
Rusty Junctions:
Rich Asynchronous Concurrency

in Rust

Sebastian Müksch
s1511595@sms.ed.ac.uk

4th Year Project Report
Computer Science and Mathematics

School of Informatics
University of Edinburgh

2020

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

3

Abstract
This report introduces the Rusty Junctions Library [26], a library-level implementation
of join patterns as originally described in the Join Calculus [31]. The Rusty Junctions
Library is implemented in Rust version 1.35.0 with a design inspired by the Joins Con-
currency Library [35], a previous implementation of join patterns. It contributes the
junction as a novel coordination unit for concurrent computation that groups depen-
dent join patterns together and a scheme to use Rust’s static type system to validate
join pattern constructions at compile time. An algorithm for scheduling join pattern
execution is also developed with an outline of a proof of its strong fairness. Examples
of the Rusty Junctions Library in use are provided. In particular, an existing solu-
tion [29] to the Santa Claus problem [36] in Polyphonic C# [30] is translated into the
Rusty Junctions Library, demonstrating concurrent programming with multiple junc-
tions interacting with each other as well as the Rusty Junctions programming model in
general.

4

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Ian Stark for his unparal-
leled support with this project. It is no exaggeration to say that the contributions of this
project would not have been possible without him. He went above and beyond to help
me with some of the greatest challenges implementing join patterns in a programming
language that is famously strict about its type system and ownership semantics. On top
of that, I truly enjoyed the long meetings working on this project, which often stretched
far beyond schedule. Thanks to him I have a new found appreciation for my subject.

I would also like to thank two dear friends of mine, Martin and Julius, who have taken
up the daunting task of deciphering my work to provide valuable feedback on this
report. Without them taking the time to look over my report, I would have been blind
to my own mistakes. Martin in particular is to thank as he invested countless hours
forcing me to write correct, clear and concise.

Lastly, I would like to thank my mother, father, sister and grandmother. It will hope-
fully end up as a distant memory, but the final weeks of this project happened under
incredibly challenging and uncertain times, not just for me personally, but globally.
While writing this report, I ended up moving back to my home country due to the
events that were unfolding. Suffice it to say that it was not left unaffected by the re-
ality that everyone was living in at the time. However, my family has been absolutely
incredible in supporting me through the long nights of work that were needed to get
this project done. I am incredibly fortunate to have them by my side.

The reader may excuse me potentially breaking standard procedure at this stage, but I
would like to address the following paragraph to my family in their native tongue as
not everyone will be able to understand it if I write it in English. Not to worry, nothing
is lost if the following is not understood, but I want it to be here for them:

Pre mamku, für Papa, Alexandra und Oma. Ich kann euch nicht genug danken für all
die Unterstützung über die Jahre hinweg während meines Bachelors, aber vor allem in
diesen letzten Wochen, die durchaus nicht einfach waren. In der Wissenschaft spricht
man oft davon, auf den Schultern von Giganten zu stehen. Ich schätze mich unglaublich
glücklich auf den Schultern von den mir geliebten Menschen zu stehen.

Contents

1 Introduction and Motivation 7

2 Background:
Join Calculus, Existing Implementations and Rust 9
2.1 Join Calculus . 9
2.2 Existing Implementations . 12

2.2.1 Polyphonic C# . 13
2.2.2 The Joins Concurrency Library 14

2.3 Rust . 15
2.3.1 Ownership and Borrowing 16
2.3.2 Lifetimes on References . 18
2.3.3 Traits and Trait Objects . 19

3 Design:
Channels, Junctions and Controllers 23
3.1 Overview . 23
3.2 Channels . 24

3.2.1 Asynchronous Sending with SendChannel 24
3.2.2 Synchronous Receiving with RecvChannel 25
3.2.3 Synchronous Sending and Receiving with BidirChannel . . 25

3.3 Join Patterns . 26
3.4 Junctions . 27
3.5 Controllers . 28

4 Implementation:
Bringing Rusty Junctions To Life 31
4.1 Message Passing with Packets . 31
4.2 Creating Channels . 33
4.3 Constructing Join Patterns . 34
4.4 Dynamic Typing Through Trait Objects 36
4.5 Handling State with Controllers . 38
4.6 Join Pattern Execution . 39

4.6.1 Issue 1: Sharing Channels 41
4.6.2 Issue 2: Repeating Channels 42
4.6.3 Cloning Closures . 42

4.7 Managing Resources with ControllerHandle 44

5

6 CONTENTS

5 Examples:
Programming in Rusty Junctions 47
5.1 Revisiting the Storage Cell . 47
5.2 Holly Jolly Christmas . 49

6 Evaluation:
A Qualitative Review 57
6.1 Limitations of the Implementation 57

6.1.1 Number of Channels in Join Patterns 57
6.1.2 Channel Types in Join Patterns 58
6.1.3 Signalling Channels . 59

6.2 Join Patter Execution . 59
6.2.1 Time Complexity and Optimality 60
6.2.2 Fairness . 61

6.3 Unused Features . 63
6.3.1 Futures and async-await 63
6.3.2 The Function Call Operator 64

7 Conclusions and Future Work 67

Bibliography 69

Appendix A Complete Join Calculus Definition 75

Appendix B Full Santa Claus Solution 77

Chapter 1

Introduction and Motivation

Many problems, such as the Santa Claus problem [36] either require concurrency, nat-
urally lean to a concurrent formulation or can be solved more efficiently using concur-
rency. For this, many programming languages provide various mechanisms to share
data across multiple entities and synchronise it when necessary. These mechanisms
span from simple, mutually exclusive locks to message passing concurrency. However,
with all of these, synchronisation has to be handled manually, with various problems
to avoid, such as race conditions and deadlocking, that are potentially hard to detect.
This begs the question of whether there a programming model that is built from the
ground up for concurrent computation is possible. Such a model may not only be able
to avoid such issues but offer a richer form of asynchronous concurrency.

The Join Calculus, developed by Fournet and Gonthier as a process calculus for dis-
tributed and mobile computation, offers such an approach [31]. The Join Calculus
introduces join patterns, which build on message passing concurrency and offer a
declarative way to synchronise various messages from arbitrary places within a system
and execute processes as a result of successful synchronisation. Polyphonic C# [30]
and the Joins Concurrency Library [35] are prominent examples of implementations
of join patterns. These have been shown to be able to solve problems in concurrency
that require synchronisation of many entities, such as the Santa Claus problem [36]
[29], in a purely declarative manner and even be scalable to larger applications [37].
This suggests that join patterns may be a valid approach to concurrency in a more
system-oriented programming language such as Rust [1].

The Rust programming language [1] is a system programming language [34] designed
with a focus on safe concurrency. It offers constructs for not only locking but also mes-
sage passing concurrency in its standard library. Coined as a safe system programming
language with a rich, static type system [34], this report poses the question: How can
join patterns as a rich concurrency construct be implemented in Rust and integrated
with its type system to provide a within Rust novel, declarative approach to safe con-
currency? Answering this question, this report lays out the design and implementation
of the Rusty Junctions Library [26], a new and published library contributed to the Rust
programming language.

7

8 Chapter 1. Introduction and Motivation

The Rusty Junctions Library is a library-level implementation of join patterns in Rust
version 1.35.0 that employs message passing and takes inspiration from the Joins Con-
currency Library [35] in its design. It contributes a novel unit for coordination, the
junction, which provides a natural grouping of join patterns that depend on each other.
It uses Rust’s type system to validate join pattern constructions at compile time and au-
tomatically ensure thread-safety. A further contribution of the Rusty Junctions Library
is an algorithm to schedule the execution of processes after successful synchronisation
in join patterns.

This report starts in Chapter 2 with an introduction into the theory behind join patterns,
the Join Calculus [31]. It explores existing implementations of them and an gives an
overview of important Rust features potentially new to a reader unfamiliar with the
language.

Chapter 3 lays out the design of the Rusty Junctions Library with the concepts behind
its components. Chapter 4 provides technical details of the their implementation, is-
sues encountered along the way and solutions to them. Additionally, it provides the
algorithm used to schedule the execution of processes after a synchronisation in join
patterns.

Chapter 5 provides examples of the currently published version 0.1.0 of the Rusty
Junctions Library [26] in use, most notably a description of a solution to the Santa
Claus problem [36]. This solution is based on, and essentially is, a translation of a
Polyphonic C# solution due to Benton [29]. This exemplifies that the expressiveness
of the library is on par with that of Polyphonic C# for a reasonably complex problem
such as the Santa Claus problem [36].

Finally, Chapter 6 provides a qualitative analysis of the Rusty Junctions Library. It
describes its limitations and examines properties of the scheduling algorithm for join
pattern execution it contributes. Chapter 7 closes with final remarks and pointers for
future work.

Chapter 2

Background:
Join Calculus, Existing

Implementations and Rust

This chapter presents the necessary background material to understand the functional-
ity and design that is implemented in the Rusty Junctions Library [26]. This chapter
will also serve to put the Rusty Junctions Library into context in the field of Join Cal-
culus and join pattern implementations.

Section 2.1 discusses the Join Calculus [31] as the underlying theory behind join pat-
terns. It also works through an example of a problem solved using the Join Calculus to
provide insight into its programming model.

Section 2.2 is dedicated to a discussion of existing implementations of the Join Cal-
culus and join patterns with Polyphonic C# [30] and the Joins Concurrency Library
[35]. Example code is provided for both with the latter having inspired the design of
the Rusty Junctions Library [26].

Finally, Section 2.3 provides explanations and sample code for features of the Rust
programming language [1]. The features covered are particularly important for the
design and implementation of the Rusty Junctions Library as discussed in Chapter 3
and Chapter 4, respectively.

2.1 Join Calculus

The Join Calculus was designed as a process calculus for distributed and mobile com-
putation by Cédric Fournet and Georges Gonthier [31]. Processes within the Join Cal-
culus are synchronised with the use of pattern matching, where inter-process synchro-
nisation is specified declaratively [31].

This section presents a selected part of the formal definition of the Join Calculus nec-
essary to understand the examples that follow. The examples themselves demonstrate

9

10 Chapter 2. Background: Join Calculus, Existing Implementations and Rust

the programming model of the Join Calculus. Definition 2.1 gives this selected part
of the description of the Join Calculus [31], for the complete formal definition refer to
Definition A.1 in Appendix A:

Definition 2.1 Selected parts of the Join Calculus definition as given by Fournet and
Gonthier [31].

P,Q,R ::= processes
. . .
‖ P | Q parallel composition
‖ 0 inert process
‖ return Ẽ to f return value(s) to function call
‖ def f (x̃) . P in Q recursive function definition

E,F ::= expressions
. . .
‖ def D in E process/function definition

D ::= definitions
J . P execution rule
‖ D∧D′ alternative definitions
‖ > empty definition

J ::= join patterns
x〈ỹ〉 message send pattern
‖ x(ỹ) function call pattern
‖ J | J′ synchronisation

The join patterns in Definition 2.1 are key to the programming model employed by the
Join Calculus. The message send pattern, x〈ỹ〉, is used to declare a channel on which
a message can be sent. A corresponding function call using the function call pattern,
x(ỹ), can receive the message and use it [31]. These two patterns may then appear in a
synchronisation using the pipe | operator [31]. The synchronisation occurs when each
pattern has sent at least one value [31].

The execution rule, J . P, in Definition 2.1 ensures that process P guarded by join
pattern J is executed with the values received in J [31]. The guarded process is only
executed upon synchronisation in the join pattern. Note that if there is at least one
function call pattern in J, then the process P may contain a return Ẽ to f to return
one or more values to a function call f .

To illustrate the use of the Join Calculus [31] and join patterns, a storage cell written in
the Join Calculus is now given. The storage cell provides a mechanism that synchro-
nises a single value in a concurrent environment. The value can both be set, denoted
with put, and received, denoted as get.

For a value to be stored without a put and get to synchronise together, i.e. just passing

2.1. Join Calculus 11

the value over, a channel to carry the value is added. This channel is denoted with val
and can be thought of as carrying state asynchronously. Example 2.1 uses it together
with put and get to implement the storage cell:

1 def storageCell(a) .
2 def put(v) | val〈w〉 . val〈v〉 | return to put
3 ∧ get() | val〈v〉 . val〈v〉 | return v to get
4 in val〈a〉 | return put, get to storageCell
5 in ...

Example 2.1: Storage cell written using Join Calculus.

Example 2.1 is one recursive function definition, def f (x̃) . P in Q, as given in
Definition 2.1. The place of f (x̃) is taken by storageCell(a) in line 1, which takes
as parameter the initial value for the storage cell. In place of outer process Q are ellipsis
in line 5 indicating an arbitrary process. The inner process P is split across lines 2 to 4
for increased readability and provides the actual implementation.

The inner process P is made up of a function definition, def D in R, as given in
Definition 2.1. Note that the process is R to not repeat names. The definition D can be
further split into two alternative definitions, D′ ∧ D′′ using the appropriate rule from
Definition 2.1. Names are changed again for disambiguation. The first alternative
definition, D′, is given in line 2 of Example 2.1 and is of the form of an execution rule,
J . T :

2 def put(v) | val〈w〉 . val〈v〉 | return to put

Following Definition 2.1 in the above, the join pattern J is a synchronisation of a
function call pattern, put(v), and a message send pattern, val〈w〉. The process T is a
parallel composition, U | S. Process U is simply another message send pattern, val〈v〉
and process S is a function return to put, return to put. Altogether, line 2 states that
if there is a function call to put with value v and channel val has sent value w, then
send on channel val the newly received value v and return to the put with no value.

Second alternative definition, D′′, is given in line 3 of Example 2.1:

3 ∧ get() | val〈v〉 . val〈v〉 | return v to get

It can be broken down analogously to line 2 of Example 2.1. The join pattern in line 3
requires a function call to get, i.e. the value being requested, and a value v available
through channel val. If both is the case, the guraded process resends that value using
channel val to ensure that it can be received in future and returns value v to function
call get.

Together, line 2 and 3 of Example 2.1 implement the functionality of the storage cell.
The value can be set through put and received through get, as soon as a synchroni-
sation with a value through val is possible. Note that this means that neither put nor
get will return before synchronisation.

Finally, line 4 of Example 2.1 makes up the process R of def D in R, the function
definition in the inner process P:

12 Chapter 2. Background: Join Calculus, Existing Implementations and Rust

4 in val〈a〉 | return put, get to storageCell

Again, a parallel composition is used. The first process is val〈a〉, which sends the
initial value of the storage cell as provided by storageCell(a). Without an initial
value sent, neither put nor get could synchronise and would never return or have an
effect.

The second process, return put, get to storageCell, returns put and get to the
caller of storageCell. This allows them to manipulate the value of the storage cell
after it has been created. Observe that val, the channel carrying the value asyn-
chronously, is not returned to the caller because a call to it directly has no meaning
in this example. Channel val can be considered auxiliary or private.

Example 2.1 demonstrates key elements of the programming model employed by the
Join Calculus. Among these are the join patterns that declaratively describe behaviour
through the synchronisation of multiple channels. Additionally, there is the use of
private channels to carry state asynchronously.

This section ends with another example of the Join Calculus programming model. This
time a mechanism for mutual exclusion is implemented in Example 2.2:

1 def mutex() .
2 def acquire() | lock〈〉 . return to acquire
3 ∧ release() . lock〈〉 | return to release
4 in lock〈〉 | return acquire, release to mutex
5 in ...

Example 2.2: Simple mutex written using Join Calculus.

Example 2.2 follows the same structure as Example 2.1. Therefore, it is not broken
down in detail. However, the reader is encouraged to reason it through themselves.

While Example 2.2 may be deceptively simple, it carries valuable proof that any pro-
gram that can be written with mutual exclusion can also be written using the Join
Calculus and join patterns, since the former can be implemented in the latter.

This concludes the description of the Join Calculus and its programming model. The
next section moves on to present existing implementations of the Join Calculus and
join patterns.

2.2 Existing Implementations

With the Join Calculus [31] providing the theoretical foundations for a programming
model built for concurrency, various attempts of implementing it and its join patterns
have been made. Notable ones are:

• JoCaml, which extends the Objective Caml language with, amongst other things,
support for concurrency and synchronisation with a programming model based
on the Join Calculus [32];

2.2. Existing Implementations 13

• Polyphonic C#, which extends the C# programming language with concurrency
constructs based on the Join Calculus [30]; and
• the Joins Concurrency Library, which implements join patterns as a library on

top of C# 2.0 using generics and the .NET runtime [35].

This section describes the work done on Polyphonic C# and the Joins Concurrency
Library. They pose an interesting case study in implementation approaches which
inspired the design of the Rusty Junctions Library [26] described in Chapter 3.

2.2.1 Polyphonic C#

Polyphonic C# provides a language-level implementation of join patterns, which it
names chords. This means they are implemented as a concurrency primitive [30]. It
precedes the Joins Concurrency Library [35], which instead offers join patterns as a
library using generics in C#. These were not available at the time Polyphonic C# was
developed [35].

To offer join patterns as a concurrency primitive, Polyphonic C# extends the normal
function definitions of C# [30]. It allows for join pattern declarations in a form similar
to synchronisations in Definition 2.1. For this, function signatures include multiple
function names with parameter lists and return types [30]. This parallels channels in
the Join Calculus, see Section 2.1.

The function names with their parameter lists and return types are separated by the &
operator [30], which takes the place of the | operator in synchronisations in the Join
Calculus, see Definition 2.1. A notable consequence of this implementation is that join
patterns are declared statically, i.e. not during runtime.

Paralleling message send patterns in the Join Calculus, see Definition 2.1, Polyphonic
C# allows functions to be declared as asynchronous. It does so by introducing a new
return type: async [30]. This return type is treated as a subtype of void.

Polyphonic C# restricts each join pattern to only include at most one non-async return
type [30]. Together with other restrictions [30], this guarantees the well-formedness of
the language [30]. It also disambiguates the function that is returned to if the return
keyword be used in the body of a chord [30].

Example 2.3 implements the same storage cell that example Example 2.1 implemented
in the Join Calculus, but now in Polyphonic C# to illustrate its syntax:

1 class StorageCell {
2 StorageCell(int initialValue) {
3 Val(initialValue);
4 }
5

6 public async Put(int v) & async Val(int old) {
7 Val(v);
8 }
9

14 Chapter 2. Background: Join Calculus, Existing Implementations and Rust

10 public int Get() & async Val(int v) {
11 Val(v);
12 return v;
13 }
14 }

Example 2.3: Storage cell written in Polyphonic C#.

