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Abstract

For robots and agents to be able to achieve their goals, they must be able to create

plans in their task space, for getting from an arbitrary current configuration to the de-

sired configuration, however, these plans must be carefully crafted in order to that they

are physically and dynamically feasible. For example, the plans must avoid making a

robot collide with physical objects in the space in which it is operating or making the

joints of a robot accelerate faster than they were designed to. In particular, this piece

of work will focus on the generation of trajectories which are smooth to the second

degree and avoid static regions of physical infeasibility, and the means of generation

of these trajectories will be that of numerical optimization. Given the NP-hard na-

ture of non-convex optimization, the optimization problems considered in this paper

will be defined on Bézier curves, given that utilizing this class of polynomial spline

can remove elements of non-convexity of the problem being investigated. Initially in

this work, the duration of a solution trajectory will be heuristically allocated, and with

the timing variables fixed, formulations of the problem in the form of three different

Quadratic Programms will be derived. Thereafter, given that heuristically allocating

the duration of the solution curve is a process completely decoupled from the prob-

lem objective of producing smooth curves, two methods will be investigated to allow

the timing variables to enter into the numerical optimization. In particular, utilizing

a non-convex Trust-Region solver will be investigated along with the methodology

of formulating the problem as a Bi-level optimization problem. Quantitative data is

presented to show that the Trust-Region method is not suitable for this application.
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Chapter 1

Introduction

1.1 Background and Motivation

Many problems in the field of optimal motion planning for autonomous agents remain

open and as such are a keen area of contemporary research [13, 31]. An example

motion planning problem would be generating a plan for the robotic arm on the ex-

terior of the International Space Station [14] to move from one configuration to the

next, while avoiding regions of intersection of the arm with itself or the main cap-

sule. Another motion planning task would be that of generating a plan for a drone

to navigate through an urban area, from a start point to a final point while respecting

the constraints of the problem, such as not colliding with buildings and potentially a

maximum time constraint to complete the maneuver. Such problems seem particularly

distinct on the surface, however both can be reduced to a more abstract form of simply

searching continuous curve lying wholly within some arbitrary subset of Euclidean-

space, which starts at one point and at some point in time in the future ends at some

other predefined point, and perhaps respects a set of constraints (e.g. maximum time

for the completion of the trajectory or maximum velocity constraints). The trajectory

planning problem involving the robotic arm can be viewed in this form if the abstract

space above is simply considered to be the configuration space of the robot, which gets

mapped to the problem definition above via forward and inverse dynamics [8]. The

search problem involving the drone can viewed directly as the abstract search problem

defined above (i.e. the abstract search space is precisely task space of the robot). The

interesting nature of this search problem is increased when trajectory generation is en-

dowed with a cost function, that is, a mapping from a solution trajectory to the set of

non-negative real numbers which defines an ordering of optimally on solution trajec-
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tories. For example, due to the phenomenal monetary cost [14] associated with repairs

on the International Space Station, a suitable cost function may be one which encour-

ages smooth, low acceleration trajectories in order to increase the lifetime of the robot.

Having a reference trajectory without large changes in velocity in a short period of time

is crucial in this case, simply due to the physical constraints on the motors [34, 23]. In

the autonomous drone scenario, the cost may be designed to punish trajectories which

contain regions of high velocity in order to increase safety. The algorithms outlined in

this paper will be designed to solve precisely the problem of searching for the optimal

solution trajectory in the arbitrary subset of Euclidean Space, which further respects

the constraints of the problem. In particular, in this paper the cost function of interest

will be one which smooth, low-acceleration trajectories.

An initial source of motivation for solving this problem is found when one con-

siders the benefits of having robots integrated with society. For example in the case

of robotic drones, note that transport by air is clearly faster than transport on land in

a congested city environment [26]. The applications of this technology are plentiful,

ranging from applications in the medical domain (e.g. delivering defibrillators when

rapid action is required) to applications in the retail domain. Another one of the main

sources of motivation for solving this problem is embedded in the field of social impact

of robots. For example, controlling a multi-joint fixed base robot arm would be would

be within the capabilities of the planners presented in this paper. Such technologies

could play a role in the creation of high quality prosthetic limbs for humans [16].

