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Abstract

We present a collection of reactive biochemical system components of increasing complexity
modelled with the Bond-Calculus, a compositional process algebra continuous in space and time.
This high-level language allows us to express biological systems in terms of agents and their
interactions within certain processes. We show that all core components found in biochemical
systems can be modeled accurately and composed to more complex systems such as oscillators.
The models generated are expressed as systems of non-linear ordinary differential equations,
describing system behaviour over time. Furthermore, we characterise system behaviour through
model-checking with the Logic of Behaviour in Uncertain Contexts (LBUC). We show that
the properties we devised for a set of biochemical systems can be quantitatively evaluated
over uncertain initial states and mixture perturbations. Finally, this thesis should provide a
comprehensive framework for future work on biochemical system modelling in the bond-calculus
and serve as a reference for applied use of the LBUC.
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Chapter 1

Introduction

Formally describing biochemical system behaviour is at the core of system biology and vital in
applications such as biomedical, pharmaceutical, or metabolic research. Expressing systems of
ordinary differential equations (ODEs) to model the behaviour of complex systems such as entire
cells or gene regulation networks poses a challenge which for complex systems cannot be solved
merely by intuition or knowledge about the system. Several approaches over the past decades
such as quantitative process algebras or rule-based approaches emerged. These attempt to provide
a formalization process, allowing researchers to frame biochemical component interaction in
a high-level syntax. Throughout this work we will focus on two process algebras, namely the
continuous π-calculus by Kwiatkowski and Stark [49] and the bond-calculus by Wright and
Stark [88]. The latter builds upon the former and attempts to address shortcomings such as
limitations on the use of general kinetic laws and the ability to model symmetric multi-way
interactions.

The bond-calculus attempts to unify concepts from both agent- and rule-based modeling
approaches. It provides flexibility through multi-way interaction of agents, dynamic bonding, and
the support for general kinetic laws. Thus, modeling biochemical systems in the bond-calculus
allows us to succinctly encode the governing components and their interactions in a high-level
language.

In this work we show that the bond-calculus is capable of modeling system components at
the core of biochemical networks as well as more complex combinations of those. Our process is
guided by the work of Tyson et al. [82] as well as related literature extending the work [19, 60, 80].
In Tyson et al. [82], 7 basic components and their biochemical signal-response interactions, also
referred to as their functional motifs, and 3 oscillators composed from these components are
discussed. Thus, we present our implementations for all 10 systems. We show that our models
match the low-level ODE models in [82] and compare the resulting signal-response graphs
visually. While this thesis aims to summarize the work done, it is also thought as reference and
guiding literature for future applications of the bond-calculus.

As the bond-calculus originates from the continuous π-Calculus (cπ) by Kwiatkowski and
Stark [49], we build on the work of Wang [84] in which a subset of the systems presented here
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are modelled in cπ . Hence, we will show analogies and differences between the two process
calculi, as well as the improvements of the bond-calculus over cπ .

Finally, we present a novel approach of evaluating some of the systems presented through the
use of Logic of Behaviour in Uncertain Contexts (LBUC). It builds on the work by Banks and
Stark [8] on Logic of Behaviour in Context (LBC) and allows us to quantify uncertainty within a
system. By capturing the characteristics of a system’s behaviour with a temporal logic syntax,
we show how the system behaves under perturbation and can show under which circumstances
the functional motifs retain their behaviour. To this end we characterize the properties of the
implemented biochemical systems and define under which circumstances we believe these are
satisfied. As LBUC allows us to quantify uncertainty on both the initial values of the systems and
the perturbations occurring during a simulation, we then verify the bounds of our assumptions.
Finally, we show how we can use LBUC to pin-point values of constants such that systems
reflect the expected behaviour.

1.1 Context and Motivation

System biology focuses on providing a formal way of modeling biochemical systems as a
composition of their components. With this, the system’s internal interactions can be simulated
and their contribution to the system behaviour analysed. It presents an economic and fast way
to test assumptions on systems which otherwise would be costly to reproduce in living cells,
if at all possible. Recent developments such as by Karr et al. [44], indicate that ever more
complex systems, such as entire cells, can be modelled. In such systems, the study of emergent
behaviour is of particular interest. Emergent indicates that, although the different behaviours
of the components within a system are known separately, the behaviour of the entire system
emerges from their interaction and cannot be formulated without it.

Tyson et al. [82] call for closer collaboration between computational/system biologists and
experimental biologists. It can be argued that the interaction between these distinct research
groups can be bridged by a common language of interaction which makes steps towards closing
the gap between natural language and mathematics.

The bond-calculus attempts to narrow the gap between the two. Since it provides a high-
level language which seeks to allow computational and experimental biologists alike to express
the components and their interactions of biochemical systems. It implements compositional
semantics based on vector fields and linear operators. Through these, it generates sets of non-
linear ODEs describing the time evolution of the modelled systems [88]. Hence, the first research
question (Section 1.2) we try to answer is whether the bond-calculus is capable of modeling the
systems presented in [82].

However, many limitations are still faced when modeling biochemical systems. Often, the
exact components interacting in in-vivo systems cannot be determined. Furthermore, there are
cases where stochastic perturbations cause random system behaviour [72]. Therefore, over
the past century a multitude of simplifications and assumptions were expressed to reduce the
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complexity of modelled systems and to make their computation tractable. This comes to a specific
price in terms of accuracy [45, 16, 46]. Hence, our second research question (Section 1.2) focuses
on the validity of the simplifications and assumptions made by Tyson et al. [82] and how our
models are affected when less assumptions are made.

Ultimately, to motivate our novel approach to evaluate our modelled systems quantitatively,
we argue that verifying system behaviour is notoriously difficult, especially if emergent behaviour
plays a substantial role [91]. Once a model is devised, it is not trivial to identify under which
circumstances its behaviour is guaranteed to reflect what is expected. Some approach this problem
like Periwal [62], "We figuratively threw a bunch of models all at once at the experimental data
and picked the model that came closest for further evaluation.". Even in our work presented,
we first resort to qualitative analysis through the visual comparison of the obtained functional
motifs. Hence, formalizing this step is of crucial importance. LBUC allows us to encode the
system behaviour, such as "the response rate will increase linearly with the increase of signal
concentration" and verify on which time scale and under which external perturbations this will
hold eventually or globally (through the whole time of simulation). It furthermore allows us to
explore under which initial conditions the expected behaviour is obtained. This motivates our
last research question (Section 1.2) on whether it is possible to use LBUC to verify the properties
of the emergent behaviour excerpted by the systems modelled.

1.2 Objectives and Aims

Throughout this thesis, our aim is to cover three main research questions,

1. Is the bond-calculus capable of modeling non-linear behaviour of complex systems such as
oscillators with custom kinetic laws providing an abstraction of the underlying processes?

2. How do simplifications and abstractions affect our models and is it readily possible to
employ more precise and verbose approximations to these in the bond-calculus?

3. Provided with a bond-calculus model, is it possible to qualitatively, formally verify and
guarantee its behaviour through the use of LBUC?

In order to address these, we identified the following objectives,

1. Conduct a literature review on the biological background, system biology, and biochemical
process modelling and build a thorough understanding of what is being modelled.

2. Implement the components presented by Tyson et al. [82] in the bond-calculus and provide
a cookbook of biochemical components for the calculus.

3. Retrieve additional information needed for the modeling of the systems from the Biomodels
Database [51].

4. Devise appropriate qualitative evaluation criteria to assess the performance of the systems.
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5. Compare the results obtained through our implementation in the bond-calculus with the
ones presented by Tyson et al. [82] using the evaluation criteria.

6. Compare the results obtained through our implementation in the bond-calculus with the
ones presented by Wang [84] using the evaluation criteria.

7. Devise appropriate quantitative evaluation criteria through the use of LBUC.

8. Capture behaviour properties of some systems modelled with the LBUC syntax and
evaluate these.

9. Provide a cookbook of how evaluation with LBUC can be achieved for biochemical models
in the bond-calculus.

1.3 Contributions

Throughout this thesis we present the following contributions,
1. Elaboration on the biochemical implications on our models of the assumptions made by

Tyson et al..

2. The quantitative characterization in natural language of all bond-calculus models presented.

3. The full implementation of all models presented by Tyson et al. [82] in the bond-calculus.

4. The formal characterization in LBUC of the first 4 bond-calculus models namely, linear
response, hyperbolic response, sigmoidal response, and perfect adaptation.

5. A qualitative evaluation of our generated bond-calculus models

6. A qualitative evaluation of the four formally characterized bond-calculus models using
LBUC.

1.4 Thesis Structure

• Chapter 1: Introduction Introducing our work, its context and motivations as well as its
aims and objectives.

• Chapter 2: Background and Literature Review Introducing the biological and bio-
chemical background for the work, presenting cπ , the bond-calculus and LBUC, as well
as existing tools.

• Chapter 3: Presentation of Models Providing a short overview of the work by Tyson
et al. [82] and the biochemical assumptions and simplifications assumed by the authors.
Presenting the models we chose to implement.
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• Chapter 4: Implementation Presenting our implementation and the related code. Giving
context on the complications found during implementation and illustrate the adaptions
undertaken to mitigate these. Ultimately, characterizing system behaviour in LBUC for a
subset of the systems modelled.

• Chapter 5: Evaluation Devising our approach to qualitative and quantitative evaluation
and providing the results generated for each model discussed in Chapter 4. Relating our
implementation to the results obtained by Tyson et al. and Wang in cπ . Presenting our
results on the quantitative evaluation in LBUC. Ultimately, assessing the suitability of this
latter form of evaluation.

• Chapter 6: Conclusion Evaluating the overall project. Assessing whether the aims and
objectives have been reached and devising directives for future work.



Chapter 2

Background and Literature Review

This chapter presents the necessary background in the three fields discussed throughout our work,
namely system biology and biochemistry, process calculi, and formal verification. While system
biology is the field our work resides in, biochemistry is the basis for the biochemical systems
discussed in this thesis and originally presented by Tyson et al. [82]. Process calculi such as the
cπ and the bond-calculus provide a framework to model such systems in a high-level syntax. By
extracting from the models the (non-linear) ordinary differential equations (ODEs) describing
the temporal behaviour of the systems, we can reason about the system’s behaviour over time.
We can use paradigms from the field of formal verification to quantitatively evaluate whether
certain properties are satisfied by the generated systems. Finally, we present the available tools
which allow us to implement the models and conduct formal verification on these.

2.1 Systems Biology

By definition, systems biology is the exploration of a biological system by analyzing the
interactions among its parts [85]. It emerged over the past century from the desire to add a
quantitative dimension to experimental biology [76]. Every living organism is a biological
system and while the field is widely spread, we will specifically consider molecular systems
biology, focusing on biochemical systems. Through the aid of mathematical and computational
methods, we seek to study and formalize the dynamic behaviour of complex molecular processes
and regulatory systems comprising genes, proteins, and metabolites.

While research on providing mathematical formalization of observed biochemical processes
started early with the discoveries by Guldberg and Waage [34] and Michaelis and Menten [56],
the first successful mathematical model of an observed biochemical system was presented by
Hodgkin and Huxley describing the simulation of neuron reactivity [38]. Progress over the
decades encompassed the modelling of processes in yeast cells [13] and more recently lead to
successes such as models of complete cellular behaviour of a human pathogen [44]. As a result,
systems biology increasingly impacts fields such as pharmacology, agriculture, and metabolic
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research, to name a few. However, fundamental difficulties in our understanding of biochemical
interactions and limitations in our representation of such are still faced [45].

Kell and Knowles [45] argue that models of in-vivo systems require stark simplifications
and abstractions to allow (partial) replication of the observed behaviour. Due to the stochastic
nature of biological processes, there are quantitative challenges such as, multiple levels of signal
processing, wide ranges of sensitivities to mixture perturbations, as well as multi-functionality
of components depending on their current state and context. The attempt to incorporate all of
these, if at all possible, would lead to computationally intractable problems.

In order to correctly incorporate adaptions to these challenges, we require in-depth knowledge
of a system’s components. This knowledge, poses challenges itself which are quantified as
knowledge challenges. Kell and Knowles [45] present the following:

• finding the appropriate level of abstraction

• finding common basis to relate knowledge gained using different experimental techniques
on the same system

• the ability to incorporate knowledge incrementally as new data is analyzed
It becomes clear that systems biology is reliant on experimental biology and aims to aid it, not to
substitute it. Models cannot be formed merely by intuition and cannot be treated as oracles as it
is put by Laursen [50].

2.1.1 Reductionism and Holism

Within the field of biology, there is a fundamental divide between the notion of reductionism and
holism [32].

• Reductionism postulates that every system can be decomposed into its constituents.
Hence, system behaviour can be deduced summatively from the behaviour of the parts.

• Holism on the contrary assumes that system behaviour can only be fully understood when
seen as a whole. The whole is bigger than the sum of its parts.

Systems biology emerged as an attempt to provide a holistic approach to the modelling and
the analysis of biochemical systems. However, some approaches ultimately use (reductionistic)
mathematical models as building blocks. This allows us to model emergent behaviour which
could not be replicated by analyze the parts of a system separately.

While more of a philosophical question, we introduce the differentiation here in order to
acknowledge both and put them in context with our research. Throughout this thesis we show
models of increasing complexity, building upon one another. We also re-use certain components
and interaction patterns, re-arranging them to create new behaviour. However, ultimately we
reason about the response behaviour of the ensemble, the system as a whole, exploring behaviour
emergent from the interaction between the parts.
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2.2 Biochemical Systems

We now elaborate the biochemical context necessary to reason about the systems presented
throughout our work by Tyson et al. [82]. Hence, we hierarchically present first the basic
molecular components as well as their possible interactions in networks composed of these. Here,
general ideas and concepts are taken from textbooks such as [11] of [58]. Finally, we discuss the
complex behaviours that can be observed from a holistic view-point of the component interaction
as well as how the time component is vital for biochemical systems to stabilize.

2.2.1 Components

Cells are separated from their surrounding by a semi-permeable membrane. Within, cytoplasma
represents an inert liquid which houses the internal cellular components, the so-called organelles.
The cell’s nucleus is a membrane-bound organelle containing the DNA (deoxyribonucleic acid),
the biochemical encoding of the cell’s genome. It consists of nucleotides, chemical building
blocks that characterize the genetic code. Four different bases can be part of a nucleotide and
their sequence encodes the genetic information. Individual genes are specific sections of the
genome and contain information for the production of biologically active RNA (ribonucleic acid)
[11].

In the process of protein-biosynthesis, this genetic information is transformed into proteins
in a two-step process.

1. Transcription: The base sequence of the DNA is transcribed into a complementary
transport form, the messenger RNA (mRNA) within the nucleus. The mRNA then leaves
the nucleus to be processed further.

2. Translation: The mRNA is translated into a polypeptide, a chain of amino acids, by
the ribosomes which can be thought of as molecular assembly unit. The constructed
polypeptide folds up into a specific 3D-structure and is termed a protein.

Enzymes are a special biochemically active class of proteins and play an important role in cellular
biochemical networks by catalyzing reactions of the substrate they bind to. Enzymatic catalysis
reduces the activation energy of a reaction of one or multiple substrates. Substrates are molecules
on which the enzyme acts. Often reactions are inhibited by an activation energy threshold and
hence rely on enzyme catalysis. Only certain enzymes can interact with certain substrates and
how well they can react is referred to as their affinity [58].

Two important classes of enzymes, kinases and phosphatases, are key to the biochemical
networks discussed in this thesis. They drive a phosphorylation/dephosphorylation process which
can also result in a metaphoric activation and deactivation of proteins respectively. These state
changes allow then interactions with other molecules within the system.
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Gene

Messenger

Protein

Metabolite

Figure 2.1 Signalling cascade from DNA (deoxyribonucleic acid) to mRNA (messenger ribonu-
cleic acid) to enzymes to metabolites. Each stage can consist of multiple output signals. Modified
from Savageau in [67]

• Kinases belong to the group of transferases and catalyze the transfer of phosphoryl groups
from ATP (adenosine triphosphate) to a substrate. This transfer can lead to an activation of
the substrate and is crucial to signal transduction pathways as described in Section 2.2.2.

• Phosphatases are part of the hydrolase enzyme class that can split chemical bonds via
a reaction with water. Their task is to remove a phosphoryl group from a substrate and
transfer it to the water molecule. Hence, phosphatases catalyze the reverse reaction of the
process catalyzed by kinases.

2.2.2 Biochemical Networks

Interlacing the components discussed, we obtain signalling cascades resulting in Protein In-
teraction Networks (PINs). Upon external or internal stimuli, these cascades are triggered.
External triggers are perceived through membrane receptors interacting with hormones and other
molecules. Once triggered, they initialize a transduction pathway, a cascade of protein state
changes within the cytoplasma. At the final stage, the process of protein-biosynthesis is initiated
and a specific enzyme is produced as response to the external stimulus. This enzyme can then
initiate another cellular pathway, leading to the production of metabolites, which are intermediate
products of metabolic pathways. We will focus here on the activations and enzymatic responses
as consequence of protein-biosynthesis and hence treat mRNA as the initial signal [11, 58]. This
is shown in Figure 2.1. Such PINs enable behaviour such as movement, reaction to external
stimuli, and the processing of internal reactions necessary for survival, to name a few [11].

2.2.3 Reaction and Enzyme Kinetics

Biochemical reactions and interactions occur at specific rates which are described, or governed
by, reaction kinetics. Here, the law of mass action (MA) is at the basis of most molecular
reactions. However, repetitive reaction patterns can be found and approximations such as the
Michaelis-Menten kinetics (MM), the Goldbeter-Koshland function (GK), or other quasi-steady
state assumptions are used. This reduces the number of explicit reactions that have to be modelled,
hence the complexity of the model. Throughout this report we will be referencing to a species’s
concentration by square brackets, e.g. [A]. The unit for concentrations is Mol per liter or M.



2.2 Biochemical Systems 10

Mass Action

The law of Mass Action states that the rate of a chemical reaction is directly proportional to the
concentration of the reactants [34]. It is universal and theoretically every chemical reaction can
be expressed in terms of MA governed interactions [81]. To illustrate this dynamic, we consider
an exemplary chemical Reaction 2.1 with reactants A and A binding in an irreversible (arrow to
the right) reaction to A. Equations 2.2 and 2.3 describe the rate of change of each component.
Observe that [A] and [B] reduce at the same rate as [C] increases. The rate constant k f describes
the speed of the reaction and is found experimentally.

A+B →C (2.1)

d[A]
dt

=
dB
dt

=−k f AB (2.2)

dC
dt

= k f AB (2.3)

Michaelis-Menten Enzyme Kinetics

Enzymatic reactions follow a pattern as in Reaction 2.4. We categorize the forward, reverse,
and catalyzation reactions by indices f ,r,cat respectively. The enzyme E binds with substrate
S at rate k f to form an intermediate product C, also referred to as enzyme-substrate complex.
This reaction is reversible and at rate kr, the complex dissociates again into its initial reactants.
However, with rate kcat, the complex engages in an irreversible reaction to form a mixture
containing the unmodified enzyme and a product P. The enzyme itself, being the catalyzer, is
not affected by the reaction in terms of total concentration, [ET ] = [E]+ [EC] (with EC being the
amount of enzyme bound in complex C).

E +S
k f
⇌
kr

C kcat→ E +P (2.4)

Michaelis and Menten [56] and later Briggs and Haldane [10] approximated the reaction above
and expressed the reaction velocity v, hence the synthesis velocity of P, as a function over the
substrate concentration as illustrated in Figure 2.2. The concentration of the substrate-enzyme-
complex C approaches a steady-state quickly resulting in dC

dt ≈ 0. This leads to Equation 2.5
which we will refer to when assuming MM kinetics. Here, Km = kr+kcat

k f
is denoted as the

Michaelis-Menten (MM) constant. It describes at what value of [S] the reaction runs at half of its
maximal velocity and is hence a measure of the affinity of the enzyme for the substrate.

At [S]≪ Km, not all enzymes are saturated with substrate and increasing [S] increases the
overall reaction speed. Here, [ET ]≫ [S] does not hold and we could also use MA kinetics to
describe the system. However, at [S]≫ Km, all enzymes are saturated with substrate. That is,
[ET ]≪ [S], hence an increase in [S] does not affect the reaction speed which is at maximum
velocity Vmax. This depends on the specific properties of the enzyme in question. Thus, at
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Figure 2.2 Reaction velocity of a MM governed enzymatic reaction. Km = 0.05, Vmax = 10

high substrate concentrations, using MM kinetics is more accurate. As discussed by Ciliberto
et al. [16], the assumption that only the substrate concentration is limiting for the reaction speed,
might not be representative for PINs with multiple substrates and enzymes.

dP
dt

=
kcatET S
Km +S

(2.5)

Goldbeter-Koshland

If two MM governed reactions are coupled in a forward/backward setting (e.g. X ⇌ XP; species
X and its phosphorylated form XP), the GK equation is used as a steady-state solution for the
concentration of the product species.

Often, enzymatic reactions are found in coupled systems such as phsophorylation and
dephosphorylation. Here a substrate-product pair (e.g. X and XP) interconvert through the
acting of a kinase and phosphatase respectively. At constant levels of kinase and phosphatase,
this system eventually reaches a steady-state of concentrations [X ],[XP]. Hence, Goldbeter and
Koshland devised Equation 2.6 in [33] by setting dX

dt = dXP
dt = 0. While the derivation can be

found in their work, we note that variables u and v expresses the influence on the coupled system
by the kinase and phosphatase respectively. Moreover, J1 =

Km1
XT

and J2 =
Km2
XT

encode the MM
constants for each reaction.

G(u,v,J1,J2) =
2uK

v−u+ vJ+uK +
√
(v−u+ vJ+uK)2 −4(v−u)uK

(2.6)

Goldbeter and Koshland refer to this as ultra-sensitive switch due to the resulting sigmoidal
functional shape of both concentrations [X ] and [XP]. This ultra-sensitivity is however only
guaranteed for J1,J2 ≪ 1 [33, 16].
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2.2.4 Biochemical Feedback and Oscillations

When in biochemical networks, the output of one reaction affects the progress of an upstream
reaction, a biochemical feedback loops arise [19]. They can cause bi-stabilities in the concen-
tration of species within a mixture and are fundamental to oscillating behaviour. There are
three types of feedback, namely positive, negative, or mutual inhibition (also referred to as
antagonism) and we shall discuss these in Chapter 3 [19]. While the behaviours of the single
components constituting these loops are known, the behaviours of the whole is of an emergent
nature. Hence it is no triviality to identify these without further mathematical simulation [19]. In
fact, systems interwinding these feedback loops show exceedingly complex dynamic properties
[19, 45, 43]. As Novák and Tyson [60] reason, this interwinding of feedback loops results in
oscillatory behaviour within certain bounds of the bi-stabilities of the underlying feedback motifs.
Three basic oscillators were identified, namely the negative-feedback, activator-inhibitor, and
substrate-depletion oscillator. Such oscillators regulate internal cycles of organisms such as
day-night production cycles in the case of the circadian clock [70], or entire cell life cycles as in
the case of the MPF (maturation promoting factor) cycle of eukaryotes [9].

2.2.5 Time Dependent Stabilization

Generally, a model’s behaviour over time is expressed through a set of ODEs. However, in certain
cases, such as for the components presented in [82], we are interested in the dynamic steady-state
concentrations of the system reached as it stabilizes. Here, stabilization refers to a dynamic
equilibrium of synthesis (introduction) of a species and its degradation (decay or degradation).
While components modelled with MM kinetics require a certain time to stabilize, approximations
such as the GK function provide immediate steady-state results. However, systems such as
oscillators do not reach such a steady-state. Instead the concentrations periodically oscillate
around an imaginary steady-state point [19]. In Figure 2.3a we illustrate how the concentrations
of a system driven by MM eventually reaches a dynamic steady-state. Figure 2.3b shows a phase-
plane portrait of a substrate-depletion oscillator. Here, the phase-plane is a visual illustration of
the dynamic behaviour of state variables X and R. The portrait of this phase-plane refers to the
illustration of trajectories (marked by the arrows) of the state variables in question [42].

