
Supervised feature-based link
prediction for shared-content

social networks

Pablo Lluch Romero

4th Year Project Report
Artificial Intelligence and Software Engineering

School of Informatics
University of Edinburgh

2020

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

1

Abstract
The problem of temporal link prediction has received increasing attention in the last
years due to the growing amount of data from social networks. Different approaches
have been proposed to address this problem, including supervised, unsupervised, topology-
based, non-topology based, etc. In this project, the problem of link prediction is ex-
amined for a new class of networks where the non-topological information consists of
shared content amongst users. The streaming social network Twitch is chosen as an
example for this class of networks to evaluate the algorithms introduced. The link pre-
diction problem is addressed in a feature-based supervised learning approach and a set
of topological and non-topological features are examined. The most useful features are
found to be Rooted PageRank, Common Neighbours, Betweenness Centrality, shared
number of games, common country, and pairwise features regarding the streaming na-
ture of users. Several binary classifiers on these features are explored. Support Vector
Machines with Radial Basis Function and Logistic Regression are shown to be the best
alternative with an area under the ROC curve of 0.968±0.003. Exclusively using non-
topological features resulted in a better performance than exclusively using topological
features. Overall, linear and non-linear classifiers resulted in similar performances.

2

April 24, 2020

Acknowledgements

I would like to thank my supervisor Dr. Rik Sarkar for his attentive guidance and help
throughout the project, without whom I wouldn’t have been able to develop my interest
in social and technological networks. I would also like to thank Benedek Rozember-
czki, Rik Sarkar’s PhD student, for helping me with idea brainstorming throughout the
project and providing me with part of the Twitch dataset used and the code to query it.
Finally, I would like to thank my friends, flatmates and family that encouraged me and
gave me the strength needed to carry out this project.

Table of Contents

1 Introduction 5
1.1 Contributions . 8
1.2 Report structure . 8

2 Background 10
2.1 Twitch . 10
2.2 Link prediction . 11

2.2.1 Supervised feature-based learning for temporal link prediction 11
2.2.2 Support Vector Machines . 12
2.2.3 Logistic Regression . 13
2.2.4 Single Layer Perceptron . 14
2.2.5 Beyond similarity . 14

2.3 Topological features . 14
2.3.1 Neighbourhood based metrics 15
2.3.2 Distance based metrics . 15
2.3.3 Social theory based metrics 16

2.4 Non-topological features . 16
2.4.1 Feature embeddings . 17

3 Dataset, problem formulation and experimental setup 21
3.1 Nature of topological information 22
3.2 Nature of non-topological information 23
3.3 Problem statement . 24
3.4 Evaluation . 25

3.4.1 Addressing class imbalance 26
3.4.2 Addressing large graphs . 27

4 Exploiting topological information 28
4.1 Neighbourhood based metrics . 28
4.2 Distance based metrics . 30
4.3 Social theory based metrics . 31
4.4 Summary and conclusions . 32

5 Exploiting non-topological information 35
5.1 Demographic features . 35
5.2 Streaming information . 36

3

TABLE OF CONTENTS 4

5.2.1 Shared video games . 37
5.2.2 Feature Embeddings . 37

5.3 Evaluation and interpretation . 43
5.3.1 Visual inspection of non-topological features 43
5.3.2 Exploiting individual NMF-embedded features 44

6 Combining features: the link predictor 53
6.1 Feature evaluation . 53

6.1.1 NMF Pairwise and game genres 55
6.2 Evaluation of binary classifiers . 57

7 Conclusion 59

Bibliography 61

Chapter 1

Introduction

Social networks have exploded in popularity over the past decade. Virtually everyone
partakes in them. People share information, form connections and express their opin-
ions. This vast amount of information has unsurprisingly drawn considerable attention
from the research community. This is also the case because social networks contain
massive amounts of semi-structured data and are detailed representations of human
relationships and society.

However, social networks are often incomplete, noisy and ever-evolving. Being able to
complete them, understand their dynamics and their evolution patterns is often crucial
from a scientific and a business standpoint. A well-studied problem, because of its
many applications, is the problem of temporal link prediction. That is, given a network
of users and their interactions over a period of time, is it possible to predict future
interactions between them? Applications of temporal link prediction include friend
suggestions, media content suggestion [57], e-commerce [50], collaborator suggestion
in scientific publications [33], prediction of new contacts in phone networks [33], and
so on.

A wide variety of methods have been proposed to address the temporal link predic-
tion problem. Notable examples include matrix-factorization approaches [38], Markov
chains [49], probabilistic models [52] and more [33]. One method that has received
increasing attention in the past years is the use of supervised learning on a set of care-
fully crafted features [43]. These features can be both topological and non-topological
and include examples like metrics of neighbourhood overlap [7], shortest distance and
its variations [33], degree correlations, clustering–related behaviours, and node con-
tent similarity. This has not only shown great performance, but has been able to draw
insight into what features are the most essential to predict a link formation, and in con-
sequence, what features and factors most closely speak about the similarity between
users and the nature of social relationships.

Nodes (or users) in social networks have a lot of content information. This content
information is very different from network to network. It ranges from images, text,
articles, to interactions with products or media items. As the impact and the nature
of exploitable features differs from network to network, the optimal behaviour of link

5

Chapter 1. Introduction 6

prediction methods usually relies on the knowledge of the network and domain, and
the correct exploitation of the available data.

Figure 1.1: Twitch network where vertices represent users, and edges follows between
them. The colour of the edges represents the time when they were formed. Darker
colours correspond to older dates and lighter colours to recent ones. There are differen-
tiated clusters with similar edge formation dates. The original network was subsampled
for ease of visualization.

The content produced by users in social networks is usually unique, in the sense that
it doesn’t fully fit within a common shared category or type. For example videos in
YouTube or pictures in Flickr. However, this doesn’t always have to be the case. In
social networks like Twitch or Facebook Gaming, users produce content that fully fits
within a specific category. Most importantly, these categories are fixed and shared
amongst all the users. An example of a type of category is video games. In streaming
platforms like Twitch and Facebook Gaming, users are allowed to live-stream about
a set of video games that is shared amongst the community. Link prediction in the
context of this class of social networks has not been explored before.

This class of social networks poses interesting questions about how the shared content
can be modelled and exploited optimally. Being able to classify content in categories

Chapter 1. Introduction 7

that are shared between users has the potential to build robust similarity metrics be-
tween them. Consequently, the aim of this work is to assess how this non-topological
shared information and the available topological data can be exploited optimally for
this class of networks. In order to do so, the social network Twitch was chosen to carry
out the necessary experiments.

Figure 1.2: Screenshot of Twitch main page [5]. Popular live channels and categories
are displayed in the Discover pannel.

Twitch is a streaming platform where users upload and broadcast videos of them play-
ing video games (Screenshot of main page in figure 1.2). Little work has been carried
out on Twitch due to its very recent addition to the social streaming scenario. Twitch
went from 102K viewers in 2012 to 1.72M in 2020 [6]. Twitch currently dominates
the live streaming market with 2,720 million live hours watched, followed by YouTube
with 735 million [4]. Figure 1.1 shows a subsampled visualization of the Twitch follow
graph.

Another distinctive feature of this family of networks is that users don’t form links
solely on the basis of similarity, unlike most of the networks where link prediction
algorithms have been tested. Factors like node centrality, streaming frequency or genre
popularity play a role in the user’s decision to follow someone else [25]. Although this
is also true in networks like Twitter or YouTube, the degree to which these features
influence the link prediction in conjunction with the novel non-topological features
was studied for shared-content networks.

In short, the impact of similarity and non-similarity based topological and non-topological
features is explored to produce a supervised link prediction algorithm. This link pre-
diction is assessed for the class of networks where the category of content is shared
amongst users.

Chapter 1. Introduction 8

1.1 Contributions

The work carried out makes the following contributions:

• Explore the impact of non-topological features for link prediction in shared-
content networks. The shared number of games, common country and pairwise
features regarding the streaming nature of users resulted in the most useful fea-
tures according to their coefficient weights in binary classifiers (weights of at
least 0.7 in all classifiers).

• Explore the impact of topological features for link prediction in shared-content
networks. Rooted PageRank, Common Neighbours and Betweenness Centrality
were the most useful features according to their coefficient weights in binary
classifiers (weights of at least 0.8 in all classifiers).

• Explore a range of different latent embedding methods and distance functions
to exploit the non-topological information of shared-content networks for the
problem of temporal link prediction. Non-Negative Matrix factorization paired
with cosine similarity was found to be the most effective approach to exploit the
shared-content information with an area under the ROC curve of 0.701±0.004.
Non-Negative Matrix factorization was seen to generate sparse embeddings that
correspond to interpretable video game genres.

• Explore the performance of binary classifiers for link prediction in shared-content
networks. The classifiers explored are Linear SVMs, RBF SVMs, Perceptron
and Logistic Regression. Logistic Regression and RBF SVM resulted in the best
performance with an area under the ROC curve of 0.968±0.003. Linear SVMs
resulted in the best performance when only topological features were used. Ex-
clusively using non-topological features resulted in a better performance than
exclusively using topological features

1.2 Report structure

Here the structure of the report is detailed.

• Chapter 2 introduces the relevant theoretical and contextual background: pre-
vious work on Twitch, supervised link prediction, collaborative filtering, and
embedding algorithms are introduced.

• Chapter 3 discusses the nature, obtaining and processing of the Twitch dataset.
It also establishes the problem formulation and the experimental setup.

• Chapter 4 discusses the choice of a set of commonly used and novel topological
features and visually evaluates their impact.

• Chapter 5 discusses the choice of non-topological features and visually evaluates
their impact. It also experiments with the use of multiple embedding methods
and distance measures to exploit the non-topological features for link prediction.

• Chapter 6 combines non-topological and topological features to create a link

Chapter 1. Introduction 9

predictor. Different binary classifiers are tested and the impact of different fea-
tures is assessed. Insight is thrown into how streaming behaviour and network
topology affects the formation of links.

Chapter 2

Background

This chapter consists of a comprehensive introduction to Twitch, the problem of super-
vised feature-based learning for link prediction and the necessary theoretical informa-
tion to support the work carried out.

2.1 Twitch

The ability to stream live content has become an increasingly popular feature in social
networks like Instagram, Facebook and YouTube. Companies have released dedicated
live-streaming sub-platforms like YouTube Live, Facebook Gaming and Microsoft’s
Mixer. However, there is one platform that has been dominating the live streaming
scenario for a few years now: Twitch. Very recently, the gaming community saw a
shift of users wanting to not only play video games but see others play them. This shift
was partially motivated by the new notion of e-Sports (competitive video games) and
official tournaments.

Twitch is a streaming platform where users upload and broadcast videos of them play-
ing video games. Although most of the users stream game-related content, there is
a small community of users that stream other content like video blogs, tutorials or
cooking classes. The work carried out focuses on the games.

Each user has a corresponding channel that goes live whenever the player is broadcast-
ing. However, not every user is a streamer. Twitch has over 15 million daily active
users and between 2.2 and 3.2 million monthly broadcasters [1].

The only research that has been done on Twitch is statistical analysis. Deng et al.
2015 [16] study the viewing distribution across games to uncover tendencies, viewing
patterns and game ecosystems. Hamilton et al. [25] explore viewer participation on
streams and describe how stream communities form and what motivates members to
join these communities.

There are also a few examples where Twitch’s data has been used to evaluate graph-
based algorithms. Rozemberczki et al. [47] use a small portion of Twitch’s available
data to evaluate a network embedding algorithm. However, no work has focused on

10

Chapter 2. Background 11

Twitch to design predictive algorithms.

2.2 Link prediction

The evolution of social networks is a complex process guided by many interactions,
dynamics and hidden parameters. Understanding these dynamics can be a hard prob-
lem. A simpler task is to limit the study to the interaction between pairs of nodes.

Link prediction can be considered in a static or dynamic setting. In a static setting,
the problem of link prediction consists of identifying missing links between users that
might have an interest to connect. Online social networks have inherently missing
information. They are only partial representations of real-world human interactions
that contain an incomplete subset of people’s identities and actions.

In a dynamic setting, link prediction tries to predict the evolution of a social network by
predicting the edges that will appear or disappear in a given time frame. This specific
problem is called temporal link prediction. For the rest of the report, whenever the
term link prediction is used it will always refer to the temporal version of it.

The problem of link prediction relies on obtaining a score between pairs of nodes that
determines the likelihood of an edge forming between them in the future. Two main
approaches have been proposed to this problem: similarity-based and learning-based.

In the similarity-based approach, the notion of proximity is used to calculate a similar-
ity score between pairs of nodes [53]. However, finding the right features to describe
this proximity is not trivial and the right selection and weighting is usually network-
specific. For that reason, a learning-based approach has been common in the recent
literature. In the learning-based approach, the link prediction problem is framed as a
binary classification task [8]. Pairs of vertices are used as instances described by a set
of features. The labels represent whether a link exists between them or not.

2.2.1 Supervised feature-based learning for temporal link predic-
tion

The question of link prediction is very closely related to node similarity. The social
principle of homophily has been shown to be present in many social networks [37],
so it’s a well-known assumption that the more similar two users are the more likely it
is for an edge to exist between them. One could extend this argument and claim that
the neighborhood of a node is an alternative way to describe a user. This led to the
development of link prediction algorithms where both node-specific and neighborhood
related features are considered.

Clearly, content, topological and social features are very different in shape and form.
It would be hard to manually quantify how relevant each of the individual features are
to predict the presence of a link. This motivated the decision of using learning-based
methods to combine them all. In using learning-based methods, specifically feature-
based classification, machine learning models are able to capture interrelationships
between different features, and their impact on the link formation.

Chapter 2. Background 12

Consider a,b ∈ V to be nodes of the Graph G(V,E). Consider la,b to be a value that
encodes whether the edge (a,b) is in E or not in the following way:

la,b =

{
+1 if (a,b) ∈ E
−1 otherwise

(2.1)

The problem of link prediction could be framed as a binary classification problem
where the attributes are a set of cautiously constructed features. The binary classifier
aims to learn a similarity metric between nodes, and use it to estimate the likelihood
of a link forming in the future.