A keen angle of angle of attack for generating, feasible (respecting the constraints)

near-optimal to optimal trajectories has been formulating the search problem as a nu-

merical optimization problem [30, 21]. The reason for the popularity of turning to

mathematical numerical optimization is that such optimization problems are defined

in terms of a cost function and a set of constraints which must be satisfied by the

solution [22]. Such a framework precisely aligns with the motion planning problem

outlined above. One must note that a fundamental fact of optimization theory, is that

non-convex optimization is a starkly harder problem than its convex counterpart, in

general. The reason for this is that when a local minima is found in a convex prob-

lem, it must be the global optimum, by definition. Recent work shows great success

for the numerical optimization method of trajectory generation particularly in search

spaces with convex constraints, since these problems can be solved efficiently [15, 6].

Note that problems can be defined to be non-convex, and then converted to convex-

optimization by relaxing the problem, e.g. via making a linear approximation of a
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non-convex cost function. The art defining this topic of research is being able to define

an optimization problem, which trades off how sub-optimal a solution is compared to

the global optimal and the computation time of the numerical optimization algorithm

for solving.

1.2 Summary of Approach

Note that the essential problem to be considered in this paper is to generate a paramet-

ric curve, wholly inside some arbitrary subset of Euclidean space, satisfying further

constraints and optimally conditions. Given that the subset of Euclidean space is arbi-

trary, it may be non-convex, which will in turn cause non-convex constraints to enter

into the optimization problem. For this reason, the methods presented in this paper

will employ a pre-processing step of ‘convexifying’ the feasible space of the problem

as much as possible, in order to decrease the degree of difficulty of the optimization

problems. This is a common starting point in the literature for tackling such a problem

(e.g. [18]). The obvious cost of such a modification is that the solution produced can

no longer be claimed to be the optimal solution with respect to the initial constraints,

however, this will reduce compute time, which in reality is usually more important

than full optimally.

The methods presented in this paper will have a distinctly geometric flavor, namely

through the use of Bézier curves [?]. A primer on this class of polynomial spline will

be given in subsequent chapters, but two well-established properties of these curves

which will be exploited with regularity in this paper. Firstly, after the defining points

of a Bézier curve are established, it is easy to establish bounds on the value of of the

polynomial on a bounded interval. Constant this to a classic polynomial where there is

no formula to obtain bounds on the value of the function based purely on the defining

coefficients. Furthermore, the fact that Bézier curves are closed under differentiation

will be utilized. Given both of these features, bounds on the derivatives of a Bézier

curve to the ith degree can be formulated with ease. A sequence of these Bézier curve

will be optimized over, in order to construct the final solution.

A common approach to tackling the problem of trajectory generation is to first

assign the amount of time which a each of the segments of the solution trajectory will

take, usually based on some distance based heuristic, and then to optimize over the

shape of the trajectory. However with this methodology, the timing variables are fully

decoupled from the trajectory cost function, which in turn lead to a seriously sub-
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optimal solution. Such an assumption will form a starting point for the methods of

Bézier trajectory optimization, but promptly, this assumption will be lifted.

1.3 Previous Work

In this report, it has already been introduced that a critical component of any trajec-

tory generation mechanism is to ensure that the constraints of the problem are not

significantly violated. One method which has been used to ‘ensure’ constraints are not

violated is to generate a candidate solution curve, and then to check whether it satisfies

the constraints stipulated in the problem definition, at only finite number of points as

described in [6]. In this paper, details are given of several papers which utilized these

methods, e.g. [19, 27], but then progresses to give several adversarial examples to this

method of constraint checking, e.g. generating a trajectory through a very thin wall.

This is clearly serious flaws with this approach, and encourages this work to rely on

mathematical bounds in order to check for constraint satisfaction - the only way in

which the constraints can be guaranteed at every time-point. Note that the trade of

for using this approach, as will be discussed in future chapters in the case of Bézier

Curves, is that often these bounds outline sufficient but not necessary conditions for

constraint satisfaction. Thus, these conservative formulation of the constraints may

eliminate perfectly valid solution trajectories. However, work from the state-of-the-art

(e.g. [35]), appeals to geometric properties of polynomial splines, rather than finite

checking, so this indicates that using optimization on Bézier curves is a good direction

for further work.