2.3 Modeling in the Biochemical Context

As we have now covered the biochemical background, we here first present the general ap-
proaches to modeling. Subsequently, we focus on the cπ as well as the bond-calculus as our
work is based on the latter and builds on the former. We introduce both by implementing the
same MM kinetics reaction from Section 2.2.3 and reason about their differences.
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Figure 2.3 Visualization of time dependent stabilization. (a) Stabilization over time of home-
ostatic system discussed in Section 3.3.7. (b) Phase-plane diagram of the activator-inhibitor
oscillator presented in Section 3.4.2. Concentrations [R] and [X ] have initial value 0 and after
sufficient time circulate around an imaginary steady-state. Time axis is perpendicular to the
plane.

2.3.1 Approaches

Many approaches to biochemical modeling exist in both quantitative and qualitative forms. For
the former, modeling through systems of partial differential equations (PDEs) to capture spatial
locality of molecules or using stochastic simulations to model concentration fluctuations exist
[45]. For the latter, it has been experimented to model system behaviour through Boolean
networks and discrete variables [73]. While depending on the context, the currently most
researched modeling approach uses (non-linear) ODEs, allowing to describe continuous state
changes over continuous time [75, 67, 79, 66].

However, there are severe shortcomings of directly devising ODE systems from observed
behaviour. For one, as mentioned in Section 2.1 certain system behaviour is emergent and it is not
possible to express by mere intuition the underlying mathematical relations between species. For
another, ODEs are non-compositional. Hence, although a system might incorporate components
from another system, it is not possible to simply add new components to it and obtain a new
sensible set of ODEs [49, 8]. Therefore, a multitude of high level languages arose building on
different concepts to provide a formalization process for biochemical systems modeling.

The π-calculus was first presented by Milner et al. [57] as a calculus for mobile processes in
the setting of concurrent computing. However, Regev et al. [65] identified that the π-calculus can
also be used for the modeling of biochemical systems. Many agent-based approaches emerged
over the past decades and languages such as BioPEPA, BlendX, the continuous π-calculus (cπ),
and most recently the bond-calculus, to name a few, all build on the concepts of processes,
channels, and message passing [63, 17, 49, 88, 65].

The idea here is that a system is a combination of processes or agents which can communicate
over channels. These can allow one-way or, as in the case of the bond-calculus for example,
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multi-way communications between the agents. Actions of a process depend on the concept of
message passing or mobility. We note however that, for the specific application in the biochemical
context, we require agents to exist in continuous amounts (concentrations).

Rule based modeling represents the counter-part to the above. It takes its roots in the funda-
mentals of chemistry where interactions are represented by graphical connections. Frameworks
such as the Kappa language [39] and BioNetGen [36] provide accessible solutions for this
approach. Recentls, graph transformation models gained particular importance as they provide
a convenient framework for rule based modeling [6]. We note here that the systems biology
markup language (SBML) is an important rule-based language to express biochemical models.
However, it is software agnostic and does not provide any modeling capabilities [40].

Despite the differentiation between agent- and rule-based modeling, there is an ever looser
boundary between the two approaches. An example is the notion of agents in the Kappa language,
or the rule-based inspired notion of affinity networks in the bond-calculus.

2.3.2 The Continuous π-Calculus

As the bond-calculus finds its roots in the work by Kwiatkowski and Stark [49], we first introduce
its syntax through a working example of the MM kinetics as presented by Banks and Stark [8].
cπ itself builds upon the work by Regev et al. [65] and the process-as-molecule approach, where
individual molecules are represented as processes and their interactions as binary message-
passing [64, 89]. We refer to the thesis of Kwiatkowski [48] as canonical reference for the cπ .
A succinct summary of the syntax used here can be found in the work by Banks and Stark [8].
In Appendix D.1 we provide the code for the implementation of the following example in the
CPi-IDE [55].

E +S
k f
⇌
kr

C kcat→ E +P (2.7)

Recall Reaction 2.7 as the chemical reaction which the MM kinetic law functionally captures (as
in Section 2.2.3). The system is composed of a substrate S, enzyme E, and product P. We first
define the system’s chemical species as:

S ≜ s(u,r).(u.S+ r.P) (2.8)

E ≜ (ν {t <u
r})e⟨u,r⟩.t.E (2.9)

P ≜ τrdeg.0 (2.10)

s,u,r,v here are channels and in cπ channels represent reaction sites of a species. Anything
followed by a . (dot) is an interaction in cπ which can either be a communication prefix, as in
species definition S and E, or a silent prefix (or autonomous reaction) τk (a MA reaction at rate
k), such as in species definition P.

In the case of substrate S, s(u,r) indicates that after it reacts on channel s, it can either interact
on u or on r. The choice is denoted by the + (plus) symbol in (u.S+ r.P). If S reacts on u, the
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species turns back into itself (S). Similarly, if it reacts on r into the product P. Enzyme E, after
reacting on e can only react on t, leading to turn into itself. The ν , also referred to as binder,
represents a name constriction and indicates that names u,r, t are local to the enzyme. We can
also refer to this restriction as the local affinity graph, expressing that a reaction between t and u
at rate ru or between t and r at rate rr is allowed. Note the or here as this indicates a limitation
by the cπ , allowing only binary message passing. When the enzymes reacts on e it sends out two
channels u and r [8].

The species definition of the product P is the simplest and provides an example for the use of
an autonomous reaction τrdeg . It indicates that P turns into the null species, an always present
species incapable of any further action, at rate rdeg. This is also referred to as degradation or
decay of the species [8].

We can now define our process Π with the initial mixture of the species as a parallel
composition of its species (indicated as P ∥ Q where P,Q are species). Here, the concept of
parallel composition indicates that a certain Molar concentration (e.g. cS,cE ,cP) of species (e.g.
S,E,P) are within a mixture and that they can communicate on their declared channels. Note,
that a process can also be defined as a single species or a composition of processes as well.
Furthermore, we define the global affinity graph (or affinity network) N.

Π ≜ cS ·S ∥ cE ·E ∥ cP ·P (2.11)

N = {s
rb
− e} (2.12)

The global affinity graph is a weighted undirected graph establishing communication between
channels. In our case, it states that channels s and e can react. As cπ supports dynamic bonding,
the substrate-enzyme complex C arises from the definitions in both, the local and global affinity
graphs, hence doesn’t have to be defined explicitly:

C ≡ (v{tu
r })(t.E | (u.S+ r.P)) (2.13)

Note that it carries the local affinity graph defined in E which binds all available channels to
it. Hence, no external communication/reaction is possible. Ultimately, the local binding leads
to a composition of the possible actions of E and S which in this case are internal (allosteric)
reactions. Hence, C turns into E as it reacts on t and it has the choice to, at rate ru, react on u and
turn into S or, at rate rr, turn into the product species P. Thus, it encodes the forward, backward,
and catalyzation reaction in Section 2.2.3.

From this definitions, the cπ is now able to derive the ODEs governing the behaviour of the
whole process through its compositional vector-space semantics, continuous in time and space.
It is beyond the scope of our work to define and illustrate the exact process involved. However,
within the cπ we have a set S# called prime species of elementary species which cannot be
broken down into a composition of two non-nil species. To guarantee this we compare species
through structural congruence. The process space P is a vector space in RS#

. The gradient
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vector dP
dt describes a trajectory through this space and the dynamic behaviour of a system can

be expressed through a trajectory from the initial state [8].

2.3.3 The Bond-Calculus

The bond-calculus addresses shortcomings of the cπ such as allowing for general kinetic laws
(e.g. the MM kinetic law) as well as flexible, symmetric multi-way communications between
species to more closely model chemical bonding. It introduces a novel way to group affinity
patterns in one affinity network (instead of local and global affinity graphs). The canonical
reference for the bond-calculus and its syntax is the work by Wright and Stark [88] and the
corresponding technical annex. We refer to [89] as a further resource and elaborate a practical
example of how the bond-calculus can be used to model a gene regulation network. We include
the code for the following examples in Appendix D.2.

We illustrate the syntax of the bond-calculus through the implementation of a Michaelis-
Menten system as above. The species definitions are:

S ≜ s(ℓ).(s∗@ℓ.S+ p∗@ℓ.P) E ≜ e(ℓ).e∗@ℓ.E P ≜ p.0 (2.14)

In the bond-calculus, possible interactions of a species are denoted by sites (such as s,s∗, p∗,e∗, p
in this case) which can be bound to specific locations (ℓ) within the species. Both are defined in
the communication prefixes of the form s.S,s@ℓ.S,s(ℓ).Sℓ or more generally
s@ℓ(m1, . . . ,mn).Sm1,...,mn which reads, species S has a reaction site s at location ℓ and upon
reaction on site s receives locations m1, . . . ,mn to become species Sm1,...,mn [88]. Two or more
sites can interact with each other if they have compatible locations. Should this be the case of
two or more sites within one species, they can interact allosterically (internally).

Species S has a site s which upon reaction receives location ℓ. It then becomes specie
S∗ ≜ s∗@ℓ.S+ p∗@ℓ.P where we observe that S∗ can either turn into S or P separated by the
choice + (plus). Both are possible as both sites have the same location ℓ. Similarly, E reacts on
site e and becomes E∗ ≜ e∗@ℓ.E.

Ultimately, the species P has a site p at the ambient location ⊤, a location top level to the
mixture which does not have to be explicitly stated. It degrades into the null species, following
the same pattern as the cπ .

The affinity network AMA consists of affinity patterns indicating the available interactions
between sites (similar to biochemical site affinity) and the corresponding rates. Note, that all rate
constants are encoded in the affinity network and not on the species definition level. The model
can then be expressed as the process ΠMA, providing the initial mixtures of the species.

AMA ≜
{

s ∥ e@MAk f , s∗ | e∗@MAkr , p∗ | e∗@MAkcat , p@MAkdeg

}
(2.15)

ΠMA ≜ [S]S ∥ [E]E ∥ [P]P (2.16)
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Figure 2.4 Test Enzyme. Temporal progression of concentrations of species S in blue, P in green,
E in red, and C in turquoise.

Here, MA is indicative for mass action kinetics (Section 3.3.5). In the affinity network, s ∥
e@MAk f specifies that sites s,e can interact at rate k f and that the reaction is governed by MA.
While in s∗ | e∗@MAkr , we still refer to | as parallel composition, it indicates that s∗ | e∗ interact
allosterically, hence within the molecule itself.

Similarly to the cπ example above, the dynamic bonding within the bond-calculus gives
rise to the substrate-enzyme complex C without explicit definition. The restriction νℓ expresses
the formation of collocated molecules and indicates that sites s∗ and e∗ or p∗ and e∗ react
allosterically due to their same location [88]. Hence, C reacts to E as well as either S or P. The
resulting ODEs generate the plot illustrated in Figure 2.4.

C ≜ (νℓ)(S∗ℓ | E∗
ℓ ) = (νℓ)((s∗@ℓ.S+ p∗@ℓ.P) | e∗(@ℓ.E) (2.17)

However, we can simplify the species definitions and not rely on dynamic bonding by
encoding the formation of the complex C in the MM kinetic law. For this we can use species
definitions:

S ≜ s.P E ≜ e.E P ≜ p.0 (2.18)

MMVmax,k([S], [E])≜
Vmax[S][E]

k+[E]
(2.19)

By defining the rate law MMVmax,k as a function of the concentrations [E] and [S] (Equation 2.19),
we can define the affinity network AMM and re-use the previous process definition as the species
involved was not altered.

AMM ≜
{

s | e@MMVmax,k, p@MAkdeg

}
(2.20)

The bond-calculus is then capable of extracting the ODEs governing the specified system by
the compositional semantics provided by Wright and Stark [88]. While an in-detail elaboration
of the semantics would be outside the scope of this thesis, we want to note the most fundamental
concepts here. Similar to the cπ , the bond-calculus extracts a system’s ODEs by observing the
trace and trajectories of a mixture evolution vector dΠ

dt through the mixture space M. The basis
of M are the prime species vectors. These again are the elementary species and any other species
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or mixture of species can be decomposed into a (linear) composition of these. However, the
bond-calculus language has elements such as patterns, clusters (bags of sites), and transitions
which have to be raised into the mixture space as well in order to account for these in the
system dynamics. We differentiate between pattern space P, cluster space G, and transition
space T, which are all infinite dimensional real vector spaces. We therefore require to encode
the definitions of a model respectively in transition matrix ∈ T, interaction tensor (bi-linear map
∈M(P,T)), site concentration vector ∈G, and rate vector ∈ P. Ultimately, the evolution vector
is composed by all these constructs and the governing set of ODEs can be extracted from the
vector field generated. How this is achieved in detail can be found in the canonical reference and
its supplementary material [88].

While not relevant for the work in this thesis, we note that it is possible to conduct numerical
or stochastic simulation additionally to the ODE extraction using the bond-calculus. As indicated
by Wright and Stark [88], frameworks SciPy [41] and StochPy [52] can respectively provide the
tools necessary to implement this functionality.

2.3.4 Comparison Between the Bond-Calculus and the Cπ

Our work strongly focuses on the capabilities of biochemical modeling brought by the bond-
calculus. However, as we build on top of the work by Wang [84] in the cπ , we here present a
comparison between the two process calculi.

Syntax: It is more intuitive to encode interactions, rate laws, species, and processes separately
as done in the bond-calculus over the representation used in cπ . Here, the novel concept of
affinity networks borrowed from the rule-based modeling approach adds a central unit where
molecular and inter-molecular reactions are defined together with their governing rates and rate
constants. In comparison, the cπ requires rate laws and local affinity graphs to be included in the
species definitions. This not only impacts the syntactic clarity but also restricts the re-usability of
species definitions. However, we note that both process-calculi rely on compositional semantics,
allowing systems to be of multiple smaller ones.

Affinity: We noted that cπ restricts us to using MA kinetics for species interaction. As
discussed in Section 2.2.3, biologists often use approximations and simplifications such as MM
and GK which allow for a smaller system representation. Each could be decomposed into simple
MA kinetics. However, often reaction rates are encoded in function parameters (see GK in
Section 2.2.3), hence are not stated explicitly in the system description or experimental results.
Wang [84] raised this issue while implementing in cπ the systems presented in [82].

Bonding As cπ purely relies on directional communication channels, it is not possible to model
symmetric bonding. Instead, we would have to model agents choosing non-deterministically
in which bonds they engage [88]. Here, the bond-calculus offers a completely symmetric
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communication operation as well as location binding on sites. Once internal sites have the
same location, they can interact symmetrically and allosterically. A common example where
such symmetric bonding is homooligomerization where multiple identical species (monomeres)
bind into single units (polymeres) [88]. However, we note that both cπ and the bond-calculus
incorporate the notion of name passing or mobility which allows to describe dynamically created
processes [88, 8, 89].

Overlapping sites: Ultimately, we note that the bond-calculus is capable to model dependent
sites within a single species. Through bonding, sites can change their affinity and not be receptive
for certain other sites while they were so before. The cπ , as do other process-algebra approaches,
model reaction sites as channels and therefore assume these to be independent [88].

2.4 Model Evaluation

We now discussed what approaches exist and how to formally model a biochemical system in
the bond-calculus. The sets of ODEs generated by this process calculus are also referred to
as non-linear hybrid automata, describing our system’s behaviour over time. This allows us
to apply concepts such as model checking, formal verification, and to investigate behaviour
equivalences [49]. Based on Metric Interval Temporal Logic (MITL) and Logic of Behaviour in
Context (LBC), Logic of Behaviour in Uncertain Contexts (LBUC) provides a formal framework
to evaluate temporal properties of such hybrid automata. We present a succinct syntax of LBUC
as well as the underlying formalism of Flow*, a verification tool for cyber-physical systems.

2.4.1 Temporal Logic

For a basic overview of the general ideas of Linear Temporal Logic (LTL) and timed automata
presented we refer the reader to [7]. Furthermore, we include a succinct summary of the LTL
syntax as reference for the reader in Appendix D.3. LTL extends propositional or predicate logic
into the temporal dimension. It introduces modalities to reason about the temporal behaviour of
a reactive system and is a key component of formal software verification [7].

The non-linear ODE systems generated by bond-calculus models can be referred to as such
as reactive system. Specifically, a non-linear hybrid automata on which formal verification
can be conducted [47]. Furthermore, we can specify these systems as (finite) timed automata,
a sub-class of hybrid automata. This allows us to include the concept of clocks which allow
us to quantify the temporal dimension and keep track of time throughout simulations of the
automaton [1].

However, the syntax of LTL itself does not accommodate for timed operators, hence cannot
include time values from clocks. Thus, a multitude of temporal logics were devised, allowing to
quantify the temporal aspect of simulations through timed operators [2]. One such logic is the
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Metric Temporal Logic (MTL) which extends the LTL operators with time-bounded versions. It
is defined over a point-based integer-time semantics [2].

Alur and Henzinger [3] discuss that due to the integer-time assumed by MTL, evaluating
the satisfiability of real-timed system properties is undecidable. Informal relaxations such as
abstracting timed automata to a finite discrete time domain were presented. However, formally,
the MITL by Alur et al. [5] provides a framework where intervals rather than discrete time-steps
are considered for the decision on satisfaction of temporal properties.

As both the syntax of LBC and LBUC combine LTL(R), LTL in continuous state-space, and
MITL, we here present succinctly the MITL syntax:

φ ,ψ ::= Atom
∣∣ φ ∧ψ

∣∣ φ ∨ψ
∣∣ φ =⇒ ψ

∣∣ ¬φ
∣∣∣∣ φUIψ

∣∣ FIφ
∣∣ GIφ

Atom ::= ⊤
∣∣⊥ (2.21)

Here φ ,ψ can either be atomic prepositions or MITM formulas which are recursively defined by
the same syntax. While the first line re-iterates the basic grammar from propositional logic, the
second line presents a sub-set of the operators defined by LTL. The next operator was excluded
by Alur and Henzinger while the operators until (φUIψ), eventually (FIφ ), and globally (GIφ )
are altered to include interval I. Here, I is any non-singular interval in the domain of R≥0 such
that [a,b] | a,b ∈ R≥0 and a ̸= b (although the interval can also be non-inclusive on the lower
and/or upper bound). As an example, F[0,4]φ would express, ’φ is satisfied eventually within 0
and 4 time-steps’.

2.4.2 Logic of Behaviour in Uncertain Contexts - LBUC

Banks and Stark [8] present a novel temporal logic, LBC, to allow expressing properties of
behaviour in context. LBC builds on top of the MITL syntax presented above and introduces
the context operator C ▷ φ . Here, C is a process referred to as context and φ a LBC formula
specifying a behaviour. A context can be thought of as a newly introduced process Q to the
process P on which satisfaction of formula ψ is currently being verified. Formally, we express this
in Equation 2.22. With respects to biochemical modeling, this is analogous to the introduction of
mixture perturbations or new species within the mixture. Note that the concentrations introduced
by Q are added (+) to the current concentrations of process P.

P |= Q ▷ ψ ⇐⇒ Q ∥ P |= ψ (2.22)

From this, LBUC arises and introduces uncertainty to the syntax of LBC. Through the quantifi-
cation of uncertainty, we can reason about sets of possible system states rather than being bound
to exact quantities. Following we present, the LBUC syntax extending the LBC syntax defined
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in [8]. We note that there is no full reference for LBUC yet available.

φ ,ψ ::= Atom
∣∣ φ ∧ψ

∣∣ φ ∨ψ
∣∣ φ =⇒ ψ

∣∣ ¬φ
∣∣∣∣ φUIψ

∣∣ FIφ
∣∣ GIφ

∣∣ Q ▷ φ

Q ::= [S1]S1 ∥ · · · ∥ [Sn]Sn

Atom ::= Val ROp Val

Val ::= v ∈ R
∣∣ [Sn]

∣∣ Val AOp Val

ROp ::= >
∣∣<∣∣⩾∣∣⩽

AOp ::= +
∣∣− ∣∣× ∣∣÷

(2.23)

While φ ,ψ follow the same MITL syntax defined above in Section 2.4.1, LBUC introduces Q, a
process introduced by the context operator to formula φ . Q itself is formulated as the parallel
composition of an arbitrary number of species Sn and their concentrations [Sn] (as described in
Sections 2.3.2 and 2.3.3). [Sn] in turn can be [A] ∈ R≥0 or [A] ∈ [a,b] = {x ∈ R≥0 | a ≤ x ≤ b}.
Hence, quantifying uncertainty through the definition of a real-valued interval. ROp and AOp
represent the relational and arithmetic operators respectively.

2.4.3 Flowstar

In order to computationally show the satisfaction of LBUC formulae, we rely on the work by
Chen [14]. The approach presented allows us to verify a formula on non-linear, non-polynomial
hybrid CPSs by conducting over-approximate reachability analysis over the sytem’s state-space
constructs called flowpipes [14].

Hybrid automata often appear in context of safety-critical applications (there as cyber physical
systems; CPSs). Thus, it is often required to verify whether they satisfy certain required safety
properties. However, this is notoriously difficult and different approaches have been proposed
using paradigms from the field of control theory and formal verification [14]. The work of
Chen [14] presents a hybrid approach to reachability set over-approximation through the use of
Taylor model flowpipes and support function calculus. The work is made accessible through the
Flowstar (Flow*) framework.

To prove that no behaviour of the model violates a given property we use reachability analysis.
Here, usually the set of all reachable states from a given start state of a model are computed. If no
unsafe state is included, then the system is said to be safe. However, as shown by Alur et al. [4],
the reachability of a state for a hybrid automata (the underlying mathematical system of CSPs) is
not decidable. Therefore, over-approximate reachability analysis for hybrid automata has been
studied intensively over the past decades using a scheme called flowpipe construction [14]. Here
we build on the fact that, if the over-approximated set of reachable states satisfy a safety property,
inherently the exact reachability set will do so as well. Flowpipes aid to formalize this approach
over finite time and trace the progression of a group of state sets over a specific time interval.
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2.5 Existing Tools

Throughout this thesis we rely on the bond-calculus work bench bondwb by Wright for our
implementation [87]. It allows us to specify bond-calculus models with their species, rate laws,
affinity networks, and processes in a syntax closely resembling the one outlined in Section 2.3.3.
These are stored in .bond files which are passed to the bondwb. In turn, following the semantics
of the bond-calculus it generates a system of ODEs expressing the rate of change of each species.

The bondwb also provides us with the ability to evaluate LBUC formulae on the generated
systems. It hence supports real field intervals for the concentration values of the initial mixtures
as well as the introduction of contexts into the system. Underlying the bondwb, frameworks such
as Sage Math [74] and Flow* (Section 2.4.3) are required for the operation. The former provides
a framework with a wide range of mathematical tools such as symbolic expressions and ODE
solvers, to name a few. The latter is necessary for our work with LBUC.

While other frameworks than Flow* were considered (e.g. SpaceEx [31] for the verification
of LBUC formulae, its performance is comparatively equal to these and it provided unique
features such as symbolic restriction of flowpipes without the need for re-computation.

Furthermore, Flow* guarantees that model checking is exact and no numerical approximation
is needed due to the use of validated integration [14]. This implies that once a LBUC formula is
satisfied, it is definite that the system has the property described. However, there is the possibility
that systems do not converge, inhibiting Flow* to provide firm results.

