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Abstract
Forest restoration is the process of planting, protecting and conserving trees. The re-
cent investment in global forest restoration initiatives has huge potential in mitigating
the effects of climate change. However, at present, restoration projects are surveyed us-
ing methods which are ineffective for monitoring projects at scale. Furthermore, previ-
ous approaches to apply machine learning for forest monitoring have focused on using
low-resolution satellite imagery which are not well suited for identifying small planted
trees in forest restoration sites. The primary objective of this project is therefore to
investigate the possibility of monitoring reforestation projects using machine learning
and high-resolution satellite imagery. To achieve this research aim, a unique dataset
was manually constructed using high-resolution satellite imagery. Here, we present a
random forest machine learning model which is trained on this unique dataset and is
evaluated on a real-life forest restoration site in northern Fiji. The results demonstrate
that the proposed model, RF-Ranger, can achieving promising 96.4% classification
accuracy and 96.3% Macro-F1 score on unseen pixels in a test dataset. This study
was conducted in partnership with the non-profit environmental organisation, Con-
servation International (CI), who manage the active reforestation site assessed in this
report. Overall, the results indicate that the proposed model, RF-Ranger, can success-
fully identify trees in forest restoration sites and can be used to monitor these projects
at scale.
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Chapter 1

Introduction

Planting trees is crucial to protecting our planet. Trees help mitigate the effects of
climate change through carbon sequestration, the natural process whereby trees absorb
carbon dioxide (CO2) from the air, capturing and storing carbon, whilst releasing clean
oxygen back into the atmosphere (Lal, 2008). Forests also regulate global temperatures
and provide a natural home to 80% of the world’s terrestrial wildlife and biodiversity
(WWF, 2021). Despite the evident value of preserving forests, the current rate of
global deforestation is alarming. Every minute, 36 football fields’ worth of trees are
lost to deforestation (CI, 2021). Every day, 137 species of life forms are driven to
extinction due to logging, cattle ranching and burning of tropical rainforests (Silber
and Velton, 2020). And, since 1960, nearly half of the world’s rainforests have been
completely destroyed (CI, 2021). Planting more trees and monitoring forest change is
therefore critically important.

Over the past decade, there has been a major global push toward expanding forested
regions through restoration initiatives. Active forest restoration (reforestation) is the
process of planting trees in project sites which are closely managed by a specific or-
ganisation (Morrison and Lindell, 2011; Philipson et al., 2020). Most typically these
projects are managed by environmental non-profit organisations, such as Conservation
International or The Nature Conservancy to name a few (CI, 2021; TNC, 2021).

Active forest restoration is highly sought after because it offers a cheap, scalable and
effective method to offset carbon. Recent research by Philipson et al. (2020) found
that active forest restoration projects not only reduce carbon dioxide emissions but
they generate higher rates of carbon accumulation than naturally regenerating forests.
As well as being an effective solution for carbon storage, active reforestation is also
considerably more cost-effective and easier to implement than alternative technological
carbon capture solutions (Griscom et al., 2017).

As a consequence of the evident environmental and cost-effective benefits, there has
been major influx of global investment in active reforestation projects. For instance,
initiatives such as The Bonn Challenge are focused on restoring 350 million hectares
(around 10x the size of Germany) of forests by 2030 (IUCN, 2011). Moreover, last
year, the World Economic Forum launched a global initiative to grow, restore and
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Chapter 1. Introduction 2

conserve 1 trillion trees over the next decade (WEF, 2020). To put this into perspective,
this roughly equates to planting 3000 trees, every second, for the next 10 years1.

Monitoring the success of forest restoration projects is crucial to assessing whether
interventions make a difference. Forest monitoring can also hold governments, non-
profit organisations and private companies to account for carbon offsetting initiatives.
For instance, under the Paris Agreement, countries are now required to frequently mea-
sure and record changes in forest cover (UNFCC, 2015; Milodowski et al., 2017).
However, as forest restoration projects continue to scale it becomes increasingly more
challenging to monitor sites effectively. Traditional methods of reforestation moni-
toring, including manual on-foot field surveys, are simply not feasible for examining
large projects which are often in remote or challenging natural terrains (de Almeida
et al., 2020).

Recent improvements in machine learning and remote sensing can help address the
challenges of large scale forest monitoring. Over the past decade, research contribu-
tions have demonstrated the ability of supervised machine learning methods, such as
random forest classifiers, to detect large changes in tree cover using low-resolution
(30m per pixel) satellite imagery. For instance, the leading paper offered by Hansen
et al. (2013) is currently used by policy-makers and conservation charities to moni-
tor large tree cover changes in contiguous, closed-canopy forests (Brandt and Stolle,
2020). Whilst these approaches using low-resolution imagery are appropriate for de-
tecting substantial deforestation in large areas such as the Amazon Rainforest, they are
not well suited for identifying trees in reforestation sites because the size of the planted
trees in these regions are often smaller than the size of the 30m pixel resolution.

In September 2020, coinciding with the start of this dissertation project, high-resolution
(4.77m per pixel) satellite imagery was publicly released for the first time from Planet
Labs (Planet, 2020). Until then, high-resolution satellite imagery was restricted for
private commercial access and so it could not be used publicly for forest monitoring
efforts. The release of this new dataset brought with it exciting opportunities to moni-
tor small-scale changes in tree cover in forest restoration sites for the first time and this
is the area of research focused on in this dissertation.

The primary goal of this project therefore is to investigate to what extent could machine
learning methods be used to identify trees in high-resolution satellite imagery and help
monitor forest restoration projects. The secondary objective of this dissertation is to
evaluate the suitability of newly released high-resolution PlanetScope satellite imagery
for forest mapping using machine learning.

To achieve these research aims, a partnership was established with the non-profit envi-
ronmental organisation, Conservation International and a supervised machine learning
model was developed to help address the difficulties of monitoring a real-life forest
restoration site in northern Fiji.

1Calculated using: 1 trillion / seconds in a decade→1e12 / 3.154e+8 ≈ 3170 trees per second
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1.1 Contributions

This self-proposed project contributed to the first in-depth analysis of monitoring re-
forestation projects using machine learning and high-resolution satellite imagery. In
summary, the contributions of this project were the following:

• Established a research partnership with the non-profit environmental organisa-
tion, Conservation International (CI). Arranged frequent meetings with CI team
members across the world: including conversations with the CI Reforestation
Research Team in Washington D.C., meetings with the on-ground forest man-
agement team in Fiji and a call with CI’s Executive Vice President, Sebastian
Troeng in Colombia.

• Analysed previous forest monitoring approaches that used machine learning and
satellite imagery. Discussed limitations in the current research and identified
areas for improvement with high resolution imagery.

• Constructed a novel dataset containing examples of “trees” and “no trees” class
labels in PlanetScope satellite imagery using the Azevea GroundWork image
labelling tool.

• Implemented a spatial block cross validation method to prevent data leakage in
the training data. This method was coded by myself and was a major contribution
to the project in helping prevent the supervised machine learning models from
overfitting.

• Developed four random forest models for predicting the presence of trees in
satellite imagery with varying multi-spectral optical bands as input features: (1)
RF-Green, (2) RF-RGB, (3) RF-RGBN+ and (4) RF-Ranger.

• Evaluated the final model on a test set, including assessing the performance on
seasonal sub-sets of the test data (Summer vs Winter). The proposed model
achieved 96.3% Macro-F1 score and 96.4% classification accuracy on the com-
bined unseen test set.

• Analysed the final model performance in identifying planted trees in a forest
restoration site in northern Fiji. The results demonstrated that the proposed
model, RF-Ranger, can predict the presence of planted and growing trees in for-
est restoration sites, and achieved improvements over the current state-of-the-art
model in forest restoration monitoring.



Chapter 2

Background

First, this chapter will discuss the challenges of forest restoration monitoring with
reference to a real-world project managed by CI in northern Fiji. Then, this chapter
will provide a background in remote sensing and machine learning which are necessary
to understanding the technical details of this project. Following this, the task of forest
mapping and tree detection using machine learning and remote sensing data will be
discussed with reference to related literature in this research domain. In particular,
this section aims to discuss the limitations with the existing literature and use this to
support the high-resolution data and per-pixel machine learning methods utilised in
this project.

2.1 Restoration Monitoring

2.1.1 Industry Partnership with CI

A primary goal of this dissertation was to carry out research that could help address
some of the real-world challenges faced by non-profit organisations in monitoring
forests. For this reason, a partnership with the non-profit environmental organisa-
tion Conservation International (CI) was established. In particular, the objective of
this project was to develop a supervised machine learning model using high-resolution
PlanetScope satellite imagery to help monitor a CI forest restoration site in northern
Fiji, known locally as the Nakauvadra Reforestation Project.

2.1.1.1 Nakauvadra Reforestation Site

The Nakauvadra Community Based Reforestation Project in Fiji was identified and
developed by CI to increase forest cover and to expand critical habitat for native en-
dangered species. The project is comprised of 27 reforestation sites, covering a total
tree planting area of 1,135 hectares (ha) across the northern region of the Vitu Levu
mainland island. The reforestation sites are located along the southern and northern
slopes of the Nakauvadra forest mountain range, an area covering 11,387 hectares (ha)
(Figure 2.1). This is roughly equivalent to the land area of the City of Edinburgh (see
Appendix B.2).

4



Chapter 2. Background 5

Figure 2.1: Map showing the geographical location of the Nakauvadra Range and dis-
tinct boundaries (Image sourced from private document shared by CI under an NDA
agreement so original document cannot be directly cited or shared)

The Nakauvadra site was chosen for this study because it is one of the largest, old-
est and most successful restoration projects managed by CI. Moreover, the site was
selected because there was many technical and environmental challenges to effective
forest monitoring in this region: (i) the site is currently monitored by a team of for-
est rangers who manually survey the reforestation projects using on-foot land surveys,
(ii) it is a mountainous region, therefore it is extremely difficult to manually measure
tree-regrowth using on-foot land surveys, and finally, (iii) it is a region frequently hit
by natural disaster events such as cyclones, therefore frequent forest monitoring efforts
are required to assess the potential damage.

