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Abstract

In this work, I build on the prior development of the CatchPhish Phishing Learning
and Detection Tool: a browser extension designed to improve phishing detection by
training users to detect malicious URLs. This prior work outlined the design of a
system intended to be a novel contribution to anti-phishing research, by combining
both passive indicators and active warnings into a system which actively aims to train
users.

For the cumulative year of this project, the analysis aspects of the CatchPhish system
have been established. This involved the development of a URL analysis server able to
scalably analyse URLs with a high degree of accuracy. Through evaluations of several
system designs, the final system was developed as a Microservices-based architecture
deployed on Google App Engine. A heuristic algorithm was developed on top of this
architecture, utilising numerous data sources to implement 46 distinct heuristics, to
facilitate the system’s analysis requirements. The final analysis server is found to per-
form well on both the system’s intended deployment scenarios: accurately identifying
both the high amounts of popular safe URLS typically visited by users, and also malign
phishing URLs. The evaluation of the overall system illustrates the utility of Catch-
Phish as a versatile research platform for experimenting with different anti-phishing
approaches.
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Chapter 1

Introduction

1.1 Overview

The use of phishing to exploit vulnerable users has a series of cascading impacts: with
the receipt of a perceptively benign email, users can find themselves at a loss, reputa-
tionally, financially or otherwise, through the critical mistake of clicking on a single
malicious link. With the harvesting of an employee’s private credentials, their work-
place can be exposed to infiltration. The repercussions of these attacks accumulate
to have a wider economic effect - in the United Kingdom (UK) alone, phishing is
expected to cost the economy as much as £280 million per year [38]].

One wrong click can leave many mercilessly exposed in our data-intensive world.

Malicious URLs (Uniform Resource Locators) are one of the most common phishing
delivery methods, whether through email or social media, for directing users towards
malicious content. By obfuscating the real destination of a URL through a few simple
manipulations, users can quickly find themselves on unknown and insecure web pages.
Therefore it is vital to tackle this massive worldwide problem - the motivation behind
companies such as Google [26]] looking into the future of URLs themselves [[73]].

There are three distinct approaches to tackling phishing today. These are:

Automated Phishing Detection - using automated techniques to capture existing pat-
terns of URL phishing signatures;

User Training - the best results being demonstrated from embedded environments,
which are difficult to simulate;

Security Indicators - with contextual information being provided to encourage posi-
tive user decisions.

The limitations of these techniques are similar in how they engage users. The ex-
isting analysis techniques with most promising detection accuracies utilise machine
learning, however these are rigid in their adaptability in comparison to analysing URL
syntax. The imperfection of detection methods results in a performance gap users are
left to bridge without the necessary training. The major issue with existing techniques

9



10 Chapter 1. Introduction

is therefore with how they include users in the system design loop [16] through the
information they present and when. Explainable analysis methods coupled with user
focused design in real-time embedded contexts is presented as a viable way forward.

1.2 Project Specification

The purpose of this work has therefore been to build a research platform which will
identify malicious phishing attacks through real-time analysis on URLs. The primary
goal is to improve phishing detection rates and reduce the zero day window (the aver-
age availability time before detection) of these attacks by developing users’ knowledge
of phishing. The main objectives of this work consequently have been to integrate ex-
isting phishing techniques and use the resulting analysis to educate users about the
URL signatures of phishing attacks.

The need for an integrated analysis approach is particularly important due to the sig-
nificant zero day window associated with phishing: 32 hours and 32 minutes in the
first half of 2014 [11]. The lack of standardisation within user warnings and their
prevalence can lead to users ignoring key warnings when presented to them; alongside
users’ general ignorance of phishing techniques. In the UK, only 72% of technology
users had heard of phishing as a term despite 95% of organisations saying that they
train end users [36].

The focus of this paper is on the development of the cloud-based server-side analysis
in the CatchPhish anti-phishing system. Built primarily for the Chrome platform [27]
as a browser extension, previous work on the project involved designing the tool and
implementing and evaluating the means for how users would interact with it. The
requirements derived from this previous work illustrate the motivation behind focusing
on the analysis objectives of the CatchPhish system in this project.

1.3 Results and Accomplishments

As part of this project, there were several significant pieces of work which are outlined
below:

e completed a review of suitable cloud technologies and evaluated possible system
designs whilst consulting with industry experts

e developed a microservices-based analysis infrastructure, facilitating recommended
system response times [43]]

e fused a mixture of data sources to implement a heuristic algorithm with 46 dis-
tinct phishing heuristics

e implemented improvements to the existing user interface, whilst adding user-
considerate data gathering features
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e performed a rigorous analysis of the completed system

e planned a future longitudinal study with users to derive success metrics and
gather typical usage data

Of these accomplishments, there are two particularly novel aspects to this work: the
integration of multiple analysis methods into a single system, with the results of this
analysis used to educate users; and the combination of passive and active warnings
to ensure constant threat awareness. This combination is what allows the CatchPhish
system to be a research framework which can both work as a portable embedded train-
ing system whilst demonstrating reasonable phishing detection accuracies - by placing
users firmly at the core of secure system design.

1.4 Report Structure

This report describes the most critical elements of this research. The remaining nine
chapters are structured as follows:

Chapter [2; discusses the previous work on the system and illustrates the goals for this

iteration of the project.

Chapter [3} presents an overview of phishing including the common approaches to
tackling it with an analysis of existing anti-phishing systems.

Chapter [d; outlines the work done to design the architecture of the system’s anal-
ysis server.

Chapter [5} provides an overview of, and key motivations behind, the server archi-
tecture and the anti-phishing heuristic algorithm.

Chapter [6: focuses on the implementation of specific improvements on the previ-
ous years work, required for future studies.

Chapter (7 discusses the steps taken to improve the system before deployment - ap-
propriate threshold selection and performance improvements.

Chapter 8 critically evaluates the analysis accuracy and UI improvements, whilst
outlining preparations for the longitudinal study.

Chapter [9: interprets the study results and presents a discussion on the ethics and
privacy considerations of the system.

Chapter [10; concludes this work and provides an overview of further work beyond
this project.






Chapter 2

Previous Work

The original motivation behind this project was the lack of tools which both prevent
users from visiting malicious URLs and effectively explaining the reasoning behind
this decision making. This is why previous work on this project aimed to solve the
question:

How might we develop a phishing learning and detection tool that will protect from,
and inform users about, malicious URLs?

This chapter outlines the previous work done to answer that question and critically
looks at areas for improvement.

2.1 Requirements Gathering and Design

The basis of this project was to develop on the work of the Faheem slackbot [9] by
implementing a system which would be able to present the user with explanatory URL
information in a more interventionist and integrated context: utilising work in anti-
phishing UI design [8]] and influenced by Volkamer et al.[65]] in approach.

A browser extension was selected to implement this system due to its ubiquity: al-
lowing for all web requests arising from the clicking of a URL within, or without, the
user’s browser to be filtered by this system. The Chrome browser was therefore cho-
sen because it has largest market share of any currently used browser (62.5% globally)
[66]: intended to give the tool as wide a reach as possible. Developing for this browser
is also well documented [24, 25].

The tool has been designed for, and tested with, users with above average technical
skills as the main userbase for the tool. Over-confidence in their knowledge of phish-
ing [67], the focus on this userbase in established work [8] and existing research on
how technical knowledge disseminates itself among the wider population were also
motivating reasons

!'Users with above average technical skills are most likely to be asked about and share their knowl-
edge with users with less adequate technical skills [68] 149} 53]].

13



14 Chapter 2. Previous Work

2.1.1 Interviews

Interviews with the selected userbase were conducted to gather requirements for two
purposes: to understand how much knowledge of phishing this userbase have and how
they would like to interact with the tool, with subsequent reference to the user interface
options available within a Chrome Extension. The participants were further separated
according to computer security experience. The results of 17 participants were anal-
ysed as part of these interviews, with each interview lasting around one hour.

2.1.1.1 Phishing Knowledge and Design Results

The results of the interviews demonstrated participants were largely able to detect
phishing emails and point out relevant indicators (the average success rate being 97.91%).
Participants largely knew the purpose of URLSs, but had less of an ability to adequately
read them. The participants particularly struggled with detecting more difficult aspects
of URL reading, such as detecting non-ASCII characters or understanding shortened
links. This lead to a conclusion that users do not understand URLs sufficiently to be
able to detect malicious indicators, a conclusion supported by existing research [3].

Participants had a variety of ideas of how and what should be presented in the Chrome
extension, with participants splitting into distinct groups based on the level of inter-
vention they wished for in the tool.

Based on these results, the Ul elements were chosen by selecting the most popular
features and integrating these into a compatible combination - whilst allowing options
for different user configurations.

2.1.2 Algorithm and Ul Design

Paper prototyping was carried out to develop these requirements into a usable UIL. The
design was largely based on the work of Althobaiti et al. [8] with minor functional
adaptions.

The design of the analysis algorithm was a key component for the tool to be explain-
able. The algorithm type was chosen to be a heuristic algorithm for two reasons
A lack of labelled data meant it would have been needlessly challenging to develop
a machine learning algorithm which could have improved on the accuracy rates of
Google’sﬂ Particularly with the knowledge that the tool would be able to benefit from
API access to Google’s safe browsing data [29]. Secondly, there was a need to process
the URLSs in such a way that would provide information for the front-end to display.
In machine learning approaches, it is difficult to understand how individual features in
data map to the end result - which limits the explainability of these approaches.

2A heuristic algorithm is a type of algorithm used to combine multiple metrics which can give an
approximation of a solution.
3 A classifier based on Random Forrest which achieves a 90% accuracy on noisy data [17, 69]
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The algorithm was designed to aggregate the results of a set of defined heuristics: each
producing a status value (or a severity level) and combined to form an overall count of
the status types by matching these values against a set of established thresholds. These
status values ordered by increasing severity are: ‘none’, ‘possible’ and ‘known’. These
heuristic status values are aggregated to classify the URL into the following classes in
order of safety: ‘safe’, ‘warn’ and ‘alert’. The algorithm was also designed to analyse a
bespoke set of safety metrics to evaluate the safety of a URL. This was a design choice
intended to reduce the algorithm’s future false negative rate. Whilst a framework for
analysing a hypothetical set of safety metrics was considered in the prior year, the
design and development of the safety algorithm and metrics was a primary focus of
this year’s work as described in Section 5.2

One issue with employing heuristic algorithms is the difficultly of selecting appropriate
heuristics which allow the algorithm to have a high accuracy. This is difficult for
phishing in particular as it requires a significant amount of research into a literature
dense research field. For this reason a report into potential heuristics was developed in
the prior year by analysing work on existing phishing research (see Appendix [A).

Both the Ul and the algorithm design were evaluated by an expert in phishing and
URLs. The expert was positive about the design of the tool and suggested several
particular improvements, drawing on examples such as the Netcraft extension interface
[42]. They felt the algorithmic approach was constructive and they provided further
resources to increase the breadth of heuristics.

2.1.3 Requirements

As aresult of the requirements gathering and design stage, the high level design goals
of this system were defined as follows:

e Requirement 1: Comprehensiveness; classifying every URL a user encounters
- whether it is present in a web page, a page URL itself or any URL which would
be processed during a web request in the browser.

e Requirement 2: Automatic Malicious Blocking; preventing the user loading
data from any resource where the URL has been classified as malicious, without
explicit user consent.

e Requirement 3: Understandable; presenting URL information to users clearly,
both at appropriate points of intervention and on user request.

e Requirement 4: Best Practice Engineering; that the final system maximises
efficiency and accuracy whilst providing configurability and a positive user ex-
perience.
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Figure 2.1: System Component Overview

2.2 CatchPhish Implementation

The CatchPhish system leverages existing web technologies to derive information
about URLs. The system works by extracting all the URLs from each page the user
arrives on. These are forwarded to a decision-making server which parses and handles
the analysis of the URL. The resulting system provides extensive information about
each URL in a user-friendly manner.

Figure 2.1] demonstrates the three major components of the system:

e Chrome Extension Infrastructure - handles the overall application logic, the
extension’s interactive elements and page alterations.

e Front-end - responsible for the main user URL analysis display, along with
tutorial pages, built using a React app incorporating Material Design

e Analysis Server - responsible for the URL calculations, built using the Node.js
framework P

The Chrome Extension APIs [25] 23] were used to implement many of the UI elements
of the tool that were chosen as a result of the interviews:

e a context menu entry (on right click) to access link details
e a badge over the plugin icon to display the overall site information
e link annotations with a status for each link on a page

The extension sends all user web requests to the server for analysis, with malicious
requests blocked and the information presented to the user in an embedded training
simulation - with no content from a page loaded before a request is blocked.

“4React is a Javascript library for creating user interfaces [52]]. Material Design is a design language
created by Google and incorporated into their products which focuses on using responsive animation,
padding, and depth effects to make the interactions clear to the users [[18].

> A flexible runtime environment for running Javascript outside of the brower [44].
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React was used to implement users’ desire for a popup with a detailed information
breakdown, along with the tutorial and settings pages, with the intervention page de-
sign being based on the existing Google site warning [28]. Figure [2.2] displays the
main popup summary page of the extension.

- g
catchPhish Q :

URL Status

You asked about:

https://www.youtube.com/watch...

Search Result
1 Full Match

Domain Age Domain Popularity

Moderate Popularity

Further Details v

Is this url safe? v

Figure 2.2: Popup Summary

The detailed information breakdown represented in the Further Details section of the
UI, required the dynamic generation of user interface statements. These user state-
ments were required to adapt their explanations of the heuristics to match the heuris-
tics’ identified severity levels. This was found to be a key feature required to educate
users in prior research [8]]. This was therefore a further focus of this year’s work as
outlined in Chapter 5]

The Analysis Server was mocked up using Node.js, as a rough design of a processing
framework. The key takeaway from this implementation was the interface for inter-
acting with the Frontend. As discussed, the Frontend was designed to be dynamically
generated based on the heuristics it receives: specifically the Further Details section.
The server implementation consisted of around four implemented heuristics and some
experimental features such as the ability to unshorten links implemented in Javascript.

Security issues of the tool were also considered, with efforts made to protect user data
on the extension side (by hashing URLs present in its cache). Further improvements
to the security of the system were highlighted as issues that needed to be addressed.
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2.3 Evaluation and Further Work

A triangulated evaluation approach was taken to evaluate the tool using a closed demo
environment (a server hosting a clone of a popular site).

A survey containing System Usability Scale (SUS) questions was conducted at a project
open dayﬁ The survey had 43 responses receiving an overall score of 81.3 - within the
SUS range of very good.

Think Alouds were used to get a more detailed understanding of specific issues users
might have with CatchPhishE] The eight participants were largely positive and users
on the whole had few reported issues with the tool itself, with a few minor issues that
caused confusion; 87.5% participants indicated they were Fairly likely to use the tool.

For the final evaluation two experts in phishing were consulted for an expert evalua-
tion of the project. Both experts overall impressions were highly constructive (being
particularly impressed with the amount and quality of work achieved in the limited
timeframe). Beyond this, the evaluation highlighted some areas of the system design
that could be improved such as the system security and specific approaches used to
implement the heuristics.

2.4 Resulting Priorities

There were three particular priorities resulting from the previous work on this project.

The need to develop URL analysis components was a priority: involving the imple-
mentation of each of the heuristics outlined in the algorithm design report (Appendix
[A). The feedback from the expert evaluation suggested improvements in the heuristics
by using alternative language libraries - requiring multi-language support in the design.
The system also lacked robustness and its efficiency required thorough evaluation.

The user interface also required some improvements, closely related to the server
decision-making heuristics. For the original Ul design to be fully implemented, each
heuristic required an explanation that could be adapted to suit its final state: each of
which needed to be dynamically generated based on the contents of the URL and high-
lighted appropriately in the UL

Whilst the system was able to meet three of the design requirements, its ability to meet
the requirement of Best Practice Engineering or its educational merit required further
evaluation. Therefore a longitudinal study was marked as a key priority: requiring the
addition of data analytics to be built into the system.

®The System Usability Scale consists of a ten item questionnaire with five response options for
respondents: from Strongly Disagree to Strongly Agree.

7With Think Alouds, participants’ emotional responses allow researchers to build an understanding
of how users actually use an application. Participants work through a set of tasks whilst talking aloud:
voicing their thoughts and actions [30].
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2.5 Summary

This chapter gives an overview of previous work done to implement the anti-phishing
system outlined in this report. Key points highlighted within include the decision to
build a Chrome browser extension focusing on above-average technical users: with
system requirements being derived from a literature review, interviews with 17 partic-
ipants and consultation with experts in the field.

The designed URL analysis algorithm and an overview of the infrastructure of the sys-
tem is also presented; with results on how the system was evaluated: through a survey
of 43 participants, eight Think Alouds and two expert evaluations. The conclusive
result of the prior evaluation finding that the previous system was usable. This chap-
ter concludes by highlighting the multiple aspects of the system that required further
development.






Chapter 3

Related Work

This chapter provides an overview of relevant research in the area of phishing for the
purposes of understanding the novelty of the completed work.

3.1 Background Information

Phishing is a means of using deception to acquire private and confidential details from
users.

The variants of phishing range in sophistication [63]. Deceptive Phishing is the most
common type of phishing scam and it hinges on how closely the attack email resembles
a legitimate company’s official correspondence, largely distributed on-mass to multiple
recipients in a blanket approach. More sophisticated approaches such as Spear Phish-
ing use more personalised attacks, using details such as recipient’s name, position and
company to trick the recipient into believing the attacker has a personal connection
with them [[14)]. These more sophisticated methods are an increasingly popular choice
[41,56] over conventional phishing because of their high success rate [34, 60].

Emails are often regarded as the main delivery vehicle of phishing attacks. With 54.6%
of all email being spam, it can be hard for users to differentiate between malicious and
legitimate emails. Malicious emails can be caught by the users’ email clients or spam
filter, but this has a varying effectiveness [72, [15,59]. Phishing attacks can, however,
be spread through any online communications means that allow for the use of links or
attachments [71]].

3.1.1 URLs and Manipulation Attacks

A URL is a specification mechanism for pointing to and indicating how to retrieve
resources on a computer network URLs are utilised extensively in the Internet for

'URLs are often colloquially called a web addresses or links.

21



22 Chapter 3. Related Work

referencing web pages (http/https), file transfer (ftp), email (mailto), database access
(JDBC) and several other purposes.

Their use for multiple purposes is allowed by their flexible structure, outlined in Figure

B.1

URL Structure
Credential Host Path
Hostname
Protocol Username Password Ton Level Port pathname S?:::s
: : . . op Level ;
(Optional) = (Optional) = subdomain(s) (Optional) Domain Domain (Optional) (Optional)
http :// user :pass123 @ www.mobile . google . com : 80 /a/b/c/d? 1d=1213

Figure 3.1: URL structure example [9]

URL adaptability means that expertise is required to truly understand them. Internet
users have been shown to lack this expertise, having difficulty with reading URLs
(9,18, 11, 158]]. Even after having extensive training in the subject users can still fail to
notice visually deceptive manipulations [19]. This leaves internet users susceptible to
attack without persistent or accessible URL knowledge.

Attacks which involve the manipulation of URLs are known as URL manipulation
attacks, and can be part of both phishing and other attacks which employ URLs. A
Quarterly Threat Report by proofpoint highlighted: “the pendulum of malware delivery
mechanisms in email continued to swing towards URLSs; malicious URLSs outnumbered
attachments ... by over 370%.”[50].

3.1.2 Common Indicators of Phishing Attacks

There are multiple indicators of phishing attacks, but these depend on the type of phish-
ing delivery vehicle used. An indicator can be used as a gauge or measure of whether
a phishing attack has occurred, and examples of these are discussed in the subsequent
sections.

3.1.2.1 Email Specific Indicators

There are a range of email specific indicators depending on how sophisticated the
attack is. Lower quality phishing emails also include indicators that people are more
familiar with: poor spelling and grammar are common indicators. In contrast, more
sophisticated spear phishing attack can employ tactics such as email spoofing [S5], so
that the message appears to have originated from a non-malicious source.

3.1.2.2 Common URL Manipulation Tricks

Users can be tricked through URL manipulations intended to confuse the user into
clicking on a malicious link. One common set of URL manipulations is known as
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“mangle”: where a brand or company name has letter substitution, misspelling or
non-ASCII characters that appear to be similar to their English counterparts [35] . The
use of non-ASCII characters means this is very difficult to identify at a brief glance
and users do not typically spend a while focusing on URLSs in the page [635]].