The structure of the implementation in Example 2.3 is identical to Example 2.1. Lines
6 to 8 of Example 2.3 declare a join pattern which states that if a call to set the value
is made using Put and there is a value available through Val, then send Val with the
value provided by Put.

Likewise, lines 10 to 13 of Example 2.3 declare a join pattern which states that if a
request to get the value has been made with Get and there is a value through Val,
resend the value so it is available in future and return it as well. Note that Get has a
non-async return type. It is therefore synchronous, i.e. blocks the calling thread until
the join pattern is executed. It is also the function receiving the value.

Observe that the initial value is sent by the constructor of the StorageCell class in
line 2 of Example 2.3. Additionally, the Put and Get methods of the StorageCell
class are declared as public. This parallels returning the channels in Example 2.1.
Each instance of StorageCell is able to call these methods to manipulate its value.

The use of a class to implement the storage cell in Polyphonic C# is noteworthy, as
it logically groups dependent functions and join patterns together. As Example 2.1
demonstrates, this is not necessarily done in the Join Calculus [31].

2.2.2 The Joins Concurrency Library

The Joins Concurrency Library came after the introduction of generics to C# in C#
2.0 [35]. Contrary to Polyphonic C#, the Joins Concurrency Library does not alter the
language to introduce join patterns as a concurrency primitive. It provides join patterns
as an optional library instead [35].

The programming model around join patterns in the Joins Concurrency Library is sim-
ilar to Polyphonic C#. One change is using Channel classes, not functions, to build
join patterns. Additionally, these are built dynamically, i.e. during runtime.

Example 2.4 shows how these changes manifest by again implementing the storage
cell from Example 2.1 using the same principles:

1 class StorageCell<T> {
2 public readonly Asynchronous.Channel<T> Put;
3 public readonly Synchronous<T>.Channel Get;
4 private readonly Asynchronous.Channel<T> Val;
5

6 public StorageCell(T initialValue) {
7 Join j = Join.Create();

2.3. Rust 15

8

9 j.Init(out Put);
10 j.Init(out Get);
11 j.Init(out Val);
12

13 j.When(Put).And(Val).Do((v) => { Val(v); });
14

15 j.When(Get).And(Val).Do((v) => { Val(v); return v; });
16

17 Val(initialValue);
18 }
19 }

Example 2.4: Storage cell written using the Joins Concurrency Library.

Lines 2 to 4 in Example 2.4 declare the channels used before in Example 2.1. Lines 7
to 11 initialise an instance of the Join class and associate the channels with it. This is
a required step by the Joins Concurrency Library [35].

Lines 13 and 15 in Example 2.4 construct the join patterns. The one in line 13 states
that When the Put channel has sent a message And the Val channel has sent a message,
Do send the new value through the Val channel. The other also follows the logic
of Example 2.1. After constructing the join patterns, line 21 sends the initial value.
Channels are accessible as public members of the StorageCell class.

The Joins Concurrency Library [35] has notably been used in research to demonstrate
that join patterns are scalable as a concurrency mechanism [37]. The throughput of a
system using join patterns is increased through careful thread usage [37]. For instance,
the thread that provides the last message necessary to synchronise in a join pattern also
executes the join pattern’s body [37].

This concludes the section on existing implementations of join patterns. Polyphonic
C# implements join patterns by extending the language. It allows them to be stati-
cally declared in the source code before compile time [30]. The Joins Concurrency
Library provides join patterns as a library feature. This allows them to be dynamically
constructed during runtime [35]. The next section describes features of the Rust pro-
gramming language [1] which have influenced the design and implementation of the
Rusty Junctions Library [26] as described in Chapter 3 and Chapter 4, respectively.

2.3 Rust

Rust [1] is a statically typed system programming language with a particular focus
on safe concurrent programming [34]. Rust builds on research done in linear types,
affine types and alias types [28]. Rust also builds on research in region-based memory
management [28]. As a result, Rust supports automatic memory management without
a garbage collector at runtime through its ownership model [28].

16 Chapter 2. Background: Join Calculus, Existing Implementations and Rust

This section covers three features of Rust’s type and memory management system,
which shaped the design and implementation of the Rusty Junctions Library [26] as
described in Chapter 3 and Chapter 4, respectively:

• Ownership and Borrowing
• Lifetimes on References
• Traits and Trait Objects

Note that a full introduction is beyond the scope of this report, however, the reader
may find “The Rust Programming Language” [27] an invaluable resource. The reader
familiar with the above topics may skip this section.

2.3.1 Ownership and Borrowing

Ownership is mentioned at the beginning of this section as enabling an automatic mem-
ory management without a garbage collector [28]. The “The Rust Programming Lan-
guage” describes the rules for ownership as follows [27, §4.1]:

(i) Each value has a variable called the owner used to access it.
(ii) There can only be one owner at a time.

(iii) If the owner goes out of scope, the value is dropped, meaning it is deconstructed,
for instance by freeing the allocated memory.

These rules are checked at compile time [27, §4.1]. To build an understanding of these
rules, this section will provide examples demonstrating them. For these, heap-allocated
strings [18] are used, as the concept of deconstructing them by freeing memory should
be familiar to most readers. Note that boilerplate code is omitted where possible.

Example 2.5 defines a heap-allocated string s, then assigns it to a new variable t and
attempts to print s to the standard output using the println! macro [17]:

1 let s = String::from("ownership"); // Define string.
2 let t = s; // Assign it to t.
3

4 println!("{}", s); // Print s to standard out.

Example 2.5: Ownership violation.

However, Example 2.5 fails to compile due to violating ownership rule (ii) [27, §4.1].
It requires two variables to own the string "ownership". This is because after line 2,
t is the new owner of the string that previously s was owning. In line 4, despite having
handed over ownership, s is then attempting to access the string value for printing.

If both t and s were allowed access to the string "ownership", it would be ambiguous
which variable is required to drop the value and free the memory taken up by the heap-
allocated string. Replace s in line 4 with the actual owner of the string "ownership",
t, for Example 2.5 to compile.

Line 2 in Example 2.5 moves the value from s to t, invalidating access rights of s to
the string thereafter. Moving values has important ramifications for function calls, as

2.3. Rust 17

Example 2.6 demonstrates:

1 fn f(t: String) {/* ... */} // Define function taking a String.
2

3 let s = String::from("ownership");
4 f(s);
5

6 println!("{}", s);

Example 2.6: Moving with function call.

Example 2.6 defines a function f with a string parameter. The rest is similar to Exam-
ple 2.5, except for the call to f in line 4 instead of defining a new variable t.

As with Example 2.5, Example 2.6 does not compile due to it violating ownership
rule (ii) [27, §4.1]. This time, however, the solution is not as simple and requires the
introduction of two concepts: references and borrowing [27, §4.2].

Example 2.6 demonstrates that the ownership rules [27, §4.1] alone would make func-
tions potentially difficult to work with. In this case by not being able to use the pa-
rameter after the function call. It would be desirable for f to only borrow ownership
to s, not transfer it. For this, Rust has references and borrowing [27, §4.2], which
Example 2.7 demonstrates:

1 fn f(t: &String) {/* ... */} // Take a reference as parameter.
2

3 let s = String::from("ownership");
4 f(&s); // Borrow s.
5

6 println!("{}", s);

Example 2.7: Function call with reference.

Example 2.7 is the same as Example 2.6, with two exceptions:

(1) The function signature of f has changed to expect a reference &String instead of
a String parameter;

(2) the variable s is borrowed in the function call in line 4, allowing f to access its
value but not owning it.

With the above changes, Example 2.7 compiles. Function f can access the value s
owns, without issues relating to the ownership rules [27, §4.1]. There is, however, an
important caveat with regards to references and borrowing: mutability.

By default, variables in Rust are immutable [27, §3.1], meaning the value that is owned
by the variable cannot be changed after it is initially assigned. This default immutabil-
ity also holds for references [27, §4.2]. Therefore, if function f in Example 2.7 tried
to alter the value of s, which it borrows, the compiler would throw an error [27, §4.2].
The reference that f takes can be explicitly declared as mutable, meaning that f is
permitted to change the borrowed value:

1 fn f(t: &mut String) {/* ... */} // Mutable reference parameter.

18 Chapter 2. Background: Join Calculus, Existing Implementations and Rust

Rust imposes an important restriction on the use of mutable and immutable references
together to prevent data races [27, §4.2]. At any given time, there can either be a single
mutable reference or any number of immutable references [27, §4.2]. In essence, Rust
imposes a read-write lock for referencing.

This covers the parts of Rust’s ownership system [27, §4.1] necessary to understand the
technical restrictions on the Rusty Junctions Library [26]. The next section addresses a
concern yet left untouched, which is how dangling references, i.e. references to values
already dropped, are prevented by the Rust compiler [27, §4.2].

2.3.2 Lifetimes on References

References, as introduced in the previous section, are used to borrow values. To ensure
a reference is valid, i.e. accessing the data it is intended to, Rust introduces lifetimes
[27, §10.3]. Lifetimes are the scope for which references are valid [27, §10.3]. This
section presents examples to illustrate them, starting with Example 2.8:

1 fn f(s: &str, t: &str) -> &str { // Return reference.
2 &s[0..1] // Get first character.
3 }

Example 2.8: Lifetime issue in function return.

The &str syntax in Example 2.8 denotes a string slice, a reference to part of a string
[27, §4.3]. For the purposes of this example, &str can be considered a reference to a
string similar to that in Example 2.7.

The function f in Example 2.8 returns a reference to the first character of parameter s.
However, Example 2.8 does not compile because the Rust compiler cannot automati-
cally determine the scope in which the reference returned by f is valid, i.e. its lifetime.
Manually inspecting f reveals it can only be as long as that of parameter s.

Typically, the Rust compiler is able to infer lifetimes [27, §10.3]. However, in Exam-
ple 2.8, this is not possible for the by f returned reference, as its lifetime is ambiguous.
Without inspection of f’s body, it is unclear what it depends on [27, §10.3]. The solu-
tion is to explicitly add lifetimes to disambiguate the code as is done in Example 2.9:

1 fn f<’a>(s: &’a str, t: &’a str) -> &’a str {
2 &s[0..1]
3 }

Example 2.9: Explicitly annotated lifetimes.

Example 2.9 adds the explicit lifetime parameter ’a, declared using <’a> after the
function name. It is used after the ampersands that define the references. Therefore,
the lifetime of the reference returned by f is the same as the smaller of the lifetimes of
the parameters [27, §10.3]. This is sufficient to consider the code safe and compile it.

One special lifetime that is important to mention is the ’static lifetime [27, §10.3].
The ’static lifetime denotes that the lifetime of a reference could be as long as the

2.3. Rust 19

entire runtime of the program [27, §10.3]. For instance, this is the case for refer-
ences to string literals [27, §10.3]. Another important use of this lifetime is in Rust’s
thread::spawn function that spawns new threads, given a function to execute [23]:

1 pub fn spawn<F, T>(f: F) -> JoinHandle<T> where
2 F: FnOnce() -> T,
3 F: Send + ’static,
4 T: Send + ’static,
5 }

Example 2.10: Function signature of thread::spawn [23].

Example 2.10 has the function signature of Rust’s thread::spawn function. It de-
clares that the function executed in the spawned thread cannot have a lifetime shorter
than ’static [23].

The function signature in Example 2.10 also specifies that the function executed in
the spawned thread needs to implement the Send trait [11], discussed in Section 2.3.3.
Therefore, thread::spawn has the following restrictions on the kinds of functions
executable in the spawned thread [23]:

(1) The function has to either
• be moved to the new thread, i.e. ownership passed over; or
• has to provide a reference with ’static lifetime [27, §10.3][23]; and

(2) the function has to be able to transfer safely across thread boundaries [11][23],
described in Section 2.3.3.

This concludes the exploration of Rust’s lifetime system. In particular, the description
of the ’static lifetime as an important concept for threads. The next section explains
Rust traits [27, §10.2] and trait objects [27, §17.2], highlighting an important subset of
the traits provided by the Rust standard library.

2.3.3 Traits and Trait Objects

Traits [27, §10.2] in the Rust programming language [1] are used to declare and define
shared behaviour for different data types [27, §10.2]. One example for this would be
the ability to be printed to the standard output, which the Printable trait in Exam-
ple 2.11 is meant to capture:

1 trait Printable {
2 fn print(&self); // Declare abstract behaviour.
3 }
4

5 impl Printable for String {
6 fn print(&self) { /*...*/ } // Define behavior for String.
7 }
8

9 impl Printable for u32 {
10 fn print(&self) { /*...*/ } // Define behavior for u32.

20 Chapter 2. Background: Join Calculus, Existing Implementations and Rust

11 }

Example 2.11: Trait for abstract print behaviour, not part of Rust’s standard library.

Firstly, Example 2.11 defines the Printable trait in lines 1 to 3. This includes in line
2 the declaration of the behaviour, i.e. function, a data type with the Printable trait
must have.

In lines 5 to 7, Example 2.11 then defines an implementation of the Printable trait
and its behaviour for strings (String). Lines 9 to 11 do the same for unsigned 32-bit
integers (u32).

One application of traits is trait bounds [27, §10.2]. They allow for generic data types
to be limited to a subset of types that have certain traits [27, §10.2]. The display
function in Example 2.12 demonstrates this:

1 fn display<T>(what: T)
2 where
3 T: Printable, // Require the Printable trait.
4 {
5 what.print() // Use Printable’s behaviour.
6 }

Example 2.12: Trait bound for generic parameter.

In Example 2.12, the display function takes a parameter of generic type. However,
in lines 2 and 3 it requires the parameter to implement the Printable trait from Ex-
ample 2.11. This allows line 5 to use the print function from the trait, despite not
knowing the exact type of the parameter before compile time.

The thread::spawn function [23] in Example 2.10 uses trait bounds extensively.
They cause the requirements on the function executed in the spawned thread as de-
scribed at the end of Section 2.3.2. In particular, the Send trait [11] in the trait bounds
declares that a type is transferable across thread boundaries [11]. This means that it
can safely be used by multiple threads. A type that would not fall into this category
is, for instance, a reference counted smart pointer without additional synchronisation
affords between the threads to ensure consistency [11].

Closely related to the Send trait [11] is the Sync trait [12]. It declares that a reference
can safely be shared by multiple threads [12]. The relationship between the traits is
that type T has the Sync trait if and only if the reference to the type, &T, has the Send
trait [12]. Both traits are implemented automatically by the Rust compiler if deemed
appropriate [11][12].

The Clone trait [6] declares a clone function to explicitly duplicate an object [6].
This can help avoid violations of the ownership rules discussed in Section 2.3.1. Ex-
ample 2.13 below is Example 2.5 rewritten, solving the ownership violation by creating
a duplicate that is separate from the original value, so ownership is not moved from s
to t:

1 fn main() {
2 let s = String::from("ownership");

2.3. Rust 21

3 let t = s.clone(); // Create a duplicate.
4

5 println!("{}", s);
6 }

Example 2.13: Cloning to prevent ownership violation.

The Any trait [4] is used to emulate dynamic typing in Rust [4]. Dynamic typing
is achieved through the Any trait in conjunction with trait objects [27, §17.2]. Ex-
ample 2.14 and Example 2.15 demonstrate dynamically typed collections using trait
objects and the Any trait:

1 let mut v1: Vec<&u32> = vec![&1729];// Integer reference array.
2 v1.push(&1.618); // Compilation error!

Example 2.14: Array only allowing references to unsigned integer values (&u32).

1 let mut v2: Vec<&dyn Any> = vec![&1729]; // Trait object array.
2 v2.push(&1.618); // No error.

Example 2.15: Array allowing references to any type implementing Any.

Example 2.14 and Example 2.15 both use Vec<T>, a growable array [24], with generic
type parameter for the stored values. Example 2.14 creates an array of unsigned integer
references (&u32) in line 1. After that, the array can only store references to unsigned
integers. Therefore, the compiler throws an error when line 2 attempts to insert a
reference to a floating point number. This demonstrates that despite Vec<T> having a
generic type parameter, it can only store values of one data type at a time.

Example 2.15, however, uses an array of trait objects with trait Any, denoted by &dyn
Any. This means that it will hold references to values of types implementing the Any
trait, which most types do [4]. Section 4.4 describes how this mechanism is used in the
Rusty Junctions Library [26] to implement generic storage and functions of arbitrary
parameter type.

This covers the features of the Rust programming language that heavily influence the
design and implementation of the Rusty Junctions Library [26], described in Chapter 3
and Chapter 4, respectively. This also concludes the necessary background material.
The next chapter lays out the design behind the Rusty Junctions Library [26].

Chapter 3

Design:
Channels, Junctions and Controllers

With the previous chapter providing background material on join patterns and existing
implementations, this chapter lays out the design of the Rusty Junctions Library [26]
inspired by these.

Section 3.1 starts with an overview of the components that make up the Rusty Junctions
Library [26]. Section 3.2 then provides insight into channels available in the library as
well as their individual purpose. Section 3.3 follows with the design of join patterns.
In Section 3.4, the junction is discussed as contribution of the Rusty Junctions Library
[26] to group dependent join patterns. The chapter closes with Section 3.5 by exploring
the controller that manages junction state in the background.

3.1 Overview

The Rusty Junctions Library [26] implements join patterns on a library level. Inspired
by the Joins Concurrency Library [35], discussed in Section 2.2.2, it adds join patterns
as an optional concurrency construct to Rust [1].

Junction

+ new_channel()
+ when()

Channels

SendChannel
+ send()

RecvChannel
+ recv()

BidirChannel
+ send_recv()

Controller
+ start()

Join Patterns

UnaryJoinPattern
+ and()
+ then_do()

BinaryJoinPattern
+ and()
+ then_do()

TernaryJoinPattern
+ and()

send to
0..n 1

started by

1

1

created by
0..n 1

created by
0..n1

stored by
0..n1

Figure 3.1: Overview of the components of the Rusty Junctions Library [26].

23

24 Chapter 3. Design: Channels, Junctions and Controllers

The Rusty Junctions Library [26] also implements generic channels similar to those
in the Joins Concurrency Library [35]. These are used to construct join patterns at
runtime, which is discussed in Section 4.3.

Furthermore, the Rusty Junctions Library [26] contributes a new unit for coordina-
tion, the junction, suggested by the project supervisor. A junction is a component that
groups together dependent join patterns and the channels used for their construction.

The junction interacts with another component introduced by the Rusty Junctions Li-
brary [26], the controller. A controller handles messages sent by channels and stores
join patterns. It also schedules the execution of join patterns based on the messages
it receives. Together with the junction, it provides the local synchronisation and con-
tention properties described in the Join Calculus [31].