Unlike other methods of link prediction, supervised feature-based learning has bene-
fited from the explicit and well-defined nature of features. Liben-Nowell et al. [33]
explore the impact of different topological features for link prediction in citation net-
works. Al Hasan et al. [8] show that non-topological features help the link prediction
problem using supervised learning considerably. They use decision trees, k-nns, mul-
tilayer perceptrons and SVMs as binary classifiers.

Lichtenwalter et al. [34] provide a general framework for supervised link prediction in
sparse networks. They consider issues such as network observational period, generality
of existing methods, degrees of imbalance and sampling approaches and address them
in a collective manner. They evaluate their methods on a cellular phone network and a
network of physics collaborators.

Different choices of binary classifiers have been explored. From linear to non-linear,
examples of classifiers explored in feature-based link prediction are Decision Trees,
RBF Networks, Naive Bayes, Perceptrons, and Support Vector Machines [15] [20]
[8] . In this work, three linear classifiers and a non-linear one are explored: Support
Vector Machines, Logistic Regression, Single Layer Perceptron, and Support Vector
Machines with Radial Basis functions, respectively. The following sections give a
high level explanation of these classifiers.

2.2.2 Support Vector Machines

Support Vector Machines (SVM) are used in this work as they have shown to be suc-
cessful in many feature-based link prediction applications [15] [20]. Al Hasan et al.
2006 [8] show SVM + Radial Basis Function kernel to be the best performing binary
classifier for a set of topological and non-topological features amongst other classifiers
like Decision Trees, Naive Bayes or Multilayer Perceptron.

SVMs, originally introduced as Support vector Systems [14] are a learning algorithm
intended for binary classification. SVMs work by producing a decision boundary –in
the form of a hyperplane– that separates the original data in the desired classes so that
the distance between any point and the decision boundary is maximized.

The decision boundary is obtained by solving the optimization problem [22]:

min
w
||w||2s.t.yi(wT xi +w0)≥+1 for all i (2.2)

Chapter 2. Background 13

Where w represents the coefficients of the hyperplane, x is a vector encoding the di-
mensions of each datapoint and y a binary encoding of the class of each datapoint.
Regularization has been commonly used for SVM to avoid overfitting. By introducing
a regularization term C that penalizes high values of w, equation 2.2 can be rewritten
as:

min
w
||w||2 +C∑

i
max(0,1− yi(wT xi +w0)) (2.3)

Where small values of C result in stronger regularization.

SVMs were originally intended for linearly classifiable data. Linear SVMs offer the
ability to quantify the impact that individual features have on the classification. How-
ever, SVMs have been successfully extended to classify non-linearly separable data
through the use of kernel functions. Kernel functions work by transforming the orig-
inal data into a new dimensional space where the previously non-linearly-separable
data becomes linearly separable [14]. A common kernel is the Radial–Basis function
(RBF) where datapoints are transformed by calculating their distance to a fixed point.

Solving equation 2.3 relies on a linear algorithm that depends only on xT x′. Conse-
quently, there’s no need to transform every instance x but rather every pair xT x′. This
is called the kernel trick and allows kernels to be defined for pairs of data that results in
computational speed-ups [22]. Using the kernel trick, the RBF kernel can be defined
as:

k(x,x’) = exp(−γ||x−x′||2) (2.4)

Where γ > 0 controls the influence of individual training datapoints in the calculation
of the weights [44].

2.2.3 Logistic Regression

Logistic Regression (LR) is a model for linear classification where the probability of
each sample belonging to either class is modelled using a logistic function [27]. LR
has been used for supervised link prediction where path-based features from multiple
source networks were exploited [36]. LR has also been used for link prediction in
heterogeneous networks to exploit social patterns[17].

LR separates the data by fitting a hyperplane given by parameters w so that the prob-
ability of the data belonging to the right class is maximized, i.e. for data X and labels
Y , maximize P(Y |X = x). This is equivalent to maximizing the log likelihood of the
data (D) given the parameters w:

log(p(D|w)) =
n

∑
i=1

log(σ(wT xi)+(1− yi)log(1−σ(wT xi)) (2.5)

Where σ is the sigmoid or logistic function σ(z) = 1
1+e−z , x is a vector that encodes the

dimensions for each datapoint and y a binary encoding of the label of each datapoint.

Chapter 2. Background 14

2.2.4 Single Layer Perceptron

A single Layer Perceptron is a model for linear classification where the class of a
datapoint (y) is given by [22]:

y =

{
1 if wT x+w0 ≥ 0
−1 otherwise

(2.6)

Where w is the learnt weight vector and x a vector that encodes the dimensions of each
datapoint. The single layer perceptron is the building block of artificial neural net-
works by being arranged in multiple layers that increase the complexity of the model.
However, the simplicity of the Single Layer Perceptron allows interpretability of the
importance of each original feature.

2.2.5 Beyond similarity

The directedness of links is something that has been rarely considered for link predic-
tion, especially in the supervised feature-based learning approach. Undirected research
publication networks like arXiv’s astro-ph for astrophysics, BIOBASE [2] for biology
and DBLP [3] for Computer Science have been the default datasets to evaluate link
prediction algorithms.

The symmetry in undirected networks allows the edge prediction to be made solely on
the basis of node similarity. However, for directed networks, asymmetrical attributes
that capture the directionality of the edge need to be introduced. Valverde et al. 2013
[51] explore the problem of supervised link prediction for a directed network, Twitter.
They exploit community behaviours to improve the prediction. They however don’t
address the problem of link prediction in a feature-based setting so they don’t investi-
gate the choice and impact of features.

Cukierski et al. 2011 [15] evaluate 94 topological features for the problem of super-
vised feature-based link prediction using Random Forests as a classifier. They explore
the effect of these features on the directed social network Flickr as part of The 2011
IJCNN Social Network challenge and explore the performance when each feature is
used exclusively to predict a link. Fire et al. 2011 [20] also explore the use of topolog-
ical features for directed and undirected social networks like Facebook and YouTube.

The work carried out in this project explores the use of topological and non-topological
features, so the next sections will introduce the necessary background for the proper
exploitation of topological and non-topological information.

2.3 Topological features

Most of the metrics discussed below are explained for the undirected setting as that’s
how they were originally described. Besides, they can be easily extended to the di-
rected setting through consideration of what directionality means in the pertinent net-
work. That will be discussed in section 4.

Chapter 2. Background 15

2.3.1 Neighbourhood based metrics

Let Γ(x) be the set of neighbours of x in an undirected setting. For the directed setting,
let Γout(x) be the set of out-neighbours and Γin(x) the set of in-neighbours.

In the traditional setting of link prediction where links happen solely on the base of
similarity, numerous metrics have been proposed that use neighbourhood overlap as a
metric of similarity. This has been shown to be true in multiple settings, most notori-
ously in citation networks [33] [7].

Common Neighbours (CN): The most straight forward approach is the number of
common neighbours, shown to be an effective predictor of collaboration in citation
networks [41]:

CN(x,y) = |Γ(x)∩Γ(y)| (2.7)

Jaccard’s Coefficient (JC): Salton & McGill, 1983 [48] introduced the Jaccard co-
efficient as a normalization of the common neighbours based on the total number of
neighbours of x and y:

JC(x,y) =
|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

(2.8)

Adamic-Adar Coefficient (AA): Adamic et al. 2003 [7] refined the previous features
by giving a higher weight to rarer neighbours:

AA(x,y) = ∑
z∈Γ(x)∩Γ(y)

1
log|Γ(z)|

(2.9)

2.3.2 Distance based metrics

A very intuitive way to capture similarity between two vertices is the notion of dis-
tance in the network. Many approaches have been proposed to capture this notion of
distance, with different levels of complexity.

Shortest path (SP): The most straight-forward definition of distance is the length
of the shortest path between two vertices. Even though effective for its simplicity,
shortest path is a naı̈ve metric. This is the case due to the small-world problem [41]
of social networks, where every pair of nodes is connected through a short chain of
edges. Even though this concept is essential for the ability of content to quickly spread
across networks, it makes vertices that would be considered to be far away seem like
they’re closely connected. Another problem of the shortest path metric is that it’s not
robust to a small set of edges bridging distanced components. Multiple methods have
been proposed to address these two concerns. One that’s been widely used is Rooted
PageRank.

Rooted PageRank is an alteration of PageRank [12], which is the backbone of rank-
ing algorithms in many Information Retrieval applications. From a source vertex x,
the PageRank of another vertex y is the probability of a random walk to reach it. In
order to punish distant nodes, PageRank introduces a fixed probability α of resetting
the random walk at each step. The final score of each vertex y can be thought as a
distribution of an initial weight that started in x.

Chapter 2. Background 16

2.3.3 Social theory based metrics

Social networks are a reflection of society. Consequently, behaviours that motivate
the formation of relationships in human groups also translate to social networks. This
involves principles like homophily, weak and strong ties, triadic closure, centrality and
community clustering. Centrality and clustering will be discussed in more detail below.

2.3.3.1 Centrality

Li et al. 2011 [32] show the centrality of nodes to be a determining factor in link
prediction, i.e. users not only choose who to follow on the basis of similarity but are
more likely to follow central nodes.

Centrality is a measure of the importance of vertices in a network. The definition of
importance is variant and domain-specific. The methods proposed to calculate central-
ity are accordingly varied too. A common way to define importance is based on the
amount of flow a node carries [10]. A naı̈ve way to capture this notion of flow is the
in and out degree of the node. More advanced techniques have been proposed, namely
betweenness centrality and PageRank.

The Betweenness Centrality of a vertex is proportional to the number of shortest paths
that go through that vertex. Betweenness centrality could be also thought as a measure
of the control over the information flow that a node has over a network [42]. Liu et
al. 2013 [35] show betweenness centrality, amongst other features, to be a determining
feature in the formation of links.

PageRank is a generalization of Rooted PageRank, as explained in section 2.3.2,
where every node is a source node, i.e. the initial weight distribution is uniform across
all nodes. PageRank is especially useful in directed graphs, where a forward edge is
interpreted as a way to delegate importance in another node.

2.3.3.2 Clustering

Clustering Coefficient (CC): How clustered a node is has shown to be a descriptive
feature for vertices in social networks and the task of link prediction[33]. Vertices in
denser communities are more likely to form new links.

Newman et al. 2001 [41] proposed a local clustering coefficient CC(x) for a vertex x
defined as:

CC(x) =
|{e jk}|

|Γout(x)|(|Γout(x)−|1)
: v j,vk ∈ Γout(x),e jk ∈ E (2.10)

Where E is the set of edges of the graph involved.

2.4 Non-topological features

Nodes in social networks represent users, and these users are not blank vertices but are
usually filled with content and information. However, the nature of this content varies

Chapter 2. Background 17

greatly. Especially in online social networks where users can post and create a wide
variety of content. Examples of different types of content are text documents, images,
videos, demographic information, etc.

The nature of this content is usually very high dimensional. E.g. text or images, where
the number of dimensions is the size of the vocabulary or the number of pixels, respec-
tively. This high dimensionality results in problems like the curse of dimensionality
[21]. It becomes impossible to compare individual dimensions. As the number of
dimensions increase, the amount of data stays the same, so the data becomes rapidly
sparse. A method called feature embeddings has been widely used in the literature to
address this problem.

2.4.1 Feature embeddings

An embedding is a representation of an object –classically represented by a vector–
in a lower-dimensional latent space. The goal of an embedding is to capture semantic
meaning about objects so that similar objects end up close in the latent space.

Embeddings have seen a recent increase in attention due to the boost in data digi-
talization and the surge of big data. These bigger datasets have powered the use of
Collaborative Filtering through embedding methods for recommender systems. For
applications where users interact with a collection of items, Collaborative Filtering
captures underlying user preferences by understanding the user-item interactions.

Given a matrix X(n x m) where n is the number of items in the dataset and m the
dimensionality of those items, the goal of an embedding is to produced a new ma-
trix X ′(n x m’) where m′ < m. A quality embedding serves both as a dimensionality
reduction and as a feature extraction, i.e.:

• It helps reduce noise

• It reduces the size of the data for easier processing

• It uncovers user-centric latent features

• It uncovers relationships between features

In par with the varied nature of the possible content, a variety of methods have been
proposed to generate embeddings. The following sections provide a theoretical expla-
nation of the embedding methods that were used in this work.

2.4.1.1 Truncated SVD and PCA

The Singular Value Decomposition (SVD) of a matrix A is a matrix decomposition of
the form:

A =U ·D ·V T

where U and V are orthogonal matrices and D is a diagonal matrix [23].

Truncated SVD is a natural extension of SVD where only the k largest singular values
are calculated.

A≈ Ak =Uk ·Dk ·V T
k

Chapter 2. Background 18

Truncated SVD is a very common techniques for producing low dimensional embed-
dings of high dimensional data. The newly generated features consist of a linear trans-
formation of the original components. These features are such that maximize the vari-
ance of the transformed data.

A very similar technique to truncated SVD is Principal Component Analysis (PCA)
[54]. The difference between PCA and SVD is that for PCA, the input data A is first
centered and often reescaled so that each original dimension has variance and mean
1. This is very helpful because the dimensions of real data don’t usually have the
same range. PCA is commonly used to create interpretable representations of high-
dimensional data.

On the flip side, when A is a sparse matrix, standardizing it results in a lot of unneces-
sary memory, as most of the entries in X are zeros. Conversely, SVD is very suitable
for large sparse matrices. Not centering the data prior to the factorization allows the
use of sparse matrices, where only the non-zero entries are used.

2.4.1.2 Non-negative Matrix factorization

Non-negative matrix factorization (NMF) is another type of matrix factorization where
the original matrix and its decomposition is restricted to only take positive values. This
kind of factorization takes the form:

X ≈ H ·W

Where the dimensions of X ,H,W are (n x m),(n x k) and (k x m) respectively. k is the
number of components (new dimensions that the original data is reduced to).

This factorization is obtained through a numerical approximation where a distance
between X and the factorized product HW is minimized. A common way to calculate
this distance is using the Frobenium Norm, which is an extension of the Euclidean
distance to matrices:

dFro(X ,Y) =
1
2
||X−Y ||2Fro =

1
2 ∑

i, j
(Xi j−Yi j)

2 (2.11)

However, different distance metrics have been proposed such as the Kullback-Leibler
or the Itakura-Saito [19].

