
Guarded Existential Rules with
Transitivity: A Survey

Bailey Andrew

4th Year Project Report
Artificial Intelligence and Mathematics

School of Informatics
University of Edinburgh

2021

Abstract
We survey the current state of knowledge about the compatibility of transitivity with
the guarded family of rules - those deriving from the Guarded Fragment of First Order
Logic. Compatibility is defined using three different notions; the standard notion and
two restricted notions frequently considered in the literature (transitive guards and base
guards). We then examine each notion of compatibility for the three standard query
types (Atomic, CQ, UCQ), contributing several original results in the process. These
original results modestly improve our understanding of the important case of compat-
ibility of Linear rules with transitivity, as well as complete the picture for Guarded
Disjunctive and Frontier Guarded rules and some of their superclasses.

i

Acknowledgements

I would like to thank my supervisor, Andreas Pieris, for their support in the creation of
this report.

ii

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Overview of Contributions . 3

2 Background 4
2.1 The Query Answering Problem . 4
2.2 The Guarded Fragment and Its Subclasses 6

3 Decidability Results 9
3.1 Disjunctive Linear Rules . 10

3.1.1 Conjunctive Queries . 10
3.2 Guarded Rules . 12

3.2.1 Atomic Queries . 12
3.3 Disjunctive Guarded Rules . 14

3.3.1 Conjunctive Queries . 14
3.4 Guarded Fragment . 16

3.4.1 Atomic Queries . 16
3.4.2 Unions of Conjunctive Queries 16

3.5 Linear Rules . 17
3.5.1 Atomic Queries . 17
3.5.2 Conjunctive Queries . 18

4 Decidability Beyond the Guarded Fragment 21
4.1 Guarded Negation Fragment . 22

4.1.1 Atomic Queries . 22
4.1.2 Unions of Conjunctive Queries 23

4.2 Frontier-Guarded . 24
4.3 Weakly-Guarded . 26

5 Complexity Results 27
5.1 Linear Rules with Transitivity and Transitive Guards 28
5.2 “Base-” Rules . 29

6 Conclusion 30

Bibliography 31

iii

A Complementary Proofs 33
A.1 Cross Products . 33
A.2 D-Linear+×2 is CQ undecidable 33
A.3 WGTGD+×2 is atomic undecidable 34

iv

Chapter 1

Introduction

Databases are an integral part of the modern digital ecosystem, and much effort has
been invested in their study. In this report we are interested in the Ontology-Based
Data Access (OBDA) paradigm, in which we equip databases with a set of deductive
rules (an ‘ontology’) so that it can derive new facts from those present in the database.
Of course, if we allowed arbitrary ontologies, one could phrase undecidable problems
in the language of the database; an important task in this field is designing classes of
ontologies which maximize expressive power while maintaining decidability.

One notable decidable class of rules is Datalog, which while efficient suffers from the
limitation that it can only reason about entities already in the database. One way around
this is to add existential quantification to the language of Datalog; these rules are called
tuple-generating dependencies1 (TGDs). With existential quantification, TGDs can
reason about objects they know exist without knowing which, if any, object in the
database they correspond to. The extension to TGDs comes at the price of undecid-
ability. To mitigate this, research has been done in defining decidable subclasses of
TGDs, such as Linear and Guarded rules (defined in Section 2.2).

Another approach to OBDA is to consider decidable fragments of first-order logic
(FOL). One such fragment is the Guarded Fragment (GF), a fragment which is capable
of expressing modal logic[ANB98]. There are many subclasses of TGDs, such as the
aforementioned Guarded rules, which can be interpreted as both a set of TGDs and a
fragment of GF. While expressive, these rules lack the capability to express transitivity
(rules of the form T (x,y)∧T (y,z) −→ T (x,z)), an important property needed to ade-
quately capture the notions of ancestor-of, less-than, and part-of, among other
relations. This limitation hampers their applicability in domains such as medicine,
where a gene might be part-of the pathway for a protein that is part-of the regula-
tion of a hormone that is part-of the circulatory system (for example).

To combat this limitation, work has been done to determine whether and to what ex-
tent transitivity can be integrated with these ruleclasses while preserving decidability,
such as in [Bag+15], [GPT13], and [Ama+18]. In this report, we aim to analyze and
compile these results in a central place, as well as contribute our own results. For cases

1These are also known as existential rules, Datalog±, and ∀∃-rules.

1

Chapter 1. Introduction 2

where compatibility is not yet known, we will also attempt to give arguments as to why
standard approaches to the problem will not be sufficient.

1.1 Motivation

Many useful real-world constructs can be described using the transitive property, as
described in the previous section. Thus, it is no wonder that we wish to understand
its compatibility with decidable ontologies. In this report, we limit ourselves to results
concerning compatibility with the Guarded Fragment and its relatives. This decision
was made partially to make this report’s scope manageable, but it was also made due
to practical concerns. Most classes of ontologies are defined in one of two ways; via a
syntactic condition, or via some kind of acyclicity notion. GF and most of its relatives
are defined syntactically, whereas a ruleclass such as aGRD2 is defined using acyclic-
ity. Baget et al. have shown that many acyclically defined classes are incompatible
with transitivity[Bag+15], which should not come as a surprise as there is no reason to
expect that transitivity would respect the graph structure over which the ruleclasses are
defined. It is hoped that syntactically-defined ruleclasses will have better luck on this
front.

When considering whether or not transitivity is compatible with an ontology, there
are multiple notions of ‘compatibility’ that one could consider. One could consider
whether or not transitivity is compatible without any restrictions, but this will typ-
ically lead to undecidability. To mitigate this, we could impose restrictions on the
non-transitive portions of the ontology, such as limiting ourselves to two-variable or
monadic fragments (as done in [GPT13]). These types of restrictions have achieved
some positive decidability results. Another method is to impose restrictions on when
transitive predicates can be used; this method has achieved some success in the past,
and a recent result by Amarilli et al.[Ama+18] used one such restriction to achieve a
positive decidability result for a broad swathe of ontologies. Due to this recent success,
we will focus on restrictions of the latter form in this report. Specifically, for a class of
rules X , we focus on the problem of general compatibility “X + trans”, as well as the
restricted forms BaseX + trans and X +TG; their definitions are deferred to Chapter
2.

The final decision that was made in determining the scope of this project was that of
which query type to consider. We limit ourselves to atomic, conjunctive, and unions of
conjunctive queries. These three query types are standard in the field; there are others
that are used, such as acyclic queries, however the scope of this project is already
sufficiently broad that we saw no need in including additional query variants.

2aGRD stands for ‘acyclic graph of rule dependencies’, a class which seeks to disallow rules from
triggering themselves. As the name implies, it is defined using an acyclicity notion, where the relevant
graph is that of rules connected by edges if one rule can trigger another.

Chapter 1. Introduction 3

1.2 Overview of Contributions

While this report is primarily a survey, it contains some original results as well. Origi-
nal results will be explicitly labeled as either a Theorem or a Corollary when they are
introduced, or will otherwise be explicitly noted as original. Additionally, all results in
the appendix are original. In this section, we will give a brief list of results original to
this report.

1. Theorem 1: Linear + TG is decidable for CQs.

2. Corollary 1: GDTGD + TG is undecidable for CQs.

3. Corollary 2: Linear + TG is decidable for CQs, even if we allow the head to be
non-atomic.

4. Theorem 2: GNF + TG is undecidable for atomic queries (in fact even GNF +
TG satisfiability is undecidable).

5. Theorem 3: FGTGDs + TG is undecidable for atomic queries.

Additionally, there are some original results about binary cross products (rules of the
form C1(x)∧C2(y) −→ C̄(x,y)) in the appendix. Like transitivity, cross products are
a useful construct that cannot be expressed within the syntactic conditions of GF. We
found it useful to reference cross product results for comparisons with results for tran-
sitivity, although they have been relegated to the appendix as they are not relevant
enough to deserve integration into the main body of the report.

In the opinion of the author, the original results achieved for this survey are mostly
incremental improvements on the current state of knowledge in the field. While non-
trivial, they do not represent the kind of fundamentally new step forward that would be
required to resolve some of the remaining open problems, such as the CQ-decidability
of Linear+trans. Despite this, the results here were enough to complete the decidabil-
ity picture of GDTGDs, FGTGDs, GF, and GNF, tightening the decidability frontier
significantly; before this survey, a complete picture for all three compatibility types
and all three query types had not been attained for any of the rulesets considered in the
report.

Chapter 2

Background

Before presenting the survey of results, we will give formal definitions to the notions
discussed in the introduction. We have split this section into two parts; the first of
which will cover the general problem we are attempting to solve, and the second will
cover the types ruleclasses that we will be considering. We assume familiarity with
logical notation, and will frequently use the concepts ‘term’ (a variable or a constant),
and ‘atom’ (a single non-negated predicate with some terms, i.e. p(x,y)).