3.1.2.3 Domain Indicators

The domain name of a site embedded in a site’s URL (Figure can be used to view
metadata which can provide indicators of phishingE] One of theses indicators is the
age of the domain. Domain databases such as WHOIS [70] can be queried to get the
creation date of the website. This can then be evaluated against known thresholds for
typical phishing sites.

3.1.2.4 Page Indicators

Page features use information about web pages which are calculated using reputation
ranking services. One page indicator is the relative popularity of a website which can
be determined by looking at information by using Alexa Top Sites [6] to get a rank of
the most popular domains [37, [75]. Popular sites tend not to be phishing sites since
users do not tend to revisit a phishing site. In this sense, the highly popular sites in a
list such as Alexa’s Top Sites can be used as a whitelist; whereas the most unpopular
sites from this list (or absence from the list) can be taken as being a malicious site.

3.1.3 Advanced Attack Patterns

Beyond indicators which can be evaluated based on syntax analysis or metadata thresh-
olding, there are advanced attack patterns which are more difficult to detect. Covert
redirect or cloaking [61] is a trick used to make the visible destination of a phishing
URL suggest a reliable destination whilst redirecting users. This can be difficult to de-
tect as it may only occur for certain users. One method to achieve this is by overriding
browser mouseoversE] which can lead to users visiting malicious sites without their
prior awareness [13]].

3.2 Research Approaches

Each phishing research approach analyses phishing indicators, but they are distin-
guished by both how they derive their analysis and how they apply them: whether

2A domain name is a label which identifies a network domain - a unique group of computers that
form part of a central administration or authority. These domain names are managed by the Domain
Name System (DNS).

3 A mouseover is a feature of many desktop email clients and web browsers which display a hypertext
link’s target URL in the status bar while a mouse hovers over it.
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that is automated detection or user training.

3.2.1 Automated Phishing Detection

Automated phishing detection is an approach favoured by large organisations and com-
panies. This approach employs machine learning techniques to analyse URLs to dis-
cern if they are malicious.

These techniques can be used to populate stored blacklistsf_r] These databases are often
maintained independently by companies, with some publicly available for querying.
One of the significant benefits of using blacklists is the reduction in computation time
needed to process whether each URL is malicious. Blacklists tend to be highly reliable
when analysing the maliciousness of their present URLs, but since they are not com-
plete lists, they cannot be fully relied on. This requires URLs outwith blacklists to be
analysed.

The main drawback of these approaches are the false warnings they can create which
decrease user confidence in the effectiveness of the prevention systems [S7]. This is
why automated approaches such as machine learning are not effective as a singular
indicator of phishing attacks.

3.2.2 Security Indicators

The basis of automated security indicators are to feed contextual information about
security practices back to the user so they can make educated decisions. Common
examples of this approach include informative mouseovers or the highlighting of im-
portant information for the users [65].

A further example of automated security indicators is given in the URL report research
[8]]. This research presents a detailed breakdown of how a URL’s different components
can be presented to a user. The report allows for extensive contextual information
about each URL element, whilst highlighting the most important aspects of a URL to a
user. The report was created with the use of focus groups in order to be an effective and
useful presentational tool. It breaks down the information about URLs into three pri-
mary sections: summary, URL manipulation tricks and facts about the URL. For each
fact, there is a clear explanation of why it is significant. This is presented alongside
an example of the URL component itself, to make the connection between the fact and
URL component clear to the user. The theoretical UI outlined in this report formed a
basis in the design of the CatchPhish UL

“Blacklists are extensive databases of phishing links which are known to be dangerous [48].
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3.2.3 Training Users

Existing research [16] highlights the need for the capability of users to be included in
security system design where they cannot be removed, rather than being treated as an
enemy [2]] of an effective system. This is why it is necessary to adequately train users
to be useful components of a security system [46] and make use of their significant
potential: humans are often more capable at spotting unique and unknown patterns
than machines.

Training users is therefore a critical approach of tackling phishing and it can improve
the ability of users to make effective decisions when faced with phishing attacks. There
are multiple approaches to training users and many different tools designed to help with
this. Facets of ideal training approaches are: engaging the user, presenting relevant
information of the subject and having clear learning objectives.

Training through the use of educational games is an approach intended to engage the
user by presenting information in fun environment. This, however, is subject to the
quality of the game. One common difficulty with this approach, and training in general,
is the user’s ability to retain information taught to them after some arbitrary period of
time. After learning new information users tend to show increased knowledge and
skills on the subject immediately afterwards, but this is shown to deteriorate over time.
This is a concern with computer security applications specifically as it is essential
that users continue to have the knowledge and awareness that allows them to adapt
to threatening issues as they appear. In phishing literature an example of this can be
found in the NoPhish app [[11]. This is an app intended to teach users about phishing
using informative pieces of information. As a result of the longitudinal study included
in the paper, they found that users were more successful after the teaching, but their
success rates dropped five months later when tested on the same material again.

Embedded training has been found to have particularly successful training results. The
basis of this approach is to teach users in the moment they make an error, about why
that error has occurred. This helps to improve user retention by creating memory
anchor points which help users recall the learned information when faced with similar
situations.

A particular problem with embedded training is that it is difficult to deploy in real
life situations. In corporate environments it is challenging to set-up a scenario for
embedded training where the employees do not know it is occurring. The training
therefore fails to train users appropriately as they adapt their behaviour to the training
environment. It is also difficult to create the environment in which these kinds of
training can occur without a high amount of intervention into typical user routines.

3.3 Existing Solutions

There are several existing anti-phishing tools, the majority of which are incorporated
into general security-focused software such as anti-virus software. These comprehen-
sive software packages tend to focus on providing the user with a sparse amount of
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high-level information, limiting their educational impact. They are designed to keep
users engaged by highlighting functionality whilst limiting users ability to grow out of
their need for the software - these tools are often paid for and the average user tends to
have limited knowledge of computer security in general.

Established security extensions such as Netcraft’s are an example of existing bespoke
anti-phishing tools. Netcraft’s browser extension in particular is designed to present
information about the quality of the site to indicate to users it is phishing or not and act
as passive indicators, with further details only triggered by user concern.
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Figure 3.2: Netcraft extension interface [42]

These security toolbars are often not designed to convey information clearly to users,
and essential heuristics such as the popularity of the site can be ignored by users as
a result. This can be due to a lack of contextual information explaining why this in-
formation should be important for user’s decision making. Wu et al. [74] discuss
the usability of these security toolbars in their paper, with Netcraft’s security toolbar
(Figure an included example. The paper itself raises future design principles for
anti-phishing tools, drawn from research into the usability limitations of the exam-
ple security toolbars themselves. The design principles suggest “active interruption
like the pop-up warnings [are] far more effective than the passive warnings” but they
“should always appear at the right time with the right warning message” in order to
ensure user trust in the system.

An anti-phishing tool built into a web browser itself is the Google site warning which
employ active intervention. These are presented to prevent users from visiting mali-
cious sites, by using the information calculated as part of Google’s automated phishing
detection. This warning can sometimes be thrown when the browser processes links
that are malicious, to indicate that the subsequent site is malicious. This is useful as an
intermediary for preventing users from visiting and being immediately affected by the
malicious site. However, the usefulness of this security feature is limited by users trust
in these warnings, regardless of the accuracy of Google’s aforementioned classifier
work.

Other existing tools have attempted to improve on user warnings using active interven-
tion, such as in the work of Yang et al. [75] who tested a chrome extension to warn
users of malicious phishing. Their field experiment suggested an active intervention
approach could be incorporated into a future anti-phishing tool, as long as the user was
presented with an understanding of why they had been intervened. This complements
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the inclusion of embedded training in such a tool by displaying the URL analysis to
the user at appropriate points of intervention.

3.4 Summary

This chapter underlines what phishing is, and provides an explanation of the different
vehicles used to deliver phishing attacks. It discusses the indicators used to identify
these attacks and the depth of technical knowledge that is often required in order to
understand what constitutes a phishing attack.

Further, this chapter provides a depth of information on the current techniques to tackle
the problem of phishing attacks. Research approaches such as automated phishing de-
tection are analysed whilst the effectiveness of user training and automated security in-
dicators are discussed. These research approaches are compared with the anti-phishing
solutions presented by existing tools.






Chapter 4

Designing the Analysis Server

There were several considerations that were deliberated when designing the Analysis
Server architecture. This chapter outlines these considerations along with a compari-
son of viable designs.

4.1 System Features and Requirements

The system was required to have the following core features:
e An event-driven URL analysis pipeline
e Storage of URL analysis along with user usage statistics
e Automated data analysis for researchers
e Scheduled updates of preprocessed data for the URL analysis functionality
e Adaptable creation of UI explanations for each heuristic tailored to severity

The system was also ideally required to allow the later integration of additional fea-
tures as might suit future research goals. For instance, utilisation of machine learning
approaches for secondary data analysis.

The requirements of the system were defined to be:
e Processing Speed: A URL analysis response time between 0.1 and 1 seconds

e Data Storage: Ability to store and access system data without a significant im-
pact on system performance, alongside allowing access to longer term study
results. Data structures for quick lookups on natural language data are also re-
quired.

e Allows for Async Preprocessing: The periodic population of database white-
and black- lists should have a minimal performance impact on the core system.

I'This is an important range for ensuring user engagement [43]).
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e Language Flexibility: To make use of the best libraries for processing URLs
across various languages.

e Authorisation: Be able to prioritise requests from different sources (e.g. Browser
Extension over Web Sites), being able to distinguish between these.

e Data Security: The security of user data is an utmost priority - secure com-
munication between all stakeholders and the server, along with an authorisation
system for database access.

Further optional requirements included the ability to store prior versions of the URL
analysis by collection timestamp, along with being able to process heuristics and their
data sources concurrently to improve response times.

4.2 Server Designs

The system had to incorporate several key features whilst balancing the outlined re-
quirements. These were weighed across the multiple Server design proposals.

Due to the volume of users planned for future user studies, being able to deploy the
system on an external cloud platform was a priority. The Infrastructure-as-a-Service
(IaaS) providers were filtered by those able to provide long-term support for future
user studies. This, therefore, limited server designs to platforms provided by AWS and
Google who were able to provide this support.

4.2.1 Dedicated Server Design

The Dedicated Server design utilised a largely monolithic architecture, incorporating
most system features into a processing application deployed on a dedicated server.
This design was most similar to the existing work on the mock-server and allowed for
significant re-use of resources.

The Dedicated Server stack utilises the Express web framework [ to facilitate a sim-
ple REST API. Node URL libraries, along with additional language libraries and Web
APIs are utilised for the URL preprocessing. PostgreSQIE] is the Relational Database
Management System (RDMS) utilised to store the URL analysis and TULIPs lab re-
sources. Database authentication is managed using PostgreSQL user accounts, with
authorisation of Chrome extension users utilising OAuchﬁ Data preprocessing and
web scraping is implemented in Python, with further scripts employed to automate
data analytics. The system is intended to be hosted on a dedicated server such as an
EC2instance.

Zhttps://expressjs.com
3https://www.postgresql.org/
“https://oauth.net/2/
>https://aws.amazon.com/ec2/
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Figure 4.1: Dedicated Server design

A simulation was conducted using this architecture in order to evaluate both the ro-
bustness of the system and the amount of user requests the system might be expected
to process per unique user. Understanding the amount of user requests per day was a
requirement for evaluating the level of processing power required by the system. To
facilitate this study, the mock-server was updated: a database was added to store user
requests and a domain was purchased to facilitate TLS with LetsEncrypt [21].

Count Mean Std Dev Min 25.00% | 50.00% | 75.00% Max
24364 4,060 1,248 2,790 | 3,166 3,807 4,619 6,116

Figure 4.2: Key statistics on the unique URLs processed by server during the user trial.
These results are only drawn from the six day period the system was fully functional to
ensure their reliability.

As I fall into the category of users this tool is intended for, I evaluated the tool using
data produced from my own browsing habits (with the trial being conducted between
the 27/10/2019 and the 13/11/2019). My user data provided an estimate of how many
URLs a typical user would require the server to analyse. The analysis of this data
indicated that 4060 unique URLSs per day would need to be processed on average, as
illustrated by the results in Table After discussions with industry experts (outlined
in Section[d.2.2), they suggested the amount of URLs per day highlighted the need for

®There is limited use for these results beyond their use as an estimation due to possibility of temporal
or seasonal variance. A larger pool of users across a longer time frame would be required to produce
more meaningful results.
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a more scalable architecture to provide the level of performance required by multiple
users.

The simulation also highlighted the limited robustness of the monolithic architecture:
of the 15 days the monolithic architecture was trialled, only 6 days were unaffected
by server faults. This trial provided an example of the difficulties which are caused by
handling external user data. The results of this trial underlined a need for alternative
methods, such as containerisation and orchestration, to improve the system robustness.

4.2.2 AWS Serverless Design

The AWS Serverless design was intended to implement the same system functionality.
This design splits the integrated system features of the Dedicated Server design into
interconnected subsystems utilising separate AWS products. The primary benefit being
added system scalablity, a feature of serverless architectures, which helps to improve
performance.
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Figure 4.3: AWS Serverless design

API Gatewa would replace the Express.js Web Gateway. This gateway service man-
ages traffic to existing back-end systems and also includes result caching. HTTPS
endpoints and SSL certificates can also be setup with the API Gatewa

Lambda functionﬂg implement the data sources, event-driven database access and

"https://aws.amazon.com/api-gateway/

8https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-client-side-ssl-
authentication.html#configure-api

“https://docs.aws.amazon.com/lambda/latest/dg/lambda-functions.html

10AWS LamdaE-]is a serverless compute service which allows some functionally sized pieces of code
to be run based on event-based triggers.
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heuristic algorithm processing. Lambda functions have been designed to implement
application logic, by triggering other Lambda functions if they meet the logic require-
ments (e.g. processing an additional URL on detection of a shortened link). The URL
Processing application is split into an application-like structure with multiple functions
triggered by distinct events. AWS Lambda Layer@ provide additional language sup-
port by allowing Lambda Functions to pull in additional libraries written in different
languages and/or run-time environments, and share code between functions.

A separate application is designed to implement the scheduled data updating (black-
and white- list preprocessing). Lambda Functions can be triggered by inbuilt CRON
jobs, which would allow for the necessary independent schedulin

For data storage, AWS’s RDS server is used with PostgreSQL support allowing the
same database structure, and data separation, as the dedicated server. Automated and
encrypted database backups are a feature of RDS databasem NeptuneE] is a Graph
database service planned to hold a memory-intensive graph-data structure (for the im-
plementation of complicated heuristic), since Lambda functions have no continuous
memory. Incorporating Neptune was intended to reduce the need for memory man-
agement using a separate subsystem as may be needed in the Dedicated Server system
design.

As part of the design of this system, AWS Solutions Architects were consulted on the
final design. Several consultations on the system design occurred alongside funding
discussions. Both the Dedicated Server and AWS Serverless system designs were sent
for evaluation as part of a written up design proposal (see Appendix [B). The feedback
on this system design was overwhelmingly positive, with a suggestion made to incor-
porate AWS Step Functions to coordinate all of the Lambda Functions using a simple
graphical interface.

4.2.3 Google App Engine Design

Google App Engine is a fully managed serverless application platform. Automatic
scaling is implemented for web applications, by horizontally scaling applications to
met demand. It includes the levels of sandbox service abstraction and orchestration
[39] offered by the use of Docker and Kubernetes. Google App Engine supports mul-
tiple runtimes and frameworks including Node.js and Python.

A Microservices architecture is strongly supported by App Engine. Microservices ar-
chitectures split system features into small independent (Micro-)services which com-
municate through messaging [20]. As an architecture which facilitates the use of or-
chestration technologies for system scalability [[1, 20]] - Microservice architectures are
well placed to facilitate the data processing demands required by this system. Using

Zhttps://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html

Bhttps://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-
expressions.html

“https://aws.amazon.com/rds/details/backup/

Shttps://aws.amazon.com/neptune/
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this architecture allows distinct services to be used to implement individual features
of the analysis server design. For instance, individual services for UI support and
analysing the URLs. The App Engine platform allows these services to be scaled to
meet demand and be developed with the language best suited to facilitate each of their
requirements.

The design therefore includes separate applications for both UI calculation and URL
processing, separating system features into distinct applications. More information on
this design can be found in Chapter 5

4.3 Comparison of Designs

All of the proposed system designs implement the core system features, with some
variation on how each handle the requirements.

Both the AWS Serverless and Google App Engine system designs remove the need to
consider machine performance by providing a horizontally scaling system architecture
which abstracts individual machine performance. Compared to the Dedicated Server
design, these reduce the need for future development required to scale the system,
whilst limiting the need to implement performance management. This allows develop-
ment to focus on the general research approach such as the performance of individual
heuristics. It also simplifies the wider deployment of the tool in the future and po-
tentially increases robustness of the system. Whilst monolithic applications have been
shown to have greater throughput as standalone applications than Microservices archi-
tectures [4], this does not include the performance benefits provided by their greater
scalabilty [1]. Therefore these benefits alongside the greater robustness and flexibility
the serverless system designs are more suitable for the system architecture than the
Dedicated Server design.

However, the AWS Serverless system design is critically limited in its portability and
complexity. The design and implementation of multiple disparate lambda functions
requires the complex function coordination solely provided by AWS, significantly re-
ducing the portability of the codebase for future developers: composed of a group of
disparate functions rather than interconnected code joined by app frameworks.

These limitations are handled well within the Google App Engine design. Distinct sys-
tem features are able to be separated by their aggregate purpose as applications, rather
than as coordinated functions, improving the portability. The system also incorporates
inbuilt layers platform security like the AWS services, but more closely integrated with
the applications themselves. Dedicated platform applications such as Memorystor
are also highly useful additions, over the caching presented by the AWS’ API Gateway,
allowing the cache to more closely tailored to the needs of particular services.

Therefore, the chosen system design is the Google App Engine design due to its greater
long-term portability and useful dedicated applications.

16https://cloud.google.com/memorystore
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4.4 Summary

In this chapter, several architectures were outlined for the system analysis server. These
designs were contrasted against the outlined system features and requirements in order
to highlight the choice of final design. The final design chosen was based on Google
App Engine - due to its beneficial platform level performance benefits and its ease of
development, for this system, in contrast to other serverless architectures.






Chapter 5

Server Implementation

The Analysis Server is an integral part of the CatchPhish system necessary for the im-
plementation of real-time phishing detection. This chapter outlines the implementation
of the Server along with the phishing analysis algorithm.

5.1 Server Architecture

An overview of the final server architecture is outlined in Figure [5.1]
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Figure 5.1: Analysis Server architecture (utilising the Google App Engine platform)
The current stack utilises a Microservices architecture to split distinct features into

37



38 Chapter 5. Server Implementation

small independent services. It utlises the Express.js web frameworkﬂ to facilitate a
simple REST API. Python URL libraries, Web APIs and preprocessed URL/phish-
ing data is utilised as part of the dediciated URL Processing app. PostgreSQ is
the RDMS utilised to store the user data and URL analysis, with app data separately
stored. Database authentication is managed using PostgreSQL user accounts and plat-
form level features. Data preprocessing and web scraping is implemented in Python as
distinct CRON services, with further scripts employed to automate data analytics. The
system is serverless with apps/services scaled to suit demand, all of which is facilitated
by the Google App Engine platform.

5.1.1 Core Services/Applications

e REST API: A system entry point with a HTTPS endpoint receiving all data in
POST requests. It interfaces with the other applications and triggers them based
on the received request. It records both the user request data and analysis data in
the Study Database.

e URL Processing: A dedicated python app for processing and classifying URLs.
The app utilises a layered architecture to encapsulate data in independent layers.

e UI Calculation: Python app for processing user-facing explanations for each
heuristic, calculated based on its level. The statements produced are displayed
on the Browser Extension UI. This application only adds its Ul results to requests
from Browser Extensions.

5.1.2 URL Processing Layers

e Parsing: The parsing layer unshortens any URL and splits the URL into its com-
ponent features, extracting the keywords. Redirection checking, and associated
heuristics, are an additional optional feature due to their unconstrainable system
time usage.

e Data Sources: Analyses multiple data sources of three distinct types: web
data, lexical data and database list data (containing both contextual and known
white/blacklists data).

e Heuristic Algorithm: Heuristics process the data and utilise vulnerability thresh-
olds to produce an individual classification for each heuristic. All heuristics are
processed as an independent layer which are aggregated as part of the classifica-
tion layer to produce an overall URL classification.