For all of these reasons outlined above, the Nakauvadra reforestation site was cho-
sen because machine learning and remote sensing are well suited technologies to help
address the challenges of forest monitoring in this area.

2.2 Technical Primer

2.2.1 Remote Sensing

Remote sensing is to ability learn information about an object from a distance. This is
achieved by using remote sensors, most commonly land observation satellites or air-
crafts, to measure how much light is reflected from earth. More specifically, remote
satellite sensors do not just detect light but they measure the reflectance of electromag-
netic (EM) radiation for a particular location on earth.

As defined in Campbell and Wynne (2011), remote sensing is “the practice of deriving
information about the Earth’s land and water surfaces using images acquired from an
overhead perspective, using electromagnetic radiation in one or more regions of the
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electromagnetic spectrum, reflected or emitted from the Earth’s surface” (Campbell
and Wynne, 2011, p. 6).

Interpretation of remote sensing imagery therefore relies on a comprehensive under-
standing of how particular objects on earth reflect EM radiation (Campbell and Wynne,
2011). For this reason, the EM spectrum and specifically its relationship with multi-
spectral satellite imagery is described in detail in the following sub-sections.

2.2.1.1 The Electromagnetic Spectrum

The electromagnetic (EM) spectrum covers the range of wavelengths that represent
radiation (Crockett, 2019). From low-frequency radio waves to high-frequency cos-
mic rays, radiation emitted or reflected from earth can be quantitatively measured and
categorised on the EM spectrum depending on it’s wavelength distance (λ). Visible
light, what humans recognise as colour reflecting from objects, represents only a small
subset of the EM spectrum (see Figure 2.2).

Figure 2.2: Diagram representing the spectral band of visible light in the electromag-
netic spectrum. Source: (Mishra et al., 2013).

All objects on earth emit and reflect EM radiation. So much so, that we can learn a lot
about an object by looking at what types of EM radiation reflect from it. For instance,
we know the colour of an object by considering which visible light reflects from it.
Similarly, infrared radiation reveals how much heat is emitted from the object. This
is why infrared cameras are used to detect if someone has a temperature (Chan et al.,
2004).

An interesting question we might ask ourselves is “why are trees green?”. Trees are
green because they reflect green light and mostly absorb other types of EM radiation
(Figure 2.3). Similarly, water is perceived to be blue to humans because it reflects blue
light. How much light an object sends back to our eyes as humans is known as surface
reflectance. The greater the surface reflectance value, the more intense we perceive
the object showing that particular subset of EM radiation.

Over the past two decades, EM radiation has been used extensively in research to
distinguish objects from space using remote sensors. For instance, recent research
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Figure 2.3: Diagram representing the surface reflectance of EM radiation in vegetation.

classified different species of vegetation using only EM radiation (Hennessy et al.,
2020). The assumption goes that, the wider the spectrum of EM radiation, the easier
it is to distinguish objects from space. For this reason, in this project it was optimal to
use multi-spectral satellite imagery for analysis. This was preferable because multi-
spectral imagery collects both visible {Red, Green and Blue} and non-visible {Near
Infrared (NIR)} EM radiation.

2.2.1.2 Multi-spectral Satellite Imagery

Images can be thought of as a grid of pixels. In satellite imagery, each pixel measures
the surface reflectance of EM radiation for a particular geolocation on earth. The spa-
tial resolution of each pixel represents the physical square meter distance on earth
covered by that single pixel. For instance, the spatial resolution of low-resolution im-
agery is often 30m2 (Landsat) or 250-1000m2 (MODIS). By contrast the spatial resolu-
tion of high-resolution covers a significantly smaller area, often <5m2 (PlanetScope,
WorldView-2). The temporal resolution refers to the period frequency between satel-
lite land observation images, e.g., 1-day, 6-months, 1-year.

Unlike images that you take on your mobile phone, where pixels represent a composite
of visible light (Red, Green and Blue), each pixel in multi-spectral satellite imagery
contains numerous surface reflectance bands which represent both visible and non-
visible EM radiation. For instance, the PlanetScope Surface Reflectance multi-spectral
imagery used later in this report measures the following four spectral bands: Red,
Green, Blue and Near-Infrared (NIR). Each pixel in this imagery can therefore be
thought of as a (1x4) array where each element represents the surface reflectance values
for each spectral band {blue, green, red, NIR} (see Figure 2.4).

Looking at these four surface reflectance values for each pixel can provide a wealth of
information about what objects are contained within that area on earth. Our hypothe-
sis is that pixels containing trees will return different surface reflectance band values
than pixels containing no trees (buildings, roads, agricultural farming land and water-
bodies). Our aim therefore is to train a supervised machine learning model to predict
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Figure 2.4: Each pixel in multi-spectral satellite imagery contains surface reflectance
values for multiple spectral bands - e.g., Red, Green, Blue and NIR.

the per-pixel presence of trees within multi-spectral satellite imagery using only these
spectral band values as input features.

2.2.2 Machine Learning

2.2.2.1 Supervised Learning

A machine learning algorithm is an algorithm that can learn from input data (Good-
fellow et al., 2016). This learning can be achieved broadly through two methods: su-
pervised or unsupervised learning (Caruana and Niculescu-Mizil, 2006). Supervised
learning is the process whereby a machine learning algorithm learns patterns from
labelled training data and uses this information to make reasoned predictions about
future unseen data. For instance, the task of supervised learning is outlined by Russell
and Norvig (2009) as follows.

Definition 2.2.1 (Supervised Learning). Given a training set of N example input-output
pairs (x1,y1),(x2,y2), ...(xN ,yN), where each y j was generated by an unknown function
y = f (x), discover a function h that approximates the true function f . (Russell and
Norvig, 2009, p. 695).

Common supervised learning algorithms include: logistic regression (Wright, 1995),
random forests (Breiman, 2001), support vector machines (Drucker et al., 1997) and
artificial neural networks (Yegnanarayana, 2009). For the purposes of this dissertation,
our objective is to train a supervised machine learning algorithm on labelled satellite
images that contain examples of “tree” and “no tree” classes. The model will then be
able to predict the class of each pixel in the image by considering only the surface
reflectance values of those pixels.
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2.2.2.2 Classification

Classification relates to the task of using a machine learning model to predict k distinct
class labels from the problem domain (Brownlee, 2020). Classification is defined in
Goodfellow et al. (2016) as the following:

Definition 2.2.2 (Classification). Given a vector representing input data x, the learning
algorithm produces a mapping function f : Rn→{1...k}, where y = f (x) (Goodfellow
et al., 2016, p. 98).

Here, we present a binary classification task because we have only two labels “tree” or
“no tree”. These predictions are made on a per-pixel basis, meaning that each pixel in
the multi-spectral imagery is classified depending on the surface reflectance value of
that pixel.

As discussed extensively in Section 2.3, per-pixel classification methods have proven
effective for predicting the presence of trees within low-resolution and medium-resolution
satellite imagery (Hansen et al., 2013; Ottosen et al., 2020; Bolyn et al., 2018). We
therefore expect the success to extend to high-resolution imagery and this is one of the
major research questions we want to investigate in this project.

2.2.2.3 Overfitting

A common problem in supervised machine learning is the issue of overfitting the model
to the training data. This occurs when the machine learning model learns noise in the
training data to the extent of negatively impacting the generalisation performance of
the model on new data (Brownlee, 2019). Overfitting becomes more likely as the
number of input features increases and less likely as the number of training examples
increases (Russell and Norvig, 2009).

Overfitting and data leakage is especially common in machine learning models trained
on ecological data with inherent temporal, spatial and hierarchical structures (Roberts
et al., 2017). For satellite imagery, this means that objects in pixels typically share
similar characteristics to objects in neighbouring pixels. However, often these inher-
ent similarities are ignored when training models, resulting in overestimation of the
predictive power of the models when random validation methods are adopted (Roberts
et al., 2017).

Consider a hypothetical example where training and testing sets of labelled satellite im-
agery pixels are randomly assigned to train and evaluate a supervised machine learning
model. Neighbouring pixels in satellite imagery are likely to share similar ecological
dependency structures. For instance, if pixel at position (i, j) contains a tree, then pixel
at (i+ 1, j+ 1) is also likely to contain a tree with similar surface reflectance values.
Therefore, if pixels in the test set contain neighbouring pixels in the training set, then
we would expect the model to dramatically overfit. To solve this issue, research from
Roberts et al. (2017) recommends using a spatial block validation method to prevent
such data leakage from occuring. As discussed in detail later in this report, spatial
block validation is the approach we follow in this dissertation.
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2.3 Previous Work

In recent years, there have been various attempts to apply machine learning to detect
the presence of trees in medium-resolution or low-resolution satellite imagery. These
papers have revolutionised how we detect large-scale forest changes, such as detecting
mass deforestation in the Amazon Rainforest or quantitatively measuring primary for-
est loss over the past decade (GFW, 2021). Having said this however, there is limited
research on machine learning applied to publicly available high-resolution imagery.
Also, to the best of my knowledge and research, no work has been done specifically
for the use of identifying planted trees in active forest restoration sites.

In this section we discuss the previous research conducted in this space. Specifically
we aim to evaluate the advantages and limitations of previous papers, using this infor-
mation to motivate the methods and data utilised later in this report.