2.1 The Query Answering Problem

Databases in the OBDA paradigm can be thought of as a tuple containing a set of initial
facts F0 (corresponding to the traditional notion of a database as merely a collection
of data), and a set of rules R . We are concerned with the Query Answering problem;
given a set of facts F0, a set of rules R , and a query Q(~x) with some free variables
~x, what is the largest set of tuples such that for each element in the set~c we have that
F0,R |= Q(~c)? As an example, here is an instance of the problem;

Facts F0

mother of(Alice,Bob)

mother of(Clarissa,Alice)

Rules R
mother of(x,y)∧mother of(y,z)−→ grandmother of(x,z)

Query Q(x)
grandmother of(x,Bob)

Problem:
What are all the x such that F0,R |= Q(x) ?

Every instance of this problem can be rewritten as a yes-or-no entailment problem[Bag+15]
without free variables: F0,R |= Q. This is known as the ‘Boolean’ variant of the prob-
lem. As the two variants of the problem are equivalent, we only consider the Boolean

4

Chapter 2. Background 5

variant of the problem in this report. Query Answering can also be written as a satis-
fiability problem: F0,R |= Q ⇐⇒ F0,R ,¬Q |= ⊥. This typically does not preserve
ruleclasses - for a class of rules C , R ∈ C 6−→R ∧¬Q∈ C . Despite this, the reduction
to satisfiability can be helpful, so it will be useful to keep this in mind.

Formally, the factbase F0 is rather simple; it is a conjunction of atoms containing only
constants. The form of the ruleset R in contrast can be very complex, and will depend
on the ruleclass chosen - specific examples will be defined in Section 2.2. Like R , we
have a few choices for the form of the query Q; however, it should be clear that we
need to be careful if we wish to preserve decidability; even if we had an empty ruleset
and an empty factbase, a sufficiently complicated query would be undecidable. This is
not hard to see, as the corresponding satisfiability problem, ¬Q |= ⊥, could be made
arbitrarily complex with a sufficient choice of Q.

In this report we consider three types of queries; atomic queries, conjunctive queries
(CQs), and unions of conjunctive queries (UCQs). Atomic queries are queries of the
form ∃~x.q(~x,~C), where ~C are constants. CQs are queries of the form ∃~x

∧
i qi(~xi,~Ci),

and UCQs have the form ∃~x
∨

i
∧

j qi j(~xi j,~Ci j). Intuitively, CQs are conjunctions of
atomic queries, and UCQs are disjunctions of CQs. As a shorthand, if UCQ query
answering for a certain class of rules C is undecidable, then we will write that C is
UCQ-undecidable (and likewise for atomic queries and CQs).

As the Query Answering problem takes three inputs (F0,R ,Q), there are a few ways to
measure computational complexity. The most immediate is ‘combined complexity’, in
which we measure the complexity in terms of the size of all three inputs taken together.
However, in real world applications the ruleset is likely to be fixed and the queries are
likely to be small - most change to the ontology will come from adding new facts to the
dataset F0. ‘Data complexity’ attempts to address this; it only measures the complexity
as a function of the size of F0, considering the other two inputs to be fixed. There are
other complexity measures, such as bounded-arity combined complexity (which also
takes into consideration the arity of predicates), but in this report we only consider
(unbounded-arity) combined complexity and data complexity.

There is a nuance in how we measure complexity for the Query Answering problem,
which is important helpful to mention. We can measure the data complexity for a
ruleset; “how does the size of the factbase affect the runtime for the ruleset p(x) −→
q(x) and query q(Bob)?” is a well-founded question. However, we are not interested
in the complexity of rulesets; rather, we are interested in the complexity of classes of
rules. It might be possible a Guarded Fragment ruleset has AC0 data complexity, but
that does not mean that GF is AC0 (in fact it is coNP-complete). In essence, when
talking about the complexity of a ruleclass, we are actually asking about the maximum
complexity out of all possible instances of the problem which are in that ruleclass.

Chapter 2. Background 6

2.2 The Guarded Fragment and Its Subclasses

The general form of a TGD is ∀~x,~y.
∧

i Bi(~x,~y) −→ ∃~z.
∧

j Hi(~x,~z), where Bi, Hi are
atoms, and ~x,~y,~z are sets of terms. Universal quantification is typically omitted, as it
can be assumed that all variables not existentially quantified are universally quantified.
The portion of the sentence to the left of the implication is known as the ‘body’, and
the portion to the right is known as the ‘head’. Variables appearing in both the body
and the head (those in~x) are known as ‘frontier variables’.

In this report, we primarily consider Linear and Guarded TGDs (GTGDs). Both are
defined in terms of a syntactic condition. A TGD is Linear if both its body and
head consist of a single atom, and a rule is Guarded if there is an atom in the body
which contains all terms present in the body - such an atom is known as the ‘guard’.
p(x,y)−→ h(x,z) is Linear and Guarded (in fact, all Linear rules are trivially Guarded),
while p(x,y)∧q(x)−→ h(x,y) is Guarded but not Linear. p(x,y)∧q(z)−→ h(x,y) is
neither Guarded nor Linear, as there is no body atom which contains all variables x,y,z.

In this report, we will also investigate certain types of disjunctive TGDs (DTGDs), in
which we allow disjunction in the head. Disjunctive Linear and Disjunctive Guarded
rules (D-Linear and GDTGDs) are defined analogously to their non-disjunctive vari-
ants; a ruleset is D-Linear if the body is atomic and the head is a disjunction of atoms,
and a ruleset is a GDTGD if the body is guarded and the head is a disjunction of
conjunctions of atoms. p(x,y) −→ ∃z.h(x,z)∨ p(x,z) is D-Linear, but p(x,y) −→
∃z.h(x,z)∨ (p(x,z)∧ h(z,z)) is not, as there is a conjunction in the head. All Linear
rules are D-Linear, and all Guarded rules are GDTGDs.

Both Linear and Guarded rules, and their disjunctive variants, are subclasses of the
Guarded Fragment1. GF ontologies are not TGDs; rather, we say that a sentence in
FOL is GF if it satisfies a certain set of syntactic restrictions. These restrictions are
most easily defined inductively, as the smallest set such that:

1. All atoms are in GF.

2. All equalities are in GF (i.e. x = y is in GF)

3. If φ,ψ are GF, then φ∧ψ,φ∨ψ,φ−→ ψ, and ¬ψ are all GF.

4. ∀~x.ψ −→ φ and ∃~x.ψ∧φ are GF if ψ is an atom containing all variables in ~x as
well as all free variables in φ. In this case, ψ is the ‘guard’.

As an example, ¬∀x.G(x)−→ P(x)∧Q(x) is guarded, with G being a guard. However,
¬∀x.G(x)−→ ∃yzv.P(z,y)∧Q(v,z) is not, as there is no guard for the existential.

While GF allows equalities, in this report we will consider only equality-free GF sen-
tences. We decided to remove equalities because the majority of results in this survey
are undecidability results. Including equalities would increase the expressive power
of a ruleclass, and thus threaten to further increase the amount of undecidability re-
sults. Additionally, it is not immediately clear if the work done by Amarilli et al,

1Technically, Guarded rules do not require a guard for existential quantifiers, while GF does - how-
ever it is trivial to introduce a ‘dummy atom’ in the head of a rule to serve as the guard, in which case
the rule becomes GF.

Chapter 2. Background 7

who have produced a number of powerful decidability results in an equality-free con-
text[Ama+18], would extend when equality is considered.

One other type of TGD are the ‘inclusion dependencies’ (IDs), and their disjunctive
variant (DIDs). They are a subclass of Linear rules in which no variable occurs twice in
the same atom. We will not explicitly consider this class in this survey, and instead note
that all (un)decidability results for Linear rules given in this survey also apply to IDs
(and likewise for the disjunctive variants)2. Complexity results may differ, however.

This report is focused on the compatibility of transitivity with (D-)Linear, (D-)Guarded,
and GF rules. There are three ways in which we check whether or not transitivity is
compatible with a ruleset, which can be summed up with the labels ‘general transi-
tivity’, ‘transitivity only in guards’, and ‘transitivity only outside of guards’. We will
explain these rules in terms of the UCQ decidability of GF first, and use the notation
T R

i to denote the rule expressing the transitivity of Ti (Ti(x,y)∧Ti(y,z)−→ Ti(x,z)) for
brevity.

1. General transitivity: We say that “GF+trans” is UCQ-decidable if the Query
Answering problem can be decided for UCQs for rulesets of the form φ∧

∧
i T R

i ,
where φ is a GF ruleset and there are no restrictions on where the predicates Ti
can appear in φ

2. Transitivity only in guards: We say that “GF+TG” is UCQ-decidable if the
Query Answering problem can be decided for UCQs for rulesets of the form
φ∧

∧
i T R

i , where φ is a GF ruleset and Ti only appear as guard atoms in φ. TG
stands for Transitive Guards.