Thttps://expressjs.com
Zhttps://www.postgresql.org/
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5.1.3 Caching and Databases

e Memorystore: Intended to decrease access times by storing common processing
requests for a limited size selection of highly frequent URLs.

e Databases: Two isolated PostgreSQL databases are contained in the same man-
agement system. The App Data database contains the black- and white- lists,
along with contextual information useful for URL keyword parsing. The Study
Data database contains the processed URLs, user extension usage history and
stores the collected URLs of each unique page processed by the app.

5.1.4 Data Management and Security

e CRON Services (Async scheduling): Scheduled web scraping tasks populate
the App Data database, updated independently of the core system to ensure data
freshness. The times for updating each list are set according to the data sources
recommended update schedule.

e Automated Data Analysis: Scripts to download and process the latest usage
and system analysis information.

e System Security: Built-in platform level features are enabled such as Google
Cloud Security Scanner and the Secret Manager API

5.1.5 Motivation for Key Architectural Decisions

There were several key architectural decisions made to facilitate the system require-
ments (Section 4. T).

Principal of these, was the decision to utilise a layered architectural pattern [54]] for the
URL Processing application. This was a design decision made to ensure a separation
of concerns between independent application components. Each layer has a specific
role and responsibility within the application, which is dependent on multiple sources
of information in the previous layer. The benefit of this approach is to make it easier to
maintain the application due to its well-defined component interfaces. An alternative
layering approach of tying data sources with their dependent heuristics was considered
to be significantly more challenging to maintain.

Choosing the right service boundaries is a common issue in Microservices architec-
tures [54)33]]. Defining an application boundary between the UI Calculation and URL
Processing apps was a choice made to reduce the data processing involved in the pro-
cessing app. This increases the portability of the processing app - allowing it to be
easily extracted from the system and re-purposed. A drawback of this approach is

3Google Cloud Security Scanner performs automated penetration testing on App Engine apps, whilst
the Secret Manger API stores sensitive data such as API keys, passwords, and certificates.
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maintainability: each time a heuristic is added to the URL Processing app its Ul ex-
planations have to be added to a separate application. On balance, this maintainability
drawback is outweighed by the applications’ increased portability.

Application independence can also allow the architecture to utilise the languages and
frameworks best suited to implement system features. For instance, the Express.js
Node framework is highly suited to be the system entry point due to its inherent async
capabilities [62]]. In contrast to the Dedicated Server design (outlined in Chapter ), by
making the system entry point independent of the processing application, user requests
are better distributed around the system. The use of Memorystore also complements
this choice of feature independence. The functional requirement for recording user data
is implemented by logging all system requests at the entry point. Attempts to cache
requests to the Express server would lead to data loss, by preventing event logging.
The placement of Memorystore instead facilitates data collection whilst minimising the
need to reprocess URLs, by caching the processed analysis from the URL Processing
and UI Calculation apps.

Microservices architectures are also known to increase system security if they are com-
plemented by coherent data management plans like Database per Service [40, [76]. If
attackers are able to exploit vulnerabilities in one application, they only have access
to the data associated with that. This pattern has been implemented as part of this
architecture to ensure data sourced from more insecure sources is distinct from user
data. To complement this, different levels of access control have been implemented
to ensure only appropriate users can get access to each type of data. Each application
also ensures its input is sanitised to reduce the risk of compromise.

5.2 Algorithm Heuristics

Central to the system is the heuristic algorithm implemented in the URL Processing
app. The algorithm works by processing multiple distinct heuristics, assigning each a
severity level and aggregating the level occurrences. URLSs are classified based on how
the aggregated counts compare with established thresholds. Numerous data sources
have had to be consulted and processed to facilitate each heuristic. Since it is critical
there are as few false negative results as possible, the safety metrics are evaluated
according to a separate bespoke algorithm.

5.2.1 Data Sources
Figure[5.2]illustrates a comprehensive list of data sources utilised by the system. There
were three distinct types of data sources:

e Database Data: long-term multi-use data sources such as URL and domain
black/whitelists along with contextualising data such as Forbes Top Companies.

e Lexical Data: information specific to the URLs themselves and added to by
additional libraries.
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e Web Data: data gathered through external web requests comprising multiple
sources.

The data sources were selected to fulfil the requirements of the outlined heuristics.
During the process of selection, the sources (a mix of APIs, websites, and download-
able files) were evaluated to determine their reliability and ensure the consistency of
their interfaces.

Whilst lexical and web request data have to be retrieved for each URL request, database
data can be shared between individual requests. To increase the efficiency of the system
this was therefore gathered asynchronously to the analysis pipeline and stored in the
App Data database.

Multiple blacklists were utilised as part of the system to increase the known phishing
result coverage. Using multiple white and blacklists to make use of non-overlapping
URLs is encouraged by research [10]. There is some level of overlap between the
chosen blacklists, with lists significantly larger than others (1.6 million in Google Safe
Browsing). Foremost of the whitelists is the Tranco list [36]]. Tranco is a domain data
set aggregating multiple whitelists into a list which is intended to significantly im-
prove on the “similarity, stability, representativeness, responsiveness and benignness”
of existing whitelists - the validity of which are questioned. They further highlight the
vulnerabilty of these whitelists to adversarial manipulation and have built in counter
measures into the Tranco list.

Whilst utilising both SharedCount and the Forbes Top Companies sites as data sources,
security vulnerabilities were found in their sites. Both sites exposed their private API
keys to the wider public, exposing them to information disclosure attacks. Both sources
were subsequently informed of these vulnerabilities and encouraged to rectify them.

5.2.2 Heuristics

Much of the research behind these heuristics are drawn from existing work [7]. The
referenced work was used as the key source for the phishing heuristic proposal outlined
in Appendix[A] which was supplemented by further research. The heuristics are largely
drawn from key features identified by machine learning alongside other anti-phishing
work.

Overall, there are 46 heuristics implemented as part of the analysis algorithm. The
high amount of heuristics was a necessity to develop an algorithm which suits this
particular task [51}7]. Each of these required the extraction of relevant data, the fusion
of data sources and research into appropriate thresholds. A single heuristic can have
multiple severity levels depending on whether the underlying data is continuous or
discrete. For each severity level of each heuristic, an explanatory statement was added
to contextualise the heuristic relative to its identified severity level. These statements
were incorporated into the UI Calculation app. Figure [5.4]illustrates the full collection
of these heuristics and their corresponding statements.
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Database Data

Purpose Name Details Source
Moz Top 500 Websites | Moz's list of the most popular 500 websites on the internet. https://moz.com/top500
Whitelist Tranco, a new whitelist ranking for researchers that improves upon

v ese: D -
Iianco the shortcomings of current popularity lists. Dlips:/itranco-list.eu!
DMOZ is a multi-lingual open-content directory of the WWW. It was
" maintained by volunteer editors for several years and is not known )
" . . p D: g
Curlla/DMOZ as Curlie. The available data was last updated in 2017, with the Dips://curlie.org/
Categorised Lists* community run site experiencing technical faults.
9 The UK Web Archive (UKWA) collects millions of websites each
" year to preserve them for future generations. This resource . "
N " " ’ ; DS .org.
UK Web Archive contains all UK based websites using UK TLDs, sites registered Sleied i LE
with a UK postal address and additional non-UK sites.
URLhaus is a project from abuse.ch with the goal of sharing .
o - et DS
URLhaus malicious URLSs that are being used for malware distribution. e
OpenPhish is a fully automated self-contained platform for phishing
OpenPhish intelligence. It identifies phishing sites and performs intelligence https://openphish.com/
o N . 7 h ps://openpl
analysis in real time (without using other blacklists). It produces a
URL blacklist for general use.
Blacklist hpHosts Community managed hosts file for Windows that allows protection | <./n ob st blogspot.com/
ps://hpl .blogspot.

Malware Domain List
MalcOde

Cyber Threat Coalition

against access to spoofed and malicious websites.

A non-commercial community project hosting URLs known to host

malware.

MalcOde is to store and keep track of domains that host malicious

binaries - a list of IP addresses.

Separate Domain and URL lists based on criminal indicators from
kers during the COVID-19 i

http://www.malwaredomainlist.com/
http:/malcOde.com/dashboard/

https://www.cyberthreatcoalition.org/

PhishTank is a collaborative clearing house for data and

Lexical Data

i i N P pS: pl X
Blacklist/Parsing PhishTank information about phishing on the Internet. https://www.phishtank.com/
Parsing Forbes Top An annual ranklng of the top 2,000 public companies in the world https://www.forbe: 000,

Companies by Forbes magazine.
" Python library for accurately separating the TLD from the
TLD Extraction TLDExtract domain and subdomains of a URL, using the Public Suffix List. Dllps./ipyr.0rgip:
IP/IURL/HEX Python library which extracts URLs, IP addresses, MD5/SHA
extraction IOCExtract hashes, email addresses, and YARA rules from text corpora. https://pypi.org/project/iocextract/

Web Page Scraping

Keyword Similarity

beautifulsoup4

textdistance

Library was adapted to apply to URLs.

Python library that makes it easy to scrape information from web
pages.

Python library for comparing distance between two or more
sequences by many algorithms.

https://pypi.org/project/beautifulsoup4/

https://pypi.org/proj

Web Data

Alexa Top Sites

The top sites on the web based on Alexa data; each ordered by
their 1 month Alexa traffic rank. The source is a limited free API
which allows users to query results through web requests per URL.

The Open PageRank initiative was created to bring back Page
Rank metrics so that different domains could easily be compared.

https://www.alexa.com/minisiteinfo/

- ’ i~ k
Global Popularity OpenPageRank This is done using Open Source data provided by Common Crawl https://www.domcop.com/openpagerank/what-is-openpageran
and Common Search.
SharedCount is a social shares count checker - advertised as an
SharedCount API tool capable of giving users holistic engagement data on their | https://www.sharedcount.com/
website content.
Domain Information | Whois Search Python library for retrieving WHOIS information of domains. https://pypi.org/project/whois/

Blacklist

Site Categorisation

URL Availablity

Certificate
Validation

URL Unshortening

Google SafeBrowsing

Fortiguard Web Filter
Categories

Google Search

cryptography

Unshorten.link

Google Safe Browsing is a blacklist service provided by Google that
provides lists of URLs for web resources that contain malware or
phishing content.

API for querying FortiGuard URL Database Categories. These are
based upon the Web content viewing suitability of three major

https:/developers.google.com/safe-browsing/v4

https:/fortiguard.com/webfilter/categories

groups of customers: enterprises, schools, and . Itis
used to identify personal blogs and web hosting sites.

Python library providing python bindings to the Google search
engine.

Python library which provides cr
to Python developers.
Unshorten.link checks shortened URLs (like bit.ly and t.co) before
visiting their destination sites.

phic recipes and

hitps://pypi.org/project/google/
https://pypi.org/project/cryptography/

https://unshorten.link/

Figure 5.2: List of all external data sources and key libraries used in the Analysis
Server. These were collected through a thorough exploration of data source options
and supplemented with key Web Data sources, such as Open PageRank, through con-
sultation with a PhD student. *The categorised list datasets were added to the system
after the system trial discussed in Section
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TName Safety Priority [oata Used in U Ul Explanations TOI Evidence Focus
Presence in Whitelist Primary Whitelist Name, Domain The URL's domain is present on a list of known safe site domains. Whitelist Name:
Presence in Categorised Data® Primary Categorised List Name, Domain The URL's domain is present on a lst of safe categorised domains. Categorised List Name
Extonded Vaidation Primary Domain The owner of this site has purchased an Extended Validation Certificate which veriies their [0 .

identify with trusted third parties.
High Giotal Popularty Secondary Alexa Traffic Rank This URL's domain has a high presence in global trffic rankings. Sites that are more visited | /e Traffc Rank
tend to be safer.
High Sites Linking In Secondary Sies Linking In s URL domainsuggest a igh number o ses ik  tis sieswih i domain,an Sitos Linking In
Safety Metrics indicator of safety.
The Page Rank of this URL is high. This search engine metric suggests the URL s popular,
High Page Rank Secondary Page Rank Decimal e Ui Page Rank Decimal
Fortiguard Safe Domain® Secondary Support | Domain Category, Domain This URL's domain has been marked with a safe category by the Foriguard Web Filering | omain Category
Hostname in Search Results Secondary Support | Match Status, Matched Link ;:‘;f;;s‘"ame of this site has been maiched in the Top 10 Google search results: [Malch Matched Link
High Soclal Reputation Secondary Support | Facebook Share Gount, Pinerest Count | T8 URL has a high share count on Facebook andior Pinterest. Sharing popularity can be:a | Facebook Share Coun,

moderate indicator of safety.

Pinterest Count

Figure 5.3: List of all safety metrics implemented. Further details on the selection of

safety metric priority levels can be found in Section

be found in Chapter |7} *These heuristics were only added to the system after the trial

discussed in Section

and user statements can

Name Severity Level Data Used in Ul Ul Explanations Ul Evidence Focus,
Kr Most organisations use zero to two subdomains but this uses at least 15 subdomains at
nown )
[Subdomain Count] subdomains.
Too Many Subdomains Subdomain Count, Combined Subdomain : - Combined Subdomain
Possible Most organisations use zero to two subdomains but this uses at least three subdomains at
[Subdomain Count] subdomains.
This URL has over 5 digis in its hostname - it has [Digit Count] digits. A high amount of digts
Known in the URL hostname may indicate randomness and s a malicious indicator of phishing URLS
Amount of Digits in Hostname Digit Count, Hostname (30%). Hostname
Possible This URL has digits n its hostname - it has [Digit Coun] digits. Digits in the URL hostname
may indicate randomness and are common in the host of phishing URLS.
Known There is at least the presence of two HTTP or HTTPS in the URL, with [Protocol Count]
Number of HTTP and HTTPS Protocol Count, Most Common Protocol | Present Maost Common Protocol
Possible Two HTTP or HTTPS protocols are present in the URL, with [Protocol Coun] present.
Typosquatiing is practice of creating similar domains with slight differences in speliing to highly
Typosquatting Popular Domains Known Similar Domain, Domain popular domains. This URL's domain is highly similar to [Similar Domain]. Domain
UTF-8 Encoding Substitution Known Encoded Character, Location In URL The [Encoded Character] is in this URL's hostname. UTF8 encoding can also be used to Location In URL
produce identical-looking characters from different languages and alphabets.
Occurrence of Mislead Known Company Name, Location In URL The name of the popular company "[Company Name]" s embedded somewhere inthe URL || (oo
but not the destination.
Check for LP. Address Known Ocourrence Cour, LP. Address An P Address has been used in the URL. There are [Occurrence Count] occurances of LP. |5 aqress
Addresses in this URL.
URL Check for Hex Encoded URL Known Hostname The hostname of this URL has been hex encoded. Hostname
Manipulation | Gheck for a Dotless IP in the URL Known Location In URL. LP. Address A dotless IP is a 32-bit number which resolves into its equivalent dotted IP format. This noted [ o v o
Tricks 1P as [LP. Address] in this URL.
The port used is [Port Used). Phishers use different port numbers to escape the detection,
Non Standard Port Known Port Used, Location In URL e e Sandind ports oich 1 6 and 5060 Location In URL
TLD Out of Position Known Popular TLD, Subdomain A highly popular top level domain [Popular TLD] had been found in this URL's subdomain. | Subdomain
Whitelist Name, Original TLD, Most Popular | The URL has a different top level domain to a highly popular site. This URL's TLD is [Original
Different Top Level Domain Known TLD, Domain TLD] compared to [Most Popuiar TLD)] of the domain found in the [Whitelist Name] whitelist, | O™
Has Abused TLD Known Abused TLD, Location I URL A top level domain commonly associated with phishing attacks, "[Abused TLDJ', has been [0
used in this URL
Unusually Long URL Hostname Possible Hostname Length, Hostname The URL has over 70 characters in its hostname at [Hostname Length] characters, which isa [ qo
malicious indicator.
Suspicious Characters in the URL Possible Character, Location In URL L"‘:L;[S“SP‘“‘"“S Character]" is in this URL. This is a character commonly used in phishing || ction In URL
Target Name, Popularity of Target, Location | This URL includes the name of a top phishing target from the last 30 days - [Target Name]
Top Phishing Target Possible In URL which the [Popularity of Target] most targeted. Location In URL
mbedded URL In Query Sting possible Embeddod URL Gount, Guery S¥ing Thers s atleas one URL n th query siingof the URL - (Embedded URL Coun embedded. | ery g
|Amount of Hypens in URL Possible Hyphen Count, Location In URL There are two or more hypens in this URL with [Hyphen Count] hyphens. This is a malicious | o ation 1n URL
phishing indicator.
Unusual Top Level Domain Possible TLD, Domain This URL has an unusual top level domain "[TLD" as itis not in the most commonly used. | Domain
Is Shortened URL Possible Original URL This was previously a shortened URL which was expanded for analysis. Original URL
No Encryption Used Possible NIA NA NA
Name Severity Level Data Used in Ul Ul Explanations Ul Evidence Focus,
o s Known oman b 5% of phishing sites have been found to be less than a day old. omam s
omain Age omain, Domain Age omain Age
in Age Possible . in Ag 95% of phishing sites tend to be less than six months old. in Ag
Domain Blacklisted Known Blacklist Name, Domain "The domain is present on a list of known malicious domains. Blacklist Name
URL Blackisted Known Blacklist Name, Hostname This URL s present on a list of known malicious URLS. Blacklist Name
Google Safe Browsing Blackisted Known Slackist Reason This URL is listed in Google Safe Browsing which has a collection of over 1.6 million Blackiist Reason
Domain blackiisted URLs.
Suspicious Domain Category Known Domain Category, Domain This URL has a suspicious domain category according to the FortiGuard web fier. Domain Category
No Whois Domain Match Possible Domain There is no match for this domain in the public WHOIS records; no data on who responsible [0
for this domain name or underlying IP address.
Registrant Name Hidden Possible Registrar, Domain The owner of the site has masked their identify behind their domain registrar: [Registrar]. Registrar
o . This URL has a suspicious domain category. "Personal Websites and Blogs™ and "Web
Domain Indicates Hosting Services None Domain Category, Domain e o et ot e s Domain Category
Known This URL has over six URLS for which it has been redirected to which is a malicious indicator.
Number of Redirections Amount Redirected Amount Redirected
Possible This URL has been redirected between 3-6 times which is a sign it is possibly malicious.
Known This URL has over one shortened redirections which is malicious indicator.
Number of Shortened Redirections Amount Of Shortened URLS Amount Of Shortened
Possible 80% of phishing tweets have been shown to have at least one shortened redirection. URLs
« There is no data on this URL's domain or it has an extremely low presence in global traffic
nown ) is UR :
rankings. Low popularity sites tend to be malicious.
Low Global Popularity Alexa Traffic Rank : : : - - Alexa Traffic Rank
possible This domain has an fairly low presence in global raffic rankings. Low popularity sites tend to
be malicious.
Page Known There is no data on this URL o it has an extremely low page rank. Low popularity sites tend to
Low Page Rank Page Rank Decimal be malicious. Page Rank Decimal
Possible This URL has an fairly low page rank. Low popularity sites tend to be malicious.
op Semrch Rosut Known Viatch Status Matched Link There is no presence of the domain in the Top 10 Google search resuls: [Match Status]. Votched Link
lo Presence in Search Resulls fatch Status, Matched Lin} atched Lin
k . Possible . ! There is no presence of the hostname in the Top 10 Google search results: [Match Status]. !
Low Sites Linking In Known Sites Linking In There is no data on the number of sites inking to pages with this URL'S domain. Low itos Linking In
popularity sites tend to be malicious.
) Blacklisted Count, Example List Name, | [Blackisted Count] blacklisted URLs including a URL present [Example URL Coun] times in
Number of Blacklisted Redirections Known Example URL, Example URL Count blacklists such as [Example List Name] Example URL
Low Social Reputation Possible Facebook Share Count This URL has a low share count on Facebook. Facebook Share Count

Figure 5.4: List of all heuristics implemented as part of the analysis algorithm. Fur-
ther detail on the selection of the severity levels and user statements can be found in
Chapterm
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5.2.2.1 Developing the Heuristics

The heuristics implementation involved tackling an extensive range of challenges.
Whilst multiple heuristics were added on the 34 outlined in the heuristic proposal,
not all of those proposed heuristics were able to be implemented due to the bounded
time constraints resulting from the system response time requirement. Specifically,
evaluating the digit replacement of letters - whether key words in a URL have had
their characters replaced with digits: such as ‘0’ with ‘O’. There are four particular
heuristics which help to illustrate the depth of work done in this area: Typosquatting
Popular Domains, Different TLD and the keyword analysis heuristics: Occurrence of
Mislead and Top Phishing Target.

