
ProtoGen-MLIR: an MLIR
Compiler for Cache Coherence

Protocols

Petr Vesely

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2021

Abstract
This paper presents ProtoGen-MLIR, which is an MLIR compiler for compiling and
optimizing coherence protocols from their stable declarations. Coherence protocols
as notoriously difficult to reason about, especially when presented as highly concur-
rent implementations with dozens of transient states. This motivated ProtoGen-MLIR,
which defines a compiler for a high-level Domain-Specific Language (DSL) named
PCC. Using this DSL we can specify a coherence protocol with atomic transactions
between stable states. Motivated by the finding from the original ProtoGen, ProtoGen-
MLIR uses these stable specifications to generate a concurrent protocol that removes
the need for atomic transactions. ProtoGen-MLIR also allows all generated protocols
to be verified formally as the compiler targets Murphi code.

iii

Acknowledgements

Firstly I would like to thank my supervisors Dr. Vijay Nagarajan & Dr. Tobias Grosser.
Thank you for your excellent mentorship, you wealth of knowledge and constant sup-
port, guidance and encouragement throughout this project. At points I had doubted if
it was even possible and you always helped me through, thank you.

Additionally I would like to thank Nicolai Oswald & Vasilis Gavrielatos, for begin so
willing to share your knowledge and experience for the background that motivated this
project.

Lastly I wish to thank my family and my friends, for being there and supporting me
throughout this journey.

iv

Table of Contents

1 Introduction 1
1.1 Overview . 1
1.2 Aims . 2
1.3 Previous Work . 3

1.3.1 Circt . 3
1.3.2 ProtoGen . 3
1.3.3 Teapot . 3

1.4 Contributions . 4

2 Background 5
2.1 Cache Coherence . 5
2.2 Directory Coherence Protocols . 7
2.3 MLIR . 8
2.4 Murphi . 8

3 Designing the MLIR Compiler 11
3.1 The PCC DSL . 11
3.2 PCC to MLIR Frontend . 13
3.3 Defining the PCC Dialect . 14
3.4 Generating the equivalent Stable State Protocol 15
3.5 Performing Optimizations . 17
3.6 The Murphi Dialect . 21
3.7 Murphi Backend . 22

4 Testing 27
4.1 MI Protocol . 27
4.2 MSI Protocol . 28
4.3 MESI Protocol . 30

5 Conclusions and Future Work 33
5.1 Summary . 33
5.2 Plans for MInf Part 2 . 34

Bibliography 37

A MI.pcc 39

v

B MSI.pcc 41

C MESI.pcc 45

vi

Chapter 1

Introduction

1.1 Overview

Designing custom silicon is hard. Designs and prototypes must be extensively tested
to ensure product quality, and often this verification becomes the bottleneck in chip
design [4]. Catching defects late in development or after production can be pro-
hibitively expensive, due in part to redesigning of the architecture; being beaten to
market through delays; and possibly even product recalls due to poor quality. As such
the industry employs a variety of techniques to verify designs, primarily through sim-
ulation, but some components can also be verified formally. Often hardware is pro-
grammed through a Hardware Description Language (HDL) such as Verilog, which
can then be converted to a satisfiability problem and verified formally [4]. However,
such techniques result in considering a very large state-space, where only a fraction of
the possible states are necessary for verification.

The rate of semiconductor technology has been slowing for several years, resulting in
an industry wide shift for more specialised architectures, generally called accelerators.
Such accelerators are generally designed for specific workloads in mind such as Ma-
chine Learning. Therefore, they are often implemented as custom silicon as they do
not require features of general purpose computing architectures and instead implement
specific optimizations for their designed workload. With this trend continuing, it will
be necessary for even small manufacturers to create custom silicon to accelerate their
application requirements.

One approach to tackle this problem is to define a set of domain specific languages
in which the designer can specify a hardware description at a high-level and use a
compiler to generate an equivalent low-level description such as Verilog, which can
then be implemented and verified. Programming languages such as C already employ
such a strategy, by providing a high-level abstraction over assembly. The programmer
then no longer has to concern themselves with registers and machine instructions, and
instead uses the language to define the behaviour of the program. This allows them
to implement code faster, with fewer errors and reduces mental overhead for the pro-
grammer. Furthermore, as the compiler becomes more advanced, optimizations can be
added that result in faster executing code, and higher-quality code than if attempted to

1

2 Chapter 1. Introduction

be written by hand. Why can’t we do the same for hardware descriptions? Suppose
we can specify, for example, a processor pipeline as a high-level abstraction using a
domain specific language, and then compile this description. The compiler can then
apply optimizations, verify the design and generate the output target. Were this to ex-
ist, it would allow much smaller and specialised teams to develop custom silicon for
accelerators, as the verification and design stages become far simpler. Moreover, the
generated output is correct-by-construction, which could allow the designers to imple-
ment much more complex systems that would otherwise be impossible to verify with
traditional methods.

This project focuses on cache coherence protocols in modern multi-core CPUs, how-
ever cache coherence protocols can be deployed in any architecture with private caches
and a shared memory interface. On the surface, cache coherence protocols are decep-
tively simple. Their operation can often be described using only a handful of states and
their coherence mechanisms can easily be reasoned about. However, such descriptions
assume Atomic Transactions, where only a single coherence transaction is happening
at any one time, which is almost never the case in actual hardware implementations.
Relaxing atomic transactions greatly complicates the coherence protocol, by introduc-
ing many more transient states, that encode the progress of a transaction as well as
the progress of other transactions that are occurring simultaneously. For example, a
simple MSI protocol, with only three stable states, results in a protocol with eighteen
total states, when allowing for non atomic transactions [8].

1.2 Aims

This project attempts to design an MLIR compiler for a high-level Domain Specific
Language (DSL) used to specify cache coherence protocols. Fundamentally, this project
presents a general intermediate representation (IR) for cache coherence protocols, that
will allow optimizations to be implemented by directly manipulating and extending
this representation. As a result this will produce an optimized version of the provided
stable protocol, which considers and handles racing transactions. After these optimiza-
tions have been implemented, as part of the intermediate representation, the compiler
targets a Murphi backend to verify the correctness of the generated protocol.

As a consequence this would allow the designer of a cache coherence protocol, to
reason about a protocol using the textbook definitions i.e. without considering con-
currency and racing transactions. This Stable State Protocol (SSP) and any necessary
hardware specifics, such as the interconnects, are specified at a high-level using the
DSL. The compiler uses the definitions from the DSL and translates them into the
general intermediate representation to perform the optimizations. This is important
as creating the equivalent protocol by hand is difficult and error prone, therefore using
such a tool will provide correct-by-construction protocols, further aiding in verification
efforts. Moreover, the correctness of the generated protocols can be verified formally
with Murphi. In practice, coherence designers could iterate their designs rapidly, with
instant verification, allowing them to quickly obtain a highly-efficient coherence pro-
tocol for little development cost.

1.3. Previous Work 3

1.3 Previous Work

1.3.1 Circt

Circt is an existing open-source project to address the lack of open source tooling for
Electronic Design, including processor architecture [6]. The project provides the user
with a modular and reusable library of high-level intermediate representations which,
through their custom optimizations and pipelines, can produce industry standard out-
put targets such as Verilog. The project provides many higher level abstractions for
designers, and applies custom domain specific optimizations before lowering to their
desired target such as Verilog. The project leverages MLIR for its compiler infrastruc-
ture, and the success shown in the project for application to hardware design, was a big
motivation in attempting to model cache coherence using MLIR.

1.3.2 ProtoGen

ProtoGen is a tool for generating highly concurrent cache coherence protocols from
their stable state definitions and is the primary motivation behind this project. Proto-
Gen defines a DSL for specifying the architecture and behaviour of the cache and direc-
tory controllers at a high level, without considering concurrency [8]. In fact, a subset
of the language is used as the input to the compiler presented. ProtoGen performs
highly specialised optimizations by applying domain knowledge of the architecture,
and generating the necessary transient states and transitions to create an equivalent,
but highly concurrent protocol. A lot of the same reasoning about racing transactions
and adding additional concurrency is based on the findings from ProtoGen, however
Protogen-MLIR uses an overall different architecture and approach by augmenting an
IR, motivated by the findings of Circt.

1.3.3 Teapot

Teapot is a domain specific language and compiler for specifying the behaviour of
cache coherence protocols [1]. However, unlike ProtoGen or ProtoGen-MLIR, Teapot
does not provide any optimizations in terms of additional concurrency. Teapot instead
provides a high level programming language to specify the behaviour of protocols us-
ing functional programming concepts. Specifically, Teapot leverages continuations to
track the execution of a coherence transaction, by allowing cache or directory con-
trollers to yield their execution and be resumed later. This is particularly elegant in
transactions which send a request and await some response.

Teapot code is compiled to C, but also includes a Murphi backend for formal verifica-
tion, similarly to ProtoGen and ProtoGen-MLIR. Teapot continuations were analysed
in detail to discover if their application could be directly applied to Protogen-MLIR,
however we found no use for them in this project. ProtoGen-MLIR requires additional
information about its own state as well as the state of the directory to make reasoned
decisions about which forwarded messages it must handle (for optimizations), which
is not possible through continuations. Moreover, our DSL provides an elegant await
syntax for stalling the execution of a transaction.

4 Chapter 1. Introduction

1.4 Contributions

As part of this effort we present ProtoGen-MLIR, which is an MLIR based compiler
that has the following key components.

• Parser and MLIR frontend for our custom Domain-Specific Language

• MLIR Optimization pipeline, which transforms our stable protocol to a concur-
rent version.

• Murphi backend which generates valid Murphi code for final protocol verifica-
tion

Chapter 2

Background

In this chapter we introduce the required background for ProtoGen-MLIR. In section
2.1 we introduce the general problem of cache coherence, followed by the baseline
architecture and the challenges this presents and how they can be tackled. In section
2.2 we present the function of directory based protocols and introduce the class of
MOESI protocols used extensively throughout this project. Next we present MLIR in
section 2.3 and discuss its advantages for implementing ProtGen-MLIR, before finally
presenting Murphi in section 2.4 which provides the ability to formally verify our
generated protocols.