3. Transitivity only outside of guards: We say that “BaseGF+trans” is decidable
using the same setup as in the previous two definitions, but instead requiring Ti
to never appear as guard atoms in φ. (Atoms which are not transitive are known
as ‘base atoms’, which is why this form is called BaseGF+trans; only base atoms
are allowed to appear in guards).

Defining CQ- and atomic-decidability is completely analogous. Extending this def-
inition to work for GTGDs and Linear rules is also analogous, although we have to
be careful with how we define ‘guards’; even though GTGDs have their own (related)
concept of what a guard is, GTGD+TG restricts transitive predicates to appearing only
in atoms which are guards in the sense of the Guarded Fragment. There are a few
subtleties in this definition, so it will help to see some examples. In the following
examples, T always represents a transitive predicate.

1. T (x,y) −→ H(x,y) is Linear+TG, as T appears in the guard. However, it is not
BaseLinear+trans, for the same reason.

2. T (x,y)∧P(x,y) −→ H(x,y) is both Linear+TG and BaseLinear+trans. This is
because either T or P could serve as the guard for this rule; we get to choose,

2To see why this is, it is sufficient to note that all decidability results for Linear rules trivially prove
decidability for IDs, and that all undecidability results given in this report will use a ruleset that is either
an ID, or is rewritable as an ID without much work.

Chapter 2. Background 8

so if we want the ruleset to be Linear+TG, we can let T be the guard, and if we
want it to be BaseLinear+trans, we can let P be the guard.

3. T (x,y)∧T (y,x) −→ H(x,y) is neither Linear+TG nor BaseLinear+trans, as no
matter which T we choose as the guard, the other T is not the guard.

4. B(x,y)−→ T (x,y) is BaseLinear+trans, but not Linear+TG, as T does not appear
in a guard.

5. B(x,y) −→ ∃z.T (x,z) is Linear+TG, as T guards the existential quantifier. At
face value, this ruleset is not BaseLinear+trans, but if we introduce the dummy
predicate Aux we can phrase it as the equivalent ruleset B(x,y) −→ ∃z.T (x,z)∧
Aux(z). Now, we can let Aux be the guard, and hence it is BaseLinear+trans. The
introduction of an auxiliary predicate is trivial, and thus we will always handle
this implicitly, allowing us to say that B(x,y)−→∃z.T (x,z) is BaseLinear+trans.

The justification behind considering TG and Base- variants of the transitivity compati-
bility problem is that transitivity tends to lead to undecidability, whereas these variants
are able to limit transitivity enough into something more manageable in a manner
which arises naturally from the definition of the Guarded Fragment.

Chapter 3

Decidability Results

In this chapter, we will perform a case-by-case survey on the ruleclasses introduced
in Section 2.2. Each section in this chapter will pertain to one of these ruleclasses,
and will be split into up to three sub-sections, one for each of the three query types
(atomic/CQ/UCQ). Some classes will have less sub-sections, as the results for one type
of query may follow trivially from the results for another. Each section will contain a
table outlining the three types of compatibility results (general, TG, Base-) for each of
the three queries, as well as a discussion as to how those results were obtained, along
with proofs if the results are original. This chapter is mostly ordered by increasing
the expressive power of the ruleclasses. However, Linear rules (the least expressive)
are left until the end, as the results for Linear rules are the most technically involved.
Figure 3.1 contains a graphical overview of the current decidability frontier for CQs.

Linear

D-Linear GTGD

GDTGD

FGTGDGF WGTGD

GNF

Undecidable (trans)

Decidable (Base-)

Undecidable (TG)

Decidable (TG)

Figure 3.1: The current decidability frontier for CQs. Classes above red lines are un-
decidable, and classes below green lines are decidable (for the relevant compatibility
type). Note that there are no known negative decidabilty results for Base-, and no known
positive decidability results for general transitivity (for CQs). Arrows represent inclusion;
the arrow from Linear to GTGD represents the fact that Linear rules are GTGDs.

9

Chapter 3. Decidability Results 10

3.1 Disjunctive Linear Rules

Disjunctive Linear Rules +Trans +TG Base+Trans
Atomic Queries ? Yes[ST01] Yes[Ama+18]

CQs No[Ama+18] ? Yes[Ama+18]
UCQs No[Ama+18] ? Yes[Ama+18]

Table 3.1: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

3.1.1 Conjunctive Queries

Amarilli et al. have shown that D-Linear+trans is undecidable, by a reduction to a
tiling problem[Ama+18]. Specifically, they reduce to the following problem; given a
finite set of colored tiles, and finite sets of vertical/horizontal ‘forbidden pairs’, can
the first quadrant of the plane be tiled without having any two colors in a horizontal
(resp. vertical) forbidden pair appearing horizontally (resp. vertically) adjacent to each
other?1 Order matters; red being above green may be forbidden while green being
above red may be allowed.

The proof we use in this paper is a modified version of theirs; the modifications were
made with the aim of making it easier to explain. Our version also lends itself well to
a nice result about cross products, in Appendix A.2.

Suppose we had the following D-Linear+trans ruleset:

S′(x,y)−→ ∃z.S′(y,z∃)
S′(x,y)−→ S+(x,y)

S+(x,y)−→
∨

i

Ki(x,y)

S+(x,y)∧S+(y,z)−→ S+(x,z) (transitivity)

S+(x,y)−→ S+(y,x) (symmetry)∧
0≤i<n

S′(ai,ai+1)∧
∧

0≤i≤n

K j(a0,ai) (facts)

In this ruleset, K j(x,y) will represent that the tile at grid coordinates (x,y) has color C j.
Our terms x intuitively represent natural numbers, with S′(x,y) stating that y = x+ 1.
Our first rule creates an infinite chain of S′, representing the number line. Without the
symmetry rule, S+ would represent the relation <. The addition of the symmetry rule
allows it to represent the Cartesian product of the natural numbers with themselves,
i.e. it represents the coordinate pairs of the first quadrant of the plane. Finally, the
disjunctive rule forces each tile to choose a color.

1Additionally, there is the requirement that tiles at positions (i,0) where i < # of colors must be
colored as color Ci−1

Chapter 3. Decidability Results 11

It is not hard to see that, for a horizontal forbidden pair (Ci,C j), the query S′(x,x′)∧
Ki(x,y)∧K j(x′,y) checks if it is violated. We can make similar conjunctions for every
forbidden pair, and consider the UCQ formed by their union; the UCQ will be entailed
if and only if at least one forbidden pair is violated, which completes the reduction.

Amarilli et al. go on to present a method to transform the ruleset in a manner that
shows CQ entailment is undecidable as well, by increasing the arity of certain the
predicates. The general idea of the method is well-known in the field, although they
made the realization that not all predicates need to increase in arity - importantly, this
means that the transitive predicate does not need to change.

They do this by adding two constants t, f (intuitively representing ‘true’ and ‘false’),
along with a ternary predicate Or, which encodes the truth table of disjunction (i.e. the
set of initial facts contains atoms of the form Or(x,y,x∨y) where x,y∈ {t, f}). They are
then able to encode the disjunctive essence of the query into a conjunction involving
the Or predicates.

Traditionally, this method would require increasing every predicate’s arity, but in fact
they only need to increase the arity of S′, as it appears in every disjunct and is the ‘entry
point’2 into the ruleset.

This result is impressive, as the ruleset itself is incredibly simple; it contains one ex-
istential rule, one disjunctive rule, one transitivity rule, and two datalog rules, all of
which are linear rules (and for the UCQ case are all of arity 2 as well). The simplicity
of the ruleset implies that it will be hard to find any further restriction that would allow
transitivity to become compatible with any type of disjunctive rule3.

2‘Entry point’ means that the only type of atom that can derive an S′ atom is another S′ atom. If
another atom were to derive S′, we would also need to increase its arity to be able to propagate the term
in the third position, which is always inherited from the initial set of facts and is either t or f.

3Hard, but not impossible, as in Section 4.1 we will see that GNF, a superclass of D-Linear, is
compatible with transitive rules with the restriction that transitive predicates never appear in guards.

Chapter 3. Decidability Results 12

3.2 Guarded Rules

Guarded Rules +Trans +TG Base+Trans
Atomic Queries No[GPT13] Yes[ST01] Yes[Ama+18]

CQs No[GPT13] ? Yes[Ama+18]
UCQs No[GPT13] ? Yes[Ama+18]

Table 3.2: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

3.2.1 Atomic Queries

Atomic query answering with general transitivity was shown to be undecidable by
Gottlob et al.[GPT13]. To do this, they constructed a grid using transitive relations,
and then encoded a Turing machine over that grid; the query then asks whether that
machine ever enters the halting state. We can get an intuitive feel for how it works by
watching a timelapse of how it might generate a grid, in Figure 3.2.

c0,0 c1,0 c0,0

c0,1 c1,1 c0,1

c0,0 c1,0 c0,0

H

V, T

T

c0,0 c1,0 c0,0

c0,1 c1,1 c0,1

c0,0 c1,0 c0,0

H

V, T

H

H

V, T

T T

T

c0,0 c1,0 c0,0

c0,1 c1,1 c0,1

c0,0 c1,0 c0,0

H

V, T

H

H

V, T

T

T T

T

Figure 3.2: From left to right, the initial way in which a grid is built up. Grid coordinates
are represented by a single term x (compared to the D-Linear proof where they were
represented by a pair (x,y)); all grid terms make one of the four ci, j predicates true,
which are used to allow the ontology to understand the local landscape of the grid.