Figure 3.1 summarises the design components of the Rusty Junctions Library. The
next section provides more detail on the channels in the Rusty Junctions Library [26].

3.2 Channels

The Rusty Junctions Library [26] follows the Join Calculus [31] in using message
passing to manage concurrency. For this, it provides three types of channels that can
be synchronised in join patterns:

• SendChannel, an asynchronous channel to send values;
• RecvChannel, a synchronous channel to receive values;
• BidirChannel, a synchronous channel to both send and receive values.

The rule for channels in the Rusty Junctions Library [26] is that if they receive, they
are synchronous. Otherwise, they are asynchronous.

Note that none of these channels are directly connected. The values a SendChannel
sends are not directly received by a RecvChannel. Rather, the values sent are received
by a controller, described in Section 3.5. A successful execution of a join pattern
involving the channel may then send a value to a RecvChannel.

Figure 3.1 shows that each channel type is created by a junction. This links the channel
to that particular junction. A channel can only ever be linked to a single junction, which
ensures contention remaining local to that junction.

Figure 3.1 also shows that each channel implements a different method. For instance,
the SendChannel implements a send method while the RecvChannel implements a
recv method.

3.2.1 Asynchronous Sending with SendChannel

The SendChannel is designed as an asynchronous channel to send messages without
blocking the current thread. They have a single generic type parameter that determines

3.2. Channels 25

the type of messages sent, similarly to the Joins Concurrency Library [35]. The mes-
sages are sent using the send method, which takes the message as a parameter and
does not return a value. Note that the parameter is moved, see Section 2.3.1.

Sending a message through a SendChannel may cause a join pattern which includes
this channel to be executed. However, this execution never returns a result to this type
of channel or notifies it of the execution.

This channel type parallels asynchronous channels in the Joins Concurrency Library
[35], see Section 2.2.2. It also parallels functions declared with the async return type
in Polyphonic C# [30], see Section 2.2.1.

The difference between a SendChannel and a function with async return type in Poly-
phonic C#, however, is that the send method of this channel always requires a value.
Functions in Polyphonic C# are allowed to have an empty parameter list. This can be
emulated in SendChannel by using Rust’s () unit type [2] for the message type and
passing () as the message.

3.2.2 Synchronous Receiving with RecvChannel

The RecvChannel is designed as a synchronous channel to receive results from a join
pattern execution. If a join pattern is using a RecvChannel, it is automatically required
to have a return value. The RecvChannel has a single generic type parameter that
determines the type of value received and hence the return type of the recv method.

The result of a join pattern execution is sent to the recv method and returned by it.
The recv method itself does not take any parameters. Calling the recv method sends
a message to request a result which may cause a join pattern which includes the channel
to be executed. However, the recv method is guaranteed to block the thread until such
an execution has happened.

This channel type parallels synchronous channels in the Joins Concurrency Library
[35], see Section 2.2.2. It also parallels functions declared with non-async return
types in Polyphonic C# [30], see Section 2.2.1.

The difference between a RecvChannel and a function with non-async return type in
Polyphonic C#, however, is that the recv method can never take a parameter and will
always have a return value. A void return value of a Polyphonic C# function can be
emulated by using Rust’s () unit type [2] as the type of the channel.

3.2.3 Synchronous Sending and Receiving with BidirChannel

The last channel type provided by the Rusty Junctions Library [26] is a synchronous
channel for sending and receiving messages, i.e. bidirectional communication. A
Bidir channel has two generic type parameters, the first for the type of value sent, the
second for the type of value received.

26 Chapter 3. Design: Channels, Junctions and Controllers

In general, a call to the send recv method of a BidirChannel can be viewed as an
appropriate call to the send method of a SendChannel and a subsequent call to the
recv method of a RecvChannel. Therefore, what Section 3.2.1 and Section 3.2.2
describe holds for the BidirChannel and its method.

However, there is one crucial difference between a call to send recv and a call to
send followed by a call to recv. The send recv call is atomic, i.e. treated as a single
message. In a concurrent environment, there may be an arbitrary amount of messages
sent between a send call and an in code following recv call. Therefore, using these
two together cannot guarantee a relationship between the state of the system at the time
of the send call and at the time of the recv call.

An example where such a guarantee is required is for swapping values in the storage
cell in Example 2.1. With an arbitrary amount of messages between a call to update
and a call to receive the value, there is no way of guaranteeing that the value received
is actually the value updated. The send recv method gives such a guarantee.

This channel type parallels a function with a single parameter and a non-async return
value in Polyphonic C# [30]. The next section described the design of join patterns in
the Rusty Junctions Library [26].

3.3 Join Patterns

Join patterns, as defined by the Join Calculus [31], see Definition 2.1 for reference,
consist of a pattern of channels that may guard a process to be executed upon synchro-
nisation of the channels in the pattern [31]. Therefore, an implementation requires:

• a mechanism to declare and store the pattern of channels and
• a mechanism to declare and store the processes that may be guarded by a join

pattern.

Polyphonic C# uses function signatures for the pattern declaration and a single function
body for the process declaration, see Section 2.2.1. The Joins Concurrency Library on
the other hand uses API calls to declare a pattern, see Section 2.2.2, and a system of
classes to represent and store them [35]. A similar approach is taken with the Rusty
Junctions Library [26].

As Figure 3.1 shows, join patterns in the Rusty Junctions Library are split into various
specialised types, for instance UnaryJoinPattern or BinaryJoinPattern, which
are differentiated by the number of channels synchronised with the join pattern. If a
join pattern has only one channel declared in its pattern, it is referred to as unary and
represented by a UnaryJoinPattern. If a join pattern has two channels declared in its
pattern, it is referred to as binary and represented with a BinaryJoinPattern. This
nomenclature is extended to join patterns with three or more channels in their patterns.

Contrary to the Join Calculus [31], join patterns in the Rusty Junctions Library always
guard a process that is executed upon synchronisations of the channels in the pattern,
that is, if each of them has sent at least one message. The processes on the other

3.4. Junctions 27

hand are represented by Rust’s closures [27, §13.1]. Since Rust allows for a closure
with empty function body, which can be interpreted as an inert process 0 in the Join
Calculus, see Definition 2.1, the restriction of always guarding a process does not
fundamentally change the join pattern mechanic as used by the Join Calculus [31].
This approach to processes is inspired by the Joins Concurrency Library [35], see
Section 2.2.2, as C#’s lambda expressions share similarities with Rust’s closures.

Any of the three types of channels described in Section 3.2 may be used in the declara-
tion of a join pattern. However, as Section 3.1 described, the restriction of allowing at
most one synchronous channel per join pattern is imposed. Following the design of the
channels as described in Section 3.2, this implies the following rules for join patterns
in the Rusty Junctions Library [26]:

(i) A join pattern may consist of one or more SendChannels; and
(ii) a join pattern can include at most one RecvChannel or BidirChannel, but not

both.

These rules allow the Rusty Junctions Library [26] to uniquely determine the type of
the closure attached to the join pattern as the guarded process. Section 4.3 describes in
more detail how this design is realised using Rust’s type system and how join patterns
are validated by the compiler.

Finally, the API calls to construct a join pattern follow closely the example set by the
Joins Concurrency Library [35], see Section 2.2.2. Example 3.1 showcases a simple
construction of a join pattern associated with a junction instance j that uses two chan-
nels instances ch 1 and ch 2:

1 j.when(&ch_1).and(&ch_2).then_do(|a,b| { /*...*/ })

Example 3.1: API calls to construct a join pattern.

Section 4.3 goes into the technical realisation of the design presented in Example 3.1.
In the next section details the role of the junction in the Rusty Junctions Library [26].

3.4 Junctions

The junction, as suggested by the project supervisor, is designed as a unit for coordi-
nation that groups dependent join patterns together. One example would be the join
patterns that make up the entire behaviour of a system, such as in the storage cell in
Example 2.1. Furthermore, the junction is also designed to group together the channels
that are used in its join patterns.

To provide the aforementioned grouping of channels and join patterns, junctions are
designed to be the only way of creating new channels and constructing new join pat-
terns, as can be seen in Figure 3.1. Any channel or join pattern created with a junction
is automatically and exclusively associated with it. Channels or join patterns associ-
ated with a junction cannot be disassociated with it. The association of channels to
junctions is designed in such a way that it is not possible to construct join patterns

28 Chapter 3. Design: Channels, Junctions and Controllers

associated with one junction using channels associated with another. Section 4.2 and
Section 4.3 describe the technical details of how channels are created and join patterns
constructed using junctions, which also shows the realisation of the designed associa-
tion.

The concept of a junction is comparable to classes in both Polyphonic C# [30] and the
Joins Concurrency Library [35], described in Section 2.2.1 and Section 2.2.2, respec-
tively. However, examining Example 2.1 and Example 2.2 written in Join Calculus, it
appears that a grouping of channels and join patterns is somewhat implicit in the recur-
sive function definitions, so a junction can be interpreted as the natural continuation of
that implicit grouping.

Together with the controller described in the next section, junctions provide the local
synchronisation and contention properties described in the Join Calculus [31]. The
technical implementation of the features that junctions provide is actually located in
controllers, the design of which is detailed next.

3.5 Controllers

As Figure 3.1 shows, every junction starts a single controller, which is designed to be
the main component carrying the state of the junction, i.e. all messages that have been
sent as well as the join patterns that have been constructed. Figure 3.1 also shows that
channels actually send messages not to the junction they are associated with, but to the
controller started by the junction they are associated with.

On the suggestion of the project supervisor, the controller serves two purposes:

(i) Separate the concerns of creating channels and join patterns and managing them;
and

(ii) provide a single place in which the state necessary for a junction to operate is
located.

Purpose (ii) is of particular importance for a concurrent environment. Many threads
may have channels sending messages and join patterns can be ready to be executed at
any time. Therefore, there needs to be a component managing all this, which necessar-
ily cannot reside in any of the same threads as the junction or the channels. One reason
is that the process of handling messages and executing join patterns may take up most
of the computational time in a thread and another is that some threads may simply not
live long enough. The solution to this used in the Rusty Junction library [26] is to have
a controller started in a new thread by every new instance of a junction.

A more subtle but vital reason to have a controller run in a thread separate from both
the junction and any of the channels associated with it, is the overhead of shared state.
Sharing state, such as messages that have been sent or join patterns that have been
constructed across multiple threads inevitably incurs additional synchronisation cost.
This is not the case with the controller, as all state is kept in a single thread, so state
changes, such as the addition of a new join pattern, can be handled as trivially as an

3.5. Controllers 29

insertion into a data structure. Section 4.5 will go into the details of the implementation
of the controller and state handling.

It is worth pointing out that the controllers share some resemblance with reflexive
chemical abstract machines or RCHAMs for the Join Calculus as described by Four-
net and Gonthier [31], which also carry some form of state to support join patterns
and their execution. However, the Rusty Junctions Library [26] is not built based on
RCHAMs because it was designed more with the Joins Concurrency Library [35] as
an existing library-level implementation in mind.

This concludes the chapter on the design of the components of the Rusty Junctions
Library [26]. It describes the use of channels to send and receive values to execute
join patterns in Section 3.2 and details the design of join patterns that synchronise said
channels in Section 3.3. Section 3.4 provides insight into the central component of
the Rusty Junctions Library [26], the junction, a unit for synchronisation that groups
dependent channels and join patterns together. Finally, this section presents the con-
troller as the managing component for join patterns to work. The next chapter details
the actual implementation of the Rusty Junctions Library [26] as well as the technical
difficulties encountered along the way and together with their solutions.

Chapter 4

Implementation:
Bringing Rusty Junctions To Life

The previous chapter presented the design of the Rusty Junctions Library [26]. This
chapter will focus on the technical details of the actual implementation of said de-
sign and the challenges that needed to be addressed for it. Version 1.35.0 of the Rust
programming language is used for this implementation.

This chapter starts with an explanation of the message passing concurrency constructs
used in the Rusty Junctions Library [26] in Section 4.1. After that, it describes how
channels are created and join patterns constructed in Section 4.2 and Section 4.3, re-
spectively. Then it lays out how dynamic typing for the state in the controller in Sec-
tion 4.4 is implemented, with the state itself being described in Section 4.5. The al-
gorithm to manage join pattern execution is elaborated on in Section 4.6. Finally, the
chapter closes with a description of the ControllerHandle as a resource-managing
construct in Section 4.7.

4.1 Message Passing with Packets

Section 3.2 presents various channels and describes how the Rusty Junctions Library
[26] employs message passing concurrency in line with the Join Calculus [31]. How-
ever, message passing is in fact used for every aspect of the Rusty Junctions Library,
from creating channels, to storing join patterns after they have been constructed, down
to implementing the actual channels from Section 3.2. For this, the Rusty Junctions
Library makes extensive use of existing channels in the Rust standard library: Sender
[22] and Receiver [21].

Both Sender [22] and Receiver [21] are part of Rust’s mpsc library, which imple-
ments multiple-producer, single-consumer communication primitives [20]. They are
effectively two parts of a channel with a single generic type parameter. The Sender is
the send-only end of the channel that implements the Send [11] and Clone [6] traits,
see Section 2.3.3 and can thus be duplicated and passed to other threads. This is the

31

32 Chapter 4. Implementation: Bringing Rusty Junctions To Life

multiple-producer part. The Receiver is the receive-only end of the channel which
implements the Send [11] but not the Clone [6] trait. Therefore, a Receiver can be
passed to other threads but never duplicated, so it is single-consumer.

On top of the restriction of being single-consumer, there is no standard way of mul-
tiplexing different Receivers together. This is why the Rusty Junctions Library does
not directly use Rust’s Sender and Receivers as channels but puts a layer of abstrac-
tion on top of them. Each channel described in Section 3.2 has a Sender to which the
controller has the corresponding Receiver. This is how the sending depicted in Fig-
ure 3.1 from channels to controller is realised: the controller owns the single consumer
of all of the channels’ producers and simply loops through the messages.

However, there is one flaw with the aforementioned implementation: Sender and
Receiver can only send and receive values of a single type [22] [21]. To avoid each
channel in the Rusty Junctions Library having to have the same type or implementing a
non-standard multiplexer over an arbitrary amount of Receivers, the Rusty Junctions
Library implements the Packet type on suggestion of the project supervisor.

The Packet type is implemented as a generic payload that can be handled by the
controller once received. The Packet type is implemented using Rust’s enums [27,
§6]. This allows each variant of a Packet to be listed and to be pattern matched
against [27, §6.2]. Example 4.1 below presents a simplified version of the Packet
type definition with only very low-level implementation details left out:

1 enum Packet {
2 Message, // Sent by channels.
3 NewChannelIdRequest, // For channel creation.
4 AddJoinPatternRequest, // To store join patterns.
5 ShutDownRequest, // To shut down controller.
6 }

Example 4.1: Simplified definition of the Packet type.

Lines 2 to 5 in Example 4.1 are the variants of the Packet type. The variant relevant
for channels sending messages to the controller is Message in line 2. There is further
complexity with respect to dynamic typing hidden behind this variant, to which Sec-
tion 4.4 is dedicated. However, the important point is that the Message variant allows
every channel to have a Sender of type Packet and still have a unique type of value
sent over it.

With the Packet type established, more tasks than channels sending messages can now
be accomplished through message passing, described in the following sections:

• Line 3 in Example 4.1 defines a variant that is used by the junction, which also
has a Sender of type Packet, when creating a new channel, see Section 4.2;
• line 4 defines a variant used by the junction to request for a new join pattern to

be managed by its associated controller, see Section 4.3;
• line 5 defines a variant used to gracefully shut down the controller and the thread

it is running in, see Section 4.7.

4.2. Creating Channels 33

Junction Controller

update_used_ids()

User Code

new_channel()
new_channel_id()

channel_id
Channel

Figure 4.1: Simplified overview of the process of creating a new channel from user code
request to controller state update.

4.2 Creating Channels

As Section 3.4 described, junctions are responsible for creating new channels. How-
ever, to explain the implementation of the process by which a junction creates any of
the three channels described in Section 3.2, unique channel identification in the Rusty
Junctions Library [26] has to be discussed.

For the join pattern execution algorithm implemented in the Rusty Junctions Library,
described in Section 4.6, messages sent channels are required to uniquely identify
the channel they have been sent by. The type of value a channel sends is, however,
insufficient for this on its own, as there may be multiple channels sending messages of
the same type. The ChannelId type solves this problem, implemented as a sufficiently
large unsigned integer, which represents a channel ID unique at least on the level of a
single junction, i.e. no two channels in one junction will have the same channel ID,
but two channels in two different junctions may. Note further that the Rusty Junction
library does not differentiate between the three channel types presented in Section 3.2
when it comes to ChannelIds [26].

To ensure that in each junction all ChannelIds are unique, state is added to the asso-
ciated controller to keep track of the still available ChannelIds in a centralised place.
For simplicity, the controller stores the latest given ChannelId and increments it every
time a new one is needed.

If some user code requests a new channel of any of the three types described in Sec-
tion 3.2 from the junction, the junction will send a request for a new ChannelId to
its associated controller. This request is sent through a NewChannelIdRequest vari-
ant of the Packet, see Example 4.1. Along with the request, the junction will send
one of Rust’s Senders [22] which the controller will use to send back the requested
ChannelId so that the junction can use the Receiver [21] to get it. See Section 4.1
for more information on Rust’s Sender [22] and Receiver [21].

Figure 4.1 depicts a simplified version of the channel creation process. The two key
steps now shown are:

34 Chapter 4. Implementation: Bringing Rusty Junctions To Life

• The use of specific functions to request either one of the three types of channels
described in Section 3.2;
• the junction adding its own ID to the new channel to associate it with the junc-

tion.

Any junction has a globally unique ID itself, implemented with the JunctionId type
as sequentially consistent unsigned integer using Rust’s AtomicUsize [19]. By adding
the junction’s JunctionId to any newly created channel, the channels are associated
with the junction as described in Section 3.4.

The use of ChannelIds and JunctionIds does not provide a unique but relatively
simple solutions to their respective problems. Conceiving a way to use Rust’s type
system to give each channel a completely unique type for identification was attempted,
but did not appear possible in the Rust version 1.35.0, used for the Rusty Junctions
Library [26]. References to junctions in channels as a means of associating the two
were also considered, but discarded to avoid potential lifetime issues, see Section 2.3.2.

After the description of how channels are created in the Rusty Junctions Library [26]
and how they identify themselves using ChannelIds, the next section covers join pat-
tern construction.