While the bondwb itself is written in the functional programming language Haskell, we
accessed it through its Python bindings, allowing us to use jupyter notebooks for the imple-
mentation of the various systems and the subsequent analysis. Our contribution in terms of
software consists in a plotting class which allows to analyze the generated ODE systems visually.
We accounted for the different settings and can plot continuous or discrete graphics over time,
showing the system’s progression and, if possible, it’s ultimate, sometimes quasi, steady state.
However, it is also possible to plot phase plane diagrams as in [82] allowing to inspect oscillatory
behaviour.



Chapter 3

Presentation of Models

Following the functional motifs presented by Tyson et al. [82], this chapter presents the compo-
nents and systems studied and ultimately modelled in Chapter 4. We first discuss the necessary
simplifications and assumptions taken by both the authors and us to quantify the validity of the
discussed biochemical components. Following, we present what we refer to as the elementary
building blocks of biochemical systems in order of increasing complexity. We give a clear
interpretation of each system and their constituents. Moreover, we provide biochemical context
and illustrate which currently known biological systems make use of these.

Subsequently, we derive and discuss the relevant set of ODEs describing each system’s
behaviour. We do so by applying methods from system analysis [19] to infer differential equations
from schematic representations of the occurring processes in so-called wiring diagrams as shown
in Figure 3.3.1.

Furthermore, our contribution in this section is the quantitative descriptions of the charac-
teristic features of the system’s behaviour. We will refer back to these when encoding these
formally in LBUC in Chapter 4. In order to provide concise statements, we refer to Table D.1 in
Appendix D.5 which contains all numerical values of rate constants and initial concentrations
for the systems discussed as presented in [82]. Note that our characterizations of the system
behaviours presented here are non-exhaustive.

3.1 Simplifications and Assumptions

As discussed in Section 2.1, certain simplifications and assumptions are necessary in the context
of biochemical modeling.

One is the assumption that each system is well-mixed, such that there are no spatial concen-
tration gradients of the species. This is reasonable when considering extracts residing outside the
context of a living cell or within, at least yeast-sized cells as devised by Conrad and Tyson [19]
which is assumed in [82].

The second assumption is that the concentrations of species are continuous functions of time.
This assumption is valid for sufficiently large number of molecules of each species within the
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reaction volume. We here assume that each species is represented by at least a few thousand
molecules in the respective mixture [19].

We refer to a species S as the signal or stimulus emitted by the cell nucleus to enact a specific
cellular responses (see Section 2.2.2). Hence, the concentration of a signal is the concentration
of a certain enzyme which was generated by the mRNA translation. The translation mechanism
itself is abstracted away in order to simplify the models discussed. However, as Tyson elaborates
via private communication, this simplification is not reducing the validity of the model [78]. We
include further assumptions for the sake of completeness:

1. The concentration of a certain signal species is constant. Hence, no mRNA degradation,
mRNA splicing variability, or translation inhibitions assumed [11].

2. The influence of affinity compatibility between signal and response species is neglected.

3. The presence of cooperative kinetics within the mixture is neglected [16].

3.2 Biomodels Database

As an additional resource to the models presented in [82, 19, 80], some of our models are
informed by data available on the Biomodels database [53]. It contains a collection of curated
and non-curated biochemical models expressed in SBML [40]. While the models are not by
Tyson et al., we verified the consistency between the implementation and literature by comparing
rate constant values and differential equations. We will be referring to the models by their official
identifier throughout the text.

3.3 Elementary Building Blocks

3.3.1 Linear Response

Figure 3.1 Linear Response. Left: wiring diagram of synthesis and degeneration of species R
with respective rate constants. Species S is a signal enzyme resulting from mRNA translation and
promotes the synthesis of species R. Right: the resulting steady-state signal-response diagram.
Figure modified from [82] Figure 1 (a) with permission.
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The first motif is the simultaneous synthesis and degeneration of molecules, fundamental to
protein dynamics. It results in a linear signal-response curve at steady-state. Finding the motif’s
ODE system is easily achieved by inspecting the wiring diagram in Figure 3.1. Species S
represents an enzyme produced by the mRNA translation process as discussed in Section 2.2 and
3.1. For all systems the concentration of the signal, [S], will not change over time. Hence, we set
dS
dt = 0 and will not explicitly state this in the future.

In the case of this motif, S promotes the synthesis of response species R (e.g. a protein). R
furthermore is subject to an ambient synthesis as well as a constant decay. All these actions occur
at certain, unknown rates k0,k1,k2. These are usually found experimentally. However, in the
case of [82], rates are chosen such that the systems discussed follow a desired signal-response
curve. For this functional motif, k0 = 0.01,k1 = 1, k2 = 5, and the initial concentration [R0] = 0.
However, for subsequent systems we refer to Table D.1 in Appendix D for the full presentation of
the numerical values. Equation 3.1 formalizes this description. By setting dR

dt = 0 we can devise
the steady-state concentration RSS as in Equation 3.1. Note that, as [S] = 0, RSS = k0

k2
which

evaluates to 0.002 with the rate constants provided by the authors. Hence, the signal-response
curve in Figure 3.1 does not exhibit a significant y-intercept.

dR
dt

= k0 + k1S− k2R (3.1)

RSS =
k0

k2
+

k1

k2
S (3.2)

Finally, we note that Tyson et al. only includes the ambient generation of a response species in
this system as well as the systems exhibiting mutual inhibition and negative-feedback oscillation.
For all other systems, although specified in the wiring diagram, the term quantifying ambient
generation was omitted.

Characterization: For our quantitative evaluation with LBUC we here characterize the fea-
tures of the system behaviour. In Chapter 4 we will devise the LBUC formulae which we
subsequently evaluate in Chapter 5. We note about the system that:

1. As the concentration of species S increases, we observe an increase in [RSS] proportional
to k0

k2
+ k1

k2
[S] = 0.002+0.2 · [S].

2. [RSS] is independent of R’s initial concentration.

3. This independence holds for any perturbation of [R] introduced during the simulation of
the system.

4. The linear relation holds for any perturbation of [S] during the simulation.



3.3 Elementary Building Blocks 26

Figure 3.2 Hyperbolic Response. Left: wiring diagram with respective rate constants. Right:
steady-state signal-response diagram. Modified from [82] Figure 1 (b) with permission.

3.3.2 Hyperbolic Response

The underlying process of this signal-response motif is phosphorylation and dephosphorylation
of a response species R through kinase S governed by MA kinetics.

We described in Section 2.2.3 how this process changes the affinity of a protein by setting it
to a state referred to as active. ATP and water play an important role in this reaction, however are
abstracted for simplicity in this case. Examples are the functional regulation of enzymes in yeast
cells [77], or the activation of necessary energy resources upon muscle contraction in mammals,
to name a few [18].

The wiring diagram in Figure 3.2 illustrates how S, as kinase, promotes the phosphorylation
of R into RP at rate k1. RP then dephosphorylates into R at a constant rate k2 without promotion
through a phosphatase. We note, that this is an assumption by the authors violating this enzymatic
reaction couple. The correct representation is illustrated in Figure 3.3 where a phosphatase SP

drives the dephosphorylation reaction. However, we proceed with the interpretation of Tyson
et al..

Figure 3.3 Correct phosphorylation/dephosphorylation wiring diagram including a phosphatase
SP. Modified from [19] Figure 6.6 (a).

dR
dt

=−k1SR+ k2RP (3.3)

dRP

dt
= k1SR− k2RP = k1S(RT −RP)− k2RP (3.4)

dRP,SS =
RT S

k2
k1
+S

(3.5)
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The governing ODEs in Equation 3.4 are rewritten in terms of the total concentration of the
response element RT = R+RP. We note, that the rates of R and RP are complimentary and while
RT = const. the concentration of R behaves inversely to the concentration of RP.

As discussed in Section 2.2.3, at [S]≪ Km, the reaction velocity is limited by the amount of
available S, hence increasing [S] increases the reaction speed. As Tyson et al. [82] did not provide
enough information to determine Km1 and Km2 for the phosphorylation and dephosphorylation
respectively, we assume that this assumption holds. Thus, we can use pure MA kinetics to
describe the system reactions.

r1
r2

s

r3

Figure 3.4 Hyperbolic signal-response curve with subdivisions for quantitative characterization.
r1 = 0.6, r = 0.7, r = 3 = 1, s = 2. Colors: Low values of RP in orange, high values of RP in
green, not reachable values in red. Modified from [82] Figure 1 (b) with permission.

Characterization: Here we use a graphical interpretation of the signal response diagram to
reason about the bounds characterizing the system behaviour (see Figure 3.4).

1. As we increase [S], the steady-state concentration of the phosphorylated response will
globally stay below an asymptotic maximum lim[S]→∞ dRPSS([S]) = [RT ]. In our case,
[RT ] = 1 and in Figure 3.4 denoted as r3.

2. The asymptotic behaviour holds for any perturbation of [S] during the simulation.

3. As we increase [S] from low to high values, the increase in [RPSS ] is first rapid and then
gradually slows down. In Figure 4.1, [S] = s = 2 acts as a threshold between low and high
values of [S]. Bounds r1 = 0.6 and r2 = 0.7 reflect our bounds for high and low values in
[RPSS ]. Hence, as [S]< s, [RPSS ]< r2 and as [S]≥ s, r1 < [RPSS ]< r3. The bounds for [RPSS ]

have a margin of 0.1 to relax the boundaries for this property and therewith allow LBUC
to compute results.

3.3.3 Sigmoidal Response

For this signal-response motif we reconsider the phosphorylation and dephosphorylation process
presented above in Section 3.3.2. However, in this case the MM kinetics are governing the
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Figure 3.5 Sigmoidal Response. Left: wiring diagram with respective rate constants. Right:
steady-state signal-response diagram. Modified from [82] Figure 1 (c) with permission.

reactions. This would be the case if the total response concentration [RT ] is not significantly
bigger than the MM constants of kinase and phosphatase. The steady-state signal-response curve
is of sigmoidal shape and is referred to as zero-order ultras-sensitive switch [33]. However, as
discussed in Section 2.2.3, the ultra-sensitivity can only be observed while the MM constants
Km1,Km2 ≪ 1. Tyson et al. relate this motif to a buzzer component in electronics. This analogy
refers to the very abrupt but reversible predominance of RP within the mixture once [S] is big
enough.

dRP

dt
=

k2SK,total (RT −RP)

Km1 +RT −RP
−

k4SP,totalRP

Km2 +RP
(3.6)

In order to devise the governing system of ODEs for this functional motif, we refer to the work
by Wang [84] and present our own derivation of dRP

dt in Appendix D.4. Here, SK,total refers
to the total concentration of kinase and SP,total to the total concentration of phosphatase (as in
Figure 3.3).

From our work, we note that Tyson et al. neglected the presence of a phosphatase guiding the
reaction RP → R and assumed that this occurs at a constant rate k2 with respective MM constant
Km2. Hence, SP,total = 1 in our subsequent implementation and the equations provided in [82]. In
Equation 3.6, the positive term describes the phosphorylation R → RP while the negative term
represented the dephosphorylation RP → R.

Characterization: We devised bounds for this system’s behaviour illustrated in Figure 3.6.
We deduct from these the following requirements:

1. Similar to the hyperbolic motif, [RPSS ] will globally stay below the asymptotic limit of
r3 = [RT ] = 1 as [S]→ ∞.

2. The asymptotic behaviour holds for any perturbation of [S] during the simulation.

3. As [S]≤ s1, [RPSS ]< r1. Once s1 < [S]< s2, [RPSS ] increases rapidly, reaching [RPSS ] = r2

quickly. Thus, within a small change of [S], [RPSS ] rises quickly. We encode this by
having a small difference of [S] between a low value and a high value of [RPSS ], we choose
s2 − s1 = 0.5. As s2 < [S], r2 < [RPSS ]< r3.

4. The ultra-sensitivity of the switch is only retained when Km1,Km2 ≪ 1.
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Figure 3.6 Sigmoidal signal-response curve subdivided into regions for quantitative evaluation.
Sigmoidal signal-response curve with subdivisions for quantitative characterization. r1 = 0.25,
r = 0.75, r = 3 = 1, s1 = 0.7, and s1 = 1.3. Colors: Values of [RP] in green describe ultra-
sensitive behaviour, not reachable values are in red. Modified from [82] Figure 1 (c) with
permission.

3.3.4 Perfect Adaptation

Figure 3.7 Perfect Adaptation. Left: wiring diagram with respective rate constants. Right: Be-
haviour of concentrations [X ], [R] over time as [S] exhibits discrete step-wise increase. Modified
from [82] Figure 1 (d) with permission.

As mentioned in the overview of this section, the components are in order of increasing com-
plexity and building upon each other. In the case of perfect adaptation, we combine two linear
response signaling pathways (Section 3.3.1) as illustrated in Figure 3.7. The response mechanism
of perfect adaptation entails that the response species R exhibits a transient response upon
changes of [S]. However, the steady-state response of R is independent of [S]. In [82], the authors
build an analogy to the sense of smelling. It similarly reacts upon new odors, however adapts to
persistent input. They refer to this functional motif as "sniffer".

As one of the best studied biological processes, chemotaxis represents one of the fundamental
mechanisms relying on system adaptation. It is the biasing of movement of an organism towards
environments that contain higher concentrations of beneficial, or lower concentrations of toxic,
chemicals [83]. Mathematical models of such system behaviour were devised early in the context
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Figure 3.8 Perfect adaption temporal progression diagram illustrating reduction of the intensity
of spiking of [R] as [S] is higher prior step-wise increase. Modified from [82] Figure 1 (c) with
permission.

of system biology [71].

dR
dt

= k1S− kX R (3.7)

dX
dt

= k3S− k4X (3.8)

To deduce the ODEs governing this system, we observe that S promotes the synthesis of both
response species R and auxiliary species X at some rates k1 and k3 respectively. However, while
species X degrades at a constant rate k4, the degradation of R is proportional to X by factor
k2. When a sudden increase of [S] occurs, the synthesis of R is bigger than its degeneration.
However, as X adapts to the new concentration of S, synthesis and degradation of R become
gradually equal, resulting in [R] to return to its steady-state value. In Equations 3.9 and 3.10 we
identify the steady-states of X ,R and note that [XSS] = [S] and that [RSS] is equal to R’s initial
value R0 = 1 in our case. The following equations formally describe this:

RSS =
k1S

k2XSS
=

k1k4

k2k3
= 1 = [R0] (3.9)

XSS =
k3S
k4

= S (3.10)

Characterization:
1. As we introduce a step-wise increase of [S], we observe:

(a) [R] will rise as a direct response to the increased synthesis. It will exceed a threshold
and eventually return to a steady-state value (RSS =

k1k4
k2k3

= 1 in our case) as soon as
[X ] adapted to the new [S].

(b) [X ] will adapt to [S] and their concentrations will eventually be equal. This is due to
k3 = k4 = 1 in our case. Hence, [X ] = [S] eventually.
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2. The higher [S] is prior the step-wise increase, the lower will be the spike in [R] when an
increase in [S] is induced (observe reducing peaks in Figure 4.3).

3. The steady-state response RSS is independent of its initial value R0. Hence, any perturbation
of [R] during a simulation, results in the same value for RSS.

3.3.5 Mutual Activation

Figure 3.9 Mutual Activation. Left: wiring diagram with respective rate constants. Right:
steady-state signal-response diagram. Modified from [82] Figure 1 (e) with permission.

Just like fuses or one-way switches in electronics, biochemical systems too can include com-
ponents which lead to irreversible state changes within. Positive feedback, as discussed in
Section 2.2.1, provides a framework for such behaviour. It allows for reactions, as a certain
threshold of signal is reached, to auto-sustain their activity leading to a terminal state for the
system unless counteracted. Well known examples of where such behaviour can be observed are
apoptosis (controlled cell death) or stage changes of cellular growth [37, 11].

Observing the wiring diagram in Figure 3.9, we can recognize that the system consists of
a combination of synthesis and degeneration (species R and S) as well as phosphorylation and
dephosphorylation (E ⇌ EP). The synthesis of R is steered by both, [S] and the activated enzyme
EP at rates k1 and k0 respectively. R functions as the kinase of E ⇌ EP at rate k3. We note again
that Tyson et al. neglected the existence of a phosphatase regulating the dephosphorylation of
species EP (as discussed in Section 3.3.3). Hence, EP dephosphorylates at a constant rate k4.

dR
dt

= k0EP + k1S− k2R (3.11)

dEP

dt
=

k3R(ET −EP)

Km1 +ET −EP
−

k4SP,totalEP

Km2 +EP
(3.12)

Equations 3.13 and 3.14 illustrate the ODEs governing the rate of the response element and
the phosphorylated species EP. We applied a similar procedure as in Section 3.3.3 (elaborated
in Appendix D.4) and refer to Km1 and Km2 as the MM constants, and to SK,total as the total
concentration of the kinase. Following the discussion in Section 2.2.3, the steady-state concentra-
tion of the phosphorylated component EP can be expressed in terms of R with its biophysically
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acceptable steady-state solution provided by the GK function.

dR
dt

= k0EP(R)+ k1S− k2R (3.13)

EP(R) = G(k3R,k4,J3,J4) (3.14)

The behaviour can be illustrated in terms of a bifurcation diagram as in Figure 3.9 (right). Here,
as we increase [S] to a critical value Scrit, [R] will be big enough to switch on the E ⇌ EP buzzer.
R then engages in an autocatalytic process with EP as a direct result from the positive feedback
and synthesises enough of itself to be independent of [S]. As we decrease [S], [R] and [EP]

will remain high, giving the system no possibility to reduce the response element anymore to a
low concentration. In system’s analysis, when a system’s state is dependent on its history, it is
referred to as hysteresis [19]. Mathematically, this is referred to as a one-parameter bifurcation
where the system is bi-stable for values [S] ∈ [0,Scrit). It has two stable steady-state response
values separated by an unstable steady-state [82].

Characterization:
1. While [S] ∈ [0,Scrit) we observe the steady-state concentration of R to be [RSS]⪅ 0.14.

2. As [S] is increased to Scrit ≈ 10.2, we observe a discontinuous jump (bifurcation) at
from [RSS]≈ 0.15 to [RSS]≈ 0.49. The values refer to the results obtained given the rate
constants in [82].

3. As [S]≥ Scrit, [RSS]≥ 0.49.

4. As we decrease [S]→ 0, [RSS]≥ 0.38. Hence, the steady-state response remains in a state
of high concentration due to the autocatalytic process with EP.

5. If a perturbations of [R] is introduced during simulation such that [R]> 0.2, the steady-state
concentration [RSS] will jump to a high concentration [RSS]≥ 0.38.

3.3.6 Mutual Inhibition

Figure 3.10 Mutual Inhibition. Left: wiring diagram with respective rate constants. Right:
steady-state signal-response diagram. Modified from [82] Figure 1 (f) with permission.
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For this motif we re-use the components of the previous system, however in this case
E promotes the degradation of R. However, as [R] increases, more of E will be present in its
phosphorylated form EP. Thus, a positive feedback on the degradation of R is in-place, promoting
the effect of the signal. The resulting system also exhibits hysteresis. Tyson et al. refer to it as a
discontinuous two-way switch, or "toggle", and is the reversible pendant to the configuration
above. Well known examples such behaviour can be observed in the cell cycle of budding yeast
cells [13, 20]. Moreover, more research is recently devoted to the positive feedback mechanism
as a whole and the bistability presented here was found to be fundamental for the motility (free
motion) of eukaryotic cells [54].

dR
dt

= k0 + k1S− k2R− k′2E(R) ·R (3.15)

E(R) = G(k3,k4R,J3,J4) (3.16)

As in synthesis and degeneration, S synthesises R at rate k1 which is also subject to an ambient
synthesis at a constant rate k0. Furthermore, R also degrades at a constant rate k2. R promotes
the phosphorylation of E ⇌ EP at rate k4 while E promotes the degeneration of R at rate k′2. R
increases as S increases. However, as more of the total concentration ET is in form of EP, the
degradation of R decreases as the concentration of E reduces. Hence, once the concentration of
S reaches a critical level Scrit1, the sigmoidal switch from Section 3.3.3 switches from high E to
low. Degradation of R is quickly decreased and a sudden increase of its concentration can be
observed. As we now reduce the concentration of S again, the concentration of R remains high
until it does not suffice anymore to promote E → EP to keep the switch low. Once S reaches a
value as low as Scrit2, the high concentration of E promotes the degradation of R, resulting in a
sudden decrease of [R]. Equations 3.11 and 3.16 are the governing ODEs. We again apply the
GK function for the steady-state concentration of E.

As noted in Section 3.3.1, here R has an explicit ambient synthesis as well as a degeneration
dependent on its concentration, similar to the linear response system. These are additionally to
the synthesis by S and degeneration through E respectively.

Characterization:
1. Similar to the system before, as [S] ∈ [0,Scrit2), the steady-state response R will remain

below a threshold of [RSS]⪅ 1.7. In our case, Scrit2 ≈ 1.7.

2. However, as S = Scrit2, we observe a discontinuous jump in [RSS] such that [RSS]≈ 0.79.

3. As [S] is increased, [RSS]⪆ 0.76.

4. As [S] is decreased and [S]> Scrit1, [RSS]⪆ 0.28.

5. As [S] = Scrit2 ≈ 0.85 a discontinuous jump in [RSS] is observed to the lower values
previously observed.
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6. Perturbations of [R] introduced during simulation can result in a state change of [RSS]

depending on [S].

3.3.7 Homeostasis

Figure 3.11 Homeostasis. Left: wiring diagram with respective rate constants. Right: steady-state
signal-response diagram. Modified from [82] Figure 1 (g) with permission.

In the case of homeostasis, the concentration of the response species is confined by a narrow
band for a wide range of signal concentration as in Figure 3.11. Underlying is a configuration
referred to as negative feedback (Section 2.2.1). Here, the response element counteracts the
effect produced by the signal. It has been shown early on, that components enacting homeostasis
allow systems to gain resilience over varying input and the ability to reach plateau levels of
certain species concentrations even with inaccurate stimulus concentrations [76]. An excellent
example is the blood sugar regulation through insulin within our body, also referred to as glucose
homeostasis [21]. Here, the pancreas secretes insulin as a response to elevated blood sugar until
it reaches a plateau concentration upon which secretion is halted. Moreover, homeostasis is at the
core of many other cellular and physiological activities such that dysfunctions of this negative
feedback loop is core to much research in the field of pathogens [15].

dR
dt

= k0E(R)− k2S ·R (3.17)

E(R) = G(k3,k4R,J3,J4) (3.18)

Figure 3.11 illustrates how species R is synthesized at rate k0 by species E. Similar to both
mutual activation and mutual inhibition, R acts as kinase for the phosphorylation E → EP at rate
k4. Hence, at high concentrations of R, EP is predominant in the system. The signal S degrades
R at rate k2. As we increase the concentration of S, the concentration of R within the system
decreases. As a result, the concentration of E will rise due to EP dephosphorylating. This in turn
promotes the synthesis of R which results in a negative feedback to the stimulus. Hence, for a
wide range of S, the synthesis of R will be equivalent to its degeneration. The system of ODEs in
Equations 3.17 and 3.18 describe the system over time.

Characterization:
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1. With approximately [S] ∈ [0.6,2], the concentration of the steady-state response will be
approximately [RSS] ∈ [0.6,0.4] in our case. Hence, we characterize that for a wide band
of [S], [RSS] keeps within a tight bound.

2. [RSS] is independent of the initial concentration of R as well as perturbation of its concen-
tration throughout the simulation.

3.4 Oscillators

As discussed in Section 2.2, complex system behaviour can be traced back to positive and
negative feedback, promoting and reducing effects between component interactions. Oscillators
are crucial conveyors of this statement. Hence, we discuss here three elementary oscillatory
motifs which are believed to be at the basis of every oscillator that can be observed in biochemical
systems such as PINs and gene regulation networks [60, 12, 90]. The systems presented are
build upon the previously presented elementary building blocks.