2.1 Cache Coherence

Most modern CPU’s are multi-core, meaning that a CPU can execute threads in paral-
lel by allowing each thread to run on a separate core. Moreover, most systems provide
a shared memory interface, meaning threads running in parallel can read and crucially
write to memory used by another thread. Furthermore, modern systems rely heavily
on caching, which stores frequently accessed memory addresses on a fast-access chip
physically close to each CPU core. Caching is important for performance as memory
accesses are not randomly distributed, rather they exhibit temporal locality (recently
accessed memory addresses are likely to be accessed again) and spacial locality (mem-
ory addresses close to the a recent access are also highly likely to be accessed) [10].
By storing recently accessed memory addresses in a fast-access cache, the CPU will
hit the cache with a high probability, thus incurring a significant performance increase
as reading from memory is many times slower. In Figure 2.1 we present the baseline
architecture considered throughout this project, we can see that all cores have access
to a shared main memory, but each core has a private data cache. Loads and stores
from the core’s pipeline are issued to the cache controller, which then communicates
with other caches to synchronize and fulfil the request to the core. Cache and direc-
tory controllers communicate through an interconnect network that interconnect all
the controllers. We do not consider any specific hardware implementation as this is
not required for reasoning about the protocol. We leave such hardware decisions to the
implementation.

5

6 Chapter 2. Background

Figure 2.1: Baseline System Model [7]

With such a system it is easy to see how cache incoherence would quickly arise. For
example, suppose we have a multi-core CPU with two cores (C1 & C2) each of which
have a private data cache and both are accessing the same memory address. When
C1 & C2 read this address they both make a copy and store the result to their private
data cache. C1 now performs a write operation, and the result is written back to main
memory. However, now if C2 performs a read on the address it will hit the private data
cache which contains the unmodified data, because the modified data was not updated
in the private data cache when C1 performed the write operation.

For coherence to be maintained, meaning that every core holds the most up-to-date
value in their private data cache and avoid the situation described previously, it is a re-
quirement for cache coherence protocols to ensure Write Propagation and Transaction
Serialization [7]. Write Propagation, ensures that any writes to a memory address are
propagated to every copy held in a private cache, meaning that when C1 performed
the write C2 would would have it’s copy updated to reflect this new value. Transac-
tion Serialization, ensures that all reads/writes are seen by all cores in the same order,
i.e. there is a total ordering of transactions observed by all cores. This is necessary,
because suppose that C1 and C2 each performed writes to the same address, but each
observe their write operation to happen first. This would clearly result in incoherence
as C1 would observe the write from C2, and C2 would observe the write from C1 in
their respective caches.

For implementation and reasoning about protocols with these constraints, it is more
useful to consider invariants, which when maintained ensure Write Propagation and
Transaction Serialization, and thus coherence. Consider the following invariants:

• Single-Writer-Multiple-Reader (SWMR) : At any point in time any memory lo-
cation can have either a single actor with write permissions (Single-Writer), or
many actors with read permissions (Multiple-Reader)[7]

2.2. Directory Coherence Protocols 7

• Data-Value Invariant : This ensures that the last write operation is reflected in
the next read operation.[7]

When these two invariants are maintained it can be shown that this will enforce Write
Propagation and Transaction Serialization and thus will result in a protocol that main-
tains coherence [7]. If we can then prove, for example through a model checker like
Murphi, that these two invariants hold for every possible state of the cache, we can be
confident that the coherence protocol is correct.

Real-world protocols implement these invariants by assigning each memory block a
state which has some associated permission (read/write/none). If a core wishes to per-
form an operation on the block (i.e. load or store), the cache controller must first obtain
the block with the required permissions before performing the operation. Typically,
caches can request permissions through a Coherence Transaction in which requests
are sent to and responses received from the directory or other caches to obtain the
block with the required permissions. However, a well designed protocol must also en-
sure caches yield their permissions correctly to allow other caches access to the same
cache block. Obviously, adding such a protocol incurs some performance penalty, so
a coherence protocol must also be well designed to ensure the overhead is minimised
as much as possible. All this combined shows the complexity and erroneous nature of
designing a correct, efficient and performant coherence protocol.

2.2 Directory Coherence Protocols

Although coherence protocols can be implemented using multiple techniques, direc-
tory based protocols are the most common and are therefore the only type considered
in this project (see Figure 2.1). A directory based protocol consists of two different
controller types: directory controllers and cache controllers. Each controller main-
tains the state for every memory block and updates it based on the rules defined by the
coherence protocol. Therefore each controller can be implemented as a Finite State
Machine (FSM) that transitions blocks between stated according to the rules defined
by the protocol.

A group of standard coherence protocols, known as the MOESI protocols (often pro-
nounced either “MO-sey” or “mo-EE-see” [7]), utilise a combination of Modified,
Owned, Exclusive, Shared and Invalid states, to model cache blocks with different
permissions. These states are known as stable states, and represent what permissions
the cache has. For example S(hared) state allows the cache to read the data, however
for writes the cache needs to first obtain M(odified) state by issuing a coherence trans-
action. A transaction typically consists of multiple steps, for example a transaction
from an I(nvalid) state to a S(hared) state, involves a request to the directory for shared
state and a corresponding response. After sending the initial request, the cache con-
troller must transition to some transient state to represent what has occurred, and only
once the corresponding response arrives can it transition to the desired stable state.
The directory controller also uses these same stable states, however they are used to
represent the current state of the caches. For example: if the directory is in state M,
this means that some cache currently has write permissions and if directory is in state

8 Chapter 2. Background

I, then no cache is currently caching the block.

2.3 MLIR

MLIR (Multi-Level Intermediate Representation) is a novel approach to building reusable
and extensible compiler infrastructure. In the past, each language implemented it’s
own compiler, however recently lots of compilers now target LLVM instead of general
machine code, simplifying the compilation and leveraging the powerful optimizations
LLVM provides. However, there is no one-size-fits-all, and often higher level opti-
mizations cannot be realised with a low-level IR such as LLVM-IR. Instead compilers
implement a custom frontend with higher-level representations to implement these op-
timizations or checks before lowering to LLVM-IR. Rust, for example, is a complex
language with a very strict type system and memory safety requirements, and com-
piles through two intermediate representations before finally targeting LLVM-IR for
this very reason.

MLIR addresses this by providing a declarative way to define custom representations at
different levels of abstraction and semantics, unlike the fixed instruction set of LLVM-
IR. Furthermore it provides a unified surrounding infrastructure for validation, con-
version between representations and optimizations. This allows for a full compilation
from high-level IR through to LLVM-IR, without requiring engineering time to custom
frontend implementations.

MLIR is particularly useful for domain specific languages, which still remain a chal-
lenge to implement. Furthermore, due to their nature, certain aspects of the compiler
are often overlooked or perform inadequately. This can cause downstream problems
like slow compilation, bugs in the code, mediocre debugging and a generally poor
user experience. MLIR provides a robust supporting infrastructure, and extensible in-
struction set, making it much simpler for language designers to create highly efficient,
maintainable and quality compilers easily. With general purpose computing slowly
moving to become ever more specialised, it is expected that highly optimised DSLs
will be the norm for each specialization. MLIR is an important and necessary technol-
ogy to allows the language designers to create such compilers [5].

MLIR is used extensively in this project to model the PCC DSL through MLIR Oper-
ations. Using the supporting infrastructure of MLIR allows ProtoGen-MLIR to imple-
ment optimizations by directly inspecting and modifying the IR. Rewrites of the IR are
defined declaratively by defining when a optimization can be applied, and the specific
rules on how to perform the rewrite. This makes it easy to debug, as MLIR makes it
clear exactly what matches and rewrites have been performed.

2.4 Murphi

Murphi (sometimes confusingly written as MurΦ and pronounced Murphy) is a model
checker and programming language developed at the University of Utah that is specif-
ically designed to test cache coherence protocols [2]. It exhaustively searches through

2.4. Murphi 9

all possible states and checks for deadlock freedom, and any other invariants we wish
to maintain, like SWMR. Murphi was chosen as the compilation target for ProtoGen-
MLIR, allowing the optimized protocol to be verified formally.

The Murphi Reference Manual[3] details how a Murphi program is verified

Repeat forever:

a) Find all rules whose conditions are true in the current state. (i.e. con-
ditional expressions are true, given the current values of the global vari-
ables).

b) Choose one arbitrarily and execute the action, yielding a new state.

However, Murphi does not apply these rules naively, instead it relies heavily on sym-
metry to reduce the state space. For example, Murphi defines a scalarset data type
that allows Murphi to consider every element of the set as symmetrical. We can use
this to define all caches in our protocol as members of a scalarset allowing Murphi
to significantly reduce the state space. If C1 is in state S1 and C2 is in state S2, then
Murphi will consider this equivalent to the case of C1 in state S2 and C2 in state S1.
Furthermore, Murphi does not allow generic integer types, instead allowing the pro-
grammer to only specify integers within finite ranges, again to attempt to limit the state
space that must be explored.

In Section 3.7, we describe in detail the process of generating valid Murphi code from
the optimized MLIR Operations generated from the compiler, allowing us to formally
verify generated protocols.

Chapter 3

Designing the MLIR Compiler

In this chapter we present the design, implementation specifics and optimizations of
the ProtoGen-MLIR compiler. We introduce the input DSL and its support for spec-
ifying directory-based coherence protocols. Additionally, we present the dialects im-
plemented in MLIR to model the different abstractions of a cache coherence protocol,
and detail the process of implementing optimizations that introduce additional concur-
rency for increasing protocol performance. Finally, we present the Murphi backend to
generate valid Murphi code for verification.

Throughout this chapter we make reference to the ProtoGen-MLIR pipeline, which
consists of the following stages, each of which is presented in detail.