2.3.1 Why Per-Pixel Random Forest?

2.3.1.1 Per-Pixel vs Deep Neural Networks

Previous attempts to monitor forest cover with satellite imagery have focused on two
main machine learning approaches: per-pixel classifiers (Hansen et al., 2013; Bolyn
et al., 2018; Radoux et al., 2016; Crouzeilles et al., 2020) or deep neural network
classifiers (Brandt and Stolle, 2020; Ulmas and Liiv, 2020). Here, we decided to follow
a per-pixel classifier method because this was a technical requirement imposed by the
forest monitoring research team at CI.

For a model to be used by CI in future projects, the research team would need to
know how to re-purpose the model to new geographical locations. However, training
deep learning models would require GPU hardware dependencies that are expensive
and are not typically accessible to non-profit environmental organisations including CI
(Zhu et al., 2017). By contrast, per-pixel approaches, such as random forest classifiers,
require limited technical overheads and are used extensively across the earth science
research community, including being previously used by researchers at the Conserva-
tion International Moore Centre for Science 1. For these reasons, a per-pixel method
was chosen.

There is also significant merit in having a simplified pipeline which per-pixel machine
learning methods have to offer. It is true that deep neural networks have received
significant attention in recent years, achieving new state-of-the-art results in complex
tasks, such as image recognition (Krizhevsky et al., 2012), speech detection (Deng
and Platt, 2014) and time-series forecasting (Fawaz et al., 2019). However, all of
these papers involve using deep learning to discover complex patterns within high-
dimensional data and large datasets (LeCun et al., 2015). This process can be highly
computationally expensive and simply is not necessary for tasks with low-dimensional
input data. Given the dataset used in this project contains multi-spectral band values
{Red, Green, Blue, NIR} and vegetation indices {NDVI, NDWI, MSAVI2, BI} (a total

1I was informed of this during meetings with the CI Reforestation Research Team who are based in
Washington D.C.
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input-dimension of [1x8]), it therefore could be considered unnecessary to apply deep
learning in this case. As a consequence, a per-pixel classification method was prefered.

2.3.1.2 Random Forest Per-Pixel Classification

Various per-pixel machine learning classification methods have been proposed for the
task of forest monitoring using multi-spectral imagery, including using algorithms such
as random forest classfiers (Immitzer et al., 2016; Bolyn et al., 2018; Hościło and
Lewandowska, 2019; Crouzeilles et al., 2020) and support vector machines (SVMs)
(Huang et al., 2002; Mountrakis et al., 2011). Here, we develop a per-pixel random
forest classification model because they have been shown to outperform other per-pixel
methods in remote sensing tasks.

Results from a meta-review of machine learning classification methods using remote
sensing data, found that random forests algorithms consistently outperform other per-
pixel classification methods (Lawrence and Moran, 2015). Specifically, in an evalua-
tion across 30 multi-spectral datasets, Lawrence and Moran (2015) show that random
forest machine learning classifiers obtained the highest average classification accuracy
73.19%, achieving notably better results than other per-pixel methods, such as SVMs
(62.28%) and Logistic Model Trees (64.82%) (Lawrence and Moran, 2015).

One explanation for why random forest classifiers outperform other per-pixel methods
is because of their ability to generalise and reduce overfitting. Random forests are an
example of an ensemble machine learning algorithm, where multiple base models are
combined to produce a single optimal prediction. For instance, they work by combin-
ing several decision tree classifiers, thereby creating a “forest”, whose results are then
aggregated to predict a single decision in a process known as ensemble learning (Ho,
1995) (see Section 4.1.2). Recent research from Maxwell et al. (2018) found strong
evidence that ensemble machine learning methods are more effective than models that
use a single classifier in remote sensing classification tasks.

For all the reasons outlined above, we decided to focus solely on implementing per-
pixel random forest models for the task of identifying trees in satellite imagery. In this
project, we therefore attempt to “predict natural forests with random forests”.

2.3.2 Existing Solutions

Recent contributions have demonstrated the ability of detecting the presence of large
areas of trees using random forest models and coarse resolution satellite imagery.
These attempts have been used largely for mapping tree cover in contiguous, closed-
canopy forests. In the following subsection we outline some of the major research in
this space.

2.3.2.1 Global Forest Watch

The leading paper in per-pixel global forest monitoring is offered by Hansen et al.
(2013), who developed a machine learning random forest method for mapping global
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tree cover using low-resolution (30m per pixel) Landsat satellite imagery. The pa-
per received significant worldwide attention and it is currently the model used to in-
form policy makers, conservation organisations and private companies of forest cover
changes through an online platform called Global Forest Watch (GFW) (Global For-
est Watch, 2002). Although the global per-pixel method proposed by Hansen et al.
(2013) achieves promising results in detecting changes in large closed-canopy forests,
their data is not suitable for monitoring changes in tree growth in small-scale active for-
est restoration projects. This is because the crown width of planted trees are typically
smaller than the coarse 30m pixel resolution of Landsat imagery, meaning small trees
are not detected by the classification model (Brandt and Stolle, 2020). Furthermore,
recent research has found numerous issues with Hansen et al. (2013), such as exam-
ples of where the model underestimates tree cover in settings outside closed-canopy
forests and is not accurate in regions with heterogeneous biodiversity such as urban or
semi-urban environments (Brandt and Stolle, 2020; Ottosen et al., 2020; Milodowski
et al., 2017).

2.3.2.2 Regional Models

To address these challenges, there have been various follow-on efforts to detect changes
in tree cover at regional scales with both low-resolution and medium-resolution im-
agery. These contributions have continued to use random forests machine learning
classifiers (Immitzer et al., 2016; Bolyn et al., 2018; Hościło and Lewandowska, 2019;
Crouzeilles et al., 2020). For instance, Crouzeilles et al. (2020) mapped natural for-
est regeneration in the Brazilian Atlantic Forest region with low-resolution (30 meter)
data and a random forest classifier, achieving 76.9% accuracy in detecting the presence
or absence of natural tree re-growth. Comparably, Immitzer et al. (2016) developed a
random forest model with 65% accuracy in classifying different tree species in Ger-
many with medium-resolution (10 meter) Sentinel-2 satellite imagery. Lastly, Bolyn
et al. (2018) achieved over 90% accuracy with a binary classification per-pixel random
forest model, distinguishing between forests and non-forests in Belgium with medium-
resolution (10 meter) Sentinel-2 imagery. However, whilst the results outlined above
provide some preliminary evidence that regional-based, per-pixel random forest mod-
els achieve promising results in detecting trees in satellite imagery, they still all suffer
from the same problem as Hansen et al. (2013) in using low-resolution and medium-
resolution imagery. For these reasons, these regional models still do not address the
difficulty of monitoring small planted trees within active forest restoration sites.
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Data

A vast quantity of labelled satellite data was required to train a supervised machine
learning model to predict the presence of trees in satellite imagery. Unfortunately, to
the best of my knowledge and research, no labelled satellite imagery existed for the
Nakauvadra forest restoration area studied in this project. As a result, a unique dataset
had to be manually constructed.

To create this dataset, we first downloaded unlabelled high-resolution PlanetScope
satellite imagery. Then we manually labelled examples of “tree” and “no tree” classes
within these satellite images. The full dataset curation process was implemented, de-
veloped and validated solely by myself. Full details of collection, labelling and dataset
analysis are discussed extensively throughout this chapter.

3.1 PlanetScope Satellite Imagery

Until only very recently, high-resolution satellite imagery has been restricted for pri-
vate commercial use only. This has significantly limited the research on tree classi-
fication tasks using high-resolution satellite imagery and it has prevented non-profit
organisations from using it to help with forest monitoring efforts.

In September 2020, coinciding with the start of this dissertation, Norway’s Interna-
tional Climate and Forests Initiative (NICFI) partnered with Planet Labs, a commercial
satellite imagery company, to provide free universal access to high-resolution satellite
imagery for the purposes of forest monitoring efforts in global tropical regions (Planet,
2020). This dataset, referred to as PlanetScope, provides access to basemaps represent-
ing 4.77m per pixel resolution imagery. The release included an archive of bi-annual
(June and December) satellite imagery basemaps dating back to 2015. Given the sig-
nificant value of this newly released dataset and the potential to help with identifying
small trees in forest restoration sites, PlanetScope satellite imagery was chosen for this
project.

13
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3.2 Collection

Two PlanetScope Surface Reflectance satellite images were downloaded using the
Basemap Viewer online tool provided by Planet (see Appendix B.1). Surface Re-
flactance Basemaps are a special type of high-resolution satellite imagery available
through Planet. Basemaps collate multiple satellite images within a given time-period
(1-month) and generate optimised, cloud-free and color-balanced satellite images which
are better suited for multi-spectral analysis. These basemaps are unlabelled but each
pixel contains surface reflectance values {Red, Green, Blue, NIR}.

Planet downloads satellite basemaps as a GeoTiff (.tiff) file, which is a special type of
format specifically used for geo-referenced multi-spectral imagery. As shown in Figure
3.1, a single satellite basemap represents a (4096 x 4096 x 4) multi-dimensional array
of pixels, where each dimension represents the four spectral band values {Red, Green,
Blue, NIR} that compose each pixel. Another way of representing the data is to think
of satellite imagery as a table, where each row represents a pixel and the columns are
spectral band values (Figure 3.1). Ultimately, this tabular format is what we use to
train the random forest machine learning model.

Figure 3.1: PlanetScope Multi-Spectral Satellite Imagery can be represented as a
(4096x4096x4) multi-dimensional array (left) or as 2-D table where each column repre-
sents the per-pixel spectral band values (right).

The center of every pixel is assigned a unique geospatial coordinate - longitude (x) and
latitude (y) - referencing a specific location on earth. Each basemap covers a total land
area of approximately 20,480m2 across northern Fiji. To account for seasonal varia-
tions in surface reflectance values between wet and dry seasons, two satellite basemaps
from distinct time periods were downloaded - June 2019 and December 2019 (Figure
3.2).