The Typosquatting Popular Domain heuristic was challenging to implement due to the
response time requirements. Typosquatting involves the creation of domains which
have small spelling deviations from highly popular ones. This manipulation attack
can be used, as an example, to target users who incorrectly type a web address into
their browser. To implement this heuristic with a reasonable response time, only the
domains included in the system’s whitelists are compared with the processed URL
domain using a similarity metric. This helped to bound the computation time in com-
parison to checking with spelling deviations in larger corpora. The final implementa-
tion of this heuristic was established by using database SQL queries to calculate the
levenshtein distance between the relevant word tokens. This implementation shaved a
minute off of the URL Processing app response time, in comparison to the comparative
non-database implementation.

The Different TLD heuristic was also challenging to implement in a given response
time. This heuristic identifies where a URL has the same domain as a popular site
but a different top level domain. To implement this, a processed URL’s TLD and
primary domain were extracted. These were then compared with the primary domains
in the whitelists, gauging for both a primary domain and TLD match. It was found
to be highly inefficient to reprocess the TLDs of each of the whitelisted URLs for
each request. Therefore, the data processing and database tables, were each updated
to apply TLD extraction to the URL domains when populating the database lists. This
was one approach to improve the heuristic performance.

The use of Forbes Top Companies was a creative choice to make use of a data source
typically unused for phishing analysis. This data source was used to evaluate the Oc-
currence of Mislead. This heuristic is focused on checking if a popular company name
is embedded somewhere in the URL outside of the destination. The Forbes Top Com-
panies list was therefore a useful list of potential companies targeted for phishing at-
tacks.

In a similar manner, further data insights were able to be derived from PhishTank
beyond its use as a blacklist. With each URL the Phishtank API provides the target
of blacklisted URLs. This was, therefore, repurposed to provide the most popular
phishing targets for the last 30 days. This data was incorporated into the Top Phishing
Target heuristic to evaluate if a URL keyword refers to a company which is a top target.

The implementation of these heuristics was complemented by consultations with a
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phishing PhD student. They provided suggestions for implementation approaches for
specific heuristics, particularly the Extended Validation heuristic and the set of redi-
rection heuristics.

5.2.2.2 Safety Metrics

There are a limited number of metrics which can verifiably indicate a URL is safe. In
the bespoke safety algorithm, there are two ways that a URL can be classified as safe:
if a URL has no heuristics with a ’known’ or ’possible’ severity level or it satisfies
certain safety metric conditions.

Of the safety metric conditions, there is a top level of metrics which can give an inde-
pendent definitive result: either Presence in a Whitelist or Extended Validation. With a
positive result in either of these categories, the URL can be marked as safe with a high
degree of confidence.

There is second set of conditions focused on analysing the popularity of the URL.
These involve combining multiple popularity metrics to establish a high degree of con-
fidence. Where URLs have a high global popularity (derived from the traffic ranking
on Alexa Top Sites) combined with a High Page Rank and a high number of Sites
Linking In, the URL can be marked as safeﬂ If one of these these metrics is not sat-
isfied, the Social Reputation and Domain in Search Result heuristics can each act as
supporting indicators which increase the likelihood of URL safety for indefinite cases.

This second set of metrics is based on the phishing research into the links between URL
popularity and phishing. Popularity measures, such as a site’s traffic rank, are a strong
indicator of safety, as users do not regularly return to sites known to be malicious.
Page Rank, for example, works by measuring a pages inbound and outbound links
- a metric previously established by major search engines to measure site popularity.
Safety indicators are also derived from social media sites such as Facebook and Twitter
which regularly include links to external sites shared between its users. Multiple shares
suggests a site may be safe, based on typical user sharing patterns. However, known
phishing patterns limit the strength of indicators such as social reputation as social
media sites can be potential vehicles of phishing attacks.

5.2.2.3 Redirection Heuristics

The redirection heuristics are largely included in the system for their ability to provide
further analysis options for researchers on static datasets; rather than for incorporation
in the real-time system. This is largely because it was not possible to utilise these
heuristics and maintain a bounded system response time. This is due to the unknown
nature of how many redirections might occur for each URL and a requirement to fol-
low the full redirection chain for the heuristics to both function and have accurate
information presented to users.

“4Conversely, the low popularity of URLs may be an indication they are possibly malicious [[7].
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Therefore, whilst the redirection heuristics are included in this work they are explicitly
not evaluated as part of the included studies which are focused on real-time contexts.
The decision to discount these optional heuristics from the system evaluation therefore
also allows the response time of the system to be measured for a typical use case.
This has limited impact on the overall approach as heuristics have also been shown in
prior research to have a negligible impact on the overall classification performance in
comparison to that of other heuristics [7]].

5.3 Summary

This chapter outlines the Analysis Server implementation: its basis as a Microservices
architecture deployed on Google App Engine with distinct apps for URL Processing,
UI Calculation and database population. The chapter also details the implementation
of the analysis algorithm, providing a comprehensive list of the data sources utilised for
URL classification. The 46 implemented heuristics integral to the algorithm are also
outlined, with the implementation of key heuristics such as Typosquatting discussed.
The bespoke algorithm for evaluating URL safety is also presented.



Chapter 6

Browser Extension Improvements

To facilitate its future use as a research platform, several modifications had to be made
to the existing CatchPhish system.

This chapter focuses on these modifications, with a particular focus on Ul improve-
ments. The deployment of the tool on the Chrome store is also briefly discussed.

6.1 Additional Features

There were several additional features implemented in the browser extension, detailed
in this section.

6.1.1 Gathering User Usage Data

In order to understand the effectiveness of the tool in future studies, how users interact
with the tool needs to be recorded. This interaction data allows researchers to analyse
the successfulness of certain aspects of the tool such as active warning click through
rates, which can be compare them with existing approaches [3]E To facilitate this, the
browser extension had to be updated to record user responses at key event points:

Which buttons users click when presented with an active warning

When a user adds a site to their personal white or blacklist

Any clicks on the tool’s context menu item or extension icon (events which open
the extension analysis popup)

e When users click to see further details of any URL

e A change to any of the settings options set by users

'An active warning occurs when users try to visit a malicious site; an intervention page appears,
alongside the tool’s popup, to dissuade them from continuing.

47
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& CatchPhish O :

Settings

Update the settings of the app if you like.

Enable Page Badges .
User

blank 4
ID: ’
Reset local user data RESET

Disable Data  Select Time~

’ DISABLE
Collection

Auto Re-enabled

Disabling data collection temporarily prevents the
tool fully functioning. It also stops user data sharing.

Figure 6.1: The browser extension’s settings menu.

To gather this recorded data, the Analysis Server API was updated to store information
labelled as user events. A bespoke database table was created to store this information,
with each record including the user’s ID.

6.1.2 User Experience Settings

As part of some quality of life and data protection improvements for users, various
features were implemented as part of the extension settings (see Figure[6.]).

The abilities were:

e to disable communication with the server for specified periods of time (a limited
user data control method).

e to enable/disable the passive warnings displayed beside each link on a pageﬁ

e the backend implementation required to send an email to the developers for feed-
back purposesﬁ

e selection of a user ID for data gathering (to easily provide users a shared ID
across multiple extension instances).

2The passive warnings were previously implemented. These are traffic-light coloured badges corre-
sponding to the URL classification. The disablement of these warnings does effect the occurrence of
active warnings when users try to visit malicious URLSs.

3The UT for this feature was completed the previous year.
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< CatchPhish: Anti-Phishing Support Tool

Welcome to CatchPhish!

The Anti-Phishing support tool designed for your needs.

A Home

% TakeaTutorial Please ensure a suitable user ID is set in the field below.

User ID: blank ’
Learn about URLs

Research Data Collection Tutorial & Learning Material

By using this app you agree to the collection of your data by this app for research purposes. This Some reference materials are included to help you learn about and use the tool.
data will be stored for no longer than a year. « Tutorial Page - more details about how to use the tool
Should you wish to withold your data for any reason during the study you can visit the setlings page « URL Learning Page - more details about URLS
to disable data collection. Both of these pages can be accessed using the drawer on the left hand-side of this page and through the
Please remember to turn data collection back on afterwards. extension popup.

Figure 6.2: The browser extension landing page implementation.

Figure 6.3: The new browser extension icon.

Future research studies utilising this platform intend to record all URLSs that a user vis-
its. Since this makes the existing implementation of a URL cache in the browser exten-
sion redundant, this cache was re-purposed to allow the extension to provide analysis
on already retrieved URLs during periods where the user has disabled communication
with the server.

6.1.3 Landing Page Implementation

A dedicated landing page was implemented as part of the tool to welcome users to the
site. This landing page is displayed the first time users install the tool. It is intended
to highlight data storage and usage information, provide users a link to the tutorial and
URL information pages (developed last year) and allow users to set their user ID.
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Your item has been published to testers. All changes will take effect within a few
¢~ chrome web store minutes. L stephenwaddelis3@gmail.com
Return to dashboard

Home > Extensions > CatchPhish: Anti-Phishing Tool

¢ ) CatchPhish: Anti-Phishing Tool Add to Chrome
Offered by: stephenwaddell83

o] Productivity

Overview Reviews Related

Figure 6.4: The browser extension’s page listing on the Chrome Web Store.

6.2 Ul Improvements

There were several Ul feature improvements highlighted by users in previous evalua-
tions. These required a serious of small fixes and changes. An example of these is user
confusion between the option to ‘Report an Issue’ to developers and ‘Report a URL’
to a blacklist. This was resolved by renaming the blacklisting option.

One requested feature from previous evaluations was an icon to replace the default
Chrome Extension icon; the new icon is illustrated by Figure[6.3]

However, several features required more dedicated bug fixes. For instance, a bug was
found with the intervention page - which was hard-coded to return users to a known
safe site (google.com) if they clicked the wrong sequence of buttons. This was fixed
by ensuring the users were consistently returned to the page they were previously on
prior to intervention. Each of these bugs was iteratively identified and improved.

6.3 Deployment

To facilitate future studies, the tool was deployed on the Chrome Extension store. This
has the ability to limit usage to select test users before full deployment, which ensures
only valid participants are able to use the tool.

Figure [6.4] illustrates the store listing. This listing includes a brief description of the
tool, along with an outline of data privacy considerations, to facilitate the tool’s de-
ployment.

6.4 Summary

This chapter highlights improvements made to the existing components of the project.
It outlines additional features added to the system to facilitate future studies, such as
user data gathering and user data control settings. It also describes the approach taken
to improve the Ul features and deploy the browser extension.



Chapter 7

Algorithm Fine Tuning

Several fine tuning steps had to be taken to ensure the algorithm was ready for deploy-
ment. This chapter focuses on these fine tuning steps, with a particular emphasis on
threshold selection and algorithm evaluation. The chapter also discusses performance
optimisations applied to the URL Processing application.

7.1 Popularity Threshold Selection

For heuristics dependent on continuous data, thresholds had to be set to output appro-
priate severity levels; most of which where able to be sourced from existing research
[7]. However, it was not possible to find thresholds for heuristics depending on pop-
ularity indicators as these are dependent on numerous factors - including the quality
of their APIs. These thresholds therefore had to be derived separately in order to be
included in the system. Popularity API data is used in two sets of heuristics: safety
metrics and page indicators. The popularity APIs are provided by Alexa Top Sites
(for the Global Popularity and Sites Linking In heuristics), OpenPageRank (for the
PageRank heuristics) and SharedCount (for the Social Media Reputation heuristics).

7.1.1 Methodology

I carried out an experiment to assess the response distribution of the popularity APIs
for both safe and malicious URLs. Both sets of URLs were evaluated to correspond
with the two sets of heuristics depending on popularity indicators.

10,000 URLs were selected for use in this study, with 5000 each being drawn from a
popular whitelist (Tranco) and a blacklist (hpHosts). Random selection, using a fixed
random seed, was used to select from the ranked Tranco list to ensure the whitelisted
URLSs would not be unfairly weighted towards the highly popular sites.

By testing the popularity APIs, two types of data were gathered: the responsiveness of
the APIs and the range of values each would return when presented with a URL of a
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particular type. An API was determined to be unresponsive for a particular URL if it
returned null or unexpected values for a particular field. For example, where the Alexa
Top Sites’ Alexa Traffic Rank field produced a value of ‘No Data’. This responsiveness
data was analysed to determine if there was a clear difference between how the APIs
responded for whitelisted and blacklisted URLs. This type of API responsiveness is
useful for indicating how much information an API has on a particular URL, indicating
qualities such as whether it has been indexed yet. When this data is aggregated it can
be used to infer common API characteristics, such as whether the APIs contain more
data on whitelisted URLs.

The range of valid responses returned by the APIs were also analysed. Each API has its
own set of units for each particular field which cannot be easily compared. Therefore,
analysis was focused on the distribution of results across each individual API field,
with the API fields filtered by those best able to facilitate the heuristics.

Both the responsiveness data and value analysis were combined to produce two sets
of thresholds for use in the URL Processing application. The whitelist thresholds are
used for the safety metrics, and the blacklist thresholds for the page metrics. Each of
the thresholds were selected by analysing the distribution of results of the white and
blacklist responses. The intention was to minimise the number of misclassifications
for either type: safe or otherwise.

7.1.2 Results

One of the initial findings was the differing responsiveness of the APIs for white- and
black- list data, indicating whether the API contained data on the URL, as seen in
Figure The APIs tended to have a significantly lower responsiveness for mali-
cious URLs. Excluding the Social Media Reputation API, where most fields have no
response for either type and otherwise return values of zero at a minimum.

Following the responsiveness findings, the API fields were filtered to retain the result
distributions for the most significant numeric fields. For instance, the Alexa Top Sites’
Top Country fields were removed. This set of fields conveyed similar information to
the Alexa Traffic Rank field, which was of greater utility as a global ranking less likely
to fluctuate as a result of regional variations.

The distribution of API responses can be seen in Tables and The respective
distributions indicate several differences between the different types of URLs. For
instance, the significantly higher average traffic rank for blacklisted URLs as opposed
to whitelisted URLs. Differences in distribution between these respective URL types
are used to produce the thresholds. These results are combined with knowledge from
prior research findings, such as that popular URLs tend to have a low traffic rank.

Tables and illustrate the selected thresholds, each of which is individually
justified. The thresholds were only selected for the most representative API fields to
simplify their corresponding heuristics. The small overlap in the distributions of the
white- and black- listed URLs was considered when selecting the whitelist thresholds.
The potential false positive misclassifications of phishing URLs caused by the selection
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Figure 7.1: Comparison of normalised API response occurrence for the popularity
APIs. Two sets of 5000 URLs from white- and black- lists were each processed by the
APlIs, with the results aggregated to indicate how much data each API contained for
URLs of each particular list type. The API data is further broken down by how much
data is available for each list type for each API field.
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API Field Count Mean Std Dev Min | 25.00% | 50.00% | 75.00% Max
Alexa Traffic Rank 4833 208173.1 912351.9 4 6178 18202 64235| 10913986.0
Alexa Top Sites | Sites Linking In 4531 4542.0 56595.1 1 342.8| 1235.5| 2958.3 3457310.0
Traffic Rank of Top Country 4939 11590.4 25106.7 1 322.5 2447| 10886.8 271247.0
Page Rank |Page Rank Decimal 4895 4.5 1.2 0 4.2 4.7 5.1 10.0
Facebook Comment Count 5000 57027.1 25249135 0 25 406 2174| 161536782.0
Facebook Comment Plugin Count 5000 5.9 280.9 0 0 0 0 19373.0
Social Media |Facebook Reaction Count 5000 361521.7| 15657320.3 0 53.5 954 5887 | 958591658.0
Reputation | Facebook Share Count 5000 492394.5| 20907001.4 0 209.5 2730 10989|1294585871.0
Facebook Total Count 5000 910901.8| 37249049.3 0 367 4673| 21654.5|1881373120.0
Pinterest 5000 665.7 28761.0 0 0 0 0 1747521.0

(a) Whitelist Responses

API Field Count Mean Std Dev Min | 25.00% | 50.00% | 75.00% Max
Alexa Traffic Rank 601| 2567582.0 3272606.7 996 3519| 557177|5099097| 10266800.0
Alexa Top Sites | Sites Linking In 340 11479.0 10574.2 2 719.0| 15624.0( 15624.0 43953.0
Traffic Rank of Top Country 1894 22515 12197.9 1 2.0 4 325 123820.0
Page Rank Page Rank Decimal 1404 1.6 1.1 0 0.7 1.7 2.2 4.3
Facebook Comment Count 5000 43.2 492.0 0 0 0 0 8827.0
Facebook Comment Plugin Count 5000 0.0 0.3 0 0 0 0 9.0
Social Media |Facebook Reaction Count 5000 273.3 7066.8 0 0 0 0 216257.0
Reputation | Facebook Share Count 5000 183.7 1500.7 0 0 0 5 30491.0
Facebook Total Count 5000 500.2 8517.7 0 0 0 11.25 255575.0
Pinterest 5000 0.0 0.0 0 0 0 0 0.0

(b) Blacklist Responses

Figure 7.2: The distribution of results across popularity API Fields for both white- and
black- lists. Each of these distinct API field has it's own set of units so therefore cannot
be easily compared. For example, the Page Rank API's Page Rank Decimal field has
a decimal value which represents a URLs page rank normalised into a decimal range
between an interval of 0 and 10.

API Field Heuristic (Safety Metric) || Threshold Justification

Alexa Traffic Rank High Global Popularit 64235=< Based on the whitelist 75th percentile, therefore includes the top 75% of tested
9 pularity whitelisted sites.

Alexa Top Sites ; . B ) T
Despite there being a small minority of blacklisted sites with high sites linking in,

threshold set to be greater than or equal to the whitelist mean.
Page Rank Page Rank Decimal High Page Rank >=4.5 Includes any sites greater than or equal to the whitelist mean.
- Based on the whitelist 50th percentile, therefore includes the top 50% of tested
i i Facebook Total Count >=4673 S N !
S;«:a‘ljglzg:la High Social Reputation whitelisted sites.
P Pinterest >=665 Includes any sites greater than or equal to the whitelist mean.

Sites Linking In High Sites Linking In >=4542

(a) Safety Metric Thresholds

API Field Heuristic (Page) Possible TI Known T
Possible threshold is based on the blacklist 50th percentile, therefore includes the top
Alexa Traffic Rank Low Global Popularity >=557177 No Result 50% of tested blacklisted sites. The Known threshold is based on the consistency of
Alexa Top Sites the API for whitelisted URLs.
Sites Linking In Low Sites Linking In N/A No Result No Possible threshold set due to the high mean to the whitelist re

The Known threshold is based on the consistency of the AP for whitelisted URLs.

Possible threshold sis et to include responses less than the max. The Known
Page Rank Page Rank Decimal Low Page Rank 22<x=<43 No Result or (2.2=<) |threshold is based on a combination: No Result due to the consistency of the API for
whitelisted URLS; less than 2.2 to include the top 75% of blacklisted URLs.

Possible threshold based on the blacklist 75th percentile, therefore includes the top

B N Facebook Total Count 11.56=< N/A 75% of tested blacklisted sites. Known threshold is not set due to unreliablity of the
Sﬁi'aﬁe'gﬁg'na Low Social Reputation AP - the consistency of zero value responses.
P! Neither threshold is set due to the unreliablity of the API for the Pinterest field - the
Pinterest N/A N/A

consistency of zero value responses for both white and black lists.

(b) Page Heuristic Thresholds

Figure 7.3: The thresholds selected for the popularity API Fields for whitelists and black-
lists. These API fields have been filtered by the values most useful for facilitating their
corresponding heuristics. The selection of thresholds for each field is individually justi-
fied with comparison to both the API responsiveness Figure[7.1]and the valid response
distributions Figure[7.3] The blacklist results are used to produce page heuristic thresh-
olds for both ‘possible’ and ‘known’ severity levels where relevant.
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of the whitelist thresholds was intended to be compensated by the differing weighting
of the popularity heuristics in the safety algorithm.

7.2 Expert Heuristic Evaluation

To ensure the heuristics had been implemented with an appropriate level of accuracy,
an expert in phishing heuristics was consulted. The chosen expert was a member of
the TULIPS Group who has published several papers on phishing and URLSs.