3.4.1 Negative-Feedback

Figure 3.12 Negative-feedback oscillator. Left: wiring diagram with respective rate constants.
Center: diagram illustrating oscillation over time of species concentrations [X ], [YP], [RP] at
[S] = 2. Right: signal-response diagram showing the effect of the Hopf-bifurcation; points
illustrate maximum and minimum values of oscillating [RP] as Scrit1 < S < Scrit2. Modified
from [82] Figure 2 (a) with permission.

Building upon the notion of negative feedback, this oscillator consists of two interlaced phos-
phorylation/dephosphorylation, or buzzer, circuits which ultimately provide negative feedback to
the stimulus. The oscillation is only observed as Scrit1 < S < Scrit2 resulting in what is referred to
as Hopf-bifurcation in the signal-response diagram (Figure 3.12 right). Scrit1,Scrit2 are referred to
as subcritical Hopf bifurcation points [82]. If [S] is not within these boundaries, the system ceases
to oscillate and the species concentrations reach a dynamic steady-state. This kind of oscillators
are also referred to as repressilators [12] and can be found in MAPK (mitogen-activated protein
kinases) signaling pathways as well as circadian rhythms [82]. Following an experiment by
Elowitz and Leibler [22] in which they reproduced an artificial oscillator of this kind with a
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fluorescent response component, Tyson et al. refer to this oscillator as a blinker.

dX
dt

= k0 + k1S− k2X + k′2RP ·X (3.19)

dYP

dt
=

k3X (YT −YP)

Km3 +YT −YP
− k4YP

Km4 +YP
(3.20)

dRP

dt
=

k5YP (RT −RP)

Km5 +RT −RP
− k6RP

Km6 +RP
(3.21)

To specify the system, we first observe synthesis and degeneration governing the rate of change
of the concentration of X and MM governed phosphorylation and dephosphorylation of Y ⇌ YP

and R ⇌ RP. Again, any phosphatase species are omitted by Tyson et al.. This oscillator can have
two configurations. In Figure 3.12, dashed line (1) refers to an inhibition of the synthesis while
(2) refers to promoted degeneration of X , which we chose for this model. Both are equivalent
in how they affect system behaviour. Y ⇌ YP and R ⇌ RP can be seen as buffers, delaying the
signal propagation.

With Scrit1 < S < Scrit2, X is synthesized to a certain concentration at which it phosphory-
lates enough Y → YP to turn on Y ⇌ YP buzzer (set YP to a high concentration). YP in turn
phosphorylates R → RP, turning the R ⇌ RP buzzer on but delayed in time from the original
stimulus by X . RP subsequently degenerates X which causes the two buzzers to be turned off
sequentially. Delays are dependent on the reaction constants k0, . . . ,k6 chosen. This ultimately
leads to an oscillating behaviour of X , YP, and RP. As soon as S > Scrit2, the generation of X is
high enough to keep the phoshporylated component YP predominant (hence the buzzer doesn’t
turn off anymore). Therefore, RP remains on a constant high as well and its promotion of the
degeneration of X does not result in a significant concentration change of YP. Oscillation ceases.

Characterization:
1. As long as Scrit1 < S < Scrit2, we can observe an oscillation. We assume for the following

statements that S is within these bounds.

2. Species X , YP, and RP (hence also Y and R) will oscillate infinitely often between their
high and low values while oscillation is possible.

3. Once [X ] is high, eventually [YP] will be high, and eventually [RP] will be high, repeating
infinitely often.

4. As [RP] is at a high, [X ] is at a low.

5. The initial values of the system do not influence the oscillatory behaviour which will
eventually be reached as long as [R]+ [RP] = [Y ]+ [YP] = 1. The same reasoning holds for
perturbations of the mixture during the simulation.
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Figure 3.13 Activator-Inhibitor Oscillator. Left: wiring diagram with respective rate constants.
Center: phase-plane portrait illustrating the oscillating behaviour between species R and X at
[S] = 2 in black; (X ,R) pairs satisfying dR/dt = 0 in red; (X ,R) pairs satisfying dX/dt = 0
in blue. Right: signal-response diagram illustrating the Hopf-bifurcation at Scrit1 < S < Scrit2.
Modified from [82] Figure 2 (b) with permission.

3.4.2 Activator-Inhibitor

As presented by Tyson et al. [82], oscillators can consist of a combination of positive and negative
feedback. The activator-inhibitor and the substrate-depletion oscillators (in Section 3.4.3 below)
are the two varieties of oscillators that can arise from such configurations. Tyson et al. [82]
presents the cyclic adenosine monophosphate (cAMP) production in slime mold, Dictyostelium
discoideum, as a classic example of such an activator-inhibitor oscillation. Here, external cAMP
binds to surface receptors promoting the synthesis of more cAMP. Concurrently, cAMP pushes
the receptor into an inactive form. As the synthesis ceases, cAMP degrades, allowing the receptor
to return into its active, cAMP secreting state. More recent literature shows that the oscillatory
interplay of activators and inhibitors also play a significant role in cell membrane behavior and
cell surface properties [90].

dR
dt

= koEP(R)+ k1S− k2R− k′2X ·R

dX
dt

= k5R− k6X

EP(R) = G(k3R,k4,J3,J4)

(3.22)

From the wiring diagram in Figure 3.13 we deduce that R is synthesized by S and EP while
being subject to constant degradation at rate k2 which is also promoted by species X . As [R]
increases, the positive feedback loop with EP causes an autocatalytic process as found in the
mutual activation system (Section 3.3.5). However, more of the inhibitor species X is generated
concurrently which results in a degradation of R until near complete depletion. As X degrades,
R can newly accumulate and, in the fashion of the receptor in the cAMP cycle above, return to
promote its own synthesis. The oscillation described is again only supported for concentrations
of the signal Scrit1 < S < Scrit2 while the instability allowing for the oscillation is introduced by
the positive feedback loop between R and EP. However, from the the signal response curve we
see that the transition between the stable and oscillatory behaviour is rather abrupt compared to
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the previous system. This is mostly due to the ultra-sensitive buzzer component E ⇌ EP which
steers the positive feedback loop which in turn causes the instability of the system. The same
reasoning applies to the following oscillator.

Characterization:
1. As long as Scrit1 < S < Scrit2, we can observe an oscillation. We assume for the following

statements that S is within these bounds.

2. Once the oscillation stabilizes for a given value of [S], we can imagine that a particle at
approximately ([X ], [R])≈ (1,0.3) will eventually return to the same point after one full
period of oscillation.

3. The oscillatory behaviour which will eventually be reached is independent of the initial
values of R and X as well as perturbations of their concentrations during the simulation.

3.4.3 Substrate-Depletion

Figure 3.14 Substrate-Depletion Oscillator. Left: wiring diagram with respective rate constants.
Center: phase-plane portrait illustrating the oscillating behaviour between species R and X at
[S] = 2 in black; (X ,R) pairs satisfying dR/dt = 0 in red; (X ,R) pairs satisfying dX/dt = 0
in blue. Right: signal-response diagram illustrating the Hopf-bifurcation at Scrit1 < S < Scrit2.
Modified from [82] Figure 2 (c) with permission.

The last fundamental oscillatory motif relies upon a positive feedback loop between R,EP,
depleting the substrate X from which R is synthesized. This type of oscillation was the first one to
be discovered, governing the periodic sugar-alcohol conversion in yeast cells [69, 68]. However,
it was also found that this motif describes the underlying mechanism of MPF (maturation
promoting factor) oscillations in frog egg extracts, steering embryo growth [59, 82].

dX
dt

= k1S−
[
k′0 + k0EP(R)

]
·X

dR
dt

=
[
k′0 + k0EP(R)

]
·X − k2R

EP(R) = G(k3R,k4,J3,J4)

(3.23)
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By inspecting the wiring diagram, X is the substrate from which R is synthesized. The signal
S steers the synthesis of this substrate which in turn synthesizes R. Given Scrit1 < S < Scrit2,
R promotes its own synthesis through the positive feedback loop by phosphorylating E (as in
mutual activation Section 3.3.5). However, as the synthesis of R increases, it depletes its substrate
X . As the concentration of X does no longer sustain the synthesis of R which in turn cannot
phosphorylate E, the positive feedback collapses and the concentration of X can recover to newly
initiate this oscillation. Equations 3.23 represent the resulting ODE system with the respective
reaction rates.

Characterization: The characterization of this system closely resembles the reasoning pre-
sented in the previous activator-inhibitor oscillator (Section 3.4.2). We here add:

1. The particle to observe is at ([X ], [R]) ≈ (1.5,0) which too will eventually return to the
same point after one full period of oscillation.

3.5 Summary

In this chapter we have illustrated the elementary functional motifs required to build models
capable of explaining and predicting complex emergent behaviour of larger biochemical systems.
This is also the justification of why we chose the systems presented by Tyson et al. [82]. We
discussed seven different signal-response elements which build upon each other, extending the
complexity of the resulting system behaviour. Subsequently, we built the three fundamental
oscillators which can be found at the base of every observed biochemical oscillatory or periodic
behaviour. For all systems we were capable of devising the governing systems of ODEs by
mathematical reasoning using system analysis, following the simplifying assumptions made
in the beginning of this chapter. Furthermore, we contributed formal quantitative descriptions
to the systems presented, characterizing the features of the resulting system behaviours. What
follows next is the automatization of the reasoning presented here through the use of the high
level language provided by the bond-calculus.



Chapter 4

Implementation

This chapter displays the implementation of the previously discussed biochemical systems in
the bond-calculus, following the syntax outlined in Section 2.3.3. By using the bond-calculus
workbench (bondwb), we follow the order of increasing complexity presented before and
introduce new code components as needed. Box 1 and Figure 2 in [82] provide the set of
parameters used for each model. Furthermore, we include the code for all models in Appendix A.
The relevant reaction rates and initial values can be found in Table D.1 in Appendix D.5. This
chapter is split into elementary building blocks, oscillators, as well as the implementation in
LBUC of the characterized systems: linear response, hyperbolic response, sigmoidal response,
and perfect adaptation.

4.1 Elementary Building Blocks

Following the structure from the previous chapter, we first introduce the implementation of the
elementary building blocks. Each system is presented with code excerpts and description to
justify the design choices made. We note that for the systems mutual activation, mutual inhibition,
and homeostasis we provide two implementations. One model implements the system with the
GK function (see Section 2.2.3) while the other uses explicit MM kinetics instead. This choice
was taken to overcome a temporary bug in the bondwb (further elaborated in Section 4.1.5).
However, we only present the additional explicit implementation for the mutual activation system
for the sake of brevity. The code for the explicit models as well as all others can be found in
Section A.

4.1.1 Linear Response

Synthesis and degeneration, being the basic component at the core of any signal-response
network, consist of a species for the signal S as well as response R. All interactions are based on
simple MA kinetics (as in Section 2.2.3). Hence, we first define the species and their respective
sites.
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1 species S = ssynR -> (S | R);
2 species R = degradeR -> 0;
3 species A = asynR -> (R | A);

Following the syntax, species S has site ssynR which upon reaction results in a parallel composi-
tion of S and R. Thus, it remains within the system and is not lost or degraded while synthesizing
R. Species R can only react to become the null species, hence degrade (or decay). Note that
variable names for sites and locations are required to begin with a lower-case letter when using
the bondwb.

An important aspect of this motif is the ambient synthesis of R. As the bond-calculus does not
provide a generic ambient species, we chose to model this aspect through the ambient species A.
Here, dA

dt = 0 and initial concentration A0 = 1, we ensure that it synthesises R by any rate constant
provided in the MA kinetics. We again express the synthesis of R as a parallel composition
between A and R such that the concentration of A is not affected by interaction on this site.

Given that we are using MA, which already is implemented in the system by default as
MA(.), we can proceed to define our affinity network N with rate constants a, s, r.

4 affinity network N(a, s, r) = {
5 asynR at rate MA(a);
6 ssynR at rate MA(s);
7 degradeR at rate MA(r);
8 }
9 process P1 = [1.0] A || [1.0] S || [0] R

10 with network N(0.01,1,5);

Finally, we define the process ( P1) with its initial mixture, the respective affinity network,
and the real-valued reaction constants. We used [k0,k1,k2] = [a,s,r] = [0.01,1,5] as provided
in [82] Box 1. The entire code for this model is included in Appendix A.1 as a coherent file.

4.1.2 Hyperbolic Response

We can make use of the previous system in order to model the MA governed phosphorylation
and dephosphorylation underlying this signal-response pathway referred to as buzzer in [82]. We
do not require ambient synthesis of any species and neither R nor RP are directly synthesized by
signal S. Hence, S has a site which upon reaction does not lead to any change in concentration of
itself. However, R and RP can phosphorylate and dephosphorylate respectively.

1 species S = kinaseR -> S;
2 species R = phosphorylate -> RP;
3 species RP = dephosphorylate -> R;
4

5 affinity network N(k1, k2) = {
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6 kinaseR || phosphorylate at rate MA(k1);
7 dephosphorylate at rate MA(k2);
8 }

Within the affinity network we define signal || phosphorylate at rate MA(k1) as the
affinity pattern that site kinaseR can interact with site phosphorylate at a specific rate MA(k1).
The parallel composition indicates that, once the two sites are available, they can react as
discussed in Section 2.3.3.

As a last step, we define a process with initial values [1.0] S || [1.0] R || [0.0] RP
and rate constants k1 = k2 = 1. While Tyson et al. do not provide the specific initial values for
species R and RP, they indicate that the total Molar concentration of R is RT = 1. Given that
only an initial amount of R = 1 is available in our model and given that no additional R and RP

is introduced, it is guaranteed by the law of mass conservation, that RT = 1 is satisfied.

4.1.3 Sigmoidal Response

The sigmoidal functional motif is very similar to the previous system, including the same species
definitions. With the phosphorylation and dephosphorylation being governed by MM kinetics,
we need to implement a custom kinetic law reflecting the rate law devised in Section 3.3.3.

1 kinetic law MM1(k,km; S,R) =
2 (k*S*R) / (km + R);

We do so by using the key words kinetic law in the bondwb, followed by a function name and
its arguments MM1(k,km; S,R). In this example the first two arguments k,km are rate constants,
passed into the the function by the corresponding affinity pattern in the affinity network. The
; separates rate constants from the species passed as arguments. Following, species S,R are
abstracted names of the species onto which the law is applied to in the affinity pattern. All
arguments are positional arguments.

Tyson et al. did not include the phosphatase component in the dephosphorylation step (as
noted in Section 3.3.3). Hence, we define an additional rate law, reflecting the formula.

3 kinetic law MM2(k,km; RP) =
4 (k*RP) / (km + RP);

While the affinity matrix is equivalent to the one in the previous model, we substitute MA
with our custom rate laws. The parallel composition signal || phosphorylate respects the
positional order of the signal species S and response species R defined in the kinetic law MM1(.)
as kinase and phosphorylate are their respective sites.

5 affinity network N(k1, k2, km1, km2) = {
6 kinaseR || phosphorylate at rate MM1(k1,km1);
7 dephosphorylate at rate MM2(k2,km2);
8 }



4.1 Elementary Building Blocks 43

Finally, the process with initial values [1.0] S || [1.0] R || [0.0] RP, rate constants
k1 = k2 = 1 and MM constants km1 = km2 = 0.05 is defined.

4.1.4 Perfect Adaptation

The sniffer functional motif exhibited by systems with perfect adaptation can be built from the
components provided in Section 4.1.1. All interactions are governed by MA kinetics. Following
the wiring diagram (Section 3.3.4) for this component we obtain the following species definitions.

1 species S = ssynR -> (S | R)
2 + ssynX -> (S | X);
3 species R = degradeR -> 0;
4 species X = degradeX -> 0
5 + stayX -> X;

For species S and X we define multiple sites separated by a choice using a mathematical OR
operator (denoted by +). Hence, S can either synthesise R or synthesise X without changing
its own concentration. X and R degrade to the null species. However, species X promotes the
degradation of R while not being affected itself. By introducing the site stayX we access the
concentration of X without changing it.

6 affinity network N(k1, k2, k3, k4) = {
7 ssynR at rate MA(k1);
8 ssynX at rate MA(k3);
9 degradeR || stayX at rate MA(k2);

10 degradeX at rate MA(k4);
11 }

The underlying mixture to the process is [0] S || [0] X || [1.0] R, with rate constants
k1 = k2 = 2 and k3 = k4 = 1.

4.1.5 Mutual Activation

This system is the first of the discussed to exhibit positive feedback by combining the concept of
synthesis and degeneration with the one of the phosphorylation/dephosphorylation buzzer. We
refer to it as the irreversible switch. Species R acts as the stimulus, the kinase, for the E → EP

phosphorylation. Once EP surpasses a certain threshold value, it synthesises enough R to create
the one-way switch intended by Tyson et al.. The authors assume that the E ⇌ EP reactions
fulfill the MM requirements (see Section 2.2.3) such that the GK function can be used to express
the steady-state concentration of EP. Following their description, we build a model consisting
only of species S and R, while the concentration of EP is computed as presented in Section 3.3.5
through the GK function.
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1 species S = ssynS -> (S | R);
2 species R = degradeR -> 0
3 + epsynR -> (R | R);

The species definition for S is as before. However, species R now includes the site epsynR which
allows it to synthesise itself. While biochemically this does not seem to be a valid statement, this
is required to accommodate for the missing explicit species definition of EP.

4 kinetic law G(f,u,v,J,K; R) =
5 (2*u*K*f*R)/(v-R*u+v*J+R*u*K+((v-R*u+v*J+R*u*K)**2
6 -4*(v-R*u)*R*u*K))**0.5;

Here, our implementation of the GK function according to its definition (Equation 2.6 in
Section 2.2.3). It includes the following extensions due to some particularities of the bondwb
and the bond-calculus itself:

• Given the function parameters for this system in [82] (replicated in Equation 3.14, Sec-
tion 3.3.5) we are required to set parameter u = u ·R. Thus, we included species R in the
kinetic law to access its concentration and multiply each occurrence of u by it.

• In Equation 3.13 (Section 3.3.5), we are also required to multiply the computed con-
centration of EP by rate constant k0. As the bond-calculus does not support arbitrary
multiplication of affinity patterns, we encoded this multiplication as an additional factor f
in the kinetic law definition.

The affinity network consists of the synthesis of R through S, R’s decay, as well as the self-
synthesis of R by k0E(R) with E(R) = G(k3R,k4,J3,J4). The resulting process follows the
reaction rates provided.

7 affinity network N(k0, k1, k2, k3, k4, j3, j4) = {
8 ssynR at rate MA(k1);
9 degradeR at rate MA(k2);

10 epsynR at rate G(k0,k3,k4,j3,j4);
11 }
12 process Pi = [1.0] S || [0.0] R
13 with network N(0.4,0.01,1,1,0.2,0.05,0.05);

A bug in the symbolic simplification algorithm of the bondwb initially caused the resulting sets
of ODEs to not conform with the ones devised in [82]. Hence, we concluded that by explicitly
modeling the MM kinetics governing the E ⇌ EP reaction, we can circumvent that temporary
limitation.

The resulting model uses the same species definition for S as before. For species R we define
a site for its degradation as well as a site to access its concentration. This is similar to species X
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in the model for perfect adaptation (Section 4.1.4). Species E and EP are similar to R and RP

in Section 4.1.3 as they follow the same phosphorylation/dephosphorylation pattern. However,
species EP in this case also has a site to synthesize R.

1 species R = degradeR -> 0
2 + stayR -> R;
3 species E = phosphorylateE -> EP;
4 species EP = dephosphorylateEP -> E
5 + epsynR -> (EP | R);
6

7 affinity network N(k0, k1, k2, k3, k4, j3, j4) = {
8 epsynR at rate MA(k0);
9 ssynR at rate MA(k1);

10 degradeR at rate MA(k2);
11 stayR || phosphorylateE at rate MM1(k3,j3);
12 dephosphorylateEP at rate MM2(k4,j4);
13 }

The affinity network reflects the combination of the concepts from the linear and sigmoidal
response motif by first defining the synthesis and the decay of R, then the E ⇌ EP reaction
where R acts as the kinase as mentioned before. Rate laws MM1(.) and MM2(.) are re-used
from Section 4.1.3. The process is equivalent to the one of the previous model, however we
now also include species E and EP in the mixture with initial values [1.0] E || [0] EP. This
fulfills the requirement ET = E +EP (as in Section 4.1.3). As Tyson et al. do not specify the
initial values, we used a curated SBML entry of this component on the Biomodels database as
reference [25].

The aforementioned bug had been fixed throughout the project by Wright. Hence, the
phosphorylation/dephosphorylation reactions of following models are modelled using the GK
function as specified by Tyson et al. in order to replicate the sets of ODEs presented. How-
ever, in Appendix A we also include for each model an explicit implementation where the
phosphorylation/dephosphorylation reactions are modelled using MM kinetics and the relevant
species.

4.1.6 Mutual Inhibition

The wiring diagram in Section 3.3.6 shows that the reversible switch component only differs
slightly from the previous model. In this case, species E is responsible for promoting the
degradation of species R. Thus, we compute the concentration of E using the GK function and
degrade R following simple MA kinetics with a rate constant k2′. Furthermore, Tyson et al.
re-introduced an ambient synthesising of R at rate k0.
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1 species R = degradeR -> 0
2 + stayR -> R;

We re-use the species definitions for S and A from the linear response motif in Section 4.1.1.
Similar to the mutual activation model above, we set v= v ·R and include the additional parameter
f in our GK function. Furthermore, to encode that R ·E(R), where E(R) = G(k3,k4R,J3,J4) and
G the GK function, we multiply the numerator of our function with the concentration of R. This
way we comply with the equations devised by Tyson et al. (replicated in Equations 3.16 and 3.15,
Section 3.3.5).

1 kinetic law G(f,u,v,J,K; R) =
2 2*u*K*f*R / (v*R-u+v*J*R+u*K+((v*R-u+v*J*R+u*K)**2-
3 4*(v*R-u)*u*K)**0.5);
4

5 affinity network N(k0, k1, k2, k21, k3, k4, j3, j4) = {
6 asynR at rate MA(k0);
7 ssynR at rate MA(k1);
8 degradeR at rate MA(k2);
9 degradeR at rate G(k21,k3,k4,j3,j4);

10 }
11 process Pi = [0.0] S || [0.0] R || [1.0] A
12 with network N(0,0.05,0.1,0.5,0.2,1,0.05,0.05);

4.1.7 Homeostasis

Finally, the last elementary building block component exerts homeostasis resulting in a semi-
stationary concentration of R for a broad range of signal. While the setup is similar to the one in
mutual activation and inhibition, here we observe negative feedback. As E counteracts the effect
of S by synthesizing more R as S degrades it. R again acts as kinase for the reaction E → EP.

We re-use species definition for S and R from the mutual activation GK implementation (in
Section 4.1.5). The GK function itself is re-used from the definition in the mutual activation
system (in Section 4.1.6). However, the additional R term in the numerator is omitted to comply
with the function definition in [82].

The affinity network reflects the interactions from the wiring diagram. Note that S now is
part of the decay of R. Hence, the first pattern would evaluate to [S] · [R] · k2. Moreover, we again
use the fact that R has a site to synthesize itself to model the synthesis by E given the value
resulting from the GK function.

13 affinity network N(k0, k2, k3, k4, j3, j4) = {
14 sdegradeR || degradeR at rate MA(k2);
15 synR at rate G(k0,k3,k4,j3,j4);
16 }
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17

18 process Pi = [1.0] S || [0.0] R with network N(1,1,0.5,1,0.01,0.01);

4.2 Oscillators

As oscillators are at the very core of fundamental periodic processes within cells as well as
organs and whole metabolisms, showing whether the bond-calculus is capable of modeling
their emergent behaviour accurately is of special interest. This section is devoted to the im-
plementation of the three core oscillators found in biochemical systems using the previously
presented elementary building blocks. We will follow the description of the systems provided
in Section 3.4. Note that for the activation-inhibitor and substrate-depletion oscillator we also
implemented two explicit models using MM kinetics and the respective species instead of the
GK function. These can be found in Appendix A.