At this stage the downloaded basemaps were unlabelled. Further work was therefore
required to label training examples of “tree” and “no tree” classes within these images.
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(a) June 2019 (b) December 2019

Figure 3.2: PlanetScope Surface Reflectance basemaps for Nakauvadra Forest Range
in June and December 2019.

3.3 Labelling

All polygons were labelled and validated manually using GroundWork, an open-source
labelling tool for creating custom datasets from satellite imagery (Azavea, 2020).

GroundWork was chosen because of the following reasons: (i) it was specifically tai-
lored for labelling satellite imagery and was compatible with GeoTiff input file for-
mats, (ii) the free-tier GroundWork package provided up to 10GB of free cloud stor-
age which was suitable for the project, and finally, (iii) GroundWork provided unique
free-access to commercial super-high-resolution (0.3m per pixel) optical imagery. It is
important to note that this commercial imagery was not downloaded but was instead
used to visually validate the polygon labels on the existing PlanetScope high-resolution
(4.77m per pixel) imagery (see Figure 3.3).

(a) PlanetScope Resolution (4.77m per pixel) (b) GroundWork Resolution (0.3m per pixel)

Figure 3.3: Example polygons of classes “tree” (blue) and “no tree” (red), manually iden-
tified through visual interpretation and drawn using the GroundWork labelling tool. Best
practices recommend labelling small polygons that are spatially distributed as opposed
to labelling the full satellite image.
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Data labelling best practices were followed to reduce the likelihood of bias, inaccu-
racies and human-error when labelling satellite imagery using visual interpretation.
First, a similar class balance was maintained between tree and no tree polygon labels.
This class balance was preserved between training, validation and test datasets (Table
3.1). This sampling method was chosen because it has been shown address the prob-
lem of superficial model performance in binary classification tasks (He and Garcia,
2009). Second, classes were labelled using satellite imagery from two time-periods
(June 2019, December 2019), thereby accounting for seasonal changes in vegetation
cover between wet and dry seasons in Fiji (Xie et al., 2008). Our hypothesis was that
satellite imagery surface reflectance values will be highly variable to seasonal con-
ditions, therefore polygons from satellite imagery in different seasons were collected
for training, validation and testing. All polygons were sampled semi-randomly, us-
ing a randomised grid selection method, thereby reducing spatial-decadency bias in
the training data (Roberts et al., 2017). In addition, attempts were made to directly
label class examples affected by shade cover and surface reflectance distortion which
are common issues with satellite imagery in mountainous regions with steep gradi-
ents (Thompson et al., 2019). Finally, attempts were made to label small polygons
representing the broad distribution of “tree” and “no tree” class examples within the
Nakauvadra forest range. For instance, the “no tree” class includes a variety of exam-
ples: buildings, roads, rivers, grasslands, agricultural farming, croplands and water-
bodies (oceans). Similarly, the “tree” class contains examples of both natural forests
and planted trees within active forest restoration sites.

Using the procedure above, a total of 890 polygons (429 polygons for June 2019 and
461 polygons for December 2019) were manually labelled. These geo-referenced poly-
gons were then downloaded as a GeoJSON file format, an open standard format de-
signed for representing geographical features. The GeoJSON file contains each poly-
gon as a dictionary of longitude and latitude pairs with a corresponding class label
value “tree” and “no tree”. However, the GeoJSON does not contain the multi-spectral
values corresponding to each longitude and latitude value at this stage. To complete the
data curation process, the two datasets had to be merged (1) long-lat GeoTIFF basemap
with multi-spectral values and (2) long-lat GeoJSON with corresponding class labels.

3.4 Preprocessing

3.4.1 Raster Cropping

To achieve the final tabular dataset, multi-spectral values for each labelled polygon
were collected using a procedure called raster cropping. Raster cropping is the pro-
cess of returning a subset of pixels (in the unlabelled PlanetScope basemap) that are
covered by the labelled GeoJSON polygons (see Figure 3.4). This raster cropping pro-
cedure was implemented by myself and a Python program was written using a number
of geo-spatial data science packages.

First, the Python package Rasterio was used to store each unlabelled satellite imagery
basemap as a pixelated “raster” image. This converted each basemap into a multi-
dimensional array or tabluar format of multi-spectral values (see Figure 3.1). Sec-
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ond, the Python package GeoPandas was used to store the labelled GeoJSON file
as a dataframe structure. Then, by iterating through each polygon in the GeoPan-
das dataframe, the original basemap was cropped and the resulting tabular output was
appended to a finalised dataset - train, validation or test.

Figure 3.4: Diagram illustrating the raster cropping procedure.

3.4.2 Spatial-Blocking

As discussed briefly in Chapter 2, overfitting as a result of data leakage is common in
ecological datasets with inherent temporal, spatial and hierarchical structures (Roberts
et al., 2017). For instance, in the dataset allocation described above, it would be er-
roneous to randomly assign labelled pixels to train, validation and test data. This is
because random data allocation ignores the spatial correlation between neighbouring
pixels. A random split would lead to the test and validation sets containing neighbour-
ing pixels in the training set. In this case, the model would have already “seen” similar
pixels during training and so we would expect the model to overfit. To address this
major issue, as recommended in Roberts et al. (2017) a spatial-blocking method was
utilised to allocate train, validation and test datasets. This was achieved by assigning
polygons, not pixels, to each dataset. Furthermore, during the data labelling process
it was ensured that no polygons overlapped. As a result, the spatial-blocking method
developed in this report helped effectively prevent neighbouring pixels from “leaking”
between train, validation and test.

Using the raster cropping procedure described above, a total of 890 labelled poly-
gons generated a finalised tabular dataset representing over 500,000 labelled pixels.
As shown in Table 3.1, there are ∼380,000 labelled pixels in the train set, ∼81,000
labelled pixels in validation and ∼78,000 in test. In simple terms, rows in these tabu-
lar datasets represent pixels and the columns represent satellite imagery bands {Red,
Green, Blue, NIR}.

Dataset Tree (X=1) Tree (%) No Tree (X=0) No Tree (%) Total
Train 157,249 41% 227,586 59% 384,835
Validation 35,371 43% 46,407 57% 81,778
Test 31,530 40% 46,596 60% 78,126

Table 3.1: Train, validation and test dataset sizes, including tree class (%).
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3.5 Analysis

3.5.1 Tree Pixel Distribution
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Figure 3.5: Multi-Spectral Pixel Distribution for “Tree” vs “No Tree” classes.

Figure 3.5 directly compares the respective distributions between “tree” or “no tree”
class labels for each pixel in the final labelled dataset. Moreover, the distributions of
composite pixel vegetation indices NDVI and NDWI (see Section 4.3.3) are also in-
cluded in the analysis as they showed promising linear separation between class labels.
For each pixel band, the distribution of surface reflectance values are plotted up to the
99th percentile to remove outliers in the pixel data.

From the results, we can see that multi-spectral pixel values can be used to linearly
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separate the two classes in the data. Moreover, we can observe that certain pixels
are better discriminating between “tree” and “no tree” classes. For example, the blue
pixel (a) shows high surface reflectance values for the “no tree” class . This could be
explained because non-tree objects, such as rivers, oceans and buildings often reflect
a higher intensity of blue light. Similarly, high NDVI values > 0.8 in the dataset
shows a strong likelihood of the class being “tree”, whilst low NDVI values indicate
the presence of “no tree”. This finding confirms the literature that suggests high NDVI
values (approximately 0.6 to 0.9) correspond to “dense vegetation, such as that found
in temperate and tropical forests” (Pettorelli, 2013).

3.5.2 Dataset Pixel Distribution

Maintaining a similar pixel distribution between train, validation and test datasets is
critically important because differences can dramatically impact model evaluation.
Figure 3.6 compares the distribution of surface reflectance values between these datasets
for each pixel. As before, the values are plotted up to the 99th percentile to remove out-
liers. The results show that a similar distribution of surface reflectance is maintained
between datasets. One important observation is the training data contains a high count
of low surface reflectance for Green, Red and NIR pixels (spikes on left of each chart).
This means a supervised model will learn features that are not present in validation or
test data. However, this is not problematic because from Figure 3.5 we know these
pixels are of the “no tree” class, so it would not negatively impact classification.
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Figure 3.6: Multi-Spectral Pixel Distribution for Train, Validation and Test Sets
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Methodology

In this section, we present the methodology used for training a supervised machine
learning model to detect the presence of trees in PlanetScope satellite imagery. First, a
brief introduction into decision tree and random forest algorithms is explored. Second,
the methods followed in this project are described. In particular, we focus on the
problem setup and present the specific random forest models used in experiments.
Finally, a brief description is provided of the evaluation metrics used to quantitatively
assess the performance between models.

4.1 Models

4.1.1 Decision Trees

A decision tree is a simple machine learning algorithm used for classification and
regression tasks (Quinlan, 1986). Decision trees are highly sought after because, unlike
deep neural networks, they are simple to train and are easy to interpret.

Decision trees work by splitting features in training data into decision nodes. These
nodes represent decision branches leading to a terminal leaf node that represents the
predicted class. Decision trees are built by recursively ranking decision nodes by their
level of predictive power. The most important decision nodes are priorities towards the
root. In this way, as we descend down a decision tree we become more certain of the
predicted class of the input data. Decision trees do have limitations. If the decision
tree is very large and has many decision nodes, then the model will begin to overfit. To
prevent overfitting, decision trees can be pruned therefore reducing the size of the tree.

To classify an input x using a decision tree, we start at the root and take the branch
appropriate to the condition at each node. This cascading binary decision process
continues until a terminal leaf is encountered and the final predicted class is found
(Quinlan, 1986). Figure 4.1a illustrates a simple Decision Tree with the “tree depth”
parameter set to 3 to simplify visualisation. The model was trained on the data created
in this project (see Appendix C.2). To classify an input pixel xi the root node first
checks whether the blue surface reflectance value is ≤331.5, if True then proceed to
the left node and if False then proceed to the right.

