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Abstract
In the U.S alone more people are diagnosed with skin cancer each year than all other
types of cancers combined [1]. For those that have melanoma, the average 5-year
survival rate is 98.4% in early stages and drops to 22.5% in late stages [2]. Skin lesion
classification using machine learning has become especially popular recently because
of its ability to match the accuracy of professional dermatologists [3]. Increasing the
accuracy of these classifiers is an ongoing challenge to save lives. However, many
skin classification research papers assert that there is not enough images in skin lesion
datasets to improve the accuracy further [4] [5]. Over the past few years, Generative
Adversarial Neural Networks (GANs) have earned a reputation for their ability to
generate highly realistic synthetic images from a dataset. This project explores the
effectiveness of GANs as a form of data augmentation to generate realistic skin lesion
images. Furthermore it explores to what extent these GAN-generated lesions can help
improve the performance of a skin lesion classifier. The findings suggest that GAN
augmentation does not provide a statistically significant increase in classifier
performance. However, the generated synthetic images were realistic enough to lead
professional dermatologists to believe they were real 41% of the time during a Visual
Turing Test. Areas of further study for skin lesion GANs and potential future
applications of the synthetic skin lesion images in educational material were explored.
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Chapter 1

Introduction

“Reality is merely an illusion, albeit a very persistent one.“

-Albert Einstein [6]

1.1 The Problem

Approximately two in three Australians will be diagnosed with skin cancer by the
time they turn 70 [7]. It is the most common type of cancer worldwide, positioning
it at 18th worldwide on the rank of global health threats [8]. The largest sufferers
are pale-skinned populations in sun-exposed countries such as Australia, the United
States and New Zealand [9]. Despite evidence showing individuals having less sun
exposure, the total frequency of skin cancer incidence has been rising recently per-
haps due to a variety of factors including more intense UV presence and rising rates
of longevity [4] [10].

Fortunately, medical tools used for skin cancer detection have greatly improved over
the past decades [11]. Vast improvements in skin lesion classification particularly
have made it possible for dermatologists to augment their diagnosis capabilities using
technology. Today, various medical devices and even apps exist to give a additional
information to dermatologists on diagnosis [12].

However, studies have shown that the accuracy of these devices is limited [12][13].
This is concerning as a False Negative misdiagnosis by a skin lesion classifier can
lead a doctor to believe that a patient with a malignant skin cancer is fine. Skin lesion
classification research papers often blame a lack of data as the primary reason for not
achieving higher performance [4]. Most datasets used for machine learning with neu-
ral networks often contain 50,000-100,000 images, however most skin lesion datasets
only contain about 800-8000 images [14]. The problem with getting more data is that
it often takes a lot of time (typically years), much legal approval from patients and
extensive collaboration with various medical facilities [14]. Nevertheless, there may
exist other forms of acquiring more data without needing to gather new skin lesion
images.
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1.2 A Potential Solution

In the past few years, Generative Adversarial Neural Networks (GANs) have earned a
reputation for their ability to generate highly realistic synthetic images from a dataset
[15]. To verify this, the reader is encouraged to classify which of the face images
below are real or generated by AI.

Figure 1.1: Mixture of Real and GAN-generated Face images [16]

From the 6 images above, all have been generated by StyleGAN2 [16].

One of the most distinctive parts about a GAN is that it learns implicitly [17]. This
means that the component in the GAN responsible for generating synthetic images
(the generator) learns only through feedback it is given by another component in the
GAN which acts as a supervisor (the discriminator). This means the generator never
actually sees real images. Every step of training, the generator creates a sample im-
age and is then told whether it believed this is accurate or not. Much like humans, the
generator learns by failure. So it essentially learns to “paint pictures“ by itself, cor-
recting itself when it gets bad grades, rather than by looking at the solutions. Because
of this, the generator can create synthetic images that do not necessarily look like any
single image in the dataset, but instead incorporate a variety of features from each in
a realistic way [18]. Chapter 2 explores further how GANs work.

From the standpoint of a skin lesion classifier, generating more data, specifically for
rare malignant lesions, is highly desirable. This is as many skin lesions are rare and
having more variations of a malignant lesion can help in its detection. Hence if GANs
could generate realistic skin lesion images that add new information then they could
potentially help increase the the performance of a skin lesion classifier and hence
help save lives.

However, in order to help better understand what “realistic“ means in the context of
skin lesions, we must first look into the what the different types of skin cancer and
pre-cancer look like.
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1.3 Malignant Lesions

Legal note: The following material is meant as background on skin lesions and should
not be taken as medical advice. The author is not a certified doctor.

When talking about malignant skin lesions in this project we specifically refer to the
different types of skin cancer and pre-cancer.

Skin cancer is typically divided into two main categories: melanoma skin cancer and
non-melanoma skin cancer. Within non-melanoma skin cancer there exists two types:
Squamos cell carcinoma and Basal cell carcinoma. Overall, Basal cell carcinoma
(non-melanoma) is the most common type of skin cancer, with Squamos cell carci-
noma (non-melanoma) following soon after. Meanwhile, Melanoma is the least com-
mon skin cancer of the three, but it is also the most deadly with twice the death rate
per incidence in the US [1].

There also exists different types of pre-cancer that one should also be wary of as they
can develop into cancer. These are: Intra-Epidermal Carcinoma and Actinic Kerato-
sis. If left alone 10% of Actinic Keratosis and 3-5% of Intra-Epidermal Carcinoma
are likely to turn into cancerous Squamos cell carcinomas.

The following table shows the distinct appearances of these malignant lesions.



Chapter 1. Introduction 8

Malignant Lesion Appearance Image

1.) Basal cell
carcinoma

(BCC)

Non-melanoma Skin Cancer

Open sore, red patch, pink growth,
shiny bumps, scars or growths with
slightly rolled edges [19]

Figure 1.1 -
BCC Sample from DERMOFIT [20]

2.) Squamos cell
carcinoma

(SCC)

Non-melanoma Skin Cancer

Scaly red patches, open sores,
rough wart-like skin, or raised
growths. May look distinct on each
person [21].

Figure 1.2 -
SCC Sample from DERMOFIT [20]

3.) Melanoma

(MEL)

Melanoma Skin Cancer

Presence of a new mole or a
difference in existing one. May be
bigger than usual and be itchy or
bleed [22].

Figure 1.3 -
MEL Sample from DERMOFIT [20]

4.) Intraepidermal
Carcinoma

(IEC)

Pre-cancer

Well-defined pink or red scaly,
fairly flat, similar to superficial
BCC but often with more scale and
dull in color. Difference may be
absent [23].

Figure 1.4 -
IEC Sample from DERMOFIT [20]

5.) Actinic
keratosis

(AK)

Pre-cancer

A Patch which is scaly and rough
in texture and most likely found on
the arms, head and face [24].

Figure 1.5 -
AK Sample from DERMOFIT [20]

It is important to note the above list is not exhaustive and many other malignant skin
lesions exist. Less common types of skin cancer include Merkel Cell tumors and
Derma Fibrosarcoma Proturans (DFSP).

Apart from malignant lesions, there also are many benign skin lesions which are
common for people to have with potentially no harm. These include Moles, Der-
matofibroma, Seborrheic keratosis, Pyogenic Granuloma and Vascular lesions. These
are more clearly visualised in Chapter 6.

Whilst skin cancer is one of the most visually detectable types of cancer, the main
problem with skin lesion classification also tends to be their similarity in appearance
such as the similar appearance of a Mole and a Melanoma. Even sophisticated classi-
fiers can have a difficult time in differentiating between these. Hence, any additional
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information in a dataset can potentially also be helpful to classifier in distinguishing
between lesions. Whether adding GAN-generated skin lesion images can do this is
still in question.

1.4 Research Question

The motivation of this thesis project is to answer the following research question:

Can GAN-generated images added to a skin lesion dataset improve the performance
of deep learning classifier?

To test this research question, a VGG-16 deep learning classifier was used as a test
framework due to its high performance in image recognition tasks. Furthermore, this
classifier achieved high accuracy in a past DERMOFIT dataset classification paper
making it suitable for the chosen dataset [25] (explored further in Chapter 2).
An assumption made by the research question is that the the deep learning model
serves as an effective and accurate “information extractor“. To explore this assump-
tion further, the GAN-generated images were also presented to professional derma-
tologists to verify their realism through a Visual Turing Test (explored in Chapter 6).
This served as a form of qualitative evaluation for the results achieved using the test
framework.

1.5 Roadmap

The aim of this project was to explore if GAN-generated images could add any new
information to skin lesion datasets and hence improve deep network classifiers.

1. The initial step was investigating what work had already been done in the field
of skin lesion classification and data augmentation (explored in Chapter 2).

2. Next, several types of GANs were investigated. A Wasserstein GAN was cho-
sen for its ability to help avoid mode collapse (a common problem when train-
ing GANs) compared to the original GAN loss function. Various class-specific
GANs were chosen over one large conditional GAN as the large class imbal-
ances led to biased output class samples (explored in Chapter 3)

3. A custom test framework was then built using the VGG-16 deep learning clas-
sifier to verify whether the generated skin images actually improved accuracy.
The hyper-parameters for the VGG-16 were chosen and various metrics were
selected for reporting test results (explored in Chapter 4).

4. The generated GAN images were evaluated using the test framework with 5-
fold cross-validation to ensure the results are reproducible. This was then com-
pared with the accuracy of the classifier with no data augmentation, affine data
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augmentation, and then both GAN and affine data augmentation. Statistical
results were found using a paired T-test (explored in Chapter 5).

5. To evaluate the qualitative accuracy of the skin lesion images, a Visual Tur-
ing Test (VTT) was conducted with professional dermatologists . They were
presented a randomised sample of real and fake GAN-generated images and
asked to classify them visually. Results were drawn from the sample (explored
in Chapter 6).