4.2.1 Negative-Feedback

For this oscillator we re-use the concepts of the sigmoidal response (Section 4.1.3) and the
reversible-switch motifs (Section 4.1.6). Hence, we devise a species A for the ambient synthesis
of X . Species S, the signal, synthesises X as well. Species X has a site to degrade. Both Y and R
have sites to phosphorylate while their activated form YP and RP have sites to turn back into their
initial forms.

1 species A = asynX -> (A | X);
2 species S = ssynX -> (S | X);
3 species X = stayX -> X
4 + degradeX -> 0;
5 species Y = phosphorylateY -> YP;
6 species YP = stayYP -> YP
7 + dephosphorylateYP -> Y;
8 species R = phosphorylateR -> RP;
9 species RP = stayRP -> RP

10 + dephosphorylateRP -> R;

In the affinity network, we incorporate the signal and ambient synthesis of X as well as its
synthesis by using MA. The Y ⇌ YP reaction is steered by the concentration of X using the MM
kinetics from the sigmoidal response motif (Section 4.1.3). We do so equally for the R ⇌ RP

reaction which is steered by the concentration of YP. Finally, the decay of X is additionally driven
by the concentration of RP with MA kinetics.

11 affinity network N(k0, k1, k2, k21, k3, k4, k5,
12 k6, km3, km4, km5, km6) = {
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13 asynX at rate MA(k0);
14 ssynX at rate MA(k1);
15 degradeX at rate MA(k2);
16 stayX || phosphorylateY at rate MM1(k3, km3);
17 dephosphorylateYP at rate MM2(k4, km4);
18 stayYP || phosphorylateR at rate MM1(k5, km5);
19 dephosphorylateRP at rate MM2(k6, km6);
20 stayRP || degradeX at rate MA(k21);
21 }

Following the initial concentrations documented in the corresponding Biomodel [27] as well
as the values in [82], we create a process with mixture [1.0] A || [2.0] S || [0] X ||
[1.0] Y || [0.0] YP || [1.0] R || [0.0] RP. Here, we have S ∈ (Scrit1,Scrit2) such

that oscillation occurs. Furthermore, we note that initially species Y and R are predominant in
their inactive (non-phosphorylated) form.

4.2.2 Activator-Inhibitor

We refer to our description of this oscillator in Section 3.4.2 and build the system by re-using
components from the mutual activation (Section 4.1.5) and the perfect adaptation motifs (Sec-
tion C.4).

The signal species definition as well as the GK function follow from the model for mutual
activation. The species definition for X follows from perfect adaption. However, for species R
we need to define sites for degradation, the synthesis of X , and the self-synthesis used with the
GK function in the mutual activation motif.

1 species R = rsynR -> (R|R)
2 + degradeR -> 0
3 + rsynX -> (R | X);

The affinity network includes affinity patterns for the synthesis of R by S and EP. The latter is
modelled using the GK function. Furthermore, the degradation of X and R. The latter is both by
a constant value as well as steered by [X ].

4 affinity network N(k0, k1, k2,
5 k21, k3, k4,
6 k5, k6, j3, j4) = {
7 ssynR at rate MA(k1);
8 degradeR at rate MA(k2);
9 degradeX at rate MA(k6);

10 rsynX at rate MA(k5);
11 stayX || degradeR at rate MA(k21);



4.3 LBUC 49

12 rsynR at rate G(k0,k3,k4,j3,j4);
13 }
14 process Pi = [0.2] S || [0.0] X || [0.0] R
15 with network N(4,1,1,1,1,1,0.1,0.075,0.3,0.3);

4.2.3 Substrate-Depletion

For the last system modelled, we observe two sequential synthesis and degeneration components
coupled with an auto-catalytic reaction R ⇌ EP promoting the synthesis of R and depletion of X .
Following the species definitions where S synthesises X , X turns into R, and R degenerates to the
null species.

1 species S = ssynX -> (S | X);
2 species R = stayR -> R
3 + degradeR -> 0;
4 species X = xturnR -> R;
5

6 kinetic law G(f,u,v,J,K; R,X) =
7 (f * 2*u*R*K*X) / (v-u*R+v*J+u*R*K+((v-u*R+v*J+u*R*K)**2-
8 4*(v - u*R) * u*R *K)**0.5);

Although we re-use the GK function from the activator-inhibitor system discussed before, we
include the multiplication of [X ] in the nominator to replicate Equation 3.23 (Section 3.4.3).
The affinity network reflects the MA synthesis of X as well as its MA governed conversion
X → R and the MA degeneration of R. Ultimately, we include the conversion governed by the
concentration of EP modelled by the GK function.

9 affinity network N(k01, k0, k1, k2, k3, k4, j3, j4) = {
10 ssynX at rate MA(k1);
11 degradeR at rate MA(k2);
12 xturnR at rate MA(k01);
13 stayR || xturnR at rate G(k0,k3,k4,j3,j4);
14 }
15 process Pi = [0.2] S || [0.0] X
16 || [0.0] R with network
17 N(0.01,0.4,1,1,1,0.3,0.05,0.05);

4.3 LBUC
In this section we present formal LBUC formulae encoding the characterizations provided for
the systems of linear response, hyperbolic response, sigmoidal response, and perfect adaptation.
These characterizations were elaborated in Sections 3.3.1, 3.3.2, 3.3.3 and 3.4.1 respectively.
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4.3.1 Linear Response

For this motif, the steady-state response follows a simple linear curve for different values of the
signal. The following properties were identified:

1. As the concentration of species S increases, we observe an increase in [RSS] proportional
to k0

k2
+ k1

k2
[S] = 0.002+0.2 · [S].

2. [RSS] is independent of R’s initial concentration.

For property 1, consider the steady-state response derived in Section 3.3.1. Rearranging its
analytic solution we obtain RSS − k0

k2
− k1

k2
S = 0. Thus, it describes the proportionality between

the steady-state of R and S.

P1 = F[0,t1]

(
G[0,t2]

(
ε >

(
R− k0

k2
− k1

k2
S
)

2
))

(4.1)

Proposition P1 in Equation 4.1 formally encodes the first property. It reads, eventually [R] will
globally (unchanged within the defined time interval) be close to the expected analytic value
[RSS]. As we work in a setting of uncertainty, we encode ". . . close to . . . " as a difference between
the value of [R] during simulation and its analytic steady-state [RSS] (blue in Equation 4.1). Thus,
we define a small value ε to quantify an admissible deviation between the two values. Note that
in LBUC it is not possible to increase a specific value. Hence, we assume that, if P1 is satisfied
on the whole range of [S], we consider it to hold also for increases of S.

We choose values t1 = 4, t2 = 10, and ε = 0.1. t1 provides a good margin to the time for
stabilization we devised in Table D.1 in Appendix D. In this case, t2 describes the time of
observation for which we want the system to satisfy the property (in case of the global quantifier).
However, t2 and ε were chosen arbitrarily. These values assure that our property reflects the
behaviour we intend to verify.

Note that we use the squared value of the difference for two reasons. One, we can verify
whether the difference, negative or positive, is within the bound set by ε . Two, as opposed to
taking the absolute value, we remain in the polynomial domain. This prevents Flow* to engage
in computationally expensive re-computations of a flowpipe as symbolic subdivision is available.

For property 2, note that the analytic result for RSS shows no dependency on its own initial
concentration R0. In order to verify this, we set [R0] of the process to a real-valued interval
[0,1000]. We also set [S0] = [0,3] to reflect the interval of signal values observed by Tyson et al..
We then re-evaluate whether the system still satisfies P1.
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Finally, we want to verify that:

3. This independence holds for any perturbation of [R] introduced during the simulation of
the system.

4. The linear relation holds for any perturbation of [S] during the simulation.

To verify that property 3 and 4 above holds for any perturbation of [R], we make use of LBUC’s
context operator.

CLR |= ΠR,pert. ▷ P1 ⇐⇒ CLR ∥ ΠR,pert. |= P1 (4.2)

ΠR,pert. ≜ [0,1000]R ∥ [0,3]S (4.3)

Let CLR be our current process and P1 the proposition we want CLR to satisfy. In Equation 4.2
we introduce a new process ΠR,pert. (Equation 4.3) as a context to the satisfaction relation. It
quantifies perturbations in [R] and [S] during the simulation. If this composition evaluates to true,
we showed that also this statement holds.

4.3.2 Hyperbolic Response

Recall the first properties of this system’s behaviour:
1. As we increase [S], the steady-state concentration of the phosphorylated response will

globally stay below an asymptotic maximum lim[S]→∞ dRPSS([S]) = [RT ]. In our case,
[RT ] = 1 and in Figure 3.4 denoted as r3.

2. The asymptotic behaviour holds for any perturbation of [S] during the simulation.

To encode the first property, we make use of the steady-state solution for RP and note that
the asymptote is RT = R+RP (RT = 1 in our case). By using RT instead of a fixed value, we
can verify that this behaviour holds even with other initial values for R and RP or whether
perturbations of these are introduced.

P2 = G[0,t1] (R+RP > RP) (4.4)

CHR |= ΠS,pert. ▷ P2 (4.5)

ΠS,pert. ≜ [0,10]S (4.6)

P2 in Equation 4.4 reflects that, at all times (globally) (throughout [0, t1]) [RP] is below [RT ].
We evaluate the formula over an interval of [S0] = [0,10], such that we cover the range in [S]
presented by Tyson et al.. The initial concentrations for R and RP are [R0] = 1 and [RP,0] = 0.

For the second statement, we define a process CHR (Equation 4.5) used for verification.
Moreover, we define context process ΠS,pert. (Equation 4.6) introducing a perturbation of [S] =
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r1
r2

s

r3

Figure 4.1 Hyperbolic signal-response curve with subdivisions for quantitative characterization.
r1 = 0.6, r = 0.7, r = 3 = 1, s = 2. Colors: Low values of RP in orange, high values of RP in
green, not reachable values in red. Modified from [82] Figure 1 (b) with permission.

[0,10] to the process. To verify that P2 holds with the applied perturbations, we use t1 = 10
(arbitrarily chosen).

Recall the subdivision in Figure 4.1 (originally in Section 3.3.2) of the signal-response
diagram for this motif. Based on it, we devised the following steady-state properties between
signal and response:

3. As we increase [S] from low to high values, the increase in [RPSS ] is first rapid and then
gradually slows down. In Figure 4.1, [S] = s = 2 acts as a threshold between low and high
values of [S]. Bounds r1 = 0.6 and r2 = 0.7 reflect our bounds for high and low values in
[RPSS ]. Hence, as [S]< s, [RPSS ]< r2 and as [S]≥ s, r1 < [RPSS ]< r3. The bounds for [RPSS ]

have a margin of 0.1 to relax the boundaries for this property and therewith allow LBUC
to compute results.

We hence identified the following formula:

P3 = G[0,t2]
(
P2 ∧F[0,t1]

(
G[0,t2] ((S < s =⇒ RP < r2)∧ (S > s =⇒ RP > r1))

))
(4.7)

In P3, we first evaluate whether [RP] is globally lower than the asymptote [RT ]. Note, that the
global operator is distributive over the and (∧) and we make use of the identity GI(GI′(ψ))≡
Gmax[I,I′](ψ). Subsequently, we say that globally (for [0, t2]), eventually (within [0, t1]), globally
(for [0, t2]), the enclosed proposition holds, allowing the system to reach the steady-state within
[0, t1]. Note that the clock for the second global statement starts at relative time 0 while the global
clock is already at some point in [0, t1] from the eventually quantifier. The enclosed proposition
reads, when [S]< s, then [RP]< r2 and respectively if [S]> s, then [RP]> r1. Hence, describing
the bounds in the description. We evaluate whether this system satisfies P3 using process CHR

with initial values [S0] = [0,10],[R] = 1, and [RP] = 0.
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Figure 4.2 Sigmoidal signal-response curve subdivided into regions for quantitative evaluation.
Sigmoidal signal-response curve with subdivisions for quantitative characterization. r1 = 0.25,
r = 0.75, r = 3 = 1, s1 = 0.7, and s1 = 1.3. Colors: Values of [RP] in green describe ultra-
sensitive behaviour, not reachable values are in red. Modified from [82] Figure 1 (c) with
permission.

We use t1 = 2, allowing enough time for the system to stabilize, and t2 = 10 (arbitrarily
chosen). Furthermore, we note that for our implementation, as the bondwb does not provide with
an implication operator, we make use of the identity φ =⇒ ψ ⇐⇒ ¬φ ∨ψ .

4.3.3 Sigmoidal Response

For the sigmoidal response motif, also referred to as ultra-sensitive switch by Goldbeter and
Koshland [33] or buzzer by Tyson et al., we initially characterized the following properties:

1. Similar to the hyperbolic motif, [RPSS ] will globally stay below the asymptotic limit of
r3 = [RT ] = 1 as [S]→ ∞.

2. The asymptotic behaviour holds for any perturbation of [S] during the simulation.

Here we can re-use the equal properties presented in the previous Section 4.3.2 as the
statements are equivalent. Hence, we use P2 (Equation 4.5) and the context process ΠS,pert.

(Equation 4.6) to verify that this holds. However, we set the initial concentration interval as well
as the perturbation interval of ΠS,pert. to [S] = [0,3]. This reflects the interval observed by Tyson
et al. [82]. Finally, we require t1 = 20 as this system requires a longer stabilization time (see
Table D.1 in Appendix D.5).

3. As [S]≤ s1, [RPSS ]< r1. Once s1 < [S]< s2, [RPSS ] increases rapidly, reaching [RPSS ] = r2

quickly. Thus, within a small change of [S], [RPSS ] rises quickly. We encode this by
having a small difference of [S] between a low value and a high value of [RPSS ], we choose
s2 − s1 = 0.5. As s2 < [S], r2 < [RPSS ]< r3.
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For this property, we use the subdivision of the signal-response diagram presented in Figure 4.2
(originally in Section 3.3.3). Here, we have signal thresholds s1 = 0.7 and s2 = 1.3 as well as
[RPSS ] threshold r1 = 0.25,r2 = 0.75, and r3 = [RT ] = 1. These value were chosen arbitrarily to
determine the bounds within which we consider the switch to be ultra-sensitive. We note that
there is no formal mathematical definition of ultra-sensitivity in literature.

P4 = G[0,t2]
(
P2 ∧F[0,t1]

(
G[0,t2] ((S ≤ s1 =⇒ RP < r1)∧ (S ≥ s2 =⇒ RP > r2))

))
(4.8)

Similarly to the approach in the previous section, P4 encodes the property we want to verify.
Here, P2 from Section 4.3.2, guarantees that [RP] is globally below the asymptote. Verifying this
over [S0] = [0,3], guarantees that the ultra-sensitivity is satisfied. We use t1 = 20 (also for P2) to
allow the system to stabilize. Furthermore, we use t2 = 10 (arbitrarily chosen).

4. The ultra-sensitivity of the switch is only retained when Km1,Km2 ≪ 1.

For this interesting characteristic, we used a slightly altered implementation of the sigmoidal
response system which can be found in Appendix A.3.1. The model encodes the rate constants
Km1 and Km2 as species KM1 and KM2 with sites stayKM1 -> KM1 and stayKM2 -> KM2. This
guarantees that, once added to the mixture, dKm1

dt = dKm2
dt = 0. The kinetic laws MM1(.) and

MM2(.) are altered such that they access the concentration of KM1 and KM2 and use these as the
MM constants. Using this model, we can verify for which values the ultra-sensitive behaviour
holds. We used an interval on both KM1 and KM2 of [KM10] = [KM20] = [0.05,0.3] to explore
the range of values under which P4 is satisfied.

4.3.4 Perfect Adaptation

Recall the first two properties of this system’s behaviour defined in Section 3.3.4 as well as the
illustration in Figure 4.3:

1. As we introduce a step-wise increase of [S], we observe:

(a) [R] will rise as a direct response to the increased synthesis. It will exceed a threshold
and eventually return to a steady-state value (RSS =

k1k4
k2k3

= 1 in our case) as soon as
[X ] adapted to the new [S].

(b) [X ] will adapt to [S] and their concentrations will eventually be equal. This is due to
k3 = k4 = 1 in our case. Hence, [X ] = [S] eventually.
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Figure 4.3 Perfect adaption temporal progression diagram illustrating reduction of the intensity
of spiking of [R] as [S] is higher prior step-wise increase. Modified from [82] Figure 1 (c) with
permission.

We first encode property 1.a. Thus, we devise P5 in Equation 4.9.

P5 = G[0,t2]

(
ΠS,pert. ▷ F[0,t1]

(
(R > r)∧F[0,t2]

(
G[0,t2]

((
ε2 > R− k1k4

k2k3

)))))
(4.9)

CPA |= P5 (4.10)

ΠS,pert. ≜ [1,10]S (4.11)

Here, we apply a context ΠS,pert. (Equation 4.11) to a proposition within P5 (Equation 4.9) to
quantify that, no matter what perturbation is added to [S], we observe globally the expected
behaviour. Furthermore, if process CPA (Equation 4.10) has a real-valued interval over [R0], we
are able to verify that P5 holds for any initial value of [R0] as well.

P5 in Equation 4.9 reads, globally (throughout [0, t2]), as we introduce a context ΠS,pert.,
we will eventually (within [0, t1]) observe that [R] is higher than a certain threshold r and that
eventually (within [0, t2] of that having occurred), we will reach a state where [R] globally
(throughout [0, t2] after we first observed ε2 > R− k1k4

k2k3
) returns to its steady-state value RSS (blue

in Equation 4.9). In essence, this formally summarizes the property stated above. We chose
t1 = 1 to guarantee the shortness of the initial spike and t2 = 10 to allow the system to stabilize.
Furthermore, ε1 = ε2 = 0.1, arbitrarily chosen.

P6 = (X < S)∧F[0,t2]
(

ε1 > (X −S)2
)

(4.12)

CPA |= ΠS,pert. ▷ P6 (4.13)

For property 1.b we devise P6 (Equation 4.11). The first part reads, [X ] is smaller than [S]. In
Metric Interval Temporal Logic (similarly in LTL), an atomic proposition is satisfied if the first
state in the sequence satisfies the property. As we increase [S] step-wise, the first state of the
hybrid-automaton will be that [X ]< [S]. Thus, the first part is satisfied. The second part of P6
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reads, eventually within [t1, t2], the squared difference will be smaller than a small value ε1. Here
we again make use of the concept presented in Section 4.3.1 and use the squared difference. By
evaluating this proposition as in Equation 4.13, we guarantee that this hold for any perturbation
[S] ∈ [1,10].
The next property we characterized is:

2. The higher [S] is prior the step-wise increase, the lower will be the spike in [R] when an
increase in [S] is induced (observe reducing peaks in Figure 4.3).

P′
5 = ΠS,step ▷ F[0,t1]

(
(R > r)∧F[0,t2]

(
G[0,t2]

(
ε2 > R− k1k4

k2k3

)))
(4.14)

CPA |= P′
5 (4.15)

ΠS,step ≜ [1]S (4.16)

As LBUC does not provide a functionality to recursively add contexts, we are limited to manual
checking of property 2. Hence, we use a relaxed version of P5, P′

5 (Equation 4.14), as well as a
real-valued constant for the concentration of [S] in ΠS,pert. (Equation 4.16).

We verify that the current process CPA |= P′
5 by first setting [S0] = 0,[X0] = 0, and [R0] = 1.

As the concentration of S is perturbed, we note the result of the evaluation. In the next step,
we update the initial values [S0] = 1 and [X0] = 1. Thus, we re-run the verification and observe
whether the proposition is satisfied. This is done recursively for a finite amount of increments.
Recall threshold value r which describes the value of [R] which has to be reached at least by R
such that we consider it a spike. In Figure 4.3, the dotted lines show hoe this value has to be
lowered as [S] increases gradually. Thus, we devise multiple r values in order to quantify the
reductinon in spike magnitude of [R].
The last property we characterised is that:

3. The steady-state response RSS is independent of its initial value R0. Hence, any perturbation
of [R] during a simulation, results in the same value for RSS.

Here we devise P7 (Equation 4.17) and process ΠR,pert. (Equation 4.18) to quantify the perturba-
tion of R. Process CPA in Equation 4.19 represents the current process on which we verify the
satisfaction of P7.

P7 = F[0,t2]

(
G[0,t2]

(
ε2 > R− k1k4

k2k3

))
(4.17)

CPA |= ΠR,pert. ▷ P7 (4.18)

ΠR,pert. ≜ [0,100]R (4.19)



Chapter 5

Evaluation

Provided the illustrations in Figure 5.1 and 5.2 for the elementary building blocks and the
oscillators respectively, this chapter focuses on the evaluation of the generated behaviour. First,
we conduct a qualitative analysis of the results by comparing our results in shape and values with
the results presented by Tyson et al. [82]. As Wang [84] modelled a subset of these components in
the cπ , we also relate our results to the ones provided in his work. This allows us to subsequently
discuss our first research question.

Due to an initial bug in the bondwb, we modelled certain systems using two different
assumptions, namely the MM kinetic law and the GK function. While the ultimate behaviour
should be equivalent, we show the differences between these in our implementation and hence
also address our second research question.

Finally, we employ a novel approach of formal verification using LBUC and provide a
quantitative analysis of a sub-set of the models. We present our results on the characterizations
of the system behaviours devised in Chapter 3 and encoded as LBUC formulae in Chapter 4.
Thus, elaborating our third and last research question.
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Figure 5.1 Elementary
Building Blocks.
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(a) linear response,
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(e) mutual activation,
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(g) homeostasis.
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5.1 Evaluation Methods

First, we justify our choice of qualitative and quantitative evaluation metrics.
System behaviour is fully determined by the set of governing ODEs and the initial values.

Hence, we present the generated sets of ODEs for all implemented systems in Appendix B.
However, Tyson et al. strongly focus on the visual aspect of the steady-state signal-response
diagrams of the systems. Thus, we opt to first conduct a visual qualitative analysis. We compare
the steady-state curves generated by our models with the ones presented by Tyson et al. and
Wang. Furthermore, we compare the results from our explicit models, using MM kinetics for
the underlying reactions, and abstracted models where the concentration of certain species is
calculated through the GK function (as in Section 4.1.5). Note that more detailed illustrations of
Figures 5.1 and 5.2 can be found in Appendix C.

While the qualitative analysis already provides insight, we cannot argue about system
behaviour under uncertainty. To verify that the systems modelled indeed behave as expected, we
chose to conduct a further quantitative evaluation using LBUC. Thus, we present the evaluation
for the systems with linear, hyperbolic, and sigmoidal response, as well as perfect adaptation.

5.2 Qualitative Analysis

The comparisons in Figure 5.1 and 5.2 show that we were able to accurately reproduce all system
behaviours presented in [82]. As Wang [84] noted in his evaluation of the elementary building
block components in cπ , Tyson et al. chose different illustrations for the different systems.

For the linear (a), hyperbolic (b), sigmoidal (c) motifs as well as mutual activation (e),
mutual inhibition (f), and homeostasis (g), Tyson et al. use steady-state signal-response diagrams.
However, for perfect adaptation (d) and the negative-feedback oscillator (h), the temporal
progression of species’s concentrations are depicted. For the remaining oscillators, phase-
plane portraits at a specific concentration of the signal are shown to indicate the oscillating
concentrations. We therefore employed different approaches to produce equivalent illustrations
with our generated ODE systems.