It is unlikely that this method will be extendable to Guarded+TG. In such a case, only
a single transitive relation may be created at a time (otherwise there would have to
be more than one guard in the head, a contradiction), and they must be created at
the same time as the grid relations V and H (if it were created after, it would not
contain an existential variable). However, this grid creation method sometimes creates
two transitivity atoms at the same time, such as when H is created, and it seems that
alternative grid strategies share this limitation.

In fact, we can give a brief argument as to why this limitation must persist. The most
straightforward trick used to build a grid using transitivity is to build the transitive re-
lations into 3 of the edges of a grid square, and use the transitive property to derive
the missing edge. This is easily doable, but suffers from the problem that transitivity
is very ‘reactive’ - not only will the missing edge be derived, but many other connec-
tions will be made by the transitive rule. This can be a major problem, as we would
need some way of identifying which transitive predicates are ‘real’ and which are just

Chapter 3. Decidability Results 13

byproducts of the reactivity. We can try to circumvent this by using multiple transitive
predicates Ti, making sure that adjacent grid squares use different transitive predicates
to limit the creation of unwanted edges. However, since we need to create Ti on three
edges of each square, we are limited in the ways we can build the grid. In fact, it is
easy to convince oneself that there is no such way to build the grid.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

T1
T1

T1

T2

T2

T2

T1

T1

T1
T2

T2
T2

T1

T1

T1

Figure 3.3: A demonstration of the inevitable failure of attempts to build a grid with the
following three criteria: (i) at most one Ti is directly created per edge, (ii) tiles have
exactly three created edges for the relevant Ti, (iii) adjacent tiles use differing Tis. It is
impossible to extend the given tiling to the square with (3,2) in its upper right corner,
since it needs three T2 edges but two of the edges are taken by T1.

Additionally, it is known that atomic query answering for GF+TG, and hence GTGD+TG,
is decidable, as there is a straightforward reduction to the known-to-be-decidable sat-
isfiability problem for GF+TG[ST01]; thus, any grid method meant to show undecid-
ability would have to be done in a way that forces the query to be at least conjunctive.
This is not necessarily an insurmountable obstacle, as a grid method was done to show
that GF+TG is UCQ-undecidable[GPT13].

Chapter 3. Decidability Results 14

3.3 Disjunctive Guarded Rules

Disjunctive Guarded Rules +Trans +TG Base+Trans
Atomic Queries No[GPT13] Yes[ST01] Yes[Ama+18]

CQs No[GPT13][Ama+18] No Yes[Ama+18]
UCQs No[GPT13][Ama+18] No Yes[Ama+18]

Table 3.3: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

3.3.1 Conjunctive Queries

Most results from Disjunctive Guarded Rules follow naturally from other results in this
survey, however the CQ and UCQ-decidabilities for D-Linear+TG do not currently fol-
low from the literature. In this section, we will use another modification of Amarilli
et al.’s proof of D-Linear CQ undecidability to prove that GDTGD+TG must be unde-
cidable. As this result depends heavily on that of Amarilli et al, it has been labeled as
a corrollary to their result.

Corollary 1. GDTGD+TG is CQ-Undecidable.

Proof. Recall that the modified version of their proof given in Section 3.1 was as fol-
lows:

S′(x,y)−→ ∃z.S′(y,z∃)
S′(x,y)−→ S+(x,y)

S+(x,y)−→
∨

i

Ki(x,y)

S+(x,y)∧S+(y,z)−→ S+(x,z) (transitivity)

S+(x,y)−→ S+(y,x) (symmetry)∧
0≤i<n

S′(ai,ai+1)∧
∧

0≤i≤n

K j(a0,ai) (facts)

The only situation where S+ is not a guard is in the second rule, and the symmetry rule.
It is not hard to remove the symmetry from S+; we can compensate by expanding the
disjunction that introduces Ki into three rules like so:

Chapter 3. Decidability Results 15

S′(x,y)−→ ∃z.S′(y,z∃)
S′(x,y)−→ S+(x,y)

S+(x,y)−→
∨

i

Ki(x,y)

S+(x,y)−→
∨

i

Ki(y,x)

S+(x,y)−→
∨

i

Ki(x,x)

S+(x,y)∧S+(y,z)−→ S+(x,z) (transitivity)∧
0≤i<n

S′(ai,ai+1)∧
∧

0≤i≤n

K j(a0,ai) (facts)

We then note that this ruleset is equivalent to the following, where we have modified
the first rule and removed the second:

S′(x,y)−→ ∃z.S′(y,z∃)∧S+(y,z∃)

S+(x,y)−→
∨

i

Ki(x,y)

S+(x,y)−→
∨

i

Ki(y,x)

S+(x,y)−→
∨

i

Ki(x,x)

S+(x,y)∧S+(y,z)−→ S+(x,z) (transitivity)∧
0≤i<n

(S′(ai,ai+1)∧S+(ai,ai+1))∧
∧

0≤i≤n

K j(a0,ai) (facts)

It should be clear that S+ only appears in guards4. We can see that it is equivalent to
the first ruleset - the main difference is that S+ is created immediately along with S′.
Without the now-removed second rule we would not generate the S+ facts that do not
contain existential variables - to fix this, we have added those facts to the initial set of
facts.

As mentioned in the section 3.1, the key properties that allowed us to go from UCQ
answering to CQ answering were that S′ appears in every disjunct, and that S′ is the
entry point to our ruleset. Neither of these facts have changed; it is not hard to show
that we can modify the ruleset to use a CQ, at the cost of increasing the arity of S′.
Thus GDTGD+TG is undecidable for conjunctive query answering.

4In fact, this ruleset is nearly D-Linear+TG; but the atomic-headedness of D-Linear prohibits this.

Chapter 3. Decidability Results 16

3.4 Guarded Fragment

GF +Trans +TG Base+Trans
Atomic Queries No[Grä98] Yes[ST01] Yes[Ama+18]

CQs No[Grä98] No Yes[Ama+18]
UCQs No[Grä98] No[GPT13] Yes[Ama+18]

Table 3.4: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

3.4.1 Atomic Queries

There is a straightforward, well-known reduction from atomic query answering with
GF+TG to GF+TG satisfiability, which is known to be decidable[ST01]. Here we will
briefly demonstrate this reduction.

Remark 1. GF+TG atomic-decidability can be reduced to GF+TG satisfiability.

Proof. If Q is a single atom q(~x,~C) (which may or may not be transitive), then we can
add a (guaranteed-to-be-guarded) rule R ′= q(~x,~y)−→ Aux(~x,~y), and instead query for
Aux(~x,~y). As mentioned in Chapter 2, F0,R ,R ′ |= Aux ⇐⇒ F0,R ∧R ′∧¬Aux |=⊥.
This completes the reduction, as R ∧R ′∧¬Aux is GF+TG.

3.4.2 Unions of Conjunctive Queries

Using a similar grid method to the one discussed in Section 3.2, Gottlob et al. were
able to show that the guarded fragment with transitive guards was undecidable for UCQ
answering[GPT13]. The intuition behind the construction of the grid is very similar.
A notable difference is that their construction uses only a single transitive relation;
by utilizing the additional expressive power of GF, they are able to circumvent the
‘reactivity’ problem mentioned in Section 3.2, by detecting which grid connections
are correct and which are extraneous.

Chapter 3. Decidability Results 17

3.5 Linear Rules

Linear Rules +Trans +TG Base+Trans
Atomic Queries Yes[Bag+15] Yes[Bag+15][ST01] Yes[Bag+15][Ama+18]

CQs ? Yes Yes[Ama+18]
UCQs ? ? Yes[Ama+18]

Table 3.5: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

3.5.1 Atomic Queries

The decidability of atomic query entailment with Linear+trans ontologies was proven
by Baget et al.[Bag+15]. To do this, they construct an algorithm that works roughly as
follows:

1. For every transitive predicate T, create a ‘pattern’ PT . Intuitively, the patterns
will represent T and all atoms that can derive T using a sequence of non-transitive
rules. For example, the following ruleset:

T (x,y)−→ P(x,y)
Q(x,y,z)−→ T (y,x)

R(x,y)−→ ∃z.T (x,z∃)

would have the pattern PT [#1,#2] := T (#1,#2)|Q(#2,#1,z0), since Q can derive
T. Note that R is not added to the pattern; this is because there is the additional
restriction that both variables in T must be present in R - but T contains an
existential, so it is not included.