Another starting point for attacking this problem is to utilize a rapidly exploring

random trees (RRT) to firstly solve for a solution which trajectory which is possible in

terms of the physical constraints of the problem and then use a further optimization to

satisfy and improve the dynamic performance, as detailed in [28]. Due to the conve-

nient nature of decoupling of the physical and dynamic constraints of this solution, a

similar approach will be appealed to in this dissertation, however, a form of A* search

will be utilised in place of using an RRT.
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1.4 Thesis Aims and Achievements

The aims of this project were as follows:

1. Analyse the algebraic properties of a smooth-trajectory cost function (provided),

and its relationship with Bézier-curves to produce several numerical optimiza-

tion formulations of how the smooth trajectory problem can be solved.

2. Implement all of the methods derived in Python, appealing to Numerical Opti-

mization and Computer Algebra packages when appropriate.

3. Produce, a clear and fair quantitative analysis of the methods proposed in the

paper, where theoretical results are unavailable.

The conclusions of the quantitative analysis were:

1. The Trust-Region method is four orders of magnitude slower than the Bi-level

optimization method, when tested in a 3-dimensional problem environment.

2. Formulating the constraints of the problem as soft constraints via the Trust-

Region method on average causes on average constraint violation of order of

105, when tested in a 3-dimensional problem environment.

3. In a 3-dimensional problem environment, utilizing the Bi-level optimization

method over simply heuristically allocating the time for a trajectory is shown

on average to reduce the cost of the solution trajectory by more that 53% of the

way to global optimally.

All of these aims were achieved, and evidence of such will be provided herein. Note

that the images and code examples included in this paper will be of searches in R2 and

R3, however all of the algorithms outlined in this paper will be applicable to searches

in any Euclidean space and further the code in the included with this report is fully

general with respect to dimensionality of the search space. The code is available at

https://gitlab.com/SuperWilhelm/Beziertrajectoryplanning, which I hope

can be used for further research into the domain.

5



Chapter 2

Foundations of the methods

2.1 Formal Problem Definition

The problem of optimal motion planning can be defined succinctly in the following

way. Consider a non-empty set X ⊆ Rn and two points x0,x1 ∈ X . Let γ ∶ [0,T ]→ X

denote any continuous curve such that γ(0) = x0 to γ(T) = x1, T ∈R, T > 0 and further

where γ satisfies a set of constraints S. For the curve γ an example elements of the set

S are:

T ≤ 77 (2.1)

γ(T
2
) = x0+x1

4
, (2.2)

γ
′′(t) < 3, ∀t ∈ [0,T ] (2.3)

Define the set Γ to be the set containing all of the feasible candidates for γ. The

goal of optimal trajectory synthesis is to obtain the element of Γ which is optimal with

respect to some cost function C ∶ Γ→R, C ≥ 0.

This paper will exclusively focus on the classic cost function in robotics the integral

of the square norm of some nth derivative of the solution curve [29]. In the case of this

paper, the integral of the square of the d2 norm of the acceleration curve will be the

cost function of interest:

C(γ) = ∫
T

0
∣∣γ′′(t)∣∣2dt (2.4)

By definition, the above cost function will punish a trajectory which has drastic changes

of speed in a short spaces of time. The interest of this cost function is that in robotics

smooth trajectories are often very desirable. For example, in the domain of surgical
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robots, it would be completely unnatural to observe a robot realizing the commands of

the surgeon by means of a sporadic motion trajectory.

2.2 Optimization Basics

As prefaced in the introduction, the motion planning outlined in this paper will be

performed via numerical optimization methods. Let f ∶ A→ B be a function and C ⊆ A.

All optimization problems can be expressed in the following form:

min
x

f (x) (2.5)

s.t. x ∈C (2.6)

The solution to such a problem would simply be a value in x ∈C such that f (x) ≤ f (c)
for all c ∈C. The convexity or non-convexity of functions and sets will be of vital im-

portance for understanding the methods and results described in this paper, since these

properties play a key role in understanding the difficulty of an optimization problem,

as well as understanding the different methods of solving optimization problems dis-

cussed in this paper.