20
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4.1.2 Random Forests

The Random Forest algorithm is a machine learning model inspired by the theory,
“wisdom of the crowd” (Géron, 2019). As presented in Géron (2019), suppose you ask
a thousand people a complex question, then aggregate their answers. In many cases,
the answer generated by “the crowd“ is better than if you were to ask a single “expert”.
Also, asking multiple people at random may address the independent bias of asking a
single person. Analogous to this theory, it is sensible to hypothesise that aggregating
multiple prediction algorithms would return a better result than using a single predictor.
This aggregation of prediction algorithms is known as ensemble learning and the
random forest algorithm is simply an ensemble of decision trees.

(a) Decision tree model (b) Ensemble learning of Random Forest

Figure 4.1: Example decision tree model trained on labelled training data (left) and
random forest model using ensemble learning (right).

Random forest classification algorithms work by aggregating the results of multiple
decision tree classifiers. They fit these on distinct sub-sets of the training dataset and
aggregate predictions from each model to return a single output. In this way, random
forest models use ensemble learning to make a aggregate prediction of all predictors
Géron (2019). In classification tasks, typically random forest algorithms select the
most frequently predicted class of k decision trees (Figure 4.1b). Random forests are
presented in their original paper Breiman (2001) as the following:

Definition 4.1.1. A random forest is a classifier consisting of a collection of tree-
structured classifiers {h(x,θk),k = 1, ...} where the {θk} are independent identically
distributed random vectors and each tree casts a unit vote for the most popular class at
input x. (Breiman, 2001)

This aggregation process has been shown to reduce both bias and variance, therefore
Random Forest algorithms consistently perform better than a single Decision Tree
model in classification tasks (Géron, 2019).

4.2 Problem Setup

In order to develop a rigorous method that utilises high-resolution PlanetScope imagery
to train a random forest classification model, we divided the methodology into three
major components: (i) dataset preparation (discussed in Data, chapter 3), (2) initial ex-
periments on RF-models with varying input features (covered in Experiments, chapter
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5), and finally, (3) quantitative and qualitative evaluation on the final optimised model
named RF-Ranger (discussed in Evaluation, chapter 6). A flow chart summarising the
method followed in this project is shown below (Figure 4.2)

Figure 4.2: Illustration of the data preparation, model training, experiments and evalua-
tion methodology.

4.3 RF-Models

In machine learning, there is an underlying assumption that increasing the number of
input features will improve model performance because the model “learns” more infor-
mation. To test this hypothesis, multiple random forest (RF) models were developed
to detect the presence of trees with varying satellite imagery bands as input features. It
was expected that more input features would improve classification performance.

4.3.1 RF-Green

First, a baseline random forest model named RF-Green was developed. Intuitively,
trees reflect green light, therefore it felt important to test whether a very simple base-
line model could achieve promising results by only considering the green surface re-
flectance value. A baseline model was trained using only the green pixel value. All
other spectral values were dropped from the data to train and evaluate the RF-Green
model. The final data sizes for the RF-Green model were (384,835 x 1) for training
and (81,778 x 1) for validation.
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4.3.2 RF-RGB

The second model RF-RGB was trained using only bands of visible light {Red, Green
and Blue}. From initial visual inspection of the satellite imagery, it felt reasonable that
a human observer could detect the presence of trees in each pixel. Consequently, it was
important to test whether a random forest model, constrained to only the visible light
spectrum, could detect the per-pixel presence of trees by considering the “colour” of
the pixel. To achieve this, the RF-RGB model was trained using the Red, Green and
Blue bands. The non-visible band NIR was dropped from the data, resulting in a final
data size of (384,835 x 3) for training and (81,778 x 3) for validation.

4.3.3 RF-RGBN+

A third model RF-RGBN+ was trained using all available spectral bands in the data
{Red, Green, Blue and NIR}. In addition, band-derived vegetation indices {NDVI,
NDWI, MSAVI2 and BI} were also calculated and included as input features to train
the model. Vegetation indices are mathematical operations carried out spectral bands
to detect particular types of vegetation in pixels. For RF-RGBN+ we include the fol-
lowing vegetation indices which were found to improve tree detection performance in
Brandt and Stolle (2020). Our hypothesis is that including more spectral bands and
vegetation indices will make it easier to distinguish between pixels that contain “tree”
and “no tree” classes. The final data sizes for the RF-RGBN+ model were (384,835 x
8) for training and (81,778 x 8) for validation.

(1) Normalised Difference Vegetation Index (NDVI) is a reflectance measure used
to detect the presence of healthy vegetation (Tucker, 1979).

NDVI =
NIR−RED
NIR+RED

(4.1)

(2) Normalised Difference Water Index (NDWI) is a reflectance measure used to
detect the presence of liquid water - oceans, rivers, lakes, etc. (Gao, 1996).

NDWI =
GREEN−NIR
GREEN +NIR

(4.2)

(3) Modified Soil-Adjusted Vegetation Index (MSAVI2) addresses the limitations of
NDVI when applied to areas with a high degree of exposed soil surface (TLT, 2012).

MSAV I2 =
2∗NIR+1−

√
(2∗NIR+1)2−8∗ (NIR−RED)

2
(4.3)

(4) Bare Soil Index (BI) detects soil variations and is useful for distinguishing between
trees and other forms of soil-based vegetation (e.g., grasslands, agriculture) (Brandt
and Stolle, 2020).

BI =
(BLUE +RED)−GREEN
BLUE +RED+GREEN

(4.4)
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4.4 Evaluation Metrics

In this report, each random forest model is evaluated based on the following evaluation
metrics: Accuracy and Macro-F1 score. For binary classification tasks, evaluation
metrics are composed of the following four possible outcomes: (i) True Positive (TP)
- model correctly predicts the “tree” class, (ii) False Positive (FP) - model incorrectly
predicts the “tree” class, (iii) True Negative (TN)- model correctly predicts the “no
tree” class and (iv) False Negative (FN) - model incorrectly predicts the “no tree”
class.

4.4.1 Accuracy

Accuracy measures the fraction of predictions the model gets correct over all possible
outcomes.

Accuracy =
TP+TN

TP+TN+FP+FN
(4.5)

In binary classification tasks, however, if there is a class imbalance in the train, valida-
tion and test data, then accuracy can be a misleading evaluation metric (He and Garcia,
2009). For instance, consider a trivial dataset with 90% tree and 10% non-tree labels.
A model that always predicted the presence of tree for every pixel would achieve 90%
accuracy. As shown in Table 3.1, we have a minor class imbalance in the novel data
- 41% tree and 59% no-tree. This class-imbalance is not dramatic and is maintained
across train, validation and test datasets, so it should therefore not overestimate the
model performance. To be cautious, in addition to accuracy, another evaluation metric
that accounts for class imbalances known as Macro-F1 score is also used in this study.

4.4.2 Macro-F1

Macro-F1 measures the average F1-Score between all class labels. The F1-Score is the
harmonic mean of precision and recall, thereby accounting for any class imbalance in
the data distribution. Macro-F1 is useful in multi-class tasks, as it can help determine
how well the model predicts the more rare classes. The Macro-F1 is computed as the
following, where i is the class index and N represents the number of classes:

Precision =
TP

TP+FP
; Recall =

TP
TP+FN

(4.6)

F1-Score =
2∗Precision∗Recall

Precision+Recall
(4.7)

Macro-F1 =
1
N

N

∑
i=0

F1-Scorei (4.8)
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Experiments and Results

This chapter provides a detailed examination of the random forest model experiments
and results conducted in this project. First, this chapter investigates three random for-
est models, testing the respective model performance on different spectral-band input
features. Following this, hyperparameter tuning is then carried out on the best overall
model from these tests. Finally, the best performing model is evaluated on an unseen
test set.

The python machine learning library Scikit-learn (Pedregosa et al., 2011) was used to
implement all machine learning models and to run experiments.

5.1 Feature Comparison

Initial experiments were conducted to evaluate the performance of random forest mod-
els in detecting the presence of trees in pixels with varying levels of satellite imagery
bands as input features. Our hypothesis is that models with more input features will
have better tree classification performance. To conduct these experiments the RF-
Green, RF-RGB and RF-RGBN+ models were developed. Each model was trained on
their specific input features from the training set. The respective performance of each
model was then evaluated on 81,778 held-out pixels in the validation set.

Random forest hyperparameters were kept constant across all models to enable fair
comparison. Each RF-model contained 32 decision tree estimators. The “bootstrap”
parameter was set set to True to ensure training data points were re-sampled in each
decision tree with replacement. The “max features” parameter (as default) was set to
the square-root of the total number of features, thereby limiting the depth and improv-
ing the efficiency of each model. For initial experiments, 32 estimators were used in
each model because it was fast to train and evaluate models. All model performance
results on the validation set are shown in Table 5.1.
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Model Validation Set
Accuracy (%) Macro-F1 (%)

Experiments

RF-Green
(n=32) 82.7 82.6

RF-RGB
(n=32) 96.4 96.3

RF-RBN+
(n=32) 97.7 97.7

Table 5.1: Initial experiments results. Validation set performance comparison for the
three random forest models. Best results are in bold.

5.1.1 Results

The results indicate that increasing the number of input features improved model per-
formance. In particular, the RF-RGBN+ model with access to both visible and non-
visible bands as input features was consistently the best performing model on the val-
idation data. This model achieved 97.7% on both accuracy and Macro-F1 evaluation
metrics, resulting in a +15.1% Macro-F1 improvement over RF-Green and +1.4% im-
provement over RF-RGB.