For systems (a,b,c,g), we generated the signal-response diagram by conducting a simulation
of the system with a specific initial concentration of the signal species. For each time step,
with step-size 0.1, we record the current state of the response concentration with a blue dot.
The simulation is run until the (quasi) steady-state, or dynamic-equilibrium (as discussed in
Section 2.2.5) of the system is reached which we then highlighted in black. For each system’s
signal concentration range, we repeat this operation with a 0.1 increment in signal concentration
at each simulation. Finally, the black dots representing the steady-state concentrations are then
connected to form the steady-state curves relevant for comparison with the curves in [82].

However, systems (e,f) exhibit hysteresis, hence the current state depends on the system’s
history. For these systems we repeat the process as before, however instead of returning to the
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initial values and t = 0, the simulation is sequential. Thus, once the steady-state is reached after
time t for a certain concentration of [S], we retrieve all species’s concentrations. Subsequently,
we increase the concentration of S in this set of concentrations by 0.01 and proceed with the
simulation. Once the highest value for [S] is reached, we repeat the process but after each
stabilization deduct 0.01 from [S]. The black lines represent each steady-state value of [R] for a
given [S].

For system (d) we conduct each simulation for t = 4, retrieve the values for the different
species, increment [S] by 1 and use this new set of concentrations as the input for a new run of the
same duration. This is repeated 4 times, resulting in the temporal progression in Figure 5.1 (d).
For the temporal progression plot in system (h) we simply simulated the system for t = 50
without further altering of the concentrations during the run.

Figure 5.3 Temporal progression of
oscillatory behaviour in activator-
inhibitor oscillator in 3D.

The phase-plane diagrams of systems (i,j), as pre-
sented by Tyson et al., involve three components,(X ,R)
pairs satisfying dR

dt = 0 in red, those satisfying dX
dt = 0

in purple, and the temporal oscillation of(X ,R) in black.
For the first two curves we chose the same approach as
for systems (e,f) above. For the third curve, we ran our
simulation for t = 200 and projected the obtained values
into the (R,X) plane, removing the temporal informa-
tion of the progression. An example of this for system
(i) is in Figure 5.3.

Note that for all three oscillators (h,i,j) we were able
to replicate the signal-response diagrams, illustrating
the critical bounds on [S], Scrit,1 and Scrit,1, which allow
oscillation to occur. For these diagrams we simulated
the system at a certain value for [S] and record the values of response species concentration
over time. By then gradually increasing [S], we can project the obtained values for the response
species onto the 2-dimensional (R,S) plane.

5.2.1 Elementary Building Blocks

Linear response: This is the simplest model and uses pure MA kinetics. For this and the
following models, the same set of ODEs as presented by Tyson et al. are extracted from our
bond-calculus implementations. Hence, visually our results coincide with the ones presented by
the authors. The same result was achieved by Wang, showing that the system was successfully
implemented in the cπ . We note that we used the same approach as Wang and modelled the
ambient generation through an ambient, constant species A.

Hyperbolic response: Here, we were able to employ the MA kinetics directly and obtain the
same steady-state signal-response curve as the authors. Wang was also able to achieve the same
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results. However, due to a bug in the CPi-IDE he was required to explicitly bind the response
and signal to a complex at a high rate which then turned into the phosphorylated response at a
high rate.

Sigmoidal response: Here, Wang correctly identified that the assumptions made by Tyson
et al. about the composition of RT are incorrect. Tyson et al. argue that RT = R+RP while the
MM kinetics derived by Briggs and Haldane [10] clearly state, that RT = R+RP +RS where RS
is the intermediate substrate-enzyme complex. Furthermore, we note in Section 3.3.3, that the
authors incorrectly formulated the MM kinetics for dephosphorylation (RP → R) and omitted the
existence of a phosphatase steering the reaction.

Wang had to account for this incorrect assumption on RT when deriving the MA interactions
underlying the MM kinetics as cπ only allows for MA kinetics. Hence, he had to scale the
initial concentrations for S as well as the rate constants to explicitly model the association and
dissociation of the intermediary complex. Finally, he was able to achieve the same results as
Tyson et al.. In our work, thanks to the flexibility provided by the bond-calculus, we were able to
formulate the rate laws to reflect the ones used by Tyson et al.. Thus, we obtain the same results as
the authors without further changes. Not that in Figure 5.1 (c) we also include the concentration
of species R (the unphosphorylated response) to show the adherence to [RT ] = [R]+ [RP].

However, as the original publication is from 2003, Tyson acknowledges that their implemen-
tation of MM was erroneous as well as some of their assumptions on the systems.

Perfect Adaptation: As this system represents a combination of two, inter-dependent synthesis
and degeneration components, pure MA kinetics are used. Both our implementation and the one
presented by Wang reflect the results obtained by Tyson et al..

Mutual Activation: During the implementation of this system, we identified an issue with the
symbolic simplification algorithm of the bondwb. This bug caused the GK kinetic law definition
to not be correctly simplified, resulting in an erroneous set of ODEs. We therefore opted to
model the system explicitly using the MM kinetics underlying the GK function while the issue
persisted. Once this bug had been solved, we re-implemented the models using the GK function
as intended by Tyson et al..

This additional work gave us the opportunity to raise our second research question. We ask
whether there are observable differences between modeling explicit interactions based on MM or
using strong assumptions and encoding the same interactions with GK. Recall that GK computes
the steady-state concentration of a species in a phosphorylation/dephosphorylation couple given
the concentration of kinase (enzyme promoting E → EP).

Both implementation proved to provide the same bifurcation, hence irreversible switch motif
presented in [82]. However, the time for stabilization is t = 35 for the GK implementation and
t = 125 for the MM implementation.
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Figure 5.4 Stabilization behaviour of homeostasis in 3D. Left: system implemented with the GK
function. Right: system implemented with explicit MM kinetics

For this motif, Wang again encountered difficulties to convert Tyson et al.’s assumptions to
the underlying MA kinetics. Through repeated scaling of concentrations and rate constants, he
was able to obtain a qualitative replication of the behaviour in [82]. However, his results did not
match numerically to the ones presented in the paper. Low concentrations of R were significantly
smaller than the ones obtained by our implementation or Tyson et al.. We argue, that through the
use of more accurate assumptions such as the tQSSA, Wang would have been able to replicate
the intended behaviour through the use of MA kinetics.

Mutual Inhibition: The same rationale as for mutual activation applies here. We provide
two systems, one modelled explicitly with the MM kinetics governing E ⇋ EP and one using
the GK function to express the steady-state concentration of E. Both systems lead to the same
steady-state behaviour as presented by Tyson et al.. However, the time required for the two
systems to stabilize is different (t ≈ 80 for GK, t ≈ 100 for MM). We again note that Wang’s
results again required scaling of initial concentrations and rate constants, leading to a conformity
in shape but not in value to our results or the ones in [82].

Homeostasis: Similar to the systems above, we provide two implementations of this system,
one using MM kinetics and the other the GK function abstraction to compute the steady-state
concentration of E. We obtain the same result as Tyson et al.. However, Wang again achieves an
implementation in the cπ reflecting the behaviour but not close to the numerical values presented
by Tyson et al..

We again observed different stabilization times of the MM and the GK system. In Figure 5.4
above, we depict the 3-dimensional stabilization behaviour for each run of the simulation using
a different value for [S]. While in the MM system on the right we observe local fluctuations
and a stabilized response after 14 seconds, the system implementing the GK function on the left
stabilizes after 1 second. While this behaviour can be favorable when considering the steady-state
results, it can lead to skewed results as we note in the evaluation of the activator-inhibitor and
the substrate-depletion oscillator.
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Figure 5.5 Phase-plane portrait for activator-inhibitor oscillator. Left: system implemented using
GK function. Right: system implemented using explicit MM kinetics. Colors:(X ,R) pairs
satisfying dR

dt = 0 in red; (X ,R) pairs satisfying dX
dt = 0 in purple; temporal oscillation of (X ,R)

in black.

5.2.2 Oscillators

Wang was not able to reproduce the following systems in [84] due to the limitation presented by
the cπ . Hence, we do not present a comparison between his work and ours.

Negative-feedback: As can be noted in Figure 5.2 (h), we were not able to correctly reproduce
the exact oscillation phases of the different species as in [82]. We argue that this is due to the
fact that the authors did not disclose the initial concentrations for the species. Furthermore, we
suspect that although the authors declare the start of the plot to be at t = 0, they used a systems
which already stabilized its oscillation. Our system’s oscillation starts with initial concentrations
for [X ], [Y ], [YP] = 0 and require one period to align to the correct phase. Nevertheless, we are
able to replicate the same behaviour and sets of ODEs. Furthermore, our signal-response diagram
in the rightmost column of Figure 5.2 shows close resemblance with the one provided by Tyson
et al..

Activator-inhibitor: Here, we again provide two models, one explicitly modeling the MM
kinetics governing the E ⇋ EP reaction and one using the GK function for modeling the steady-
state concentration of EP. As for this and the next oscillator, Tyson et al. chose to use a
phase-plane portrait as well as the signal-response graph to illustrate the system’s behaviour. We
have presented the same illustrations using our implementation. Both the explicit and the model
using GK replicate the same behaviour as intended by the authors. Note that our circular motion
of (X ,R) (center column in Figure 5.2 (i)) first starts at [X ] = [R] = 0 and then, progressively
reaches the oscillatory behaviour.

However, we observe a clear divide between the MM and the GK approximation in Figure 5.5.
While the model on the left, using the GK function, exhibits the same behaviour as presented by
Tyson et al., the MM implementation shows a decisive skew. This is due to the time required to
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Figure 5.6 Phase-plane portrait for substrate-depletion oscillator. Left: system implemented
using GK function. Right: system implemented using explicit MM kinetics. Colors:(X ,R) pairs
satisfying dR

dt = 0 in red; (X ,R) pairs satisfying dX
dt = 0 in purple; temporal oscillation of (X ,R)

in black.

stabilize the concentrations of the different species when using MM kinetics. Thus, oscillatory
feedback components already act upon other components before reaching their steady-state.

Finally, note that the signal-response diagram in Figure 5.2 (rightmost column) replicates the
one presented by Tyson et al.. Both Scrit,1 and Scrit,2 agree with the ones devised by the authors.
However, in Appendix C.16 we provide the same signal-response diagram obtained from our
MM governed implementation. There, the values are not equivalent and the minima and maxima
values are as well skewed as expected.

Substrate-depletion: The last system modelled shows a similar behaviour as the activator-
inhibitor oscillator above. In Figure 5.6 we relate the GK governed model (left) to the MM
governed model (right). Again, the values of [X ] and [R] reached are damped due to the lack of
stabilization of the species concentrations.
However, we note that in Figure 5.2 (j) our signal-response diagram shows the same values for
Scrit,1 and Scrit,2 as presented by Tyson et al. but the maxima values reached exceed the ones
illustrated by the authors. This is in both, the signal-response diagram obtained from the GK as
well as the MM governed systems (for MM governed system see Figure C.20 in Appendix C).
While the cause is unknown, we assume that the error lies within the value reported by Tyson
et al. for a specific rate law, allowing our system to reach higher values of R.

5.3 Quantitative Analysis

In this section we lay the basis for discussion of our last research question on whether it is
possible to verify and guarantee bond-calculus model behaviour through the use of LBUC. Using
the bondwb and the underlying Flow* framework (Section 2.4.3), we attempt to evaluate the
different system properties devised in Section 4.3. Our implementation showed the limits of the
current implementation and we conclude by discussing alternative approaches taken.
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Note that Tyson et al. provide both the set of governing ODEs as well as a description of the
behavioural characteristics of the systems presented in [82]. We use this information to verify
that our results obtained by our quantitative analysis coincide with the ones expected.

5.3.1 Procedures and Nomenclature in the bondwb

We here define the constructs and concepts used within the bondwb which we use to verify
system properties.

LBUC uncertainty: Can be introduced either for the initial values of a mixture (1) or using a
context process in the form of a perturbation of the mixture during simulation (2):

1. A vector of real-valued intervals expressing the uncertain range of each species’ initial
value in the mixture is defined. Thus, when conducting integration of the ODEs, Flow*
symbolically quantifies an uncertainty of the initial state (at t = 0) of the system and
propagates it through a flowpipe.

2. Using a context embedded within a logical expression, we quantify uncertain perturbations
of a system, again described via real-valued intervals, occurring at some instant t instant t
during the simulation of the system.

Reach object: Computes the flowpipe representing the set of initial values and its progression
through the space of (prime) species concentrations and time. This is equivalent to integrating
the ODE system given a set of initial states, either defined by real constants or intervals, over
time.

Signal: Represent the evaluation of a proposition propagated through a flowpipe at every time-
step. Signals can evaluate at a given timepoint to three different states, true, false, and uncertain.
True and false here are definite. When a flowpipe fits into a region of species concentration space
for which the proposition holds, it evaluates to true and if not, to false. When a flowpipe covers
the region but isn’t fully contained in it, the signal evaluates to uncertain.

Signal for System: Uses a reach object to compute the flowpipe for a specific proposition
we want to verify. It then uses the flowpipe to compute a signal, representing the truth of a
proposition at each point in time, according to the flowpipe.

Context Signal for System: Or context signal works similarly to signal for system. However,
it allows us to improve the quality (precision) of the signal by spatially subdividing the initial set,
computing a signal for each sub-domain, and combining them appropriately.
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Figure 5.7 Linear response. 2-dimensional vector field for species S and R. In red the region
described by LBUC proposition P′

1. Left: orange square quantifying initial values [5,6]R ∥
[2,3]S. Blue squares visualizing flowpipe. Right: orange square quantifying initial values
[5,6]R ∥ [1,6]S. Blue squares visualizing flowpipe.

When changing the spatial signal refinement, we need to re-compute our signal. This can be
done in two ways. Either, by using symbolic subdivision of the initial set to consider different
initial conditions. Or, by re-computing the entire flowpipe. The former allows us to make use of
the symbolic flowpipe representation provided by Flow* and reduce computation significantly.

5.3.2 Linear Response

Recall from Section 4.1.1 that we used species S for the signal, R for the response, and A as the
ambient species to constantly generate a minimal quantity of R. However, in Appendix A.1.1 we
include a model where only two species are stated explicitly, encoding the ambient generation
in a custom MA rate law used by the signal species. This model results in the same ODEs and
allows us to visualize the vector field in 2-dimensions as shown in Figure 5.7. We immediately
note that all vectors point towards a straight line. Recall that the properties we want to verify are:

1. As the concentration of species S increases, we observe an increase in [RSS] proportional
to k0

k2
+ k1

k2
[S] = 0.002+0.2 · [S].

2. [RSS] is independent of R’s initial concentration.

3. This independence holds for any perturbation of [R] introduced during the simulation of
the system.

4. The linear relation holds for any perturbation of [S] during the simulation.
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Figure 5.8 Temporal progression of refined signal (refinement 4) for P′
1 (Equation 5.2) evaluated

on the linear response system. X-axis describes the subdivision of the interval on [S0]. Y-axis
describes the subdivision of the interval on [R0]. Colors: green for true, red for false, white for
uncertain. Time-steps from left to right: t = 0, t = 1, t = 1.9, t = 5.6

Time

Figure 5.9 1-dimensional temporal progression of refined signal (refinement 4) for P′
1 (Equa-

tion 5.2) evaluated on the linear response system. X-axis describes the subdivision of the interval
on [S0].Colors: green for true, red for false, white for uncertain.

For properties 1 and 2 we devised proposition P1 in Equation 4.1 (Section 4.3.1) which is
replicated in Equation 5.1 below.

P1 = F[0,t1]

(
G[0,t2]

(
ε >

(
R− k0

k2
− k1

k2
S
)

2
))

(5.1)

P′
1 = G[0,t2]

(
ε >

(
R− k0

k2
− k1

k2
S
)

2
)

(5.2)

By setting [R0] = [0,1000], we can verify that property 1 indeed holds for any initial concentration
of R within that interval. By setting [S0] = [0,10], we encode the increase of [S] in property
1. Note that throughout this example we will use P′

1 (Equation 5.2) such that we can visualize
the temporal progression. P1 would simply evaluate to a single value due to the encapsulating
eventually.

Note that in Figure 5.7 we visualize two different sets of initial values and their flowpipe
progression in the vector field. On the left of the figure, interval [S0] = [2,3], allows the flowpipe
to fit within the bounds set by the term ε >

(
R− k0

k2
− k1

k2
S
)

2 which encodes the linear behaviour.
On the right however, the resulting flowpipe doesn’t fit into the region. Here we use signal for
system for the signal computation. Hence, if we use this approach, we would be required to
manually refine the initial interval values for the flowpipe to fit into the bounds of the linear
behaviour. Otherwise, the signal for the larger region [S0] = [1,6] would evaluate to uncertain.

In order to overcome this limitation and avoid manual subdivision, we use a refined signal
using the context signal for system object. Thus, we spatially subdivide the concentration interval
of both R0 and S0 by 4. Figure 5.8 illustrates this progression over time from left to right. We
observe that more and more subdivided signals reach a state of uncertainty until all signals are
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uncertain up until time-step t = 5.5. The signals,as they further progress in the flowpipe, then
abruptly reach the state of satisfaction of P′

1.
Figure 5.9 (bottom) represents the same progression on a 1-dimensional plot which we refer

to as italo-vexillar diagram. Both plots illustrate, that property 1 and 2, when expressed with P′
1,

are satisfied within a certain time. Thus, P1 too evaluates to true.
For properties 3 and 4, we are not able to use context signals as applying a context on a

proposition is not yet supported by the bondwb. However, we can manually subdivide the
regions as previously mentioned and use signal for system for each manually subdivided [S0].
By choosing [S0] = [n ·0.01,(n ·0.01)+0.01] | n ∈ [0,1, ..,300] we can define a small interval
of width 0.1 in concentration S and evaluate P1 with an introduced context process ΠR,pert.

(Equations 4.3 and 4.2 in Section 4.3.1). This context process then has an initial mixture of
[0,1000]R ∥ [n · 0.01,(n · 0.01)+ 0.01]S | n ∈ [0,1, ..,300]. Hence, we quantify uncertainty on
both, the initial value of S and an uncertainty on a perturbation of it during the simulation. As
both intervals are "back-to-back", we can safely reason about the property evaluation for the
full interval [S0] = [0,3] given the evaluations of our manual sub-intervals. We found, that each
segment evaluates to true, thus propositions 2 and 3 are satisfied.

Concluding, we showed that we could implement all three identified properties of this
system’s behaviour in LBUC and that these are satisfied by the system. We identified technical
limitations of

5.3.3 Hyperbolic Response

Recall the properties for this system:

1. As we increase [S], the steady-state concentration of the phosphorylated response will
globally stay below an asymptotic maximum lim[S]→∞ dRPSS([S]) = [RT ]. In our case,
[RT ] = 1 and in Figure 3.4 denoted as r3.

2. The asymptotic behaviour holds for any perturbation of [S] during the simulation.

3. As we increase [S] from low to high values, the increase in [RPSS ] is first rapid and then
gradually slows down. In Figure 4.1, [S] = s = 2 acts as a threshold between low and high
values of [S]. Bounds r1 = 0.6 and r2 = 0.7 reflect our bounds for high and low values in
[RPSS ]. Hence, as [S]< s, [RPSS ]< r2 and as [S]≥ s, r1 < [RPSS ]< r3. The bounds for [RPSS ]

have a margin of 0.1 to relax the boundaries for this property and therewith allow LBUC
to compute results.

As this system is composed of 3 species, we cannot visually represent the vector field with
the current implementation of the bondwb. While properties 1 and 2 concern the asymptotic
behaviour of the response [RPSS ], property 3 encodes the hyperbolic shape of the signal-response
illustrated in Figure 5.10.
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Figure 5.10 Hyperbolic signal-response curve with subdivisions for quantitative characterization.
r1 = 0.6, r = 0.7, r = 3 = 1, s = 2. Colors: Low values of RP in orange, high values of RP in
green, not reachable values in red. Modified from [82] Figure 1 (b) with permission.

P2 = G[0,t1] (R+RP > RP) (5.3)

P3 = G[0,t2]
(
P2 ∧F[0,t1]

(
G[0,t2] ((S < s =⇒ RP < r2)∧ (S > s =⇒ RP > r1))

))
(5.4)

For property 1 and 3, we verify P2 and P3 respectively replicated in Equation 5.3 and 5.4
(originally in Section 4.3.2). We evaluate these over [S0] = [0,10] by using a manually subdivided
signal for system as above using [S0] = [n · 0.1,(n · 0.1) + 0.1] | n ∈ [0,1, ..,100]. To better
illustrate the underlying evaluations of P2 and P3, we additionally evaluated the propositions Pi..iv

in Equations 5.5.

Pi = RP < r2 Pii = RP > r1 Piii = S < s Piv = S > s (5.5)

In Figure 5.11, we illustrate the values that each sub-interval takes as we progress in signal
concentration. Note that at [S] ≈ s, LBUC is uncertain whether [S] < s or [S] > s which is as
expected. Here, one interval ends at [S] = s while the next begins with it. Thus, we cannot reason
about Piii and Piv in sub-ranges including S = s. Note how the validation of each proposition Pi..iv

reflects what is encoded in P2 and P3. Ultimately, both P2 and P3 are satisfied over the whole
range of S. Hence, properties 1 and 3 are satisfied.

Property 2 expresses that the asymptotic behaviour of the signal-response curve holds for
any perturbation of [S] during the simulation. Hence, we use the same subdivided signal for
system as above to evaluate P2 with introduced context ΠS,pert. (Equation 5.6). Again, we face
the limitation that [S0] = [0,10] is too large for Flow* to compute. Thus, we use [S0] = [0,0.1] as
shown in Equation 5.7. While this does not fully represent what we initially encoded, we reason
that this comes sufficiently close. For every interval of [S] of size [0.1] we observe whether an
introduced context of size [S] = [0,0.1] added to the current signal still satisfies the proposition.
This ultimately also evaluates to true.
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Figure 5.11 Evaluation of propositions P2, P3, Pi..Piv over the whole range of observed signal
[S] = [0,10] and evaluated with a resolution of 0.1 concentration step-size. Red for false, green
for true, white for uncertain

Finally, properties 1 and 3 were shown to hold by using signal for system on properties P2 and
P3. However, we were required to manually subdivide the concentration space of S0 as otherwise
the flowpipes did not converge. For property 2 we had to notably reduce the perturbation interval
of [S] from [0,10] to [0,0.1]. Thus, while we can question the validity of our approach, also this
property seems to hold for the conducted experiment.

CHR |= ΠS,pert. ▷ P2 (5.6)

ΠS,pert. ≜ [0,0.1]S (5.7)

5.3.4 Sigmoidal Response

Recall the properties for this system:

1. Similar to the hyperbolic motif, [RPSS ] will globally stay below the asymptotic limit of
r3 = [RT ] = 1 as [S]→ ∞.

2. The asymptotic behaviour holds for any perturbation of [S] during the simulation.

3. As [S]≤ s1, [RPSS ]< r1. Once s1 < [S]< s2, [RPSS ] increases rapidly, reaching [RPSS ] = r2

quickly. Thus, within a small change of [S], [RPSS ] rises quickly. We encode this by
having a small difference of [S] between a low value and a high value of [RPSS ], we choose
s2 − s1 = 0.5. As s2 < [S], r2 < [RPSS ]< r3.

4. The ultra-sensitivity of the switch is only retained when Km1,Km2 ≪ 1.



5.3 Quantitative Analysis 72

Figure 5.12 Sigmoidal signal-response curve subdivided into regions for quantitative evaluation.
Sigmoidal signal-response curve with subdivisions for quantitative characterization. r1 = 0.25,
r = 0.75, r = 3 = 1, s1 = 0.7, and s1 = 1.3. Colors: Values of [RP] in green describe ultra-
sensitive behaviour, not reachable values are in red. Modified from [82] Figure 1 (c) with
permission.