Definition 1 (Convexity of a function [22]). A function f ∶ A→ B is convex on a set

C ⊆A if and only if for all points a1,a2 ∈C and λ ∈ [0,1] the following inequality holds:

f (λa1+(1−λ)a2) ≤ λ f (a1)+(1−λ) f (a2).

For example, the function f (x) = ∣x∣ would satisfy the definition convexity, but the

function f (x) = x3+1 would not. A visual proof of these claims is given in Figure 2.1

�(�) = |�| �(�) = + 1�
3

�1 �2 �1 �2

Figure 2.1: The left hand figure gives a visual proof that the function f (x) = ∣x∣ is convex

and the right had figure gives a visual counterexample to the definition of convexity for

the function f (x) = x3+1

.
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Definition 2 (Convexity of a set [22]). A set A is convex if and only if for all points

a1,a2 ∈ A and λ ∈ [0,1] the following set containment holds: λa1+(1−λ)a2 ∈ A.

Given the above definition, note that if A is some Euclidean space, convexity simply

means that any straight line starting and ending at points in A, must lie wholly within

A.

Definition 3 (Convexity of an optimization problem [22]). Let f ∶ A→ B be a function

and C ⊆ A. The optimization problem: minx f (x) such that x ∈C is convex if and only

if the set C is convex and the function f ∶ A→ B is convex on C.

Note that if an optimization problem satisfies the definition of convexity, then it is

the case that a local minima of the problem is a global optima.

2.3 Bézier Curves

Bézier Curves are a class of polynomial splines which have beautiful geometric and

algebraic properties which play a crucial role alleviating the problem of X ⊆Rn, in the

problem definition, being potentially non-convex. In this chapter, the class of polyno-

mials will be defined, and their properties relevant to this paper will be proven.

Definition 4 (Bernstein Polynomials [11]). The set of n+1 Bernstein basis polynomials

of degree n each with domain R, are defined as:

bv,n(t) = (n
v
)tv(1−x)n−v,v ∈ {0, ..,n} (2.7)

Definition 5 (Bézier Curve [12]). Let x0, ...,xk ∈ Rn. The polynomial B ∶ [0,1]→ Rn,

defined by:

B(t) =
M
∑
i=0

bi,n(t) ⋅xi (2.8)

is the Bézier Curve of degree k with control points x0, ...,xM ∈Rn.

Note that in the above definition B is a continuous (given that its simply a polyno-

mial), parametric curve in Rn, which is traversed over the interval, [0,1]. Constraining

a curve to be traversed in one unit is particularly constraining, however the next defi-

nition introduces a re-parameterised generalization of the Bézier Curve.
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Definition 6 (Duration parameterised Bézier Curve). Let x0, ...,xk ∈ Rn and T ∈ R,
T > 0. The polynomial BT ∶ [0,T ]→Rn, defined by:

BT (t) =B( t
T
) (2.9)

is the duration parameterized Bézier Curve of degree k with control points x0, ...,xM ∈Rn

and duration T , where B is the Bézier Curve of degree k with control points x0, ...,xM ∈Rn.

In order to introduce the first property of the duration parameterized Bézier curve,

a further definition must be give. Thereafter, Theorem 1 will introduce and prove the

property.

Definition 7. The Convex-Hull of the points x0, ...,xk ∈ Rn is the set containing all

points x such that there exists λ0, ...λM ∈ [0,1] such that x = λ0x0+ ...+λkxk and

∑M
i=0 λi = 1. Such a sequence of λi’s is referred to as a convex combination of the xi’s.

Theorem 1 (Convex-Hull Bound Property). The duration parameterized Bézier Curve

of degree k with control points x0, ...,xk ∈ Rn and duration T ∈ R, T > 0, is contained

wholly within or on the boundary of Convex−Hull(x0, ...,xk).