5.1.2 Discussion

These findings demonstrate that the non-visible spectral band (NIR) and vegetation
indices (NDVI, NWDI, MSAVI2 and BI) could be crucial to predicting the existence
of trees in pixels in satellite imagery. At this stage of understanding, we speculate
that vegetation indices have more predictive power than visible spectral bands such as
Red, Green and Blue light. To test this hypothesis, it would be beneficial to carry out
permutation importance to compare the relative contribution of each feature to the final
RF-RGBN+ model (discussed in next section).

The results indicate that the RF-Green model, which only considers one single spectral
value (e.g. how green is a pixel?) appears to perform worse than models trained on
multiple spectral values. This finding was in line with expectations given that various
non-tree classes, such as grasslands, agricultural farming and shrubs, can also reflect a
high intensity of green light.

5.2 Model Optimisation

In this next set of experiments, we aim to fine-tune the RF-RGBN+ model to boost its
performance on the validation set. This is achieved by conducting two experiments.
First, we carry out permutation importance to learn what spectral bands have the great-
est predictive power in the RF-RGBN+ model. Using this information, our aim is to
remove redundant features, thereby further optimising the RF-RGBN+ model. Second,
hyperparameter tuning is carried out to find the optimal number of estimators within
the RF-RGBN+ model.
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After conducting these two experiments, a final optimised random forest model is pro-
posed, named RF-Ranger (which is named after the profession “forest ranger”, a per-
son who protects and monitors reforestation projects).

5.2.1 Feature Selection

Permutation importance is a process that is used to identify which input features in a
random forest model have the most predictive power. As shown in the initial experi-
ments, machine learning models trained on a greater range of input features can often
lead to better classification performance. However, not all features used in training
may be relevant. Therefore, permutation importance can be used to reduce the feature
space and further optimise the model.

As presented in Parr et al. (2018), permutation importance identifies the most important
features in a trained model by randomly shuffling the input features and calculating the
effect on model accuracy. In this way, permutation importance can be used to investi-
gate whether all input features in a random forest model contribute to the classification
accuracy or whether some should be removed. Permutation importance was carried
out by adapting code from ELI5 Permutation Importance Documentation (ELI5, n.d.).
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Figure 5.1: Permutation Importance for the RF-RGBN+ model. Not all vegetation in-
dices contribute to model performance, Bare Soil Index (BI) negatively impacts model.

Figure 5.1 shows permutation importance applied to the RF-RGBN+ model. The re-
sults indicate that Green, Blue, NDWI and NDVI input features contribute the most
to the RF-RGBN+ model. Meanwhile, the Bare Soil (BI) vegetation index actually
negatively impacts performance and the Red band has only minimal contribution. One
rational explanation is that NDWI and Blue input features are most commonly associ-
ated with “no tree” classes such as rivers and oceans. Similarly, the Green and NDVI
input features are most useful for detecting the presence of healthy vegetation, such as
natural forests and trees within active forest restoration sites. Together, these four in-
put features carry the vast majority of the predictive power of the classification model.
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Following recommendations outlined in Parr et al. (2018), input features that return
negative permutation importance can be removed from the model without hindering
performance. Therefore, for the final optimised RF-Ranger model, the BI input feature
is dropped.

Another interesting commentary is to mention the relationship between permutation
importance and the tree pixel distributions shown previously in Section 3.5.1. The tree
pixel histograms generated for the Green, Blue, NDWI and NDVI show the greatest
amount of separation between “tree” and “no tree” classes. This shows that the current
RF-RGBN+ model is successfully identifying the linear separability in the pixel distri-
butions between these two classes in these input features. Comparing these two charts
is an effective measure to validate that the proposed random forest model is working
constructively and identifying the underlying patterns in the training data.

5.2.2 Hyperparameter Tuning

As discussed in Section 4.1.2, a random forest model is fundamentally an ensemble of
k decision trees. Intuitively, as the number of trees increases, the training time slows
and the model performance improves. However, as k→∞ model performance follows
the law of diminishing returns: classification accuracy marginally improves but at the
expense of computational cost of training more decision trees. As a consequence,
one important hyperparameter in building a random forest model is to determine the
optimal number of k estimators. To optimise the RF-Ranger model further, hyperpa-
rameter tuning was carried out to investigate the optimal number of estimators in the
RF-RGBN+ model. Figure 5.2 plots the Macro-F1 score against different numbers of
estimators k = [1,2,4,8,16,32,64,128,256]. The results show the effect of diminish-
ing returns and indicate the optimal number of estimators is 128.
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Figure 5.2: Plotting Macro-F1 score to number of decision tree classifiers used in RF-
RGBN+ model. Macro-F1 has elbow at 16 estimators and increases whilst plateauing
at 128 estimators.
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5.2.3 Results

The final optimised RF-Ranger model is evaluated on 81,778 pixels from the valida-
tion and 78,126 pixels from the test datasets respectively. The model performance is
compared against RF-Green, RF-RGB and RF-RGBN+ to illustrate the marginal per-
formance improvements after fine-tuning.

Model Validation Set Test Set
Accuracy (%) Macro-F1 (%) Accuracy (%) Macro-F1 (%)

RF-Green
(n=32) 83.0 82.5 75.4 74.4

RF-Visible
(n=32) 96.4 96.3 93.1 92.9

RF-RBN+
(n=32) 97.7 97.7 96.3 96.2

RF-Ranger
(n=128) 98.0 97.9 96.4 96.3

Table 5.2: Results on the validation and test set for the random forest models. Best
results are in bold and n = num estimators.

As shown in Table 5.2, the optimised RF-Ranger model achieves the best results on
the unseen test set, recording a Macro-F1 score of 96.3% and an accuracy of 96.4%.
These results show only marginal improvements over the RF-RGN+ model, +0.1%
gains on both accuracy and Macro-F1. However, the final model achieves significant
improvements over RF-Green (+21.9% Macro-F1) and RF-RGBN+ (+3.4% Macro-
F1). The RF-Ranger Macro-F1 performance on the test set is quite similar validation,
therefore suggesting the final model can successfully generalise to new unseen pixels
within the domain of northern Fiji.

5.2.4 Discussion

One initial concern about the findings of Table 5.2, is that the three best performing
models all achieve high +90% accuracy and Macro-F1 scores. However, this should
not be a cause for concern because high accuracy is expected for simple classification
tasks with only two classes. If we were to expand this problem into detecting more
classes, such as predicting the species of tree (“reforested” vs “natural forest”) and
type of non-tree (“ocean”, “building”, “river”, “road”, etc) then we would expect the
accuracy and Macro-F1 scores to be lower.

In the context of the related literature, the results observed above are closely aligned
to the accuracy scores of other papers focused on binary tree classification tasks. For
instance, Bolyn et al. (2018) achieved 93.3% accuracy using a random forest classifier
to classify “tree” and “no tree” classes using Sentinel-2 satellite imagery for a forested
region in Belgium. However, the model accuracy dropped to 88.9% when predicting
the species of tree from 11 forest classes (Bolyn et al., 2018). Whilst this is evidently
in a different geographical location, it does confirm that high +90% accuracies can be
achieved using a random forest model for tree detection.
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Evaluation

This chapter is devoted to evaluating the suitability of the RF-Ranger model in help-
ing effectively monitor reforestation projects. Two distinct methods were chosen for
evaluation: (i) quantitative evaluation and (ii) visual evaluation. The first section is
dedicated to measuring differences in model performance between seasons. The sec-
ond section focuses on visually evaluating the model on a number of tasks relating
to monitoring forest restoration sites. These task include (i) detecting the presence of
“trees” and “no tree” classes in satellite imagery, (ii) identifying planted trees in refor-
estation sites, and finally, (iii) detecting changes in forest growth between two distinct
time periods.

For the purposes of evaluation, we test the model on a real-world active forest restora-
tion site, managed by CI, in the Nakauvadra Reforestation Project in northern Fiji. We
also compare the performance of the proposed RF-Ranger model against the current
state-of-the-art model by Hansen et al. (2013) which was accessed using the forest
explorer tool on the Global Forest Watch online platform (GFW, 2021).

6.1 Quantitative Evaluation

6.1.1 Seasonal Performance

To test the seasonal performance of the RF-Ranger model, subsets of the test data
representing 41,077 pixels from June 2019 and 37,049 pixels from December 2019
were created. The RF-Ranger model then predicted the presence of “tree” and “no
tree” classes in these unseen seasonal datasets and the results are shown in Table 6.1.

The results verify that the RF-Ranger model is largely season invariant, thereby con-
firming that the model can achieve promising results all year round. This is an im-
portant finding because it would allow the CI forest restoration monitoring team to
identify tree re-growth more frequently. For instance, this could enable the projects to
be surveyed between months, not years.

Table 6.1 splits the performance into individual F1-Scores for “tree” and “no tree”
classes respectively. By comparing the results between seasons, we can see that the
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Model Jun 2019 (F1-Score) Dec 2019 (F1-Score)
No Tree Tree No Tree Tree

RF-Ranger
(n=128) 0.96 0.93 0.94 0.98

Macro-F1 0.95 0.96

Table 6.1: Performance evaluation of the RF-Ranger model on seasonal subsets of the
test data. Best results are included in bold.

model achieves better performance in identifying the “no tree” class in June and the
“tree” class in December. One reasonable explanation for this is that June represents
the end of wet season in Fiji, meaning grasslands and agricultural lands may been
“greener”, thus making it harder to distinguish between trees and non-tree green vege-
tation. Conversely, December typically describes dry summer season in Fiji, therefore
detecting the presence of trees would be expected to be easier in this setting.

6.1.2 Limitations

The primary limitation of quantitative evaluation with satellite imagery is the lack of
data - both in terms of quality and quantity.

The ideal quantitative evaluation method would be to cross-validate the coordinates
of the random forest model predictions with real “on the ground” locations of trees
on earth. Unfortunately however, this geo-referenced data was not available in the
undertaking of this project because CI do not collect coordinates for each individual
tree planted in the Nakauvandra Reforestation Project.