Expert evaluations involve using the experience of experts in a field to analyse potential
problems in proposed designs. As an evaluation method it is useful for evaluating
difficult material. This method can help identify any user interface or technical issues
in design processes before employing more costly evaluation methods [64].

The basis of this expert evaluation was to assess the implemented heuristics, focusing
on three key components: their severity levels, their thresholds and their user-facing
explanations.

7.2.1 Methodology

An interview was arranged with the expert in order to analyse the heuristic implemen-
tation. During this interview, the expert was presented with the source code for the
heuristics: including the appropriate threshold values and associated severity levels.
They were also sent the list of user-facing sentences.

During the interview, detailed notes were taken to record the expert’s feedback. These
were analysed to produce qualitative findings covering both positive and negative as-
pects of the heuristic selection. The expert’s recommendations were then used to im-
prove the quality of the implemented heuristics with the intention of improving both
the system and algorithm performance.

7.2.2 Results

The expert thought the choice and implementation of heuristics was of a particularly
high quality, with the associated user statements appropriately written. They were also
confident in the underlying logic behind the the safety and classification algorithms.
However, they suggested modification of several heuristics which were incorporated
into the system to better suit the latest phishing trends.

Firstly, they questioned the use of the ‘hyphen’ character as part of an implemented
atypical deliminator heuristic. They pointed out that attitudes towards hyphens in
URLSs had changed, becoming much more prevalent in legitimate URLSs, and it would
be better to merge the atypical deliminator heuristic with the suspicious character
heuristic. They also suggested implementing a distinct heuristic for the number of
hyphens in a URL - which is a known phishing feature.


https://groups.inf.ed.ac.uk/tulips/
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They also presented a similar argument for a previously implemented heuristic evalu-
ating the use of suggestive word tokens in URLs. They highlighted how security key-
words such as ‘confirm’ used to be malicious indicators, but that this has changed due
to their increasing legitimate usage. The suggestive word token heuristic was therefore
excluded from the system.

Secondly, they suggested several changes in severity for particular heuristics. The
search result heuristic in the page heuristics was an example they recommended be
updated. They suggested this heuristic would be a more representative feature if it
were to evaluate the search results for both the hostname and domain, rather than just
the domain. They recommended that the presence of the hostname and domain should
be used as possible and known thresholds respectively (since a lack of domain presence
suggests no prior search indexing, whereas a lack of hostname presence suggests a lack
of popularity). They also recommended a change to the safety search result heuristic
to focus on search results for the hostname rather than the domain, since this is a more
representative feature of safe URLs.

These are prime examples of the detailed and helpful feedback the expert provided.
Overall, they were impressed by the system and the quality of work involved. The
feedback from this expert was utilised to produce the the final set of heuristics and
associated severity levels illustrated in Figure

7.3 lteration with Real Data

To evaluate the algorithm and system in a deployed setting, a trial with real data was
planned. The intention of this trial was to use particularly challenging datasets to
evaluate the performance of the algorithm. This intention of this trial was to evaluate
the successful implementation of the heuristics and provide an initial indication of the
general algorithm performance.

Challenging URL data sets were selected for this trial as part of a functional testing
approach to model the robustness of the overall system. Whilst the chosen datasets
were atypical of realistic system use cases, they contained more unusual test cases
which were useful for testing the functionality of individual heuristics. This approach
was intended to allow the heuristics to be better tuned by ensuring each of the heuristics
were functioning as expected on a wide range of inputs. Thus evaluating the system
with these datasets was intended to result in better system robustness and algorithmic
performance.

7.3.1 Methodology

This study uses the system to analyse previously classified URLs in order to estimate
the system’s effectiveness. 10,000 URLs were used for evaluation, with 5000 being
drawn from a whitelist - ParaCrawl and a blacklist - Phishbank, neither of which are
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used in the system. Both of these lists were composed of URLs, rather than lists of
domains, allowing me to test the full range of the tool’s functionality.

To prepare for this study, a test suite was written to process each URL and send it to
the server for analysis. The classification results were then matched to the ground truth
to evaluate the overall accuracy of the system. The results were then examined in fur-
ther detail to understand the effects and performance of the individual heuristics. The
performance of these heuristics was analysed with an understanding of their expected
performance as outlined in literature [7]. There was a focus on how likely particular
heuristics are to activate for each test setEI The URL classifications were then grouped
by their classification reasons to better understand how the algorithm utilises these
heuristics at a higher-level.

The results of this trial were intended to be subsequently utilised to improve the im-
plementation of the heuristics and the performance of the algorithm in general.

7.3.1.1 Dataset Details

The ParaCrawl [22] dataset was created for the Connecting Europe Facility as part of
a project to harvest parallel data from the Internet to help translate between languages
used in the European Union. This resource includes multiple webpages which have
different translations across the 23 official languages of the European Union. As the
characteristic of having multiple translations is a strong indicator of a safe site, the list
of URLs sourced from this corpus can functionally be used as a whitelist.

However, ParaCrawl is a challenging whitelist for several reasons. Firstly, this dataset
was not originally developed as a whitelist. As a result, the URL whitelist produced
from this corpus does not contain the highly popular global URLs which users typically
visit. As the system’s safety classification algorithm relies on popularity metrics for
identifying safe sites, this dataset is a significant challenge. Many of the sites included
in this dataset are not particularly popular worldwide since the corpus is focused on
regional European rather than global sites. Another challenge presented by this dataset
is the differing syntax of URLs depending on the origin country of the URL. Whilst the
hostname of the URLs largely remain consistent with ASCII and English only charac-
ters, there is a higher prevalence of non-ASCII characters in non-English URLs. This
dataset therefore allowed us to model the importance of the popularity heuristics for
classifying safe sites (the algorithm’s false negative cases), along with the effectiveness
of the lexical heuristics.

The Phishbank dataset was sourced from a list of archived phishing URLs stored on
the Phishbank platform [47]. This is a challenging dataset as many of the blacklists
incorporated into the system such as hpHosts and PhishTank filter out URLs which are
not currently active. This means Phishbank URLs are less likely to be identified by
the blacklist presence heuristics used by the system. The blacklisting heuristics were
therefore expected to be less significant contributors to the URLSs’ final classifications.

'In this discussion, a heuristic is deemed to have activated if it outputs any of it’s associated severity
levels.
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Figure 7.4: The classification status is broken down for both the ParaCrawl whitelist
and the PhishBank blacklist, displaying the final classification status of each URL.

This allowed us to test the effect of the more diverse set of heuristics for classification
beyond the blacklist presence heuristics.

7.3.2 Results

The system was found to have a mixed performance on the distinct list categories.
Whilst the system performed particularly well on blacklisted URLSs, it was found to
have high false negative rate when classifying URLs sourced from the whitelist. The
performance of individual heuristics was found to be partially responsible for the high
false positive rate. However, the misclassification of URLSs from the ParaCrawl dataset
was found to be a greater consequence of the safety algorithms focus on popularity
metrics. These results are outlined in detail in this section, with several further sup-
porting graphs in Appendix

7.3.2.1 Overall Algorithm Accuracy

Whilst the the system was able to accurately classify malicious phishing URLs with
regularity, there were a high number of false negatives; with the whitelisted URLs
being classified as malicious more than nought, as illustrated by Figure [7.4]

When analysing the results by severity level, as in Figure [7.5] there was a higher pro-
portion of heuristics activating with a ‘known’ severity level for blacklisted rather than
whitelisted URLs. Conversely, a higher proportion of heuristics activated with a ‘safe’
severity level for whitelists. Both of these findings were expected outcomes, however,
the amount of heuristics which produced ‘known’ activations for whitelisted URLs
was abnormal. Whilst the high false negative rate was not a particularly unexpected
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Figure 7.5: The severity level distributions for the individual heuristics for both the
whitelists and blacklists.

outcome, the high amount of ‘known’ activations suggested issues with the implemen-
tation of the malicious indicators.

There was also an absence of URLs classified with a final ‘warn’ classification results.
It was an unexpected outcome to see almost no URLs with this classification for either
this, whilst a limited amount of warn’ classifications might have been an expected
outcome given the limited amount of heuristics outputting a ‘possible’ severity level.
This might be partially explained by the composition of the algorithm however, with
it only requiring the occurrence of one ‘known’ activation for a URL to be marked as
malicious.

7.3.2.2 Performance of Individual Heuristics

By analysing the activation of individual metrics as presented in Figure [7.6] and Fig-
ure [7.7] several patterns were identified. Foremost of these was the activation of the
Different Top Level Domain and Typosquatting heuristics for almost every URL for
both white- and black- lists. This suggested significant errors in the implementation of
both of these heuristics, given their low expected occurrence outlined in prior research

[7].

As a result of implementation errors of certain heuristics, there was a limited amount
of inference which could be made about the underlying datasets given the unreliable
performance of the algorithm. For example, it was particularly challenging to under-
stand the effect of heuristics such as Registrant Name Hidden on the datasets. Whilst
the high amount of activations of this heuristic that occurred for both list types may
typically indicate it is an insignificant phishing feature, this is a challenging conclu-
sion to have had confidence in given the errors in other heuristics. The amount of
suspicious characters in the URL followed a similar pattern. This might have typically
been explained by the multi-language composition of the ParaCrawl dataset and the
generally high amount of suspicious characters in phishing URLs. However, the high
activations might also have been a consequence of implementation errors. These re-
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sults therefore highlight the utility of testing the system in this functional manner with
these challenging datasets: by evaluating how well each heuristic meets its intended
requirements.

However, general patterns were still able to be identified from groups of heuristic acti-
vations. The lack of significant proportions of ‘safe’ activations for whitelisted URLs
is one example. The number of activations of the Presence in a Whitelist heuristic
was found to be too limited to compensate for the under-performance of the popular-
ity safety metrics. This also highlighted a limited presence of ParaCrawl URLs in the
system’s whitelists. The impact of the popularity heuristics on the overall classifica-
tion performance was also found to be minimal as originally expected, with only one
popularity heuristic typically activating for each URL.

7.3.2.3 Underlying Heuristic Effectiveness

To model the effect of suspected incorrect classifications, the Different Top Level Do-
main and TypoSquatting results were removed from the analysis results and the URLs
were reclassified. This produced a similar result as in Figure Breaking the results
down by classification reason, Figure illustrates the significant number of classifi-
cations which still occur due to ‘known’ classifications.

These results highlighted the limited impact of the two broken heuristics on the overall
performance. Therefore, the conclusion was drawn that the whitelisted URLs are being
misclassified due to the general performance of the algorithm on this dataset.

Whilst a more minor issue, Figure also highlighted a small number of false posi-
tives when identifying phishing URLs. As highlighted in Figure this was a result
of the phishing URLSs being marked as safe by safety algorithm rather than a failure of
the malicious indicators.

Whilst there was a small minority of blacklisted sites with extended validation certifi-
cates, the primary finding was the amount of URLSs present in whitelists as highlighted
in Figure All of the URLs discussed had domains present in the Tranco list,
which suggests significant issues with the formation of this list. Further the reliabil-
ity of whitelists more broadly might be questioned since Tranco itself is a cumulative
whitelist. Therefore, this work raises potential future research avenues through the
questions it raises on the reliablity of whitelists.

7.3.3 Impact on System Implementation

As a result of the unusual performance of several heuristics such as the Typosquat-
ting and Different TLD heuristics, the implementaton of each heuristic was iteratively
evaluated to identify any potential bugs. This process also resulted in minor changes
to the approach of several heuristics, such as the filtering of country level TLDs when
analysing whether a URL has a Different TLD from highly popular URLs. By identi-
fying bugs and optimising the performance of individual heursitics, the intention was
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Figure 7.6: The whitelist results are broken down by individual heuristic. Each heuristic
is displayed with the number of times it activated with it's associated severity levels.
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Metrics Result Distribution - Blacklist (PhishBank)
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Figure 7.7: The blacklist results are broken down by individual heuristic. Each heuristic
is displayed with the number of times it activated with it's associated severity levels.
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Figure 7.8: The URLs are grouped by how they have been classified, represented by
their colour, the URLs are further grouped by the reason for their classification.

to produce a system which would be able to draw more reliable conclusions from anal-
ysis.

One of the key considerations was improving the false negative rate of the system fol-
lowing it’s performance on the ParaCrawl dataset. Since it was a significant challenge
to alter the impact of the malicious heuristics without undermining the true positive
rate, the emphasis was on solutions which improved the safety classification of the
URLs.

Therefore, to improve the amount of safe URL classifications, two heuristics were
added to the tool’s safety metrics: Presence in Categorised Data and Fortiguard Safe
Domain. To implement the former heursistic, the DMOZ categories site list and UK
web archive were parsed and added to the system database. Domain categorisation data
gathered from Fortiguard [35]] for the classification of the domain heuristics was utilsed
as part of the Fortiguard Safe Domain metric. This was possible as the Fortiguard
service further categories it’s domain categories into safe and malicious categories.

Categorised data lists are effectively whitelists, being vetted by multiple users and
publically available the Presence in Categorised Data was utlised as a primary safety
metric. However, as the Fortiguard Web Filter service was found to be produce un-
reliable results for malicious URLs after initial testing on blacklisted URLs, this was
only utilised as a secondary supporting category. The Fortiguard Web Filtering ser-
vice would mark blacklisted URLs from the Phishbank dataset with a non-malicious
category approximately 50% of the time. This suggests several deficiencies in the
Fortiguard service, which might an interesting focus of future work.

The addition of these heuristics and associated user statements was evaluated by the
same expert from Section [7.2] They found both the heuristics and user statements to
be appropriate additions to the system to account for the results.
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There was no further changes to the implementation made to handle the small amount
of identified false positives resulting from blacklisted URLs found to be present in
whitelists. This was a conscious decision made due to the limited false positive rate,
with an understanding of the potential negative effect on the false negative rate if the
use of whitelists were to be changed in any way.

7.4 Performance Optimisations

One of the performance optimisations that was a consideration when designing the
system was the addition of asynchronous 10. This was thought to be a way of improv-
ing system efficiency by better handling the multiple data source accesses required
to process each URL. This involves moving all of the system’s IO operations to a
secondary thread where they can be handled asynchronous and processed as each op-
eration completes. This improves application performance by freeing up the CPU to
process alternate tasks instead of waiting on blocking IO operations. The major 10
bottlenecks in this system were a result of the IO waiting times caused by the number
of database accesses and web requests required to process each URL.

Response Time Comparison - Async vs Sync
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Figure 7.9: The URL Processing app response times: synchronous and asynchronous
implementations. These results were gathered client-side and therefore include the
network latency of communicating with the server.

A response time trial was carried out to evaluate the implementation of this feature, as
async IO is known to be significantly challenging to implement correctly. The system
with a finalised set of heuristics following changes resulting from the Iteration with
Real Data trial was the basis of the async 10 adaptions. To measure the effectiveness
of the asynclO addition the URL Processing app was trailed with both synchronous and
asynchronous implementations. The asyncio, aiohttp and aiopg libraries were used to
implement the async IO feature - replacing the app’s control logic, Postgres database
requests and web requests.
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To evaluate the response time of the Analysis Server, 1000 URLs randomly selected
from a whitelist and blacklist (ParaCrawl and Phishbank). This was to ensure the server
would preform with a consistent time for each. The URL Processing app was deployed
on the App Engine platform with each URL directly sent to the HTTP end point of this
app - to reduce impact effect of the wider system on the response time.

As Figure|/.9)illustrates the async IO implementation of the URL Processing app was
more efficient, so this implementation was therefore utilised in the final system.

7.5 Summary

This chapter highlights the significant efforts made to fine tune both the algorithm and
system performance. An analysis into popularity heuristic thresholds is initially con-
ducted to set the thresholds for the system. The overall heuristics, user statements and
severity level thresholds are then evaluated by an expert in phishing. This evaluation
highlighted the quality of the work completed and suggested several improvements
which were subsequently made to fine tune the severity levels.

Following the setting of severity levels, a study was conducted to evaluate the system
with real data. Challenging dataset were chosen to push the system to its limits and
highlight potential bugs. This study illustrated positive performance when identify-
ing phishing URLs but a false negative rate when analysing whitelisted URLs. The
results of this study were analysed and several issues with heuristics where identified
which were subsequently corrected, with the implementation of further safety heuris-
tics added to improve safe URL classification.

The chapter lastly highlights system level performance improvements to enhancing
the response time by making the system IO calls asynchronous. The addition of this
feature was highlighted to be a positive addition for the overall system response time.






Chapter 8

Evaluation

This chapter outlines the approaches used to evaluate the accuracy of the overall system
and the changes made to the UI. Preparations for a future longitudinal study are also
discussed, alongside this study’s expected research outcomes.

8.1 URL Analysis Study

The overall goal of this study was to analyse the effectiveness of the heuristic algorithm
and the wider system for the general system use cases. As part of this study, the system
is used to classify a selection of datasets: composed of safe URLs, phishing URLSs and
URLSs drawn from typical users. This is intended to evaluate the system from several
use cases and estimate it’s effectiveness in a deployed setting. This was the primary
study used to evaluate the effectiveness of the system, intended to evaluate it according
to two metrics: algorithm accuracy and system response time. The outcome of this
study results in a thorough analysis of the system’s utility as an analysis server, with a
focus on its ability to complement the existing browser extension as part of a research
platform for facilitating user anti-phishing training. This discussion, alongside the
results of this study, are the focus of Chapter 9]

8.1.1 Methodology

The study uses several distinct datasets as outlined in Table to analyse the system.
All of the datasets were composed of URLSs, rather than lists of domains, allowing me
to test the full range of the tool’s functionality. The classification results were analysed
following a similar methodology as Section A similar approach for evaluating the
classification results was possible since Datasets A and B are both labelled (being a
whitelist and blacklist respectively). The popularity of the links that make up Dataset
C also allowed it be evaluated as a whitelist. This was also the case for Dataset D,
which required analysis of each URL to determine its ground truth value, resulting in
the conclusion that it too could be evaluated as a whitelist. The ground truth values
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Name

Description

Purpose

ParaCrawl

PhishBank

Reddit Popular Domains

Real User Sites

Multi-language corpus which includes URLs of sites
which have been translated in different European
languages.

A set of archived phishing URLs sourced from the
Phishbank platform.

Reddit is a highly popular public content sharing site. It
has forums, known as subreddits, for any topic users
wish. A dataset of popular domains shared on this site
was created by processing the top 20000 most popular
links in the top 150 most popular subreddits. Only the
unique domains were kept to ensure diversity of analysis.

The author's personally visited URLs were recorded as
part of a previous trial, discussed in Section 4.2.1.

To evaluate the effect of the changes to heuristics in Section 7.3, specifically
any performance improvement in the classification of safe sites.

To evaluate the effect of the changes to heuristics in Section 7.3, specifically
investigating any impact to the false negative rate caused by the addition of
more safety metrics.

This data is used investigate the effectiveness of the system on a set of popular
URLs. Popular sites are those most likely to be visited be users and therefore
successful performance of the system on this dataset is important for
understanding how the tool will function in a deployed context.

This real user data is used to analyse the effectiveness of the tool in a realistic
deployment setting.

Figure 8.1: The datasets used in the evaluation. Each of which was composed of 5000
URLs which were selected from their respective datasets using a fixed random seed.

for each URL are drawn from the knowledge of their wider datasets; this allowed
individual URLs to be labelled as safe or malicious depending on whether they are
from a white- or black- list.

Each of the datasets are chosen to evalute the tool in different contexts. Datasets A and
B are utilised to evaluate the tool’s performance in more artificial contexts in challeng-
ing environments. The challenging nature of these datasets is discussed extensively in
Section In contrast, Datasets C and D are used to evaluate the system in con-
texts which are more reflective of a realistic user experience - both including popular
URLSs with one using real user browsing data.

To prepare for this study, a test suite was written to process each URL and send it to
the server for analysis. The classification results were then matched to the their ground
truth values to evaluate the accuracy of the system. This is broken down to analyse the
general system performance and that of individual metrics as in Section

To evaluate the more realistic use of the system, including the browser extension and
the UI Calculation components. A secondary trial was run with Seleniunﬂ simulating
a user accessing the same URL datasets as above. This involved installing the exten-
sion on a clean Chrome Browser instance setup for use by Selenium. The instance
then visited each URL using the browser; this setup allowed the extension to analyse
the amount of URLs on each site. The analysis of the URLs in these pages was dis-
abled since this was not the focus of the project. To evaluate the performance of Ul
Calculation statements easily, the extension logged each analysis web request. These
UI statements were then matched against their corresponding heuristics and severity
levels to evaluate the occurrence of any bugs. This portion of the study was also con-
ducted with a headless browser on a virtual machine to reduce potential adverse effects
from visiting the sites of malicious URLs.