2. In the body of every rule, replace instances of T with the ‘repeatable pattern’
P+

T ; also replace instances of T in the query. Like patterns, repeatable patterns
represent the atoms that can derive T - they are an extension of that idea, meant
to capture the ways in which the transitivity rule itself can create new T atoms.
A repeatable pattern P+

T [x,z] would be equivalent to some finite chain PT [x,y0]∧
PT [y0,y1]∧ ...∧PT [yk,z]. A key insight in the paper is that there is an upper
bound on the lengths of chains that need to be considered.

3. They then perform backwards chaining on the query until it reaches a fixed point
- in doing so, they are forced to consider a few cases on how to rewrite the
query ‘within’ a repeatable pattern, which may potentially increase the size of
the query.

4. Finally, they note that the pattern definitions can be turned into a Datalog ruleset
Π, and that the set of rewritings of the query can be considered as a UCQ Q , for
which the problem of whether Π |= Q is equivalent to the original problem.

The algorithm is sound and complete, but it is not guaranteed to terminate in general - it
may be that the backwards chaining on the query never reaches a fixed point. However,

Chapter 3. Decidability Results 18

they show that for atomic queries, the rewriting step will never increase the size of the
query, and hence it must terminate.

By focusing on backwards chaining, we might expect that the algorithm is helped by
the fact that Linear is fus. Intuitively, a ruleset is fus if the rules can be compiled
into the query by a simple backwards-chaining algorithm in a finite way[Roc16]. It is
unlikely that this method could be extended to Guarded rules, as they are not fus.

3.5.2 Conjunctive Queries

Linear+trans for CQs is still an open question. Baget et al. showed that for binary rule-
sets, their algorithm would still terminate[Bag+15]. They go a step further and design
a ‘safety condition’ that, when satisfied, guarantees termination even for non-binary
rulesets. The safety condition ultimately guarantees that a sufficiently nice unifier µ
always exists in the rewriting step such that any rewriting that would increase the size
of the query is made redundant by rewritings using µ.

The safety condition is as follows:

• A predicate q is a direct specialization on a transitive predicate T on positions
(~i,~j) if neither~i nor ~j = /0 and there is a rule of the form q(~u)−→ T (x,y) where
~i contains exactly the positions in ~u where x occurs, and likewise for ~j and the
positions where y occurs in~u.

As an example, q in the rule q(x,y,x,x,z)−→ T (x,y) is a direct specialization on
({1,3,4},{2}). If the rule were instead q(x,y,x,x,z)−→ ∃w.T (w,y), then~i = /0

and thus this rule would not cause q to be a specialization on T .

• A predicate q is a (not-necessarily-direct) specialization on T on (~i,~j) if it is
a direct specialization on (~i,~j), or if there is a rule q(~u) −→ p(~w) where p is
a specialization on T on positions (~̀,~m), where the terms in ~̀,~m in p occur in
positions~i and ~j in q, respectively.

Using the first rule in the first example, and the rule r(x,y)−→ ∃z.q(z,x,z,y,y),
r would be a specialization on T on ({2},{1}).

• A ruleset is safe if, for every predicate q that specializes a transitive predicate,
there exists a pair of positions (i, j) such that for all transitive predicates T upon
which q specializes on (~i,~j), either i ∈~i and j ∈ ~j, or j ∈~i and i ∈ ~j. It is helpful
to note that if all q specialize at most one transitive predicate, then the ruleset is
trivially safe.

If q specializes on T on ({2},{1}) and ({3},{1}), the ruleset is not safe. How-
ever, if it specializes on T on ({2},{1}) and T on ({1},{2}), then the ruleset is
safe.

The safety condition is notable in that it is entirely dependent on what can derive
transitive atoms, rather than being dependent on what transitive atoms can derive. As
we saw in Sections 3.2 and 3.4, many undecidability proofs rely on constructing a grid
using transitivity for encoding a Turing machine over the grid to reduce to the halting
problem. In these cases, the transitivity relations tend to appear near the start of the

Chapter 3. Decidability Results 19

ruleset (in terms of the derivation tree) - thus, there is not much space available for the
safety condition to be violated, which implies that grid creation methods will not likely
be fruitful in generating an undecidability result. The safety condition also allows us
to achieve a CQ-decidability result for Linear+TG.

Theorem 1. Linear+TG is decidable for CQs

Proof. To see why this must be true, we need only note three things:

1. If a transitive atom appears in the body, it is a guard (since it is the only atom in
the body).

2. If a transitive atom appears in the head, it is a guard if and only if it contains an
existential variable (as it is the only atom in the head).

3. If a rule contains a transitive atom T in the head with an existential variable, then
that rule does not create any specializations on T.

To see this, note that any such rule is of a similar form to p(x, ...)−→∃y.T (x,y∃).
y∃ never appears in p, so ~j = /0; but we had required that ~j 6= /0 for p to be a
specialization on T.

Since there are no specializations on T, the safety condition is vacuously satisfied,
which completes the proof.

While this does show that Linear+TG is decidable, it is important to realize that the
requirement that a Linear rule has an atomic head is often ignored, since one can always
introduce a few auxiliary predicates to rewrite the ruleset into an atomic-headed one.
However, this rewriting process will change which atoms serve as guards. Here is an
example:

Original Ruleset:
p(x,y)−→ ∃z.T (y,z∃)∧q(x,z∃)

Atomic-Headed Equivalent Form:
p(x,y)−→ ∃z.Auxiliary(x,y,z∃)

Auxiliary(x,y,z)−→ T (y,z)
Auxiliary(x,y,z)−→ q(x,z)

It is natural to ask whether Linear+TG is still decidable if we relax the atomic head
condition. The answer turns out to be yes.

Corollary 2. Linear+TG is CQ-decidable, even if we do not require atomic heads.

Proof. First, let us formally define the rewriting process that gives us an atomic-headed
ruleset. For each rule R , replace the head with an auxiliary predicate AuxR which
contains exactly once all the variables that appear in the head, and then for each atom
hi in the original head add the rule AuxR −→ hi (making sure to hook up the variables
in the correct way so that the rulesets remain equivalent).

Chapter 3. Decidability Results 20

Now, we note that the only specialization of T is the auxiliary predicate, since the
auxiliary predicate will always contain an existential in at least one of the two positions
that specialize T (corresponding to the positions that used to be existential when T was
a guard), so the specialization positions will be unable to propagate forwards.

Next, we note that each auxiliary predicate specializes only one transitive predicate.
This is because every rule head can only contain one transitive predicate (or else one
of them would not be the guard) - thus it would only be able to specialize a transitive
predicate through another auxiliary predicate. As noted earlier, this is not possible.

We have shown that the only predicates which specialize a transitive predicate are
auxiliary, and that these predicates specialize at most one transitive predicate. As noted
when we defined the safety condition, this means that the ruleset must be safe.

Chapter 4

Decidability Beyond the Guarded
Fragment

This report so far has focused on the Guarded Fragment and its subclasses, but it is
reasonable to wonder as to whether this is a natural place to focus. There are several
generalizations of the concept of guardedness, such as weakly-guarded (WGTGDs),
frontier-guarded (FGTGDs), and the Guarded Negation Fragment (GNF). In this sec-
tion we will see that extending the transitivity results to these classes is in most cases
a resolved question, thus showing that our focus on the Guarded Fragment is indeed
reasonable. One exception too this is WGTGDs, where not much is yet known; this
suggests an avenue for future research.

Each of these three classes use a more general notion of guardedness, and thus it is
important for us to be clear on what it means for a ruleset to be “Base” and what
it means for a ruleset to have transitivity only in guards (TG). For the definition of
“Base”, we can rely on the definition given by Amarilli et al. that a ruleset is BaseX +
trans, for some X ∈ {WGTGD,FGTGD,GNF}, if transitivity atoms never appear in
a weak-guard/frontier-guard/GNF-guard respectively[Ama+18]. In contrast, a ruleset
is in X +TG if transitivity atoms only appear in guards in the sense of the guarded
fragment. We have chosen these definitions as they are the most restrictive, and thus
offer the most hope for decidability.

21

Chapter 4. Decidability Beyond the Guarded Fragment 22

4.1 Guarded Negation Fragment

GNF +Trans +TG Base+Trans
Atomic Queries No[Grä98] No Yes[Ama+18]

CQs No[Grä98] No Yes[Ama+18]
UCQs No[Grä98] No Yes[Ama+18]

Table 4.1: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

The Guarded Negation Fragment is a powerful fragment which subsumes the Guarded
Fragment. Like GF, GNF is most easily defined inductively:

1. All atoms are GNF

2. If φ,ψ are GNF, then φ∧ψ, φ∨ψ, and ∃~z.φ(~x,~z) are GNF.

3. If φ(~x) is GNF and A(~x,~y) is an atom (each with no free variables other than
explicitly noted), then A(~x,~y)∧¬φ(~x) is GNF.