• Remove await structures by splitting into transient states

• Insert additional Mutex operations to allow for Atomic Transaction Verification

• Apply the ProtoGen Optimizations

• Convert all Operations to the Murphi Dialect

3.1 The PCC DSL

ProtoGen-MLIR borrows the DSL from the original ProtoGen, named PCC (ProtoGen
Cache Coherence). This was chosen as it was well understood and provided all the nec-
essary language support for specifying the required components of a cache coherence
protocol. Moreover, designing a custom DSL was out of scope for this project. Fur-
thermore, the DSL already provides an elegant way of specifying the architecture and
behaviour for the controllers so there was little benefit in a redesign. ProtoGen-MLIR
uses a subset of the language to support the MI, MSI and MESI protocols only. The
MI protocol is the most basic MOESI protocol that uses only two states: Modified and
Invalid. When, a cache wishes to read or write data into its private cache it must obtain
the block in state M (see Figure 3.1). The focus initially was to implement a vertical
for the full MI protocol with the minimum required features to validate the baseline
functionality before attempting more complex protocols such as MSI or MESI. Upon
successful completion of the limited compiler for the MI protocol, we added additional

11

12 Chapter 3. Designing the MLIR Compiler

Figure 3.1: Stable State transitions for the MI Protocol

language support for integer ranges and sets and conditional branches, which allowed
us to implement MSI & MESI successfully.

To specify a directory based protocol, it is necessary to store additional data along
with the state. For example, when the directory has issued Modified state to a cache,
it needs to maintain a reference to this owner, so that when the directory receives a
coherence request from a different cache it can correctly forward the request to the
owner. This additional state is referred to as the auxiliary state. Listing 3.1 shows the
required cache and directory state definitions for the MI Protocol. The definition spec-
ifies that we have a set of cache controllers and a single directory controller and each
must maintain their current state along with the data of the cache line. The directory
controller also needs to maintain a reference to the current owner (as explained). PCC
comes with some built-in data types: State (one of the stable states); Data (data from
memory); ID (a reference to any controller, cache or directory), which can be used to
define the auxiliary state.

Cache {
S t a t e I ;
Data c l ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;
Data c l ;
ID owner ;

} d i r e c t o r y ;

Listing 3.1: Specifying the Directory and Cache Aux State

Along with definitions of the cache and directory, PCC also provides a high level ab-
straction on specifying the interconnects between controllers. Controllers can be con-
nected through a variety of interconnect technologies, however when reasoning about
protocols, the only important property of the interconnect is if it enforces ordering.
Listing 3.2 shows the PCC definition of the necessary networks for the MI protocol
and the required ordering constraints on each. We see that even a simple protocol such
as MI requires three interconnects. Naturally we have one for requests and responses
which do not require ordering, however the third forward network is necessary for

3.2. PCC to MLIR Frontend 13

when the directory forwards a request to another cache to fulfil. This network must
be ordered, due to the fact that the directory acts as the serialization point in the sys-
tem, and this exact ordering must be observed by the caches when receiving forwarded
messages. Ordering constraints however can be relaxed on the other networks due to
the fact that the directory will serialise incoming requests, and responses too can arrive
out-of-order as the controller implements the logic to handle them. Relaxing ordering
constraints gives more freedom to the final hardware design as unordered networks can
be replaced with an ordered one, moreover unordered networks could utilize topologies
that aid with final performance.

Network { Ordered fwd ;
Unordered r e s p ;
Unordered r e q ;
} ;

Listing 3.2: Specifying Interconnects

Finally, PCC provides an elegant interface for specifying the behaviour for each of the
controllers. Listing 3.3 shows the transaction a cache must perform, when in state I
and performing a load. When the cache receives a load in state I, the controller sends
a GetM request to the directory on the req network. It then expects a GetM Ack D mes-
sage from the directory or a cache controller to obtain the cache line and update its state
to M. The full protocol is then defined as set of such transactions, which collectively
define how the controller will behave in each situation. We can see how PCC provides
the abstraction of atomic transactions through the keyword await, as the behaviour of
the transaction assumes that it is the only transaction occurring.

P r o c e s s (I , load , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;
S t a t e = M;
b r e a k ;

}
}

Listing 3.3: Cache Load Transaction

3.2 PCC to MLIR Frontend

To enable us to implement the ProtoGen-MLIR pipeline, we first need to parse a PCC
file into an Abstract Syntax Tree (AST) and generate valid MLIR Operations for input
to the ProtoGen-MLIR pipeline.

14 Chapter 3. Designing the MLIR Compiler

We used ANTLR4 [9] to auto-generate a parser from a grammar definition of the PCC
language, and construct the desired AST. ANTLR4 grammars define a set of tokens
(like keywords and identifiers), and a set of rules to match against. A rule is a regular
expression of tokens and ANTLR4 will match rules greedily to generate a parse tree.
Running ANTLR4 with this grammar file generates classes and type declarations re-
quired to parse a PCC file. Importing these classes into the compiler, along with the
ANRL4 runtime, allows us to parse a PCC file into an AST.

We then traverse this tree and emit MLIR in the PCC Dialect (see Section 3.3), which in
doing so presented some key challenges. Firstly, we must perform some basic type in-
ference on basic types such as Integer or Boolean and allocate them correctly. Complex
types such as State, Message or ID are also allocated, however their types are opaque,
meaning they are only symbolic and do not physically allocate space in memory. This
is sufficient for this compiler, as we are targeting Murphi, which implements it’s own
compiler that will perform the physical allocations. Secondly, while parsing we need
to maintain symbolic references to both global and local variables, and their generated
MLIR Operations. For example, consider the statements from a PCC Process block
shown in Listing 3.4. The first of these statements allocates a local variable msg and
assigns to it the result from a Resp() message constructor. The next statement then
references the global resp network to send msg. To generate MLIR Operations that
correctly reference both local and global variables we maintain a data structure (not
dissimilar to a hash map) to map variable identifiers to their MLIR results. The only
additional challenge, was to drop all local references, when moving out of the current
scope.

msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;
r e s p . send (msg) ;

Listing 3.4: PCC send message

3.3 Defining the PCC Dialect

MLIR is in nature Multi-Level, meaning there is no fixed representation and any cus-
tom representation outside of the standard dialects must be specified. Thus, to define a
custom representation for the PCC DSL, we must specify an MLIR Dialect. A Dialect
in MLIR is a collection of custom Operations all grouped under the same namespace.
An Operation (or Op) is the fundamental entity of MLIR. Operations themselves can
contain a list of regions, and regions themselves can contain a list of blocks, and blocks
can again contain Operations, allowing for recursive structures. Operations also accept
zero or more operands and return zero or more SSA values, which can then be used
as operands by other operations. From Listing 3.5 pcc.function is an operation, it
contains a single attached region denoted inside of the curly braces. This region con-
tains only a single block with the nested pcc.constant operation, which defines a
constant and returns this as an SSA value, denoted by %0. Furthermore, operations can
also be assigned a list of attributes, these must be compile time known and cannot be
generated dynamically like {value = 3}.

3.4. Generating the equivalent Stable State Protocol 15

” pcc . f u n c t i o n ” () ({
/ / Region

%0 = ” pcc . c o n s t a n t ” () { v a l u e = 3} −> i 6 4
}) : () −> ()

Listing 3.5: PCC Dialect Function Op

Custom dialects define the semantics of higher level constructs, for example pcc.function
semantically defines a function and logically all operations nested within its regions
belong to that function. These higher level semantic constructs are incredibly useful
for implementing optimizations, before they are transformed to lower level operations
and compiled to machine code. As detailed before the compile target for this project
is Murphi which itself is a high level programming language, but it too will be imple-
mented as an MLIR dialect, and conversion between these two dialects will have to
occur before we can emit correct Murphi code.
” pcc . f u n c t i o n ” () ({

%6 = ” pcc . m s g c o n s t r ” () {msgType = ” Reques t ” , params = [” GetM ” , ” ID ” , ” d i r e c t o r y . ID ”]} : () −> i 6 4
” pcc . send ”(%6) { n e t I d = ” r e q ”} : (i 6 4) −> ()
” pcc . a w a i t ” () ({

” pcc . when ” () ({
” pcc . s e t ” () { i d = ” c l ” , v a l u e = ” GetM Ack D . c l ”} : () −> ()
” pcc . s e t ” () { i d = ” S t a t e ” , v a l u e = ” cache M ”} : () −> ()
” pcc . b r e a k ” () : () −> ()

}) {msgId = ” GetM Ack D ”} : () −> ()
” pcc . a w a i t r e t u r n ” () : () −> ()

}) : () −> ()
” pcc . r e t u r n ” () : () −> ()

}) { a c t i o n = ” s t o r e ” , c u r s t a t e = ” c a c h e I ” , machine = ” cache ”} : () −> ()

Listing 3.6: PCC Dialect I load Transaction

Listing 3.6 shows a snippet of the generated MLIR for the PCC definition shown in
Listing 3.3. This MLIR generated is semantically very similar to the language def-
inition, which is by design as the operations that belong to the PCC dialect should
match as closely as possible. Dialects like the PCC Dialect are sometimes referred to
as Interface Dialects, as they provide and interface between the DSL and the MLIR
operations. This allows PCC to be fully expressed through MLIR operations, without
losing any high level information, which is necessary for implementing optimizations.
Having PCC fully expressed in MLIR, allows transformations to be performed directly
on this IR using MLIR’s supporting infrastructure, instead of implementing this func-
tionality through a custom front-end before emitting MLIR. After any transformations
and optimizations have been performed (See Section 3.4 & 3.5), all the remaining op-
erations must be converted to operations in the Murphi Dialect, which can then be used
to emit valid Murphi (see Section 3.7).

3.4 Generating the equivalent Stable State Protocol

As a first step, we attempt to compile the protocol without introducing any additional
concurrency. This is an important step as it allows us to verify the correctness of the
stable protocol, while implementing the full compilation pipeline albeit without any
optimizations. However, the stable state protocol is a simplistic view of a coherence
protocol and therefore attempting to verify it as is will result in a deadlock. To over-

16 Chapter 3. Designing the MLIR Compiler

come this and verify the protocol with the atomic transaction constraint we introduce
locks to prevent racing transactions from firing while another transaction is executing.

Consider the transaction in the MI protocol when the CPU wishes to read a block
currently in state I. The PCC definition for this transaction is detailed in Listing 3.3,
and we can see that the cache initially issues a request and awaits a response. To en-
code each stage of this transaction we have to introduce additional transient states. For
example, instead of awaiting we instead transition to a suitable transient state that rep-
resents that we started in state I and performed a load. In Figure 3.2 we show how
the transaction now proceeds: (1) after issuing the GetM we transition to a transient
state I load, which represents the state of the cache inside of the await block; (2)
once we receive the message GetM Ack D we can now transition to the stable state M,
completing the transaction. The transient state encodes the progress of the transaction
through its name; for example the transient state introduced in Figure 3.2 I load repre-
sents the position in the transaction starting from stable state I and having performed a
load operation. The naming specifics become important when introducing additional
concurrency in section 3.5.