Proof of Theorem 7. Let BT denote the Bézier curve. Note that for t ∈ [0,T ]:

BT (t) ∶=B( t
T
) =

k
∑
i=0

bi,k (
t
T
)xi. (2.10)

Clearly, it is true that the λi(t) ∶= bi,M ( t
T ) ≥ 0 for t ∈ [0,T ], for all i. Additionally note

that for all t ∈ [0,T ]:
k
∑
i=0

λi(t) =
M
∑
i=0

bi,M ( t
T
) (2.11)

∶=
k
∑
i=0

(k
i
)( t

T
)

i
(1− t

T
)

k−i
(2.12)

= [(1− t
T
)+ t

T
]

k
= 1, (2.13)

by the binomial formula. Hence by definition of the Convex-Hull of a set of points

x0, ...,xM, the result follows.

Theorem 1 establishes that a duration parameterized Bézier curve is bounded by the

convex hull of its control points. Next, a generalization of the two-dimensional convex

polygon in Rn will be introduced, and then it will be established that, if the control

points of a duration parameterized Bézier curve are chosen within this shape in Rn,

then the curve defined will lie wholly within the shape.
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Theorem 2 (Polytope bound property). A duration parameterized Bézier curve BT

with control points x0, ...,xk ∈ Rn and duration T ∈ R, T > 0, with control points all

contained inside the polytope P, is contained wholly inside the polytope P.

Proof. Let t ∈ [0,T ] be given. Note that by Theorem 1, the curve BT is contained

wholly withing the convex hull of its control points, H ∶= Convex−Hull(x0, ...,xk).

Given this, BT (t) ∈H. Then there exists λ0, ...,λN ≥ 0, such that BT (t) = λ0x0+ ...+λkxk

and ∑k
i=0 λi = 1. All that is to show is that BT (t) respects all of the linear constraints

defining P. Let a ⋅x ≤ b with a ∈Rn and b ∈R be an arbitrary linear constraint defining P

on the point x ∈Rn. Given that the control points x0, ...,xk ∈ P, a ⋅xi ≤ b for all i. Given

this,

a ⋅BT (t) = a ⋅(λ0x0+ ...+λkxk) (2.14)

= λ0(a ⋅x0)+ ...+λk(a ⋅xk) (2.15)

≤ λ0b+ ...+λkb (2.16)

= b. (2.17)

Therefore, BT lies wholly within the polytope P.

(�)��

�

Figure 2.2: Illustration of Theorem 2 in R2. Simply if the control points of a duration

parameterized Bézier curve, shown as black dots in the figure, are selected to be inside

of a polytope P, then the parameterized Bézier curve must be contained wholly within

P.

.

Theorem 2 above will be used extensively later in this report however, now we will turn

our attention to calculating the derivative of a duration parameterized Bézier curve.

Theorem 3 (Derivative of Bézier Curve). The duration parameterized Bézier Curve

of degree k with control points x0, ...,xk ∈Rn and duration T ∈R, T > 0, has derivative

with respect to t:

B′
T (t) =

k
T

k−1
∑
i=0

(k−1
i

)(1− t
T
)
(k−1)−i t

T

i
(xi+1−xi) (2.18)
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Proof. The result follows directly from The Product Rule for differentiation and basic

algebraic manipulation.

From the above result, it can be verified that the differentiation of duration pa-

rameterized Bézier curves is closed up to a constant not dependant on the variable of

integration, t. To see this note that B′
T (t) in the above theorem is a duration parameter-

ized Bézier curve, with duration T , degree k−1 and control points x1−x0, ...,xk−xk−1,

multiplied by k/T . Given this it is as easy formulate an expression for the ith derivative

of a duration parameterized Bézier curve. For example, an expression for the accel-

eration of the duration parameterized Bézier Curve of degree k with control points

x0, ...,xk ∈Rn and duration T ∈R, T > 0 would be:

B′′(t) = k(k−1)
T 2

k−2
∑
i=0

(k−2
i

)(1− t
T
)
(k−2)−i

( t
T
)

i
(xi+2−2xi+1+xi). (2.19)

2.4 Constructing the solution curve from a sequence

of subcurves

Firstly, a definition of one requirement of any solution curve will be given, and there-

after, a general methodology for constructing a solution curve satisfying this definition

will be given. Finally, it will be justified that the parameterization of such a solution

curve is convex.

Definition 8. A parametric curve f ∶ [0,T ]→ Rn is said to respect the physical con-

straints of the set X ⊆Rn if I( f ) ⊆ X.