As an example, P(x,y)∧Q(x,y)∧ (A(z,x)∧¬φ(z)) is GNF, with A being a guard.
However, P(x,y)∧Q(x,y)∧ (A(y,x)∧¬φ(z)) is not GNF, as A no longer guards φ.

4.1.1 Atomic Queries

The only remaining question for atomic queries would be the compatibility of GNF
with transitive guards. However, it is not entirely clear what a transitive guard is in this
case. Let us recall that there are two conditions in GF which define a guard:

1. If there is a universal quantification, then it must be of the form ∀z.A −→ φ,
where φ is GF and A is an atom containing all the free variables of φ.

2. If there is an existential quantification, it must be of the form ∃z.A∧φ, with the
same conditions on A and φ.

In both cases, A is the ‘guard’. The second condition is directly interpretable in GNF,
but the first requires a bit more work. It is not hard to see, however, that it is logically
equivalent to ¬∃z.A∧¬φ, which can be interpreted in GNF. This gives us the following
definition of GNF+TG: A formula in GNF is a formula in GNF+TG if all transitive
predicates T appear in a subformula of one of the following forms (with T containing
all the free variables of φ):

1. ∃z.T ∧φ

2. ¬∃z.T ∧¬φ

Theorem 2. GNF+TG is atomic-undecidable.

Proof. We can see that GNF+TG must be atomic-undecidable by taking a closer look
at Gottlob et al’s proof of GF+TG UCQ undecidability. During the proof, they con-
structed a sentence for which satisfiability was equivalent to the halting problem:

Chapter 4. Decidability Beyond the Guarded Fragment 23

ϕ̂grid ∧ϕM ∧¬(ϕ̂2∨∃x.halt(x))

ϕ̂2 :=
∨
i, j

∃xyx′y′.γi, j∧ψi∧H(x,y)∧V (x,x′)∧V (y,y′)∧ H̄(x′,y′)

γi, j,ψi are conjunctions of atoms with variables x,y,x′,y′

ϕ̂grid,ϕM are GF+TG (and hence GNF+TG)

In their original proof, ψi is a conjunction of transitive atoms. However, if we add the
rule ∀xy.T (x,y)−→ T ′(x,y) (equivalently¬∃xy.T (x,y)∧¬T ′(x,y), which is GNF+TG)
then we can replace all the T atoms in ψi with T ′ atoms without changing the satisfia-
bility of the sentence. It should then be clear that ϕ̂2 is GNF+TG (since it is GNF and
does not contain any transitive atoms). The sentence ϕ̂2∨∃x.halt(x) contains no free
variables, so its negation is trivially GNF, and thus the whole sentence is GNF+TG.

As they had shown this sentence’s satisfiability to be reducible to the halting problem,
GNF+TG satisfiability, and hence atomic query answering, is undecidable.

Corollary 3. GNF+TG satisfiability is undecidable, as mentioned in Theorem 2.

4.1.2 Unions of Conjunctive Queries

Amarilli et al. showed that BaseGNF+trans is UCQ decidable, an incredibly powerful
result that shows as a corollary that BaseX +trans is UCQ decidable for nearly every
class of rules considered in this report. Their proof is very technical, but it relies on
showing that GNF, when equipped with a transitive closure operation, still satisfies the
bounded treewidth property. By Courcelle’s Theorem[Cou88], logical fragments that
have the bounded treewidth property must admit a terminating algorithm for query an-
swering. Courcelle’s theorem does not actually tell us how to create such an algorithm,
but Amarilli et al did manage to create an automaton that can answer UCQs1.

1More precisely, the automaton determines BaseGNF+trans satisfiability, but UCQ answering for
BaseGNF+trans can always be rephrased as a BaseGNF+trans satisfiability problem.

Chapter 4. Decidability Beyond the Guarded Fragment 24

4.2 Frontier-Guarded

Frontier Guarded Rules +Trans +TG Base+Trans
Atomic Queries No[GPT13] No Yes[Ama+18]

CQs No[GPT13] No Yes[Ama+18]
UCQs No[GPT13] No Yes[Ama+18]

Table 4.2: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

We say that a ruleset is frontier-guarded if, for every rule, there is an atom in the
body which contains all of the frontier variables. FGTGDs can be shown to be a
subclass of GNF; the UCQ decidability of BaseFGTGD+trans is thus inherited from
that of BaseGNF[Ama+18]. Likewise, they are a generalization of GTGDs, so the
atomic undecidability of FGTGD+trans follows as well. Thus the only unknown is
the decidability of FGTGD+TG. This is in fact undecidable, even for atomic query
answering.

Theorem 3. FGTGD+TG is atomic-undecidable.

Proof. First, observe that FGTGD+TG = FGTGD+TFG, where “TFG” stands for ‘tran-
sitivity only in frontier-guards’2. To see why, consider that we can add a FGTGD+TG
rule T (x,y)−→ T ′(x,y) to any FGTGD+TFG ruleset, and then replace all instances of
T in frontier guards with T ′. This makes the entire ruleset FGTGD+TG.

We can use FGTGD+TFG to reduce to the known-to-be-undecidable problem of check-
ing whether the intersection of two context free languages contains the same word.
This is heavily inspired by a result by Krötzsch and Rudolph[KR], who used the fol-
lowing ruleset as a demonstration that their proposed ‘Directional Rules’ ruleclass was
undecidable for CQs (for simplicity, it has been edited to assume that the grammar is in
Chomsky Normal Form and edited so that it accepts an atomic, rather than conjunctive,
query):

∧
terminals and nonterminals α in the context free grammar (CFG)

∀x.∃y.rα(x,y)

∧
grammar rules of the form α:=βγ

rβ(x,y)∧ rγ(y,z)−→ rα(x,z)

∧
grammar rules of the form α:=a

ra(x,y)−→ rα(x,y)

rS1(x,y)∧ rS2(x,y)−→ NonemptyIntersection(x)

Assuming the two grammars had start symbols S1,S2, this will check if the gram-
mars both generate a common string. While the first rule is not directly allowed in

2Specifically, we will require that transitive predicates in the body appear in the frontier guard, and
that transitive predicates in the head contain all existential variables as usual. We do not require that
head predicates contain all frontier variables.

Chapter 4. Decidability Beyond the Guarded Fragment 25

Datalog±, it is not hard to mimic it using linear rules; for every predicate p, add the
rule p(x, ...)−→ ∃y.rα(x,y) (repeat for each possible position of x in p).

This ruleset is not FGTGD, but we can make it so by adding a transitive predicate T :

∧
terminals and nonterminals α in the context free grammar (CFG)

∀x.∃y.rα(x,y)∧T (x,y)

∧
grammar rules of the form α:=βγ

rβ(x,y)∧ rγ(y,z)∧T (x,z)−→ rα(x,z)

∧
grammar rules of the form α:=a

ra(x,y)−→ rα(x,y)

rS1(x,y)∧ rS2(x,y)−→ NonemptyIntersection(x)

It is not hard to see that T only appears in frontier guards, so this ruleset is an instance
of FGTGD+TFG. NonemptyIntersection is entailed if and only if the languages
share a string, so atomic query entailment is undecidable for FGTGD+TFG, and hence
for FGTGD+TG as well.

Chapter 4. Decidability Beyond the Guarded Fragment 26

4.3 Weakly-Guarded

Weakly Guarded Rules +Trans +TG Base+Trans
Atomic Queries No[GPT13] ? ?

CQs No[GPT13] ? ?
UCQs No[GPT13] ? ?

Table 4.3: Results in grey follow trivially from other results in the report; uncited results
are results original to this report.

We say that a ruleset is weakly-guarded if, for every rule, there is an atom in the body
which contains all of the ‘affected’ variables, where affectedness is defined in terms of
the following condition on the positions of a predicate[CGK13]:

1. If in the head of some rule an existential variable occurs in position p[i], we mark
p[i] as ‘affected’.

2. If in the head of some rule a frontier variable occurs in position p[i], and the posi-
tions in which this frontier variable occurs in the body are all affected positions,
we mark p[i] as affected.

3. A body variable is affected if it appears exclusively in affected positions within
the body.

Like FGTGDs, WGTGD+trans inherits its atomic undecidability from GTGDs; how-
ever, WGTGD is not a subclass of GNF - we know nothing a priori about the decid-
abilities of BaseWGTGD+trans or WGTGD+TG.

It is likely to be the case that the (un)decidabilities are the same as those for GT-
GDs; there are several rewriting methods which link the expressive powers of GTGDs,
WGTGDs, and their generalizations. For example, WGTGDs can be rewritten as GT-
GDs[Bag+11], and FGTGDs can be rewritten as WGTGDs[GRS14]. Additionally, if
an atom appears only in guards, these rewritings tend to preserve that fact.