Figure 3.2: I→M Transaction with trasient state

With this example, we can reason that whenever we observe an await in PCC, we are
effectively transitioning to a transient state that reflects its start state and the response
it’s expecting. In PCC await blocks can have many when guards, which in turn can
have more await blocks, resulting in the introduction of many transient states, which
emphasises how error prone designing such protocols can be when implemented man-
ually, and we have yet to introduce any additional concurrency.
” pcc . f u n c t i o n ” () ({

%6 = ” pcc . m s g c o n s t r ” () {msgType = ” Reques t ” , params = [” GetM ” , ” ID ” , ” d i r e c t o r y . ID ”]} : () −> i 6 4
” pcc . send ”(%6) { n e t I d = ” r e q ”} : (i 6 4) −> ()
” pcc . s e t ” () { i d = ” S t a t e ” , v a l u e = ” c a c h e I l o a d ”} : () −> ()
” pcc . r e t u r n ” () : () −> ()

}) { a c t i o n = ” s t o r e ” , c u r s t a t e = ” c a c h e I ” , machine = ” cache ”} : () −> ()

” pcc . f u n c t i o n ” () ({
” pcc . s e t ” () { i d = ” c l ” , v a l u e = ” GetM Ack D . c l ”} : () −> ()
” pcc . s e t ” () { i d = ” S t a t e ” , v a l u e = ” cache M ”} : () −> ()
” pcc . b r e a k ” () : () −> ()
” pcc . r e t u r n ” () : () −> ()

}) { a c t i o n = ” GetM Ack D ” , c u r s t a t e = ” c a c h e I l o a d ” , machine = ” cache ” } : () −> ()

Listing 3.7: Separating into Transient State

Listing 3.7 shows the resulting IR after transforming the IR in Listing 3.6 by dividing
the transaction into individual steps. Observe that we now have two pcc.function
operations that effectively represent state handlers, which signal the two steps in the
transaction. Further, note that we must introduce an additional pcc.set operation to
the original function to transition to the transient state.

As mentioned, we must to maintain a Mutex for every cache block and acquire this
Mutex before executing any transaction. Transactions in PCC begin with a Process

3.5. Performing Optimizations 17

Figure 3.3: MI evict transaction

block and terminate with a break statement, therefore the addition of aquire and re-
lease Mutex operations can easily be added directly to the IR, using MLIR’s supporting
infrastructure.

3.5 Performing Optimizations

In Section 3.4 we show how we can generate the necessary transient states to encode
the steps of a coherence transaction, however we must introduce locks to ensure that
Atomic Transactions are maintained and we can verify the protocol. However, to be
able to relax the atomic transaction constraint we must be able to handle multiple con-
current transactions for each block. In essence, we must answer the question: How
should a cache controller respond when it receives a forwarded request from the di-
rectory or another cache, related to a concurrently executing transaction for the same
block? For the cache to react to a concurrently executing transaction we must first
understand the order that requests arrived at the directory.

In a directory based protocol, the directory acts as the serialization point for all re-
quests; even if two requests arrive simultaneously, the directory will break the tie and
order these requests sequentially. Because of this, caches are able to deduce the order
in which requests are serialized at the directory based on the forwarded responses they
receive.

For example, consider the transaction in the MI Protocol, where a cache wishes to evict
a block in state M. The cache first issues a PutM request to the directory and once it re-
ceives a Put Ack response can it transition to state I (see Figure 3.3). This is the happy
path as no other competing transactions. However, suppose that while the cache is in
the transient state M evict it receives a forwarded GetM request from the directory. The
cache can now deduce the fact that another GetM request was ordered at the directory
before its own PutM causing the directory to forward the request. Using this insight
we can always deduce the ordering of messages received at the directory, relative to
our own, i.e. if it was ordered before or after. By knowing the ordering of message at
the directory, we can handle these forwarded messages and allow transactions for the
same block to occur concurrently.

To be able able to handle forwarded requests, we must first know which forwarded
requests could potentially arrive for any transient state. Transactions logically occur
between stable states: i.e. I→M or M→I, even though transient states are involved.
This implies that during any transient state in the transaction the directory will see the
cache as being in either one of these stable states. We say that each transient state
also has a logical start state and a logical end state, which represent the two potential
states that the directory can see the cache in. If the cache sees a forwarded request, and

18 Chapter 3. Designing the MLIR Compiler

recognises that the directory must have only sent that message because the directory
sees the cache in either the logical start or end state, then the cache can correctly handle
this request by assuming it is in that logical state.

Knowing this fact, how can we then determine which requests could potentially arrive
& how do we determine the logical start and end states for each transient state? Some-
times determining the logical end state of a transient state cannot be fully realised, due
to branches that can occur is certain protocols. For example in the MESI protocol,
the E(xclusive) state is issued when they’re no other sharers, otherwise S(hared) state
is issued, therefore this transient state that represents awaiting the response from the
directory cannot deterministically know if the logical end state is S or E. A solution
to this could be to track every possible logical end state and consider every situation
individually, however such an implementation would require additional analysis of the
protocol and a complex redesign of the current implementation. Furthermore, not con-
sidering the end state can be done successfully without incurring deadlocks at the cost
of potentially not introducing additional concurrency (discussed later).

How then can we determine the logical start and potentially logical end state(s) for a
transient state? Firstly, the logical start state is encoded into the state name for each
transient state. For example, in Figure 3.3 we introduced a transient state M evict,
which represents that that the cache is still logically in state M, this can also be con-
sidered the logical start state. The logical end state can potentially be determined by
inspecting the function body for a set operation that transitions to a stable state, fur-
thermore in PCC some transactions can be specified with a deterministic end state,
which is then encoded into the transient state.

Given that we have determined the logical start state and potentially logical end state(s)
for a transient state, how can we determine which forwarded messages could poten-
tially arrive and if so how do we handle them? Once we have obtained the logical states
we can inspect which handlers exist for which messages in the defined protocol and
this will indicate that we can expect that message to arrive. For example, again con-
sider the transaction in Figure 3.3 and the transient state M evict. We know that this
state has logical start state M and (from the PCC definition) logical end state I. There-
fore, we have to look at each of these stable states and determine which forwarded
messages each of these stable states handles, because they can potentially arrive while
in the transient state M evict. If a message arrives, that can be handled by the logical
start state, we know that the directory received a request before the arrival of the initial
message, causing the directory to forwarded the request. However if the forwarded
request is one that is handled by the logical end state, then the directory received a
request after our initial message.

Given that we have received a forwarded message and we have determined in which
logical state the directory sees the cache in, which informs the cache and allows it to
deduce the ordering of requests, how do we then handle this message? As mentioned
before, we have two cases to consider: (1) request is handled by the logical start state,
meaning that another request is ordered before and (2) the request is handled by the
logical end state which means a a request was ordered after our initial request.

Case (1) Handled by Logical Start State : We have deduced that the forwarded message

3.5. Performing Optimizations 19

Figure 3.4: S→M Transaction in MSI Protocol

relates to the the logical start state and that the directory received our request after. In
this situation it is critical that the cache respond immediately to the request without
delay, crucially the cache must not continue to wait for its original response because
this could cause deadlock to arise. For example, suppose that two caches C1 & C2
both currently is State S, simultaneously initiate the S→M Transaction (see Figure
3.4), thereby issuing GetM requests to the directory. Suppose, that the directory breaks
the tie by ordering C1’s request before C2’s, therefore it sends an invalidate to C2,
allowing C2 to determine that its request is ordered after as this request is handled
by its logical start state S. If C2 were to stall this request and continue to wait for the
original message, then once the directory processes C2’s GetM request it will forward it
to C1, the current owner. However, C1 cannot fulfil this request, until C2 has responded
to the invalidate, which causes a circular dependency and therefore a deadlock.

Given that C2 must respond to the forwarded message, what transient state must it tran-
sition to now? The problem is that the directory has transitioned state after the cache
had sent the original request, therefore the logical start state might change. In general,
the cache must cancel its original transaction and issue a new request to transition to M
state, however most directory protocols like MSI, issue the same request in all stable
states when requesting M state. Therefore, it is not necessary to cancel the original
transaction, but continue with the transaction as if it was sent while in a different sta-
ble state. In this case: after C2 receives the invalidate it logically transitions to state I,
therefore when the directory sees C2’s GetM request it will proceed with the transaction
as if C2 is is state I. Therefore, after C2 processes the invalidate it must transition to
a stable state that reflects the fact that it has logical start state I and performed a store
(issuing a GetM), therefore it will transition to I store. If this transient state does not
yet exist then we create it, but then how to we proceed with the transaction if we do not
know how the directory will respond? In some cases the response from the directory
changes depending on the stable state we begin from, therefore we need to inspect the
directory controller and determine which response will be sent, and then proceed to
handle this accordingly.

Case (2) Handled by Logical End State : In this scenario we have determined that

20 Chapter 3. Designing the MLIR Compiler

the forwarded message is handled by the logical end state, meaning that the request
was ordered after our own. Because we know that this request was order after, this
means that the directory has already responded to our request and the response is in
flight, we have just not received it yet. Therefore, it is safe to continue to wait for
the response to arrive, without risking deadlock. This is known as stalling, and is the
most straightforward way of handing forwarded messages that are associated with the
logical end state. Stalling however is not the most efficient method for handling this
scenario as it reduces the degree of concurrency between the two racing transaction,
but it can also block the network messages for other blocks.

Because the forwarded request is associated with the logical end state, we may not yet
have the permissions to fulfil this request until we have completed our own transaction.
For example: if we are in I load in the transaction in Figure 3.2 and we receive a for-
warded Fwd GetM, we cannot yet fulfil this request until we have fully transitioned to
state M. However, instead of stalling, we can transition to a suitable transient state that
reflects the fact that we still need to fulfil this request after we received the response
from the directory. Thus, in essence we stall the request, but we unblock the network
and allow other messages through. Although this optimization is implemented in Pro-
toGen, it is not currently implemented in ProtoGen-MLIR due to time constraints for
completing this project. Any requests associated with the logical end state are stalled,
until the original response arrives. Therefore, in scenarios in which the end state can-
not be determined, as discussed before, ProtoGen-MLIR will stall this request until it
is able to be processed.