As described in Section 2.1, the goal of the methods being outlined in this paper is

to connect two points x0,x1 ∈X with a continuous curve γ ∶ [0,T ]→X such that the solu-

tion curve satisfies a set of constraints S. Recall that the set X ⊆Rn is arbitrary in terms

of convexity, by definition. The awkwardness of the potential non-convexity of the set

X can be removed by instead of searching for a motion trajectory γ which lies within

the potentially non-convex set X , if firstly a sequence of polytopes, Q0, ...,QM−1 ⊆ X

can be found with the property that x0 ∈ Q0, x1 ∈ QM−1 and Q∆i+1 ∶= Qi ∩Qi+1 ≠ ∅.

Then the solution curve γ can be constructed from a sequence of sub-curves γ0, ...,γM−1

where γ0 starts at x0, γM−1 ends at the point x1 and γi ends where γi+1 starts, inside the

polytope Q∆i+1. The usefullness of this construction is realised when γ0, ...,γM−1 are

11



considered to be duration parameterized Bézier curves, the curve γi can be ensured to

be contained within Qi, by selecting the control points of the curve to be inside the

polytope Qi, given Theorem 2. Hence, selecting the control points of the γi’s to have

this property ensures γ respects the physical constraints of X .

In addition to ensuring that the solution curve satisfies the physical constraints of

X , since polytopes can be verified to be convex, by noting that half-planes are convex

and that the intersection of convex sets is convex, and since the duration of γi is selected

from R>0, an interval in R, the parameterization of γi is convex.

�2

�1

�0

�0

�1

�2

�0

�1

�Δ0
�Δ1

Figure 2.3: Illustration in R2 of notation used for constructing the solution curve γ from

the polytope sequence Q0,Q1,Q2 ⊆ X .

.

2.5 Obtaining the polytope sequence

Recall that in the previous section, sequence of polytopes, Q0, ...,QM−1 ⊆ X with the

property that x0 ∈Q0, x1 ∈QM−1 and Q∆i+1 ∶=Qi∩Qi+1 ≠∅ was assumed as given. This

section will outline the construction of such a sequence of polytopes.

Firstly, a set of polytopes Q̃ = {Q̃0, ...Q̃k} with each Q̃i ∈ Q̃ satisfying Q̃i ⊆X will be

assumed as given. The construction of this set of polytopes Q̃ has been a keen topic of

research in the literature (e.g. [5]), this construction will be considered out of the scope

of this particular project. However, the utilization of this set will now be outlined.

Firstly, the intersection of all pairs of distinct polytopes will be considered. For

example, consider {A,B} ∈ {{A,B} ∶ A,B ∈ Q̃}. The polytopes A and B are defined by

a set of half planes. Let Ãx ≤ a denote such linear constraints defining A and B̃x ≤ b

similarly define the constraints defining B for vectors x ∈ Rn. Clearly x ∈ Rn, if and

only if Ãx ≤ a and B̃x ≤ b. In order to establish if there exists such an x, all subsets of

the union of both of the linear constraints of size n can be enumerated. Then for each

of sets of n linear inequations, we can attempt to solve for a unique solution to the

corresponding set of linear equations. If one such subset firstly has a unique solution
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and secondly the solution satisfies the linear inequalitues Ãx ≤ a and B̃x ≤ b, then the

intersection must be non-trivial. Otherwise, the intersection is assumed to be trivial.

This is the method utilised in this paper, however it is only since, it will be assumed

that all polytopes will be finite. However, this problem can be solved in general by

noting that the Linear Program [22], defined as: minx, π such that Ãx ≤ a and B̃x ≤ b,

will return a solution if and only if, the intersection of A and B is non-trivial.

An undirected graph G is constructed with Q̃ as the vertices and an edge is added to

the graph between A,B ∈ Q̃ if and only if A∩B ≠∅ and A ≠ B. The Euclidean distance

between the ‘center’ of A, i.e. the average value of the vertives of A, and the center

of B will be associated to this edge if included in G. An A∗-search can be performed

over the graph G with the admissible heuristic d2, to find a sequence of polytopes,

Q0, ...,QM−1 ⊆ X with the desired properties, if such a sequence exists.