The non-negativity constraint allows a more natural factorization of matrices X of real
data. Applications of NMF for natural positive data like images, text or ratings have
recently been very successful. A well-known case is the success of NMF for recom-
mender systems in the Netflix Price Competition [28]. An intuitive explanation of this
success is that by restricting a factorization to only use additions, you are creating a set
of components that collectively form a whole. The addition of sparseness constraints
has been proven to be especially useful to create parts-based representations [26].

A problem with NMF is that it is prone to overfitting. Overfitting occurs when the
distance between the matrix factorization and the original matrix is very small but the
underlying structure of the data is not captured. This can happen due to the exploitation

Chapter 2. Background 19

of noise. Overfitting is usually stopped by regularization. Regularization consists on
limiting high values in H and W , as high values wouldn’t normally arise from decom-
positions of natural data. When regularization is considered, the objective function to
be minimized is:

dFro(X ,WH)+αρ||W ||1 +αρ||H||1 +
α(1−ρ)

2
||W ||2Fro +

α(1−ρ)

2
||H||2Fro (2.12)

Where ρ controls how much an element-wise penalty (L1) vs a Frobenius-norm penalty
(L2) is used, and α controls the intensity of the regularization.

Choosing a distance measure between the resulting embeddings to generate a similarity
metric is not a trivial task for NMF. Xue et al. 2014 [55] evaluate the impact of different
distance measures for a variety of tasks and suggest a set of custom distance metrics
that can be particularly effective.

They introduce two variations of a custom distance metric for NMF-based classifica-
tion and pattern recognition: non-negative vector similarity coefficient-based (NVSC)
that exploits the nature of the NMF embedding. The two variations of the distance
function are:

dNV SC1(X ,Y) =
∑

n
i=1 min(xi,yi)

∑
n
i=1 max(xi,yi)

dNV SC2(X ,Y) =
∑

n
i=1 min(xi,yi)

∑
n
i=1(xi + yi)/2

(2.13)

2.4.1.3 Latent Dirichlet Allocation

Topic modelling addresses the problem of extracting the topic or topics of a set of
documents. Consequently, a document can be embedded by the vector encoding the
probability of each topic being present in it.

A commonly used algorithm for topic modelling is Latent Dirichlet Allocation [9].
LDA is a generative probabilistic model that uses a three-level hierarchical Bayesian
model. Documents are modelled as a finite mixture of a set of topics. The topics
themselves are also modelled as a mixture of sub-topic probabilities.

The fact that topics are modelled by a mixture of sub-topic probabilities is useful when
documents don’t have a unique topic. This is highly beneficial in the streaming prob-
lem, as we are trying to uncover a combination of latent user preferences in the context
of LDA called topics, and not identifying each document to a single topic/preference.

Because LDA is usually used for text-based data, a TF-IDF encoding of the documents
is usually adopted [29]. TF-IDF, short for term frequency–inverse document frequency,
is a common way to represent text in information retrieval applications [45]. It’s bene-
ficial because terms are weighted based on how common they are. Very popular terms,
e.g. stop words, are weighted down while rarer, more meaningful terms are weighted
up.

2.4.1.4 Doc2Vec

The last embedding method I explored was Distributed Representations of Sentences
and Documents (Doc2Vec) [30]. Doc2Vec is an unsupervised algorithm that learns

Chapter 2. Background 20

fixed-length representations of documents or paragraphs. Doc2Vec is an extension of
Word2Vec [40] where the representations are created for words instead of documents.

Both Doc2Vec and Word2Vec are based on the skip-gram model to generate embed-
dings based on the contex a word appears in. The context of a word in Doc2Vec could
extend up to the whole document. That way it’s possible to use Doc2Vec in scenarios
where word ordering is not important, and treat documents using the Bag Of Words
(BOW) model. In this scenario, a variation of Word2Vec is proposed called the Dis-
tributed Bag of Words version of Paragraph Vector (PV-DBOW).

The goal of the skip-gram model is to maximize the predicted probability of a word
given its context. In order to do so, a softmax function is used. Word2Vec and Doc2Vec
approximate this softmax function using two alternatives: Hierarchical Softmax [39]
and Negative Sampling [40].

LDA uses TF-IDF encoding to deal with the excessive impact of popular words, as dis-
cussed in section 2.4.1.3. The way Doc2Vec addresses this problem is through chang-
ing the sampling distribution. This distribution is parameterized by a constant known
as the negative sampling exponent (NS exponent). A value of 1 samples according to
the original word frequencies, while a value of 0 performs a uniform sampling where
all words are sampled with equal probability. Negative values sample low-frequency
words with a higher probability [46].

Chapter 3

Dataset, problem formulation and
experimental setup

A source of non-inherent missing information in social networks is the fast pace at
which these massive networks evolve. Obtaining complete information for large tem-
poral sequences is extremely expensive, historical topological information is hardly
ever available through APIs, and extensive querying over a large time frame is ex-
pensive –time and resource wise. The timestamp of the link formation in mainstream
social networks is usually not publicly accessible information. Previous work has ad-
dressed this problem by masking a portion of the existing edges and try to predict them
as if they were generated in the future. However, this set up is problematic when the
evolution of the social network is affected by the same links that are being masked.

Obtaining non-topological historical information is usually a very limited task for
mainstream social networks too. Public APIs usually limit for the amount of tempo-
ral non-topological information that can be accessed by the public. However, Twitch’s
API allows the querying of its follow graph with timestamped link formation. Twitch’s
API also allows a good amount of historical non-topological information to be queried.

In order to compile the dataset needed to carry out the presented work, the Twitch
public API was queried twice:

• In May 2018 to obtain the full Twitch social network consisting of user infor-
mation, their stream history from 2011, and timestamped follow links between
users accurate to the query date. The querying of this data was done by Benedek
Rozemberczki, a PhD student of my supervisor Dr. Rik Sarkar.

• In January 2020 to obtain the timestamped follow links between the users found
in the 2018 query. This portion of the data was queried by me.

The full Twitch follow graph contains more than a million nodes. However, the data
was filtered to reduce its size while preserving its variability. Users in Twitch could
be put into one of three groups: pure streamers, pure viewers and viewer-streamers.
From a research perspective, the latter is the most interesting group as they both watch
content from other users and upload their own content. Only viewer-streamer users are

21

Chapter 3. Dataset, problem formulation and experimental setup 22

considered. US streamers were not included to reduce the dataset size while preserving
most of the country variability.

3.1 Nature of topological information

Figure 3.1 shows the distribution of dates of the edges in the dataset. The true number
of follows per date bin is exponential up to the current date. However, the edges in
test edges are only edges that formed between the nodes in the train edges. As time
goes on, new users are introduced in the real graph that this dataset doesn’t account for.
Besides, the original set of users in the train set become less active over time. That is
why the distribution shows a decaying tendency after the date of the streaming crawl.

01.01.13 01.01.14 01.01.15 01.01.16 01.01.17 01.01.18 01.01.19 01.01.20
date of follow

0

2500

5000

7500

10000

12500

15000

17500

Co
un

ts
/b

in

Streaming crawl

train edges
test edges

Figure 3.1: Date of follows in the dataset. The rate of edge formation increases expo-
nentially until the date of the streaming crawl. Due to how the data was obtained the
rate decreases after that.

0 1000 2000 3000 4000
In-degree

100

101

102

103

104

Co
un

t/b
in

 (l
og

)

0 100 200 300 400 500
Out-degree

100

101

102

103

104

Co
un

t/b
in

 (l
og

)

Figure 3.2: In-degree and out-degree distribution across the vertices. In-degree is more
polarized while out-degree is more uniform.

Figure 3.2 shows the degree distribution of nodes in the graph. The out-degree (number
of followees) is more uniformly spread than the in-degree (number of followers). The
majority of users have a small in-degree (close to 0) while a small portion of users
(famous relevant streamers) have a very high in-degree. This is consistent with Deng

Chapter 3. Dataset, problem formulation and experimental setup 23

et al. 2015 [16]’s findings that shows that a small subset of streamers dominate the
Twitch scene.

3.2 Nature of non-topological information

The dataset includes demographic information about each user and information about
the streaming history of each user. The demographic information consists of:

• Whether or not the user is a partner

• The language of the user

• The country of the user

• The date when the user created their account

• Whether the user produces mature content

• Number of aggregated views

The information about the streaming history of each user contains the following rele-
vant information for each streaming:

• Name of the game: given as a string by the user. It’s thus prone to different
spellings, grammar mistakes, and different choice of capitalization

• String description of the streaming

• Number of views

• Publishing date

The fact that the name of the game is given as a string limits the ability to know when
two streams correspond to the same game. As a first step, the string was converted
to lower case to avoid capitalization mismatches. The use of feature embeddings was
used as a more extensive approach. This is discussed in section 5.2.2.

For each user, the dataset in question contains information about the video games they
played in the past. The amount of information available for each user varies greatly
based on several reasons:

• Users are given the option to save highlights of their favorite video games for an
unlimited amount of time.

• Users are given the option to save (archive, as called in Twitch) the content that
they streamed as videos in their channel for a limited amount of time. This
amount of time changes based on the type of user. Partners are able to archive
their videos for 60 days, while regular users only for 14.

The access to the videos through the API is possible as long as the videos are available
in the user’s channel.

As it can be seen in figure 3.3, there is a drastic difference in the amount of information
before and after 60 days prior to the dataset collection. There is also a slight drop 14

Chapter 3. Dataset, problem formulation and experimental setup 24

01.01.12 01.01.13 01.01.14 01.01.15 01.01.16 01.01.17 01.01.18
0.000

0.002

0.004

0.006

Users and partners with streaming information per country

01.01.18 01.02.18 01.03.18 01.04.18 01.05.18 01.06.18
date

0.00

0.01

0.02de
ns

ity
/b

in

Figure 3.3: Dates of streams. A 14-day and 60-day drop can be seen due to the
temporal storage nature of Twitch.

days prior to the dataset collection. The 14 day drop is not as drastic as the 60 day one.
This is because partner users not only can archive their videos for 60 days but they
are much more active in the platform so they generate a larger amount of streaming
information.

Figure 3.4 shows the skewed distribution of video games. It’s important to notice
that the x axis is being represented in a log scale as the majority of the games have
a relatively small number of players. It’s interesting to notice that the 50% of the
players have played at least one video game in the top 165 most popular video games
(0.4% of all games). Also, It’s interesting to notice that the 90% of the players have
played at least one video game in the top 4,500 most popular video games (11.7% of all
games). This means that the most popular video games contain most of the streaming
information. Section 5 discusses how this is exploited.

3.3 Problem statement

The problem of link prediction was modelled as follows:

Inputs:

• Directed graph G = (V,E) where V are the Twitch users that have uploaded at
least one stream and E the directed follow links between users.

• Streaming information S where S is a dictionary that maps from every user to a
list of games they streamed in the past, and the time when the streams occurred.

Chapter 3. Dataset, problem formulation and experimental setup 25

100 101 102 103 104

ith most popular video game (log)

0

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f u
se

rs
 w

ho
 p

la
ye

d
it

50% 165/38514 games
90% 4500/70279 games

Figure 3.4: Distribution of videogames. A very small subset of games 165/38514 ac-
count for 50% of all the streams.

• Edge formation information T where T is a dictionary that maps from every edge
in E to the time that edge was formed.

• Observable time interval: train interval [ttrain, t ′train)

• Time interval to predict the formation of new edges: test interval [ttest , t ′test]

Let G[t, t ′] be the subgraph of G where only edges formed in the closed interval [t, t ′]
are present. Similarly, S[t, t ′] corresponds to the streaming information corresponding
to streams uploaded in the time interval [t, t ′] and E[t, t ′] to the edges created during
the interval [t, t ′]. For the experiments in this work, t ′train and ttest are the same date,
and correspond to the first query date (May 2018) when the streaming information was
obtained.

The rapid and constant creation of new nodes in social networks is a limitation for link
prediction algorithms. Thus, I ignored vertices created after t ′train and edges whose any
of their endpoints is one of these ignored vertices. This is a common practice in the
evaluation of link prediction algorithms [33].

Output: Ranked list of new edges in decreasing order of confidence L. The edges in
L are predicted to appear during the test interval. L shouldn’t contain any edge already
present in the train interval. L could be interpreted as a map from every pair of vertices
(vi,v j) /∈ E[ttrain, t ′train] (Etrain for future reference) to an assigned similarity score.

3.4 Evaluation

The evaluation of link prediction algorithms is not a trivial problem. There has been
work addressing the specific problem of evaluation in link prediction [56] that pins
down the reason for this difficulty to two main problems: extreme class imbalance

Chapter 3. Dataset, problem formulation and experimental setup 26

pl
ay

er
un

kn
ow

n'
s b

at
tle

gr
ou

nd
s

fo
rtn

ite irl
ov

er
wa

tc
h

le
ag

ue
 o

f l
eg

en
ds

co
un

te
r-s

tri
ke

: g
lo

ba
l o

ffe
ns

iv
e

gr
an

d
th

ef
t a

ut
o

v
to

m
 c

la
nc

y'
s r

ai
nb

ow
 si

x:
 si

eg
e

m
in

ec
ra

ft
ro

ck
et

 le
ag

ue
wo

rld
 o

f w
ar

cr
af

t
de

ad
 b

y
da

yl
ig

ht
cr

ea
tiv

e
go

d
of

 w
ar

he
ar

th
st

on
e

da
rk

 so
ul

s
da

rk
 so

ul
s i

ii
de

st
in

y
2

ba
ttl

ef
ie

ld
 1

se
a

of
 th

ie
ve

s
ta

lk
 sh

ow
s

fa
r c

ry
 5

st
at

e
of

 d
ec

ay
 2

do
ta

 2
h1

z1
he

ro
es

 o
f t

he
 st

or
m

th
e

fo
re

st
da

un
tle

ss
ou

tla
st

ba
ttl

ef
ie

ld
 4

de
tro

it:
 b

ec
om

e
hu

m
an

to
m

 c
la

nc
y'

s t
he

 d
iv

isi
on

he
ar

th
st

on
e:

 h
er

oe
s o

f w
ar

cr
af

t
eu

ro
 tr

uc
k

sim
ul

at
or

 2
da

yz
ca

ll
of

 d
ut

y:
 b

la
ck

 o
ps

 ii
i

di
ab

lo
 ii

i:
re

ap
er

 o
f s

ou
ls

pa
la

di
ns

st
ar

de
w

va
lle

y
fa

llo
ut

 4

ith most popular video game

0

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f u
se

rs
 w

ho
 p

la
ye

d
it

Figure 3.5: Popularity of the 40 most common video games. A small subset of games
are very popular while the majority of games are not.

and large size of graphs. The first problem arises because true edges are a very small
fraction of all possible edges, i.e. every possible binary combination of nodes. The sec-
ond problem arises because link prediction algorithms are usually evaluated on social
networks, where the number of nodes tends to be very high.