However, it is possible to be more optimistic and respond to forwarded messages with-
out stalling or deffering the message. For example, consider the scenario in the I→S
transaction in the MSI protocol. A cache performs a load by issuing a GetS request
to the directory transitioning to state I load. While in this transient state it receives a
forwarded Inv message; clearly this message is associated with the logical end state
S. However, instead of stalling we can immediately send the Inv Ack to the required
cache, because the current cache will become invalidated anyway. However, we still
haven’t received the GetS Ack response from the directory, which we know must ar-
rive. Therefore, we have to transition to a transient state with logical start state I and
waiting for a GetS Ack from the directory.

From this reasoning we implement these optimizations on the protocol by again lever-
aging the MLIR supporting infrastructure. Similarly, to the method of removing await
statements from the IR and generate additional transient states (discussed in Section
3.4), this step also involved directly matching and modifying the IR in place. We
therefore match on every transient state defined in the protocol after removing await
statements, and apply the following steps:

1. We get the logical start state from the transient state name i.e. M evict→ M

2. We then discover what messages are handled by this logical start state i.e. Fwd GetM,
each of which is then considered individually in the remaining steps

3. We handle the message as if in the stable state, executing the rules defined in the
protocol

3.6. The Murphi Dialect 21

4. If this handler causes a transition to a new state, then we have to a transition to
a new transient state that reflects this change. i.e. when a Fwd GetM arrives
in state M, this causes a transition to state I. This then causes the transition
M evict→I evict

5. If this transition is to a state that does not yet exists, then we create it

6. If we created a new state, then we need to inspect at the directory controller and
determine which message will be send as the directory sees us in a new state. We
can add the final transition from transient state to stable state, when this message
arrives.

7. Add any newly created transients states to the list still to be considered.

3.6 The Murphi Dialect

The Murphi Dialect is the MLIR compilation target, from which we can then generate
valid Murphi code. The Murphi Dialect is functionally simpler than the PCC Dialect
and only defines a set of function that represent the cache and directory controllers.
Listing 3.8 shows such a function in the Murphi Dialect. The Dialect includes opera-
tions, similar to ones in the PCC Dialect such as sending messages and updating the
state, but has no guarantees on transaction atomicity, therefore there is no such con-
structs such as await. The Murphi dialect also contains no reference to logical states,
as this information is no longer needed for verification, and used only for implementing
optimizations.

Conversion between PCC and Murphi dialects is called lowering, and this is usually
done as the final step after all optimizations have been applied. More complex MLIR
pipelines may lower through multiple dialects before reaching the desired output target,
possibly with additional optimization realised at each stage, however ProtoGen-MLIR
has only one such step.
” murphi . f u n c t i o n ” () ({

%msg = ” murphi . m s g c o n s t r ” () {msgType=” Reques t ” , p a r a m e t e r s =[” GetM ” , ” ID ” , ” d i r e c t o r y . ID ”]} : () −> i 6 4
” murphi . send ”(%msg) { n e t I d =” r e q ”} : (i 6 4) −> ()
” murphi . s e t ” () { i d =” S t a t e ” , v a l u e =” c a c h e I l o a d ”} : () −> ()
” murphi . r e t u r n ” () : () −> ()

}) {machine =” cache ” , c u r s t a t e =” c a c h e I ” , a c t i o n =” l o a d ”} : () −> ()

Listing 3.8: Murphi Dialect Function

Some operations can easily be lowered simply by converting between the equivalent
operations in the respective dialect, like the ConstantOp in Listing 3.9. However, some
operations such as messages require a more complex conversion. Murphi supports
only a single message type, therefore message construction operations also require a
type conversion between dialects. Also additional operations are inserted, for specific
boilerplate constructs that must be introduced in the final Murphi code, such as for
scalarsets as detailed in section 2.4.

/ * PCC D i a l e c t * /
%0 = ” pcc . c o n s t a n t ” () { v a l u e = 3} : () −> i 6 4

22 Chapter 3. Designing the MLIR Compiler

/ * Murphi D i a l e c t * /
%0 = ” murphi . c o n s t a n t ” () { v a l u e = 3} : () −> i 6 4

Listing 3.9: PCC to Murphi Constant Op Conversion

3.7 Murphi Backend

After the final step of the MLIR pipeline is complete we are left with a valid and
optimized protocol specified through MLIR operations in the Murphi Dialect from
which we are ready to generate valid Murphi code. The MLIR Operations themselves
only define the behaviour or our cache coherence protocol and thus to generate valid
Murphi code we must define additional constructs to produce the Murphi code which
can be validated.

A Murphi program consists of four parts: (1) forward declarations of all types, global
variables and constants; (2) any additional procedures or functions; (3) a set of rules
which can be executed when a condition is satisfied and (4) any invariants that must
be maintained for each new state explored. To generate a valid Murphi program to
successfully validate the protocol we must define all the necessary types and constants,
including cache and directory definitions as well as a general message type; we must
specify the behaviour of the cache and directory controller through procedures; and
finally define a set of rules which Murphi can execute, for example when a message
appears on a network or a cache wisher to perform a load.

Defining Appropriate types. Most types from PCC can easily be converted to Murphi
such as integer ranges and sets, due to their frequent use in cache coherence protocols
they are well supported in Murphi. Networks of any kind (Ordered and Unordered)
can also easily be implemented in Murphi through boiler-plate declarations. However,
types for the cache can directory controllers vary depending on the protocol, especially
with regards to the auxiliary state they store. Luckily type specifications from PCC are
naturally translatable to Murphi, Listing 3.10 shows the cache definition for a cache
controller in the MI protocol.
ENTRY cache : r e c o r d

S t a t e : c a c h e s t a t e ;
Perm : Access ;
c l : ClValue ;

end ;

Listing 3.10: Murphi Cache Type Definition

More difficult however is managing messages in the simulation. Networks in Murphi
support the sending of a single message type, however most protocols use messages
of different types that include different fields: for example in the MI Protocol a Resp
message includes a cl field, while for example an Ack message does not. To handle
this case we introduce a global Message type which can be used to represent any
message and is a union of all the potential fields a message can contain. The global
message declaration for the MI protocol can be seen Listing 3.11, and includes the
cl field. To correctly construct messages of a specific type we then include factory

3.7. Murphi Backend 23

functions to return an instance of such a message that includes the necessary fields;
any unused fields are set as undefined (see Listing 3.12). This modification does not
change the protocol in any way and we can safely make this change without affecting
the verification.
Message : r e c o r d

a d r : Address ;
mtype : MessageType ;
s r c : Machines ;
d s t : Machines ;
c l : ClValue ;

end ;

Listing 3.11: Murphi Message Type

f u n c t i o n Ack (a d r : Address ; mtype : MessageType ; s r c : Machines ; d s t : Machines) :
Message ;

v a r msg : Message ;
b e g i n

msg . a d r := a d r ;
msg . mtype := mtype ;
msg . s r c := s r c ;
msg . d s t := d s t ;
msg . c l := u n d e f i n e d ;
r e t u r n msg ;

end ;

Listing 3.12: Murphi Message Type

Defining Cache and Directory Controllers. Once we have generated all the neces-
sary types and constants that will be used during the simulation, we can begin to create
the cache and directory controllers. As detailed, cache and directory controllers are
effectively FSMs and can therefore be implemented as a simple function which per-
forms an action based on the current cache state and the message it has received. In
Listing 3.13, we present how such a function is implemented: this function switches
over the current cache state, and then over the input message type to call the correct
message handler. The message handler will then execute the correct MLIR instructions
generated from the compiler, however the MLIR Operations too have to converted to
valid Murphi.
f u n c t i o n Func cache (inmsg : Message ; m: OBJSET cache) : b o o l e a n ;
v a r msg : Message ;
b e g i n

a l i a s a d r : inmsg . a d r do
a l i a s c a c h e e n t r y : i c a c h e [m] . CL[a d r] do

/ * Swi tch ove r t h e c u r r e n t cache S t a t e * /
s w i t c h c a c h e e n t r y . S t a t e

c a s e cache M :
/ * Swi tch ove r t h e Message Rece ived * /
s w i t c h inmsg . mtype

c a s e Fwd GetM :
/ * C a l l t h e c o r r e c t h a n d l e r f u n c t i o n * /
handle cache M Fwd GetM (m, inmsg) ;

/ * −− A d d i t i o n a l Msg Case S t a t e m e n t s −− * /
e n d s w i t c h ;

/ * −− A d d i t i o n a l S t a t e Case S t a t e m e n t s −− * /
e n d s w i t c h ;

e n d a l i a s ;
e n d a l i a s ;

r e t u r n t r u e ;
end ;

24 Chapter 3. Designing the MLIR Compiler

Listing 3.13: Murphi Cache Handler FSM

To execute the correct message handler we use a simple function naming scheme of
handle <cur state> <msg type> as only one such handler will ever exist, this al-
lows us to specify the directory and cache controllers quite easily for each state (in-
cluding transient states) and every message type. Therefore, all that is then additionally
required is to correctly complete all the necessary handler functions which are detailed
by the MLIR operations from the compiler. Listing 3.14 shows the raw MLIR Op-
erations for the handler and Listing 3.15 show the conversion to Murphi. Note that
in the Murphi handler in Listing 3.15 must forward declare any SSA values from the
MLIR Operations for a valid murphi compilation: i.e. var msg: Message; is for-
ward declaring the SSA value for the murphi.msg constr Operation. We can see that
there is a fairly natural translation from MLIR Operations to Murphi, however this step
in particular proved quite challenging. Specifically, we faced challenges in construct-
ing correct Murphi statements with the parameters provided by the MLIR Operations.
For example, consider the msg const Op in Listing 3.14, which uses as a parameter
Fwd GetM.src to refer to the origin of the input message. This is challenging to convert
to Murphi directly because, Murphi has no concept that the concrete type Fwd GetM ex-
ists because we unified all message types. Also the message it is referencing is passed
in as a parameter to the handle function so we cannot refer to as Fwd GetM. To solve
this, we need to statically analyze if the parameter is referencing the input message,
and if so rewrite it correctly. However, to completely solve this problem, we would
ideally modify the IR to refer to these parameters directly through MLIR references,
which would make generating Murphi much easier as we do not have to perform the
static analysis step. However we decided to focus our efforts on other aspects of the
compiler, and leave this improvement as future work.
” murphi . f u n c t i o n ” () ({