6. The methodology used and results were analysed and evaluated. Potential areas
of improvements and further exploration were suggested to improve the accu-
racy of skin lesion classifiers through data augmentation (explored in Chapter
8).



Chapter 2

Background & Literature

The aim of this chapter is to provide background material on recent research into skin
lesion classification, research using the DERMOFIT skin lesion dataset [20] and the
use of GANs in generating realistic skin lesions.

2.1 The role of Artificial Neural Networks in skin le-
sion classification

Many of the classifiers that have achieved the highest levels of accuracy in skin lesion
classification have leveraged the use of Artificial Neural Networks [4] [26] [27].

An Artificial Neural Network (ANN) is a directed graph which acts as an informa-
tion or feature extractor [28]. The primary function of a neural network is to give a
prediction based on certain input information it receives. The way it computes this
prediction is by learning over time the relevance of the input information to the out-
put task [29]. The figure below illustrates a Perceptron, one of the simplest types of
Artificial Neural Networks.

Figure 2.1: Example of an Perceptron, the simplest type of Artificial Neural Network [30]

As seen in the diagram above, the input nodes on the left contain input information
fed into the network. Whilst the last node on the right takes in the processed infor-
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mation from the middle layers and outputs a final outcome. The middle columns of
nodes (or layers) is where the main feature extraction process occurs [30].

The network essentially learns through feedback. When it is training, it takes in an in-
put, creates a prediction and then calculates how far off its predictions were from the
real value. The error of this prediction is then used to adjust the weights and biases
(or significance) of its middle nodes so that it is less likely to make the same mistake
again. This process of the network adjusting its weights and biases according to the
error of its predictions is called back-propagation [31].

As one progresses along the layers of a neural network from left to right, each node
in the layer suddenly takes into account more paths from other past nodes and hence
more information. This can be seen by tracing back the different paths to a node in a
deep layer and seeing how many inputs it is connected to [29].

The size and depth of an Artificial Neural Network is up to the designer, however the
more layers a neural network has the “deeper“ it is seen to be [32]. An ANN which
is very deep with many layers is called a Deep Neural Network. A rough rule of
thumb is that the more layers a ANN has, the more feature extraction capabilities it
is deemed to have [33]. This is because the more layers it has, the more combina-
tions of higher and lower level features are taken into account by the network [33]
[34]. The types of layers used in an ANN are not limited to just fully connected lay-
ers (connecting all possible combination of nodes) like in a perceptron, but instead
can be of many different types such as pooling or activation layers. These different
types of layers can have different effects on the significance and strength of the nodes
and connections [29]. One type of layer popularly used for visual prediction tasks is
the convolutional layer. This layer is typically used in a type of ANN called a Convo-
lutional Neural Network, which is what most deep learning skin lesion classifiers are
based on.

2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of Artificial Neural Network which
is most popularly used for vision tasks such as object detection. The difference be-
tween a CNN and a Perceptron (the simple network illustrated previously) is that a
CNN uses convolutional layers within its network structure. What a convolutional
layer does is that it strides a filter of a certain size across an image and applies the dot
product of that filter with the part of the image it overlaps with [35].

Filters are good for detecting different features or shapes within an image [36]. For
example a filter containing an L-shape can be useful in attempting to detect L-shaped
corners in an image. As the filter is dot producted with the overlapped part of the im-
age, the more the overlapped segment matches with the L-shape, the higher the out-
put of the dot product will be and hence the higher the significance. Below can be
seen an example of a CNN being given the image of a woman and applying a filter to
a sub-segment of the image.
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Figure 2.2: Example of Convolutional Neural Network applied to the image of a woman [37]

CNNs can be mostly seen as feature extractors. As we see in the image of the woman
above, the convolutional layer strides many different types of filters onto the image
that help detect the relevant lower level features (such as wrinkles on a face) and
higher level features (such as the shape of a face) within the image [36]. During train-
ing, back-propagation is used to adjust the significance (weights and biases) of dif-
ferent combinations of inputs and features in the image and use those to predict the
classification of the image. The ability for a CNN to determine important features by
itself is one of the reasons it is popular model in skin lesion classification research.

2.3 State-of-the-art in skin lesion classification

There are various studies on skin lesion classification which achieved performance
comparable to the state-of-the-art in accuracy. Most of these use Deep Convolutional
Neural Networks.

One such study is Mendes et al’s 2018 ResNet-152 architecture which achieved 96%
accuracy for melanoma classification and 91% accuracy for Basal Cell Carcinoma
classification [4]. A ResNet-152 is a Deep Convolutional Neural Network with 152
layers which has the benefit of using residual layers. Residual layers connect previ-
ous layers in the network to layers deeper in the network [4]. The reason for this is
that it helps feed information forward faster from past layers and helps the gradient
stay strong even through the many layers. Mendes et al’s ResNet-152 was trained on
3797 skin lesion images from 12 different skin lesions classes and tested on 956 test
images [4]. This means the dataset was made of 4753 images, which is a fairly low
amount of images compared to most deep neural networks and can often limit total
accuracy.

Furthermore, another model which achieved very high accuracy on skin lesion classi-
fication was Matsunaga et al’s ensemble binary classifiers which won first place at the
ISBI Challenge 2017 [26]. Their ensemble binary classifiers used a pre-trained object
recognition Deep Neural Network trained with data augmentation as well as using
the two optimisers of AdaGrad and RMSProp [26]. An ensemble classifier is essen-
tially a combination of different neural networks which help eachother in the predic-
tion of a task. For example the input of a certain neural network may be the output of
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the neural network before it. Matsunaga et al’s ensemble binary classifier essentially
broke up the classification of skin lesions into smaller binary decisions undertaken by
Deep Neural Networks and at each stage used the output of one network as an input
into a new binary Deep Network classifier.

Finally, Kwasigroch et al also acheived a high accuracy of 84% on all skin lesion
classes using a transfer learning method with a VGG- 19 (also a type of deep Convo-
lutional Neural Network) and ResNet50 already trained on the 1K ImageNet classes
[27]. Their results showed higher accuracy for the VVG-19, but mainly due to the
ResNet-50 not having enough training data due to how deep it was [27]. These find-
ings hence suggest that using less deep of a Neural Network such as a VGG-19 may
be optimal for skin lesion classification when there is not many training images avail-
able.

One clear conclusion from various studies on the use of deep learning is that Deep
Neural Networks learn better with more data. This is as more data allows more in-
formation to better tune the nodes and layers in the network and recognise common
features better. However, apart from the quantity of images, the quality of data is also
crucial. In terms of skin lesion datasets, the DERMOFIT dataset is recognised for
having one of the highest medical and photographic consistency [20].

2.4 DERMOFIT Dataset

The skin lesion images used in this thesis project come from the Edinburgh DER-
MOFIT Image Library (or DERMOFIT dataset). All of these skin lesion images have
a gold standard diagnosis based on expert opinion (including dermatologists and der-
matopathologists) [20].

The DERMOFIT dataset consists of 1300 skin lesion images belonging to 10 dif-
ferent classes. Five of these classes are considered malignant lesions: Squamos cell
carcinoma (SCC), Basal cell carcinoma (BCC), Melanoma (MEL), Intra-Epidermal
Carcinoma (IEC) and Actinic Keratosis (AK). Whilst the other five classes are con-
sidered benign: Moles (ML), Dermatofibroma (DF), Seborrheic keratosis (SK), Pyo-
genic Granuloma (PYO) and Vascular lesions (VASC). It is one of the highest quality
skin lesion datasets in terms of medical consistency as each image was taken at the
same distance and with the same camera conditions.
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Figure 2.3: Breakdown of different skin lesion classes in the DERMOFIT Dataset [25]

2.5 Work on the DERMOFIT Dataset

Various papers have used the DERMOFIT dataset for skin lesion detection and classi-
fication and have achieved considerably high average class accuracy.

One of them being Di Leo et al’s 2015 paper titled “Hierarchical Classification of
Ten Skin Lesion Classes“ [38]. Here, a hierarchical classification system based on
the k-Nearest Neighbours (kNN) classifier was used to classify the DERMOFIT skin
lesions into the 10 different classes. This approach achieved 93% accuracy in distin-
guishing malignant from benign lesions and 67% overall classification accuracy for
the 10 classes [38]. The benefit of using a K-Nearest Neighbours approach is that the
most similar looking lesions will be classified the same. However, the downfall of
this method is that the overall similarity of two images may not necessarily be a more
important factor. Instead, it could be the presence of certain specific features within
an image that decide whether its a certain kind of lesion. For example, Melanomas
and Moles share much similar features, but tend to be distinguished by the smooth-
ness and roundness of the lesion.

A more recent study in 2018 by Bertrand instead attempted to use a Deep Learning
approach to classify the 10 DERMOFIT skin lesions classes. This approach investi-
gated different Deep Neural Networks such as the VGG-16 and ResNet50 to improve
the classification accuracy on the 10 classes [25]. This study achieved an accuracy
of 78,5% using the VGG-16 network, 78,7% using the ResNet50 and an accuracy of
80,1% using a hierarchical ensemble method which instead divided the classification
into binary decisions much like Matsunaga et al [25].
A continuation study of this in 2019 by Fisher et al compared the findings of Bertrand
to an optimised Hierarchical K-Nearest Neighbhour classifier. Fisher demonstrated
that the Hierarchical K-NN and the Deep Neural Network methods were reasonably
comparable in terms of accuracy on the DERMOFIT dataset [39]. Fisher’s K-NN
classifier achieved 78.1% accuracy on the 10 classes, whereas the Deep Neural Net-
work method achieved 78,7% accuracy [39].