The second best method for quantitative evaluation is to label satellite imagery and
then measure the performance of the model on these labelled datasets. However, as
discussed in Chapter 3, labelling training examples in satellite imagery can be time
consuming. Also, even although best practices can be followed to reduce bias when
labelling, there still may be minor human inaccuracies in the labelling process.

For all of these reasons outlined above, we believe that quantitative evaluation can
(and should) be supported by further visual validation. This qualitative evaluation
method can be used to manually validate the random forest model predictions overlaid
onto satellite imagery, checking whether the model appropriately identifies trees from
space. This is the approach we follow in this report.

6.2 Visual Evaluation

In addition to quantitative analysis, visual evaluation was used extensively to manu-
ally validate the model performance in detecting the presence of trees in PlanetScope
satellite imagery.

To visually evaluate the RF-Ranger model, we downloaded recent PlanetScope basemaps
(December 2019) and generated tree cover maps for an area of interest within the satel-
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lite imagery. Typically these areas were small, representing 1km x 1km subsections of
the PlanetScope imagery over northern Fiji.

As shown in Figure 6.1, tree cover maps were generated by the RF-Ranger model
by predicting the class for each pixel in a subset of PlanetScope data. Pixels that
intersect with a “tree” class are labelled 1 and pixels that intersect with “no tree” classes
are labelled 0. These per-pixel binary labels can the be used to generate a simple
two-colour mask which can be overlaid onto the original basemap satellite imagery to
visually validate the model performance.

Figure 6.1: Diagram of Per-Pixel Classification Method and Binary Mask Generation.

Using this method outlined above, binary masks were generated to investigate vari-
ous research areas of interest. In the following subsections we set out to answer the
following questions.

1. Can the proposed RF-Ranger model correctly identify trees in PlanetScope satel-
lite imagery?

2. To what extent can the RF-Ranger model identify planted or growing trees in
active forest restoration sites?

3. Can the RF-Ranger model detect changes in tree cover between two distinct time
periods?

4. To what extent is the RF-Ranger model better than existing models for Tasks
(1-3) outlined above?

In the following subsections, the predicted binary masks are overlaid onto very high-
resolution imagery (0.3m per pixel) using the latest satellite imagery filters on Google
Earth Pro. However, it is important to note that it was not possible to download the per-
pixel spectral band values from Google Earth. For this reason, Google Earth imagery
was not used to train any of the random forest models and was not used for quantitative
analysis. Instead, it was only used to facilitate better visual comparisons between
different models.
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6.2.1 Tree Prediction

Figure 6.2 shows a binary forest cover map generated by the RF-Ranger model for a
1km x 1km sub-region within the Nakauvadra mountain range. This figure presents a
scene of sparsely distributed tree cover. The image on the top left of Figure 6.2 shows
the input PlanetScope imagery fed into the RF-Ranger model. The image on the top
right, shows the tree cover predictions generated by the RF-Ranger model overlaid
onto the same PlanetScope imagery. It is important to note, the image on the bottom
right shows the same tree cover predictions (at PlanetScope spatial resolution) but
overlaid onto Google Earth Pro imagery to enable better visual validation.

Figure 6.2: Tree predictions of the proposed RF-Ranger model overlaid onto Plan-
etScope (pink) and Google Earth Pro imagery (blue). Both the pink and blue binary
masks represent the same RF-Ranger predictions (at 4.77m per pixel resolution) just
overlaid onto satellite images with different spatial resolutions.

The tree cover maps demonstrate that the RF-Ranger model can successfully locate
trees in PlanetScope satellite imagery. The proposed random forest model can detect
large natural forests and is even capable of identifying sparsely distributed patches of
trees (Figure 6.2) (see also Appendix A for more examples).

When visually compared with the tree predictions from Hansen et al. (2013), the RF-
Ranger model achieves significantly better performance in detecting trees in this scene
with sparsely distributed tree cover. As illustrated in Figure 6.3, the proposed model
predictions using high-resolution PlanetScope satellite imagery provide much clearer
mapping of tree cover compared to the Hansen et al. (2013) model. In particular,
the results show that Hansen et al. (2013) predictions routinely underestimate tree
cover. These results thereby confirm the research hypothesis that random forest mod-
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els trained on high-resolution PlanetScope satellite imagery can improve tree detection.
Moreover, the results confirm the findings detailed in the relevant research that men-
tion the current limitations of Hansen et al. (2013) with respect to detecting tree cover
in heterogeneous landscapes.

Figure 6.3: Tree predictions of the RF-Ranger model (blue pixels). For comparison,
tree predictions generated by Hansen et al. (2013) are added for the same region (light
green pixels). All binary maps are overlaid onto very high resolution Google Earth Pro
imagery to enable better visual interpretation.

6.2.2 Reforestation Monitoring

The primary research focus of this dissertation was to investigate to what extent could a
machine learning algorithm detect the presence of planted trees in active forest restora-
tion sites. In this subsection, we explore this question by generating a binary tree cover
map for a planting region in the Nakauvadra Reforestation Project.

Figure 6.4: Tree predictions for a single active reforestation site in northern Fiji.

To run this experiment, on-ground tree planting data from the CI Forest Monitoring
Team in Fiji was used. This data included 27 GPS locations, representing the center
point of 27 active forest reforestation planting sites across the Nakauvadra Reforesta-
tion Project. These GPS locations do not show the exact location of each planted tree
but instead represented the centre point of each reforestation site. This meant the data
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could not be used for quantitative analysis because there was no way to align the co-
ordinates of each planted tree with the pixels in the PlanetScope imagery. Having said
this however, the GPS locations were used to generate tree prediction binary masks for
the area 0.5km x 0.5km surrounding the center point of the planting site GPS location.
Then validation was carried out using visual interpretation. For the purpose of evalua-
tion, one planting site out of 27 was focused on. This planting site was chosen because
it represents one of the largest planting regions within the Nakauvadra Reforestation
project. All predictions used PlanetScope satellite imagery from December 2019.

Figure 6.4 was included in this report to show what the RF-Ranger model “sees” during
training and when making predictions. However, as can be seen above, it is difficult for
humans to visually validate whether planted trees exist within these images. Therefore,
to facilitate easier visual interpretation of results, the exact same RF-Ranger prediction
for the same reforestation area is overlaid onto Google Earth Pro imagery in Figure 6.5
below.

Figure 6.5: Tree prediction of the proposed model RF-Ranger (blue pixels) for a single
active forest restoration site in northern Fiji. Predictions of Hansen et al. (2013) are
also included (light green pixels) for comparison. All binary maps are overlaid onto very
high resolution Google Earth Pro imagery to enable better visual interpretation.

The results indicate the proposed RF-Ranger model can successfully identify planted
trees in the chosen reforestation site. When compared to Hansen et al. (2013), the
proposed model is significantly better at identifying planted trees. Specifically, the
Hansen et al. (2013) model underestimates tree cover in the region, failing to detect
planted trees and only identifying the main forest blocks in the image. The success
of the RF-Ranger model is likely largely attributed to the fact that it has access to
higher resolution satellite imagery. Nonetheless, the results demonstrate the potential
for newly available PlanetScope satellite imagery to help identify planted trees in forest
restoration sites using machine learning methods. Until now, this area of research has
simply not been explored.

One limitation of the RF-Ranger model is it struggles to identify very small trees to
the south edge of the planting region. Most likely there is a minimum limit on tree
width to be able to effect the spectral composition of the pixel. It would be interesting
to investigate what this limit is, however, this research is beyond the scope of this
dissertation.
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6.2.3 Change Detection

A potentially highly useful application of the per-pixel tree prediction model RF-
Ranger is the ability to quantitatively analyse changes in tree cover between two time
periods. This tree cover gain and loss information is incredibly valuable to non-profit
environmental organisations for measuring the quality of restoration efforts and to as-
sess whether interventions are making a difference.

Figure 6.6 below shows the RF-Ranger tree predictions for the chosen forest restora-
tion site between December 2016 and December 2019. Predictions were made using
PlanetScope imagery for these two dates as input data. It is important to note, Google
Earth imagery was not possible to access for 2016 or 2019 and so the binary tree cover
predictions are overlaid onto the same imagery date (September 2017) to improve vi-
sual validation.

Figure 6.6: Detecting tree cover gain in the active reforestation site between December
2016 and December 2019. All predictions are from the RF-Ranger model onto an image
of 10,350 existing pixels. Taking this into account, tree prediction changes represent a
+17% gain in per-pixel tree cover over a 3 year period.

The results indicate that on a pixel-level (tree predictions are per-pixel), there is a
+17% increase in tree cover in the reforestation planting region between these two time
periods. It was previously not possible to quantitatively analyse this kind of planted
tree growth information at this small scale using satellite imagery. Thus, the results
show promising signs that random forest models such as RF-Ranger could be used to
effectively monitor tree regrowth in active forest restoration sites.

Beyond assessing the quality of forest restoration, these change detection maps can
potentially help non-profit organisations decide where the protect and plant trees. In-
tuitively, these organisations want to plant trees in areas which are suitable for tree
growth. A significant amount of time, effort and resources go into deciding where to
plant trees and protect regions experiencing forest regrowth. The findings above show
that RF-Ranger could potentially assist with this decision process by mapping where
tree growth has already occurred with a large region. Overall, the visual evaluation
results indicate that the RF-Ranger model has potentially multiple useful applications
to help with active forest restoration site monitoring.
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Discussion

Predicting the presence of trees in active forest restoration sites using satellite im-
agery is a challenging task. Specifically it is difficult because planted trees have small
crown widths which are often smaller than the pixel resolution of the satellite imagery.
The primary research objective of this project was to investigate to what extent could
machine learning models, trained on recently available open-source PlanetScope satel-
lite imagery, be used to identify trees in active reforestation projects. To achieve this
research aim, a random forest model was proposed which showed promising results
during both quantiative and visual evaluation experiments. In this section we discuss
broader conclusions from the study, explore potential implications for supporting for-
est restoration efforts and provide suggestions for future areas of work.