%6 = ” murphi . m s g c o n s t r ” () {msgType = ” Resp ” , p a r a m e t e r s = [” GetM Ack D ” , ” ID ” , ”Fwd GetM . s r c ” , ” c l ”]}
” murphi . send ”(%6 , %2) : (i64 , i 6 4) −> ()
” murphi . s e t ” () { i d = ” S t a t e ” , v a l u e = ” c a c h e I ”} : () −> ()
” murphi . r e t u r n ” () : () −> ()

}) { a c t i o n = ”Fwd GetM ” , c u r s t a t e = ” cache M ” , machine = ” cache ”} : () −> ()

Listing 3.14: Murphi Operations for handling Fwd GetM in state M

p r o c e d u r e handle cache M Fwd GetM (inmsg : Message ; m: OBJSET cache) ;
v a r msg : Message ;
b e g i n

a l i a s a d r : inmsg . a d r do
a l i a s c a c h e e n t r y : i c a c h e [m] . CL[a d r] do

msg := Resp (adr , GetM Ack D , m, inmsg . s r c , c a c h e e n t r y . c l) ;
S e n d r e s p (msg) ;
c a c h e e n t r y . S t a t e := c a c h e I ;

e n d a l i a s ;
e n d a l i a s ;

end ;

Listing 3.15: State M, Fwd GetM Handler (Murphi)

Rulesets. Once we have have defined the cache and directory controllers and all addi-
tional boiler-plate helper functions we must define a ruleset that specifies what actions

3.7. Murphi Backend 25

Murphi can execute when running the simulation. Logically, a cache can initiate a
transaction in any stable state, therefore we define a ruleset that allows any cache con-
troller to issue load, store & evict instructions in any stable state (See Listing 3.16).
Furthermore, we define a ruleset for each network to pass a message to the cache con-
troller or directory controller when a message appears on the network.
r u l e s e t m: OBJSET cache do

r u l e s e t a d r : Address do
a l i a s c l e : i c a c h e [m] . CL[a d r] do

/ * I f i n s t a t e I cache can pe r fo rm a l o a d * /
r u l e ” c a c h e I l o a d ”

c l e . S t a t e = c a c h e I
==>

SEND cache I load (adr , m) ;
e n d r u l e ;

/ * −− a d d i t i o n a l r u l e s * /
e n d a l i a s ;

e n d r u l e s e t ;
e n d r u l e s e t ;

Listing 3.16: Cache Rulesets

Invariants. Finally we can specify invariants which must be maintained for every
explored state by Murphi. Listing 3.17 shows the implementation of the Write Seri-
alization invariant detailed in Section 2.1, which check that no two caches can be in
M(odified) state. If at any point while Murphi is verifying the protocol would this
invariant be breached, Murphi would return a failed verification.
i n v a r i a n t ” Wr i t e S e r i a l i z a t i o n ”

f o r a l l c1 : OBJSET cache do
f o r a l l c2 : OBJSET cache do

f o r a l l a : Address do
(c1 != c2
& i c a c h e [c1] . CL[a] . S t a t e = cache M)
−>
(i c a c h e [c2] . CL[a] . S t a t e != cache M)

e n d f o r a l l
e n d f o r a l l

e n d f o r a l l ;

Listing 3.17: Write Serialization Invariant

Compilation. The generated Murphi file is then compiled with the Murphi compiler,
which generates C++ code. This code is then finally compiled with g++ into an exe-
cutable and run. Murphi will then output the number of states explored upon successful
verification, otherwise it will present the trace that lead to the counterexample.

Chapter 4

Testing

To test ProtoGen-MLIR we used it to compile standard MOESI protocols namely (MI,
MSI & MESI) defined in PCC. The generated Murphi files were then compiled and
executed to validate the protocol. We tested both the unoptimized compilation (with
atomic transactions) as well as the optimized versions. We successfully compiled all
protocols without optimizations, and a fully successful optimized compilation with
MI. With MSI we achieved a partial successful compilation with optimizations, but we
failed to produce a verifiable protocol with MESI.

4.1 MI Protocol

The MI Protocol, contains only two states: M(odified) for reading and writing; and
I(invalid) for evicted or non cached blocks (See Figure 4.1). We specified this proto-
col baseline protocol in PCC (See Appendix A), which was then compiled as a stable
protocol with atomic transactions. This introduces the additional transient states re-
quired for intermediate steps of a transaction and the generated protocol is shows in
Figure 4.2. This atomic protocol was then compiled to Murphi, and was successfully
validated for both deadlock freedom and the Write Serialization invariant detailed in
Listing 3.15.

Figure 4.1: Caption

Upon successful compilation and verification of the stable protocol, we attempt to
introduce additional concurrency through the methods detailed in Section 3.5. Figure

27

28 Chapter 4. Testing

Figure 4.2: Caption

4.3 is the resulting protocol after compiling with optimizations enabled. It shows the
addition of a transient state I evict which was discovered. With the addition of this
new transient state and the necessary transitions, we were able to remove the atomic
transaction constraint and successfully validate the protocol for deadlock freedom and
Write Serialization, without the use of locks.

This additional transient state was discovered by considering the state M evict, and
realising that a Fwd GetM message can arrive, which is associated with the logical start
state M. Knowing that after handling this request, the the cache will transition to state I
(see 4.2), we must therefore transition to a suitable transient state to reflect the fact we
are logically in state I and having performed an evict, hence I evict. This transient
state does not currently exist in the protocol, therefore ProtoGen-MLIR created it,
adding the transition from the M evict state. Finally, when ProtoGen-MLIR created
this new state it realised that it was still going receive a PutM Ack message from the
directory, therefore the transition from I evict to I is added.

Figure 4.3: Optimized MI Protocol

4.2 MSI Protocol

The MSI protocol is a more optimal protocol than MI due the addition of the S(hared)
state, allowing multiple caches to cache the same read-only copy of a block, thus util-
ising Multiple Reader from the SWMR invariant. Again we are able to verify the cor-
rectness this stable protocol using ProtoGen-MLIR, by compiling and executing the
compiled Murphi file, and we were able to prove Write Serialization was maintained.

4.2. MSI Protocol 29

We provide the full protocol specified in PCC in Appendix B. The generated protocol,
including all transient states can be seen in Figure 4.4. We also choose to present the
directory controller in Figure 4.5. In the MI Protocol, the directory controller does
not change because it has no transient states, due to its simplicity. However, in MSI
when the directory receives a GetS from a cache while in state M, it needs to invalidate
the current owner, and await until it receives a WB (WriteBack) to maintain coherence.
This transaction in the directory introduces the additional transient state in the direc-
tory M GetS as shown in Figure 4.5.

Figure 4.4: MSI Protocol (Atomic Transactions)

Compiling the MSI protocol with optimizations enabled yielded the FSM in Figure
4.6. Additional transient states are highlighted in green, with additional transitions
emphasised in orange. Again we can see that ProtoGen-MLIR considers the M evict
state, realising that two forwarded messages can arrive for its logical start state, notably
Fwd GetM & Fwd GetS, which need to transition to I evict & S evict respectively.
The I evict state did not exist, therefore it was created, similarly to MI. Similarly,
ProtoGen-MLIR considered states S store & S evict, with logical start state S, and
handled the possible forwarded Inv message accordingly. Although, this generated
cache controller is correct, in the sense that it allows us to run the protocol without the
use of locks, we were unable to verify it correctly in Murphi.

The reason for the failed verification is due to the fact, that the directory can transition
state before a transaction message is received at the directory. Consider the case in
MSI when a cache is in state S and wishes to transition to state M, with a S→M
transaction, and issues a Upgrade message to the directory. However, suppose that

30 Chapter 4. Testing

Figure 4.5: MSI Directory Controller

when in the transient state S load an Inv message in received, causing the cache to
transition to state I store (see Figure 4.6). This was caused by another cache issuing
an Upgrade request to the directory, causing it to send Inv messages to all sharers, and
the directory is now in state M. However, when the initial Upgrade message is received
at the directory there is no such handler, which causes the deadlock.

The key to overcoming this issue, is adding additional logic at the directory to realise
that an Upgrade message can be re-interpreted as a GetM in state M and fulfil the
request. This was realised too late on in development to change, but we present a
solution as future work in section 5.2. However, manually updating the Murphi file to
include this logic, yielded a verification without deadlocks, signalling that ProtoGen-
MLIR is still functioning correctly.

4.3 MESI Protocol

MESI is a natural extension of the MSI protocol, and introduces the E(xclusive) state,
which is issued to a cache on load requests, when the directory has no other sharers.
Exclusive state allows a cache to perform write operations without again requesting
permissions from the directory. Consider a process that is single threaded and therefore
no sharers, this additional state allows the cache to silently upgrade its permissions
without the delay of contacting the directory.

Once again we specify this protocol using PCC and the full definition can be seen
in Appendix C. We can successfully compile and verify the protocol with atomic
transactions enabled and produce the FSM detailed in Figure 4.7.

However, attempting to compile MESI with optimizations enabled did not yield a veri-
fiable protocol. MESI suffers from the same problem discovered in MSI, but ProtoGen-
MLIR also failed to find key transitions to prevent deadlock. For example, while
considering the E evict state, it failed to discover and handle the Inv message and
transition to I evict, which also was not created.

The reason that the protocol cannot be verifies is because the MESI protocol suffers

4.3. MESI Protocol 31

Figure 4.6: Optimized MSI Protocol

Figure 4.7: MESI Protocol

32 Chapter 4. Testing

from another condition that is not handled in ProtoGen-MLIR. In MESI, both stable
states M & E can receive the same forwarded message Fwd GetS. This is a problem
because consider a transient state that has logical start state E i.e. E evict. ProtoGen-
MLIR then assumes the message Fwd GetS is associated with the logical start state E,
however this message could be associated with the potential logical end state M. To
solve this we need to pre-process the stable protocol and detect when these duplicate
messages can arrive, and rename to break this ambiguity.