Whilst, GAN-generated images could be added to the training dataset of either of the
two types of classifiers, it was decided to use only the Deep Learning classifier for
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this project. This was because the Deep Learning classifier is designed to focus more
on extracting important features of an image rather than focusing on classification
through similarity. As the goal of this project was to understand if GAN images could
create images that add new and useful information, a Deep Learning classifier was
preferred due to its ability to adjust and learn new features.

The addition of GAN-generated images to the dataset can be considered a form of
data augmentation, a technique commonly used in deep learning classifiers to im-
prove the variability of the data.

2.6 What is Data Augmentation?

Data augmentation is a standard technique used to expand data sets in image classi-
fication tasks with the goal of solving overfitting. Overfitting occurs when a machine
learning model has focused too much on learning about the training data and does
not perform well on unseen data. Data augmentation procedures typically involves
affine image transformations such as rotations, shifts, crops flips, addition of noise
and changes in lighting and color settings. An affine transformation is a transforma-
tion where parallel lines in the first image remain parallel in the transformed image
[40]. Figure 1.1 gives examples of simple augmentations that are shown to be com-
monly effective in helping generalise the overall training data [41].

Figure 2.4: - Example of typical affine data augmentation [42]

This typically helps capture the images that “should have been“ in the training set.
The variation of camera-related factors such as different angles, scales and lighting
levels are reduced by data augmentation. This way the model learns to better recog-
nise genuine features of an object and not conditions caused by the camera or envi-
ronment

Furthermore, applying data augmentation can help combat imbalanced class distribu-
tions where one certain type of image may be more common in a dataset than another
type. This can often cause problems in weight-based machine learning models such
as Deep Neural Networks because large enough image classes can dominate weight
updates and lead the classifier having a preference for certain predicted classes for
any given input. In Perez et al’s paper “The Effectiveness of Data Augmentation in
Image Classification using Deep Learning“, the authors show that standard affine data
augmentation can be an effective way to reduce overfitting of vision machine learning
models [41]. The standard data augmentation resulted in an accuracy increase of 7%
for a mid-accuracy model and a 3.5% accuracy increase for a higher accuracy model
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[41]. Hence, the effectiveness of data augmentation may be larger for models that are
not achieving top 85%-90% accuracy.

In summary, more data is likely to lead to greater accuracy for deep learning models.
One such way of adding more data is to leverage the use of GANs to generate syn-
thetic images.

2.7 How GANs create synthetic images

Since their popularisation in 2014, Generative Adversarial Neural networks (GANs)
have become renown for their distinct ability to produce highly realistic artificial im-
ages given a training set [43] [44]. The way GANs work is by having a generator
(a neural network which generates synthetic samples) and a discriminator (a neural
network classifying whether an image as real or fake) adversarially trained against
each-other to simultaneously improve [43]. This structure of a GAN is shown in the
following figure.

Figure 2.5: Diagram of GAN discriminator and generator network [45]

From the structure above, it can be seen that the generator and discriminator play a
game against each other. In this game, the generator attempts to fool the discrimina-
tor feeding it synthetic data and the discriminator attempts to correctly classify if a
given image comes from the training set or the generator. A common analogy used
is that the generator is a con artist, trying to create a fake painting and the discrimi-
nator is an art detective trying to verify whether paintings are real or fake [43]. They
constantly compete, each getting better at their own task.
The game played between the generator and the discriminator can be described by
their loss function [43]:

minGmaxDV (D,G)

where V (D,G) = Ex∼pdata[log(D(x)] + Ez∼pz(z)[log(1 − D(G(Z))]

And:
D = the discriminator,
G = the generator,
Z = random input into the generator,
X = input to the discriminator



Chapter 2. Background & Literature 18

Here we see that the generator is incentivised to fool the discriminator (by
minimising 1−D(G(Z)), whereas the discriminator is incentivised to correctly
classify the generator’s fake images and correctly classify real images (by
maximising both 1−D(G(Z)) and D(X)). This is called a minimax game as to the
discriminator and generator, maximising their score is equivalent to minimising that
of the opponent.

One of the most interesting aspects about GANs is that they set up the problem of
generating realistic images as a self-supervised problem [46]. This is because the job
of the discriminator network is essentially to supervise the images produced by the
generator network and tell the generator if it believes the images produced are
realistic or not. GANs very cleverly set up the problem of generating realistic images
through the use of Game Theory and reinforcement learning to some extent [43]. As
the two players (the generator and discriminator) are fighting over the maximum
reward as their loss functions above contradict each other in a zero sum game. By
fighting over this reward, they essentially both get better at their individual tasks and
if successful, end up letting the generator produce highly realistic images.

2.8 Existing work on skin lesions GANs

Limited research has been conducted using GANs to generate realistic skin lesions
images and none has been done using the DERMOFIT dataset.

In 2018, Baur et al explored the generation of realistic skin lesions images using a
DCGAN and LAPGAN. Their findings show that with the help of progressive
growing (PGAN), high quality skin lesion images can be created that are difficult
even for professional dermatologists or deep learning experts to distinguish [47].
However, while the images were deemed highly realistic, it it still unclear as to
whether these images could be used to enable skin lesion classifiers to improve in
accuracy.

In Bissoto et al’s 2019 paper on GAN skin lesion generation, they opt for an approach
where the GAN generator begins from semantic label maps rather than random noise.
In the study they compare the use of a DCGAN, pix2pixHD, PGAN and found that
combing both semantic and instance maps led to the most realistic generated images
[48]. This allows for the generator to start from a more informed image, which may
be beneficial when using a limited dataset, but also requires more labelling which
may be detrimental to the scalability of this technique.

Finally, a recent paper published in May 2019 by Pollastri et al compared a Deep
Convolutional GAN (DCANs) to a Laplacian GAN (LAPGAN) as a form of data
augmentation. They showed that using LAPGAN-generated images were able to to
increase baseline accuracy by 0.82% [49]. Furthermore segmentation masks were
used and generated by the GANs to help further improve the accuracy of the GAN.

Whilst there has been some research conducted on creating realistic skin lesions with
GANs, their use as data augmentation for Deep Neural Network classifiers remains
still quite an unexplored field. Especially, given that GAN data augmentation has not
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been conducted on a dataset similar to that of the DERMOFIT dataset.

The DERMOFIT dataset contains skin lesion images with some of the highest quality
medical consistency [20], but this also means due to the higher standard that it has
lower image amounts compared to image datasets such as HAM10000 with 10,000+
images. This makes it an ideal candidate for data augmentation, which seem to
achieve greatest performance gain on smaller datasets. [41].



Chapter 3

GAN Implementation

“I have not failed. I’ve just found 10,000 ways that won’t work.“

— Thomas A. Edison [50]

The purpose of this chapter is to explain the methodology and experimentation
behind the selection and implementation process of the GAN chosen for generating
synthetic skin lesion samples.

3.1 Building the GAN

A GAN is made up of two main components - a discriminator and a generator net-
work. The task of the generator is to create synthetic images that are realistic enough
to fool the discriminator. Meanwhile, the task of the discriminator is to supervise the
generator and correctly label whether the images coming to it are from the training
set (real) or the generator (fake) [43].

The discriminator typically consists of a Convolutional Neural Network (CNN), as
explored in Chapter 2, which has the simple binary classification task of predicting
whether an image given to it is real or synthetic. On the other hand, the typical gener-
ator used in a GAN can be thought of as the reverse of a CNN structure [46]. A CNN
takes in an image (a matrix of pixels) and down-samples them to output a series of
features which it then uses to make a prediction.

The generator does the exact opposite of this - it takes a series of latent vectors (in
our case a random input vector) and up-samples it until an image of the required size
is produced. The structure of the generator is almost identical to that of the discrim-
inator, except instead of using convolutional layers (which down-sample an image),
it uses transposed convolutions which up-sample an image [51]. Transposed convo-
lutions do this by applying a large stride and using weights to insert likely pixels in
between the known pixels [51]. This is done in sequence until the required size im-
age is reached. Below can be seen the comparison of a convolution (a - discriminator)

20



Chapter 3. GAN Implementation 21

and a transposed convolutions (b -generator) taking place.

Figure 3.1: - Comparison of convolutions (a - discriminator) and transposed convolutions (b - generator) [52]

As observed, the generator is essentially the same as the discriminator, except for
the use of transposed convolutions which up-sample images [52]. Furthermore, the
input and output to both networks is almost the opposite. As the generator takes in
a random noise vector instead of an image and then outputs a synthetic skin lesion
sample instead of a feature vector or prediction.

The reason the input vector to the generator is random is so that the generator is en-
couraged to produce different variations of synthetic images and not just the same
image from a given input [46]. This is as the generated synthetic image is created
by passing the input vector through a number of up-sampling layers attempting to
make it look more like a realistic skin lesion. Varying the size of this input vector
can lead to changes in the quality and smoothness of the synthetic images produced.

3.2 Selecting the dimensions of the generator input
and output

The size of the random input vector that is given to the generator essentially defines
to some extent the quality and range of the output synthetic image [46]. This is be-
cause the output image can only vary according to the degrees of freedom (or dimen-
sions) of the input vector. However, increasing the dimensionality of the input noise
vector greatly affects the total training time and computational resources needed.

Furthermore, a higher noise vector dimension does not ensure the output image will
necessarily be of greater or more realistic quality. In fact it may make the synthetic
image look less smooth as up-sampling tends to create pixels similar to those around
it. Therefore there is a trade-off between lower level details and computational com-
plexity and smoothness when selecting the size of the input vector.

In our case, 2 sizes of input vector were tested. Firstly, an input vector of 128 dimen-
sions, secondly an input vector with twice the dimensions at 256 dimensions. The
results of both can be seen below.