7.1 Comparison to State-Of-The-Art

Overall, the experiment results demonstrate that the RF-Ranger model can achieve
promising 96.4% classification accuracy and 96.3% Macro-F1 score on unseen pix-
els in a test set. Furthermore, additional visual evaluation illustrated that the pro-
posed model outperforms the current state-of-the-art model developed by Hansen et al.
(2013) in predicting the existence of planted trees in reforestation projects. As dis-
cussed in Chapter 6, the difference between these two models can be largely attributed
to the fact the RF-Ranger model has access to higher resolution satellite imagery. For
instance, the model is trained on 4.77m per pixel PlanetScope resolution imagery,
whilst the existing model by Hansen et al. (2013) uses 30m Landsat imagery.

Even so, this research has contributed to the first evaluation of PlanetScope satellite
imagery for the task of identifying planted trees in forest restoration sites. The results
demonstrate the feasibility of predicting the presence of planted and growing trees: a
task that was previously not achievable with low-resolution satellite imagery and yet
could have major impact in addressing some of the real-world challenges of monitoring
forest restoration projects using remote sensing data.
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7.2 Implications for Active Reforestation Monitoring

As a result of the research conducted in this project, a forest monitoring system was
successfully developed to predict the presence of trees in the Nakauvadra Reforesta-
tion Project in northern Fiji. In their current state, the materials developed in this
project including the unique labelled dataset, the random forest methods and the visual
evaluation experiments will help the CI forest monitoring team to quantitatively and
qualitatively assess the performance of forest intervention efforts for this region. Af-
ter sharing the initial results from this dissertation with Isaac Rounds, the Nakauvadra
restoration site manager, I was told that “this sure will be a great tool for restoration
work in Fiji”1. As a result, his comments confirm that the materials generated in this
report will hopefully have real-world impact.

In addition, this project presents an outline for how CI (and other non-profit organisa-
tions) could develop similar systems for new geographical regions. Our goal here is
that the CI forest monitoring team will follow a similar machine learning development
pipeline to the template outlined in this project and this will in turn help researchers at
CI to monitor future forest restoration projects in new areas.

7.3 Future Work

7.3.1 Dataset Quality

The quality of a supervised machine learning model is highly dependent on the quality
of the data samples used for training. In this project, training samples were manually
labelled using visual interpretation of “tree” and “no tree” classes in PlanetScope satel-
lite imagery. A potential significant improvement to the data used in this project, would
be to have access to geo-referenced labelled examples of real-world trees from “on-
the-ground” inventory surveys in forest restoration sites. To train a model on this data,
the geo-referenced pixels in the PlanetScope imagery could be successfully aligned
with these real-world trees, therefore providing a more robust dataset for training and
evaluation. To generate this dataset, it would admittedly require significant human in-
volvement and the costs involved would likely limit the number of geo-referenced trees
that could be measured. Nevertheless, this data in combination with labelled satellite
imagery could be beneficial for improving the quality of the models.

7.3.2 Multi-Class Classification

In this report, we present a simplified binary classification task. Trees grow and evolve
through time, therefore one limitation of the approach covered in this project is that it
does not address the challenges of distinguishing between trees at different stages of
growth. One possible development could be to extend predictions into a hierarchical
classification task: first, predict the presence of “tree” vs “no tree”, then distinguish
between multiple “tree” classes such as “planted trees” vs “pre-existing trees”. This

1Quote directly taken from a private email exchange with Isaac Rounds, Carbon-Offset Manager at
CI in Fiji after sharing initial results of tree predictions generated by the random forest model.



Chapter 7. Discussion 39

would be a useful distinction for helping forest monitoring efforts. Intuitively, planted
trees should be harder to identify than more established forests, so we would expect
classification error rates to be higher for these classes. Currently, the RF-Ranger model
is not suitable to address these challenges and it remains unclear whether the high
classification accuracies for the “tree” class are primarily enhanced by the number of
labels containing dense natural forests in the evaluation data. Further work in this area
could be interesting and would help assess a more true representation of classification
performance for identifying “planted” trees.

7.3.3 Global Model

Here we developed a random forest model for a specific region in northern Fiji. Hav-
ing shown promising classification results in a small region, the next logical step would
be to extend the model to new geographical regions. PlanetScope satellite imagery is
freely available for 96 countries across the tropics. Future research into developing a
globally consistent random forest model, trained on multiple regions of PlanetScope
satellite imagery would be useful to a wider community of conservation charities, gov-
ernments and private organisations. The data collection, model training and evaluation
pipeline outlined in this project provides a useful template for how a global method
might be developed. If achieved, a global model trained on PlanetScope satellite im-
agery would be well placed to displace Hansen et al. (2013) as the leading global forest
mapping resource. As shown in this report, RF-Ranger demonstrates improvements
over Hansen et al. (2013) and therefore we would expect this classification accuracy
improvements to extend to different geographical regions and potentially at a global
scale.
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Conclusion

The primary goal of this project was to investigate to what extent could machine learn-
ing methods be used to identify trees in satellite imagery and help monitor forest
restoration projects. The secondary objective of this dissertation was to evaluate the
suitability of high-resolution PlanetScope satellite imagery for forest mapping using
machine learning.

To achieve these research aims, a partnership was established with the non-profit en-
vironmental organisation, CI and a final random forest machine learning model was
presented that could help address the challenges of monitoring a real-life active forest
restoration site in northern Fiji.

A unique dataset was created by manually labelling examples of “tree” and “no tree”
classes in newly released, high-resolution PlanetScope satellite imagery. This dataset
was then used to train and evaluate a number of random forest machine learning al-
gorithms for the task of identifying the per-pixel presence of trees in satellite imagery.
Initial experiments were carried out to test the performance of random forest models
with varying input features and it was found that both visible and non-visible bands of
multi-spectral satellite imagery enhanced classification performance.

The final random forest model, RF-Ranger, was found to have successful performance
in identifying trees in PlanetScope imagery. Specifically, the model achieved 96.4%
classification accuracy on more than 75,000 unseen pixels in a labelled test set. Visual
evaluation was also conducted which demonstrated the feasibility of the RF-Ranger
model in assisting with forest monitoring tasks, including (i) identifying trees in Plan-
etScope satellite imagery, (ii) predicting the presence of planted trees in forest restora-
tion sites, and finally, (iii) detecting changes in tree cover between two distinct time
periods.

Overall, this research has contributed to the first evaluation of PlanetScope satellite
imagery for the task of identifying trees in forest restoration sites using machine learn-
ing. Not only has this research demonstrated the feasibility of using random forest
models for helping forest restoration projects, but this project also helped a non-profit
environmental organisation tackle a real-world problem.
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Appendix A

Additional Tree Predictions

Please see below for additional examples of binary mask tree predictions generated by
the proposed RF-Ranger model using PlantetScope satellite imagery. Each right side
image shows the tree prediction map (pink) for the area shown on the left side image.

(a) PlanetScope Basemap (No Labels) (b) Tree Predictions (Tree=Pink)

Figure A.1: Predictions show trees in urban and agricultural areas.

(a) PlanetScope Basemap (No Labels) (b) Tree Predictions (Tree=Pink)

Figure A.2: Predictions show trees at edge of natural forest region.
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Appendix B

Data Preparation

B.1 Planet Basemap Viewer

All PlanetScope basemaps were collected using the Planet Basemap Viewer tool. The
online tool allows users to download high-resolution basemap imagery through the
NICFI program. To select a basemap, first a user has to select an area of interest,
then a GeoTiff file representing that satellite imagery will be downloaded. The Planet
Basemap Viewer can be accessed at - https://www.planet.com/basemaps/

Figure B.1: Example view of downloading basemap satellite imagery.
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B.2 Nakauvadra vs Edinburgh

It is often difficult to visualise land area. Therefore in Figure B.2, we compare the
11,387 hectares of land area of the Nakauvadra Reforestation Project with the land
area of the City of Edinburgh. The polygon and satellite imagery was produced using
the measuring tool from Google Earth Pro - https://earth.google.com/web/.

Figure B.2: Example of Nakauvadra forest mountain range area (11,387 hectares) over-
laid onto the City of Edinburgh, Scotland for scale.

https://earth.google.com/web/
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B.3 Seasonal Pixel Distribution

Figure B.3, shows the pixel distributions of the seasonal datasets conducted for eval-
uation in this study. The results indicate that a similar pixel distribution is largely
maintained across June 2019 and December 2019 labels.
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Appendix C

Code Examples

C.1 Code Submission

All code for this project is shared in a ZIP file during submission. Please read the
”ReadMe-Dissertation.pdf” file in the root directory for an explanation of all the Jupyter
Notebooks and data files used in this report. See also all relevant code examples in the
sub-directory “/dissertation clean”.

C.2 Decision Tree Visualisation
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from matplotlib import pyplot as plt

import pandas as pd

# Get training data
X_train = pd.read_csv(’data/train.csv’, index_col=0).iloc[:, :4]
y_train = pd.read_csv(’data/train.csv’, index_col=0).iloc[:, -1]

# Create a single decision tree classifier
# max_depth = 2 for clearer visualisation
dt = DecisionTreeClassifier(random_state=1234 , max_depth=2)

# Fit the model to the training data
model = dt.fit(X_train , y_train)

# Print the decision tree features
fig = plt.figure(figsize=(25,20))
_ = tree.plot_tree(dt,

feature_names=[’blue’, ’green’, ’red’, ’NIR’],
class_names=[’no tree’, ’tree’],
filled=True ,
label=’all’,
proportion=True)
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