4.3 Constructing Join Patterns

The Rusty Junctions Library [26] implements the join pattern construction with a
mechanism inspired by the Joins Concurrency Library [35] as described in Section 3.3.
Example 3.1 shows how the construction starts with a junction calling the when method
and providing a channel, then adding another channel to the pattern with and and fi-
nally providing a closure [27, §13.1] as the process to be run when the join pattern is
executed. This section details how this construction and the constraints posed on join
patterns in the Rusty Junctions Library described in Section 3.3 are, in fact, verified
entirely by the Rust compiler through the use of Rust’s type system.

Section 3.3 describes how join patterns in the Rusty Junctions Library are subdivided
depending on the number of channels involved in them. The constraints on join pat-
terns as restated from Section 3.3:

(i) A join pattern may consist of one or more SendChannels; and
(ii) a join pattern can include at most one RecvChannel or BidirChannel, but not

both,

are implemented by further subdividing join patterns into more specific types depend-
ing on the type of channels involved in them. For this, one simplifying assumption is
made: a RecvChannel or BidirChannel can only ever be added as the last channel
in a join pattern. While this breaks with the Join Calculus definition of join patterns,
see Definition 2.1, which does not require a certain ordering of the channels [31], the
Rusty Junctions Library gains the following properties as a trade-off:

(i) Join patterns are unique, up to a reordering of the SendChannels and

4.3. Constructing Join Patterns 35

(ii) the number of join pattern subtypes does not depend on the length of the join
pattern.

Property (i) increases the readability and maintainability of code written with the Rusty
Junctions Library [26] as the channel that will receive a return value from the join
pattern execution will always be in the same place: at the end of the pattern. For an
explanation of the use of property (ii), the join pattern types implemented in the Rusty
Junctions Library [26] have to be explained first. However, note that channels being
non-commutative within a join pattern does not decrease their expressiveness.

The construction of join patterns as described in Section 3.3 always starts with the
pattern of channels involved and finishes with a call to the then do method that adds a
closure [27, §13.1], to be executed, to the join pattern. Therefore the Rusty Junctions
Library [26] distinguishes between a PartialPattern, which is a pattern of channels
that has not yet been associated with a closure [27, §13.1] and a JoinPattern, which
has. Furthermore, it distinguishes:

• SendPartialPattern and SendJoinPattern, if the pattern of channels ends
in a SendChannel,
• RecvPartialPattern and RecvJoinPattern, if the pattern of channels ends

in a RecvChannel,
• BidirPartialPattern and BidirJoinPattern, if the pattern of channels ends

in a BidirChannel.

Each of the above distinctions is well-defined as RecvChannels and BidirChannels
can only appear last in a join pattern. Furthermore, each of the above types is im-
plemented for any length of join patterns, i.e. unary, binary, and so on. It should
now be apparent that without the constraint of RecvChannels and BidirChannels
only appearing last, a length n join pattern may choose 1 place for a RecvChannel
or BidirChannel and so distinguish between

(n
1

)
+
(n

1

)
+
(n

0

)
= 2n+ 1 different join

pattern types. Note that the last binomial coefficient stems from the possibilities for
join patterns with only SendChannels, ignoring reordering. Thanks to the constraint
on RecvChannel and BidirChannel, this number is just 3.

With all of the join pattern types explained, Figure 4.2 represents the join pattern con-
struction as a finite state machine. The transitions are the method calls to add either
another channel or the closure [27, §13.1] at the end. Methods when and and add a
SendChannel, their counterparts ending in recv and bidir add a RecvChannel or
a BidirChannel, respectively. The finite state machine in Figure 4.2 shows that a
RecvChannel or a BidirChannel can only be added once and exclusive of one an-
other, validating the constraints described in Section 3.3 using entirely the Rust type
system at compile time.

The validation of join patterns through the Rust type system goes one step further. All
PartialPatterns carry type information of the types of values their channels send
and in the case of RecvChannel and BidirChannel receive, all in order of declaration.
By the time a call to then do is made, the type of the closure [27, §13.1] that can be
passed to it is fully determined and checked by the compiler.

One final constraint from Section 3.3 needs to be validated: only channels associated

36 Chapter 4. Implementation: Bringing Rusty Junctions To Life

when_recv

when

when_bidir

Junction

and_bidir

and

and_recv

then_doSendPP

then_doRecvPP

then_doBidirPP

RecvJP

SendJP

BidirJP

SendJP

RecvJP

BidirJP

Figure 4.2: Finite state machine representing type transitions during join pattern con-
struction. Start state is Junction, accepting states are RecvJP, SendJP and BidirJP,
where PP stands for PartialPattern, JP stands for JoinPattern.

with the junction instance that started the join pattern construction can be used in the
join pattern. As channels associate with a junction through the JunctionId, see Sec-
tion 4.2, this has to be verified at runtime. If the JunctionId of the channel and
junction do not match, the thread panics which terminates the program and provides
error feedback [16]. A more graceful way of signalling this error is not supported by
the current version 0.1.0 of the Rusty Junctions Library [26].

Once a join pattern has been constructed successfully, i.e. all constraints described in
Section 3.3 have been verified, the closure [27, §13.1] associated with the join pattern
is transformed, see section Section 4.4. After that, the join pattern and transformed
closure are send to the controller through a AddJoinPatternRequest variant of the
Packet, see Example 4.1, to be stored there. How this is done is the topic of the
Section 4.5. However, first an explanation of dynamic typing in the Rusty Junctions
Library [26] is given in the next section.

4.4 Dynamic Typing Through Trait Objects

Before an explanation of how state management is implemented in the controller in
Section 4.5, this section discusses how storing values of an essentially arbitrary amount
of types is implemented efficiently in the Rusty Junctions Library [26]. There are two
aspects of the library where this is relevant:

• Messages sent by channels and
• closures [27, §13.1] associated with join patterns.

4.4. Dynamic Typing Through Trait Objects 37

These two are in fact related. The parameter list and return type of the closures [27,
§13.1] associated with join patterns are directly derived from the types of values the
channels in the join pattern send and possibly receive, see Section 4.3.

For messages sent on channels, a Message type is implemented, which makes use of
the trait object mechanics in Rust, see Section 2.3.3. Instead of using references, see
Section 2.3.1, the Message type in the Rusty Junctions Library [26] uses Rust’s Box,
which is a pointer type to heap allocate values [5].

The Message type is implemented as a Box pointer [5] of a trait object [27, §17.2] that
uses Rust’s Any [4] and Send [11] traits, see Section 2.3.3 for details on these traits.
This creates a level of indirection in the storage of the value through the heap, which,
thanks to the traits used, allows a large range of values to be stored as a Message [4]
and ensures that they can be safely sent to the controller running in its own thread [11],
which was described in Section 3.5.

As for the closures [27, §13.1] associated with join patterns, with the help of the project
supervisor, function transforms were developed that change the parameter and return
type signature of any given closure into one accepting Messages as parameters and no
return value. Example 4.2 provides a simplified definition of such a function transform:

1 fn transform<F, T>(f: F) -> Box<impl FnBoxClone>
2 where
3 F: Fn(T) -> (),
4 {
5 // Heap-allocate outer closure.
6 Box::new(|arg: Message| {
7 f(arg.cast::<T>()); // Cast Message at runtime.
8 })
9 }

Example 4.2: rust-book.]Simplified definition of a function transform that changes
the type signature of a closure [27, §13.1].

The function transform in Example 4.2 accepts a closure [27, §13.1], henceforth re-
ferred to as inner closure, with a single parameter of generic type parameter T and no
return value. The type signature of the inner closure is declared in line 3. It creates
an outer closure in lines 6 to 8 that accepts a Message parameter and is stored on the
heap through Box in line 6. When the outer closure is called with a Message, it calls
the inner closure after casting the message parameter to the type that the inner closure
expects. All of this is done at runtime, but because Rust is compiled, the exact types
to cast to are determined at compile time and since they are based directly on the types
expected by the inner closure, this approach is sound.

Should a closure have a return type, which is the case if the join pattern includes a
RecvChannel or BidirChannel, Rust’s Sender [22] and Receiver [21] are used to
deliver the return value to the appropriate channel. The Sender that will send the
return value of the inner closure is made a parameter of the outer closure, which then
adds the extra step of sending the return value of the inner closure.

38 Chapter 4. Implementation: Bringing Rusty Junctions To Life

The return type Box<impl FnBoxClone> in line 1 of Example 4.2 essentially declares
that the outer closure, that is returned, is a function that can be cloned, see the Clone
trait explanation in Section 2.3.3. This is an implementation detail that Section 4.6 will
explain.

With the ways in which the Rusty Junctions Library [26] uses trait objects [27, §17.2]
to store values of almost arbitrary types in a statically typed language [34] presented,
the next section moves on to explaining state management in the controller.

4.5 Handling State with Controllers

Section 3.5, describes that the controller component in the Rusty Junctions Library
[26] is designed to manage state necessary for channels and join patterns to function.
This section details the state that resides in a controller and how it is mutated to handle
new messages from channels as well as join pattern execution.

The two core data collections in the controller are:

• A bag of messages that allows for previously sent messages from any channel,
associated with the same junction as the controller, to be retrieved by ChannelId
and
• a hash table that stores join patterns from the associated junction with a unique

identifier.

The bag of messages is implemented with a Bag collection specifically developed for
the Rusty Junctions Library [26]. Note that Rust’s standard collections [7] to not sup-
port the required collection and relying on external and potentially unstable code is
favourable. The Bag collection stores values associated with a key in a FIFO queue
using Rust’s HashMap [8] and VecDeque [10].

For the bag of messages in the controller, the values are of type Message, making use
of dynamic typing as described in Section 4.4. The keys are of type ChannelId, rep-
resenting the ID of the channel that sent the messages. This allows the controller to
retrieve, for any channel in a join pattern, the message that has been waiting the longest
to be consumed since Bag uses a FIFO queue. The Bag also implements functional-
ities to count how many messages for a given ChannelId have been received by the
controller or simply check if any have been or not.

The hash table storing the join patterns is implemented with Rust’s HashMap [8] and a
new identifier type: JoinPatternId. The JoinPatternId has the same uniqueness
properties as the ChannelId and is handled by the controller in the same way, see
Section 4.2. The hash table simply has a for every join pattern unique JoinPatternId
as its key and the actual join pattern as its value.

Note that there is only one hash table storing the join patterns. Section 4.3 described
various types of join patterns depending on the types and number of channels involved.
However, all these can be grouped into a single JoinPattern type using Rust’s enums

4.6. Join Pattern Execution 39

[27, §6] in a way comparable to the Packet implementation in Section 4.1. The sepa-
rate join pattern types are then simply variants of a JoinPattern enum type. Closures
[27, §13.1] associated with the join patterns are also transformed as described in Sec-
tion 4.4 to unify their type signature and allow for this single storage collection.

As Section 4.2 already described, on top of these core collections, the controller also
stores the latest not yet given ChannelId. Since JoinPatternIds work in the same
way, it also stores the latest not yet given JoinPatternId. Furthermore, the controller
also has a hash table using Rust’s HashMap [8] mapping JoinPatternIds to the last
instant they have been executed. It also has an inverted index implemented for the li-
brary to store a mapping from ChannelIds to the JoinPatternIds of the join patterns
they appear in. Both of these collections are described more in Section 4.6 and justify
the introduction of a JoinPatternId to easily retrieve specific join patterns.

With all the state described, its mutation to enable channels and join patterns is simple.
The controller continuously waits for Packets to be sent to it. Depending on the variant
of the Packet, see Example 4.1, it performs different tasks:

• Message: store the new message from the channel in the bag of messages and
attempt to execute a join pattern, see Section 4.6 for the algorithm;
• NewChannelIdRequest: update the latest given ChannelId and send it as a

reply;
• AddJoinPatternRequest: give the join pattern a new JoinPatternId and

store it in core hash table for them. Also update the hash table storing the last
instants the join patterns have been executed as well as the inverted index;
• ShutDownRequest: stop listening for Packets, see Section 4.7.

This makes up all of the state and state mutations of the controller. The core of it is the
bag of received messages from channels and the join pattern collection itself. It is now
time to describe the algorithm that chooses which join pattern is to be executed in the
following section.

4.6 Join Pattern Execution

The idea behind executing join patterns is simple: if each channel involved in a partic-
ular join pattern has sent at least one message, the join pattern is ready to be executed.
This state is henceforth referred to the join pattern being alive. Note that one join
pattern being executed may change which join patterns are alive depending on which
messages are being used by the execution.

Observe that at any given moment, there may be more than one join pattern alive.
A scheme to prioritise one of the alive join patterns to be executed is required. One
such scheme could be based on the order of declaration of the join patterns. One
implementation of Polyphonic C#, for instance, used textual ordering of the source
code [29].

For the initial algorithm devised, declare such a scheme to prioritise certain alive join

40 Chapter 4. Implementation: Bringing Rusty Junctions To Life

patterns explicitly is not chosen. This means the scheme is largely up to implementa-
tion specifics. Algorithm 1 provides pseudocode for this naive join pattern execution.

Algorithm 1 Basic Join Pattern Execution.
latestChannelId := ChannelId of the last received Message
joinPatterns := collection of declared join patterns
messages := collection of previously received Messages

1: function EXECUTEJP(latestChannelId, joinPatterns, messages)
2: relevantJPs←{}
3: aliveJPs←{}
4: for each j ∈ joinPatterns do
5: if j includes latestChannelId then
6: relevantJPs← relevantJPs ∪ { j}
7: for each j ∈ relevantJPs do
8: aliveCandidates←{}
9: for each channelId ∈ j do

10: if messages has entry for channelId then
11: aliveCandidates← aliveCandidates∪{ j}
12: else
13: aliveCandidates←{}
14: continue
15: aliveJPs← aliveJPs ∪ aliveCandidates
16: for each j ∈ aliveJPs do
17: requiredMsgs←{}
18: for each channelId ∈ j do
19: msg← message for channelId from messages
20: requiredMsgs← requiredMsgs ∪ {msg}
21: j.execute(requiredMsgs)
22: continue

Algorithm 1 takes the ChannelId of the latest Message received by the controller
and determines which join patterns include the channel that has sent this Message,
henceforth named relevant. The inverted index from ChannelIds to JoinPatternIds
described in Section 4.5 is used for this. For every ChannelId it holds a linked list of
the JoinPatternIds that include the associated channel. The Rusty Junctions Library
implements a specific InvertedIndex collection for this using Rust’s HashMap [8] and
LinkedList [9] for the same reason a Bag collection in Section 4.5 is implemented.

After Algorithm 1 has determined the relevant join patterns, it determines which of
these are alive. Following this, Algorithm 1 chooses some alive join pattern, if there is
any, gathers messages of all the channels in the join pattern and passes them to the join
pattern to execute its associated closure [27, §13.1].

With the help of the project supervisor, issues in the execution of join patterns were
identified that are not properly addressed in Algorithm 1. These issues and how they
are addressed by revising Algorithm 1 into Algorithm 2 is discussed next.

4.6. Join Pattern Execution 41

4.6.1 Issue 1: Sharing Channels

Picture a setup as in Example 4.3, in which two join patterns are declared using three
channels, A, B and C.

1 j.when(&A).and(&B).then_do(/*...*/);
2 j.when(&A).and(&C).then_do(/*...*/);

Example 4.3: Join patterns sharing channels in Rusty Junctions, where j is an
instance of junction.

In Example 4.3, channel A is used in both join patterns. Now assume both channels B
and C have sent at least one message, but channel A has sent none. If channel A now
sends a single message, both join patterns become alive but only one can be executed.
For the sake of argument, assume the join pattern using channels A and B is executed.
By construction, there are no more messages from channel A after this and so none of
the join patterns is alive.

Repeating this scenario, it becomes clear that it is possible to conceive of a situation in
which the join pattern using channels A and B is always the one executed. It therefore
blocks the other join pattern from ever running.

A simple scheme to prevent this issue from occurring is to store, for every join pattern,
the last instant at which it was executed. Algorithm 2 shows in lines 19 and 20 how this
instant can be used to fully order the alive join patterns and execute the one that has
been waiting for execution the longest. This prevents this issue from occurring, since it
would force the join patterns in Example 4.3 to execute in an alternating fashion, given
the scenario described in this section.

Section 4.5 mentioned a hash table in the controller that stores for every join pattern
the last instant it has been executed. To avoid system calls to the internal clock and on
the suggestion of the project supervisor, a strictly monotonically increasing message
counter is introduced to the controller state. The counter is incremented at the arrival
of each new message that arrives. Since a new message arriving causes the controller
to check and execute a join pattern if possible, the current message counter can be
used as the instant of last execution. It is then possible to totally order join patterns by
comparing the message counter value of their last execution since the message counter
is strictly monotonically increasing and every new message will only ever cause one
join pattern to be executed.

Notice that a system running join patterns using the Rusty Junctions Library [26] may
run indefinitely. To avoid integer overflow of the message counter in such a case, a
Counter type is implemented, used for the message counter that can be incremented
indefinitely.

The Counter uses an internal array representation of its value and grows the array
dynamically. Due to the lack of Rust standard library support for dynamically grow-
ing integers as well as to avoid dependencies on non-official libraries which may be
unstable, an implemented specific to the Rusty Junctions Library [26] is provided.

42 Chapter 4. Implementation: Bringing Rusty Junctions To Life

A last point to make regarding the last execution instant solution to this issue is that it
also solves a similar scenario shown in Example 4.4:

1 j.when(&A).and(&B).then_do(/*...*/);
2 j.when(&A).then_do(/*...*/);

Example 4.4: Join pattern using a proper subset of the channels of another in Rusty
Junctions, where j is an instance of junction.

Example 4.4 includes two join patterns, one of which uses a proper subset of the other.
If there now was one or more messages sent only by channel B and a single message
is sent by channel A, then the scenario is comparable to the one in Example 4.3. In
fact, it is a specialisation of said scenario. The actual issue in both scenarios is the
existence of a channel that can cause two or more join patterns to become alive simul-
taneously. Since Algorithm 2 solves this issue in Example 4.3, it does so as well for
the specialisation in Example 4.4.

4.6.2 Issue 2: Repeating Channels

Imagine the following setup of Example 4.5, in which a join pattern uses the same
channel multiple times:

1 j.when(&A).and(&A).then_do(/*...*/);

Example 4.5: Join pattern using same channel multiple times in Rusty Junctions,
where j is an instance of junction.

There is a subtle flaw in Algorithm 1 relating to the join pattern in Example 4.5. As-
sume that there have not been any messages sent on channel A. If channel A now sends
a single message, the loop in lines 9 to 14 of Algorithm 1 will falsely declare the join
pattern alive, even though two messages from channel A are required. Lines 18 to 20 in
Algorithm 1 will then attempt and fail to collect enough messages for the join pattern
to be executed.