Chapter 3. GAN Implementation 22

(a) Image generated using 128 dimen-
sional noise vector

(b) Image generated using 256 dimen-
sional noise vector

Figure 3.2: Comparatively the 128 dimensional noise vector image is similar yet
slightly less detailed than the 256 noise vector.

The 256 dimensional vector was chosen, however this performed at the peak of the
hardware resources used. Hence, larger dimensionality was not tested and is left for
further exploration. Furthermore, upon inspection the 256 dimensional images did
not appear very visually different to the 128 dimensional noise images, yet did show
slightly more detail. Hence, the 256 dimensional input was chosen.

Meanwhile, the output dimensions of the generator were chosen to be a 3x224x224
pixel sized matrix. This is because, following [25], the VGG-16 takes in an image
with a length and width of 224 pixels and 3 RGB color channels.

Therefore, these input dimensions (1x256 pixels) and output dimensions (3x224x224
pixels) were chosen as network parameters when training the GAN.

3.3 Training the GAN

Whilst exploring the ideal GAN for synthetic skin lesion image generation, a GAN
from Goodfellow’s original ”Generative Adversarial Neural Networks” paper was
implemented [43]. This is because it allowed a baseline for comparison to other more
modern types of GANs. We adjusted the original GAN network and layers to allow a
1x256 dimension input and 3x224x224 dimension output to fit our specific task.

Training the GAN involves taking turns between training the generator and the dis-
criminator networks. The most interesting part about training a GAN is that the gen-
erator never truly sees the images in the training set [46]. Instead, it updates itself
according to how well its synthetic samples manage to fool the discriminator.

In training the generator, it is first fed random noise vectors of a certain dimension.
It then up-samples this noise and outputs an image which is fed to the discriminator.



Chapter 3. GAN Implementation 23

The generator is then updated according to whether the discriminator correctly or
incorrectly classified the synthetic images [43].

In training the discriminator, it is first fed equal amounts of images from the gen-
erator and the training data to make sure it is exposed to both real and fake images
equally. The discriminator is then evaluated and updated using back-propagation with
the binary cross entropy of how well it was able to classify whether an image is real
or fake [46].

Although the discriminator and generator share the same loss function, they do not
update their weights simultaneously and instead each take turns updating individu-
ally. For example, the discriminator typically trains for 2 batches, whilst the generator
weights are frozen. Then the discriminator weights are frozen and the generator trains
for 2 batches. This process is repeated until convergence [46]. This way each network
then has time to train and adjust without simultaneous influence from the other’s di-
rect actions.

We trained our GAN by letting the discriminator network train for 2 batches, whilst
the generator trained for 2 batches. This is typically recommended as then the dis-
criminator and generator improve more equally [46]. However, despite attempts at
equal training, a common problem encountered when training GANs is that of mode
collapse.

3.4 Challenges with mode collapse

Initially we used a custom GAN using the original GAN loss function (explained
in Chapter 2) to produce realistic skin images. The problem encountered with this
approach was its proneness to mode collapse.

Mode collapse is the main challenge encountered when training GANs. What occurs
is that the generator learns to map the random noise vectors fed into it to the same
shapes, colours and patterns [53]. This means essentially very similar images are gen-
erated. The figure below shows how the custom GAN experienced mode collapse,
mapping random colour vectors to the same patterns of melanoma images.

Figure 3.3: - Mode Collapse experienced using original GAN loss equation on Melanoma Images

This ends up partially ruining the purpose of the random input noise vectors that are
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meant to help the generator create a variety of types and styles of generated images.
This is observed in the figure above, where the initial random noise vectors after one
iteration are presented on the left and the generator output after 5000 iterations are
shown on the right. We observe the problem as the random noise vectors map to a
similar looking melanoma spot. This is because the generator has learnt to fool the
discriminator by essentially mapping different random noise vectors to the same
melanoma shape and pattern, but in different pigmentations.

Several newer types of GANs such as the Wasserstein GAN have been created in or-
der to help reduce the effects of mode collapse.

3.5 The Wasserstein GAN

A Wasserstein GAN is a GAN that uses the Wasserstein distance in its loss functions
instead of the original GAN loss function that uses Jensen-Shannon Divergence as a
distance metric. Jensen-Shannon Divergence is a probability distance metric which is
based on measuring the vertical distance between two overlapping probability distri-
butions [54].

The Wasserstein or Earth Mover’s distance function is instead defined as the mini-
mum amount of energy taken to move all the “dirt“ composing a given probability
distribution to all the “dirt“ forming another probability distribution. Wasserstein dis-
tance measures the distance between two probability distributions according to the
horizontal difference of the points in the distributions rather than their vertical differ-
ence [55].

The main reasons the Wasserstein distance is seen as smoother than the original GAN
loss function is that Jensen-Shannon Divergence (JSD) suffers a discrete jump when
two probability distributions are not overlapping. This is because JSD uses a ver-
tical distance to compare distributions rather than a horizontal measure such as the
Wasserstein Distance meaning non-overlapping distributions are harder to measure
[55]. This is shown in the following figure.

Figure 3.4: - Example of Wasserstein or Earth Movers Distance [56]

The Wasserstein distance gives the advantage of providing a smooth distance metric
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across all differences in probability distributions, which makes training of the GAN
generator much more stable. This can be visually observed with the synthetic images
mapping to various different shapes and patterns under the Wasserstein loss function
implementation.

A Wasserstein GAN based on Gulrajani et al’s paper, ”Improved Training of Wasser-
stein GANs” was implemented and the various up-sampling and convolutional lay-
ers were changed to fit our chosen input dimensions (1x256) and output dimensions
(3x224x244) [57]. This was then trained and the following figure illustrates our prac-
tical results using the improved WGAN implementation.

Figure 3.5: - Synthetic lesion images produced by the Wasserstein GAN

The above figure demonstrates how the Wasserstein GAN is able to produce images
with a much greater variety of shapes and patterns compared to the GAN with the
original GAN loss function in Section 3.6. This is as the Wasserstein GAN is able to
better avoid mode collapse through it use of a smoother loss function.

The choice of GAN used in experimentation was hence chosen to be a Wasserstein
GAN (WGAN) due to its ability to avoid mode collapse and generate a greater vari-
ety of skin lesion samples. Nonetheless, as multiple classes of skin lesions needed
to be generated, it was investigated whether one conditional WGAN or multiple
WGANs (one for each skin lesion class) was optimal to create realistic synthetic le-
sion images.

3.6 Many GANs or a single GAN?

The typical objective of a GAN is to train its generator to create realistic synthetic
samples of the training data given to it. However, when trying to get a GAN to create
multiple types or classes of images, there exist two main solutions.

Firstly, a GAN can simply be created for each class of skin lesion or secondly, a con-
ditional GAN can be created to generate multiple types of classes [58].
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The way a conditional GAN works is very similar to that of a normal GAN, however
instead of feeding in just a random noise vector as input to the generator, a one-hot
encoding label is also appended to it, indicating what class of lesion it should try to
create [58]. Next, the loss function of the generator is also adjusted to instead be a
categorical cross-entropy loss instead of a binary cross-entropy loss which essen-
tially just allows updates to take into consideration the different categorisation of the
classes.

Both of these approaches were tested, with a conditional GAN and a 10 different
GANs (one for each skin lesion class). In practice, it was found that the 10 differ-
ent skin lesion GANs performed much better than the conditional GAN in generat-
ing subjectively realistic skin lesions for each class. The reason we believe this was
the case was due to the large class imbalances within the DERMOFIT dataset. For
example, whilst the conditional GAN may have attempted to generate a Pyo-genic
Granuloma (PYO) lesion of which there are only 24 in the dataset, the added class
label input into the generator may have simply been ignored and over-powered by the
weight updates created by larger classes such as the 331 Moles (ML) in the dataset.
This is one of the large problems of imbalanced class distributions, as more images
in a certain class can tend to infairly bias a classifier towards a certain class over an-
other. This was experienced in the conditional GAN as the main output tended to
appear similar to a Mole (ML), despite the intended input class to be another type of
lesion.

Therefore, 10 individual WGANs, one for each class, were selected as the final GAN
to be used to generate skin lesion images. This was because the many individual
WGANs were able to avoid the problems associated with class imbalances and bias
towards a certain type of lesion.

Whilst, the implementation of the multiple class WGAN was selected, it was still in
question as to how long to train each of these WGANs to generate the most realistic-
looking skin lesions.

3.7 When to finish training the GAN

Currently, there is no practical method for objectively deciding if a GAN has finished
training or reached its final outcome. Whilst theoretically, the point of convergence is
the Nash Equilibrium or a joint local maximum payoff strategy, this is rarely reached
in practice due to the vanishing gradient problem and failures of convergence [59].

Hence a typical stopping criteria is when the discriminator reaches an accuracy close
to 50%. This is as the discriminator is practically guessing between whether an image
is real or fake and hence the generator has successfully produced images that fool
the discriminator. Nonetheless, this is still not an objective stopping criterion, hence
the main measure of GAN performance tends to be primarily based on the subjective
image quality of the samples produced [46].

The stopping criteria used to train the WGAN on each individual class of skin lesions
was subjective as described. After running each until the point of over-training, it
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was evident that the WGAN tended to produce the highest quality subjective images
after 3500 iterations of training. The effects of training iterations on subjective image
quality can be observed in the figure below.

(a) Synthetic
PYO im-
age after 0
iterations

(b) Synthetic
PYO image
after 500
iterations

(c) Synthetic
PYO image
after 3500
iterations

(d) Synthetic
PYO image
after 5500
iterations

(e) Synthetic
PYO image
after 7800
iterations

(f) Synthetic
PYO image
after 14000
iterations

Figure 3.6: Comparing synthetic PYO images generated by GANs across different
amount of training iterations

Furthermore, the WGAN started over-training and producing unrealistic images at
around 7500 iterations where the GAN became imbalanced and started producing un-
realistic image samples with high colour contrast. Hence, this was used at the upper
limit.