This pre-processing step is also required to aid with discovering branches in transac-
tions to determine the logical end states. Therefore, it is a key step not only in being
able to optimize the MESI protocol, but also to introduce additional concurrency in
all protocols. With the limited time available it was difficult to fully implement this
step, therefore we are not including it as part of this project, although work has been
made towards it. However, in section 5.2 we present it as future work for part 2 of this
project.

To summarise, these results are somewhat expected and align with the findings from
ProtoGen. We also recognise how such errors are occurring, and understand that they
do not breach our reasoning discussed in section 3.5

Chapter 5

Conclusions and Future Work

5.1 Summary

ProtoGen-MLIR is a novel approach to compiling stable state cache coherence proto-
cols, specified in PCC. It leverages MLIR for its underlying compiler infrastructure, to
implement the optimizations presented by ProtoGen [8]. ProtoGen-MLIR includes the
following key contributions: a PCC frontend taht uses an ANTLR4 parser to construct
an AST from which we can emit MLIR; an MLIR pipeline which modifies the IR to
introduce transient states and optimizations and finally a Murphi backend implemen-
tation, which generates valid Murphi code for formal verification.

In section 2.1 we detailed the challenges of designing correct and efficient coherence
protocols due to the large number of transient states and unexpected messages. We
further detailed how coherence protocols can more naturally be reasoned about from
stable definitions, and in section 3.1 we presented the PCC DSL, which provides a
elegant method for specifying coherence protocols assuming atomic transactions.

Next in chapter 3 we detailed the implementation of the MLIR compiler. Firstly, in
section 3.2, we present parsing PCC with ANTLR4 to generate an AST, which we tra-
verse to emit un-optimized MLIR Operations in the PCC Dialect, detailed in section
3.3. In section 3.4, we detailed the process of decomposing transactions specified in
PCC into transient states. We also present how additional locking operations must be
inserted to allow such protocols to be verified formally with Murphi. In section 3.5 we
detail the methodology and reasoning behind the optimizations to enabling us to lift
the atomic transactions constraint and allow caches to synchronize without locks. We
show how we can handle forwarded messages, by recognising their association with
either logical start or end states, and take action accordingly, possibly by introduc-
ing additional transient states. In section 3.6 we present the final stage of the MLIR
pipeline, by converting our protocol operations to a generic Murphi IR. This generic IR
is then consumed by a Murphi backend implementation that can successfully generate
valid Murphi code, which when compiled with the Murphi compiler, allows for formal
verification.

Finally in chapter 4 we present our resulting for compiling the popular MOESI proto-

33

34 Chapter 5. Conclusions and Future Work

cols; MI, MSI & MESI. We successfully compiled all protocols without optimizations
enabled, and produced a correct and verifiable Murphi output. Furthermore, we man-
aged to successfully implement the optimizations for the MI protocol and partially for
the MSI protocol, allowing us to lift the atomic transactions constraint, and verified
these generated protocol for correctness with Murphi. Unfortunately, we failed to ver-
ify MESI with optimization enabled, but we detail the challenges which this protocol
presents, and plans for how to proceed in part 2 of this project.

5.2 Plans for MInf Part 2

ProtoGen-MLIR is a robust implementation of the key components of the compilation
pipeline. However, ProtoGen-MLIR does not come without its shortcomings. In this
section we present some features which we seek to implement in part 2 of this project.

Optimized Compilation for full MOESI protocols. Although ProtoGen-MLIR can
successfully compile stable version of all the MOESI protocols, it successfully applied
the required optimizations to remove the atomic transaction constraints fully for only
the MI protocol, and paritally for the MSI Protocol. This would involve the addition
of the following: (1) the ability for the compiler to rename messages that arrive in the
same stable state and (2) allowing the directory to reinterpret requests correctly for
stale requests, therefore allowing successfully compilation of all MOESI protocols.

Respond to Forwarded Messages in the Logical End State. ProtoGen-MLIR does
not support responding to forwarded requests that are associated with the logical end
state, instead choosing to stall these requests until the cache has transitioned to the
correct stable state. As mentioned stalling is highly inefficient due other messages be-
coming blocked on the network. Implementing the ability for non-stalling protocols, to
allow the cache controller to consume the message and possibly optimistically respond
to the message if it is able to. This would be a non-trivial task and would involve pre-
processing the stable protocol to determine branches in all possible transactions before
applying the optimizations, however the resulting protocols will be non-stalling.

Remove Equivalent States. Another potential for optimization is removing states
from the optimized protocol that are equivalent. For example, consider the gener-
ated optimized MI protocol in Figure 4.3. Notice that we could potentially join states
I load and I store into a single state. We can do this, because both accept the same
message and transition to the same stable state. However, this stage must be performed
as a final step, as state naming is key to generating an optimized protocol.

Support for Consistency-Directed Protocols. Consistency-agnostic protocols, are
the set of protocols in which writes are propagated to other caches synchronously,
meaning a write is visible to all caches before that transaction completes. This gives the
illusion (to the processor) that they are interacting with an atomic memory system[7],
as the coherence protocol effectively makes the caches invisible. The processor can
perform loads and stores to satisfy its consistency model without coordinating with the
coherence protocol. All the MOESI protocols naturally fit into this category, as for a
processor write to occur the cache must obtain that block is state M, before fulfilling
the request. Conversely, consistency-directed protocols, allow writes to be propagated

5.2. Plans for MInf Part 2 35

to other caches asynchronously, meaning a cache can allow a write to occur before it
has become visible to all caches. This clearly could result in incoherence as potentially
two different caches could hold different versions of the data. However, as long as we
can ensure that the writes are propagated to the caches according to the consistency
model, then we can still guarantee that a cache will see the most up-to-date data when
it is read from or written to. Consistency-directed protocols are typically deployed in
accelerators such as GPUs, which have seen a huge boom in recent years, therefore
supporting such protocols is extremely important.

Bibliography

[1] S. Chandra, B. Richards, and J.R. Larus. Teapot: a domain-specific language for
writing cache coherence protocols. IEEE Transactions on Software Engineering,
25(3):317–333, 1999.

[2] David L. Dill. The murφ verification system. Computer Aided Verification, page
390–393, 1996.

[3] David L Dill and Ralph Melton. Murphi annotated reference manual, Jul 1996.

[4] Aarti Gupta, Malay K. Ganai, and Chao Wang. Sat-based verification methods
and applications in hardware verification. Formal Methods for Hardware Verifi-
cation, page 108–143, 2006.

[5] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. Mlir: A compiler infrastructure for the end of moore’s law, 2020.

[6] Llvm. llvm/circt.

[7] Vijaya Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer
on Memory Consistency and Cache Coherence (Second Edition). Morgan &
Claypool Publishers, San Rafael, 2020.

[8] Nicolai Oswald, Vijay Nagarajan, and Daniel J. Sorin. Protogen: Automati-
cally generating directory cache coherence protocols from atomic specifications.
2018 ACM/IEEE 45th Annual International Symposium on Computer Architec-
ture (ISCA), 2018.

[9] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd
edition, 2013.

[10] David A. Patterson. Computer Organization and Design (5th edition). Elsevier,
Amsterdam, 2014.

37

Appendix A

MI.pcc

NrCaches 3

Network { Ordered fwd ; / / FwdGetS , FwdGetM , Inv , PutAck
Unordered r e s p ; / / Data , InvAck
Unordered r e q ; / / GetS , GetM , PutM
} ;

Cache {
S t a t e I ;
Data c l ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;
Data c l ;
ID owner ;

} d i r e c t o r y ;

Message Reques t {} ;

Message Ack {} ;

Message Resp{
Data c l ;

} ;

Message RespAck{
Data c l ;

} ;

A r c h i t e c t u r e cache {

S t a b l e { I , M}

/ / I /
P r o c e s s (I , s t o r e , S t a t e) {

msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;
S t a t e = M;
b r e a k ;

}
}

39

40 Appendix A. MI.pcc

P r o c e s s (I , load , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;
S t a t e = M;
b r e a k ;

}
}

/ / M /
P r o c e s s (M, load , M) {
}

P r o c e s s (M, s t o r e , M) {}

P r o c e s s (M, Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (M, e v i c t , S t a t e) {
msg = Resp (PutM , ID , d i r e c t o r y . ID , c l) ;
r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;
b r e a k ;

}
}

}

A r c h i t e c t u r e d i r e c t o r y {

S t a b l e { I , M}

/ / I /
P r o c e s s (I , GetM , M) {

msg = Resp (GetM Ack D , ID , GetM . s r c , c l) ;
r e s p . send (msg) ;
owner = GetM . s r c ;

}

/ / M /
P r o c e s s (M, GetM) {

msg = Reques t (Fwd GetM , GetM . s r c , owner) ;
fwd . send (msg) ;
owner = GetM . s r c ;

}

P r o c e s s (M, PutM) {
msg = Ack (Put Ack , ID , PutM . s r c) ;
fwd . send (msg) ;

i f owner == PutM . s r c {
c l = PutM . c l ;
S t a t e = I ;

}
}

}

Appendix B

MSI.pcc

NrCaches 3

Network { Ordered fwd ; / / FwdGetS , FwdGetM , Inv , PutAck
Unordered r e s p ; / / Data , InvAck
Unordered r e q ; / / GetS , GetM , PutM
} ;

Cache {
S t a t e I ;
Data c l ;
i n t [0 . . NrCaches] a c k s R e c e i v e d = 0 ;
i n t [0 . . NrCaches] a c k s E x p e c t e d = 0 ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;
Data c l ;
s e t [NrCaches] ID cache ;
ID owner ;

} d i r e c t o r y ;

Message Reques t {} ;

Message Ack {} ;

Message Resp{
Data c l ;

} ;

Message RespAck{
Data c l ;
i n t [0 . . NrCaches] a c k s E x p e c t e d ;

} ;

A r c h i t e c t u r e cache {

S t a b l e { I , S , M}

/ / I /
P r o c e s s (I , load , S t a t e) {

msg = Reques t (GetS , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when GetS Ack :

c l =GetS Ack . c l ;
S t a t e = S ;
b r e a k ;

}

41

42 Appendix B. MSI.pcc

}

P r o c e s s (I , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;
a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;
S t a t e = M;
b r e a k ;

when GetM Ack AD :
a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}
}

when Inv Ack :
a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

/ / S /
P r o c e s s (S , load , S) {}

P r o c e s s (S , s t o r e , S t a t e) {
msg = Reques t (Upgrade , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;
a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