Datasets C and D were used to evaluate the system response times. These datasets
were chosen in particular due to their representativeness of the use case of the system.
The response time results were gathered client-side and therefore inclusive of network
delay. To compensate for the effect of network load at peek times, the server requests
were spread across a 24 hour duration with the results across this period averaged

ISelenium is a portable framework for testing web applications as a playback tool [31].
The network utilised by the client in all response time results had a 11.34Mbps download speed,
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8.2 Expert Ul Evaluation

To evaluate the added Ul features and changes made as part of this work, an expert
evaluation was conducted with an expert in security and secure interface design. The
chosen expert was an alumni of the TULIPS Group) with industrial experience as both
a Security Engineer and Ul Designer at large multinationals.

This expert evaluation was intended to be a smaller scale evaluation to assess the lim-
ited amount of Ul changes from the prior year. Since the extension was previously
evaluated using a triangulated approach and found to be a usable tool, a more exten-
sive set of evaluations was not a necessary requirement. However, since there were
some changes to the UI, an evaluation with an expert who had familiarity with last
year’s tool design seemed an appropriate choice.

8.2.1 Methodology

To gather results, the study was designed around presenting the final Ul to the expert to
capture their opinion on each aspect of the tool. They were encouraged to interact with
the extension and provide feedback on the usability of the tool as a research platform.
Afterwards, an unstructured interview was held, to focus on the expert’s impressions
of the novel additions to the UI and changes implemented in Chapter [6]

Detailed notes were taken to record the results of the evaluation. These were later
analysed to produce a set of qualitative findings covering both positive and negative
aspects of the UI implementation.

8.2.2 Results

The expert was, on the whole, highly impressed by the tool, expressing that the general
usability of the tool was of an extremely high standard. Both the utility of the tool as
a research platform and the richness of features provided for users, were aspects they
felt demonstrated great potential. In their general impression of the tool’s usability,
they felt the extension was extremely easy to navigate, with each of the features being
very clear and easy to use.

Two particular additions to the browser extension’s settings impressed the expert: the
ability to disable the tool’s passive warnings, and the ability to disable data collec-
tion for specific periods of time. They believed these features showed considerate
appreciation of the target users, which they felt would encourage uptake of the tool.
Specifically, the ability to disable data collection was a feature they highlighted for
commendation; particularly as it is not commonly available in other privacy invasive
systems.

Whilst they felt, strongly, that the extension had fully met its usability objectives as
a research platform, outwith the scope of this project, the expert also highlighted the

0.74Mbps upload speed and a ping of 33ms.


https://groups.inf.ed.ac.uk/tulips/
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potential of the system as an application suitable for a marketable industrial level. This
was based on their experience of industry security applications, suggesting that the tool
would be highly useful for users beyond its applications in research. To facilitate this,
they felt there could be some aesthetic improvements to some of the tool’s pages to
bring them to more of a marketable level.

Specific improvements they highlighted were to enhance the aesthetics of the Landing
Page displayed in Figure [6.2] They felt this could be improved with the addition of
the tool’s logo and further graphics to make it more visually attractive to users. They
also felt the navigation menu on this page, whilst meeting all functional requirements,
could be further polished by adding subheadings for each of the topics in the tutorial

pages.

Overall, they were extremely impressed by the extension and expressed an enthusiasm
to use the tool themselves should it be more widely deployed in the future.

8.3 Planning for Longitudinal User Study

This research project is intended to prepare for a future longitudinal study to analyse
the effectiveness of this system as anti-phishing support tool. This approach is mod-
elled after longitudinal studies conducted by anti-phishing approaches into training
users such as NoPhish [12].

8.3.1 Research Questions
There are multiple planned research questions intended to be answered as part of this
study:

e Evaluating the system performance of the CatchPhish system over a longer time
period

Understanding how users interact with malicious URLs and phishing

Analysing typical user browsing habits

Collecting data on the make-up of URLs themselves

Evaluating how effective the CatchPhish system is as a support aid to users for
reducing phishing

Each of these research questions are possible to evaluate given the richness of the data
collected by the CatchPhish system (with appropriate accounting for the Hawthorne
effect [45]). A selection of automated analysis tools have also been implemented to
aid the analysis of these outcomes for use in the future study.
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8.3.2 Preparation

Various implementation decisions have been made to prepare for such as study. This
is the primary motivation of the work in the Chapter [6] Specifically, the work done
to capture user usage patterns, the implementation of data controls and the addition of
privacy improvements for users of the extension.

While the study has not been run, in part do to the COVID situation, I did create a
study plan which I detail below.

8.3.3 Methodology

To understand what users have learned as a result of the tool, pre- and post-testing
is to be conducted to measure users’ understanding of phishing, URLs and specific
malicious indicators as part of a lab study. The study is intended to follow a similar
format to the interviews conducted for requirements gathering in the previous year
(see Section[2.1.T). The post-testing is planned to be complemented with an interview
section exploring users’ experience with the tool - to identify potential improvements.

Analysis of learning outcomes may be supplemented by delayed post-testing after a
few months. This would be to evaluate if this system has improved phishing knowledge
retention rates over traditional training approaches, an intended advantage of this tool.
This is an aspect of the study which requires further consideration, due to questions
around the ease of comparison between this system and traditional approachesﬂ

8.3.3.1 Participants and System Usage

There are 10 to 15 participants planned for the study, with the study planned to last
for around two weeks. Due to the invasiveness of the data gathering involved, the
intention is to financially remunerate each participant. These users are to be sourced
from a participant pool of above-average technical skills, to match the target audience
of the tool.

Participants themselves, after pre-testing, will be given support to install the tool onto
any Chrome browsers on any non-mobile devices they actively useE] They will then
be expected to freely use the tool during their daily browsing activities. Throughout
this time, the tool will be supporting users through passive warnings, raising active
warnings if they visit a malicious site and providing contextual information on any site
a user wishes to analyse throughout this time.

3CatchPhish is intended to be continuously used - reducing the need for high user knowledge reten-
tion rates.
“There is currently no support for Chrome browser extensions on mobile platforms.
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8.3.3.2 Collected Data

The system itself will be gathering URL browsing information, analysing each of the
URLs processed by the tool and gathering the users’ tool usage patterns: for instance,
whether they click through an active warning to a malicious site. Concurrent to this,
the Analysis Server will be logging performance measurements such as server load
through built-in features of the App Engine platform.

One ongoing consideration is how often users are likely to see phishing emails/URLSs
in their typical routines. This is something this study hopes to identify as a secondary
research outcome. This outcome must be balanced against understanding how the tool
influences users’ interaction with malicious URLs. One possible outcome is if users
do not naturally encounter malicious URLs whilst using the tool. This would limit our
ability to analyse the effectiveness of the tool.

Therefore, one considered option is to simulate user encounters with malicious links
by sending them some mock phishing emails during the study. Since the tool analy-
ses all URLs on any site, browser based email-clients are also flagged and updated.
These mock emails can be filtered out of analysis of typical user patterns but still pro-
vide a useful way to understand how users interact with the tool when presented with

phishingﬂ

The results of the study will then be analysed relative to each participants user patterns.
At the end of the study, after post analysis one consideration was to present users with
an infographic of their own usage patterns to supplement their personal learning from
the study.

8.4 Summary

This chapter outlines the studies used to evaluate the final system. It describes the
methodology of the URL analysis study, used to evaluate the accuracy of the system.
It also outlines the results of the expert evaluation of the extension’s Ul components,
conducted with an expert in security and secure interface design. The results of this
study commend the tool as having a high usability standard. Alongside both of these
studies, the preparations involved in the future longitudinal study are also discussed.

>The URLs included in the emails need not be malicious, instead amusing benign URLs such as this
can be used - with the URLSs true destination potentially camouflaged by the system.


https://www.youtube.com/watch?v=dQw4w9WgXcQ

Chapter 9

Results and Discussion

This chapter discusses the results from the URL Analysis Study, which are used to
evaluate both the system and the algorithm. There is also a discussion of the ethics and
security implications of deploying such a system for research purposes.

The goal of the URL Analysis Study was to evaluate both the algorithmic and inte-
grated performance of the system. Therefore, the focus of this analysis is on evaluat-
ing how the system might perform in a deployed context, as an analysis server for a
user-facing tool. The results of this study are analysed to provide an overview of how
the system might perform in both artificial and more realistic settings.

9.1 Algorithm Performance

The algorithmic performance of the system is evaluated using four datasets. These
datasets (Figure [8.1)) are used to analyse the performance of the system for different
settings. As discussed in Section the use of Datasets A and B for evaluating the
algorithm performance sets a particularly high bar for this evaluation.

However, whilst the ParaCrawl data (Dataset A) is atypical of what users might ex-
pect to see in a real world setting, the URLs in the PhishBank dataset (Dataset B)
are representative of the phishing URLs users might expect to see (albeit typical users
would expect to see much smaller proportions of phishing rather than safe URLs). As
these Phishbank URLSs are from an archived source, the system’s performance on these
URLSs represents how the system might perform for URLs that are not present in the
system’s utilised blacklists. This therefore helps illustrate how the system might per-
form when identifying phishing URLs used in zero-day attacks (although these URLSs
will naturally have earlier creation times than those sourced from Phishbank).

The lack of representativeness of the ParaCrawl data is compensated by analysis of the
more realistic datasets in Section As the URLs sourced from Reddit (Dataset
C) are highly popular in nature, this represents URLs that users are more likely to
encounter. This is because users on the whole tend to visit a small amount of sites with
a high frequency [9)]. This dataset is complemented by the inclusion of data drawn
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Classification Status - List Comparison

Status

mm Safe
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mmm Alert

Whitelist (ParaCrawl) Blacklist (PhishBank)
List Type
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Count
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Figure 9.1: URL classification status is illustrated for both Datasets A and B, displaying
the occurrences of the final URL classification categories.

from a real user, discussed in Section [d.2.1] which presents the most realistic context
for evaluating the typical performance of the system.

The results of the algorithm on these datasets therefore present a representative idea of
how this algorithm might perform in a deployed environment.

9.1.1 Artificial Datasets

As illustrated by Figure [9.1] the additional improvements made to the system - the
addition of the categorised data and the use of Fortiguard data as a safety metric -
helped to improve the false negative rate of the system (when classifying the safe but
less globally popular URLs of Dataset A). The addition of these metrics also had a
limited impact on the true positive rate, as illustrated by the classifications of malicious
URLs. There are also improvements in the amount of ‘known’ classifications which
have occurred for whitelists as illustrated by Figure [9.2a] The positive effect of the
addition of the categorised list data is illustrated in Figure[0.3]

However, Figure 0.1] illustrates that the the system still has a considerably high false
negative rate when processing URLs sourced from Dataset A. The results also highlight
an increased occurrence of ‘safe’ activations for individual heuristics on Dataset B.
This demonstrates a limited impact on the false positive rate, albeit a small one, due to
the changes made to improve the false negative rate.

When analysing the results of Datasets A and B according to their individual metrics,
Figure [9.3] and Figure [9.4] highlight the impact of the work in Section to help
improve the robustness of the algorithm. The system no longer has issues with heuris-
tics such as Typosquatting and Different TLD, with the system analysis being in line
with research expectations. This robustness illustrates the utility of the system as an
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Severity Level Distribution - Whitelist (ParaCrawl) Severity Level Distribution - Blacklist (PhishBank)
¢ 8 4
8 ¢ 7 _— ¢ ¢
¢ ¢ 6 . .
=6 -
5 ¢ 55 +
38 ¢ 38
) 34 J
T 4 o
2 2
1 ¢
0 ¢ 0 — ¢
Possible Known Safe Possible Known Safe
Severity Levels Severity Levels
(a) Dataset A: ParaCrawl (b) Dataset B: PhishBank

Figure 9.2: These graphs represent the average count/occurrence for each severity
level across the aggregated heuristics. These severity level distributions are presented
for both Datasets A and B.

research tool which is able to produce reliable analysis results for any desired URL
dataset.

When analysing the reasons for why URLSs are classified in more detail we can see a
similar pattern as the prior results in Section[7.3] Figure [9.5demonstrates the polari-
sation of URL classifications: either marked as safe by the safety algorithm or being
marked as alert by the primary classification algorithm.

9.1.2 Realistic Datasets

As illustrated by Figure [9.6] the system performs well on the most representative and
realistic datasets. The Reddit Popular Domains data is overwhelmingly classified as
safe, with only a few URLs are missed classified as malicious.

In addition to improved classification of this system on the URLs, we see that the the
distribution of severity level activations is more in line with what we would expect to
see for whitelisted URLSs (in contrast to the results in Figure [0.2a).

When we break down the individual results of these URLSs by individual metric, we can
see the greater impact of the popularity safety metrics. This highlights the effectiveness
of the system for classifying popular URLs.

When looking at the reasons for the classification of the URL categories for both
datasets, we can see that the URLs with safe classifications tend to be marked as safe
in the initial stages of the algorithm.
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Metrics Result Distribution - Whitelist (ParaCrawl)
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Figure 9.3: Dataset A results highlighting the performance of individual heuristics. Each
heuristic is illustrated with the number of times it activated with it's associated severity
levels.
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Extended Validation

Fortiguard Safe Domain
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Metrics Result Distribution - Blacklist (PhishBank)
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Figure 9.4: Dataset B results highlighting the performance of individual heuristics. Each
heuristic is illustrated with the number of times it activated with it's associated severity

levels.
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Classification Reasons - List Comparison
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Figure 9.5: The URLs from Datasets A and B are grouped by how they have been
classified, represented by their colour, the URLs are further grouped by the reason for
their classification and contrasted with their occurrence count.
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Figure 9.6: URL classification status is illustrated for both Datasets C and D, displaying
the occurrences of the final URL classification categories.
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Figure 9.7: These graphs represent the average count/occurrence for each severity
level across the aggregated heuristics. These severity level distributions are presented
for both Datasets C and D.

9.1.3 General Algorithmic Performance

On the whole, the system performs well on datasets representing its intended use cases:
the high amount of popular and safe URLSs typically visited by users, and also malign
phishing URLs. Whilst the system does not achieve the performance seen in alterna-
tive works using automated phishing detection approaches [10], this is not the primary
intention of the system. It is intended to be a support system for training users rather
than a detection tool. Its primary purpose is to use the heuristics for educational pur-
poses rather than classification. The tool’s ability to accurately classify URLs is an
added bonus, a feature which helps facilitate user training. The system in reality is
only intended to detect malicious URLs were existing systems have failed.

When analysing the results of the system in greater detail, we can see the impact of in-
dividual heuristics on a more micro level. The results illustrate the greater effectiveness
of some heuristics over others for classifying the URLs. For example, the popularity
heuristics, present in both the safety metrics and page heuristics, for classifying popu-
lar and malicious URLSs respectively.

There are also some peculiarities with heuristics such as the amount of hyphens in
URLs. The activation occurrence of this heuristic is varied across all of the results.
Whilst this heuristic has a basis as a phishing feature, particularly when compared
to heuristics which measure the sole occurrence of a hyphen (Section [7.2), the results
appear to suggest this is a further example of a heuristic affected by URL syntax trends.
The effectiveness of heuristics such as these leaves room for the wider set of heuristics
to be further refined in future work.

The analysis of the individual heuristics on these datasets illustrates the utility of this
system as a research platform. The system’s best qualities are represented by it’s ability
to allow researchers the flexibility to trial various heuristic approaches. This therefore
allows the system to continue to improve on its algorithmic performance over time, as
intended.
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Metrics Result Distribution - Reddit Popular Domains
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Figure 9.8: Dataset C results highlighting the performance of individual heuristics.
Each heuristic is displayed with the number of times it activated with it's associated
severity levels.
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Metrics Result Distribution - Real User Sites
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Figure 9.9: Dataset D results highlighting the performance of individual heuristics.
Each heuristic is displayed with the number of times it activated with it's associated
severity levels.
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Classification Reasons - List Comparison
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Figure 9.10: The URLs from Datasets C and D are grouped by how they have been
classified, represented by their colour represented by their colour, the URLs are further
grouped by the reason for their classification.

Generally, the data analysis abilities of the system also highlight another potential use
case - the ability to lexically analyse every aspect of URLs. This can be achieved
through either post-analysis of recorded data or implemented by the server in flight.
This would allow the system to also produce research into what URLs generally look
like, in the same vein as existing research [7].

9.2 System Response Time and Integration

The wider system metrics such as response time and the cohesion of the wider deployed
system are both key metrics for understanding the effectiveness of the final work. The
response time is evaluated with reference to Neilson’s heuristics to understand the
effect this may have on users. The wider system effectiveness is evaluated by the use
of the browser extension to record the correct calculation of the Ul components, whilst
also demonstrating the extension’s ability to analyse the make-up of web pages.

9.2.1 Response Time

The system response time was measured using Datasets C and D using the deployed
analysis system on the App Engine Platform. This was intended to measure how the
tool would perform in a more realistic environments. We see from the results illustrated
by Figure[0.11]that the tool is able to perform to a reasonable degree - with an average
response time of 11.11 seconds across both datasets (inclusive of network delay). This
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Response Time Distribution - Datasets C and D
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Figure 9.11: The distribution of response time results for the server when analysing
Dataset D.

response time is just outwith the ideal response times Neilson’s heuristics suggest is
appropriate for this type of system of 10s.

However, whilst the system has a reasonable performance on these datasets, the re-
sponse time analysis conducted as part of the async performance implementation (dis-
cussed in Section [7.4) suggests the system might have a less performant response time
for analysing URLSs in Datasets A and B However, as the datasets are more artificial
in nature, this is less of concern in comparison to the general performance illustrated
on Datasets C and D.

One of the factors contributing to the system response time is the complicated database
queries that need to be performed. In particular, the Typosquatting heuristic. Whilst
shifting the processing of this heuristic to the database allowed for a significant im-
provement in performance, the complicated subqueries involved in the heuristic in-
crease the system response time. These subqueries are necessary to both calculate
whether the Typosquatting has occurred and find the domain with the matching simi-
larity score. This is to allow the detailed information to be displayed to user as part of
the user statements. Should the level of information presented to users be adjusted in
any way, this would allow a significant improvement in the Analysis Server response
time. This demonstrates the important balance between server response times and the
facilitation of user training outcomes. Ultimately, the choice made in this system is to
focus on user training outcomes since this is the primary purpose of this work.

As there is a close link between the complexity of the heuristics and the response times
of the Analysis Server, this will have to be closely considered in future iterations of
this work. Response time improvements might still be gained whilst maintaining the
training balance, by pruning the heuristics and retaining those most effective for user

IThe differing amount of URLs from the async performance response time evaluation and the dif-
ferent system targets should be noted when comparing these results.
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training.

Additionally, when analysing the Analysis Server response times the effect of features
such as the Memorystore cache is negligible in these static evaluation contexts. This
is because every URL in Dataset D is unique, reducing the positive impact of server
caching. However, in a deployed setting this feature would also be expected to improve
the response time of the system.

Despite the Analysis Server being slightly outwith Neilson’s heuristic, the response
time of the system is still well within the range of acceptability for the overall system.
As previously discussed, users typically only visit a small amount of sites regularly.
By adapting the browser extension cache, from its currently implemented position as
a backup cache, used when users disable the extension, this can be used to improve
response times for users in the general system. For instance, if the cache were to be
restored to its original implementation, users would likely see response times consid-
erably less than 10s - with the system often providing users the feeling of immediate
responsiveness. The ability to get research insights into user browsing history might
still be maintained by sending all user URLs to the server, but adding an additional
flag to the API to indicate whether URLs should be analysed or just stored. Further-
more, since the extension itself pre-analyses URLs before users visit them, to allow the
addition of the passive warnings, users are unlikely to perceive the analysis server’s re-
sponse time in their typical browsing experience.

9.2.2 System Integration

As discussed in Chapter [§] Selenium Testing was used to evaluate how the browser
extension might perform in a deployed setting. As a result of this work, the UI Calcu-
lation and URL Processing apps were found to have a successful level of integration.
For each URL’s classification, the relevant user statement was produced to match each
corresponding heuristic in the analysis. This was successful in all cases - highlighting
the effective integration of the analysis server.