As explored in this chapter, after much experimentation, all the network parameters
were chosen for the final WGAN implementation. After training each WGAN on
the given iteration ranges, synthetic images were generated for each class. Chapter 6
shows what some of these WGAN-generated lesions look like due to their use in the
Visual Turing Test. However, to test whether these generated skin lesion images were
adding any new information, a testing methodology had to be created.
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Testing Methodology

The aim of this chapter is to explore the methodology and metrics used for the test
framework in verifying whether the WGAN-augmented images provide any
performance increase to the VGG-16 Deep Learning classifier.

4.1 Test Framework

The main question that arises from using WGANs as data augmentation is whether
these generated images really create any information gain over the existing training
images. A limited amount of research (covered in Chapter 2) attempts to create
realistic synthetic skin lesion images using GANs. However, some of these research
papers hold the assumption that the more realistic a synthetic images looks, the more
information gain it provides. However, this may not necessarily be the case. As the
Generative Teaching Network paper by Such et al at Uber AI Labs recently showed,
the images that create the most information gain in training datasets may not actually
look very realistic, but rather they encode the greatest information and variability of
an image [60].

28



Chapter 4. Testing Methodology 29

Figure 4.1: - Example of Synthetic MNIST Images produced by GTN [60]

The figure above by Such et al shows curriculum training where progressively the
GAN augmented training images become more and more realistic from left to right.
However, the images on the right still do not embody very accurate illustrations of the
digits. Instead it appears as though the Generative Teaching Network has learnt that
slightly distorted images of digits represent a more compact and regularised version
of the digit images and hence are better as training images.

These findings hence suggest that there may be more objective ways to measure the
amount of useful information in GAN generated image. In fact, the improvement in
accuracy of a classifier trained using GAN-augmented images may be a better
measure of the information gain provided by synthetic images than judging if the
synthetic images look realistic or not. To test the performance of a GAN as a form of
data augmentation, a Deep Neural Network from Bertrand’s 2018 DERMOFIT skin
lesion paper was used [25].

The discriminator used was a VGG-16 known for its high accuracy in object
recognition tasks. The baseline accuracy of Bertrand’s pre-trained VGG-16 classifier
was 78,5% using affine data augmentation techniques and masking [25]. This
network was used as the baseline to determine the accuracy improvement when using
the WGAN generated images as data augmentation.

However, as our WGAN is not able produce masks for synthetic images, the same
VGG-16 was used but without the masking. Furthermore, Bertrand used a 80%, 20%
split for training and test sets without the use of a validation set. However, Bertrand
later suggests that including a validation would be an improvement as it helps remove
the bias of hyper-parameter tuning on the reported accuracy.

With these two modifications, the baseline accuracy of our pre-trained VGG-16 was
roughly 63%. This drop in accuracy is expected as the VGG-16 classifier had no



Chapter 4. Testing Methodology 30

masking and less training images in exchange for being able to use WGAN
augmented images in the training data and also reducing the bias of hyper-parameter
tuning. Below is the comparison of a normal training image, a WGAN-generated
image and the equivalent masked image as used in Bertand’s paper.

(a) WGAN-generated AK
image

(b) Real AK skin lesion (c) Cropped and masked
AK skin lesion

Figure 4.2: Comparison of WGAN synthetic image, real skin lesion and the equivalent
masked and cropped lesion

As we can see above, the WGAN-generated AK lesion was trained on the un-cropped
and un-masked skin lesion AK images. However, the cropping and masking seen in
image (c) as conducted by Bertrand would perhaps allow the GAN to focus more on
generating the characteristic part of the lesion rather than the surrounding skin. In
future work, the WGAN could be modified to create synthetic masks too as in [48],
however this is beyond the scope of this project.

Given the limited data, the VGG-16 had less data to learn from. This is why the
common technique of transfer learning was used to help pre-train the network.

4.2 Transfer Learning as Feature Extraction

When using limited datasets, transfer learning can help a deep learning model learn
how to extract general features from a variety of different images before being trained
to specialise on a smaller, more limited dataset [61]. Transfer learning is when one
trains a deep learning network on a larger dataset, until its weights are properly tuned
before training it on the dataset of choice.

Transfer learning can be thought of as teaching an infant (in this case the
discriminator) how to distinguish between many different types of animals before
using these transferable skills to distinguish between different breeds of dogs.

As in Bertrand’s 2018 paper, a VGG-16 was pre-trained on the ImageNet dataset and
then fine-tuned on the DERMOFIT dataset [25]. This is because transfer learning
allows the VGG-16 to learn to recognise general object features, before specialising
itself on skin lesion classification. Furthermore, Mutsunaga et al and Mendes at al
similarly used transfer learning methods in their skin lesion classification papers to
improve the feature extraction capabilities of their classifiers [26] [4].
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Apart from the use of transfer learning, a variety of different hyper-parameters were
tested to try and achieve the highest baseline accuracy for the VGG-16.

4.3 Choice of Hyper-parameters

A variety of hyper-parameters were tested for the VGG-16 using a grid search
approach. In this grid search method different hyper-parameters were adjusted one by
one, keeping whichever had the highest accuracy. The hyper-parameters tested
included the learning rate, optimiser function and batch size. The following
hyper-parameters were found to produce the highest accuracy for the VGG-16 of
63.9%:

Hyper-Parameter Optimal Value found

Batch Size 20
Optimizer Function RMSprop

Learning Rate 0.0001
Output channels of last FC Layer 1024

A larger batch size seemed to lead to a slightly higher accuracy. The reason for this is
thought to be because then the updates to the weights of the VGG-16 are conducted
more smoothly after a larger amount of images have been seen. Furthermore,
RMSProp was found to be the preferred optimiser. This may be because compared to
a normal stochastic gradient descent, RMSProp allows an adjusted and smoother
descent due to its implementation of moving average descent using the square of the
gradient. Finally, a small, but not overly small learning rate seemed preferred as this
way the VGG-16 was able to find a better local minima without overshooting or
undershooting too much. Furthermore, the choice of output channels neurons was
1024 for the last fully connected layer as any amount above this seemed to have no
influence on the accuracy obtained, perhaps due to a redundancy of neurons.

As the hyper-parameters were selected, the VGG-16 deep learning classifier was
implemented. Following this the different scenarios for comparing the performance
of the WGAN-augmentation were investigated.

4.4 Baseline and Comparison

To test the performance gain of the WGAN augmentations, the VGG-16 was trained
and tested on the following 4 scenarios of data augmentation:

1. Skin lesion dataset without data augmentation

2. Skin Lesion dataset with affine augmentation

3. Skin lesion dataset with WGAN augmentation

4. Skin lesion dataset with both affine augmentation and WGAN augmentation

These 4 scenarios allowed to compare the effect that the WGAN augmentation had
over no augmentation, but also how it compared to the typically used affine data
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augmentations. In the final scenario both WGAN and affine augmentations were
combined to see if WGAN augmentation could perhaps provide any information gain
when combined with affine augmentations.

Although the 4 scenarios allowed a better comparison of the performance of
WGAN-augmentation, focus had also to be placed on the reproducibility and
reliability of the results achieved.

4.5 Reproducibility and Reliability

The above 4 augmentation scenarios were conducted using a stratified
train-validation-test split (60%, 20%, 20%). Although the total dataset size was small
(1300 images), it was still decided to split this into a training, validation and testing
set. This is because as suggested by Bertrand’s 2018 paper, using solely a validation
set makes it difficult to distinguish whether tuning hyper-parameters leads to a real
increase in classifier accuracy [25].

5-fold cross validation was used to verify whether the specific allocation of images in
the training, validation and test sets truly impacted the reported accuracy. This meant
that the dataset was split randomly into 5 equally-sized stratified sets. These were
then swapped around in all 20 possible combinations between the training, validation
and test sets to ensure the results accurately reflected the full dataset.

The final reported accuracy was hence an average of the different allocations of the
20 different combinations of the 5 folds between the training, validation and test sets.

Nonetheless, as certain skin classes such as malignant lesions, are more important to
detect correctly than others, a variety of performance metrics were tracked for the test
framework.

4.6 Performance Metrics

To evaluate the performance of the 4 augmentation scenarios, the following metrics
were tracked:

1. Confusion Matrix

2. Malignant vs. Benign Classification Accuracy

3. Precision, Recall and F1-score

4. Total Accuracy and Average Accuracy by Class

The confusion matrix was useful as it allowed a fine-grained evaluation of the
performance on each skin class. The malignant vs. benign classification accuracy was
crucial in analysing the performance of the data augmentations as the largest risk
posed by skin lesions are their potentially harmful effects. The precision, recall and
F1-score helped to understand what affects the data augmentation had in terms of
generalisability and different classification of class-imbalanced images. Finally, as in
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any machine learning model, the overall accuracy and class-specific accuracy were
analysed. Statistical Paired T-tests were then conducted to verify whether any of the
four augmentation scenarios produced statistically significant results.

As the test framework and desired performance metrics were established, the
VGG-16 was tested using the 4 augmentation scenarios with 5-cross-fold validation
and the results were recorded.
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Results

This chapter aims to analyse the results of the training, validation and testing for the 4
data augmentation scenarios using 5-cross-fold validation and verify if statistically
significant results were achieved through the use of paired T-tests.

5.1 Training Performance of the VGG-16

The four augmentation scenarios were conducted and their results and metrics were
analysed. As stated in the previous chapter, the pre-trained VGG-16 was fine tuned
on the DERMOFIT dataset. This fine tuning was done for 25 epochs and the model
with the highest accuracy on the validation set was recorded and then used for testing.
The following figure shows the training and validation accuracy graphs across the 25
epochs for each of the 4 augmentation types.