Unfortunately, the rewritings do not preserve the transitivity rule, which is what pre-
vents us from concluding that WGTGD+TG is equivalent to GTGD+TG in terms of
expressive power. Thus, it is possible that WGTGD+TG and GTGD+TG are funda-
mentally different. There is precedent for this; binary cross products (rules of the form
C1(x)∧C2(y) −→ C̄(x,y)) are known to be compatible with GTGDs[BMP17] but not
with WGTGDs3. However, the incompatibility proof relies on the fact that cross prod-
ucts have different head and body predicates, which allows them to isolate affected
positions and cause every rule to be trivially weakly guarded. Transitivity, on the other
hand, tends to respect the weakness condition - in fact, it is not hard to see that the
transitivity rule can never change which positions are affected.

3The proof of this is given in Appendix A.3

Chapter 5

Complexity Results

In this chapter, we will aim to gain an understanding of the precise computational
complexity of the positive decidability results obtained in previous chapters. These
complexity results are compiled into Table 5.1.

Complexity Results Data Complexity Combined Complexity
Query Language Atomic CQ UCQ Atomic CQ UCQ

Linear in AC0
a in AC0

a ? PSpace-cb PSpace-cc ?
Disjunctive Linear in Logspacea coNP-ca coNP-cd Exp-ce 2Exp-cd 2Exp-cd

Guarded PTime-ca PTime-ca ? 2Exp-ce 2Exp-cc 2Exp-c
Disjunctive Guarded coNP-ca coNP-ca coNP-cd 2Exp-ce 2Exp-cd 2Exp-cd

Frontier Guarded PTime-c PTime-cc ? 2Exp-c 2Exp-cc 2Exp-c
Guarded Fragment coNP-c coNP-c coNP-c 2Exp-c 2Exp-cf 2Exp-cf

Guarded Negation Fragment coNP-cg coNP-cg coNP-cg 2Exp-cg 2Exp-cg 2Exp-cg

Linear+trans NL-cb ? ? Exp-cb ? ?
Linear+TG NL-c NL-c ? in Exp in Exp ?

BaseLinear+trans NL-c ? ? Exp-c ? ?
BaseD-Linear+trans ? coNP-c coNP-c ? 2Exp-c 2Exp-c
BaseGuarded+trans ? ? ? 2Exp-c 2Exp-c 2Exp-c

BaseD-Guarded+trans coNP-c coNP-c coNP-c 2Exp-c 2Exp-c 2Exp-c
BaseFrontier-Guarded+trans ? ? ? 2Exp-cg 2Exp-cg 2Exp-cg

BaseGF+trans coNP-c coNP-c coNP-c 2Exp-c 2Exp-c 2Exp-c
BaseGNF+trans coNP-cg coNP-cg coNP-cg 2Exp-cg 2Exp-cg 2Exp-cg

Table 5.1: For reference, the complexities for the considered classes without transitivity are also given.
A suffix of -c indicates completeness, -h indicates hardness. Grey cells indicate that decidability is not
known. Uncited results are those which follow from cited results.

a [Alv+12]
b [Bag+15]
c [Mug11]
d [BMP13]
e [Got+12]
f [BGO10]
g [Ama+18]

27

Chapter 5. Complexity Results 28

5.1 Linear Rules with Transitivity and Transitive Guards

Baget et al. provided complexity results along with their decidability results[Bag+15].
They established that:

1. Atomic query answering for Linear+trans is NL-complete in data complexity
and Exptime-complete in combined complexity.

2. CQ entailment for safe Linear+trans is NL-complete in data complexity, and it
is in Exptime for combined complexity (Exptime-completeness is not known).

They achieved upper bounds on complexity through an analysis of the algorithm they
presented to demonstrate decidability. Combined complexity lower bounds were achieved
through a modification of a proof by Bienvenue and Thomazo[BT16], by simulating
arbitrary PSpace alternating Turing machines (ATM) and noting that the problem of
checking whether a word was generated by a given PSpace ATM is Exptime-complete.
Data complexity lower bounds were achieved from a reduction from the NL-complete
directed reachability problem (i.e. given a directed graph, is one vertex reachable from
the other?).

NL-completeness is in fact inherent to transititivity, not Linear rules. Suppose we only
had a single transitive predicate with no Linear rules, and some set of initial facts
consisting of transitive atoms. Each atom can be thought of as defining a directed
edge of a graph, and it should be clear that the concept of reachability is encoded by
the transitive relation. As the directed reachability problem is NL-complete, atomic
Linear+trans must be NL-hard (and hence NL-complete, as Baget et al’s algorithm
has complexity NL). This is a very nice result, as it shows that the complexity of
Linear+trans is the best result we could have hoped for.

Remark 2. Linear+TG is NL-complete in data complexity for CQ query answering.

Proof. In this report we saw a reduction from Linear+TG to safe Linear+trans, so
Linear+TG inherits the upper bounds for safe Linear+trans. Furthermore, Linear+TG
must be NL-complete in data complexity for conjunctive query answering since the
same reduction to directed reachability as in the last paragraph still holds.

For BaseLinear+trans on atomic queries, we inherit NL and Exptime upper bounds for
data and combined complexity from the general Linear+trans case, and we can see that
it must indeed be NL-complete as well by the same reasoning as the previous remark.

Remark 3. BaseLinear+trans is ExpTime-complete in combined complexity for atomic
query answering.

Proof. We can achieve an Exptime-complete combined complexity for BaseLinear+trans.
As mentioned, Baget et al. proved Exptime-completeness for general Linear+trans by
reducing from the word acceptance problem for PSpace alternating Turing machines.
Importantly their Linear+trans ruleset used in the reduction never uses a transitive
predicate in the body; and hence it is a BaseLinear+trans ruleset as well.

Chapter 5. Complexity Results 29

5.2 “Base-” Rules

Amarilli et al. showed that transitivity can be added to BaseGNF with resultant com-
bined complexity 2Exptime-complete and data complexity coNP-complete[Ama+18];
this is in fact the best possible result, as GNF is 2Exptime-complete even without tran-
sitivity. From this result we immediately gain a near-complete understanding for the
combined complexity landscape of all subclasses of GNF, however the picture for data
complexity is not so rosy. They do note that all data complexities are coNP-complete
in the case of transitive closure predicates (even with BaseLinear rules), but this is
due to the fact that transitive closure on its own has coNP-complete data complexity
(analogously to how transitivity on its own has NL-complete data complexity) - thus
their completeness proof is likely not extensible to the case of transitivity.

Chapter 6

Conclusion

In this report we have seen that the picture of transitive compatibility with guarded
rules is clearing up. Despite this, there are still many open questions with (D-)Linear
rules and the state of GTGDs+TG is largely unknown as well. Most natural ways to
generalize the Guarded Fragment and its subclasses, such as GNF and FGTGDs, have
also had the question of transitive compatibility resolved, although we do not know
much about the compatibility of transitivity with WGTGDs.

One possible avenue for future work would be to clear up the open questions outlined
in the previous paragraph - of particular interest is the case of Linear rules. Unlike
general transitivity and transitive guards, no undecidability results have been proven
for Base- rulesets. A natural question is how complicated can a ruleclass X get before
BaseX + trans becomes undecidable; the first step towards this would be to investigate
weakly-guarded rules and their generalizations. Yet another avenue for improvement
would be to begin work towards filling in the missing complexity values of Table 5.1;
most work so far has been dedicated to establishing decidability, with complexity being
an afterthought.

While there are still open questions, this survey represents a complete overview of the
currently known compatibility results for guarded rules and transitivity. We have seen
that the question of compatibility is now closed for GNF, GF, GTGDs, and FGTGDs,
with the help of some original results. The question of general compatibility with tran-
sitive rules is open only for Linear UCQ answering and D-Linear atomic answering,
whereas compatibility with transitivity only in guards still has quite a few open ques-
tions left. Most cited papers were written in the last ten years; if this rate keeps up, it
is not unreasonable to expect that the problems posed in this survey will be resolved
within the next decade.

30

Bibliography

[Cou88] Bruno Courcelle. “The monadic second-order logic of graphs, II: Infinite
graphs of bounded width”. In: Mathematical Systems Theory 21.1 (1988),
pp. 187–221.

[ANB98] Hajnal Andréka, István Németi, and Johan van Benthem. “Modal lan-
guages and bounded fragments of predicate logic”. In: Journal of philo-
sophical logic 27.3 (1998), pp. 217–274.

[Grä98] Erich Grädel. “On the Restraining Power of Guards”. In: Journal of Sym-
bolic Logic 64 (1998), pp. 1719–1742.

[ST01] W. Szwast and L. Tendera. “On the decision problem for the guarded frag-
ment with transitivity”. In: Proceedings 16th Annual IEEE Symposium on
Logic in Computer Science. 2001, pp. 147–156. DOI: 10.1109/LICS.
2001.932491.