Properties 1 and 2 are equal to the above in Section 5.3.3 and by using the same approach
we were able to verify that these evaluate to true as well for this system. Property 3 describes
the sigmoidal shape of the signal-response curve as depicted in Figure 5.12 and encoded in
formula P4 replicated in Equation 5.8. By using the same approach as in Section 5.3.3 and
[S0] = [n ·0.1,(n ·0.1)+0.1] | n ∈ [0,1, ..,30], we verify that P4 evaluates to true over the range
of signal.

P4 = G[0,t2]
(
P2 ∧F[0,t1]

(
G[0,t2] ((S ≤ s1 =⇒ RP < r1)∧ (S ≥ s2 =⇒ RP > r2))

))
(5.8)

The possibly most interesting is property 4, stating that the ultra-sensitivity of the switch is only
retained when Km1,Km2 ≪ 1. To verify this property, we use formula P4 as before but encode
Km1 and Km2 as separate species. We described the implementation itself in Section 4.3.2. As the
two critical points are when [S] = s1 and [S] = s2, we chose to evaluate P4 at these concentrations
of S rather than separate intervals. This approach was chosen as bondwb exhibits an underlying
memory leakage causing our random access memory to be completely filled after a certain
amount of evaluations using signal for system objects.

Furthermore, as the current implementation of LBUC fails when real-valued intervals are
provided as initial values for Km1 and Km2, we observed discrete values [Km1] = [Km1] =

[0.05,0.1,0.15,0.2,0.25,0.3] and evaluated P4 at the two distinct signal concentrations S = s1

and S = s2. The results of this parameter exploration are visualized in Figure 5.13.
We clearly see that for value pairs (Km1,Km2)= [(0.05,0.05),(0.05,0.10), (0.10,0.10),(0.10,0.15)]

the property holds. We illustrate as an example (Km1,Km2) = (0.05,0.30) on the left of the
graphic, showing that values (Km1,Km2) = (0.05,0.3) result in a system which does not fulfill
the property of ultra-sensitivity.
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Figure 5.13 Center: Discrete value exploration for MM rate constants Km1 and Km2. Colors: dots
in green indicates that ultra-sensitivity is maintained; dots in red indicate that ultra-sensitivity is
not maintained. Left: signal-response curve at (Km1,Km2) = (0.05,0.3); red area indicating the
violation of the ultra-sensitivity. Right: signal-response curve at (Km1,Km2) = (0.1,0.15); all
green areas indicating the satisfaction of the ultra-sensitivity

Concluding, we show that properties 1,2, and 3 are satisfied by the same means of evaluation
shown before in Section 5.3.3 and all three evaluate to true. For property 4 we showed that
indeed, ultra-sensitivity is only given within the bounds of Km1,Km2 ≪ 1 when using the GK
function.

5.3.5 Perfect Adaptation

Recall the properties for this system:

1. As we introduce a step-wise increase of [S], we observe:

(a) [R] will rise as a direct response to the increased synthesis. It will exceed a threshold
and eventually return to a steady-state value (RSS =

k1k4
k2k3

= 1 in our case) as soon as
[X ] adapted to the new [S].

(b) [X ] will adapt to [S] and their concentrations will eventually be equal. This is due to
k3 = k4 = 1 in our case. Hence, [X ] = [S] eventually.

2. The higher [S] is prior the step-wise increase, the lower will be the spike in [R] when an
increase in [S] is induced (observe reducing peaks in Figure 4.3).

3. The steady-state response RSS is independent of its initial value R0. Hence, any perturbation
of [R] during a simulation, results in the same value for RSS.

For properties 1.a and 1.b, we evaluate P5 and P6 from Equations 4.9 and 4.12 using context
ΠS,pert. from Equation 4.10 (see Section 4.3.4). Thus, we use a signal for system to validate both
and finally obtain true in both cases. Here we use ΠS,pert. ≜ [1,10]S.
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Figure 5.14 Evaluation of propositions P′
5,i..iv over 9 step-wise increases of [S] through context

ΠS,pert.. Red for false, green for true, white for uncertain

However, we found that LBUC is not able to verify P5 with context ΠS,pert. if we set it the
context mixture to [0,10]S. We assume that this occurs due to the inclusion of [S0] = 0. Here,
both P5 and P6 evaluate to false as no state change of R and X takes place. Thus, Flow* is
probably not able to compute the flowpipe because of this behaviour. As we cannot refine our
signal through the use of a context signal object, we resort to our previous result with ΠS,pert..

P′
5 = ΠS,step ▷ F[0,t1]

(
(R > r)∧F[0,t2]

(
G[0,t2]

(
ε2 > R− k1k4

k2k3

)))
(5.9)

CPA |= P′
5 (5.10)

ΠS,step ≜ [1]S (5.11)

For property 2 we devise property P′
5 in Equation 5.9 (reproducing Equation 4.14 in Section 4.3.4).

Here, when introducing ΠS,step ≜ [1]S (Equation 5.11) to our current process CPA (Equation 5.10),
we add 1 to the current value of [S] = [S0]. This reflects a discrete step increase in the concen-
tration of S. However, we still face the issue to not capture the second feature of property 2.
Therefore, we conduct the evaluation on 4 different versions of P′

5 namely, P5,i..iv, each one with
respective threshold values r ∈ [1.4,1.3,1.2,1.1].

In Figure 5.14, we introduce the context to 9 different systems CPA1..9 where for each
CPAi | i ∈ [1,9] we use as initial values for each specie concentration the concentrations gathered
from the previous run CPA(i−1). This results in a step-wise increase in [S] up to value [S] = 9 and
allows us to evaluate each formula. Note that the first evaluation correctly reflects that, as no
perturbation of the signal is introduced, P′

5 (as well as P5 and P6) evaluate to false. Now, as we
increase [S0], we clearly see that the spike in [R] reduces in value. Thus, the first to evaluate to
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false is P′
5i with threshold value r = 1.4. Respectively, the last to do so is P′

5iv. This shows that
the property holds as we expect, although some manual work was required.

P7 = F[0,t2]

(
G[0,t2]

(
ε2 > R− k1k4

k2k3

))
(5.12)

CPA |= ΠR,pert. ▷ P7 (5.13)

ΠR,pert. ≜ [0,100]R (5.14)

For the last property, we simply used a signal for system and a context process ΠR,pert.

(Equation 5.14) with [0,100]R introduced to P7 in Equation 5.13 (replicated from Section 4.3.4).
P7 (Equation 5.12) verifies that [R] will eventually return to a steady-state value. Together with
the context, we quantify that no matter what perturbation of [R] ∈ [0,100] we experience, this
is the case. This evaluates to true in the bondwb. However we note, that both concentration
[S], [X ] ̸= 0 as otherwise no degradation of [R] occurs, thus P7 would not satisfy.

Concluding, we were able to show that properties 1.a and 1.b hold for the system although
only for [S] > 0. For property 2 we devise 4 different propositions, capturing the reducing of
the spike in [R] as [S] gradually increases. This approach serves our purposes and evaluates our
propositions to true, however limits us in the band of validity. Ultimately, we show that [RSS]
indeed is independent of any perturbations in [R].

5.4 Summary

This chapter presents our qualitative and quantitative evaluation on the models presented. The
qualitative evaluation compares our work, mostly visually, to the presentation by Tyson et al. [82].
We also compare some results with the work of Wang [84] who implemented a subset of the
models presented here in cπ .

However, we also illustrate the contrasts between different implementations of the same
systems using the GK function and more explicit MM kinetics. Through the use of our novel
approach of formal verification through LBUC, we show that our characterizations of the first
four systems (linear, hyperbolic, sigmoidal response, and perfect adaptation) hold within specific
bounds.



Chapter 6

Discussion and Conclusion

We first discuss the three research questions initially posed and discuss to what degree we were
able to answer these through our work. Subsequently, we present possible future work as well as
an outlook on the bigger picture for both the bond-calculus and LBUC.

6.1 Discussion

1. Is the bond-calculus capable of modeling non-linear behaviour of complex systems
such as oscillators with custom kinetic laws providing an abstraction of the underlying
processes? We were able to fully and accurately replicate all models presented by Tyson
et al. [82] in the bond-calculus and to generate the exact same sets of ODEs as provided by the
authors. Given our high-level bond-calculus models, we obtain the same system behaviours as
identified by Tyson et al. using a low-level modeling approach.

By comparing our work with the work done by Wang [84], we furthermore show that the
bond-calculus indeed improves on the cπ . What we noticed most is the flexibility provided
through custom rate laws. We found that the separation of species definition, rate laws, affinity
networks, and processes brings bond-calculus models and the natural language description closer
together. This is especially explicit when comparing our implementations with the system
descriptions.

However, we also faced one major technical challenges during the implementation. The
symbolic simplification algorithm of the bondwb caused it to return erroneous ODEs when using
the GK function. To circumvent this, we extracted the MM kinetics underlying the function and
modelled the systems explicitly. Ultimately, the issue was found and fixed and allowed us to
implement the systems using the GK function. Nevertheless, being able to compare the explicit
model using MM kinetics and the model using the GK function gave rise to our second research
question.
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2. How do simplifications and abstractions affect our models and is it readily possible
to employ more precise and verbose approximations to these in the bond-calculus? We
attempted to understand the biochemical validity of the systems presented by Tyson et al. [82]
and compare the results from both, the MM and GK governed models of the same systems.

Abstractions and simplifications are key to modeling in system biology. However, the
assumptions by the authors such as excluding phosphatase species in MM kinetics (derived in
Section D.4) or presenting models which do not agree with the necessary assumptions of MM or
GK kinetics (see Section 5.2), hinder reproducibility. In fact, Wang [84] who implemented the
elementary building blocks in cπ , supporting only MA kinetics, was not able to exactly replicate
the behaviour. We were only able to do so as the bond-calculus allows us to encode arbitrary
rate-laws.

For our systems exhibiting mutual activation, mutual inhibition, and homeostasis, we were
able to replicate the GK function behaviour with MM kinetics. However, this is at the price
of much longer stabilization times when using explicit MM than in the version with the GK
function. Thus, presented with experimental data of in vivo systems, models with the GK
function could reveal to work on a completely different time-scale. We have seen this especially
for our implementations of the activator-inhibitor and substrate-depletion oscillators. Here, the
different time scales of stabilization lead to skewed results in concentration values. Thus, we
argue that certain assumptions and simplifications undertaken by the authors inhibit us from
easily replicating the same behaviour with more precise and verbose methods. New steady
state approximations might provide more accurate results in this regard as discussed further in
Section 6.2.

3. Provided with a bond-calculus model, is it possible to qualitatively, formally verify
and guarantee its behaviour through the use of LBUC? Shifting our focus to the LBUC
characterization of our systems, it should be stated that formulating these expressions can prove
difficult. Although the syntax of LBUC is already narrowing the gap between natural language
and formal statements with the context operator, one still requires considerable knowledge of
the system and capabilities in encoding properties in temporal logic. In fact, the knowledge
limitation also limited our characterizations in such that we do not believe them to be exhaustive.

Apart from this difficulty, we encountered limitations posed by the current state of the LBUC
implementation in the bondwb. It proved easy to verify properties with big ranges in uncertainty
on simple systems such as the linear response and perfect adaption. Here we showed that for
big ranges in initial values of a certain species, its steady-state is unaffected. However, as the
ODEs became more complex, we had to strongly limit the size of uncertainty we sought to
verify our properties for. For the value exploration conducted on the ultra-sensitivity of the
sigmoidal response, we had to resort to single-point values and even here, limitations due to
memory leakage were encountered. While this might be due to the bondwb itself, we believe
that for the more complex systems such as the negative-feedback oscillator, we reached Flow*’s
limits of flowpipe computation, inhibiting us to further analyze these.
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Ultimately, there was also a limitation from the point of few of available resources for both,
the bondwb and LBUC itself. Being a novel logic specifically designed for biochemical systems,
considerable trial and error was required to present the results in Chapter 5. However, we were
able to identify bugs in both, the context for signal and the reach object computation, leading us
to support the development.

Concluding, we note that it is possible to evaluate properties of simple system behaviour
with LBUC. Given a bond-calculus model, we are able to verify all properties devised to a
satisfactory level of generalization. However, for more complicated system, the limitations of
the LBUC implementation still prohibits extensive experimentation.

6.2 Future Work

Throughout our work, we had to comply with a variety of assumptions and approximations to
reliably model the systems presented by Tyson et al. [82]. For the future, it would be interesting
to implement the new findings by Kim and Tyson in their yet to be published paper on misuses
of the MM kinetics [46]. Research is ongoing on alternative steady-state approximations [86],
such as the total Quasi Steady-State Approximations (tQSSA) [16] which could help provide
more biochemically accurate systems.

In terms of the bond-calculus, we think to merely have scratched the surface. It would be
intriguing to model more complex, real-world systems and make use of the multi-way dynamic
bonding capabilities of the calculus. Furthermore, we see great opportunities in further exploring
the compositions feature of the bond-calculus. Processes can be composed from many smaller
processes and could in the future lead to a database of bond-calculus models such as the ones
presented here, to be used as plug-in components for complex systems. Moreover, leveraging
the intuitive semantics of the bond-calculus, a user interface allowing system biologists to
visually compose bond-calculus models could further lower the threshold on using it to formalize
biochemical systems.

We want to emphasize the opportunities arising through the introduction of LBUC and
its specific capability to verify biochemical systems. While our work merely introduced this
framework, it would be interesting to further develop a work similar to ours but focusing solely
on the formal characterization and verification of the models presented. Furthermore, we believe
that this form of formal verification could prove essential for fields such as bio-medicine or
pharmacy.

Finally, we terminate this work with the prospect that the bond-calculus and LBUC are
openly available through the bondwb [87]. We want to increase the audience aware of this as
well as increase its accessibility. For this reason in [30], we provide an informal and accessible
blog post on the website medium.com to encourage further engagement by the public. Especially
in contexts of crises such as the current COVID-19 pandemic [61], system biology research on
antibodies and vaccines becomes essential for quick action as shown by Guo et al. [35]. Although

medium.com
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we are aware that the bond-calculus will not provide game changing results immediately, we
believe it has prospects to provide a useful framework in the future.

6.3 Conclusion

The main aim of this project was to obtain a working understanding of the bond-calculus and
demonstrate that it is capable of modeling biochemical systems incorporating multiple species
interacting through general kinetic laws. We base our work on multiple sources presenting core
components of biochemical systems [82, 19, 60, 80], incorporating processes such as synthesis
and degeneration, positive and negative feedback, as well as oscillatory networks tying multiple
concepts together. The systems presented by Tyson et al. (2003) in [82] here present our starting
point. We then formally characterize system behaviours of a subset of the systems modelled in
Logic of Behaviour in Uncertain Contexts (LBUC) and verified their satisfaction through the
bondwb.

We accomplished to model and simulate all 7 basic systems as well as all 3 oscillators
presented in [82] in the bond-calculus and verify their correctness qualitatively. Due to initial
limitations we found alternative implementations for some of these which however in the course
of our work were lifted and we were capable to model all systems as intended by Tyson et al..
Furthermore, we were able to characterize 3 systems out of the 10 formally and verify our
formalized believes through the framework of LBUC. Finally, we seek with this thesis to
provide a comprehensive framework for future studies on biochemical system modeling in the
bond-calculus as well as formal characterization of system behaviour with LBUC.
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Appendix A

Bond Calculus Models

A.1 Linear Response

A.1.1 Ambient Species

1 species A = asynR -> (R | A);
2 species S = ssynR -> (S | R);
3 species R = degradeR -> 0;
4

5 kinetic law CL(k; A) = k*A;
6

7 affinity network N(a, s, r) = {
8 asynR at rate CL(a);
9 ssynR at rate MA(s);

10 degradeR at rate MA(r);
11 }
12 process Pi = [1.0] A || [1.0] S || [0] R with network N(0.01, 1, 5);

A.1.2 Simplified

1 species S = synthR -> (S | R);
2 species R = decayR -> 0;
3

4 kinetic law CL(a, k; X) = a + k*X;
5

6 affinity network N(a, s, r) = {
7 synthR at rate CL(a,s);
8 decayR at rate MA(r);
9 }

10 process Pi = [1.0] S || [0] R with network N(0.01, 1, 5);
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A.2 Hyperbolic Response

1 species S = kinaseR -> S;
2 species R = phosphorylate -> RP;
3 species RP = dephosphorylate -> R;
4

5 affinity network N(k, m) = {
6 phosphorylate || kinaseR at rate MA(k);
7 dephosphorylate at rate MA(m);
8 }
9 process Pi = [1.0] S || [1.0] R || [0.0] RP with network N(1.1,1.2);

A.3 Sigmoidal Response

A.3.1 Regular

1 species S = kinaseR -> S;
2 species R = phosphorylate -> RP;
3 species RP = dephosphorylate -> R;
4

5 kinetic law MM1(k,km; S,R) = (k*S*R) / (km + R);
6 kinetic law MM2(k,km; RP) = (k*RP) / (km + RP);
7

8 affinity network N(k1, k2, km1, km2) = {
9 kinaseR || phosphorylate at rate MM1(k1,km1);

10 dephosphorylate at rate MM2(k2,km2);
11 }
12 process Pi = [1.0] S || [1.0] R || [0.0] RP with network N(1,1,0.05,0.05);

A.3.2 Rate Exploration

1 species S = kinaseR -> S;
2 species R = phosphorylate -> RP;
3 species RP = dephosphorylate -> R;
4 species KM1 = stayKM1 -> KM1;
5 species KM2 = stayKM2 -> KM2;
6

7 kinetic law MM1(k; S,R,km) = (k*S*R) / (km + R);
8 kinetic law MM2(k; RP,km) = (k*RP) / (km + RP);
9



A.4 Perfect Adaptation 88

10 affinity network N(k1, k2) = {
11 kinaseR || phosphorylate, stayKM1 at rate MM1(k1);
12 dephosphorylate, stayKM2 at rate MM2(k2);
13 }
14

15 process Pi = [1.0] S || [1.0] R || [0.0] RP
16 || [0.05] KM1 || [0.05] KM2 with network N(1,1);

A.4 Perfect Adaptation

1 species S = ssynR -> (S | R)
2 + ssynX -> (S | X);
3 species R = degradeR -> 0;
4 species X = degradeX -> 0
5 + stayX -> X;
6

7 affinity network N(k1, k2, k3, k4) = {
8 ssynR at rate MA(k1);
9 ssynX at rate MA(k3);

10 degradeR || stayX at rate MA(k2);
11 degradeX at rate MA(k4);
12 }
13 process Pi = [1.0] S || [1.0] X || [1.0] R with network N(2,2,1,1);

A.5 Mutual Activation

A.5.1 GK Governed

1 species S = ssynR -> (S | R);
2 species R = degradeR -> 0
3 + epsynR -> (R | R);
4

5 kinetic law G(f,u,v,J,K; R) =
6 (f*2*u*R*K) / (v-u*R+v*J+u*R*K+((v-u*R+v*J+u*R*K)**2
7 -4*(v-u*R)*u*R*K)**0.5);
8

9 affinity network N(k0, k1, k2, k3, k4, j3, j4) = {
10 ssynR at rate MA(k1);
11 degradeR at rate MA(k2);
12 epsynR at rate G(k0,k3,k4,j3,j4);
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13 }
14 process Pi = [0.0] S || [0.0] R
15 with network N(0.4,0.01,1,1,0.2,0.05,0.05);

A.5.2 MM Governed

1 species S = ssynR -> (S | R);
2 species R = degradeR -> 0
3 + stayR -> R;
4 species E = phosphorylateE -> EP;
5 species EP = dephosphorylateEP -> E
6 + epsynR -> (EP | R);
7

8 kinetic law MM1(k,km; R,E) = (k*R*E) / (km + E);
9 kinetic law MM2(k,km; EP) = (k*EP) / (km + EP);

10

11 affinity network N(k0, k1, k2, k3, k4, j3, j4) = {
12 epsynR at rate MA(k0);
13 ssynR at rate MA(k1);
14 degradeR at rate MA(k2);
15 stayR || phosphorylateE at rate MM1(k3,j3);
16 dephosphorylateEP at rate MM2(k4,j4);
17 }
18 process Pi = [0.0] S || [0.0] R
19 || [1.0] E || [0.0] EP
20 with network N(0.4,0.01,1,1,0.2,0.05,0.05);

A.6 Mutual Inhibition

A.6.1 GK Governed

1 species S = ssynthR -> (S | R);
2 species R = decayR -> 0
3 + stayR -> R;
4 species A = asynthR -> (A | R);
5

6 kinetic law G(f,u,v,J,K; R) =
7 (2*u*K*f*R) / (v*R-u+v*J*R+u*K+((v*R-u+v*J*R+u*K)**2
8 -4*(v*R-u)*u*K)**0.5);
9
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10 affinity network N(k0, k1, k2, k21, k3, k4, j3, j4) = {
11 asynthR at rate MA(k0);
12 ssynthR at rate MA(k1);
13 decayR at rate MA(k2);
14 decayR at rate G(k21,k3,k4,j3,j4);
15 }
16 process Pi = [0.0] S || [0.0] R || [1.0] A
17 with network N(0,0.05,0.1,0.5,0.2,1,0.05,0.05);

A.6.2 MM Governed

1 species S = ssynthR -> (S | R);
2 species R = decayR -> 0
3 + stayR -> R;
4 species E = phosphE -> EP
5 + stayE -> E;
6 species EP = dephosphEP -> E;
7 species A = asynthR -> (A | R);
8

9 kinetic law MM1(k,km; E, R) = (k*R*E) / (km + E);
10 kinetic law MM2(k,km; EP) = (k*EP) / (km + EP);
11

12 affinity network N(k0, k1, k2, k21, k3, k4, j3, j4) = {
13 asynthR at rate MA(k0);
14 ssynthR at rate MA(k1);
15 decayR at rate MA(k2);
16 decayR || stayE at rate MA(k21);
17 phosphE || stayR at rate MM1(k3,j3);
18 dephosphEP at rate MM2(k4,j4);
19 }
20 process Pi = [0.0] S || [0.0] R || [0.0] E
21 || [1.0] EP || [1.0] A
22 with network N(0,0.05,0.1,0.5,1,0.2,0.05,0.05);

A.7 Homeostasis

A.7.1 GK Governed

1 species S = sdegradeR -> S;
2 species R = degradeR -> 0



A.8 Negative-Feedback Oscillator 91

3 + synR -> (R | R);
4

5 kinetic law G(f,u,v,J,K; R) =
6 2*u*K*f / (v*R-u+v*J*R+u*K+((v*R-u+v*J*R+u*K)**2
7 -4*(v*R-u)*u*K)**0.5);
8

9 affinity network N(k0, k2, k3, k4, j3, j4) = {
10 sdegradeR || degradeR at rate MA(k2);
11 synR at rate G(k0,k3,k4,j3,j4);
12 }
13

14 process Pi = [1.0] S || [0.0] R
15 with network N(1,1,0.5,1,0.01,0.01);

A.7.2 MM Governed

1 species S = sdecayR -> S;
2 species R = decayR -> 0
3 + stayR -> R;
4 species E = phosphE -> EP
5 + esynthR -> (E | R);
6 species EP = dephosphEP -> E;
7

8 kinetic law MM1(k,km; R,E) = (k*R*E) / (km + E);
9 kinetic law MM2(k,km; EP) = (k*EP) / (km + EP);

10

11 affinity network N(k0, k2, k3, k4, j3, j4) = {
12 esynthR at rate MA(k0);
13 sdecayR || decayR at rate MA(k2);
14 stayR || phosphE at rate MM1(k4,j4);
15 dephosphEP at rate MM2(k3,j3);
16 }
17 process Pi = [0.0] S || [0.0] R
18 || [1.0] E || [0.0] EP
19 with network N(1,1,0.5,1,0.01,0.01);