34
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(a) No Augmentation (b) WGAN Augmentation

(c) Affine Augmentation (d) Both WGAN and Affine Augmenta-
tion

Figure 5.1: Training and Validation Accuracy versus epoch Graphs

As observed above it seemed as though both the No Augmentation and WGAN
Augmentation scenarios seem to increase in training accuracy very quickly and
plateau in validation accuracy after 10 epochs. However, the Affine Augmentation
and Both Affine and WGAN Augmentation scenarios appear to more gradually
increase in both training and validation accuracy, starting at a lower value and then
reaching a higher accuracy overall. This can perhaps be explained by the larger
amount of augmentation provided by affine transformations which the VGG-16
gradually learns over several epochs.

Once training was finished, the distribution of accuracy across the 20 folds were
reported for each augmentation scenario.

5.2 Performance of the 4 Augmentation Techniques

To report the performance of the 4 different augmentation techniques, 5-fold cross
validation was used. This meant the dataset was split into 5 equal parts and all 20
permutations of the 5 folds were tested. The cumulative results of this are shown
below for each augmentation scenario.
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5.2.0.1 No Augmentation

The mean and standard deviation for the 20 data permutations for 25 epochs of
training of the No Augmentation scenario are shown below.

Figure 5.2: - Mean and Standard Deviation of the VGG-16 Average Accuracy with 5-fold cross validation on No Augmenta-
tion Scenario

As observed above the mean accuracy of the VGG-16 on the DERMOFIT dataset
was about 63.9%. With a standard deviation of 0.034 which we can see has a range of
12.6%. This seems like quite a large range, however the smaller standard deviation
means that most fold accuracies lie fairly close to each other. As these are the first
training results, they will serve as a baseline for comparison to the other 3 scenarios.

Observing the aggregated confusion matrix for the 20 runs gives a better insight into
how the No Augmentation VGG-16 performed on the distinct classes.



Chapter 5. Results 37

Figure 5.3: - Confusion Matrix for the No Augmentation Scenario

Class Precision Recall F1-score Support
AK 0.34 0.18 0.24 188

ALLBCC 0.59 0.67 0.63 956
ALLDF 0.62 0.59 0.61 269
ALLIEC 0.43 0.41 0.42 312

ALLMEL 0.60 0.51 0.55 304
ALLML 0.77 0.81 0.79 1327
ALLSCC 0.45 0.46 0.46 352
ALLSK 0.66 0.64 0.65 1037

ALLVASC 0.69 0.72 0.70 398
PYO 0.58 0.39 0.46 96

Accuracy 0.64 5239
Class avg 0.57 0.54 0.55 5239

Weighted avg 0.63 0.64 0.63 5239

The confusion matrix and classification report table indicate that under the No
Augmentation scenario the VGG-16 seems to best classify Moles (ML) as it achieves
the highest precision, recall and F1-Score of any class. This makes sense as
coincidentally moles are also the largest class in the dataset in terms of number of
images. We see this is a trend holds for most classes such as SK which has the second
most images and the third highest F1-score. However, some classes such as Vascular
Lesions which have less than a tenth of the size of the total dataset, still achieved
some of the highest Precision, Recall and F1-score. This may simply mean that the
classifier has been able to most easily classify this type of lesion accurately because
vascular lesions are fairly more distinctive in color and shape compared to most
lesions. The precision, recall and hence F1-score appears to be quite similar for most
classes meaning that the amount of false positives and false negatives is quite
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balanced. This is with exception of AK and PYO which seem to have fairly higher
precision than recall. This is due to their False Negative count being larger than their
False Positive count. A possible explanation for this may be that both these classes
contain the least amount of images in the entire dataset, hence there is a bias of the
classifier towards not predicting these.

Comparing the class and weighted results, we see that the class-specific results for
Precision, Recall and F1-Score are roughly 6-10% smaller than those for the
weighted results. This suggests that the performance on larger-sized classes was
moderately greater than that of individual classes. Finally, observing the benign and
malignant accuracy, the classifier seemed to perform considerably better at
classifying benign lesion correctly (70.8% accuracy) than malignant lesions (53.6%).
This may be due to the fact that the types of malignant lesions look similar to each
other especially as some of the pre-cancers like IEC and AK are early stage types of
SCC and look similar. Meanwhile, some of the bengign lesion classes have no other
classes that look very similar to them such as VASC or PYO lesions.

5.2.0.2 Affine augmentation

The mean and standard deviation for Affine Augmentation scenario using the 20 data
permutations for 25 epochs of training are shown below:

Figure 5.4: - Mean and SD of the VGG-16 Average Accuracy with 5-fold cross validation using Affine Augmentation

As observed above the mean accuracy of the VGG-16 with the Affine Augmentation
is about 66.2%. With a standard deviation of 0.031 which we can see has a range of
11.5%. This is a 2.3% increase in accuracy over no augmentation which is not a large
margin, but still notable. The standard deviation and range is similar to that of the
non-augmented scenario.

Observing the aggregated confusion matrix for the 20 runs gives a better insight into
how the Affine Augmentation VGG-16 performs on the distinct classes.
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Figure 5.5: - Confusion Matrix for the Affine Augmentation Scenario

Class Precision Recall F1-score Support
AK 0.29 0.09 0.14 188

ALLBCC 0.62 0.71 0.66 956
ALLDF 0.59 0.69 0.63 269
ALLIEC 0.44 0.59 0.50 312

ALLMEL 0.62 0.57 0.59 304
ALLML 0.82 0.82 0.82 1327
ALLSCC 0.49 0.44 0.47 352
ALLSK 0.72 0.69 0.71 1037

ALLVASC 0.82 0.70 0.76 398
PYO 0.59 0.55 0.57 96

Accuracy 0.67 5239
Class avg 0.60 0.59 0.58 5239

Weighted avg 0.67 0.67 0.67 5239

Comparing the classification results of the Affine Augmentation scenario to that of
No Augmentation we can observe a slight increase in accuracy in almost all
F1-scores (as well as precision and recall) except for that of AKs. This essentially
means that for most classes, Affine Augmentation has helped to slightly improve the
accuracy of most classes. The classes most heavily impacted again were those of AK
and PYO. The AK accuracy experienced a large drop in both precision and recall,
whilst PYO experienced a large gain in recall of 16%. Nonetheless, these results may
not be notable as the small amount of images in both these classes may make them
more susceptible to more volatile accuracy changes.
Furthermore, there was a similar increase in both class-specific and weighted
precision and recall of about +3-4%. This indicates perhaps that the different rotation
and flips helped the VGG-16 better learn to identify the lesions under different
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conditions and orientations. Finally, in terms of benign and malignant accuracy, the
Affine Augmentation scenario showed a 9% increase in the benign accuracy (79.5%)
and a 2% increase in the malignant accuracy (55.5%). Indicating that most of the
accuracy gained by the Affine Augmentation seemed to be attributed to benign
lesions.

5.2.0.3 WGAN Augmentation

The mean and standard deviation for WGAN Augmentation scenario using the 20
data permutations for 25 epochs of training are shown below:

Figure 5.6: - Mean and SD of the VGG-16 Average Accuracy with 5-fold cross validation using WGAN Augmentation

As observed above the mean accuracy of the VGG-16 for the WGAN Augmentation
scenario is about 63.5%. With a standard deviation of 0.028 which we can see has a
range of 10%. This accuracy is essentially the same as the No Augmentation
scenario. This perhaps suggests that little information gain was provided by the
WGAN Augmentation.Observing the aggregated confusion matrix for the 20 runs
gives a better insight into how the WGAN Augmentation VGG-16 performs on the
distinct classes.
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Figure 5.7: - Confusion Matrix for the WGAN Augmentation Scenario

Class Precision Recall F1-score Support
AK 0.21 0.12 0.15 188

ALLBCC 0.58 0.66 0.62 956
ALLDF 0.62 0.56 0.59 269
ALLIEC 0.42 0.37 0.39 312

ALLMEL 0.50 0.51 0.51 304
ALLML 0.78 0.79 0.78 1327
ALLSCC 0.53 0.39 0.45 352
ALLSK 0.62 0.67 0.64 1037

ALLVASC 0.71 0.70 0.71 398
PYO 0.61 0.56 0.59 96

Accuracy 0.63 5239
Class avg 0.56 0.53 0.54 5239

Weighted avg 0.62 0.63 0.62 5239

Overall, comparing the classification results of the WGAN Augmentation scenario
with the No Augmentation scenario we see there is very small difference between
both. The precision and recall of some classes are slightly larger in the WGAN
Augmentation case, whilst others are slightly lower in the No Augmentation case.
Furthermore, this is reflected in the class and weighted averages for Precision, Recall
and F1-score which tend to differ by just 1% between both scenarios. This may
indicate that the WGAN Augmentation has had little impact on the classifier and
hence did not add much useful information to the VGG-16. Observing the benign and
malignant accuracy in the WGAN Augmentation scenario we see almost no
difference with that of No Augmentation with about a 1% difference in both benign
accuracy (69.6%) and malignant accuracy (52.1%).
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5.2.0.4 Both Affine and WGAN Augmentation.

The mean and standard deviation for the Both Affine and WGAN Augmentation
scenario using 20 data permutations for 25 epochs of training are shown below:

Figure 5.8: - Mean and SD of the VGG-16 Average Accuracy with 5-fold cross validation using Both Affine and WGAN
Augmentation

As observed above the mean accuracy of the VGG-16 with Both the Affine and
WGAN Augmentation was about 65.6%. With a standard deviation of 0.037 which
we can see has a range of 15%. This is comparable to that of the Affine
Augmentation alone and we see a 1.6% accuracy increase compared to No
Augmentation.