The simple solution to this issue is given in Algorithm 2. Instead of checking whether
a message is available for a given channel, Algorithm 2 checks if there is at least one
message available for every occurrence of the channel in the join pattern.

Algorithm 2 is the final algorithm for join pattern execution in the Rusty Junctions
Library [26]. What is left to be discussed is how line 26 of Algorithm 2 actually
executes the closure [27, §13.1] associated with the join pattern.

4.6.3 Cloning Closures

Section 4.3 explained how closures [27, §13.1] are stored with join patterns so that
they are executed when the join pattern is ready to be executed. This begs the question
which thread should be responsible for executing the closure.

4.6. Join Pattern Execution 43

Algorithm 2 Revised Join Pattern Execution.
latestChannelId := ChannelId of the last received Message
joinPatterns := collection of declared join patterns
messages := collection of previously received Messages
N.B.: list assumed as ordered collection with duplicates, [] represents the empty list

1: function EXECUTEJOINPATTERN(latestChannelId, joinPatterns, messages)
2: relevantJPs←{}
3: aliveJPs←{}
4: for each j ∈ joinPatterns do
5: if j includes latestChannelId then
6: relevantJPs← relevantJPs ∪ { j}
7: for each j ∈ relevantJPs do
8: aliveCandidates←{}
9: for each channelId ∈ j do

10: numOccurs← number of occurrences of channelId in j
11: numMsgsgets number of messages for channelId in messages
12: if numOccurs≤ numMsgs then
13: aliveCandidates← aliveCandidates∪{ j}
14: else
15: aliveCandidates←{}
16: continue
17: aliveJPs← aliveJPs ∪ aliveCandidates
18: if aliveJPs 6= /0 then
19: sortedJPs← list of aliveJPs sorted by least to most recently executed
20: selectedJP← first entry of sortedJPs
21: requiredMessages← []
22: for each channelId ∈ selectedJP do
23: numOccurs← number of occurrences of channelId in selectedJP
24: msgs← list of numOccurs messages for channelId from messages
25: requiredMessages← requiredMessages ∪ msgs
26: j.execute(requiredMessages)

44 Chapter 4. Implementation: Bringing Rusty Junctions To Life

Section 3.5 described how the controller is designed to run in its own thread. It is
also the controller that stores join patterns, see Section 4.5, and runs Algorithm 2 to
determine which ones are to be executed. However, since the code within the closures
associated with join patterns may be essentially arbitrary and hence take an indetermi-
nate amount of time to finish it would be unwise to execute the join pattern closure in
the controller’s thread. Doing so would block the controller and prevent it from, for
instance, handling new messages.

Once alternative to this would be to execute a join pattern’s closure in a new thread.
This would require the closure to be transferred to the new thread or to be shared with
it through a reference. However, Section 2.3.2 has shown that using a reference would
require the ’static lifetime [27, §10.3], i.e. the reference would need to be valid
for the entire duration of the programme. Since join patterns in the Rust Junctions
library [26] can be dynamically added at any point in the programme, this cannot be
guaranteed.

Note that a controller also cannot simply transfer the join pattern closure to a new
thread or else a join pattern would only be executable once. Therefore, A trait [27,
§10.2] to allow closures [27, §13.1] to be cloned is implemented, see Section 2.3.3
for cloning. This is an existing but non-standard approach in the Rust community and
allows a duplicate of the closure associated with the join pattern to be transferred into
another thread and executed while still being available for the future in the controller.

4.7 Managing Resources with ControllerHandle

Section 3.5 describes how a controller is started by a junction in a new thread. While
this behaviour is easily implemented, it is less trivial how the controller thread should
be handled as a resources. That is, if and when the junction is no longer in use, how
does its controller and the controller’s thread get shut down.

As a solution, a ShutDownRequest variant of the Packet is implemented that is only
sent by the junction when it is dropped, see Section 2.3.1 for the conditions of this.
Therefore, a controller can only work as long as its associated junction still has an
owner.

While the aforementioned scheme of managing the controller and its thread ensures
that no resources of the system are lost, it is not necessarily the desired behaviour.
It may for instance be the case that a user-defined function declares a junction and
some join patterns, then only returns the channels necessary for the desired behaviour
to occur, not the junction. This is henceforth referred to as using a private junc-
tion. Example 2.1 in Join Calculus does exactly this. The current approach of the
ShutDownRequest when the junction is dropped would not allow for this to happen,
since the junction would be dropped as soon as the function returns.

The use of a junction is still important as Section 3.4 laid out, therefore a new com-
ponent for the Rusty Junctions Library [26] is implemented: the ControllerHandle.
The ControllerHandle is unique and created when the thread for the controller is

4.7. Managing Resources with ControllerHandle 45

started. It is kept as part of the junction and has a stop method which has taken over
the ability to send the ShutDownRequest from the junction. The junction is imple-
mented in a way that user code can take ownership of it from the junction. By doing
so, the junction will no longer shut down its controller upon being dropped. However,
it is then up to the user code to manage this resource.

User code may choose to take ownership of the ControllerHandle and ignore it. In
this case, the controller and its thread will still continue to run, however, there is no
longer a way to terminate it other than terminating the entire programme. User code
may also choose to pass the ControllerHandle around until the appropriate place to
shut down the controller has been reached and then manually call the stop function of
the ControllerHandle.

This concludes the final section of the implementation chapter. It describes the techni-
cal realisation and challenges involved in providing a functioning version of the Rusty
Junctions [26] design from Chapter 3. It gives details on how message passing is used
to create channels and construct join patterns and how the latter is validated using Rusts
type system. In Algorithm 2 It presents the algorithm contributed by the Rusty Junc-
tions Library [26] to manage join pattern execution and describes Rust-specific imple-
mentation details such as dynamic typing and the ControllerHandle. Equipped with
this, the next chapter showcases examples written in the Rusty Junctions Library [26]
to present the final product in use.

Chapter 5

Examples:
Programming in Rusty Junctions

With the Rusty Junctions Library [26] now established through the design described
in Chapter 3 and the implementation in Chapter 4, this chapter shows some exam-
ples of it in action. It starts by revisiting the storage cell example from Section 2.1 and
Section 2.2 and implements it using the Rusty Junctions Library [26]. After that, it pro-
vides a solution to the Santa Claus problem posed by Trono [36] which will highlight
key features of the Rusty Junctions Library [26] and demonstrate the use of multiple
junctions together.

5.1 Revisiting the Storage Cell

Different implementations of the storage cell are given throughout Section 2.1 and
Section 2.2. To recap, the storage cell is meant to hold a value which can be updated
or accessed at any point in the programme. It starts with Example 2.1 with a Join
Calculus [31] implementation and then one in Polyphonic C# [30] in Example 2.3 and
the Joins Concurrency Library [35] in Example 2.4.

This section provides basis for a comparison of join patterns in the Join Caclulus [31],
implementations Polyphonic C# [30] and the Joins Concurrency Library [35] and fi-
nally, the Rusty Junctions Library [26]. For this purpose, an implementation of the
storage cell in the Rusty Junctions Library is given in Example 5.1:

1 let cell = Junction::new(); // Declare Junction.
2

3 let get = cell.recv_channel::<i32>(); // Synchronous channel.
4 let put = cell.send_channel::<i32>(); // Asynchronous channels.
5 let val = cell.send_channel::<i32>(); //
6

7 let put_val = val.clone();
8 cell.when(&put).and(&val).then_do(move |new, _old| {

47

48 Chapter 5. Examples: Programming in Rusty Junctions

9 put_val.send(new).unwrap();
10 });
11

12 let get_val = val.clone();
13 cell.when(&val).and_recv(&get).then_do(move |v| {
14 get_val.send(v).unwrap();
15 v
16 });
17

18 val.send(1729).unwrap(); // Initial value.

Example 5.1: Storage cell written using the Rusty Junctions Library [26].

Example 5.1 is functionally the same as the previous implementations of the storage
cell, for instance Example 2.1. Line 1 starts by declaring a new junction to group
the channels and join patterns for the storage cell. Line 3 declares a synchronous get
channel, a RecvChannel as we want to receive a value through it. Lines 4 and 5 declare
asynchronous SendChannels as we do not need to block the current thread to update
the storage cell value with put and or to carry the state with val.

Lines 7 to 10 in Example 5.1 declare the join pattern used to update a value if there
is one. This works in the same way as, for instance, in Example 2.1 with one minor
Rust-specific change. In the closure [27, §13.1] associated with the join pattern, we
need to use the val channel to send a message with the new value. However, since
the join pattern is sent to the controller once it is completely constructed, it is trans-
ferred to another thread as is everything in the closure associated with the join pattern.
Therefore, val would become unavailable after the join pattern declaration in lines 8
to 10 due to Rust’s ownership system, see Section 2.3.1. To avoid this problem Rusty
Junctions implements the Clone trait [6] for every channel described in Section 3.2.
This means that channels can be duplicated and a duplicate can be transferred to the
controller’s thread with the original still available in the current thread.

Lines 12 to 16 in Example 5.1 implement the other join pattern necessary for the stor-
age cell again similarly to, for instance, Example 2.1. The noteworthy part about lines
12 to 16 is the use of the and recv method and the placement of the RecvChannel as
the last channel in the join pattern in line 13. The closure [27, §13.1] also only takes
one parameter at the end of line 13 and does return a value in line 15. All of this is a
result of the implementation described in Section 4.3.

Finally, line 18 in Example 5.1 sends an initial value for the storage cell just as the
Join Calculus implementation in Example 2.1 did. The takeaway from Example 5.1 is
that the Rusty Junctions Library [26] is capable of implementing the same join pattern
mechanism as has been shown in Example 2.1 with the Join Calculus [31] itself.

The next example is significantly larger than the storage cell one. It shows how each
aspect of the Rusty Junctions Library [26] comes together to solve the Santa Claus
problem [36].

5.2. Holly Jolly Christmas 49

5.2 Holly Jolly Christmas

The Santa Claus problem is an exercise in concurrency that was originally posed by
Trono [36] and can be stated as follows:

Santa Claus has 9 reindeer and 10 elves in his shop at the North Pole.
Normally Santa is taking a nap, the reindeer are all on holiday and the
elves are working. However, if all 9 reindeer are back from holiday, they
wake Santa up and he harnesses them to deliver toys. After delivering toys
together, Santa unharnesses the 9 reindeer and they go back on holiday
with Santa going back to sleep.

Likewise, if a group of 3 elves joins together with a common problem, it
is serious enough for Santa to be woken up and have it discussed with. So
if a group of 3 elves has come together, they wake up Santa and he shows
them into his office where they discuss the problem. During that time, any
other group of elves needs to wait. Once the problem has been discussed,
Santa shows the group of elves back out of his office, they go back to work
and he goes back to sleep.

Lastly, since the joy of children is Santa’s utmost priority he will always
prioritise the 9 reindeer once they are all back from holiday over a group
of 3 elves wanting to discuss a problem [36].

This problem is of particular interest because Benton has shown that a solution using
join patterns in Polyphonic C# [30] is possible [29]. In this section Benton’s solution
[29] is used and translated into the Rusty Junctions Library [26] to verify that it is
capable of solving the Santa Claus problem [36] in the same way Polyphonic C# is and
demonstrate various aspects of the Rusty Junctions Library in practice. The solution
to this problem presented here also solves as an example of the interaction of many
junctions as atomic units of concurrency management.

As the complete and commented solution would span multiple pages it is only para-
phrased here with its crucial parts highlighted. See Example B.1 in Appendix B for
the complete source code. Alternatively, a complete copy of the source code can be
obtained in the examples folder in the official Rusty Junctions repository [25].

Each entity in this problem, i.e. Santa Claus, each of the 9 reindeer and each of the 10
elves, will be represented by a separate thread. Following Benton’s approach, Santa
Claus will use rendezvous to synchronise with the 9 reindeer during harnessing and
unharnessing as well as a group of 3 elves while showing them in and out of his
office. Conceptually, the rendezvous using message passing and join patterns works as
follows:

(1) One thread initiates the rendezvous by sending out n free tokens in the form of a
message carrying the value n, where n is the number of entities the thread wants to
rendezvous. Following that, the thread blocks until all n token have been consumed
by n entities.

(2) Threads ready to rendezvous send out a message that will synchronise with the

50 Chapter 5. Examples: Programming in Rusty Junctions

token message, each time decreasing the number of free tokens by one. If there
are no free tokens, the thread blocks until there are.

(3) Once all n free tokens have been consumed, i.e. n messages from threads ready to
rendezvous have been received the thread that sent the tokens unblocks.

An implementation of this behaviour using the Rusty Junctions Library [26] is pro-
vided in Example 5.2:

1 pub fn rendezvous() -> (
2 ControllerHandle, BidirChannel<u32, ()>, RecvChannel<()>
3) {
4 let mut j = Junction::new();
5

6 let accept_n = j.bidir_channel::<u32, ()>();
7 let token = j.send_channel::<u32>();
8 let wait = j.recv_channel::<()>();
9 let all_gone = j.send_channel::<()>();

10 let entry = j.recv_channel::<()>();
11

12 let token_clone = token.clone();
13 let wait_clone = wait.clone();
14 j.when_bidir(&accept_n).then_do(move |n| {
15 token_clone.send(n).unwrap();
16 wait_clone.recv().unwrap();
17 });
18

19 j.when(&all_gone).and_recv(&wait).then_do(|_| {});
20

21 let token_clone = token.clone();
22 let all_gone_clone = all_gone.clone();
23 j.when(&token).and_recv(&entry).then_do(move |n| {
24 if n == 1 {
25 all_gone_clone.send(()).unwrap();
26 } else {
27 token_clone.send(n - 1);
28 }
29 });
30

31 let controller_handle = j.controller_handle().unwrap();
32

33 (controller_handle, accept_n, entry)
34 }

Example 5.2: Rendezvous implementation with private junction written using the
Rusty Junctiosn Library [26].

Like any join pattern declaration using the Rusty Junctions Library [26], the first step
is to create a new junction, which is done in line 4 of Example 5.2. As Section 3.5

5.2. Holly Jolly Christmas 51

described, this causes a controller to be stated in a separate thread which will handle
the messages being sent by channels associated to this junction, as well as executing
the join patterns declared through it.

Next, line 6 in Example 5.2 creates a new channels that is used to implement the
sending of the n free tokens and blocking until each has been consumed. Channel
accept n is used to send a 32-bit unsigned integer message which will be the number
of requested entities to rendezvous, n. However, since accept n should not only send
a message but also block until the n entities have rendezvoused, it is declared as a
BidirChannel, a synchronous sending and receiving channel, see Section 3.2.3.

The free tokens are implemented using a separate, asynchronous state channel named
token, defined in line 7 of Example 5.2. Similar to the val channel in the storage
cell example, Example 5.1, this channel sends messages that carry the state of how
many free tokens are available. It is meant to only send out a 32-bit unsigned inte-
ger to represent said number and not block, so it is declared as a SendChannel, see
Section 3.2.1.

The accept n and token channels alone, however, cannot implement the desired be-
haviour of creating free tokens and blocking. As Section 4.6 described, the join pat-
tern execution happens in a separate thread and by Section 3.2.3 a BidirChannel like
accept n will only block until said execution has finished. If sending a message on the
token channel were all that was happening as a result of a message by the accept n
channel, the join pattern execution would terminate as soon as the free tokens are cre-
ated, return and unblock the thread sending on accept n. To actually wait for the free
token to be consumed, Example 5.2 introduces an auxiliary channel, wait, in line 8
which is defined as a RecvChannel. As such, it will block any thread using its recv
function until a join pattern with the wait channel in it has been executed. This is used
to block the thread in which the join pattern, using the accept n channel, is executed.

Putting the accept n, token and wait channels together, lines 14 to 17 in Example 5.2
declare a join pattern that only uses the accept n channel. Once a value has been sent
through this channel it is extracted and a message on the token channel is sent with the
number provided by the message from the accept n channel, see line 15. This is the
creation of the free token. Immediately following that in line 16 is a call to the recv
method of the wait channel, which blocks the join pattern execution and thereby also
the thread that sent a message using the accept n channel. This recv call unblocks
only when all free tokens have been consumed.

To unblock a call to the recv method of the wait channel, Example 5.2, based on
Benton’s solution [29], introduces another channel to signal that all free tokens have
been consumed, the SendChannel all gone, created in line 9. In line 19 a join pattern
synchronises a message from the all gone and wait channel with an empty closure
that returns immediately. Therefore, an execution of the join pattern in line 19 unblocks
a call to the recv method of the wait channel. An execution of this join pattern is what
unblocks the call in line 16, terminates the enclosing join pattern execution and thereby
unblocks the thread that used the accept n channel.

52 Chapter 5. Examples: Programming in Rusty Junctions

To allow for free tokens to be consumed, line 10 in Example 5.2 defines the entity
channel. A message from the entity channel synchronises with one from the token
channel in the join pattern declared in lines 23 to 29. The entity channel is defined
as a RecvChannel so that it will block until a free token is available following the
conceptual behaviour of the rendezvous. The closure associated with this join pattern
takes the number of free tokens, n, which is carried by the message from the token
channel. The closure then checks if n is equal to 1, which signals that the message
from the entity channel is the last message needed for the rendezvous to succeed. As
a result, the closures sends a message on the all gone channel in line 25 and does
not resend a message on the token channel thereby signalling that all free tokens are
consumed and no further messages from the entry channel should synchronise for this
rendezvous. If n is not 1, then the state of free tokens is updated by resending a new
value on the token channel in line 27.

With this, the behaviour of the rendezvous is implemented. There are two necessary
remarks with respect to Example 5.2 that are a result of the use of Rust and the Rusty
Junctions Library [26]:

(1) Lines 12, 13, 21 and 22 clone channels so that they can be used in the join pat-
tern declarations directly following these lines. This is necessary due to Rust’s
ownership system [27, §4.1] alluded to in the explanation following Example 5.1.

(2) All channels in Example 5.2 with the exception of the token channel use Rust’s
unit type () [2] as either their send or receive value. Where this is done, it sig-
nals that the value is irrelevant and only the ability to block a thread or signal the
occurrence of an event, such as all free tokens have been consumed, is important.

To avoid having to construct the necessary join patterns for a rendezvous over and over
again, Example 5.2 makes use of private junctions as introduced in Section 4.7. This
means that in line 4 a junction is created that is later dropped with its controller, all
created channels and constructed join patterns preserved. The effect is that channels
can still send messages, join patterns will still be executed but no new channels or join
patterns can be added.