As part of this testing, we also recorded the distribution of URLs present in each site
that tool was able to visit (using the URLs from the datasets). Whilst we do not use site
content heuristics as part of this system due to their inherent risk, the URLs recorded
on these pages illustrated some interesting patterns. The distribution of these URL is
illustrated in Figure [9.12]

Figure 9.12]illustrate there are far fewer URLs present in malicious sites. This in itself
may be used as an indicator of whether a site is malicious in other systems which utilise
site content heuristics.

9.2.3 General System Performance

Whilst further improvements can be gained at the extension level to improve the wider
system performance, the response time of the server is expected to be adequate to
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Figure 9.12: Comparison of the average count of internal and external links resulting
from the browser extension’s analysis of the each dataset's URLs. By extension the
graph also illustrates the average total amount of URLs found on sites in these datasets.

facilitate the needs of users in a deployed setting. This is due to the limited amount of
safe sites that users visit in regularity and the tool’s inbuilt prefetching analysis.

The integration of the server and extension Ul features is an aspect of the system which
performs well on testing. The potential of the system as a general URL analysis system
is also illustrated by its abilities to record substantial information about the make-up
of web pages themselves.

9.3 Ethics and Security Implications

There are several ethics and security issues associated with the tool, particularly around
user privacy. The tool itself gathers a significant amount of information about users:
gathering each URL they visit and how they interact with the tool itself.

Even though considerations have been made in the system to allow users to be more
selective about what type of data is sent (e.g. the settings option to temporarily block
extension-to-server data transfer), these considerations do not wholly resolve potential
problems. For instance, for users who are less privacy aware or where users have
forgotten to block the transfer of sensitive data, their sensitive data will still be stored.
Whilst there is some level of user anonymity in the system, pseudonymisation through
user-defined non-personal IDs, even if truly anonymous IDs were to be used - user data
is still susceptible to compromise.
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9.3.1 An Example Security Threat

For example, whilst database roles and authentication have been set up to better secure
user data, where these are not properly managed, user data may be exposed. Regardless
of the anonymity of their IDs, a user’s URLs contain personally identifying character-
istics [32]. A user ID tied with an identifying URL can then be used by a malicious
actor to collate all a users associated data.

The captured data can reveal two key attributes to a malicious actor: users usage pat-
terns, both their times of access and sites they typically visit, and user concerns re-
vealed by sensitive data in URLs, such as personal health data. These findings can
then be used to deploy more sophisticated attacks against the user. For instance, tar-
geted spear phishing attacks with higher likelihoods of success [34, 60].

9.3.2 Handling Privacy Concerns

Despite the existing system protection measures, there are still further features which
could be introduced to improve user privacy. Foremost of these, are approaches involv-
ing the filtering of personal identifiers from URLs. There are two aspects involved in
this filtering: identifying URLs with personal identifiers and redacting those elements
whilst maintaining the URL.

URL personal identifier filtering is a feature which would best be implemented in the
browser extension of the system - preventing any sensitive URLs being sent to the
server. This ensures a user’s sensitive personal data is entirely local. Thus reducing the
challenges of storing sensitive data server-side, whilst reducing the level of severity of
communication channel compromise.

Storing only high-level characteristics of URLs is another approach for consideration.
Whilst this limits the exposure of user data, it is challenging to find the right trade-off
between research outcomes and user privacy. For instance, in order to evaluate the
effectiveness of the heuristics algorithm, the associated data for each heuristic needs to
be stored. Rather than the full URL, only aspects of the URL such as the domain are
stored. This, however, limits the future ability of researchers to analyse the generality
of URLs in other studies. In addition, it is challenging to see how this approach can be
successful in this system, as the volume of heuristics and affiliated data is likely to be
enough to reconstruct associated URLSs entirely.

The alternative system approach of employing more local processing, can be challeng-
ing from both a research and implementation perspective as well. Having users store
their URLSs locally limits the ability of researchers to remotely analyse collected data -
increasing the complexity of scaling research studies. However, data collection issues
can be tackled through user data transfers at the end of studies. This would give re-
search participants the ability to more easily filter any data they do not wish to share
(at the potential expensive of corrupting research data such as user usage patterns).

From an implementation perspective, such an approach may find it challenging to pro-
vide the richness of features implemented in the current system architecture. Other
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than study scalability, the use of a centralised server was used to increase analysis
response times for users - by leveraging the advances of cloud computing. The chal-
lenges associated with developing browser extensions, which have limitations with li-
brary integration and alternative language support, are likely to result in fewer system
features; reducing system accuracy and limiting future user enthusiasm for the tool.

For instance, one of the central features of the system is the ability to consult white
and blacklists. There are two ways to implement this in a local processing approach
which supports local data retention. Firstly, have a central server for hosting lists
which does not store user information (with potential user information leakage through
communication channel attacks), and, secondly, host the lists on each individual user’s
machines. A local hosting implementation might be complemented by deploying apps,
such as the URL Processing app, on a user’s machine - acting as local API for users’
browser extensions. This latter type of approach may improve concerns with user
privacy but at a significant management and performance overhead for users, likely to
prevent widespread usage of the system.

9.3.3 Future Research Considerations

The ethics and privacy concerns raised by this system are sufficient enough to merit
further research to seek their resolutionE] The drawback that has to be weighted against
each of the considered user privacy solutions is the reduced richness of data that can be
collected for research purposes. Reducing the scope of the data collected and filtering
for personal identifiers, both seem like possible ways forward. However, approaches
which involve more local processing are fraught with significant implementation chal-
lenges. These more local approaches may help to secure user data for limited research
studies. However, in contrast to approaches involving URL personal identifier filter-
ing, local approaches will limit the usefulness of anti-phishing systems, preventing
their development into any kind of scalable support solution to user phishing.

9.4 Summary

This chapter discusses the results of the URL Analysis Study used to evaluate the
system. It places the analysis results derived from four distinct datasets in the context
of how the system is intended to work in deployment. The system is found to be able to
successfully analyse the URLs most likely to be encountered in intended deployment
scenarios: performing well on the high amount of popular and safe URLs typically
visited by users, and also malign phishing URLs.

The Analysis Server is also found to have reasonable response times on the datasets
most reflective of typical user’s experience with the system. The UI calculation com-
ponents of the Analysis Server were also found to have integrated well with the wider
CatchPhish system.

ZEven though users can be made aware of the security implications during studies.
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The chapter concludes with a consideration of the ethical and security implications of
utilising this type of anti-phishing research approach. It discusses potential system se-
curity vulnerabilities and evaluates various approaches as to how these vulnerabilities
might be mitigated in future iterations of this work.



Chapter 10

Conclusion

10.1 Overview

This work has focused on tackling the use of URLs as a malicious attack vector, with
a particular focus on phishing. The development and improvement of the CatchPhish
phishing learning and detection system has been aimed at answering the research ques-
tion:

How might we develop a phishing learning and detection tool that will protect from,
and inform users about, malicious URLs?

The CatchPhish browser extension developed last year was designed to be a novel con-
tribution to anti-phishing research: combining both passive indicators, and active warn-
ings into a tool, which actively attempts to train users - in contrast to existing work.
It is through this novel continuous user training approach, which respects users as in-
extractable components of phishing system loops, that improvements to anti-phishing
research are expected to be gained.

After gathering requirements for the system, along with developing and evaluating the
User Interface the subsequent year; the direction of this work has been to efficiently
implement the analysis aspects of the system.

To do this, multiple system designs were outlined for select IaaS platforms. Compar-
ison of these designs resulted in the selection of a Microservices-based architecture
deployed on Google App Engine. This system provided the basis for the underlying
anti-phishing classification algorithm. The algorithm required the processing and us-
age of numerous data sources to facilitate 46 distinct heuristics. This was accompanied
with user-facing statements for each heuristic, written to be dynamically displayed to
users - to allow users to be trained in phishing indicators, depending on the dynamic
severity of each heuristic.

When designing the server, several system requirements were outlined Section {.1]
which were each able to be implemented in the final system. Critically, the require-
ment for sufficient user response times was adequately met. This was advanced by
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fine-tuning evaluations focused on identifying appropriate heuristic thresholds and the
impact of performance improvements.

Multiple preparations were made as part of this work for a future longitudinal user
study to identify the longer-term effectiveness of this system as an anti-phishing tool.
This work included improvements to the tool’s user-facing features, consideration of
secure data handling and corresponding evaluations of the conducted work.

The system was also evaluated with regards to its accuracy. It was found to perform
well on the high amount of popular and safe URLSs typically visited by users, and also
malign phishing URLs. The analysis of the URLSs collected during the evaluation also
illustrated interesting URL patterns among safe and malicious URLSs, and highlighted
the significant potential of the tool as a URL analysis platform.

10.2 Further Work

One of the main focuses of the project in the future will be the planned longitudinal
study. Now that the system itself has been identified to be functionally sound, it is
necessary to thoroughly evaluate the content and learning gains of the users. This
study will have the additional benefit of providing a significant amount of research
material for general analysis of URLSs as highlighted in Section 9.1

A critical aspect of such a system, and wider research data collection systems, is the
need to answer user ethics and privacy concerns. Research into the filtering of personal
identifiers from URLs should be a focus of further research to incorporate the identified
privacy benefits into the CatchPhish system.

Overall, the CatchPhish system presents itself as a versatile research platform for ex-
perimenting with different URL analysis algorithms. Using this platform the effect
of various heuristics and alternative approaches can be utilised to effectively further
research into URL usage patterns and anti-phishing approaches.
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1 INTRODUCTION

In developing a Phishing and Learning Detection tool to be deployed onto the Google Chrome
platform as an extension, I have prepared an overview proposal of the back-end functional-
ity I believe will be needed as part of this. This proposal covers a number of different points
about the functionality required to classify a URL into a a respective safety category.

1.1 GOALS OF THE TOOL

The primary design goals of this tool are as follows:

Goals Justification ‘
Classifying every URL: those present in any | This intended to be a comprehensive
given page, the page URL itself and any the | solution to phishing and other security
user is directed to outside the browser exploits which employ malicious URLs
Using the browser to prevent the user This intended to cut down unintentional
visiting any URLs that have been classified | direction to malicious URLs, caused when
as malicious without user invention. on platforms such as email
Presenting the information on each URLto | To encourage the user to learn through
the user in an understandable way, at embedded training: allowing users to catch
appropriate points of intervention URLs themselves and reduce their own

danger

That the end built system includes best That the system works effectively as and
practice of software engineering: when required, such that users are not do
maximising efficiency and accessibility not remove it due to efficiency concerns

Table 1.1: Justification of goals

1.2 PROPOSAL OUTLINE

To achieve these design goals, this proposal outlines a heuristic-based algorithm for classi-
fying a URL into a one of three states: Safe (High likelihood of safety), Warn (Possible cause
for concern) and Alert (High risk of danger with URL). Each of these form the basis of a traffic
light system (Green, Amber and Red respectively) which informs the user about the relative
safety of each URL. In this proposal document, each of these states will be referred to by their
respective colour.

Additionally, the proposal also covers the a breakdown of each possible issue with a URL.
For each of these, an explanation of the issue and a proposed method is outlined to deal with
that issue. The proposal also considers how the data will be sourced to solve each possible



issue.

The front-end of this tool, which is not outlined in this proposal, includes the following fea-
tures:

* active intervention when a user clicks a red URL (in the form of a site warning middle
man)
* annotating links on each site with a badge representing the safety colour of each URL

* abreakdown of each URL using the a research based URL report[1]

The classification of each URL is used to create the appropriate User Interface display for
each URL. One of the secondary goals of the tool is to achieve as low a false positive rate as
possible to maintain user engagement with the tool.

Feedback on the plans outlined in this report would be much appreciated.



2 OVERALL ALGORITHM

2.1 DECISION MAKING ALGORITHM

The algorithms input will be the given URL and all required information needed to consider
the classification of the URL.

The algorithm begins by considering each case where a URL might be considered purely
green (undoubtedly safe). If any of these indicators, such as inclusion on a reputable whitelist,
are true then the URL is classified as safe and the algorithm returns that it is a green state.
Otherwise the algorithm will analyse the URL and classify the given URL as having either a
yellow or red state.

To achieve this, the algorithm analyses each set of features using the metrics outlined in the
subsequent chapters. Each set of features is a useful indicator of a URLs safety, which can be
used to classify how likely a given URL might be phishing. These indicators are referred to as
issues in this proposal, and each of these issues is categorised into one of three groups: these
being known, possible and no issue (which each represent a decreasing priority level).

The features that are the focus of this proposal are:
e URL parsing features
¢ Domain features
* Page features

Content Features could be used in addition to this but are not favoured in this proposal due
to the associated high risk of parsing the content of malicious sites.

To classify the URL a count is kept of each issue that arises from the data parsing. This is
matched with threshold values to classify the URL.

Known Issues | Possible Issues || Output
>=1 >=0 Red
0 >=5 Red
0 <5 Warn
0 0 Green

Table 2.1: Thresholds for Output

The resulting output is then feed back into the system for use by the User Interface. For
each result, the state of the URL is returned along with the information used to calculate that
state. This information is displayed to the user in the breakdown of the URL. For those in
a green state, the reason indicating its safety is returned and if it is red or yellow, the issues
included in the URL are also returned.



2.2 LIMITATIONS

This approach favours limiting the number of URLS classified as yellow as much as possible.
This is because one of the major benefits of the tool is the tool’s ability to actively intervene
to prevent the user from visiting a malicious site. This only occurs for URLs classified as the
red state. At this point users benefit from embedded training as they have the break-down of
the URL information displayed to them, in a real-time scenario.

To limit the number of URLs in the yellow state, the algorithm has lower thresholds for classi-
fying the URLs as a red state. One of the key limitations of this approach is that it potentially
creates a higher false positive rate for the user. Active intervention with a high false positive
rate has been shown to have a reduced effectiveness over-time[3].

To resolve this problem, the intention is to implement a personal whitelist for users to main-
tain. Users will be able to update this whitelist with URLs when they are presented as part of
this tool. This is a constant element of the UI and is particularly useful for false positive URLs
classifies as a red state. After the user whitelist a site it will not be included in the red state, in-
stead it will be given a amber state (where active intervention does not occur but the user will
still be made aware they are not entirely safe). This should reduce the false positive rate over
time. In user trials, the ideal outcome would be that the tool tailors itself to users common
sites over time, only showing sites that are concerning and the user has never visited before.
This would therefore reduce the false positive rate over time.

Known Issues | Possible Issues | Personal Whitelist || Output
>=1 >=0 False Red
>=1 >=0 True Warn

0 >=5 False Red

0 >=5 True Warn
0 <5 False Warn
0 0 False Green

Table 2.2: Thresholds for Output

Another suggestion to improve the false positive rate, is that the users could be allowed to tog-
gle the threshold for possible issues being classified in the red state. In either case, to ensure
the needless use of the blacklist, particularly in cases where the URL has been blacklisted, the
user will be asked for additional approval. In the User Interface this may involve presenting
an alert pop-up box being displayed asking them if they are sure they wish to continue.



3 SAFETY METRICS

It is very hard to come up with a full proof set of safety metrics. Comparatively it is easier to
verifiably say a site is malicious rather than safe. There are however some indicators that are
useful to suggest a site is safe.

In the proposed algorithm, there are currently two ways that a site can be designated as safe.
The first is that the site has no known or possible issues: this mean it has not bee n flagged by
any of the heuristics. The second is that it matches against one or more safety metrics.

3.1 METRICS

The first metric is a URLs inclusion in the list of Alexa Top sites (7.2) and is not known to be
a hosting service for other sites. The Alexa Top sites is a strong indicator of the most popu-
lar sites and popularity is an indicator of safety. This is because users do not regularly visit
or return to sites known to be malicious. However, some of the most popular internet sites
are known to host other sites such as wordpress.com. Wordpress, for instance, can be used to
host other sites which contain malicious content so classifying these sites as safe would be
inaccurate. Therefore the Alexa Top Sites results will be filtered using known content hosting
sites and other potentially malicious sites by checking their occurrences on blacklists such as
hpHosts (7.1).

An additional metric is the PageRank of the website. This is based on backlinks, which are
incoming links to a webpage. By taking a measure of how many quality backlinks a webpage
has it indicates how popular that webpage is. This is a metric which has been used in major
search engine providers in the past to indicate how high a web page should be listed in its
search results.

Looking at how often the site is shared on social media is another useful metric. Sites such
as Facebook and Twitter regularly include links to external sites which are shared between its
users. This is an indicator of a sites popularity, as multiple shares between users suggests it is
safe since they are encouraging others to visit it.

3.2 APPROACH

The idea is to combine each of these metrics and use appropriate thresholds to determine if a
site is popular enough to be classified as safe. By applying these metrics to each website, and
ensuring each page’s URL is safe in the site, we can mark sites containing multiple webpages
as safe without analysing each URL, provided they do not leave that domain. The idea behind
this is to increase efficiency in each site. This should not pose many problems providing the
metrics are applied correctly, as there is a much smaller chance of being attacked on a site
when swapping between pages from distinct sites [insert reference].



This focuses on parsing the URL into its distinct components and use these to pick out indi-

4 URL PARSING FEATURES

cators in the URL itself which might suggest it is malicious.

Processing each of these heuristics typically involves using natural language tools such as
regex to match the contents of each URL against any concerning flags. These often involve
the request of some data in order to to complete each check accurately; the limited amount
of required libraries means these checks can be preformed locally on a users machine. Each

metric relates to a issue level based on how much of an indicator that metric is.

4.1 MANIPULATION TRICKS

Trick Explanation Check Data Needed Issue

Too many Can redirect regex search all | Amount of Possible
subdomains user to "> characters common URL

alternative site | and take a domains; The

count of URL domain
resulting array

Typosquatting | Targets users Similarity Appropriate Known
Popular who measure similarity
Domains incorrectly between host measure (7.3);

type aweb name and list of most

address into popular popular

their browser domains domains
Unusual top Top level Match top level | List of most Possible
level domain domain is not domain witha | popular top
(Camouflage) one of the most | list of most level domains

commonly popular

used ones domains
Digit Masking the Use regex to Typical Possible
replacement of | direction of the | count the amount of
letters URL by amount of numbers in a

replacing digits in the URL hostname

characters hostname, and

such as ’o’ with
similar digits
such as’0’

compare to the
average or
typical

Table 4.1: Manipulation Tricks




Trick Explanation Check Data Needed Issue
Shortened URLs which Use the Access to Possible
URLs have been shortener shortener APIs

shortened services to
means users follow or
are unable to expand the
pick out key URL and
characteristics | express this to
from a URL user; express to
the user and
run analytics
on expanded
URL (if the
shortened URL
is safe)
UTF8 encoding | Substituting Use alanguage | Language Known
substitution identical detector to detector;
looking check if the Access to
characters detected URL default local
from different | language language of
alphabets such | matches with browser
as Englishand | the user’s local
Cyrillic language
Use of I.P. Use of Use specific IP address Known
address, hex or | non-standard regex for regex (7.3.1);
decimals information checking the Hex regex
makes the URL | hostname for (7.3.1);
harder to each of these Decimal Regex
understand elements (7.3.1)
and can be
used to
confuse the
user
Substituting Characters Check the work | APIto do Known
normal such as’'w’ can | similarity with | search engine
characters be replaced any suggested | search (7.5)
with 'vv’ search engine and/or get
search replacement
replacement text
Mislead Expected Search the URL | List of most Known
company for alistof the | popular
name is most popular company
embedded company names
somewherein | names
the URL but

not destination

Table 4.2: Manipulation Tricks




Trick Explanation Check Data Needed Issue
Embedded Open Use regex to Access to URL Possible
URL in query redirection is match URL any | query string;
string detected based | possible the URL match

on the query string regex

existence of a

URL in the

query string
Number of Some attackers | Search the URL | Regex to match || Possible
http/https add additional | using regex to protocols

http to trick the | geta count of across the URL

user about the | each

start of the occurrence

URL
Suggestive Some words Search using List of Known
word tokens only exist in regex for any suggestive

phishing URLs | words in a list word tokens

such as of known

"confirm", suggestive

"banking", word tokens

"account”, and

"signin"
Suspicious The existence Use of regexto | list of Known
characters in of 'at’ (@) check for any suspicious
the URL means suspicious characters and

criminals use characters in their

this to mislead | the URL occurrences

users or [4]; regex to

characters check whole

such as hyphen URL

()
Encryption HTTPS Check the access to the Known

connection is protocol is URL protocol;

more secure. https or http

Incompetent through string

feature but comparison

useful for

safety
Non-standard | Whether the Match the port | list of common | Known
port port belongs to | typetoagiven | ports; access

a standard portin the URL | the URL port;

HTTP ports: and check the access the URL

80, 8080, 21, protocol and protocol

4143,70 and the port match

1080

Table 4.3: Manipulation Tricks

10



Trick Explanation Check Data Needed Issue

Use of atypical | ' is the typical | Search for list of Possible
deliminator deliminator deliminator deliminator
character character, characters characters;

example is a other than "’ regex to search

’home- using regex for these

depot.com’

rather than

’homede-

pot.com’
Unusually long | URL Count the Typical length Possible
URL hostname | hostnames that | amount of ofa URL

are overlylong | characters in hostname|[2]

can be used to the URL, and

mask the true compare to the

destination of | typical URL

the URL length
Different Top The URL has Compare both | Popular Known
Level Domain the same the popular domain list;
(TLD) domain as a TLD with the hostname of

popular site URL popular

but a different domain; top

top level level domain of

domain each
TLD out of The Check if the List of popular || Known
position appearance of | URL TLDs; regex to

apopular TLD | subdomain match TLDs in

such as "com" | includes any subdomain;

in the popular access to the

subdomain subdomains URL

deludes users
into believing
this is the end
of the
hostname.

using regex

subdomain

Table 4.4: Manipulation Tricks
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5 DOMAIN FEATURES

Domain features focus on detecting phishing domain names, such as by checking the details
of the domain’s registration status. In doing passive queries related to the domain name, we
can detect indicators based on the known trends of malicious URLs. To handle each of these
indicators, external data using API's must be requested to reason what the status of a given

URL is.