A common way to evaluate link prediction algorithms [33] is to calculate the inter-
section between the top n edges produced in the resulting ranked list and Etest =
E[ttest , t ′test] and divide it by n. This method is called a fixed–threshold metric. A
common way to choose n is n = |Etest |. This metric could be understood as the prob-
ability that the classifier predicts an edge that is present in Etest . However, this metric
is only a measure of the precision of the classifier. It is interesting to explore how the
predictor performs for difference values of n. For example, we might be interested in
predicting a very small set of edges << |Etest | with a high confidence.

3.4.1 Addressing class imbalance

Evaluating binary classifiers at different threshold levels (n) for imbalanced datasets
is a common problem. A widely used and successful evaluation strategy is the use of
Receiver operating characteristics (ROC) curves [18]. Especially, the area under the
ROC curve (ROC AUC). Because ROC curves only consider the False Positive Rate
and the True Positive Rate, they are agnostic to class imbalance. This can be very
desirable, as the performance of a link prediction model evaluated via a ROC curve
will be the same regardless of the class balance of the test set. The evaluation can be
considered as more robust.

However, the use of ROC curves to evaluate link prediction problems is controversial
[56]. Through multiple experiments on existing datasets and edge prediction algo-

Chapter 3. Dataset, problem formulation and experimental setup 27

rithms, Yang et al. 2015 [56] show that ROC curves can be deceptive to convey the
actual performance of these algorithms. They argue that even though class-imbalance
agnosticity creates more robust classifiers, they can be too optimistic about their per-
formance in real scenarios.

To combat this problem, Yang et al. 2015 [56] suggest the use of Precision Recall (PR)
curves –and area under the PR curve– instead [11]. PR curves are not agnostic to class
imbalance, so they allow for more interpretable results that speak more closely to how
the classifier would perform in practice.

Nevertheless, maximizing the area under the ROC curve will maximize the number of
TP and minimize the number of FP, which intuitively is what makes a good classifier
in the link prediction domain. For this reason, and because it’s not practical to have an
evaluation metric that changes based on the dataset or sample tested, I used area under
the ROC curve to evaluate different choice of classifiers and parameters.

3.4.2 Addressing large graphs

Depending on the type of link prediction algorithm used, calculating L for every pair
of possible vertices can be very expensive. Especially when the number of vertices is
high.

|L|=
(
|V |
2

)
–|Etrain| (3.1)

The Twitch graph being used contains 53,201 vertices. Etrain contains 572,341 edges.
So using the equation 3.1, |L| = 1,414,574,259. It’s not feasible to use such a large
amount of testing points, so random sampling was used as an alternative[56].

An issue with random sampling is that the ratio of actual vs possible edges is very
small. To be precise, the ratio of edges to non-edges is: |Etest | : |L| = 295,392 :
1,414,574,259 ≈ 1 : 4,789. This means that in order to get a significant amount of
edges from the minority positive class, a lot of edges from the majority negative class
would have to be sampled.

A common practice to address this problem is to subsample the majority class until
perfect balance. As shown by [56], this subsampling won’t have any impact on the
results when the classifier is evaluated using ROC curves. This is true because of
ROC curve’s agnosticism to class imbalance. Balancing the classes is also beneficial
in order to train classifiers effectively. Most binary classifiers require a balanced class
distribution to avoid the modelling of unwanted biases.

For that reason, in order to evaluate the experiments carried out, I used a randomized
subsampling approach. For each experiment multiple sets of sample edges (target
edges) were used. In order to obtain each set of target edges I sampled the same
number of edges from E[ttrain, t ′train] and from V xV /∈ E[ttrain, t ′train]. The average result
was used. The maximum positive/negative differences was used as the error.

Chapter 4

Exploiting topological information

This section addresses the choice of topological features. The goal is to obtain features
from the topological data that can be used by a binary classifier to predict whether a
link between two users exists or not. Throughout this section, the term positive edge
refers to edges that are in the test interval. Conversely, the term negative edge refers
to an ordered pairs of nodes that is not in the train or test interval. This section is a
qualitative exploration of the usefulness of the different topological features for link
prediction. The exact numerical impact that the features have is discussed in section 6.

Section 2.3 introduced a set of features for the undirected setting. However, the dataset
at hand represents a directed graph, and some of the metrics had to be slightly adapted
based on the meaning that directedness carries in Twitch. For the directed context, let
Γ(x) = Γout(x)∪Γin(x). For nodes x and y, score(x,y) represents the likelihood that an
edge from x to y exists, i.e. score(x,y) 6= score(y,x). x will be referred as the follower
and y as the followee.

Predicting a link in a directed graph is not only a question of similarity, as similarity
is a symmetric undirected metric. For that reason, the directedness of the edges has to
be taken into account when creating useful topological features. Considering the undi-
rected version of topological features is also interesting as similarity, albeit not exclu-
sively, also carries useful meaning. Using the same classification as in section 2.3, the
topological features used are introduced in the following sections. In order to evaluate
the distribution of negative and positive edges for different features, a balanced sample
of 100,000 edges was created.

4.1 Neighbourhood based metrics

Common Neighbours (CN): Both the directed and undirected versions of the CN
between two nodes were used as features. The undirected version is according to
equation 2.7.

If we want to predict who x is going to follow in the future, one could argue that Γout(x)
gives us more insightful information than Γin(x). I.e. knowing who x followed in the
past will indicate who x is likely to follow in the future. Following that reasoning, if

28

Chapter 4. Exploiting topological information 29

many users in Γout(x) follow another user y then it’s likely that x will follow them too
in the future. According to this reasoning a directed version of CN was introduced:

CNdirected(x,y) = |Γout(x)∩Γin(y)| (4.1)

The distribution of positive and negative edges for different values of CN for the di-
rected and undirected versions can be seen in figure 4.1 and figure 4.2. Both show that
positive edges have a larger number of common neighbours in average. The directed
version shows a better separation of the negative and positive edges for CN = 0. This
suggests that the directed version of CN is a more useful feature for link prediction.

.

0 2 4 6 8 10
Number of common neighbours

0

10

20

30

40

50

60

70

%
 e

dg
es

 in
 p

os
iti

ve
/n

eg
at

iv
e

sa
m

pl
e Distribution of positive edges.

Distribution of negative edges.

Figure 4.1: Distribution of positive and
negative edges for different Common
Neighbours (directed). Positive edges
show a larger number of common
neighbours.

0 2 4 6 8 10
Number of common neighbours

0

10

20

30

40

50

60

70

80

%
 e

dg
es

 in
 p

os
iti

ve
/n

eg
at

iv
e

sa
m

pl
e Distribution of positive edges.

Distribution of negative edges.

Figure 4.2: Distribution of positive
and negative edges for different Com-
mon Neighbours (undirected). Positive
edges show a larger number of com-
mon neighbours.

Jaccard’s Coefficient (JC): Using the same reasoning to define CNdirected , a directed
version of the JC can be defined as:

JCdirected(x,y) =
|Γout(x)∩Γin(y)|
|Γout(x)∪Γin(y)|

(4.2)

However, for JC, the undirected and directed version of the feature displayed an al-
most identical distribution. Consequently, only the undirected version was displayed
(figure 4.3). It seems that the only significant difference between the negative and
positive edge distribution is the aggregated density when JC = 0 (no neighbourhood
overlap). As expected, a considerably larger amount of negative edges have JC = 0.
This was taken out from the graph to the legend for ease of visualization. A histogram
with a variable number of bins was used to generate the graph (as JC’s values are
continuous). The aggregated density represents the relative size of the bars that were
used to generate the curve. The absolute value itself is meaningless but allows a fair
comparison of the trend between negative and positive edges.

Adamic-Adar Coefficient (AA): The distribution of positive and negative edges for
different AA Coefficients is shown in figure 4.4. Again, AA = 0 was taken to the legend

Chapter 4. Exploiting topological information 30

and the aggregated density was used. Negative and positive edges show a different
distribution and positive edges have a generally higher AA.

.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Jaccard's Coefficient

0

5

10

15

20
Ag

gr
eg

at
ed

 d
en

sit
y

Distribution of negative edges.
Aggregated distance of 0 = 160.9
Distribution of positive edges.
Aggregated distance of 0 = 63.6

Figure 4.3: Distribution of positive and
negative edges for different Jaccard’s
coefficients (undirected). More nega-
tive edges have a neighbourhood over-
lap of 0.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Adamic-Adar Coefficient

0

1

2

3

4

5

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Aggregated distance of 0 = 11.9
Distribution of positive edges.
Aggregated distance of 0 = 4.5

Figure 4.4: Distribution of positive and
negative edges for different Adamic-
Adar coefficients (undirected). Positive
edges show a larger AA coefficient.

4.2 Distance based metrics

Shortest Path (SP): Both the directed and undirected versions of the shortest path
metric were explored. The undirected version allows paths to go from vertex x to
vertex y if an edge exists between them, regardless of its direction. For the directed
version, SP(x,y) only allows a path to form along the direction of the edge, starting
in x and finishing in y. Figure 4.5 and figure 4.6 show the distribution of positive and
negative edges for different lengths of SP. Positive edges have a shorter shortest path
between them. More positive than negative edges lack a path between them. Figure 4.6
shows that very few positive edges have a 1-shortest path connecting them. This means
that follows are hardly ever reciprocal.

Rooted PageRank (RPR): The undirected version of PageRank can be used as a mea-
sure of distance (and consequently similarity) in the network, as the directionality
of the edges is not taken into account. For the directed version, RPR(x,y) could be
thought as an extension of the argument given for CNdirected . x is interested in Γout(x)
and for each z ∈ Γout(x), the same argument applies until the interest chain reaches y.

Figure 4.7 and figure 4.8 show the distribution of positive and negative edges for dif-
ferent values of RPR. Positive edges have a higher PageRank value than negative ones.
The directed version seems to do a better job at separating positive and negative edges.

Chapter 4. Exploiting topological information 31

.
2 4 6 8 10 12 14

Length of shortest path

0

10

20

30

40

%
 e

dg
es

 in
 p

os
iti

ve
/n

eg
at

iv
e

sa
m

pl
e Distribution of positive edges.

 7.3% without connecting path.
Distribution of negative edges.
 29.1% without connecting path.

Figure 4.5: Length of shortest path
for positive and negative edges of the
test set. Positive edges have a shorter
shortest path between them. More
positive than negative edges lack a
path between them.

1 2 3 4 5 6 7 8 9
Length of shortest path

0

10

20

30

40

50

60

%
 e

dg
es

 in
 p

os
iti

ve
/n

eg
at

iv
e

sa
m

pl
e Distribution of positive edges.

 1.6% without connecting path.
Distribution of negative edges.
 8.3% without connecting path.

Figure 4.6: Length of shortest path
for positive and negative edges of the
test set (undirected version). Positive
edges have a shorter shortest path be-
tween them. More positive than neg-
ative edges lack a path between them.
Reciprocal follows are very uncommon.

4.3 Social theory based metrics

Centrality: Three metrics were explored to capture centrality: In-Degree (InD),
PageRank (PR) and Betweenness Centrality (BC). InD is the most naı̈ve version of
centrality, and was chosen over Out-Degree to capture the notion of incoming weight
of importance. In the context of centrality, directed PR determines the importance of a
node according to the incoming weight that that node receives. The undirected version
of PR determines the importance of a node by how close it is from all the other nodes
in the network. For BC, the undirected version is more appropriate as we just want to
capture the density of shortest paths through the network.

InD, PR and and BC are node-wise scores. As mentioned in the beginning of the chap-
ter, only the centrality of the followee is examined, i.e. score(x,y)= InD(y) or PR(y) or
BC(y). Figure 4.9, figure 4.10 and figure 4.11 show the distribution of positive and neg-
ative edges using InD, BC and PR respectively. The distribution is very similar for the
three metrics. Negative edges show a very pronounced spike for smaller values while
positive edges show a smaller small-value spike and a more uniform distribution.

Clustering: The Local Clustering Coefficient (CC), as proposed by Newman et al.
2001 [41] was used. Figure 4.12 shows the distribution of positive and negative edges.
There is no obvious distinction between positive and negative edges. If anything, the
negative edges show a slightly higher CC. This might be due to CC being defined on
the basis of Γout(x) and the fact that streamers don’t usually follow many users –but
rather are followed by many.

Chapter 4. Exploiting topological information 32

.

0.000 0.002 0.004 0.006 0.008 0.010
Rooted PageRank value

0

200

400

600

800

1000

1200

1400

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 4.7: Rooted PageRank for pos-
itive and negative edges of the test
set (directed). Positive edges have a
higher PageRank value than negative
ones.

0.00 0.02 0.04 0.06 0.08 0.10
Rooted PageRank value

0

25

50

75

100

125

150

175

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 4.8: Rooted PageRank for pos-
itive and negative edges of the test
set (undirected). Positive edges have
a slightly higher PageRank value than
negative ones.

4.4 Summary and conclusions

The following conclusions can be drawn from the qualitative inspection of the distri-
bution of negative and positive edges for different topological features:

• Incorporating directedness into the features generally results in a better ability to
separate negative and positive edges. This is particularly true for neighborhood
overlap and rooted PageRank.

• Common Neighbours and Adamic-Adar Coefficient are good neighbourhood
based metrics to separate negative and positive edges.