This behaviour is realised by taking ownership of the ControllerHandle from the
junction in line 31 of Example 5.2 as described in Section 4.7. Together with channels
accept n and entity, the ControllerHandle is returned in line 33 to user code
calling the rendezvous function. It is then up to the user code to shut down the
controller and its thread which are enabling the rendezvous behaviour.

It is of particular importance to realise that every call to the rendezvous function cre-
ates an entirely separate junction. The implemented behaviour is always the same, but
no two rendezvous will every interfere with each other providing the local synchroni-
sation described in the Join Calculus [31].

While the rest of the Rusty Junctions solution to Santa Claus problem [36] does follow
Benton’s solution [29] in terms of channels and join patterns, it uses junctions to group
together dependent join patterns within the implementation. In the Rusty Junctions
solution, every group, the reindeer, the elves and Santa himself gets their own junction
to handle synchronisation at various points. Example 5.3 starts with the definition of

5.2. Holly Jolly Christmas 53

the junction representing the elves with the channels and join patterns necessary for
them to queue into groups of 3:

1 let elves = Junction::new();
2

3 let elves_waiting = elves.send_channel::<u32>();
4 let elf_queue = elves.recv_channel::<()>();
5

6 let elves_ready_clone = elves_ready.clone();
7 let elves_waiting_clone = elves_waiting.clone();
8 elves.when(&elves_waiting)
9 .and_recv(&elf_queue).then_do(move |e|

10 {
11 if e == 2 {
12 elves_ready_clone.send(()).unwrap();
13 } else {
14 elves_waiting_clone.send(e + 1).unwrap();
15 }
16 });

Example 5.3: junction representing the elves with join pattern declaring behaviour.

Example 5.3 starts by defining a junction for the elves in line 1. It then defines a
SendChannel in line 3 that will carry the state of how many elves are waiting to discuss
their problem with Santa. This is again reminiscent of the val channel in Example 5.1.
Line 4 then defines the elf queue channel for an elf to add itself to the waiting elves.
This channel is defined as a RecvChannel so that it blocks the thread until its message
has been consumed and the state of waiting elves has been updated.

The actual update of the state is done through a join pattern defined in lines 8 to 16 in
Example 5.3. The join pattern synchronises a message from the elf queue channel
signalling that an elf wants to join a group of elves to talk to Santa with a message from
the state channel elves waiting. The state is inspected, if enough elves are present, a
message on the elves ready channel is sent in line 12, otherwise the state is updated
and resent with the elves waiting channel. Observe that the elves ready channel
is associated not with the elves junction but with the junction that represents Santa as
given in Example 5.4:

1 let santa = Junction::new();
2

3 let wait_to_be_woken = santa.recv_channel::<()>();
4

5 let reindeer_ready = santa.send_channel::<()>();
6 let reindeer_not_ready = santa.send_channel::<()>();
7 let clear_reindeer_not_ready = santa.recv_channel::<()>();
8

9 let elves_ready = santa.send_channel::<()>();

Example 5.4: junction representing Santa Claus.

54 Chapter 5. Examples: Programming in Rusty Junctions

The responsibility of handling the case when a group of 3 elves is ready lies with
Santa, which is why the elves ready channel is created by his junction. Recall that
according to Section 3.4, Santa’s junction would not be able to create join patterns
using the elves ready channel if it was not also created by Santa’s junction. On
the other hand, the responsibility of recognising that 3 elves are ready in a group lies
within the elves themselves, which is why that behaviour is implemented in the elves’
junction in Example 5.3. When ready, the elves simply signal to Santa that they are
through Santa’s elves ready channel. This demonstrates how junctions serve as units
for coordination that interact with each other by using each other’s channels. It also
serves as an example of how junctions allow for a separation of concerns.

The junction representing the reindeer is analogous to the one representing the elves
in Example 5.3. Its full definition as well as the join patterns associated with it can be
found in Appendix B in Example B.1.

The other channels in Santa’s junction in Example 5.4 follow the solution provided
by Benton [29]. The wait to be woken channel in line 3 is a blocking RecvChannel
that is used to simulate Santa napping. A message from this channel will synchronise
with either a message from the elves ready or the reindeer ready channel which
represents Santa being woken by either the 9 reindeer or a group of 3 elves being ready.
The reindeer ready channel in line 5 is analogous to the elves ready channel but
lets the reindeer junction signal that all 9 reindeer are back from holiday.

The reindeer not ready and clear reindeer not ready channels in lines 6 and
7 of Example 5.4, respectively, are used to prioritise reindeer over elves. The join
patterns that implement the described behaviour of Santa waking for either the reindeer
or a group of elves but prioritising the reindeer are shown in Example 5.5:

1 santa
2 .when(&elves_ready)
3 .and(&reindeer_not_ready)
4 .and_recv(&wait_to_be_woken)
5 .then_do(move |_, _| { /* Discuss with elves. */ });
6

7 santa
8 .when(&reindeer_ready)
9 .and_recv(&wait_to_be_woken)

10 .then_do(move |_| { /* Deliver with reindeer. */ });
11

12 santa
13 .when(&reindeer_not_ready)
14 .and_recv(&clear_reindeer_not_ready)
15 .then_do(|_| {});

Example 5.5: Declaration of the join patterns implementing Santa’s behaviour with
closure bodies omitted, where santa is as in Example 5.4. See Example B.1 for the
full definitions.

5.2. Holly Jolly Christmas 55

The join pattern in lines 1 to 5 of Example 5.5 declares that when the elves are ready
and the reindeer are not ready, signalled by a message of the reindeer not ready
channel, and Santa is waiting to be woken, then a discussion with the elves can hap-
pen. The join pattern in lines 12 to 15 will consume a reindeer not ready message
only if there is a clear reindeer not ready, which is always sent by the reindeer’s
junction upon finding all 9 reindeer ready. This, therefore, ensures that in case of
both reindeer and a group of elves being ready at the same time, there will not be a
reindeer not ready message around and thus the join pattern in lines 1 to 5, that
would cause a discussion of Santa with the elves, cannot be executed and Santa must
deliver toys with the reindeer instead. This also demonstrates a three-channel join
pattern.

On the other hand, the join pattern in lines 7 to 10 only requires that the reindeer
are ready and that Santa is waiting to be woken. There is no channel analogous to
the reindeer not ready for elves. This asymmetry in channels is what ensures that
Santa prioritises the reindeer over the elves.

The last part of the Rusty Junctions solution to the Santa Claus problem [36] that will
be highlighted here is the use of the ControllerHandle returned by the rendezvous
function defined in Example 5.2. It is used to gracefully shut down the rendezvous
controller and free its resources. Example 5.6 shows the creation of a rendezvous for
harnessing the reindeer and the shut down request sent to the associated controller
after the main loop of the programme has finished and the rendezvous is no longer
being used:

1 let (mut ch_3, harness_accept_n, harness_entry) =
2 rendezvous();
3

4 /* Main loop: Santa naps, is woken and naps again */
5

6 ch_3.stop(); // Shut down Controller.

Example 5.6: Demonstration of using ControllerHandle returned by rendezvous
from Example 5.2 to gracefully free resources.

The returned ControllerHandle and the two channels returned by the rendezvous
function from Example 5.2 are bound to the names in line 1 and 2 of Example 5.6.
The harness accept n and harness entry channels are used in the main loop, sym-
bolically represented by the comment in line 4. After the main loop finishes the
ControllerHandle ch 3 uses its method stop to send the ShutDownRequest, see
Section 4.7, to the controller and shut it and its thread down gracefully.

This concludes the exploration of a Rusty Junctions solution to the Santa Claus prob-
lem, based on the Polyphonic C# solution due to Benton [29]. The remaining code
either follows Benton’s solution directly or repeats concepts from the Rusty Junction
Library [26] that have already been explored. See Example B.1 in Appendix B for
the full solution or alternatively view it in the examples folder in the official Rusty
Junctions repository [25].

56 Chapter 5. Examples: Programming in Rusty Junctions

In the course of this chapter, some important aspects and idioms of the Rusty Junctions
Library [26] were demonstrated. Both the storage cell example, Example 5.1, as well
as the solution to the Santa Claus problem demonstrate the use of the asynchronous
SendChannel to carry state in a concurrent environment. The rendezvous implemen-
tation in Example 5.2 demonstrates the use of private junctions to set up a concurrency
construct and only return the channels that are necessary to interact with, like in the
Join Calculus, see Example 2.1. Lines 14 to 17 of Example 5.2 also presents an idiom
for function execution in a separate thread through a join pattern using only a single
BidirChannel. Most importantly, the solution to the Santa Claus problem presented
in this section exemplifies the use of multiple junctions together, having them interact
by using each other’s channels while handling messages and join pattern execution
completely separately and locally. The next chapter deals with the evaluation of the
Rusty Junctions Library [26].

Chapter 6

Evaluation:
A Qualitative Review

The conceptual design of the Rusty Junctions Library [26] is outlined in Chapter 3
with the details of its implementation in Chapter 4 and practical demonstrations of its
using in Chapter 5. These three chapters present the Rusty Junctions Library from its
design to its actual use but do not explore the properties and limitations of the library.
This chapter presents a qualitative evaluation of both.

Section 6.1 opens with an exploration of the limitations that the current version 0.1.0
of the Rusty Junctions Library [26] exhibits. Section 6.2 explores the complexity,
optimality and fairness of Algorithm 2 used to execute join patterns and Section 6.3
closes the chapter by presenting existing and partially experimental features of Rust
that are unused but relevant in the context of the library and its implementation.

6.1 Limitations of the Implementation

Example 5.1 in Section 5.1 demonstrates that the Rusty Junctions Library [26] is ca-
pable of reproducing a simple join pattern construction that is possible in the Join
Calculus as shown in Example 2.1. The solution to the Santa Claus problem [36] given
in Section 5.2 extends this by showing that the Rusty Junctions Library [26] is further
capable of reproducing more complex concurrent code that has been shown to work
in another implementation of join patterns, namely Polyphonic C# [30][29]. Despite
this, there are some limitations to the Rusty Junctions Library [26] which this section
explores.

6.1.1 Number of Channels in Join Patterns

Example 5.5 demonstrates a join pattern constructed using the Rusty Junctions Library
[26] which uses three channels. For the current version 0.1.0 of the Rusty Junctions
Library, this is the highest number of channels possible in any join pattern [26]. While

57

58 Chapter 6. Evaluation: A Qualitative Review

the solution to the Santa Claus problem in Section 5.2 shows that reasonably complex
concurrency constructions can still be implemented despite this limitation, it is not
present in the Join Calculus [31].

However, the design of the join patters in the Rusty Junctions Library [26], as described
in Section 3.3, does not dictate that at most three channels can be used in join patterns
and neither does the implementation described in Section 4.3. In fact, the implementa-
tion as presented in Section 4.3 can easily be extended to allow for an arbitraty number
of channels in a join pattern as Figure 4.2 subtly demonstrates. The only requirement
for this is to add new types for the join patterns with more than three channels.

A more flexible implementation of join patterns that would not a priori impose any
restriction on the number of channels in a join pattern might be conceivable. However,
the current implementation described in Section 4.3 uses Rust’s static type system and
compiler to validate join patterns automatically, which is a valuable property to have
to ensure correctness.

6.1.2 Channel Types in Join Patterns

On top of the limitation on the number of channels in a join pattern, Section 3.3
presents a restriction on the type channels used in a join pattern, which is by design.
Following the example set by Polyphonic C# [30], the Rusty Junctions Library [26]
does require a join pattern to include at most one RecvChannel or BidirChannel, but
not both, which is equivalent to the restrictions on non-async return types in Poly-
phonic C#.

Examining the formal definition of the Join Calculus [31], see Definition 2.1, it is again
not the case that the above restriction, which effectively translates to at most one return
to a channel or function call, is present. Using parallel composition P |Q in the process
that is guarded by a join pattern, multiple return Ẽ to f processes that return values
to different function calls in the join pattern are possible [31]. The Join Calculus only
requires that there be at least one function call in the join pattern to allow a return to a
function call [31].

It is further the case that Rust’s ownership system [27, §4.1], see Section 2.3.1, does not
strictly prohibit the use of multiple RecvChannels or BidiChannels in a single join
pattern. One interpretation of using multiple such channels would be to send the return
value of the join pattern closure [27, §13.1] to each of them. As Section 4.6.3 stated,
closures associated [27, §13.1] with join patterns are cloneable, see Section 2.3.3 for
an explanation of the Clone trait and its behaviour. It follows from this that any value
within the closure [27, §13.1] must implement the Clone trait and hence be cloneable,
which includes the return value [6]. Therefore, the return value of the closure asso-
ciated with the join pattern can be cloned and sent to multiple channels in multiple
threads without causing ownership violations.

By the above argument, the restriction on the type of channels used in a join pattern
as prescribed by Section 3.3 can be viewed as an oversight. It causes the types that
need to be implemented to support join patterns in the Rusty Junctions Library [26]

6.2. Join Patter Execution 59

to be fewer, but scenarios where returning values to multiple channels is desirable are
conceivable. Therefore, future versions of the Rusty Junctions Library [26] should
remove this restriction.

6.1.3 Signalling Channels

Section 5.2 and in particular Example 5.2, which defined a rendezvous construction
using the Rusty Junctions Library [26], shows that it is occasionally desirable for a
channel not to have a type for the sent or received message. Rather, it is sufficient for a
channel to simply send or receive a message such that synchronisation in join patterns
can occur. This will henceforth be referred to as a channel signalling an event. For
instance, the sole purpose of the all gone channel in Example 5.2 is to signal that all
free tokens are gone and no more. There is no meaningful value to be sent, the sending
of the message carries the meaning.

There exists a solution in the Rusty Junctions Library [26] for a channel not sending
or receiving a value but only signalling an event. It is to explicitly define the type of
the channel to be Rust’s unit type (), which has only the value () [2]. This, however,
leads to the slightly awkward and verbose syntax for signalling that can be observed in
Example 6.1:

1 all_gone.send(()) // SendChannel<()>.
2 all_gone.send() // Signaling channel.

Example 6.1: Channel using Rust’s unit type () compared to the potential syntax for
a channel that is only signalling.

It may occur as a minor detail and as Example 5.2 shows is not an actual limitation,
but having channels that only signal events rather than send or receive values could
increase readability of code by making it less cluttered. With the limitation on the
number of channels in a join pattern and the restriction on their types discussed, the
next section evaluates the properties of Algorithm 2 that is used to execute join patterns.

6.2 Join Patter Execution

Section 4.6 presents Algorithm 2 as the algorithm behind the join pattern execution in
the Rusty Junctions Library [26] managed in the controller as designed in Section 3.5.
Chapter 5 follows this with a demonstration of the Rusty Junctions Library [26] in use
that serves as practical evidence for the correctness of the implementation.

This section describes theoretical properties of Algorithm 2 and its implementation
as described in Section 4.6. Section 6.2.1 is an exploration of its time complexity
and optimality and Section 6.2.2 touches on its fairness with respect to a definition
presented by Kwiatkowska [33].

60 Chapter 6. Evaluation: A Qualitative Review

6.2.1 Time Complexity and Optimality

For the purpose of describing the time complexity, let n be the number of join patterns
stored in the controller, i.e. that are available, that is executing Algorithm 2. Further,
let m be the maximum number of channels used in any of these join patterns.

The first loop in Algorithm 2, lines 4 to 6, determines which join patterns include the
channel that sent the message, i.e. are relevant, causing Algorithm 2 to be executed.
This would normally be linear in n, the number of join patterns, and also depend on the
complexity of checking whether a certain channel is used in a particular join pattern.
However, as Section 4.5 described, a controller has an inverted index that stores for
each channel, using its ChannelId, which join patterns it is included in, using their
JoinPatternIds. Therefore, the time complexity of lines 4 to 6 is O(1), since the
required information is precomputed at the time of execution of the algorithm.

The next loop in Algorithm 2 is in lines 7 to 17 and determines which of the relevant
join patterns are alive. It may happen that every join pattern stored in the controller is
relevant, so the loop staring in line 7 may be executed for every join pattern available.
The inner loop from lines 9 to 16 goes through every channel in a given join pattern
to determine if said join pattern is alive, so overall the loop from lines 7 to 17 is linear
in both the number of join patterns and the number of channels on the join patterns, so
have time complexity O(nm).

In line 19 of Algorithm 2, all join patterns that have been found to be alive are sorted.
Since it may well be that all available join patterns are relevant and alive, i.e. the
number of join patterns to sort in the worst case may be n, the number of available join
patterns. In the actual implementation of Algorithm 2 in the Rusty Junctions Library
[26], the sort unstable function of the Vec collection provided by the Rust standard
library is used [26]. According to the documentation, this sorting has a O(n logn)
worst-case complexity [24, sort unstable].

Lastly, once a join pattern has been chosen to be executed by Algorithm 2, i.e. is
selected, the messages necessary for the execution are collected in the loop from lines
22 to 25. As this goes through every channel of the selected join pattern, which at most
has m channels, this has worst-case time complexity of O(m).

Collecting the results, the implementation of Algorithm 2 has a worst-case time com-
plexity of O(1) + O(nm) + O(n logn) + O(m), which using standard results can be
simplified to O(n(m+ logn)). In practice, as Section 6.1.1 alludes to, there is a limita-
tion of at most three channels per join pattern, which would allow the worst-case time
complexity to be simplified to O(n logn). In general, however, the number of available
join patterns, n, and the maximum number of channels in a given join pattern, m, are
independent. Given a sufficient implementation, the maximum number of channels
per join pattern, m, may also be arbitrary. Therefore, without additional information
on the bound of m, the worst-case time complexity of O(n(m+ logn)) cannot further
be simplified.

While the worst-case time complexity of the implementation of Algorithm 2 cannot in
general be simplified beyond O(n(m+ logn)), where n is the number of available join

6.2. Join Patter Execution 61

patterns and m the maximum number of channels in these join patterns, it is simple to
proof that Algorithm 2 is suboptimal. Here, optimality is taken to be with respect to
the number of computational steps to select a join pattern for execution. To show that
Algorithm 2 is suboptimal, observe the join patterns in Example 6.2:

1 j.when(&A).and(&C).and(&D).then_do(/*...*/);
2 j.when(&B).and(&C).and(&D).then_do(/*...*/);

Example 6.2: Join patterns which are handled sub-optimally by Algorithm 2, where
j is an instance of a junction.

Example 6.2 is due to the project supervisor and demonstrates a collection of join
patterns that, under certain circumstances, only requires to check if messages on a
single channel have been sent, to possibly refute that either of them are alive. For this,
assume that a message is being sent through channel C. Observe that to be alive either
join pattern in Example 6.2 requires a message sent on channel D, so by checking if
messages from channel D are available and finding that there are none, neither join
pattern can be alive. It therefore only requires a single check to refute that either of the
join patterns are alive.