[BGO10] Vince Bárány, Georg Gottlob, and Martin Otto. “Querying the guarded
fragment”. In: 2010 25th Annual IEEE Symposium on Logic in Computer
Science. IEEE. 2010, pp. 1–10.

[Bag+11] Jean-François Baget et al. “Walking the Complexity Lines for Gener-
alized Guarded Existential Rules”. In: IJCAI: International Joint Con-
ference on Artificial Intelligence. Ed. by Toby Walsh. Barcelona, Spain:
AAAI Press, July 2011, pp. 712–717. URL: https://hal-lirmm.ccsd.
cnrs.fr/lirmm-00618081.

[Mug11] Marie-Laure Mugnier. “Ontological query answering with existential rules”.
In: International Conference on Web Reasoning and Rule Systems. Springer.
2011, pp. 2–23.

[Alv+12] Mario Alviano et al. “Disjunctive datalog with existential quantifiers: Se-
mantics, decidability, and complexity issues”. In: arXiv preprint arXiv:1210.2316
(2012).

[Got+12] Georg Gottlob et al. “On the complexity of ontological reasoning under
disjunctive existential rules”. In: International Symposium on Mathemat-
ical Foundations of Computer Science. Springer. 2012, pp. 1–18.

[BMP13] Pierre Bourhis, Michael Morak, and Andreas Pieris. “The impact of dis-
junction on query answering under guarded-based existential rules”. In:
Twenty-Third International Joint Conference on Artificial Intelligence.
2013.

[CGK13] A. Calı̀, G. Gottlob, and M. Kifer. “Taming the Infinite Chase: Query
Answering under Expressive Relational Constraints”. In: Journal of Ar-
tificial Intelligence Research 48 (Oct. 2013), pp. 115–174. ISSN: 1076-

31

https://doi.org/10.1109/LICS.2001.932491
https://doi.org/10.1109/LICS.2001.932491
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00618081
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00618081

BIBLIOGRAPHY 32

9757. DOI: 10.1613/jair.3873. URL: http://dx.doi.org/10.1613/
jair.3873.

[GPT13] Georg Gottlob, Andreas Pieris, and Lidia Tendera. “Querying the Guarded
Fragment with Transitivity”. In: Proceedings of the 40th International
Conference on Automata, Languages, and Programming - Volume Part
II. ICALP’13. Riga, Latvia: Springer-Verlag, 2013, pp. 287–298. ISBN:
9783642392115. DOI: 10.1007/978-3-642-39212-2_27. URL: https:
//doi.org/10.1007/978-3-642-39212-2_27.

[GRS14] Georg Gottlob, Sebastian Rudolph, and Mantas Simkus. “Expressiveness
of guarded existential rule languages”. In: Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. 2014, pp. 27–38.

[Bag+15] Jean-François Baget et al. “Combining Existential Rules and Transitivity:
Next Steps”. In: CoRR abs/1504.07443 (2015). arXiv: 1504.07443. URL:
http://arxiv.org/abs/1504.07443.

[BT16] Meghyn Bienvenu and Michaël Thomazo. “On the complexity of evalu-
ating regular path queries over linear existential rules”. In: International
Conference on Web Reasoning and Rule Systems. Springer. 2016, pp. 1–
17.

[Roc16] Swan Rocher. “Querying existential rule knowledge bases: decidability
and complexity”. PhD thesis. Université Montpellier, 2016.

[BMP17] Pierre Bourhis, Michael Morak, and Andreas Pieris. “Making cross prod-
ucts and guarded ontology languages compatible”. In: IJCAI 2017-Twenty-
Sixth International Joint Conference on Artificial Intelligence. 2017, pp. 880–
886.

[Ama+18] Antoine Amarilli et al. “Query Answering with Transitive and Linear-
Ordered Data”. In: Journal of Artificial Intelligence Research 63 (Sept.
2018), pp. 191–264. DOI: 10.1613/jair.1.11240. URL: https://
hal.telecom-paris.fr/hal-02338348.

[KR] Markus Krötzsch and Sebastian Rudolph. “Directional Rules: Tractable
Datalog+/–with Transitivity”. In: ().

https://doi.org/10.1613/jair.3873
http://dx.doi.org/10.1613/jair.3873
http://dx.doi.org/10.1613/jair.3873
https://doi.org/10.1007/978-3-642-39212-2_27
https://doi.org/10.1007/978-3-642-39212-2_27
https://doi.org/10.1007/978-3-642-39212-2_27
https://arxiv.org/abs/1504.07443
http://arxiv.org/abs/1504.07443
https://doi.org/10.1613/jair.1.11240
https://hal.telecom-paris.fr/hal-02338348
https://hal.telecom-paris.fr/hal-02338348

Appendix A

Complementary Proofs

A.1 Cross Products

A binary cross product is a rule of the form C1(x)∧C2(y) −→ C̄(x,y), and will often
be abbreviated as ×2. They are known to be compatible with guarded rules[BMP17],
and hence they are an interesting case study to compare with the compatibility of tran-
sitivity rules.

A.2 D-Linear+×2 is CQ undecidable

As mentioned in Section 3.1, the following ruleset encodes a known-to-be-undecidable
tiling problem.

S′(x,y)−→ ∃z.S′(y,z∃)
S′(x,y)−→ S+(x,y)

S+(x,y)−→
∨

i

Ki(x,y)

S+(x,y)∧S+(y,z)−→ S+(x,z) (transitivity)

S+(x,y)−→ S+(y,x) (symmetry)∧
0≤i<n

S′(ai,ai+1)∧
∧

0≤i≤n

K j(a0,ai) (facts)

There is a single transitive predicate S+, which satisfies a “connectedness” property,
defined in terms of a graph. This graph will have its vertices be terms, and there will
be an edge between x and y if S+(x,y) is true. As S+ is symmetric, this graph is
undirected. The connectedness condition is simply that this graph (which is related to
the Gaifman graph) is connected. It is not hard to convince yourself that this must be
true - all the initial S′ facts lead to a connected set of S+ facts, and the first and second
rules of the ruleset preserve this connectedness.

33

Appendix A. Complementary Proofs 34

Note that if some term x is a vertex on this graph (i.e. if it appears in a transitive atom),
then it is connected to all other vertices on this graph (i.e. S+(x,y) is true for all y that
appear in transitive atoms). Thus the property of transitivity can be replaced with a
cross product;

S′(x,y)−→ ∃z.S′(y,z∃)
S′(x,y)−→C(x)∧C(y)

S+(x,y)−→
∨

i

Ki(x,y)

C(x)∧C(y)−→ S+(x,z) (cross product)∧
0≤i<n

S′(ai,ai+1)∧
∧

0≤i≤n

K j(a0,ai) (facts)

These rulesets are equivalent, which shows that D-Linear+×2 is UCQ undecidable. In
fact, Amarilli et al’s UCQ to CQ conversion method still applies, and additionally this
ruleset uses only disjunctive inclusion dependencies, leading to the stronger result that
DID+×2 is CQ undecidable.

A.3 WGTGD+×2 is atomic undecidable

We note that cross products give us a very convenient property; the predicates in the
head of a cross product rule are not the same as those in the body. We can use this to
effectively destroy classes of rules that are based around keeping track of the positions
of variables, as it allows variables to ‘teleport’.

Let’s consider arbitrary TGDs with atomic heads and at most one existential variable.
Atomic query answering is undecidable for this problem, as completely arbitrary TGDs
can all be written in this form. For every rule ~B(~x,~y)−→∃z.H(~x,z), we can turn it into
two rules:

~B(~x,~y)−→ ∃z.H̄(~x)∧C(z)
C̄(x,x)∧ H̄(~y)−→ H(~y,x)
(C(x)∧C(y)−→ C̄(x,y)) [Cross Product]

Note that the only affected position is C[1], but it never appears in the body of a rule
(except the cross product rule). Thus all rules are trivially guarded. This proves the
reduction from arbitrary TGDs to WGTGD +×2, so the latter is not decidable for
atomic query answering.

	Introduction
	Motivation
	Overview of Contributions

	Background
	The Query Answering Problem
	The Guarded Fragment and Its Subclasses

	Decidability Results
	Disjunctive Linear Rules
	Conjunctive Queries

	Guarded Rules
	Atomic Queries

	Disjunctive Guarded Rules
	Conjunctive Queries

	Guarded Fragment
	Atomic Queries
	Unions of Conjunctive Queries

	Linear Rules
	Atomic Queries
	Conjunctive Queries

	Decidability Beyond the Guarded Fragment
	Guarded Negation Fragment
	Atomic Queries
	Unions of Conjunctive Queries

	Frontier-Guarded
	Weakly-Guarded

	Complexity Results
	Linear Rules with Transitivity and Transitive Guards
	``Base-'' Rules

	Conclusion
	Bibliography
	Complementary Proofs
	Cross Products
	D-Linear+2 is CQ undecidable
	WGTGD+2 is atomic undecidable