• Jaccard’s Coefficient doesn’t do a good job at separating negative and positive
edges. Because JC only differs from CN in the normalization factor (|Γout(x)∪
Γin(y)|) it’s very likely that the success of CN comes from the fact that followees
are popular users and have a high number of followers (Γin(y) is high).

• Both Shortest Path and Directed Rooted PageRank are good distance based met-
rics for separating negative and positive edges. Undirected Rooted PageRank
doesn’t do as well.

• Most of the metrics show a common pattern in the negative-positive edge dis-
tribution: negative edges have a pronounced spike in small values of the metric,
while positive edges show a more uniformly spread distribution across higher
values.

• Central nodes are more likely to be followed than non central nodes. In-Degree,
PageRank and Betweenness Centrality are good metrics to capture centrality.
The main reason why centrality is a good metric is because followers are usually
very uncentral nodes (with hardly no incoming edges). The skewed distribution
of centrality can be appreciated in Figure 3.2. Li et al. 2011 [32]’s claim holds

Chapter 4. Exploiting topological information 33

.

0 100 200 300 400 500 600
In-Degree

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 4.9: In-Degree for positive and
negative edges of the test set. Positive
edges have a higher In Degree value
than negative ones.

0.000 0.002 0.004 0.006 0.008 0.010
Betweenness centrality

0

1000

2000

3000

4000

5000

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 4.10: Betweenness centrality for
positive and negative edges of the test
set . Positive edges have a higher BC
value than negative ones.

for Twitch.

• The clustering coefficient of a followee is not a good metric to separate negative
and positive edges.

• Follow edges are hardly ever reciprocal. This shows that users don’t only form
links on the basis of similarity in Twitch, as similarity is symmetric.

Chapter 4. Exploiting topological information 34

.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
PageRank

0

2500

5000

7500

10000

12500

15000

17500

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 4.11: PageRank for positive and
negative edges of the test set. Positive
edges have a slightly higher PageRank
value than negative ones.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Clustering index

0

1

2

3

4

5

6

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 4.12: Local Clustering Coeffi-
cient for positive and negative edges
of the test set (undirected version).
No obvious distinction between positive
and negative edges.

Chapter 5

Exploiting non-topological information

This chapter addresses the exploitation of non-topological information. The goal is to
extract a set of features from the available non-topological data that can be used by a
binary classifier to predict whether a link between two users exists or not.

Handling non-topological features is not a trivial task. In the context of Twitch, non-
topological features are all node-specific. However, the goal is to create a set of features
that characterize node pairs that form a link. This work is concerned with directed
links, which limits the use of simple aggregation functions that are commutative like
sum and multiplication.

Commutative aggregation functions are still useful because they can capture a notion
of similarity, which is undoubtedly useful to predict the formation of a link. How-
ever, the use of non-commutative aggregations between features is also necessary if
directionality wants to be captured.

A trivial non-commutative way to combine features is to include the original node
features in the feature set in a fixed way. For example, given two nodes n1, n2 and
their aggregated view counts vc1, vc2, the way to combine the aggregated view counts
is to use vc1 as the first feature for the binary classifier and vc2 as the second one. This
however puts the burden of finding the interrelations between features in the classifier,
and thus more complex models will have to be used. This is not problematic when the
original features can be represented by a single scalar, but grows in complexity when
the original features are multi-dimensional vectors.

For that reason, simpler node-specific attributes were included for both nodes in the
node pair. Vector–based attributes like country or streaming information were studied
in finer detail.

5.1 Demographic features

For two users u1 and u2, the original demographic data was used to create a set of
demographic features representing the link between them:

35

Chapter 5. Exploiting non-topological information 36

• User is partner: Two features are created. The first feature takes value of 1 if
u1 is a partner, and a value of 0 otherwise. Same logic for the second feature and
u2.

• User is mature: Two features are created. The first feature takes value of 1 if
u1 makes mature content, and a value of 0 otherwise. Same logic for the second
feature and u2.

• Common country: Single binary encoded feature representing whether u1 and
u2 are from the same country.

• Number of views: Two features are created. The first feature encodes the num-
ber of aggregated views for u1 and the second feature the number of aggregated
views for u2.

5.2 Streaming information

This section addresses the question of how streaming information can be exploited
optimally. I decided to model the streaming information data as a matrix S where S
is a (number–of–users x number–of–videogames) matrix. Each row of S is a binary
multi-hot encoded vector such that Si, j = 1 if user i ever streamed video game j and 0
otherwise.

The alternative of splitting the streaming information into temporal intervals was con-
sidered. However, this approach was rejected for two reasons:

• As shown in figure 3.3 most of the streaming information is only available during
the last 60 days. This is too short of a time to capture evolution patterns in the
streaming behaviour of a user.

• The goal of using the streaming information is to obtain the most up–to–date
information of the user’s streaming behaviour and get insight into latent prefer-
ences when it comes to gaming. Capturing the evolution of these latent prefer-
ences is likely not going to help in characterizing the streaming behaviour.

For these reasons, the streaming information is exclusively used to create a symmet-
ric set of features between the users in an edge that tries to capture similarity in their
streaming pattern. Consequently, in order to guide the feature selection, an undirected
version of the graph was considered. The ability to predict whether two nodes are con-
nected was used as the way to evaluate how useful the features are. Then, A similarity
score between streaming patterns was produced and binarized for many thresholds us-
ing a ROC curve and the area under the curve was used to measure performance.

The streaming frequency of the followee was also used as a feature. This was motivated
by the fact that active users are more likely to create an engaging community and cause
other users to follow them [25]. As discussed in section 3.2, partners can save their
videos for 60 days while regular users for 14. To bridge that mismatch I only used the
last 14 days to create the frequency feature.

FREQUENCYj = number of individual streams by user j in the last 14 days

Chapter 5. Exploiting non-topological information 37

5.2.1 Shared video games

There is some parallelism between the nature of the streaming information S and the
BOW approach to text modelling. A very common dataset used in the evaluation
of link prediction is the citations network, where users are connected if they have
collaborated more than a set amount of time. Similarly to the streaming information,
users in this dataset have a set of publications that they’ve written. Al Hasan et al. [8]
found keyword match count to be a very useful feature to predict the presence of a link
in citation networks.

In the video game streaming problem, the equivalent to the keyword match count would
be the game match count, i.e. the number of video games two players have in common
in their streaming history. This is also a very intuitive similarity metric. Users only
stream a game when they are interested in it. Other users streaming that same game
are therefore clearly users of interest.

The number of shared video games between two users i and j (SHAREDi, j) is calcu-
lated as the dot product of the vectors corresponding to i’s and j’s encoding:

SHAREDi, j = Si ·S j

5.2.2 Feature Embeddings

The thought that motivated the next iteration was the following: users have preferences
when it comes to video games. For example, a user might like action games and
adventure games but not be interested in strategy games. Or a player might prefer
mainstream games to non-mainstream games. If we were able to identify the video
game aspects that differentiate the users, we would be able to represent each user by
their preferences on these aspects and use these preferences as features to obtain a
similarity metric between them.

It’s important to note that uncovering these preferences doesn’t serve as a substitute
or improvement on the SHARED feature as they serve different purposes. Besides,
feature embeddings will help with the problem of string-based game titles. E.g. Call
Of Duty 2 and Call of Duty II are likely to be embedded similarly and thus bridge the
gap between different game spellings.

In order to generate this preference-representation of the users, I used feature embed-
dings. The embedding takes S and produces a transformed Strans f ormed where each user
is represented with k <number-of-videogames s.t. Strans f ormed is a (|V |xk) matrix.

Different embedding algorithms have their own evaluation metrics that they internally
use to determine the quality of the embedding. However, the goal of generating these
embeddings is to help the accurate prediction of links. For that reason I opted for
an external evaluation of the embedding algorithms, i.e. how useful are the produced
embeddings to predict whether or not a link exists between two users.

Chapter 5. Exploiting non-topological information 38

The resulting streaming embedding for a user i represents i’s streaming preferences.
It follows to assume that similar users should have similar embeddings. For that rea-
son, given two users i and j, I used the negative inverse of the distance between their
corresponding embeddings as their associated similarity score.

Choosing a distance function is not a trivial task. I explored both Euclidean and cosine
similarity as they are standard similarity metrics used in the literature. The Euclidean
similarity was obtained by taking the negative inverse of the Euclidean distance. How-
ever, I also explored the use of distance functions tailored to the method in question.
The choice of these alternative distance functions will be discussed in the upcoming
sections.

I explored different embedding algorithms. Namely, Truncated SVD, Principal Com-
ponent Analysis, Non-negative Matrix Factorization, Doc2Vec and Latent Dirichlet
Allocation. For each of these methods different parameters had to be explored to find
the optimal performance. A common parameter to be explored for all the different em-
bedding algorithms is the number of embedded dimensions, k. This value is dependent
on the dataset in question so experimental trial and error is the only viable approach
when the number of latent dimensions is unknown.

5.2.2.1 Truncated SVD and PCA

This subsection discusses the use of SVD and PCA to create a feature embedding of
S. In order to solve the matrix decomposition, the eigenvalues and eigenvectors of the
matrices AAT and AT A have to be obtained. This can be obtained through multiple
numerical methods. A widely used numerical method to find eigenvalues and eigen-
vectors for large matrices is ARPACK [31]. Halko et al. 2009 [24] introduce a faster
alternative that relies on a randomized iterative approach. Both algorithms were tested.

A streaming matrix S that uses the entire dataset would result in S having dimensions
(53,201 x 70,279). This is a total of 3,738,913,079 elements. Most of these entries
are zero as users don’t usually play more than 100 different games, which allows the
use of sparse matrices where only the nonzero values are represented. However, if the
data has to be standardized before the factorization –which is the case for PCA– all
elements have to be stored.

For that reason, I explored the impact of using smaller fractions of the dataset by ran-
domly sampling the users. The performance of all methods was mostly unaffected for
smaller fractions of the dataset (of around 50%). The fact that smaller fractions of the
dataset didn’t hinder the performance of the model allowed me to speed up the param-
eter search and the ability to fit the reduced streaming matrix in memory more easily.
Nevertheless, the entirety of the dataset was used for the final experiments. Another
factor that allowed this was the reduced number of video games being considered,
whose impact will be discussed below.

Both ARPACK and a randomized solver were tested but both resulted in a similar
performance. Both cosine and euclidean similarity were tested but both resulted in a
similar performance. The results can be seen in table 5.2.

Chapter 5. Exploiting non-topological information 39

. 2 1005 4010 300 2000500
Number of components (log)

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.1: Performance of Truncated
SVD embedding and euclidean similar-
ity for link prediction. Different portion
of the top most popular games used.
Using euclidean similarity, randomized
solver and a 40% of the dataset. 100
components resulted in the best per-
formance regardless of the number of
games used.

2 1005 4010 300 2000500
Number of components (log)

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.2: Performance of PCA em-
bedding and euclidean similarity for
link prediction. Different portion of the
top most popular games used. Using
euclidean similarity, randomized solver
and a 40% of the dataset. 100 compo-
nents resulted in the best performance
regardless of the number of games
used.

The results of the experiments for SVD and PCA are shown in figure 5.1 and figure 5.2
respectively. The specific values are shown in table 5.2. Both SVD and PCA show a
very similar performance.

They both peak at 100 components. Interestingly, this consistently happens for 300,1500
and 4000 games. As shown in figure 3.4, the percentage of users covered using 300
and 4000 games is quite different (58% vs 89%). However, 300 seems to be enough to
capture the underlying streaming preferences, at least to the extent PCA and SVD are
able to.

Nevertheless PCA seems to perform slightly better than SVD. This was expected, as
contrary to SVD, PCA standardizes S prior to factorizing it. This allows each original
dimension (video game) to be considered equally without allowing the different mean
or variance to weight it more or less. As shown in figure figure 3.4, the popularity of
different games varies dramatically.

5.2.2.2 Non-negative Matrix factorization

This section discusses the use of NMF to create a feature embedding of S. The stream-
ing content at hand has a lot of similarities with the problem of recommender systems
where there are users and items and the rating-based interactions between users and
the items is recorded.

The main difference is that in this context, ratings are binary, i.e. if a player likes
a game they will stream it, and if they dislike it they won’t. This however has the
limitation of missing data. Players might very not know about a video game, and that

Chapter 5. Exploiting non-topological information 40

doesn’t mean they didn’t like it.

I explored the use of two solvers based on two SVD processes each. The first solver,
NNDSVD exploited sparse factorization, which is better at creating parts-based repre-
sentation. The second solver, NNDSVDa doesn’t impose sparsity constraints. L1 and
L2 regularization was also explored in order to avoid overfitting and improve general-
ization.

NNDSVD showed a better performance, so I defaulted all my experiments to use
NNDSVD. This is not only beneficial because of the increase in performance. Sparse
representations are easier to interpret because of their pseudo-binary quality. The re-
sults can be seen in table 5.2. The same concern about the time and space complexity
of PCA applies in NMF. I also used a reduced portion of the dataset and explored the
use of a limited number of video games.

In contrast to SVD and PCA, the distance metric used to find the similarity between
two embeddings affected the performance drastically. Figure 5.3, figure 5.4, fig-
ure 5.6 and figure 5.5 show the performance for each distance metric. Cosine similar-
ity, NVSC1 and NVSC2 improve performance significantly over euclidean similarity.
NVSC marginally improve cosine’s similarity average performance but they are much
more noisy. This hints that cosine similarity is a more robust metric. Because the in-
crease in performance was so marginal and the increase in noise so dramatic, I decided
to stick with cosine similarity to explore the impact of regularization. The specific
values can be seen in table 5.2.

The results of applying regularization can be seen in figure 5.7 and figure 5.8. Both
L1 and L2 regularization were explored but only L2 seemed to improve the results
(ρ = 0). Other values of α were explored (as shown in table 5.2) but 0.5 resulted in
the best performance. It’s also interesting to observe that the performance of NMF
for a small number of components (2 and 5) gets worse the more games we use. This
was not the case when regularization wasn’t used, as shown in figure 5.4. A possible
explanation is that the regularization cost outweighs the optimization cost when the
mismatch the W’s dimensions is very high.