Observing the aggregated confusion matrix for the 20 runs gives a better insight into
how Both the Affine and WGAN Augmentation of the VGG-16 performs on the
distinct classes.

Figure 5.9: - Confusion Matrix for the Both Affine and WGAN Augmentation Scenario
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Class Precision Recall F1-score Support
AK 0.35 0.13 0.19 188

ALLBCC 0.63 0.72 0.67 956
ALLDF 0.62 0.60 0.61 269
ALLIEC 0.39 0.47 0.43 312

ALLMEL 0.56 0.55 0.55 304
ALLML 0.84 0.80 0.82 1327
ALLSCC 0.55 0.41 0.47 352
ALLSK 0.67 0.75 0.71 1037

ALLVASC 0.79 0.69 0.74 398
PYO 0.61 0.71 0.65 96

Accuracy 0.67 5239
Class avg 0.60 0.58 0.58 5239

Weighted avg 0.67 0.67 0.67 5239

Comparing the individual class Precision, Recall and F1-Score between the Both
Affine and WGAN Augmentation scenario and the Affine Augmentation scenario we
observe little differences between each. Some classes such as AK tends to perform
better in all three metrics with Both augmentations, whilst others perform slightly
less well in the former. However, overall it can be seen that the majority of the
metrics are quite similar. This is reflected in the class and weighted averages as the
class precision (60%) and weighted precision (67%) are the same in both scenarios.
Whilst the class Recall is just 1% less at 58% and the weighted Recall is the same
(67%). This helps support the theory that WGAN Augmentation truly had little
impact on the information added in the dataset. This is as even with the Affine
Augmenation applied to the WGAN-generated images, there was still not a very
noticeable change in results. Analysing the benigin and malignant accuracies we see
that the malignant lesion accuracy is very similar, but slightly higher at 55.8%, whilst
the benign accuracy is slightly lower at 74.5% accuracy.

As little differences had been detected in accuracy between the No Augmentation and
WGAN Augmentation scenario. Meanwhile, a slight yet noticeable difference had
been found between the No Augmentation and Affine Augmentation scenario. To
further investigate whether these results were statistically significant, paired T-test
were conducted between the main augmentation scenarios.

5.3 Statistical Analysis

Using a Paired T-test we can verify whether these results are truly statistically
significant with a p-value of 0.05. There are 4 important comparisons for conducting
the Paired T-tests:

1. The No Augmentation results versus the WGAN Augmentation results

2. The No Augmentation results versus the Affine Augmentation results

3. The Affine Augmentation results versus WGAN Augmentation results
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4. The Affine Augmentation results versus Both Affine and WGAN
Augmentation results

These 4 Paired T-tests are shown.

(a) No Augmentation results versus (blue)
WGAN Augmentation results (orange)

(b) No Augmentation results (blue) versus
Affine Augmentation results (orange)

(c) Affine Augmentation results (blue) versus
WGAN Augmentation results (orange)

(d) Affine Augmentation results (blue) ver-
sus Both Affine and WGAN Augmentation
results(orange)

Figure 5.10: Paired T-test results between the main scenarios

As shown above we see that at a p-value of 0.05, there is no statistical difference
between the No Augmentation results and the WGAN Augmentation results. The
WGAN Augmentation results show a slightly smaller Standard Deviation (0.028)
than the No Augmentation results (0.034), however they still show no statistical
difference at the given p-value.

In turn, the Affine Augmentation did show a statically significant improvement in
accuracy over No Augmentation, with an overall mean accuracy that was 2.3%
higher. Whilst this is not a very large margin, it is still notable. Hence, perhaps the
total achievable improvement using data augmentation is limited to the total
information already within the existing training data.

The Paired T-tests conducted between the WGAN Augmentation results and the
Affine Augmentation results also showed a statistical significance which is expected
as there was a statistical significance with the similar No Augmentation results. This
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may also be due to the relatively smaller amount of augmentation applied using the
WGAN Augmentation compared to the Affine Augmentation.

Lastly, no statistical significance was achieved between the Affine Augmentation
results and Both the Affine and WGAN Augmentation results suggesting that the
WGAN Augmentation did not greatly affect the performance.

As the WGAN Augmentation seemed to provide no statistically significant accuracy
gain from the VGG-16, it was further investigated whether it was due to the
WGAN-generated lesions simply being not realistic enough. For this a Visual Turing
Test with professional dermatologists was conducted to verify whether the synthetic
images were flawed.



Chapter 6

Qualitative Evaluation: Visual Turing
Test

The aim of this chapter is to explain the methodology and results obtained from the
Visual Turing Test (VTT) conducted with professional dermatologists. The VTT was
as form of qualitative evaluation for the realism of the GAN-generated images.

6.1 Methodology of VTT

To better understand the qualitative accuracy of the generated images we conducted a
Visual Turing Test (VTT) with professional dermatologists. A visual Turing Test is
essentially a test where a mix of synthetic and real images are given to a volunteer
which is asked to correctly label these as synthetic or real. If the volunteer is unable
to correctly classify these with reliable accuracy, then the Visual Turing Test can
conclude that the synthetic images are fairly indistinguishable from real ones.

The purpose of the VTT was to see if the WGAN was generating skin samples that
had realistic higher-level skin lesion features. The reason higher level features such as
shapes and colours were tested instead of fine-grained skin texture is because the
main focus of the WGAN was to generate correct higher level characteristics of a
lesion. Furthermore, GANs tend to struggle to generate skin texture as this is very
fine-grained and unique to each individual lesion.

The VTT involved giving dermatology professionals a survey with a random mix of
synthetic WGAN-generated images and real skin images. They were then asked to
classify these images as either real or synthetic to the best of their abilities. Both of
these sets had a light gaussian blur applied to them to ensure the WGAN was
producing the correct higher level feature rather than correct lower level details. An
example of a gaussian blur applied to both the synthetic and real skin lesions can be
seen below.

46
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(a) GAN-
generated AK
image

(b) Real AK skin
lesion

(c) Real AK skin
lesion

(d) GAN-
generated AK
image

Figure 6.1: Impact of light gaussian blur to create focus on higher level details

The reason for this was that GANs tend to find it difficult to simulate very intricate
textures such as that of the skin and instead would generate checkered-like skin
patterns. A light gaussian filter was hence applied to simply smoothen the skin
texture and reduce the effect of lower level patterns in preference for higher level
features.

For the survey, 49 skin lesion images were used from the 7 skin lesions classes that
were most underrepresented in the dataset and which were going to be used in
augmentation. 22 of these 49 images were WGAN-generated and 27 of these were
from the original training set. The split of images within the 7 classes were decided
not to be a 50%-50% split but instead were mixed randomly. This is because an even
image split would give the dermatologists additional unfair information on what ratio
to predict their answers. The following section describes the results observed when
conducting the survey. The VTT survey can be found in Appendix 8.1.

6.2 Results

The survey was answered by 3 professional dermatologists and the results shown
below were analysed anonymously. An image sample from each class of both real
and WGAN-generated lesions were added to the table for visual comparison.
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Skin lesion class
Real Image Sample

(Gaussian filter)
Synthetic Image Sam-
ple (Gaussian filter)

Dermatologist
Accuracy
(Average)

Pyogenic Gran-
ulomas (PYO)

62.50%

Squamous
Cell Carci-

noma (SCC)
50.00%

Melanoma
(MEL)

80.95%

Intra-epidermal
Squamous Cell

Carcinoma (IEC)
66.67%

Vascular
Lesion (VASC)

90.47%

Dermatofibra
(DF)

77.78%

Actinic Ker-
atosis (AK)

50.00%

Average
68.33%
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6.3 Analysis

The average accuracy of the dermatologists in distinguishing between real and fake
images for each class was 68.33% and the total accuracy across all images was
67.34% . Whilst this shows that for the most part, the dermatology professionals are
able to distinguish correctly, it also means that roughly 1 of out of every 3 images
were misclassified.

Furthermore, if we disregard real images and just focus on the accuracy on synthetic
images, the average accuracy by class was 63.89% and the total accuracy across all
synthetic images was 59.09%.This indicates that the WGAN-generated synthetic
images were realistic enough to fool the dermatologists roughly 41% of the time.
This lowered accuracy suggests that on this limited sample the WGAN generated
reasonably realistic skin lesion images. The results of the 3 dermatologists
classifying the 49 images are observed in the following cumulative confusion matrix:

Real Images Synthetic Images
Predicted

Real
60 24

Predicted
Synthetic

21 42

Furthermore, a large distinction to be made is that if a dermatologist deemed a
synthetic image was fake, it does not necessarily mean the image does not contain the
correct information of its intended skin lesion class. This is observed in the results
table in the previous section where the dermatology professionals were able to
classify vascular images with 90.47% accuracy, however as shown above, the
synthetic vascular images still contain relevant colour tones, shapes and patterns as
typical vascular lesions do.

A limitation to these results however was that a light gaussian filter was applied to
both real and synthetic images. This may have hindered how realistic both images
may have been portrayed. However, the purpose of the VTT was to test whether the
GAN was producing the correct higher level features rather than fine-grained details
like skin texture. Furthermore, Gaussian filtering is a type of data augmentation that
can still be done before inserting GAN-generated images into a training set and could
be applied regardless.

Overall, it appears that under a qualitative evaluation using a Virtual Turing Test, the
WGAN-generated images appear to have fairly realistic higher-level features
according to the results by dermatology professionals.
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Conclusion & Evaluation

The purpose of this chapter is to draw potential justifications for the conclusion
reached from the paired T-tests and results found in Chapter 5 as well as the
outcomes of the VTT from Chapter 6. This chapter also provides an evaluation of the
overall methodology used in this project to answer the research question.