However, Algorithm 2, does not inspect the channels in the join patterns in the way
described above. The loop in lines 9 to 16 may in fact check for messages on each
channel in an arbitrary fashion, so potentially check for messages sent on channel
A first. If there are none, it may still be possible that the join pattern in line 2 of
Example 6.2 is alive so one more check for messages sent on channel B is required. If
there are none, this join pattern is not alive either but it took two checks rather than one
to find them both not to be alive. Hence, Algorithm 2 is suboptimal.

There is another sense in which join pattern execution in the Rusty Junctions Library
[26] is suboptimal, which is in its use of threads. As Section 4.6.3 describes, each
join pattern is executed in a new thread, which is not strictly necessary and may have
negative implications on the scalability of applications written using the join patterns
as Turon and Russo demonstrate [37].

Besides the worst-case time complexity of the implementation of Algorithm 2 and its
proven suboptimality, another important aspect of it is its fairness with respect to a
definition presented by Kwiatkowska [33], which is discussed in the next section.

6.2.2 Fairness

Kwiatkowska presents a notion of fairness in the following general statement:

No component of a system which becomes possible sufficiently often
should be delayed indefinitely. [33, p.12]

Kwiatkowska goes on to explain that a specific fairness property is obtained by explic-
itly defining the system component and what becoming possible and sufficiently often
mean [33, p.12]. In terms of Algorithm 2, the system component of interest can be
thought of as the join patterns. Becoming possible can be thought of as a join pattern

62 Chapter 6. Evaluation: A Qualitative Review

becoming alive and assuming sufficiently often to mean infinitely often results in the
consideration of strong fairness of Algorithm 2 [33, p.13].

This section provides the outline of a proof that Algorithm 2 and its implementation in
the Rusty Junctions Library [26] does obey strong fairness.

Consider in the following a controller that stores an arbitrary but finite amount of join
patterns, which is reasonable in practice. As Section 4.5 and Section 4.6.1 describe,
the controller stores the value of the message counter at the last time of a join patterns
execution for each join pattern. The message counter is strictly monotonically increas-
ing with every new message and uses the Counter type, which does never suffers of
integer overflow and can be incremented indefinitely, see Section 4.6.1.

If a join pattern, j0, is becoming alive infinitely often, as prescribed by strong fairness,
there exists a smallest message counter value, c0, where it becomes alive for the first
time. For now, assume that it is not executed at message counter value c0. This implies
that this join pattern is waiting for execution longer than at least one other join pattern,
j1, which became alive at the same message counter value c0 and was executed.

If j0 and j1 now become alive at the same message counter value again, call this one
c1 and note that c1 > c0, and are the only two to do so, then Algorithm 2 must choose
j0 for execution. This is possible as j0 becomes alive infinitely often. It follows that j0
was delayed c1− c0 < ∞, i.e. not indefinitely and so strong fairness holds.

If j0 and j1 are not the only join patterns to be alive at c1, the same argument can be
repeated for larger and larger message counter values, each time not choosing j0 for
execution. Since there are finitely many join patterns, eventually j0 must have waited
the longest. Call the message counter value for this c∗1 and note that c∗1 > c0. Therefore
Algorithm 2 must choose it for execution. It follows that j0 was delayed c∗1− c0 < ∞,
i.e. not indefinitely and so strong fairness holds.

However, if j0 and j1 never become alive at the same message counter value again,
then there exists a message counter value, c2 where c2 > c0, where j0 is alive and j1 is
not and so Algorithm 2 cannot choose j1 over j0 for execution and must choose j0 if
no other join pattern is alive at c2. From this it follows that j0 was delayed c2−c0 < ∞,
i.e. not indefinitely and so strong fairness holds again.

If there were other join patterns alive at c2, the same argument about becoming alive
at the same time again or never at the same time again can be repeated. Since there
are finitely many join patterns by assumption, there must exist a finite message counter
value, cn where cn > c0, at which j0 has waited the longest for execution out of all the
alive join patterns and so Algorithm 2 must choose j0 for execution. It again follows
that j0 was delayed cn− c0 < ∞, i.e. not indefinitely and so strong fairness holds.

Finally, if j0 were executed at c0, a finite message counter value, then it was trivially
not delayed indefinitely. Additionally, if j0 were the only join pattern stored in the
controller, then j0 has trivially waited the longest for execution out of all the alive join
patterns and so Algorithm 2 must choose j0 for execution every time it becomes alive,
which implies it is never delayed. Thus, strong fairness holds in both cases.

6.3. Unused Features 63

It is worth pointing out that the development of the Counter type, which never suffers
from integer overflow and can represent an infinite amount of integer values, was mo-
tivated by exactly this argument. If the message counter were implemented with a type
that could only represent a finite amount of values there would exist the possibility
that the difference between the message counter value of j0 becoming alive and being
executed for the first time is larger than the largest value that can be represented by
said type.

The above argument should be able to convince the reader to consider Algorithm 2 and
its implementation to exhibit the strong fairness property as described by Kwiatkowska
[33]. The next section details features that exist in versions of the Rust programming
language but remain unused in the current version 0.1.0 in the Rusty Junctions Library
[26].

6.3 Unused Features

As Chapter 4 stated at the beginning, the current version 0.1.0 of the Rusty Junctions
Library [26] is implemented using version 1.35.0 of the Rust programming language,
which was the most recent version of the language at the start of the project but new
versions with new features [3] have been published during the development of the
Rusty Junctions Library [26]. This section reflects on the features that would have an
impact on the API exposed by the Rusty Junctions Library and justifies why they are
not used.

6.3.1 Futures and async-await

Rust’s version 1.39.0 brought the addition of stable async and await syntax for sus-
pended computation using futures [3]. Currently, as described in Section 3.2, the
RecvChannel and BidirChannel are designed to block the thread once their recv
or send recv functions are called. With futures it would be possible to delay the
point that the thread is blocked beyond the call of recv or send recv as Example 6.3
demonstrates:

1 j.when(&val).and_recv(&get).then_do(async move || { /*...*/});
2

3 let v_future = get.recv(); // Does not block!
4

5 /* More code... */
6

7 let v = v_future.await; // Now blocks and waits for result.

Example 6.3: Join pattern construction and receivng value using async-await syn-
tax, where j is a junction and val and get are as in Example 5.1.

Example 6.3 assumes the same channel definitions as the storage cell implementation
in Example 5.1 to allow for a syntax comparison.

64 Chapter 6. Evaluation: A Qualitative Review

The join pattern declared in line 1 of Example 6.3 uses the async keyword for the
associated closure which marks it as returning a future. Following that, the call to the
recv method of the get channel in line 3 returns a future and does not block. It is
therefore possible to request a result from a join pattern using the get channel without
blocking the thread immediately. The thread can go on to execute further code and at
a convenient time using the .await syntax in line 7 on the future retrieved in line 3
finally blocking the thread to wait for an actual value. Note that Example 6.3 is only
to be taken as a design proposal and not as a prototype for a working implementation.

The async-await syntax offering user code the ability to not immediately block the
current thread could add more freedom to the Rusty Junctions Library [26] from a
user’s perspective. However, as this feature was released as stable only during the
development of the Rusty Junctions Library, it appeared safer to stick to Rust features
that were more proven.

There is also a question of how frequently user code would choose to postpone block-
ing a thread to later await a value. Since there is no extensive code base written using
join patterns with the Rusty Junction Library [26], there is only a small amount of ex-
perience as to how frequently such a feature would be used in practice. Nevertheless,
future versions of the library could consider integration of the async-await syntax
with join patterns and channels.

6.3.2 The Function Call Operator

Section 6.1.3 already discusses one way in which the Rusty Junctions API may be
more verbose than required with Example 6.1. Another way in which this may be the
case, arises when comparing the Rusty Junctions API with Polyphonic C# [30]. The
latter uses function calls to the functions declared in a chord to enable said chord to be
fired [30]. The Rusty Junctions Library [26] on the other hand uses generic methods
such as, for instance, send on SendChannels to achieve a similar behaviour.

Rust actually offers function traits [27, §10.2] that would allow a channel to implement
a function call operator so that sending a message through a channel can look like a
genuine function call. The function traits are:

• Fn, for function calls that do not mutate state [13];
• FnMut, for function calls that may mutate state [14];
• FnOnce, for instance, in which multiple function calls may not be possible [15].

Example 6.4 presents a comparison of the current API for sending messages on chan-
nels in the Rusty Junctions Library [26] with how sending messages on channels could
look like using the function call operator:

1 put.send(1729); // Current API.
2 let v = get.recv(); //
3

4 put(1729); // With function call operator.

6.3. Unused Features 65

5 let v = get(); //

Example 6.4: Comparison of Rusty Junctions API with and without implemented
function call operator for channels, where put and get are as in Example 5.1.

Example 6.4 shows that using the function call operator with channels instead of meth-
ods such as send can reduce the amount of code needed to be written and increase read-
ability. It would also be more in line with the Join Calculus itself, as the Join Calculus
uses functions calls to enable join patterns as well [31]. Unfortunately, this feature of
Rust is still experimental in all function traits at the time of writing [13][14][15]. It
was therefore disregarded for version 0.1.0 of the Rusty Junctions Library [26] so that
the library itself does not force experimental features into user code.

This concludes the qualitative evaluation of the Rusty Junctions Library. As section
Section 6.1 discusses, there are some obvious limitations in the current implementa-
tion that are not based on the theoretical foundations in the Join Calculus, such as for
instance the limitation on the types of channels in a join pattern. Section 6.2.1 on the
other hand shows that the join pattern execution algorithm while being suboptimal may
still exhibit interesting characteristics relating to fairness. Finally, this section demon-
strates that there are Rust features that are not used for the current version of the Rusty
Junctions Library [26] but are of interest for future development. The next chapter
presents some closing remarks on this report and the project as a whole and outlines
potential future work.

Chapter 7

Conclusions and Future Work

The Rusty Junctions Library [26] implements a novel concurrency construct named a
junction, which uses message passing and join patterns based on the Join Calculus [31]
to allow for thread-safe and declarative concurrent programming. Its design is heavily
inspired by the Joins Concurrency Library, a previous implementation of join patterns
in C# [35].

The contribution of junctions with an array of channels for various message passing
tasks enriches the Rust programming language [1] with a new paradigm for concur-
rent programming. Seemingly complex synchronisation tasks such as the Santa Claus
problem [36] are solvable using the Rusty Junctions Library by declaring the required
behaviour. Using the Rusty Junctions Library no synchronisation has to be done man-
ually which avoids potentially difficult to diagnose problems.

Join patterns in the Rusty Junctions Library [26] are designed around Rust’s rich, static
type system that offers memory safety through concepts such as ownership [34]. Rust’s
type system has undoubtedly had a great impact on the structure of the Rusty Junctions
Library by requiring restrictions such as requiring cloneable values in join patterns
bodies. However, Rust’s type system is also leveraged by a series of implemented types
that ensure the correctness of join patterns constructions at compile time as described
in Section 4.3.

A large part of the contribution of the Rusty Junctions Library [26] is the controller
construct that holds internal state for junctions and handles the scheduling of join pat-
tern execution. The algorithm used for the scheduling, Algorithm 2, is a novel con-
tribution specifically developed for the Rusty Junctions Library. While it is proven
suboptimal in terms of steps to arrive at a scheduling decision, it exhibits fairness
properties, for which a proof is outlined in Section 6.2.2.

This report demonstrates that the current version of the Rusty Junctions Library, ver-
sion 0.1.0 [26], is a viable proof-of-concept for a join pattern implementation in the
Rust programming language. This is done through examples as presented in Chapter 5.
These show that despite the limitations that exist for this version of the library, explored
in Section 6.1, a non-trivial synchronisation task such as the Santa Claus problem can
be solved in the same way as a previous implementation of join patterns, Polyphonic

67

68 Chapter 7. Conclusions and Future Work

C# [30], managed to do [29].

The future work for the Rusty Junctions Library [26] entails both practical experimen-
tation as well as improvements of the issues raised in Chapter 6. Turon and Russo
have shown join patterns as implemented in the Joins Concurrency Library [35] to be
a scalable solution to concurrency problems [37]. A similar approach investigation the
throughput of systems, written using the Rusty Junctions Library [26], is to be under-
taken, which is likely to raise issues that could lead to improvements of the design
and implementation in order to make join patterns a viable tool in Rust’s concurrency
landscape.

Section 6.3 highlights that the Rust programming language is being actively developed
which has led to new features that could benefit the API exposed by the Rusty Junctions
Library [26]. As Section 6.2.1 has proven, there is also work to be done to optimise the
join pattern execution, which is likely to benefit systems wanting to rely on junctions
and join patterns as their concurrency programming model, making them a feasible
approach in practice.

Bibliography

[1] Rust Language Website. https://www.rust-lang.org/. Accessed: 2020-03-
05.

[2] Rust Primitive Type unit Documentation. https://doc.rust-lang.org/
std/primitive.unit.html. Accessed: 2020-03-12.

[3] Rust Releases. https://github.com/rust-lang/rust/blob/master/
RELEASES.md. Accessed: 2020-03-20.

[4] Rust std::any::Any Documentation. https://doc.rust-lang.org/std/
any/trait.Any.html. Accessed: 2020-03-08.

[5] Rust std::boxed::Box Documentation. https://doc.rust-lang.org/std/
boxed/struct.Box.html. Accessed: 2020-03-14.

[6] Rust std::clone::Clone Documentation. https://doc.rust-lang.org/
std/clone/trait.Clone.html. Accessed: 2020-03-08.

[7] Rust std::collections Documentation. https://doc.rust-lang.org/
std/collections/index.html. Accessed: 2020-03-14.

[8] Rust std::collections::HashMap Documentation. https://doc.
rust-lang.org/std/collections/struct.HashMap.html. Accessed:
2020-03-14.

[9] Rust std::collections::LinkedList Documentation. https://doc.
rust-lang.org/std/collections/struct.LinkedList.html. Accessed:
2020-03-14.

[10] Rust std::collections::VecDeque Documentation. https://doc.
rust-lang.org/std/collections/struct.VecDeque.html. Accessed:
2020-03-14.

[11] Rust std::marker::Send Documentation. https://doc.rust-lang.org/
std/marker/trait.Send.html. Accessed: 2020-03-08.

[12] Rust std::marker::Sync Documentation. https://doc.rust-lang.org/
std/marker/trait.Sync.html. Accessed: 2020-03-08.

[13] Rust std::ops::Fn Documentation. https://doc.rust-lang.org/std/
ops/trait.Fn.html. Accessed: 2020-03-20.

69

https://www.rust-lang.org/
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://github.com/rust-lang/rust/blob/master/RELEASES.md
https://doc.rust-lang.org/std/any/trait.Any.html
https://doc.rust-lang.org/std/any/trait.Any.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://doc.rust-lang.org/std/collections/index.html
https://doc.rust-lang.org/std/collections/index.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.LinkedList.html
https://doc.rust-lang.org/std/collections/struct.LinkedList.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html

70 Bibliography

[14] Rust std::ops::FnMut Documentation. https://doc.rust-lang.org/std/
ops/trait.FnMut.html. Accessed: 2020-03-20.

[15] Rust std::ops::FnOnce Documentation. https://doc.rust-lang.org/
std/ops/trait.FnOnce.html. Accessed: 2020-03-20.

[16] Rust std::panic Documentation. https://doc.rust-lang.org/std/
macro.panic.html. Accessed: 2020-03-14.

[17] Rust std::println Documentation. https://doc.rust-lang.org/std/
macro.println.html. Accessed: 2020-03-05.

[18] Rust std::string::String Documentation. https://doc.rust-lang.org/
std/string/struct.String.html. Accessed: 2020-03-05.

[19] Rust std::sync::atomic::AtomicUsize Documentation. https://doc.
rust-lang.org/std/sync/atomic/struct.AtomicUsize.html. Accessed:
2020-03-13.

[20] Rust std::sync::mpsc Documentation. https://doc.rust-lang.org/std/
sync/mpsc/index.html. Accessed: 2020-03-13.

[21] Rust std::sync::mpsc::Receiver Documentation. https://doc.
rust-lang.org/std/sync/mpsc/struct.Receiver.html. Accessed:
2020-03-13.

[22] Rust std::sync::mpsc::Sender Documentation. https://doc.rust-lang.
org/std/sync/mpsc/struct.Sender.html. Accessed: 2020-03-13.

[23] Rust std::thread::spawn Documentation. https://doc.rust-lang.org/
std/thread/fn.spawn.html. Accessed: 2020-03-08.

[24] Rust std::vec::Vec Documentation. https://doc.rust-lang.org/std/
vec/struct.Vec.html. Accessed: 2020-03-09.

[25] Rusty Junctions Library - Examples. https://github.com/smueksch/rusty_
junctions/tree/master/examples. Accessed: 2020-03-16.

[26] Rusty Junctions Library Crate. https://crates.io/crates/rusty_
junctions/. Accessed: 2020-03-08.

[27] The Rust Programming Language. https://doc.rust-lang.org/book/
title-page.html. Accessed: 2020-03-05.

[28] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Aurojit Panda,
Zvonimir Rakamarić, and Leonid Ryzhyk. System Programming in Rust: Be-
yond Safety. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, HotOS ’17, page 156–161, New York, NY, USA, 2017. Association for
Computing Machinery.

[29] Nick Benton. Jingle bells: Solving the santa claus problem in Polyphonic C#.
Unpublished manuscript, Mar, 2003.

https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/macro.panic.html
https://doc.rust-lang.org/std/macro.panic.html
https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicUsize.html
https://doc.rust-lang.org/std/sync/atomic/struct.AtomicUsize.html
https://doc.rust-lang.org/std/sync/mpsc/index.html
https://doc.rust-lang.org/std/sync/mpsc/index.html
https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html
https://doc.rust-lang.org/std/sync/mpsc/struct.Receiver.html
https://doc.rust-lang.org/std/sync/mpsc/struct.Sender.html
https://doc.rust-lang.org/std/sync/mpsc/struct.Sender.html
https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/thread/fn.spawn.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://github.com/smueksch/rusty_junctions/tree/master/examples
https://github.com/smueksch/rusty_junctions/tree/master/examples
https://crates.io/crates/rusty_junctions/
https://crates.io/crates/rusty_junctions/
https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/book/title-page.html

Bibliography 71

[30] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern Concurrency Abstrac-
tions for C#. In European Conference on Object-Oriented Programming, pages
415–440. Springer, 2002.