Another thing to notice is that the optimal number of components changed to 300
when regularization was used. A higher number of components might hint a higher
granularity in the quality of the components.

5.2.2.3 Latent Dirichlet Allocation

This subsection discusses the use of LDA to create a feature embedding of S. I explored
the effect of using different numbers of games, different similarity metrics (euclidean
and cosine similarity), and different encodings of S (standard vs TF-IDF).

Applying TF-IDF in the context of video game streaming information can be very
desirable because of the very skewed distribution of games, similar to the distribution
of word frequencies in natural language, as shown in figure 3.4. That way, rarer games

Chapter 5. Exploiting non-topological information 41

.

2 1005 4010 300 500
Number of components (log)

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.3: Euclidean similarity

2 1005 4010 300 2000500
Number of components (log)

0.45

0.50

0.55

0.60

0.65

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.4: Cosine similarity

2 1005 4010 300 2000500
Number of components (log)

0.60

0.62

0.64

0.66

0.68

0.70

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.5: NVSC1

2 1005 4010 300 2000500
Number of components (log)

0.60

0.62

0.64

0.66

0.68

0.70

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.6: NVSC2

Link prediction using NMF embeddings for different distance metrics. 100
components result in the best performance accross all distance metrics. NVSCs and

cosine similarity perform significantly better than euclidean similarity.

will be given the same weight as more common ones.

Ti, j = Si, j ∗ log(
N

d f j
) (5.1)

TF-IDF is usually defined in the context of text and documents. For this context, the
TF-IDF version of the binary value encodes whether a user i streamed game j (Ti, j) is
given by equation 5.1. S is the streaming matrix, N the number of users and d fi the
number of users that streamed video game j.

The probabilistic nature of LDA lends itself to online implementations using SGD-
based methods. This is beneficial for large datasets, as it’s not necessary to hold the
entire dataset in memory as NMF as other factorization methods require. LDA also
results in faster convergence partly due to the need of less iterations over the data. For
that reason I was able to use the entirety of the dataset.

The results of the experiments can be seen in figure 5.9, figure 5.10, figure 5.11 and fig-

Chapter 5. Exploiting non-topological information 42

.

2 1005 4010 300 2000500
Number of components (log)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.7: Link prediction using NMF
embeddings, cosine similarity and L2
regularization with α=0.5. 300 compo-
nents result in the best performance.

2 1005 4010 300 2000500
Number of components (log)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 10
games: 40
games: 100
games: 300
games: 1500
games: 4000

Figure 5.8: Link prediction using NMF
embeddings, cosine similarity and L2
regularization with α=1. 300 compo-
nents result in the best performance.

ure 5.12. Overall, LDA performed considerably worse than SVD, PCA and NMF. For
comparison see table 5.2. Encoding S using TF-IDF resulted in a dramatic improve-
ment in performance. When the standard encoding was used, the performance didn’t
even surpass random (0.5 AUROC). Both euclidean and cosine similarity resulted in
very similar performances.

Something unexpected is the fact that the less number of games used, the better the
performance is. This is especially pronounced when the standard encoding was used,
which might be an indicator that using a BOW encoding poses many problems, arising
from the skewed game distribution mentioned before. However, although to a much
less extent, using 40, 100 and 300 games still performs better than using 600 and 1000
even when TF-IDF was used. This, together with the poor overall performance sug-
gests that LDA might not be an optimal algorithm to embed the streaming information
S.

5.2.2.4 Doc2Vec

This section discusses the use of Doc2Vec to create a feature embedding of S. As
mentioned in section 2.4.1.4, the context window is variable. Because in the stream-
ing context we are dealing with unordered words (vector of games), I used the BOW
version of doc2vec (PV-DBOW).

Despite the high amount of free parameters Doc2Vec uses, the parameter updates dur-
ing the training process are sparse, as only those words that appear in the documents
trigger updates, so the process is very efficient [30]. This is a clear advantage over
the embedding methods used before, as this allowed the use of the full-size S without
reducing the number of games or the portion of the dataset used.

However, the choice of number of components and the ratio at which popular words
(games) are subsampled still needs to be explored as it is domain dependent. Le et al.
2014 [30] suggest a value of 0.75 for the NS exponent. However, Caselles-Dupré et al.

Chapter 5. Exploiting non-topological information 43

2018[13] explored the use of Doc2Vec for recommendation systems and showed that
a value of −0.5 delivered the best performance. A value of −0.5 results in rare words
being sampled more often than common words.

I explored the performance of predicting links using Doc2Vec embeddings for different
embedding sizes and different NS exponents as explained before. I tried euclidean and
cosine similarity as a similarity metric between embeddings.

Figure 5.13 shows the results of the experiments. The exact values can be seen in
table 5.2. The overall performance was significantly worse than NMF, SVD and PCA.
A similar performance to LDA was obtained.

Caselles et al. 2018 [13] ’s recommended NS exponent value (–0.5) resulted in the
worst performance, and the original NS value proposed by Le et al. 2014 [30] (0.75)
resulted in the best performance. This shows that sampling rare games more frequently
is not beneficial to create a better embedding. The choice of similarity function didn’t
have an impact in the performance either.

5.3 Evaluation and interpretation

Throughout this chapter a set of non-topological features based on demographic infor-
mation was proposed. Besides this, different ways of exploiting the streaming infor-
mation were studied. Table 5.2 shows the summarized performance of the different
embedding algorithms and parameters.

5.3.1 Visual inspection of non-topological features

The ability of the non-topological features to separate negative and positive edges was
visually inspected in the same manner as topological features were inspected in sec-
tion 4.

Figure 5.14 and figure 5.15 show the distribution of positive and negative edges for
aggregated views of the follower and the followee respectively. The followee has a
higher number of aggregated views for positive edges. However, the follower shows a
similar number of views for both positive and negative edges.

Figure 5.16 shows the distribution of positive and negative edges for the followee’s
streaming frequency over the last 14 days. A larger number of followees in negative
edges have a frequency close to zero. For positive edges, the followee streamed with a
slightly higher frequency than in negative edges.

Figure 5.17 shows the distribution of positive and negative edges for the shared number
of games. Users in positive edges share a larger number of games. 1 shared game is a
clear breaking point between negative and positive edges.

Figure 5.18 shows the distribution of positive and negative edges for different values
of NMF cosine similarity. Positive edges have a generally higher cosine similarity than
negative edges. Negative edges show a pronounced peak for NMF=0 that corresponds
to the case where no NMF feature has a shared non-zero value between users.

Chapter 5. Exploiting non-topological information 44

Feature Positive edges (%) Negative edges (%)
Is partner (follower) 89.0 11.0
Is partner (followee) 88.3 11.7
Is mature (follower) 55.3 44.7
Is mature (followee) 52.6 47.4

Common country 89.0 11.0

Table 5.1: Edge distribution for different non–topological features. High difference be-
tween positive and negative edges mean the feature is able to separate the negative
from the positive edges.

Table 5.1 shows the edge distribution for the features: is-follower-partner, is-followee-
partner, is-follower-mature, is-followee-mature, and common country. The is-partner
features seem to separate positive and negative edges very effectively, probably due
to partner users being more active. The is-mature features are not able to separate
negative and positive edges well. The common country is able to separate negative
and positive edges very well. Users that are from the same country are more likely
to share a link between them, which makes sense as they not only share language but
geographical location.

5.3.2 Exploiting individual NMF-embedded features

Due to NMF’s clear dominant performance, NMF’s factorization was used as the de-
facto method to obtain the feature embeddings of S. The settings that resulted in the
best performance were used: NMFsolver = NNDSVD, α=0.5, ρ=0 (table 5.2). Taking
a closer look at the resulting embedded dimensions can provide insight in how to best
use them to generate features for the link prediction classifier.

An advantage of NMF’s factorization is that the resulting features can be interpreted
thanks to how the factorization is set up. In a collaborative filtering approach where the
rows of X correspond to users and the columns correspond to the items users interact
with, W and H can are interpretable.

• The columns of W represent the basis of the new latent representation.

• The columns of H embed the games in the same low-dimensional space as the
users were embedded.

• The rows of H correspond to the component weights. That is, each value in H’s
row represents how to sum the original dimensions to create the basis vector.
This can be understood as a weighting of the original dimension.

So using the rows of H, each new component can be represented as a weighted com-
pound of the original dimensions. In the case of games being the original dimensions,
looking at this weighting can draw insight into what each of the new embedding dimen-
sions represents. Table 5.3 shows the top associated games for a sample of dimensions.
For each dimension, the games with the five highest associated values are detailed. A
comment detailing the relationship that the games have in common is also provided.

Chapter 5. Exploiting non-topological information 45

Embedding method Similarity metric components AUROC
SVD solver = ARPACK euclidean 100 0.615 ±0.004
SVD solver = randomized euclidean 100 0.620 ±0.009
SVD solver = randomized cosine 100 0.616 ±0.006
PCA solver = ARPACK euclidean 100 0.631 pm 0.012
PCA solver = randomized euclidean 100 0.642 pm 0.006
PCA solver = randomized cosine 100 0.638 pm 0.007
NMF solver = NNDSVDa,
α=0, ρ=0

cosine 300 0.663 ±0.005

NMF solver = NNDSVD,
α=0, ρ=0

cosine 300 0.682 ±0.004

NMF solver = NNDSVD,
α=0,ρ=0

euclidean 100 0.606 ±0.008

NMF solver = NNDSVD,
α=0, ρ=0

NVSC1 100 0.692 ±0.010

NMF solver = NNDSVD,
α=0, ρ=0

NVSC2 100 0.693 ±0.011

NMF solver = NNDSVD,
α=0.25, ρ=0

cosine 300 0.699 ±0.005

NMF solver = NNDSVD,
α=0.5, ρ=0

cosine 300 0.701 ±0.004

NMF solver = NNDSVD,
α=1, ρ=0

cosine 300 0.699 ±0.003

NMF solver = NNDSVD,
α=1, ρ=0

cosine 300 0.699 ±0.003

NMF solver = NNDSVD,
α=1, ρ=0.5,

cosine 100 0.687 0.004

LDA encoding = standard euclidean 60 0.482 ±0.007
LDA encoding = TFIDF euclidean 30 0.559 0.005
LDA encoding = standard cosine 20 0.481 0.002
LDA encoding = TFIDF cosine 30 0.559 0.008
Doc2vec cosine 0.75 (ns exp) 0.593 ±0.009
Doc2vec euclidean 0.75 (ns exp) 0.592 ±0.007

Table 5.2: Different embedding methods and their performance in link prediction. The
components cell refers to the number of components that resulted in the best perfor-
mance

Chapter 5. Exploiting non-topological information 46

Component no. Games Notes
5 ’dark souls ii: scholar of the first sin’,

’bloodborne: the old hunters’, ’nioh’,
’dark souls iii’, ’dark souls ii’

Dark soul games
and similar action
dark-themed

252 ’totally accurate battle simulator’, ’infes-
tation: newz’, ’the forest’, ’PlayerUnk-
nown’s Battlegrounds’, ’battalion 1944’

Battle action
games

1 ’fornite’, ’roblox’, ’fortnite’, ’god of
war’, ’h1z1’

Online multi-
player battle
games

26 ’kerbal space program’, ’terraria’,
’minecraft’, ’roblox’, ’factorio’

Pixel based con-
struction/crafting
games for a
younger audience

281 ’super mario bros. 2’, ’maldita castilla’,
’refunct’, ’super mario world’, ”chip ’n
dale: rescue rangers”

arcade
old–school
games

105 ’call of duty: black ops iii’, ’call of duty:
infinite warfare’, ’call of duty: wwii’,
’call of duty: black ops ii’, ’call of
duty R©: wwii’

Call of duty fran-
chise

187 ”tom clancy’s rainbow six: siege”, ’fort-
nite battle royale’, ”playerunknown’s bat-
tlegrounds”, ”tom clancy’s rainbow 6: pa-
triots”, ”tom clancy’s rainbow six siege”

genre: shooters

221 ’rise of the tomb raider’, ’far cry: primal’,
’tomb raider’, ”uncharted 4: a thief’s
end”, ’just cause 3’

Genre: Action-
adventure games

7 ’mega man x’, ’mega man x3’, ’mega
man x2’, ’mega man’, ’mega man 2’

Mega man fran-
chise

Table 5.3: Example of top games for different components using the best-performing
NMF parameters. Games in individual components share a theme.

Chapter 5. Exploiting non-topological information 47

It’s also worth noting that the NMF factorization is able to overcome the string-based
game encoding limitations. For example, component no. 1 combines ’fornite’ and
’fortnite’ into a single component.

It can be observed that different features correspond to clear subgenres, video game
franchises or other game subtypes. This is very interesting, as the factorization was
able to capture meaningful underlying user preferences. These preferences can be
easily understood and have a real potential to define similarities between users.

A low dimensional embedding of the games allows to capture similarity between
games for applications like game recommendation or game clustering. Game recom-
mendations are outside the scope of this project, however, it’s interesting to observe
how similar games are close in this embedding. Figure 5.19 shows a 2D embedding
using the original NMF factorization and PCA of the top 100 games. This is a limited
visualization because the dimenions were reduced from 300 to 2. However, it’s still
possible to notice similar games being close together. For example, call of duty: black
ops ii and tom clancy’s rainbow six: siege are both similar first person shooter games,
and creative is a sandbox game created inside the game fortnite.

The similarity metric obtained by using the cosine distance between the NMF-based
embeddings for the two users is used as a feature for link prediction. However, I believe
the feature embedding produced by the NMF factorization can be used further.

As discussed in section 5.2.2.2, NNSVD was used as a solver for NMF. This results
in sparse factorizations that, according to Hoer et al. 2004 [26] are better at creating
parts–based factorizations. Figure 5.20 shows a heatmap–based representation of the
values of the components for a sample of users. It can be seen that only a small subset
of components for each user are non-zero. This makes sense if the meaning of the
features, as shown in table 5.3, is considered. Users usually like a limited number
of genres of games, and this set of features captures the nature of that sparse user
preference.