Fact Explanation Check Data Needed Issue
Domain/IL.P. Ifinfo is Store blacklist Stored Known
Blacklisted blacklisted itis | as partoflocal | blacklists;

unlikely to be database: Chrome
safe query blacklist | Database APIs
database tables
for URL
presence
Days of Phishing sites Store WHOIS Current date; Possible
domain tend to be information as | Threshold
registration newly created a database: amount of days
query the to check URL
database to get | uptime;
the creation Database or
data of the API with
website WHOIS Info
Registrant This can Query the Get an idea of Possible
name hidden indicate the WHOIS what a hidden
individual doe | database for registrant looks
notwish tobe | the registrant like
found and a name:
crime is afoot compare the
registrant
name to check
ifit has been
hidden
Domain match | The domain Check if the WHOIS Known
exists in the domain exists database API
WHOIS record | in the WHOIS
or the domain | database by
is in the URL querying it
matches the
domain in
WHOIS

Table 5.1: Domain Facts
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6 PAGE FEATURES

Page features use information about pages which are calculated using reputation ranking
services. These are some of the most useful indicators of a URLSs safety if they show a site is
popular, but can equally be an indicator of phishing where a site is shown to be unpopular.
In this sense, they give information about how reliable a site is.

Each of these heuristics also requires the use of a number of external data sources to be able

to accurately function as a heuristic.

Fact Explanation Check Data Needed Issue
Search Results | Phishing Use an api to APItodoa Known
website have get the first search from
short life x(20) command line;
therefore, [reference A means to
usually they needed to parse search
are not in the indicate results
result, besides, | amount] and
not frequentin | checkif the
the results result is there
Number of Phishing sites Use an api to API to do this Known
redirections tend to be check the redirect search;
newly created amount of Build
redirects in a understanding
given URL of what output
will look like
Location The physical Use a web List of places Possible
location of the | service to that are known
registrant look-up the to host more
usually differs | location of the | malicious
from the corresponding | content;
physical ones service to the Loo-up web
website; Check | service

this location
with locations
that are known
to host a high
amount of
malicious
contents

Table 6.1: Page Facts
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Fact Explanation Check Data Needed Issue
Global The rank that Get the global | Alexa Global Known
Popularity Alexa assigns popularity of popularity api

to domains the site of
using the Alexa
Api; Check
threshold to
see if this is low
Page Rank The relative Use pagerank | PageRank api Possible
importance of | api; Check if
a page within the page rank
other web is high or
pages above
threshold
Social The link Use social Social Possible
Reputation popularity reputation api; | reputation api
among social Check if social
media users reputation is
such as Twitter | low
and Facebook

Table 6.2: Page Facts
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7 DATA SOURCES

There are two specific goals when it comes to requesting data from various sources. The first
is security and privacy: each API transmission of a plain text URL, could expose their pattern
of website behaviour to potential malicious actors. Therefore one goal in collating of requisite
data, is to limit this by focusing on data which can be collected and stored internally within
the tool. The second goal is efficiency: if the time taken to consider each URL is too great then
the response time of the tool might be too slow for the user. This can be handled in multiple
ways such as asynchronous URL prepossessing. However, requesting, where possible, data
such as blacklists in bulk and storing them locally in a tool accessible database, is a means
to handle this from a data perspective. The advantage of this is to prevent outside awareness
of user requests. This also allows the developers to store visited user URLs more securely i.e.
hashed and salted.

Alongside this, using multiple sources of data is also key to prevent an over-reliance on any
one particular data source and a corruption of the tool’s accuracy. This could lead to infor-
mation being skewed, in turn compromising user safety.

7.1 BLACKLISTS

Google Transparency Report:
https://transparencyreport.google.com/safe-browsing/search?hl=engB
Database— D/L: https://developers.google.com/safe-browsing/v4/

PhishTank:
https://www.phishtank.com/

hpHosts:
https://hosts-file.net/
Database — D/ L: https://hosts-file.net/?2s=Download

7.2 REPUTATION RANKING

Alexa:
https:/lwww.alexa.com/topsites

The Moz Top 500:
https://moz.com/top500

7.3 URL INFORMATION

Levenshtein Distance:
https:/len.wikipedia.org/wiki/Levenshteingistance

15



7.3.1 REQUIRED REGEX

Hex regex:
https://stackoverflow.com/questions/9221362/regular-expression-for-a-hexadecimal-number

Decimal regex:
https://stackoverflow.com/questions/11500482/regex-to-find-integers-and-decimals-in-string

LP. address regex:
https:/lwww.regular-expressions.info/ip.html

7.4 DOMAIN INFORMATION
7.4.1 TOP-LEVEL DOMAINS

W3Techs:
https://w3techs.com/technologies/overview/top;eveljomain/ all

Lifewire:
https:llwww.lifewire.ccom/most—common—tlds—internet—domain—extensions—817511
7.4.2 WHOIS DATABASE

WHOIS Database API:
https:/flwww.whoisxmlapi.com/

7.5 PAGE INFORMATION

Search Engine Spell-check:
https:/lazure.microsoft.com/en-gb/services/cognitive-services/spell-check/

Google search command line:
https:/lwww.npmjs.com/package/node-googler

URL Redirect Checker:
https://httpstatus.io/help

Check Host Net:
https:/Icheck-host.net/ip-info?host=www.google.com

16



7.5.1 CERTIFICATE VALIDATION

Certificate Info:
https://chrome.google.com/webstore/detail/certificate-info/jhldepncoippkjgikmambfglddmjdmaj
The API behind this extension is possible to use. It only uses basic certificate validation however.

17
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1 SYSTEM REQUIREMENTS

CatchPhish is a URL analysis tool intended to leverage advances in Usable Security to reduce
phishing. One component of this system is a real-time phishing detection system. This de-
tection system consists of several necessary features. Alongside these features, there are a
number of requirements for how the system should operate. A longitudinal study is planned
to determine the viability of the system and evaluate research outcomes.

1.1 SYSTEM FEATURES

The core features of the system are intended to be:
¢ An event-triggered URL analysis pipeline
 Storage of URL analysis along with user usage statistics
* Automated data analysis for researchers
¢ Scheduled updates of preprocessed data for the URL analysis functionality

The system should also be adaptable for the possible addition of future machine learning
pipelines - either utilising the analysis data or built into the URL analysis pipeline.

1.2 REQUIREMENTS

* Processing Speed: A URL analysis response time between 0.1 and 1 seconds’

¢ Data Storage: Ability to store and access system data without a significant impact on
system performance, alongside allowing access to longer term TULIPS lab? resources.
Data structures for quick lookups on natural language data are also required

» Allows for Async Preprocessing: The periodic population of database black and white
lists should have a minimal performance impact on core system performance

» Language Flexibility: To make use of the best libraries for processing URLs across var-
ious languages

¢ Authorisation: Be able to prioritise requests from different sources (Chrome extension
over web), being able to distinguish between these

¢ Data Security: The security of user data is an utmost priority - secure communica-
tion between all stakeholders and the server, along with an authorisation system for
database access

Further optional requirements would be to store prior versions of the URL analysis by
timestamp, along with the ability to process heuristics and their data sources concurrently
to improve response times.

Thttps:// www.nngroup.com/articles/response-times-3-important-limits/
2https://groups.inf.ed.ac.uk/tulips/



1.3 FRONTEND/MODELLING REQUESTS

The primary frontend for the application will be the Chrome extension®. This extracts all the
URLs from each page a user visits. On web pages there is an average of 82 anchor tags * with
users estimated to visit around 78 websites a day °. Therefore a high performance is required
for processing each URL. In the testing period, at any given time there may be 10-15 users
using the tool through the extension.

An additional requirement is the ability to serve a web page, which will be a secondary
entry point for the analysis pipeline. The purpose of the web page will largely be to advertise
the project, but there will also be the ability for users to process URLs that they can submit
through this site. This will require server side rate limiting to prevent Denial of Service attacks.
The amount of resources for processing website requests is of secondary importance to the
requests received from the Chrome extension extension.

The server should also allow for requests from command line interfaces for testing and
automation. The server should also rate limit requests from this source.

Shttps://developer.chrome.com/extensions
4https:/ /www.advancedwebranking.com/html/
5An approximate value based on collected usage data from a small sample of users



2 EC2 SYSTEM IMPLEMENTATION

An overview of the current system implementation.

Sends
~. URL

Users

The current stack utilises the Express web framework 6 to facilitate a simple REST API.
Node’ URL libraries, along with additional language libraries and Web APIs are utilised for
the URL preprocessing. PostgreSQL2 is the Relational Database Management System (RDMS)
utilised to store the URL analysis and TULIPs lab resources. Database authentication is man-
aged using PostgreSQL user accounts, with authorisation of Chrome extension users utilis-
ing OAuth2®. Data preprocessing and web scraping is implemented in Python, with further
scripts employed to automate data analytics. The system is hosted on an EC2!? instance.

¢ Web Gateway: The gateway triggers different system functionality based on the URL
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Figure 2.1: EC2 System Diagram

2.1 CORE APPLICATION (EVENT-DRIVEN)

path - primary functions are URL analysis and usage information storage

* Data Sources: Utilises Node libraries for parsing URLs along with requesting data from
Web based APIs with the potential of requiring access of other language APIs

¢ Heuristic Algorithm: Heuristics process the data and utilise vulnerability thresholds
to produce an individual classification for each heuristic. These are aggregated to pro-
duce an overall URL classification. One of the heuristics requires the prepopulation of

Bhttps://expressjs.com
https://nodejs.org/en/
8https://www.postgresql.org/
9https://oauth.net/2/
1Ohttps://aws.amazon.com/ecZ/




a triel! data structure.

¢ Ul Calculation: Processes some additional statements to be displayed on the UI - op-
tional output based on the request source

2.2 DATA STORAGE (EVENT-DRIVEN WITH INDEPENDENT ACCESSES)

* Cache: Intended to increase access times by storing a limited size selection of highly
frequent URLs

e Databases: Two PostgreSQL databases contained in the same management system.
The TULIPs Lab database is not part of the application, hosting independent lab phish-
ing resources. The URL Analysis Storage database contains the black and white lists, the
processed URLs and the user usage history.

Further Requirements: Both the Lab and the URL Analysis Storage databases need to
be accessible to both researchers and automated data analysis scripts. Automated
database backup is required.

2.3 SYSTEM MANAGEMENT (ASYNC TASKS)

¢ Data Manager (Async flexible scheduling): Database (black and white list) population
done by scheduled web scraping which are adjusted to suit server load. Also manages
the application cache, ensuring it is populated with the most frequent URLs

¢ Automated Data Analysis (Async periodic): Scripts to download and process the latest
usage information and system analysis information

¢ System Security: The use of the TLS encryption protocol for server communication,
and OAuth2 for authorisation to distinguish the requests of Chrome Extension users.

11https://pypi.org/project/pygtrie/



3 AWS SERVERLESS PROPOSAL

An overview of the AWS System Implementation.
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Figure 3.1: AWS Serverless System Diagram

This system design maintains the same system functionality. It splits the system compo-
nents integrated in the EC2 server design into interconnected subsystems utilising separate
AWS products.

3.1 API GATEWAY

API Gateway'? would replace the Express.js Web Gateway. Since this manages "traffic to ex-
isting back-end systems" it will reduce DOS attacks by “throttling API call spikes” and also
replace the cache feature of the application by “enabling result caching”.

The API caching works with a "specified time-to-live (TTL) period"'® which has a maxi-
mum of 3600 seconds. The maximum size of response is 1048576 bytes.

HTTPS endpoints can be setup with the API Gateway in the same way as the Express.js
server'4. SSL certificates can be generated using the API Gateway, reducing the need to use
LetsEncrypt!® certificates.

The existing domain can be transferred'® over to AWS using Amazon Route 53'7 (a Domain

12https:// aws.amazon.com/api-gateway/

13https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html

https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-client-side-ssl-
authentication.html#configure-api

Bhttps:// letsencrypt.org/

16https://docs.aws.amazon.com/Route53/latest/ DeveloperGuide/domain-transfer-to-route-53.html

17https:// aws.amazon.com/route53/



Name System web service). There is a cost attached to transferring domains.

Website resources including HTML and Javascript files can be stored on Amazon S3 2,

3.2 LAMBDA FUNCTIONS

AWS Lamda'? is a serverless compute service which allows code to be run based on event-
based triggers. This service encapsulates applications which contain various functions which
can be individually triggered.

A Lambda function?® could implement the data sources, event-driven database access and
heuristic algorithm processing. Lambda functions will also be able to implement optional
logic, by only triggering other Lambda functions if they meet the logic requirements (i.e. pro-
cessing an additional URL on detection of a shortened link). The Lambda Function imple-
mentation is split into Applications which each have multiple Functions triggered by distinct
events and do the processing using Layers. AWS Lambda Layers?! provide additional lan-
guage support by allowing Lambda Functions to pull in additional libraries written in differ-
ent languages and/or run-time environments.

The Functions are called by discrete trigger events which can be based on the URL path.

Code can be shared between multiple functions using Lambda Layers 2.

A separate Lambda application would be needed to allow for the data population feature
(black and white list preprocessing). Lambda Functions can be triggered by inbuilt CRON
jobs, which would allow for the necessary independent scheduling?®. There is no impact on
server performance by performing these jobs in a Serverless architecture unlike with deploy-
ment on EC2.

3.3 DATABASES
3.3.1 RDS

RDS?* also can utilise PostgreSQL so can continue to use the same database structure. Ac-
cesses to this database access string and use as is from there. Same database separation (be-
tween URL Analysis and the TULIPS Lab databases) here as in the EC2 system design.

Automated and encrypted database backups are a feature of RDS database.?>

18https://aws.amazon.com/sB/

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

20nttps:/ /docs.aws.amazon.com/lambda/latest/ dg/lambda-functions.html

2lnttps:/ /docs.aws.amazon.com/lambda/latest/dg/ configuration-layers.html

22nttps:/ /aws.amazon.com/blogs/aws/new-for-aws-lambda-use-any-programming-language-and-share-
common-components/

Z3https://docs.aws.amazon.com/lambda/latest/ dg/tutorial-scheduled-events-schedule-expressions.html

24nhttps://aws.amazon.com/rds/

ZShttps://aws.amazon.com/rds/details/backup/



3.3.2 NEPTUNE

Neptune?® is a Graph database intended to hold a trie data structure populated by the data
population component. This is a replacement for a trie data structure populated and held
continuously in memory. Incorporating Neptune would reduce the need for memory man-
agement using a separate subsystem as may be needed in the EC2 system design.

* Domain Names: Allow quick access to check for misspellings in domains, the trie being
populated with the most common domain names

3.4 COGNITO

Cognito?’ is an AWS application security product. IAM Roles would be useful for access con-
trols for the other lab users to the databases?®. The API Gateway supports Cognito OAuth2
scopes 29 which will allow Chrome extension authorisation. This is managed using Cognito
User Pools®°.

26https: //aws.amazon.com/neptune/

27https://aws.amazon.com/ cognito/

28https: //docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html

29https:// aws.amazon.com/about-aws/whats-new/2017/12/amazon-api-gateway-supports-amazon-cognito-
oauth2-scopes/

30https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html



4 COSTS AND COMPARISON

4.1 CoSTS

Development and server deployment is currently on an t2.micro EC2 instance which costs
$0.0116 per hour®'. The t2.micro instance is covered for up to 750 hours per month in the free
tier for the first 12 months of usage. This is sufficient for development but a more expensive
EC2 instance may be required for deployment and use during the longitudinal study.

The benefit of using Serverless system design is that most service costs are only incurred
for the time they are actively being used. However, the price of each service needs to be
calculated individually. Further discussion on the system architecture and the amount of
requests is necessary before the cost of using this service can be thoroughly evaluated.

4.2 COMPARISION

The AWS Serverless system design removes the need to consider machine performance by
providing a horizontally scaling system architecture which abstracts individual machine per-
formance. Compared to the EC2 system design, this will reduce the need for future develop-
ment required to scale the system along with limiting the need to implement performance
management. This will allow development to focus on the general research approach such as
the performance of individual heuristics. It also simplifies the wider deployment of the tool
in the future and potentially increases robustness of the system.

The adaptions to the existing codebase required to fit into the Serverless system design are
limited, since they both utilise Node for the triggers. The difficulty with the Serverless system
design is ensuring successful usage of each of the concurrent systems.

There are also some limitations to the Serverless system design. The API Gateway cache
may incur more processing with its use of TTL than the EC2 system cache which is updated
with the most frequent values and managed by a Garbage Collection module. Removing this
feature reduces the need to monitor the cache quality. The lack of such a cache may also be
unnecessary depending on the processing time of the system, and the speed of database ac-
cesses. Additionally the inability to hold values in memory with a Lambda function removes
the ability to implement a trie for word processing and requires the use of the Neptune graph
database.

In either system there is a demand to implement URL preprocessing client side to limit user
data exposure.

Due to the greater robustness in the Serverless system design, it is preferable to the EC2
system and, it should be the focus of future development.

31https://aws.amazon.com/ec2/pricing/on-demand/
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Figure C.1: The popularity API response distributions resulting from the lteration with
Real Data trial. These graphs highlight the initial findings in Section - the difference
between the availability of data between white and black lists for the Alexa Top Sites
API. They also highlight the limited popularity data available for the ParaCrawl URLs.
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Figure C.2: The URL reclassification status following removal of the suspected broken
heuristics as part of the lteration with Real Data trial. These graphs illustrate limited
change barring the addition of a small number of warn classifications.
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Safety Metric Grouping - List Comparison
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Figure C.3: lllustrated are the safe URL classifications for both the datasets used in the
Iteration with Real Data trial. These classifications are grouped by the combinations of
safety metrics which contributed to their classification (these cases are split by a line
in the graph). Only the activation of the primary safety metrics contributed to URLs
that were classified as safe. The graph also highlights the limited gains from adjust-
ing the safety algorithm: since only one secondary/popularity safety metric regularly
contributed to the safety classification, which occurred more frequently with blacklisted
URLs. Therefore adjusting the secondary safety metrics would have decreased the
false negative rate at the greater expense of the false positive rate.
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Figure D.1: The safe URL classifications for both Datasets A and B from the URL
Analysis Study are illustrated. These classifications are grouped by the combinations
of safety metrics which contributed to their classification (these cases are split by a line
in the graph). This illustrates the limited but positive impact of adding the categorised
data lists to the system when contrasted with Figure

Primary Safety Metrics - Blacklist (PhishBank)

Presence in Whitelist Extended Validation Presence in Categorised Data
Safety Metric

Figure D.2: A breakdown of the safety metrics for Datasets A and B, highlighting the
small false negative rate arising from the URL Analysis Study. This also illustrates the
amount of blacklisted URLs found to be present in whitelists and the impact of adding
the categorised data lists, both factors which result in a higher false negative rate.
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