S t a t e = M;
b r e a k ;

when GetM Ack AD :
a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}
}

when Inv Ack :
a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}

43

}

P r o c e s s (S , e v i c t , S t a t e) {
msg = Reques t (PutS , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;
b r e a k ;

}
}

P r o c e s s (S , Inv , I) {
msg = Resp (Inv Ack , ID , Inv . s r c , c l) ;
r e s p . send (msg) ;

}

/ / M /
P r o c e s s (M, l o a d) {
}

P r o c e s s (M, s t o r e , M) {}

P r o c e s s (M, Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (M, Fwd GetS , S) {
msg = Resp (GetS Ack , ID , Fwd GetS . s r c , c l) ;
r e s p . send (msg) ;
msg = Resp (WB, ID , d i r e c t o r y . ID , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (M, e v i c t , S t a t e) {
msg = Resp (PutM , ID , d i r e c t o r y . ID , c l) ;
r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;
b r e a k ;

}
}

}

A r c h i t e c t u r e d i r e c t o r y {

S t a b l e { I , S , M}

/ / I /
P r o c e s s (I , GetS , S) {

cache . add (GetS . s r c) ;
msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (I , GetM , M) {
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;
r e s p . send (msg) ;
owner = GetM . s r c ;

}

/ / S /
P r o c e s s (S , GetS) {

cache . add (GetS . s r c) ;

44 Appendix B. MSI.pcc

msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (S , Upgrade) {
i f cache . c o n t a i n s (Upgrade . s r c) {

cache . d e l (Upgrade . s r c) ;
msg = RespAck (GetM Ack AD , ID , Upgrade . s r c , c l , cache . c o u n t ()) ;
r e s p . send (msg) ;
S t a t e =M;
b r e a k ;

} e l s e {
msg = RespAck (GetM Ack AD , ID , Upgrade . s r c , c l , cache . c o u n t ()) ;
r e s p . send (msg) ;
S t a t e =M;
b r e a k ;

}
msg = Ack (Inv , Upgrade . s r c , Upgrade . s r c) ;
fwd . mcas t (msg , cache) ;
owner = Upgrade . s r c ;
cache . c l e a r () ;

}

P r o c e s s (S , PutS) {
msg = Resp (Put Ack , ID , PutS . s r c , c l) ;
fwd . send (msg) ;
cache . d e l (PutS . s r c) ;

i f cache . c o u n t () == 0{
S t a t e = I ;
b r e a k ;

}
}

/ / M /
P r o c e s s (M, GetS) {

msg = Reques t (Fwd GetS , GetS . s r c , owner) ;
fwd . send (msg) ;
cache . add (GetS . s r c) ;
cache . add (owner) ;

a w a i t {
when WB:

i f WB. s r c == owner{
c l = WB. c l ;
S t a t e =S ;

}
}

}

P r o c e s s (M, GetM) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;
fwd . send (msg) ;
owner = GetM . s r c ;

}

P r o c e s s (M, PutM) {
msg = Ack (Put Ack , ID , PutM . s r c) ;
fwd . send (msg) ;
cache . d e l (PutM . s r c) ;

i f owner == PutM . s r c {
c l = PutM . c l ;
S t a t e = I ;

}
}

}

Appendix C

MESI.pcc

NrCaches 3

Network { Ordered fwd ; / / FwdGetS , FwdGetM , Inv , PutAck
Unordered r e s p ; / / Data , InvAck
Unordered r e q ; / / GetS , GetM , PutM
} ;

Cache {
S t a t e I ;
Data c l ;
i n t [0 . . NrCaches] a c k s R e c e i v e d = 0 ;
i n t [0 . . NrCaches] a c k s E x p e c t e d = 0 ;

} s e t [NrCaches] cache ;

D i r e c t o r y {
S t a t e I ;
Data c l ;
s e t [NrCaches] ID cache ;
ID owner ;

} d i r e c t o r y ;

Message Reques t {} ;

Message Ack {} ;

Message Resp{
Data c l ;

} ;

Message RespAck{
Data c l ;
i n t [0 . . NrCaches] a c k s E x p e c t e d ;

} ;

A r c h i t e c t u r e cache {

S t a b l e { I , S , E , M}

/ / I /
P r o c e s s (I , load , S t a t e) {

msg = Reques t (GetS , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when GetS Ack :

c l =GetS Ack . c l ;
S t a t e = S ;
b r e a k ;

45

46 Appendix C. MESI.pcc

when GetM Ack D :
c l =GetM Ack D . c l ;
S t a t e = E ;
b r e a k ;

}
}

P r o c e s s (I , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;
a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

c l =GetM Ack D . c l ;
S t a t e = M;
b r e a k ;

when GetM Ack AD :
a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}
}

when Inv Ack :
a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

/ / S /
P r o c e s s (S , l o a d) {}

P r o c e s s (S , s t o r e , S t a t e) {
msg = Reques t (GetM , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;
a c k s R e c e i v e d = 0 ;

a w a i t {
when GetM Ack D :

S t a t e = M;
b r e a k ;

when GetM Ack AD :
a c k s E x p e c t e d = GetM Ack AD . a c k s E x p e c t e d ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}

a w a i t {
when Inv Ack :

a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

i f a c k s E x p e c t e d == a c k s R e c e i v e d {
S t a t e = M;
b r e a k ;

}

47

}

when Inv Ack :
a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;

}
}

P r o c e s s (S , e v i c t , S t a t e) {
msg = Reques t (PutS , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;
b r e a k ;

}
}

P r o c e s s (S , Inv , I) {
msg = Resp (Inv Ack , ID , Inv . s r c , c l) ;
r e s p . send (msg) ;

}

/ / M /
P r o c e s s (M, l o a d) {
}

P r o c e s s (M, s t o r e) {}

P r o c e s s (M, Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (M, Fwd GetS , S) {
msg = Resp (GetS Ack , ID , Fwd GetS . s r c , c l) ;
r e s p . send (msg) ;
msg = Resp (WB, ID , d i r e c t o r y . ID , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (M, e v i c t , S t a t e) {
msg = Resp (PutM , ID , d i r e c t o r y . ID , c l) ;
r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;
b r e a k ;

}
}

/ / E /
P r o c e s s (E , l o a d) {
}

P r o c e s s (E , s t o r e , M) {}

P r o c e s s (E , Fwd GetM , I) {
msg = Resp (GetM Ack D , ID , Fwd GetM . s r c , c l) ;
r e s p . send (msg) ;

}

P r o c e s s (E , Fwd GetS , S) {
msg = Resp (GetS Ack , ID , Fwd GetS . s r c , c l) ;
r e s p . send (msg) ;
msg = Resp (WB, ID , d i r e c t o r y . ID , c l) ;
r e s p . send (msg) ;

}

48 Appendix C. MESI.pcc

P r o c e s s (E , e v i c t , S t a t e) {
msg = Ack (PutE , ID , d i r e c t o r y . ID) ;
r e q . send (msg) ;

a w a i t {
when Put Ack :

S t a t e = I ;
b r e a k ;

}
}

}

A r c h i t e c t u r e d i r e c t o r y {

S t a b l e { I , S , E , M}

/ / I /
P r o c e s s (I , GetS , E) {

msg = Resp (GetM Ack D , ID , GetS . s r c , c l) ;
r e s p . send (msg) ;
owner = GetS . s r c ;

}

P r o c e s s (I , GetM , M) {
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;
r e s p . send (msg) ;
owner = GetM . s r c ;

}

/ / S /
P r o c e s s (S , GetS) {

msg = Resp (GetS Ack , ID , GetS . s r c , c l) ;
r e s p . send (msg) ;
cache . add (GetS . s r c) ;

}

P r o c e s s (S , GetM) {
i f cache . c o n t a i n s (GetM . s r c) {

cache . d e l (GetM . s r c) ;
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;
r e s p . send (msg) ;
S t a t e =M;

} e l s e {
msg = RespAck (GetM Ack AD , ID , GetM . s r c , c l , cache . c o u n t ()) ;
r e s p . send (msg) ;
S t a t e =M;

}
msg = Ack (Inv , GetM . s r c , GetM . s r c) ;
fwd . mcas t (msg , cache) ;
owner = GetM . s r c ;
cache . c l e a r () ;

}

P r o c e s s (S , PutS) {
msg = Resp (Put Ack , ID , PutS . s r c , c l) ;
fwd . send (msg) ;
cache . d e l (PutS . s r c) ;

i f cache . c o u n t () == 0{
S t a t e = I ;
b r e a k ;

}
}

/ / M /
P r o c e s s (M, GetS) {

msg = Reques t (Fwd GetS , GetS . s r c , owner) ;
fwd . send (msg) ;

49

cache . add (GetS . s r c) ;
cache . add (owner) ;

a w a i t {
when WB:

i f WB. s r c == owner{
c l = WB. c l ;
S t a t e = S ;

}
}

}

P r o c e s s (M, GetM) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;
fwd . send (msg) ;
owner = GetM . s r c ;

}

P r o c e s s (M, PutM) {
msg = Ack (Put Ack , ID , PutM . s r c) ;
fwd . send (msg) ;
cache . d e l (PutM . s r c) ;

i f owner == PutM . s r c {
c l = PutM . c l ;
S t a t e = I ;

}
}

/ / E /
P r o c e s s (E , GetS) {

msg = Reques t (Fwd GetS , GetS . s r c , owner) ;
fwd . send (msg) ;
cache . add (GetS . s r c) ;
cache . add (owner) ;

a w a i t {
when WB:

i f WB. s r c == owner{
c l = WB. c l ;
S t a t e =S ;

}
}

}

P r o c e s s (E , GetM) {
msg = Reques t (Fwd GetM , GetM . s r c , owner) ;
fwd . send (msg) ;
owner = GetM . s r c ;
S t a t e =M;

}

P r o c e s s (E , PutE) {
msg = Ack (Put Ack , ID , PutE . s r c) ;
fwd . send (msg) ;
cache . d e l (PutE . s r c) ;

i f owner == PutE . s r c {
S t a t e = I ;

}
}

}