A link predictor will definitely benefit from knowing the overall similarity of the user
preferences (the embedded features). However, I believe using the components for
each of the embedded features individually can also be very helpful. It could be the
case that some components are more important than others at suggesting similarity. For
example, two users having non-zero values in component no. 34 in table 5.3 (arcade
old school inspired games) might have a higher probability of a link existing between
them than if they both had non-zero values in component no. 187 (genre: shooters).
This is the case because component no. 34 encodes a more niche genre that less users
play.

For that reason, inspired by how Al Hasan et al. 2006 [8] handled aggregate features,
I decided to add the pair-wise product between the embedding components of both
users as individual features. This pair-wise product has non-zero values for those com-
ponents that both users had non-zero values on. It also has higher values if both users
agree on that component.

The following conclusions can be drawn from the exploration of non-topological fea-
tures throughout this chapter:

Chapter 5. Exploiting non-topological information 48

• Non-Negative Matrix factorization is the most optimal method to embed the
available streaming information. The use of cosine similarity as a similarity met-
ric is essential. Truncated SVD and PCA produce decent embeddings but are not
as good as NMF. LDA and Doc2Vec are not able to produce quality embeddings.
Besides, sampling rare video games more often doesn’t improve results which
hints that contrary to in the text domain, rare games don’t carry more meaning.

• The aggregated views of the follower is not able to separate negative and positive
edges. However, the aggregated views of the followee is. This makes sense, as
the more popular a user is the more likely other people are to follow them.

• Followees in negative edges show a spike in streaming frequencies close to zero.
This is not the case for positive edges as followees need to release content more
frequently for followers to want to follow them.

• Shared games, NMF cosine similarity, is-partner and common country are able
to separate negative and positive edges while is-mature is not.

• NMF embeddings are able to create meaningful features that correspond to game
genres or subtypes. This embedding overcomes the string-based encoding of
games where different spellings can be used for the same videogame. Besides,
this embedding is sparse which results in interpretable results. Sparsity also
allows meaningful pairwise products between individual components to be used
as standalone features.

Chapter 5. Exploiting non-topological information 49

.

2 5 8 4010 20 6030
Number of components (log)

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 40
games: 100
games: 300
games: 600
games: 1000

Figure 5.9: Euclidean similarity and
standard encoding

2 5 8 4010 20 6030
Number of components (log)

0.38

0.40

0.42

0.44

0.46

0.48

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 40
games: 100
games: 300
games: 600
games: 1000

Figure 5.10: Cosine similarity and stan-
dard encoding

2 5 8 4010 20 6030
Number of components (log)

0.50

0.51

0.52

0.53

0.54

0.55

0.56

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 40
games: 100
games: 300
games: 600
games: 1000

Figure 5.11: Euclidean similarity and
TF-IDF encoding

2 5 8 4010 20 6030
Number of components (log)

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

games: 40
games: 100
games: 300
games: 600
games: 1000

Figure 5.12: Cosine similarity and TF-
IDF encoding

Link prediction using an LDA embedding for different distance metrics and data
encodings. TF-IDF shows a dramatic improvement in performance over no TF-IDF.
Smaller number of games results in better performance which shows that LDA might

be a poor choice of embedding algorithm.

Chapter 5. Exploiting non-topological information 50

100 20010 300805020 15030
Number of components (log)

0.50

0.52

0.54

0.56

0.58

0.60

Ar
ea

 u
nd

er
 R

OC
 C

ur
ve

NS exponent: -0.5
NS exponent: 0
NS exponent: 0.75

Figure 5.13: Link prediction using doc2vec embedding for different NS exponents and
number of components. Cosine used as a similarity function. A NS exponent of 0.7
results in the best performance.

.

0 20000 40000 60000 80000 100000
Views of followee

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 5.14: Distribution of positive and
negative edges for aggregated views of
the follower. No apparent separation
between positive and negative edges.

0 20000 40000 60000 80000 100000
Views of followee

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 5.15: Distribution of positive and
negative edges for aggregated views
of the followee. The followee shows a
uniformly higher number of aggregated
views.

Chapter 5. Exploiting non-topological information 51

.
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Streaming frequency of followee

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Ag

gr
eg

at
ed

 d
en

sit
y

Distribution of negative edges.
Distribution of positive edges.

Figure 5.16: Distribution of positive and
negative edges for followee’s stream-
ing frequence (number of streams overt
the last 14 days). A larger number of
followees in negative edges contained
a frequency close to zero.

0 2 4 6 8 10
Shared games

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 5.17: Distribution of positive and
negative edges for shared number of
games. Users in positive edges share
a larger number of games.

0.0 0.2 0.4 0.6 0.8 1.0
NMF cosine similarity

0

2

4

6

8

10

12

Ag
gr

eg
at

ed
 d

en
sit

y

Distribution of negative edges.
Distribution of positive edges.

Figure 5.18: Distribution of positive and negative edges for different values of NMF
cosine similarity. Positive edges have a generally higher cosine similarity than negative
edges.

Chapter 5. Exploiting non-topological information 52

0.10 0.05 0.00 0.05 0.10 0.15 0.20
Principal Component 1

0.15

0.10

0.05

0.00

0.05

0.10

0.15
Pr

in
cip

al
 C

om
po

ne
nt

 2

fortnite

playerunknown's battlegrounds

league of legends

irl

counter-strike: global offensive

overwatch

tom clancy's rainbow six: siege

grand theft auto v

minecraft

dota 2
hearthstone

rocket league

heroes of the storm

destiny 2
creative

hearthstone: heroes of warcraft

h1z1: king of the kill

dayz

retro

euro truck simulator 2

fifa 18
the witcher 3: wild hunt

rust

destiny

the forest
starcraft ii: heart of the swarm

left 4 dead 2
doom

assassin's creed origins

music

call of duty: black ops ii

payday 2

Figure 5.19: Top 100 games embedded in 2D space using NMF with the optimal
paramteres as a factorization and PCA for visualization. Similar games are close to
each other.

0 2 4 6 8 1012141618202224262830323436384042444648
Components

0
3

6
9

12
15

18
Us

er
s

0.0

0.1

0.2

Figure 5.20: First 50 components for a sample of 20 users using a NMF-based feature
embedding. Features are sparse.

Chapter 6

Combining features: the link predictor

In this section the topological and non-topological features are combined to assemble
the link predictor algorithm. Three linear classifiers and a non-linear classifier were
used. There are three reasons why I focused on linear classifiers despite the fact that
non-linear classifiers allow more complexity in the classification:

• Throughout the inspection in section 4 and section 5, all features showed a linear
distribution of negative and positive edges, i.e. for each feature positive edges
were either generally larger in value or generally smaller in value.

• A fairly large number of features was used. This was mostly due to the 300
pairwise NMF components. Linear models are often recommended when the di-
mensionality of the data is very big, as the time complexity of non-linear models
blows up for high dimensions.

• The most important reason is interpretability. Linear classifiers allocate coeffi-
cients (or weights) to each feature that represent the importance of the feature.
By inspecting these weights one can understand how useful a feature is for the
prediction task. All features were standardized to 0 mean and unit variance.
Consequently, high negative values mean that small values of the feature result
in positive instances, and high positive values mean that high values of the fea-
ture result in positive instances.

6.1 Feature evaluation

In this section the impact of each feature for link prediction is assessed by examining
their corresponding model coefficients. Table 6.1 shows the SVM, LR and Perceptron
coefficients for each feature. Four conclusions con be derived from these results:

• The impact of the features is quite polarized. Some features have very high co-
efficients while other have very small ones –close or even equal to zero. This
means that some features like common neighbours, rooted PageRank or Aggre-
gated NMF pairwise carry more meaning about the class of an edge than features
like Jaccard Coefficient or channel views. However, another factor affecting this

53

Chapter 6. Combining features: the link predictor 54

Weights
Feature SVM LR Perceptron

Common Neighbours (d) 1.826±0.632 1.898±0.291 1.785±0.148
Common Neighbours (u) 2.167±0.268 3.516±0.206 0.491±0.045

Shortest Path (d) −0.405±0.094 -0.565±0.043 −0.032±0.010
Shortest Path (d) −0.206±0.032 −0.114±0.016 −0.011±0.014
Rooted PageRank 2.533±1.168 1.956±0.803 0.727±0.078

Jaccard Coefficient (d) 0.096±0.209 0.450±0.082 −0.068±0.020
Jaccard Coefficient (u) 0.000±0.000 0.000±0.000 0.000±0.000

Adamic-Adar 0.000±0.000 0.000±0.000 0.000±0.000
In-Degree −0.068±0.123 0.074±0.037 −0.024±0.009

PageRank (d) 0.410±0.014 0.249±0.048 0.039±0.005
PageRank (u) 0.341±0.054 0.395±0.129 0.026±0.001

Clustering Coefficient −0.068±0.064 −0.115±0.044 −0.019±0.017
Betwenness Centrality 0.883±0.047 1.190±0.075 0.113±0.014

Partner (follower) 0.012±0.038 −0.013±0.027 0.006±0.001
Partner (followee) 0.121±0.064 0.340±0.024 0.033±0.006
Mature (follower) 0.012±0.038 −0.013±0.027 0.006±0.001
Mature (followee) 0.121±0.064 0.340±0.024 0.033±0.006

Same Country 1.184±0.024 1.858±0.022 0.152±0.031
Channel views (follower) −0.039±0.093 −0.096±0.020 −0.041±0.004
Channel views (followee) 0.077±0.022 0.039±0.032 0.018±0.014

Shared games 0.689±0.124 1.211±0.059 0.211±0.016
Streaming Frequency 0.130±0.006 0.351±0.018 0.036±0.009
NMF overall cosine 0.085±0.046 0.286±0.011 −0.006±0.021

Aggregated NMF pairwise 15.525±3.666 17.949±0.830 10.931±1.575

Table 6.1: Impact of individual features on link prediction for different classifiers (using
the coefficient weights associated with each feature). High negative/positive values
indicate higher importance. Weights with absolute value higher than 0.5 are in bold. d
stands for directed and u for undirected.

Chapter 6. Combining features: the link predictor 55

result might be synonym features, i.e. features that refer to the same concept.
PageRank, Betweenness Centrality and In-Degree are all measures of centrality,
so the meaning that centrality carries to determine the class of an edge is split
between these three. Besides, it can be the case that the feature that most ac-
curately separates negative and positive edges of the three ends up receiving a
higher weight while the others are ignored. This might explain why in-degree
has absolutely no impact while Betweenness Centrality has a lot, as in-degree
seemed to separate negative and positive edges when visually inspected in sec-
tion 4.

• Weights are consistent across classifiers. This reinforces the notion of features
being useful by themselves and not in the context of a classifier for a classi-
fier’s particular reasons. Consequently, conclusions about the usefulness of each
feature can be extrapolated to a general setting.

• The Aggregated NMF pairwise feature is very high and NMF overall cosine
is very small. The feature synonym effect might be a reason for this. Aggre-
gated NFM pairwise encodes a much richer version of the information encoded
by NMF overall cosine. Besides, Aggreggated NMF pairwise was calculated
by summing the absolute value of the 300 pairwise features (individual weights
shown in figure 6.1). The marginal noise in the weight of each feature can add
up and might result in a disproportionately big coefficient. However, by inspect-
ing figure 6.1, some pairwise features are indeed useful and indicate that the
Aggregated NFM pairwise carries very useful meaning regarding the class of an
edge.

• In short, the most useful features considering the weights of all three classifiers
are Common Neighbours (directed and undirected), Shortest Path (directed),
Rooted PageRank, PageRank, Betweenness Centrality, Same Country, Shared
games, and Aggregated NMF pairwise. The most useless features are Jaccard
Coefficient, In-Degree, Clustering Coefficient, Partner (follower), Mature (fol-
lower), Channel views, and NMF overall cosine.

6.1.1 NMF Pairwise and game genres

By looking at the individual NMF Pairwise features, insight can be derived into which
NMF components are most useful at predicting a link between two users, and con-
sequently what game genres are most useful. The individual weights of each NMF
pairwise feature are represented in figure 6.1. Two conclusions can be drawn regard-
ing the importance of the NMF features:

• The impact of the individual features is small compared to the most relevant
topological and non-topological features. This makes sense as NMF encodings
are sparse and most NMF-pairwise values are often 0 regardless of whether a
link between users exists or not.

• Not all NMF pairwise features have the same importance. Most of them have
relatively small values while a few of them have slightly higher values. Conse-
quently, some NMF components are more useful at predicting the formation of

Chapter 6. Combining features: the link predictor 56

a link than others.

To
po

lo
gi

ca
l

No
n-

to
po

lo
gi

ca
l

NM
F

Pa
irw

ise

0

1

2

0.5

1.0

0.0

0.1

Figure 6.1: Absolute values of SVM-associated weights of different features. Higher
weights indicate higher importance. NMF Pairwise features are variable on their impor-
tance. Topological and non-topological features included for comparability.

The top NMF pairwise features correspond to the NMF components number 281, 252
and 1. It was shown in section 5.2.2.4 how each component can be interpreted as a
game feature or genre. These components respectively correspond to: arcade/ old-
school games, battle action games, and online multiplayer battle games (the games
representing each genre are shown in table 5.3).

Table 6.2 shows the top NMF components according to their SVM weight and the
genre associated with them. Being able to interpret what each component means is
very insightful information. When the genres associated with the top components are
shared between two users the formation of a link between them is more likely. This
information could be very useful for Twitch in order to improve content suggestion.
Users and games that involve genres with high weights are more likely to draw atten-
tion to users interested in those genres.

It’s interesting to note that the meaning of the components in table 6.2 doesn’t fully
overlap, i.e. each component represents a slightly different genre. However, it can
be seen that battle-related games are very useful indicators of link formation. Battle-
related games are one of the top genres together with MOBAs streamed in Twitch
[16]. Thus, such a common genre is likely to divide the users significantly on whether
they like it or not, rendering it useful for link prediction. Other more niche genres
like arcade or simulation games also have high weights. This might be because of
the tighter, less mainstream communities that arise from these games. Users in tight
non-topological communities are more likely to form links between them.