[31] Cédric Fournet and Georges Gonthier. The join calculus: A language for dis-
tributed mobile programming. In Applied Semantics, International Summer
School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced
Lectures, page 268–332, Berlin, Heidelberg, 2000. Springer-Verlag.

[32] Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jocaml:
A language for concurrent distributed and mobile programming. In International
School on Advanced Functional Programming, pages 129–158. Springer, 2002.

[33] Marta Zofia Kwiatkowska. Fairness for non-interleaving concurrency. PhD the-
sis, University of Leicester Phd thesis, 1989.

[34] Nicholas D. Matsakis and Felix S. Klock. The rust language. In Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language Tech-
nology, HILT ’14, page 103–104, New York, NY, USA, 2014. Association for
Computing Machinery.

[35] Claudio Russo. The Joins Concurrency Library. In International Symposium on
Practical Aspects of Declarative Languages, pages 260–274. Springer, 2007.

[36] John A Trono. A new exercise in concurrency. ACM SIGCSE Bulletin, 26(3):8–
10, 1994.

[37] Aaron J. Turon and Claudio V. Russo. Scalable join patterns. SIGPLAN Not.,
46(10):575–594, October 2011.

Appendices

73

Appendix A

Complete Join Calculus Definition

Definition A.1 provides a complete definition of the Join Calculus as described by
Fournet and Gonthier [31]:

75

76 Appendix A. Complete Join Calculus Definition

Definition A.1 Complete formal Join Calculus definition as given by Fournet and
Gonthier [31].

P,Q,R ::= processes
let x = E in P compute expression

‖ let f (x̃) = E in P local recursive function definition
‖ P | Q parallel composition
‖ 0 inert process
‖ p〈Ẽ〉 execute abstract process
‖ def p〈x̃〉 . P in Q process abstraction
‖ return Ẽ to f return value(s) to function call
‖ let x̃ = E in P local recursive function definition
‖ def f (x̃) . P in Q recursive function definition
‖ def D in P process/function definition

E,F ::= expressions
x,y, f variable

‖ f (Ẽ) function call
‖ let x = E in F local value definition
‖ let f (x̃) = E in F local recursive function definition
‖ run P spawn process
‖ let x̃ = E in F local definition(s)
‖ def f (x̃) . P in E recursive function definition
‖ def D in E process/function definition

D ::= definitions
J . P execution rule

‖ D∧D′ alternative definitions
‖ > empty definition

J ::= join patterns
x〈ỹ〉 message send pattern

‖ x(ỹ) function call pattern
‖ J | J′ synchronisation

Appendix B

Full Santa Claus Solution

Example B.1 below provides the full source code of the solution to the Santa Claus
problem [36] written using the Rusty Junctions Library [26]. A copy of the source
code can also be optained in the examples folder of the official Rusty Junctions Library
repository [25].

1 use rand::Rng;
2

3 use std::{thread, time::Duration};
4

5 use rusty_junctions::channels::{BidirChannel, RecvChannel};
6 use rusty_junctions::types::ControllerHandle;
7 use rusty_junctions::Junction;
8

9 fn main() {
10 /*****************************
11 * Elves Junction & Channels *
12 *****************************/
13

14 // Elf Junction.
15 let elves = Junction::new();
16

17 // Synchronous channel to signal that elf wants to queue up.
18 let elf_queue = elves.recv_channel::<()>();
19

20 // Asynchronous channel to carry the number of elves that
21 // are queued up.
22 let elves_waiting = elves.send_channel::<u32>();
23

24 /********************************
25 * Reindeer Junction & Channels *
26 ********************************/
27

28 // Reindeer Junction.

77

78 Appendix B. Full Santa Claus Solution

29 let reindeer = Junction::new();
30

31 // Synchronous channel to signal that reindeer is back from
32 // holiday.
33 let reindeer_back = reindeer.recv_channel::<()>();
34

35 // Asynchronous channel to carry the number of reindeer
36 // waiting in the stable.
37 let reindeer_waiting = reindeer.send_channel::<u32>();
38

39 /*****************************
40 * Santa Junction & Channels *
41 *****************************/
42

43 // Santa’s Junction.
44 let santa = Junction::new();
45

46 // Synchronous channel to wait to be woken by either
47 // reindeer or elves.
48 let wait_to_be_woken = santa.recv_channel::<()>();
49

50 // Asynchronous channel to signal that enough reindeer
51 // are ready.
52 let reindeer_ready = santa.send_channel::<()>();
53

54 // Asynchronous channel to signal that not enough reindeer
55 // are ready.
56 // Used for prioritisation.
57 let reindeer_not_ready = santa.send_channel::<()>();
58

59 // Synchronous channel to match and consume a
60 // reindeer_not_ready message.
61 // Used for prioritisation.
62 let clear_reindeer_not_ready = santa.recv_channel::<()>();
63

64 // Asynchronous channel to signal that enough elves are
65 // ready.
66 let elves_ready = santa.send_channel::<()>();
67

68 // Rendezvous channels to let elves into room.
69 let (mut ch_1, room_in_accept_n, room_in_entry) =
70 rendezvous();
71

72 // Rendezvous channels to let elves out of room.
73 let (mut ch_2, room_out_accept_n, room_out_entry) =
74 rendezvous();

79

75

76 // Rendezvous channels to harness the reindeer.
77 let (mut ch_3, harness_accept_n, harness_entry) =
78 rendezvous();
79

80 // Rendezvous channels to unharness the reindeer.
81 let (mut ch_4, unharness_accept_n, unharness_entry) =
82 rendezvous();
83

84 /***********************
85 * Elves Join Patterns *
86 ***********************/
87

88 // Count up how many elves are waiting and possibly send
89 // ready message.
90 let elves_ready_clone = elves_ready.clone();
91 let elves_waiting_clone = elves_waiting.clone();
92 elves
93 .when(&elves_waiting)
94 .and_recv(&elf_queue)
95 .then_do(move |e| {
96 if e == 2 {
97 // Last elf just queued.
98 elves_ready_clone.send(()).unwrap();
99 println!("<Elves> Group of 3 ready!");

100 } else {
101 elves_waiting_clone.send(e + 1).unwrap();
102 println!("<Elves> {} waiting!", e + 1);
103 }
104 });
105

106 /**************************
107 * Reindeer Join Patterns *
108 **************************/
109

110 // Count up how many reindeer are waiting and possibly send
111 // ready message.
112 let reindeer_ready_clone = reindeer_ready.clone();
113 let reindeer_waiting_clone = reindeer_waiting.clone();
114 let clear_reindeer_not_ready_clone =
115 clear_reindeer_not_ready.clone();
116 reindeer
117 .when(&reindeer_waiting)
118 .and_recv(&reindeer_back)
119 .then_do(move |r| {
120 if r == 8 {

80 Appendix B. Full Santa Claus Solution

121 // Last reindeer just came back.
122 clear_reindeer_not_ready_clone.recv().unwrap();
123 reindeer_ready_clone.send(()).unwrap();
124 println!("<Reindeer> All 9 assembled!");
125 } else {
126 reindeer_waiting_clone.send(r + 1).unwrap();
127 println!("<Reindeer> {} waiting!", r + 1);
128 }
129 });
130

131 /***********************
132 * Santa Join Patterns *
133 ***********************/
134

135 // Enough elves are ready so let’s consult with them.
136 let reindeer_not_ready_clone = reindeer_not_ready.clone();
137 let elves_waiting_clone = elves_waiting.clone();
138 santa
139 .when(&elves_ready)
140 .and(&reindeer_not_ready)
141 .and_recv(&wait_to_be_woken)
142 .then_do(move |_, _| {
143 let mut rng = rand::thread_rng();
144

145 // Reindeer will still not be ready so resend just
146 // consumed message.
147 reindeer_not_ready_clone.send(()).unwrap();
148

149 // Show 3 elves into the office once all are ready.
150 println!(
151 "<Santa> Woken by elves, now showing them in!"
152);
153 room_in_accept_n.send_recv(3).unwrap();
154 println!("<Santa> Elf group shown in!");
155

156 // Reset how many elves are waiting to allow others
157 // to form a group.
158 elves_waiting_clone.send(0).unwrap();
159

160 // Consult with elves for 0 to 10 seconds, i.e.
161 // pause thread.
162 println!("<Santa> Now consulting with elves!");
163 thread::sleep(
164 Duration::from_secs(rng.gen_range(0, 10))
165);
166 println!("<Santa> Consulted with elves!");

81

167

168 // Done consulting with elves so show all 3 out once
169 // all are ready.
170 println!("<Santa> Now showing out elves!");
171 room_out_accept_n.send_recv(3).unwrap();
172 println!("<Santa> Elf group shown out!");
173 });
174

175 // Enough reindeer are ready so let’s deliver some presents.
176 let reindeer_not_ready_clone = reindeer_not_ready.clone();
177 let reindeer_waiting_clone = reindeer_waiting.clone();
178 santa
179 .when(&reindeer_ready)
180 .and_recv(&wait_to_be_woken)
181 .then_do(move |_| {
182 let mut rng = rand::thread_rng();
183

184 // Harness all 9 reindeer once they are all ready.
185 println!(
186 "<Santa> Woken by reindeer, now harnessing!"
187);
188 harness_accept_n.send_recv(9).unwrap();
189 println!("<Santa> Reindeer harnessed!");
190

191 // Reindeer are harnessed, so they are no longer
192 // ready.
193 // Used for prioritisation.
194 reindeer_not_ready_clone.send(()).unwrap();
195

196 // Reset how many reindeer are waiting.
197 reindeer_waiting_clone.send(0).unwrap();
198

199 // Deliver toys with reindeer for 0 to 10 seconds,
200 // i.e. pause thread.
201 println!("<Santa> Now delivering toys!");
202 thread::sleep(
203 Duration::from_secs(rng.gen_range(0, 10))
204);
205 println!("<Santa> Toys delivered!");
206

207 // Done delivering toys, unharness all 9 reindeer
208 // once all are ready.
209 println!("<Santa> Now unharnessing reindeer!");
210 unharness_accept_n.send_recv(9).unwrap();
211 println!("<Santa> Reindeer unharnessed!");
212 });

82 Appendix B. Full Santa Claus Solution

213

214 // Clear the reindeer_not_ready message. Used for
215 // prioritisation.
216 santa
217 .when(&reindeer_not_ready)
218 .and_recv(&clear_reindeer_not_ready)
219 .then_do(|_| {});
220

221 /*******************************
222 * Start North Pole Operations *
223 *******************************/
224

225 // Spawn in the 10 elves and send the initial number of
226 // waiting ones.
227 for i in 0..10 {
228 new_elf(
229 elf_queue.clone(),
230 room_in_entry.clone(),
231 room_out_entry.clone(),
232);
233 }
234 elves_waiting.send(0).unwrap();
235

236 // Spawn in the 9 reindeer, send the initial number of
237 // waiting ones and
238 // send that they are not ready yet.
239 for i in 0..9 {
240 new_reindeer(
241 reindeer_back.clone(),
242 harness_entry.clone(),
243 unharness_entry.clone(),
244);
245 }
246 reindeer_waiting.send(0).unwrap();
247 reindeer_not_ready.send(()).unwrap();
248

249 // Santa keeps napping until something comes up.
250 println!("<North Pole> Starting operations!");
251 while true {
252 println!(
253 "<Santa> Starting a nap, waiting to be woken..."
254);
255 wait_to_be_woken.recv().unwrap();
256 println!("<Santa> Woken from nap!");
257 }
258

83

259 // Clean up the controller resources in the background
260 // manually at the end.
261 ch_1.stop();
262 ch_2.stop();
263 ch_3.stop();
264 ch_4.stop();
265 }
266

267 // Create a new elf in a new thread.
268 fn new_elf(
269 queue: RecvChannel<()>,
270 room_in_entry: RecvChannel<()>,
271 room_out_entry: RecvChannel<()>,
272) {
273 println!("<North Pole> New elf hired!");
274 thread::spawn(move || {
275 // Random number generator for working and consulting
276 // times.
277 let mut rng = rand::thread_rng();
278

279 while true {
280 // Work for 0 to 10 seconds, i.e. pause thread.
281 println!("<Elf> Going to work now!");
282 thread::sleep(
283 Duration::from_secs(rng.gen_range(0, 10))
284);
285 println!("<Elf> Done working!");
286

287 // Done working, so wait and try to join a group of
288 // 3 elves.
289 println!(
290 "<Elf> Queuing now, waiting for more elves..."
291);
292 queue.recv().unwrap();
293 println!("<Elf> Found a group of elves!");
294

295 // Found group of elves so sait for Santa to show
296 // me in.
297 println!(
298 "<Elf> Waiting for Santa to show me in..."
299);
300 room_in_entry.recv().unwrap();
301 println!("<Elf> Santa is showing me in now!");
302

303 // Consult with Santa for 0 to 10 seconds, i.e.
304 // pause thread.

84 Appendix B. Full Santa Claus Solution

305 println!("<Elf> Consulting with Santa now!");
306 thread::sleep(
307 Duration::from_secs(rng.gen_range(0, 10))
308);
309 println!("<Elf> Done consulting with Santa!");
310

311 // Wait for Santa to show me out.
312 println!(
313 "<Elf> Waiting for Santa to show me out..."
314);
315 room_out_entry.recv().unwrap();
316 println!("<Elf> Santa is showing me out now!");
317 }
318 });
319 }
320

321 // Create a new reindeer in a new thread.
322 fn new_reindeer(
323 reindeer_back: RecvChannel<()>,
324 harness_entry: RecvChannel<()>,
325 unharness_entry: RecvChannel<()>,
326) {
327 println!("<North Pole> New reindeer hired!");
328 thread::spawn(move || {
329 // Random number generator for holiday and delivery
330 // times.
331 let mut rng = rand::thread_rng();
332

333 while true {
334 // Go on holiday for 0 to 10 seconds, i.e. pause
335 // thread.
336 println!("<Reindeer> Going on holiday now!");
337 thread::sleep(
338 Duration::from_secs(rng.gen_range(0, 10))
339);
340 println!("<Reindeer> Back from holiday!");
341

342 // Done with holiday so join a group of reindeer in
343 // the stable.
344 println!(
345 "<Reindeer> Waiting now for enough reindeer..."
346);
347 reindeer_back.recv().unwrap();
348 println!(
349 "<Reindeer> Reindeer now assembled in stable!"
350);

85

351

352 // Enough reindeers in the stable so wait for Santa
353 // to harness me.
354 println!(
355 "<Reindeer> Waiting for Santa to harness me..."
356);
357 harness_entry.recv().unwrap();
358 println!("<Reindeer> Santa is harnessing me now!");
359

360 // Deliver toys with Santa for 0 to 10 seconds, i.e.
361 // pause thread.
362 println!(
363 "<Reindeer> Delivering toys with Santa now!"
364);
365 thread::sleep(
366 Duration::from_secs(rng.gen_range(0, 10))
367);
368 println!(
369 "<Reindeer> Done delivering toys with Santa!"
370);
371

372 // Done delivering toys with Santa so sait for him
373 // to unharness me.
374 println!(
375 "<Reindeer> Waiting to be unharnessed..."
376);
377 unharness_entry.recv().unwrap();
378 println!(
379 "<Reindeer> Santa is unharnessing me now!"
380);
381 }
382 });
383 }
384

385 // Set up a private Junction for a rendezvous and return the
386 // public channels.
387 pub fn rendezvous() -> (
388 ControllerHandle, BidirChannel<u32, ()>, RecvChannel<()>
389) {
390 let mut j = Junction::new();
391

392 // Asynchronous token channel to carry the state.
393 let token = j.send_channel::<u32>();
394

395 // Synchronous entry channel.
396 let entry = j.recv_channel::<()>();

86 Appendix B. Full Santa Claus Solution

397

398 // Synchronous channel to set up number of available tokens.
399 let accept_n = j.bidir_channel::<u32, ()>();
400

401 // Synchronous wait channel.
402 let wait = j.recv_channel::<()>();
403

404 // Asynchronous all_gone channel.
405 let all_gone = j.send_channel::<()>();
406

407 // Count down the arrivals.
408 let token_clone = token.clone();
409 let all_gone_clone = all_gone.clone();
410 j.when(&token).and_recv(&entry).then_do(move |n| {
411 if n == 1 {
412 all_gone_clone.send(()).unwrap();
413 } else {
414 token_clone.send(n - 1);
415 }
416 });
417

418 // Spawn n new token and wait for all entries to rendezvous.
419 let token_clone = token.clone();
420 let wait_clone = wait.clone();
421 j.when_bidir(&accept_n).then_do(move |n| {
422 token_clone.send(n).unwrap();
423 wait_clone.recv().unwrap();
424 });
425

426 // Stop waiting once all tokens are gone.
427 j.when(&all_gone).and_recv(&wait).then_do(|_| {});
428

429 // Prevent Junction from stopping control thread after
430 // return.
431 let controller_handle = j.controller_handle().unwrap();
432

433 // Return the necessary channels.
434 (controller_handle, accept_n, entry)
435 }

Example B.1: Complete and commented implementation of a solution to the Santa
Calus problem [36] written using the Rusty Junctions Library [26].

	Introduction and Motivation
	Background: Join Calculus, Existing Implementations and Rust
	Join Calculus
	Existing Implementations
	Polyphonic C#
	The Joins Concurrency Library

	Rust
	Ownership and Borrowing
	Lifetimes on References
	Traits and Trait Objects

	Design: Channels, Junctions and Controllers
	Overview
	Channels
	Asynchronous Sending with <SendChannel>
	Synchronous Receiving with <RecvChannel>
	Synchronous Sending and Receiving with <BidirChannel>

	Join Patterns
	Junctions
	Controllers

	Implementation: Bringing Rusty Junctions To Life
	Message Passing with Packets
	Creating Channels
	Constructing Join Patterns
	Dynamic Typing Through Trait Objects
	Handling State with Controllers
	Join Pattern Execution
	Issue 1: Sharing Channels
	Issue 2: Repeating Channels
	Cloning Closures

	Managing Resources with <ControllerHandle>

	Examples: Programming in Rusty Junctions
	Revisiting the Storage Cell
	Holly Jolly Christmas

	Evaluation: A Qualitative Review
	Limitations of the Implementation
	Number of Channels in Join Patterns
	Channel Types in Join Patterns
	Signalling Channels

	Join Patter Execution
	Time Complexity and Optimality
	Fairness

	Unused Features
	Futures and <async>-<await>
	The Function Call Operator

	Conclusions and Future Work
	Bibliography
	Appendix Complete Join Calculus Definition
	Appendix Full Santa Claus Solution

