uation of all arguments before they are passed into functions. As seen previously this
prevents the evaluation of fairly common Haskell programs, for example using zip to
index a string.

zip "Hello, World!" [0..]

Presently the formal-actual map will attempt to evaluate [0..], which (being an infi-
nite list) takes an infinite amount of time. Were call-by-name implemented it would be
possible for a user to get a trace as follows:

zip "Hello, World!" [0..]
= (’H’,0) : zip "ello, World!" [1..]
= (’H’,0) : (’e’,1) : zip "llo, World!" [2..]
= (’H’,0) : (’e’,1) : (’l’,2) : zip "lo, World!" [3..]
...

The key to enabling this will be replacing the formal-actual mapping system. This
new system will be based on matching the AST of an argument with the AST of the

37
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patterns to achieve the mapping. Figure 6.1 illustrates this for the pattern (x:xs) and
the argument [1,2,3,4].

[ ]

1 2 3 4

(a) 1,2,3,4

:

x xs

(b) (x:xs)

1

(c) AST mapped to x.

[ ]

2 3 4

(d) AST mapped to xs.

Figure 6.1: (simplified) AST view of planned formal actual mapping process

This will prevent the arguments from needing to be evaluate with GHC, so call-by-
name can be shown. No longer relying on GHC interpretation also has other benefits.
Firstly the AST structure of arguments will no longer be lost, for example this will
allow list comprehensions to use function results as generators. It will also provide a
fix to the issue with type variables highlighted in section 5.3, as there will no longer be
any type derivation that can fail. Finally I anticipate an improvement in performance
thanks to the elimination of costly GHC interpretation.

6.1.2 Representing Sharing

Sharing is another property of Haskell that would be useful to represent. This will be
especially useful to implement once a call-by-name strategy has been implemented.
To show the issue with purely implementing call-by-name without sharing consider
the following two examples, one shows the program as it works now, the other shows
how it may work with call-by-name.

square (1 + 4)
= square 5
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= 5*5
= 25

square (1 + 4)
= (1 + 4) * (1 + 4)
= 5 * (1 + 4)
= 5*5
= 25

The computation of (1 + 4) happens twice! The implementation of sharing would
avoid this, it may look a little like this:

square (1+4)
= let x = (1+4)

in x*x
= let x = 5

in x*x
= 5*5
= 25

Here call-by-name has been followed, and (1 + 2) only has to be calculated once.
This reduction strategy is also known as call-by-need [11].

6.1.3 Improvements to GHC interpretation

Currently when the stupid computer falls back to GHC interpretation, such as when
collapsing a function call to normal form, the result has no AST structure. This can be
problematic, especially with the proposed formal-actual mapping system! Therefore
we must try and keep this structure whenever possible, the approach to this will be
twofold.

Firstly very common operations (i.e + , length , ++ etc) can be directly implemented,
avoiding GHC interpretation altogether. Not only will this allow the structure to be
kept, it should improve performance. Though it will not be possible to implement this
for all operations, some will still have to go to GHC. To try and reclaim this structure
I intend to run the results of the interpreter through the GHC lexer and parser. The
AST representing the results can then be used instead of a flat string. While this will
be quite an expensive operation, it will give the stupid computer far more flexibility.

6.1.4 Fixing operator precedence

As seen in section 5.5 currently infix operator precedences are not dealt with properly,
this for example leads to 2 + 3 * 4 being treated as (2 + 3) * 4 not 2 + (3 * 4).
These are resolved in GHC by the renamer [13]. As seen in section 4.2 the main pur-
pose of the renamer is not fixing operator precedences, but fully resolving identifiers.
So for example sum becomes Data.Foldable.sum, and + becomes GHC.Num.+ . Un-
fortunately it does not appear to be possible to do the re-association without the rest of
the renaming process. I currently have two possible approaches to fix the issue:
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• One approach to fixing the precedences would be to apply the standard GHC
renamer to the AST, and then undo the identifier resoloution. This would be an
ideal solution, as it would avoid reimplemntation of functionality which already
exists within GHC. However I do not yet know the feasibility of this solution,
and to do so will take further research into the renamer. Unfortunately I only
discovered this issue with the operator precedence parsing during my evaluation
of the program, so have not as of yet been able to complete this.

• If doing this un-renaming is infeasible then an alternative approach will be to
re-implement the method used by the GHC renamer directly within my own
implementation, such that no renaming takes place at all.

6.1.5 User interface improvements

I have two priorities for improving the user interface. The first would be to implement
the highlighting of the reduced redex at each step of the reduction, in a similar way
to DrRacket (see Section 2.2). This would help users identify which redex has been
reduced at each step, something that can be challenging for complex expressions.

Another improvement would be to allow users to use normal Haskell files which only
contain definitions. Currently these files must also contain the expression they wish to
see reduced, which means the files are not directly loadable by GHCi (see Section 4.9).
This may be replaced with a system where users load in a file containing only function
definitions, then provide expressions they want to see reduced via the CLI. This would
allow students to examine several main expressions without having to modify their
input file.

6.1.6 User feedback

Currently I have not acquired any user feedback on the stupid computer, this of course
will need to be rectified. I plan to make the tool available to students taking the
Informatics-1A course in the 21/22 academic year. It will then be possible to gather
feedback from the students, whether through questionnaires, interviews or both.
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