A.8 Negative-Feedback Oscillator

1 species A = asynX -> (A | X);
2 species S = ssynX -> (S | X);
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3 species X = stayX -> X
4 + degradeX -> 0;
5 species Y = phosphorylateY -> YP;
6 species YP = stayYP -> YP
7 + dephosphorylateYP -> Y;
8 species R = phosphorylateR -> RP;
9 species RP = stayRP -> RP

10 + dephosphorylateRP -> R;
11

12 kinetic law MM1(k,km; S,E) = (k*S*E) / (km + E);
13 kinetic law MM2(k,km; EP) = (k*EP) / (km + EP);
14

15 affinity network N(k0, k1, k2, k21, k3, k4, k5, k6, km3, km4, km5, km6) = {
16 asynX at rate MA(k0);
17 ssynX at rate MA(k1);
18 degradeX at rate MA(k2);
19 stayX || phosphorylateY at rate MM1(k3, km3);
20 dephosphorylateYP at rate MM2(k4, km4);
21 stayYP || phosphorylateR at rate MM1(k5, km5);
22 dephosphorylateRP at rate MM2(k6, km6);
23 stayRP || degradeX at rate MA(k21);
24 }
25 process Pi = [1.0] A || [2.0] S || [0] X
26 || [1.0] Y || [0.0] YP || [1.0] R
27 || [0.0] RP with network
28 N(0 , 1 , 0.01, 10.0,
29 0.1 , 0.2 , 0.1 , 0.05,
30 0.01, 0.01, 0.01, 0.01);

A.9 Activator-Inhibitor Oscillator

A.9.1 GK Governed

1 species S = ssynR -> (S | R);
2 species R = rsynR -> (R|R)
3 + degradeR -> 0
4 + rsynX -> (R | X);
5 species X = stayX -> X
6 + degradeX -> 0;
7
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8 kinetic law G(f,u,v,J,K; R) =
9 (f*2*u*R*K) / (v-u*R+v*J+u*R*K+((v-u*R+v*J+u*R*K)**2

10 -4*(v-u*R)*u*R*K)**0.5);
11

12 affinity network N(k0, k1, k2, k21, k3, k4, k5, k6, j3, j4) = {
13 ssynR at rate MA(k1);
14 degradeR at rate MA(k2);
15 degradeX at rate MA(k6);
16 rsynX at rate MA(k5);
17 stayX || degradeR at rate MA(k21);
18 rsynR at rate G(k0,k3,k4,j3,j4);
19 }
20

21 process Pi = [0.2] S || [0.0] X || [0.0] R
22 with network N(4,1,1,1,1 ,1, 0.1,0.075,0.3,0.3);

A.9.2 MM Governed

1 species S = ssynthR -> (S | R);
2 species R = stayR -> R
3 + decayR -> 0
4 + rsynthX -> (R | X);
5 species X = stayX -> X
6 + decayX -> 0;
7 species E = phospE -> EP;
8 species EP = stayEP -> EP
9 + epsynthR -> (EP | R)

10 + dephosphEP -> E;
11

12 kinetic law MM1(k,km; R,E) = (k*R*E) / (km + E);
13 kinetic law MM2(k,km; EP) = (k*EP) / (km + EP);
14

15 affinity network N(k0, k1, k2, k21, k3, k4, k5, k6, km3, km4) = {
16 ssynthR at rate MA(k1);
17 decayR at rate MA(k2);
18 decayX at rate MA(k6);
19 rsynthX at rate MA(k5);
20 stayX || decayR at rate MA(k21);
21 stayR || phospE at rate MM1(k3,km3);
22 dephosphEP at rate MM2(k4,km4);
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23 epsynthR at rate MA(k0);
24 }
25

26 process Pi = [0.2] S || [0.0] X || [1.0] E
27 || [0.0] EP || [0.0] R with
28 network N(4, 1 , 1 , 1 , 1 ,
29 1, 0.1 , 0.075, 0.3 , 0.3);

A.10 Substrate-Depletion Oscillator

A.10.1 GK Governed

1 species S = ssynX -> (S | X);
2 species R = stayR -> R
3 + degradeR -> 0;
4 species X = xturnR -> R;
5

6 kinetic law G(f,u,v,J,K; R) =
7 (f*2*u*R*K) / (v-u*R+v*J+u*R*K+((v-u*R+v*J+u*R*K)**2
8 -4*(v-u*R)*u*R*K)**0.5);
9

10 affinity network N(k01, k0, k1, k2, k3, k4, j3, j4) = {
11 ssynX at rate MA(k1);
12 degradeR at rate MA(k2);
13 xturnR at rate MA(k01);
14 stayR || xturnR at rate G(k0,k3,k4,j3,j4);
15 }
16

17 process Pi = [0.2] S || [0.0] X || [0.0] R
18 with network N(0.01,0.4,1,1,1,0.3,0.05,0.05);

A.10.2 MM Governed

1 species S = ssynthX -> (S | X);
2 species R = stayR -> R
3 + decayR -> 0;
4 species X = xturnR -> R;
5 species E = phosphE -> EP;
6 species EP = stayEP -> EP
7 + dephosphEP -> E;
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8

9 kinetic law MM1(k,km; R,E) = (k*R*E) / (km + E);
10 kinetic law MM2(k,km; EP) = (k*EP) / (km + EP);
11

12 affinity network N(k01, k0, k1, k2, k3, k4, km3, km4) = {
13 ssynthX at rate MA(k1);
14 decayR at rate MA(k2);
15 xturnR at rate MA(k01);
16 xturnR || stayEP at rate MA(k0);
17 stayR || phosphE at rate MM1(k3,km3);
18 dephosphEP at rate MM2(k4,km4);
19 }
20 process Pi = [0.2] S || [0.0] X || [1.0] E
21 || [0.0] EP || [0.0] R
22 with network N(0.01, 0.4, 1 , 1,
23 1 , 0.3, 0.05, 0.05);



Appendix B

Generated Systems of ODEs

B.1 Linear Response

B.1.1 Ambient Species

dS
dt

= 0 (B.1)

dR
dt

= 1 ·S−5 ·R+0.001 ·A (B.2)

dA
dt

= 0 (B.3)

B.1.2 Simplified

dS
dt

= 0 (B.4)

dR
dt

= 1 ·S−5 ·R+0.001 (B.5)

B.2 Hyperbolic Response

dS
dt

= 0 (B.6)

dR
dt

=−1.101 ·S ·R+1.202 ·RP (B.7)

dRP

dt
= 1.101 ·S ·R−1.202 ·RP (B.8)
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B.3 Sigmoidal Response

B.3.1 Regular

dRP

dt
=

(RP +0.05) ·S ·R−RP · (R+0.05)
(RP +0.05) · (R+0.05)

(B.9)

dS
dt

= 0 (B.10)

dR
dt

=−(RP +0.05) ·S ·R−RP · (R+0.05)
(RP +0.05) · (R+0.05)

(B.11)

B.3.2 Rate Exploration

dR
dt

=−((Km2 +RP) ·S ·R− (Km1 +R) ·RP)/((Km2 +RP) · (Km1 +R)) (B.12)

dRP

dt
= ((Km2 +RP) ·S ·R− (Km1 +R) ·RP)/((Km2 +RP) · (Km1 +R)) (B.13)

dS
dt

= 0 (B.14)

dKm1

dt
= 0 (B.15)

dKm2

dt
= 0 (B.16)

B.4 Perfect Adaptation

dS
dt

= 0 (B.17)

dR
dt

=−2 ·R ·X +2 ·S (B.18)

dX
dt

= 1 ·S−1 ·X (B.19)
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B.5 Mutual Activation

B.5.1 GK Governed

dS
dt

= 0 (B.20)

dR
dt

= 0.01 ·S−R+0.04 · R

−0.95 ·R+
√

0.20 ·R2 +(−0.95 ·R+0.21)2.0−0.04 ·R+0.21
(B.21)

B.5.2 MM Governed

dS
dt

= 0 (B.22)

dR
dt

= 0.01 ·S−R+0.40 ·EP (B.23)

dE
dt

=−R ·E · (EP +0.05)−0.20 · (E +0.05) ·EP

(E +0.05) · (EP +0.05)
(B.24)

dEP

dt
=

R ·E · (EP +0.05)−0.20 · (E +0.05) ·EP

(E +0.05) · (EP +0.05)
(B.25)

B.6 Mutual Inhibition

B.6.1 GK Governed

dR
dt

= 0.05 ·S−0.10 ·R−0.01 · R

(1.05 ·R+
√

(1.05 ·R−0.19)2.0−0.04 ·R+0.008−0.19
(B.26)

dS
dt

= 0 (B.27)

dA
dt

= 0 (B.28)
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B.6.2 MM Governed

dS
dt

= 0 (B.29)

dR
dt

=−0.50 ·R ·E +0.05 ·S−0.10 ·R (B.30)

dA
dt

= 0 (B.31)

dE
dt

=−R ·E · (EP +0.05)−0.20 · (E +0.05) ·EP

(E +0.05) · (EP +0.05)
(B.32)

dEP

dt
=

R ·E · (EP +0.05)−0.20 · (E +0.05) ·EP

(E +0.05) · (EP +0.05)
(B.33)

B.7 Homeostasis

B.7.1 GK Governed

dS
dt

= 0 (B.34)

dR
dt

=−S ·R+
0.01

1.01 ·R+
√

(1.01 ·R−0.495)2.0−0.020 ·R+0.01−0.495
(B.35)

B.7.2 MM Governed

dS
dt

= 0 (B.36)

dR
dt

=−S ·R+E (B.37)

dE
dt

=−R ·E · (EP +0.01)−0.50 · (E +0.01) ·EP

(E +0.01) · (EP +0.01)
(B.38)

dEP

dt
=

R ·E · (EP +0.01)−0.50 · (E +0.01) ·EP

(E +0.01) · (EP +0.01)
(B.39)
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B.8 Negative-Feedback Oscillator

dS
dt

= 0 (B.40)

dA
dt

= 0 (B.41)

dX
dt

=−10. ·RP ·X +S−0.01 ·X (B.42)

dR
dt

=
−0.10 · (RP +0.01) ·R ·Y P+0.05 ·RP · (R+0.01)

(RP +0.01) · (R+0.01)
(B.43)

dRP

dt
=

0.10 · (RP +0.01) ·R ·Y P−0.05 ·RP · (R+0.01)
(RP +0.01) · (R+0.01)

(B.44)

dY
dt

=
−0.10 ·Y ·X · (Y P+0.01)+0.20 · (Y +0.01) ·Y P

(Y +0.01) · (Y P+0.01)
(B.45)

dYP

dt
=

0.10 ·Y ·X · (Y P+0.01)−0.20 · (Y +0.01) ·Y P
(Y +0.01) · (Y P+0.01)

(B.46)

B.9 Activator-Inhibitor Oscillator

B.9.1 GK Governed

dS
dt

= 0 (B.47)

dR
dt

=−R ·X +S−R+2.4 · R

(−0.70 ·R+
√

1.2 ·R2 +(−0.70 ·R+1.3)2.0−1.2 ·R+1.3
(B.48)

dX
dt

= 0.10 ·R−0.075 ·X (B.49)

B.9.2 MM Governed

dS
dt

= 0 (B.50)

dR
dt

=−R ·X +S−R+4.0 ·EP (B.51)

dX
dt

= 0.10 ·R−0.075 ·X (B.52)

dE
dt

=−R ·E · (EP +0.30)− (E +0.30) ·EP

(E +0.30) · (EP +0.30)
(B.53)

dEP

dt
=

R ·E · (EP +0.30)− (E +0.30) ·EP

(E +0.30) · (EP +0.30)
(B.54)
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B.10 Substrate-Depletion Oscillator

B.10.1 GK Governed

dS
dt

= 0 (B.55)

dR
dt

=−R+0.040 ·R · X

−0.950 ·R+
√

0.200 ·R2 +(−0.950 ·R+0.315)2.00−0.0600 ·R+0.315
+0.010 ·X

(B.56)
dX
dt

= S−0.040 ·R · X

−0.950 ·R+
√

0.200 ·R2 +(−0.950 ·R+0.315)2.00−0.0600 ·R+0.315
−0.010 ·X

(B.57)

B.10.2 MM Governed

dS
dt

= 0 (B.58)

dE
dt

=−R ·E · (EP +0.05)−0.30 · (E +0.05) ·EP

(E +0.05) · (EP +0.05)
(B.59)

dEP

dt
=

R ·E · (EP +0.05)−0.30 · (E +0.05) ·EP

(E +0.05) · (EP +0.05)
(B.60)

dR
dt

= 0.400 ·X ·EP −R+0.010 ·X (B.61)

dX
dt

=−0.400 ·X ·EP +S−0.010 ·X (B.62)
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Figures and Plots

C.1 (a) Linear Response
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Figure C.1 Linear response. Signal-response curve in black, temporal progression in blue.
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C.2 (b) Hyperbolic Response
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Figure C.2 Hyperbolic Response. Signal-response curve in black, temporal progression in blue.

C.3 (c) Sigmoidal Response
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Figure C.3 Sigmoidal Response. Signal-response curve in black, temporal progression in blue.
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C.4 (d) Perfect Adaptation
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Figure C.4 Perfect Adaptation. Signal S in blue, species X in purple, species R in black.

C.5 (e) Mutual Activation

C.5.1 GK Governed
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Figure C.5 Mutual Activation governed by GK function. Bi-stable signal-response curve in black,
temporal progression in blue.
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C.5.2 MM Governed
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Figure C.6 Mutual Activation governed by MM kinetics. Bi-stable signal-response curve in
black, temporal progression in blue.

C.6 (f) Mutual Inhibition
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Figure C.7 Mutual Inhibition governed by GK function. Bi-stable signal-response curve in black,
temporal progression in blue and purple.
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C.6.2 MM Governed
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Figure C.8 Mutual Inhibition governed by GK function. Bi-stable signal-response curve in black,
temporal progression in blue and purple.

C.7 (g) Homeostasis
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Figure C.9 Homeostasis governed by GK function.Signal-response curve in black, temporal
progression in blue.
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C.7.2 MM Governed
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Figure C.10 Homeostasis governed by GK function.Signal-response curve in black, temporal
progression in blue.

C.8 (h) Negative-Feedback Oscillators
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Figure C.11 Negative-Feedback Oscillator. Temporal progression of oscillating species. Species
X in blue, species RP in pink, species YP in black.
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Figure C.12 Negative-Feedback Oscillator. Signal-response diagram showing minima and
maxima values achieved by oscillations at specific [S].

C.9 (i) Activator-Inhibitor Oscillator
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Figure C.13 Activator-Inhibitor Oscillator governed by GK function. Phase-plane portrait. (X ,R)
pairs satisfying dR

dt = 0 in red; (X ,R) pairs satisfying dX
dt = 0 in purple; temporal oscillation of

(X ,R) in black.



C.9 (i) Activator-Inhibitor Oscillator 109

C.9.2 MM Governed

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
X

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

R

Activator inhibitor

Figure C.14 Activator-Inhibitor Oscillator governed by MM kinetics. (X ,R) pairs satisfying
dR
dt = 0 in red; (X ,R) pairs satisfying dX

dt = 0 in purple; temporal oscillation of (X ,R) in black.

C.9.3 GK Governed Signal-Response
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Figure C.15 Activator-Inhibitor oscillator governed by GK function. Signal-response diagram
showing minima and maxima values achieved by oscillations at specific [S].
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C.9.4 MM Governed Signal-Response
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Figure C.16 Activator-Inhibitor oscillator governed by MM kinetics. Signal-response diagram
showing minima and maxima values achieved by oscillations at specific [S].

C.10 (j) Substrate-Depletion Oscillator
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Figure C.17 Substrate-depletion oscillator governed by GK function. (X ,R) pairs satisfying
dR
dt = 0 in red; (X ,R) pairs satisfying dX

dt = 0 in purple; temporal oscillation of (X ,R) in blue.
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Figure C.18 Substrate-depletion oscillator governed by MM kinetics. (X ,R) pairs satisfying
dR
dt = 0 in red; (X ,R) pairs satisfying dX

dt = 0 in purple; temporal oscillation of (X ,R) in blue.
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Figure C.19 Substrate-depletion oscillator governed by GK function. Signal-response diagram
showing minima and maxima values achieved by oscillations at specific [S].
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C.10.4 MM Governed Signal-Response
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Figure C.20 Substrate-depletion oscillator governed by MM kinetics. Signal-response diagram
showing minima and maxima values achieved by oscillations at specific [S].



Appendix D

Additional Material

D.1 cπ Example Code - testEnzyme.cpi

Code reproduced from the CPi-IDE GitHub repository by McCrae [55]:

1 -- Species (S) + Enzyme (E) <-> Complex -> Product (P)
2

3 species S(s) = s(x,y).(x.S(s) + y.P());
4 species E(e) = {a-u@0.5,a-t@1.0}
5 e<u,t>.a.E(e);
6 species P() = tau<0.5>.0;
7

8 process Pi = [1.0] S(s) || [0.5] E(e) || [0] P()
9 : {e-s@1.0};

10

11 -- NB: Complex = {a-u@0.5,a-t@1.0} a.E(e)|u.S(s)+t.P()

D.2 Bond-Calculus Code

D.2.1 Modeling with Dynamic Bonding

1 species E = e(l) -> ep@l -> E;
2 species S = s(l) -> (pp@l -> P + sp@l -> S);
3 species P = p -> 0;
4

5 affinity network M1(k1,m1,k2, k3) = {
6 e, s at rate MA(k1);
7 ep + sp at rate MA(m1);
8 ep + pp at rate MA(k2);
9 p at rate MA(k3);
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10 }
11 process Pi = [0.5] E || [1.0] S || [0.0] P
12 with network M1(1.0, 0.1, 0.5, 0.1);

D.2.2 Modeling with Michaelis-Menten Kinetic Law

1 species E = e -> E;
2 species S = s -> P;
3 species P = p -> 0;
4

5 kinetic law MM(k,km; S,E) = (k*S*E) / (km + E);
6

7 affinity network M1(k1,km1,k2) = {
8 s || e at rate MM(k1,km1);
9 p at rate MA(k2);

10 }
11 process Pi = [0.5] E || [1.0] S || [0.0] P
12 with network M1(1.0, 0.1, 0.1);

D.3 LTL Syntax

φ ,ψ ::= Atom | φ ∧ψ | φ ∨ψ | φ =⇒ ψ | ¬φ | (D.1)

Xφ | φUlψ | Flφ | Glφ (D.2)

Atom ::= ⊤ | ⊥ (D.3)

The first row represents the basic operations in propositional logic. LTL introduces 4 temporal
operators, namely next (Xφ ), until (φUIψ), globally (Glφ ) and eventually (Flφ ). They can
be combined to form expressions such as "infinitely often proposition φ holds" (GlFlφ ) or
"eventually proposition φ holds infinitely often" (FlGlφ ). The next operator allows to access a
subsequent state. With the until operator we can express that a certain proposition (φ ) holds until
another proposition (ψ) evaluates to true. True and false are denoted by ⊤ and ⊥ respectively.
The subscript l denotes a time interval [0, l) in which the respective operator performs the
checking. Any expression which is not satisfied within that time interval evaluates to false.
Given a transition system P and a linear time (LT) property γ , we formulate a satisfaction relation
as P ⊨ γ . Here, γ could be any formula satisfying the syntax in Definition D.3 [7].
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D.4 Sigmoidal Response - ODE System Derivation

To devise the system of ODEs governing the sigmoidal signal-response motif we rely on the
work by Wang [84]. The phosphorylation, referred to as forward reaction (R → RP) and dephos-
phorylation, or backward reaction (RP → R) can be expressed by the chemical Reactions D.4
and D.5 respectively. The indices K indicate all components involved with the forward reaction,
the kinase, and indices P all components in the backward reaction, the phosphatase. However,
RP still refers to the phosphorylated response of protein R.

SK +R
k1
⇌
k−1

CK
k2→ SK +RP (D.4)

SP +RP
k3
⇌
k−3

CP
k4→ SP +R (D.5)

The forward reaction is expressed by the ODEs in Equations D.16, D.17, D.18, and D.19 while
the ODEs for the backward reaction are Equations D.20, D.21, D.22, and D.23. The reaction
constant k1 and k−1 describe the formation and decomposition of the temporary enzyme-substrate
complex C, while k2 indicates the rate at which C reacts into enzyme and the phosphorylated
response. Analog to this, reaction constants k3, k−3, and k4 follow the same purpose in the
backward reaction. The equations are formed in a similar fashion to the ones in Sections 3.3.1
and 3.3.2.

If the concentration of the enzyme is much smaller than the concentration of the substrate
(ST ≪ RT ), the quasi-steady state assumption by Briggs & Haldane can be applied [10]. It
states that the concentration of the enzyme-substrate complex C remains constant throughout
the reaction, hence dC

dt = 0. Applying this to both equations in Equation D.21, we obtain
Equations D.11 and D.14 respectively for the forward and backward reactions.

dCK

dt
=−k2CK − k−1CK + k1SR = 0 (D.6)

=⇒CK (k2 + k−1) = k1SR (D.7)

=⇒CK (k2 + k−1) = k1 (Stotal −CK)R (D.8)

=⇒CK (k2 + k−1 + k1R) = k1StotalR (D.9)

=⇒CK

(
k2 + k−1

k1
+R

)
= StotalR (D.10)

=⇒CK =
SK,totalR

k2+k−1
k1

+R
(D.11)

=⇒CK =
SK,totalR
Km1 +R

(D.12)
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dCP

dt
= k3RPSP − k−3CP − k4CP = 0 (D.13)

=⇒CP =
SP,totalRP

k4+k−3
k3

+RP
(D.14)

=⇒CP =
SP,totalRP

Km2 +RP
(D.15)

dRP

dt
= k2CK (D.16)

dCK

dt
=−k2CK − k−1CK + k2SKR (D.17)

dSK

dt
=−k1SKR+ k−1CK + k2CK (D.18)

dR
dt

=−k1SR+ k−1CK (D.19)

dRP

dt
=−k3RPSP + k−3CP (D.20)

dCP

dt
= k3RPSP − k−3CP − k4CP (D.21)

dSP

dt
= k4CP + k−3CP − k3RPSK (D.22)

dR
dt

= k4CP (D.23)

The terms in the denominator of Equations D.11 and D.14 can be rewritten as the MM
constants Km1 =

k2+k−1
k1

and Km2 =
k4+k−3

3 respectively.

For the forward reaction we now can insert Equation D.12 into Equation D.16. With the
expression R = RT +RP we can express the rate of RP in terms of the total concentration of the
response and RP itself:

dRP

dt
=

kcSP,total (RT −RP)

Km1 +RT −RP
(D.24)

For the backward reaction we can similarly express the rate of change of the concentration of
species RP. As pointed out by Wang, we note that Equation D.21 is the reverse of Equation D.20
with an added k4CP term. Hence we rewrite:

dRP

dt
=−dCP

dt
− k4CP (D.25)

−→ dRP

dt
=−k4CP (D.26)

−→ dRP

dt
=−

k4SP,totalRP

Km2 +RP
(D.27)

Combining Equations D.24 and D.27 results in the governing ODE (Equation 3.6 for the
concentration of RP. It has to be noted, that this equation does not correspond with the one in [82].
Similar to the discussion in Section 3.3.2, the authors neglect the phosphatase enzyme SP (hence
also SP,total) in their derivation and assume that the MM kinetics drives the dephosphorylation
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allosterically without any catalizing enzyme. In order to ease the qualitative evaluation in
Chapter 5, we will follow the results presented in [82].

D.5 Complete Table of Rate Constants
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