7.1 Analysis & Conclusion

Whilst the results found in the Chapter 5 indicate that not a statistically significant
increase in accuracy (p=0.714) was witnessed using WGAN augmentation with a
p-value of 0.05, this is still a notable result. No major differences in precision, recall
or F1-score were witnessed for any individual skin lesion classes between the No
Augmentation scenario and the WGAN Augmentation scenario. Meanwhile, in
comparison the Affine Augmentation scenario found a small statistical significance
(p=0.006) in accuracy improvement (+2.3%) over the No Augmentation scenario.
This leads to the conclusion that the WGAN augmentation used did not provide a
significant performance gain for the VGG-16 classifier. Even under a p-value of 0.20
this conclusion can still be drawn. Three possible reasons can be attributed to justify
this conclusion.

Firstly, it is possible that the WGAN-generated synthetic images simply do not
provide a large information gain over the existing training data images. This
justification can be explained by the WGAN’s design purpose being to create
synthetic samples using features already present in the training data. This may also
be because the Convolutional Neural Network used in the discriminator of the
WGAN is quite similar to the VGG-16 in structure. Hence, if the only feedback the
generator receives is from the discriminator, then this may mean the
WGAN-generated images do not encode any information not already extracted by the
VGG-16. Section 7.2 will show how the existing skin lesion GAN-augmentation
literature also supports this conclusion.

Secondly, another possible justification is that the WGAN Augmentation used was
insufficient. Evidence for this is provided by the comparatively larger amounts of
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augmentation done using the affine augmentation which showed a more steady
increase in accuracy over various epochs. In comparison, the total augmented images
using the WGAN was doubling the size of the already small classes, whereas the
affine augmentation increased the number of total images by almost 10 fold. Perhaps
testing different amounts of WGAN augmentation could yield larger and more
significant performance increases. Furthermore, the VTT test provided evidence that
the WGAN generated fairly accurate lesion samples and hence perhaps some
information gain is still present in the images.

Thirdly, a last and less likely explanation for the conclusion is that the VGG-16
simply could not extract the correct information gain from the generated synthetic
WGAN images. The VTT test conducted indicated that the synthetic generated GAN
images appeared to create realistic lesions and perhaps this information was not able
to be processed by the VGG-16 feature extractor. This may be evidenced by the fact
that the overall accuracy of the VGG-16 was still fairly low at about 63% as a
baseline and hence was not extracting the maximum information gain from the
training images to begin with.

Overall, the first and second justifications seems the most likely out of the three
posed. This is also as Pollastri et al use a LAPGAN and DCGAN as a form of GAN
skin lesion augmentation also showing a very small increases (and sometimes
decreases) in accuracy for their Deep Neural Network (further discussed in the next
section) [49]. Furthermore, there is evidence that the amount of augmentation created
by the WGANs was perhaps insufficient compared to the potential of information
gain by the WGAN. This is as the chosen images for WGAN augmentation were
chosen according to a threshold of iterations that appeared stable rather than being
cherry-picked for which were most realistic. Hence the methods for selecting WGAN
augmentation images overall could perhaps be improved in future with more
intelligent selection methods.

7.2 Comparison to Literature

As observed in Chapter 2, there is limited literature covering the topic of accuracy
gain using WGAN Augmentation in skin lesion training sets. The only studies found
with results on the impact of GAN-augmented training on skin lesion classification
accuracy is by Pollastri et al in 2019. They compared the accuracy changes of Deep
Convolutional Neural Networks with different types of either DCGAN or LAPGAN
augmentation on the ISIC 2017 skin lesion dataset. Their results indicated that the
LAPGAN augmentation achieved an average increase in accuracy of +0.783% for the
DCGAN augmentation, +0.817% for the LAPGAN augmentation and +0.367% for a
combination of both GAN augmentations [49].

These results are fairly similar to the ones observed in our project using the WGAN
Augmentation on the DERMOFIT dataset (explored in Chapter 5). This is as the
WGAN Augmentation created a similar accuracy to that of no augmentation which is
similar to Pollastri et al’s accuracy increases of less than 1% [49].

Furthermore, Pollastri et al did not conduct cross fold validation, hence it is difficult
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to determine if these small increases are truly statistically significant. Moreover, they
did not compare this to regular affine augmentation hence its comparative efficacy as
a data augmentation technique is unclear. However, our project found that both affine
and GAN augmentation had similar performance to affine augmenation. This
reinforced the notion that GAN augmentation has little effect on the information
gained in a dataset or accuracy increase in a classifier using that dataset.

7.3 Method Strengths

One of the most notable strengths of the methodology used in this project was that
reproducible and reliable processes were favoured over higher possible reported
accuracy. This is shown in the chosen training-validation-test split being
60%,20%,20% which could have been one of the reasons the reported accuracy
overall was lower than Bertrand’s paper. Furthermore, Bertrand describes in his Deep
Neural Network classifier that the sole use of a testing and validation set can lead to a
bias in the reported accuracy due to the fine tuning of hyper-parameters. Hence, the
use of a validation set was in line with recommendations from past research in
attempts to reduce biases in reported results.

Furthermore, in comparison to Pollastri’s paper using PAGAN and DCGAN
augmentation, this project explored the use of a WGAN augmentation which due to
the Wasserstein distance metric has been preferable for its ability to avoid mode
collapse [49] [55]. Furthermore, the use of 5-cross-fold validation compared to single
runs in Pollastri’s paper ensured that the results were perhaps more replicable and we
were able to gauge the variability of the accuracy across folds. Lastly, using a paired
T-test meant that we were also able to verify whether the gains in accuracy witnessed
were statistically significant.

Aside from quantitative evaluation, a qualitative evaluation of the realism of the
WGAN-generated images was also assessed. This was conducted through a Visual
Turing Test (VTT) where 3 professional dermatologists were challenged to verify
whether slightly blurred skin lesion images were real or synthetic. This allowed us to
gauge the realism of higher level features of the lesion sample the GAN produced for
the range of the different lesion classes.

7.4 Method Weaknesses

An important weakness to be identified in this project is the limitation of the test
framework being used. This is as only one type of Deep Neural Network was tested,
namely a VGG-16. However, many different Deep Neural Networks exists whose
different structures and layers allow them to learn in distinct forms [49]. Hence,
perhaps the results reported may not extend to other types of Deep Neural Networks.
Therefore, improvements that could have been made in the methodology are firstly,
like in Pollastri et al’s research, testing out the effect of the GAN augmentation on a
variety of different Deep Neural Network classifiers [49].
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Moreover, transfer learning was used for the classifier as in Bertrand’s deep network
paper to allow the Deep Neural Network to learn transferable feature extraction
capabilities before specialising on skin lesion classification [25]. The VGG-16 was
pre-trained on Imagenet which is one of the most expansive visual datasets there is
with many classes. However, the transferability of the feature extraction process of
Imagenet to skin lesion classification is not clear. Hence, different datasets could be
attempted for use in transfer learning process which are perhaps more closely related
to the task of skin lesion classification.

Lastly, DERMOFIT is one of the highest standard skin lesion datasets, however
because of its high quality it is also on the lower end of total images compared to for
example the HAM10000 dataset with 10,000 skin lesion images [5]. Therefore, there
is a trade-off witnessed here as data augmentation tends to have higher impact with
less data, but also the realism and range of GAN images improves with more data
[41]. Therefore, it would be interesting to further explore the effects of this trade-off
by experimenting with GAN augmentation on different sized skin lesion datasets.

7.5 Potential Applications

Although, the results indicated that the GAN augmentation did not provide a
statistically significant improvements in VGG-16 accuracy, the Visual Turing Test
suggests potential future applications of the realistic synthetic images. Whilst in
informal discussion with a medical professor on the outcomes of this project, there
seemed a genuine interest for the potential of the WGAN-generated images being
used in printed and educational material.

The reason for this being that medical images used for educational purposes typically
require large legal consent paperwork to be signed by the original patient that the
image belongs to [14]. However, it is often very difficult to track down the original
patients if the image is taken from a dataset or secondary source as is typical [20].
Furthermore, as discussed in Chapter 1, attempting to gather one’s own skin lesion
images is an exhaustive task. Hence perhaps the use of GAN-generated images could
allows a way to easily use realistic-looking skin lesion images for education purposes
with a reduced worry for privacy concerns. Nonetheless, the legal implications
behind using GAN-generated images commercially when they were inspired by real
images from a dataset is a topic with little exploration as of yet due the recency of
this technology.

7.6 Further Study

A potential avenue for further study is firstly to create an improved process for
creating masks for WGAN-augmented images as in Bissoto et al’s skin lesion GAN
[48]. This would be an interesting exploration as Bertrand’s Deep Neural Network
paper showed that masking of skin lesion images can help improve the accuracy of
the classifier [25].
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Moreover, as it is a difficult process to verify when a GAN is finished training, the
synthetic skin lesions used for augmentation were chosen randomly from the
generator output from 3500 to 7500 iterations. This was the period when the WGAN
was found to be most visually stable. However, in theory images found within this set
may be similar to each other due to mode collapse or simply unrealistic. An
automated method to select the best images from the GAN generator output, for
example by avoiding images with extreme colors (such as yellow or pink) and trying
to only select images with visually different SIFT markers could be an interesting for
further exploration.

Lastly, it is necessary to address the problem of the VGG-16 test framework being
separate from the augmentation network of the GAN. This was a limitation because
the loss function of the GAN was not directly influenced by the accuracy of the
classifier, which was the main goal of this project. It may be interesting in further
exploration to try to combine both the WGAN and test framework loss functions
together into a single system. This way the WGAN would be directly designed to
produce the images that create the most accuracy gain for the discriminator, and not
just the ones that best fool the WGAN critic.
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