Chapter 6. Combining features: the link predictor 57

Component no. Game genre SVM Weight
281 Arcade / old-school games 0.177 ±0.080
252 Battle action games 0.171 ±0.171
1 Online multiplayer battle games 0.165 ±0.055
0 Simulation games 0.163 ±0.041
2 Battle royal games 0.139 ±0.021

242 Grand Theft Auto Franchise 0.135 ±0.086
7 Mega Man franchise 0.127 ±0.067

212 Games for younger audiences 0.126 ±0.080
284 Action assassin games 0.120 ±0.057
192 Fallout franchise 0.120 ±0.156

Table 6.2: Genres of the top 10 NMF components according to their SVM weight. Each
component represents a differnt genre. Higher SVM weight mean higher importance in
the link prediction decision.

6.2 Evaluation of binary classifiers

In this section, the different binary classifiers are evaluated using their Area under the
ROC Curve. The linear classifiers used are Linear Support Vector Machines, Percep-
tron and Logistic Regression. A small L2 regularization of 0.0001 was used for all
models. One non-linear classifier was used: RBF Support Vector Machines. The op-
timal performance of RBF SVM heavily relies on the joint exploration of the regular-
ization strength (C) and the impact of individual datapoints in the RBF kernel function
(γ). Large values of C result in all training datapoints being properly classified and
large values of gamma defining the influence of a single datapoint [44].

10 6 10 5 10 4 10 3 10 2 10 1

Gamma (log)

0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970

Ar
ea

 u
nd

er
 R

OC
 c

ur
ve

C=0.1
C=1.0
C=10.0
C=50.0

Figure 6.2: Performance of link prediction for RBF SVM with different degrees of regu-
larization (C) and variations of the kernel function (γ). C = 50.0,γ = 10−4 results in the
best performance.

The results of the C and γ parameter search can be seen in figure 6.2. Smaller degrees of
regularization (large values of C) result in better performances. The best combination

Chapter 6. Combining features: the link predictor 58

Linear SVM RBF SVM Perceptron LR
All 0.964 ±0.002 0.968 ±0.003 0.937 ±0.002 0.968 ±0.001

Topological 0.943 ±0.002 0.935 ±0.004 0.885 ±0.044 0.931 ±0.004
Non-topological 0.940 ±0.005 0.950 ±0.003 0.898 ±0.005 0.949 ±0.002

Table 6.3: Performance of different classifiers for link prediction using different sets
of features. Values indicate the area under the ROC curve for each classifier. RBF
SVM and LR are the best models when all features are used, linear SVM the best for
topological features, and RBF SVM is the best model for non-topological features.

of C and γ is C = 50.0,γ = 10−4 where the Area under the ROC curve is 0.968±
0.003. Consequently, these settings were used for the RBF SVM in the remainder of
the experiments.

Table 6.3 shows the classification results for the different models. It’s worth keeping
in mind that a random classification corresponds to an area under the ROC curve of
0.5, so values over that figure are better than a random baseline. RBF SVM and LR
are the best best models when all features are used, linear SVM is the best model for
topological features, and RBF SVM is the best model for non-topological features.
It’s interesting to notice that a linear classifier (Linear SVM) outperforms a non-linear
classifier (RBF SVM) when only topological features are used. This hints that there are
not many interrelationships between features but rather each feature has a true linear
impact. This is not the case for non-topological features, probably arising from the
complex nature of the NMF-pairwise features that do have meaningful interrelations
between them. Overall, linear and non-linear classifiers are able to exploit the features
to a very similar extent.

Non-topological features seemed to be more useful than topological ones, as RBF
SVM, Perceptron, and LR obtained better performance using non-topological features
exclusively over topological ones. Nevertheless, the combination of topological and
non-topological features resulted in the best performance for all classifiers.

In order to frame this result within the context of other feature-based link prediction
algorithms, it’s worth comparing the obtained best area under ROC score with the
winner of The 2011 IJCNN Social Network challenge [15], who achieved a score of
0.970 (compared to the 0.968 obtained here). This score was achieved on a completely
different dataset (Flickr). However, it serves as a ballpark figure to understand how
good the obtained results are.

Chapter 7

Conclusion

Throughout this project, I started by introducing feature-based supervised link pre-
diction, a comprehensive set of previously used topological and non-topological fea-
tures, different binary classifiers, and embedding methods to exploit non-topological
information. Relevant work on the problem of link prediction was reviewed, with an
emphasis on feature-based supervised link prediction.

The work carried out contributes to the link prediction literature by exploring super-
vised feature-based link prediction on a not-yet-explored class of graphs where con-
tent type is shared between users. Experiments were carried out using a subset of the
Twitch social network. Non-Negative Matrix factorization paired with cosine similar-
ity was found to be the most effective embedding to exploit the non-topological shared
content, resulting in an area under the ROC curve of 0.701±0.004 for link prediction.
The obtained NMF embeddings represent meaningful sparse features that correspond
to interpretable genres. This is particularly useful as it throws insight into the gaming
behaviour of users and fixes the user-input string-based encoding of video games. A
small subset of the pairwise NMF features have a salient impact in link prediction.
These features represent both very popular genres and more niche ones. The genre
that carries the most meaning about the link between two users is arcade / old-school
games.

The impact of the different topological and non-topological features is polarized. The
most useful features according to the classifier coefficient weights are (from most
to least useful) Aggregated NMF pairwise, rooted PageRank, common neighbours,
same country, Betweenness Centrality and shared games. All these features resulted
in coefficient weights of at least 0.7 for all the linear classifiers used. Consequently,
neighbourhood overlap, distance-based metrics and centrality features were an effec-
tive metric to capture the presence of a link between users. Measures of local clustering
however were not an effective metric.

Four binary classifiers were explored, namely Linear SVMs, RBF SVMs, Perceptron
and Logistic Regression. Logistic Regression and RBF SVM resulted in the best per-
formance with an area under the ROC curve of 0.968±0.003. Linear SVMs resulted
in the best performance when only topological features were used. Exclusively us-

59

Chapter 7. Conclusion 60

ing non-topological features resulted in a better performance than exclusively using
topological features. Overall, linear and non-linear classifiers resulted in similar per-
formances for the task of link prediction.

Bibliography

[1] 25 useful twitch statistics for influencer marketing managers. https://
influencermarketinghub.com/twitch-statistics/. Accessed: 2020-04-
07.

[2] Bibliographic database, elsevier biobase - current awareness in biological sci-
ences (cabs).

[3] Dblp computer science bibliography. https://dblp.uni-trier.de/.

[4] Stream elements. https://streamelements.com/.

[5] Twitch. https://www.twitch.tv/.

[6] Twitch statistics & charts. https://twitchtracker.com/statistics. Ac-
cessed: 2020-04-15.

[7] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social
networks, 25(3):211–230, 2003.

[8] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. Link
prediction using supervised learning. In SDM06: workshop on link analysis,
counter-terrorism and security, volume 30, pages 798–805, 2006.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[10] Stephen P Borgatti. Centrality and network flow. Social networks, 27(1):55–71,
2005.

[11] Kendrick Boyd, Kevin H Eng, and C David Page. Area under the precision-
recall curve: point estimates and confidence intervals. In Joint European confer-
ence on machine learning and knowledge discovery in databases, pages 451–466.
Springer, 2013.

[12] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. 1998.

[13] Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier. Word2vec ap-
plied to recommendation: Hyperparameters matter. In Proceedings of the 12th
ACM Conference on Recommender Systems, pages 352–356, 2018.

61

https://influencermarketinghub.com/twitch-statistics/
https://influencermarketinghub.com/twitch-statistics/
https://dblp.uni-trier.de/
https://streamelements.com/
https://www.twitch.tv/
https://twitchtracker.com/statistics

Bibliography 62

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[15] William Cukierski, Benjamin Hamner, and Bo Yang. Graph-based features for
supervised link prediction. In The 2011 International Joint Conference on Neural
Networks, pages 1237–1244. IEEE, 2011.

[16] Jie Deng, Felix Cuadrado, Gareth Tyson, and Steve Uhlig. Behind the game:
Exploring the twitch streaming platform. In 2015 International Workshop on
Network and Systems Support for Games (NetGames), pages 1–6. IEEE, 2015.

[17] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V Chawla, Jinghai Rao, and
Huanhuan Cao. Link prediction and recommendation across heterogeneous so-
cial networks. In 2012 IEEE 12th International conference on data mining, pages
181–190. IEEE, 2012.

[18] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[19] Cédric Févotte and Jérôme Idier. Algorithms for nonnegative matrix factorization
with the β-divergence. Neural computation, 23(9):2421–2456, 2011.

[20] Michael Fire, Lena Tenenboim, Ofrit Lesser, Rami Puzis, Lior Rokach, and Yu-
val Elovici. Link prediction in social networks using computationally efficient
topological features. In 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Conference on Social
Computing, pages 73–80. IEEE, 2011.

[21] Jerome H Friedman. On bias, variance, 0/1—loss, and the curse-of-
dimensionality. Data mining and knowledge discovery, 1(1):55–77, 1997.

[22] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media, 2019.

[23] Gene H Golub and Christian Reinsch. Singular value decomposition and least
squares solutions. In Linear Algebra, pages 134–151. Springer, 1971.

[24] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Stochastic algorithms for constructing approximate matrix decom-
positions. 2009.

[25] William A Hamilton, Oliver Garretson, and Andruid Kerne. Streaming on twitch:
fostering participatory communities of play within live mixed media. In Proceed-
ings of the SIGCHI conference on human factors in computing systems, pages
1315–1324, 2014.

[26] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints.
Journal of machine learning research, 5(Nov):1457–1469, 2004.

[27] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. Logis-
tic regression. Springer, 2002.

Bibliography 63

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, 2009.

[29] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent dirichlet allocation
for tag recommendation. In Proceedings of the third ACM conference on Recom-
mender systems, pages 61–68, 2009.

[30] Quoc Le and Tomas Mikolov. Distributed representations of sentences and doc-
uments. In International conference on machine learning, pages 1188–1196,
2014.

[31] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide:
solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods, volume 6. Siam, 1998.

[32] Rong-Hua Li, Jeffrey Xu Yu, and Jianquan Liu. Link prediction: the power
of maximal entropy random walk. In Proceedings of the 20th ACM international
conference on Information and knowledge management, pages 1147–1156, 2011.

[33] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social
networks. Journal of the American society for information science and technol-
ogy, 58(7):1019–1031, 2007.

[34] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla. New perspectives
and methods in link prediction. In Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 243–252,
2010.

[35] Haifeng Liu, Zheng Hu, Hamed Haddadi, and Hui Tian. Hidden link prediction
based on node centrality and weak ties. EPL (Europhysics Letters), 101(1):18004,
2013.

[36] Zhengdong Lu, Berkant Savas, Wei Tang, and Inderjit S Dhillon. Supervised
link prediction using multiple sources. In 2010 IEEE international conference on
data mining, pages 923–928. IEEE, 2010.

[37] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather:
Homophily in social networks. Annual review of sociology, 27(1):415–444, 2001.

[38] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factoriza-
tion. In Joint european conference on machine learning and knowledge discovery
in databases, pages 437–452. Springer, 2011.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages 3111–3119, 2013.

[41] Mark EJ Newman. Clustering and preferential attachment in growing networks.
Physical review E, 64(2):025102, 2001.

Bibliography 64

[42] Mark EJ Newman. A measure of betweenness centrality based on random walks.
Social networks, 27(1):39–54, 2005.

[43] Mark EJ Newman and Juyong Park. Why social networks are different from other
types of networks. Physical review E, 68(3):036122, 2003.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[45] Juan Ramos et al. Using tf-idf to determine word relevance in document queries.
In Proceedings of the first instructional conference on machine learning, volume
242, pages 133–142. Piscataway, NJ, 2003.

[46] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http:
//is.muni.cz/publication/884893/en.

[47] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node
embedding. arXiv preprint arXiv:1909.13021, 2019.

[48] G Salton and MJ McGill. Introduction to modern information retrieval mcgraw
hill book company. New York, 1983.

[49] Ramesh R Sarukkai. Link prediction and path analysis using markov chains.
Computer Networks, 33(1-6):377–386, 2000.

[50] Sucheta Soundarajan and John Hopcroft. Using community information to im-
prove the precision of link prediction methods. In Proceedings of the 21st Inter-
national Conference on World Wide Web, pages 607–608, 2012.

[51] Jorge Valverde-Rebaza and Alneu de Andrade Lopes. Exploiting behaviors of
communities of twitter users for link prediction. Social Network Analysis and
Mining, 3(4):1063–1074, 2013.

[52] Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. Local probabilistic
models for link prediction. In Seventh IEEE international conference on data
mining (ICDM 2007), pages 322–331. IEEE, 2007.

[53] Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link prediction in so-
cial networks: the state-of-the-art. Science China Information Sciences, 58(1):1–
38, 2015.

[54] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[55] Yun Xue, Chong Sze Tong, and Tiechen Li. Evaluation of distance measures for
nmf-based face image applications. JCP, 9(7):1704–1711, 2014.

[56] Yang Yang, Ryan N Lichtenwalter, and Nitesh V Chawla. Evaluating link pre-
diction methods. Knowledge and Information Systems, 45(3):751–782, 2015.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Bibliography 65

[57] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel collaborative filtering for the netflix prize. In International conference
on algorithmic applications in management, pages 337–348. Springer, 2008.

	Introduction
	Contributions
	Report structure

	Background
	Twitch
	Link prediction
	Supervised feature-based learning for temporal link prediction
	Support Vector Machines
	Logistic Regression
	Single Layer Perceptron
	Beyond similarity

	Topological features
	Neighbourhood based metrics
	Distance based metrics
	Social theory based metrics

	Non-topological features
	Feature embeddings

	Dataset, problem formulation and experimental setup
	Nature of topological information
	Nature of non-topological information
	Problem statement
	Evaluation
	Addressing class imbalance
	Addressing large graphs

	Exploiting topological information
	Neighbourhood based metrics
	Distance based metrics
	Social theory based metrics
	Summary and conclusions

	Exploiting non-topological information
	Demographic features
	Streaming information
	Shared video games
	Feature Embeddings

	Evaluation and interpretation
	Visual inspection of non-topological features
	Exploiting individual NMF-embedded features

	Combining features: the link predictor
	Feature evaluation
	NMF Pairwise and game genres

	Evaluation of binary classifiers

	Conclusion
	Bibliography