Figure 2.4: A random set Q̃ in R3, generated by the random generator for problems

in R3 which I implemented. I also implemented classes defining Polytopes and linear

constraints in Rn. Note that the red dots denote the start and endpoints of the problem.

Figure 2.5: The resulting Q0,Q1,Q2,Q3, which the A∗ search which I implemented

found.
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Chapter 3

Formulation of cost function and

dynamic constraints on Bézier Curves

In this chapter details will be given of a convenient algebraic form of the cost function

C, when the the solution curve γ is constructed from a finite sequence of duration

parameterised Bézier curve. In addition to this, it will also be described how theory of

time parameterized Beizer curves, as discussed in the previous chapter, can be utilised

in order to ensure that a soltuion curve can be relized by accurately by a controller.

3.1 Cost Function

Again denote γ0, ...,γM−1 be a sequence of duration parameterized Bézier curves of de-

gree d in Rn, where each γi is defined by the tuple of control points x(i) = (x(i)0 , ...,x(i)d )
where each x(⋅)⋅ ∈Rn and a time allocation ti ∈R, ti > 0. Define

x(i) = [x(i)0

T
,x(i)1

T
, ...,x(i)d

T
]

T
, (3.1)

x = [x(0)
T
,x(1)

T
, ...,x(M)

T ]
T
, (3.2)

t = [t0, ...,tM−1]T . (3.3)

By the above definitions, x(i) is simply the control points of the ith duration parame-

terized Bézier curve stacked into a column vector and x is simply a column vector of

all of the control points for all of the duration parameterized Bézier curves, and finally

t can be described as a vector containing all of the time allocations.
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Recall that the cost function which is being utilized in this paper is:

C(x,t) =
M−1
∑
i=0
∫

ti

0
∣∣ai (t′)∣∣2dt′, (3.4)

where ai is the function giving the acceleration vector of γi.

Further define Ci to simply be the cost associated with the ith duration parameter-

ized Bézier curve, e.g.

Ci(x(i),ti) = ∫
ti

0
∣∣ai (t′)∣∣2dt′. (3.5)

I was able to observe the following result after my supervisor telling me to try to

establish a closed form equivalence to C, which separates the state variables x and

the timing variables t. I believe this to have been previously shown in the literature,

e.g. [9], however, I did not utilize this when obtaining the following form of the cost

function C.

Theorem 4. The function C can be expressed in the form:

C(x,t) = 1
2

xT A(t)x+xT b(t)+c(t), A ∶RM →R(n⋅d⋅M)×(n⋅d⋅M) (3.6)

b ∶RM →R(n⋅d⋅M) (3.7)

c ∶RM →R. (3.8)

Moreover, expressions for A,b and c can be obtained in closed form.

Proof. Given that C can be expressed in the form,

C(x,t) =
M−1
∑
i=0

Ci(x(i),ti) (3.9)

and further given that x= [x(0)T ,x(1)T , ...,x(M)T ]
T

the theorem must be considered true

if it can be shown that the cost of the ith duration parameterised Bézier curve, γi can

be expressed in the form:

Ci(x(i),ti) =
1
2

xT Ai(ti)x+xT bi(ti)+ci(ti), Ai ∶R→R(n⋅d)×(n⋅d) (3.10)

bi ∶R→R(n⋅d) (3.11)

ci ∶R→R. (3.12)
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This is because given the addative property of the cost function C given in Equation 3.9

and the definition of x, the following function definitions for A,b and c satisfy Equality

3.61:

A(t) ∶= diag(A0(t0), ...,AM−1(tM−1)), (3.13)

b(t) ∶= [b0(t0)T , ...,bM−1(tM−1)T ]T , (3.14)

c(t) ∶= c0(t0)+ ...+cM−1(tM−1). (3.15)

Recall that the ith curve, γi, is defined to have cost:

Ci(x(i),ti) = ∫
ti

0
∣∣ai (t)∣∣2dt. (3.16)

The Bézier curve for this section of the solution can be expressed explicitly as:

γi(t) =
d
∑
j=0

b j,d (
t
ti
)x(i)j , t ∈ [0,ti] (3.17)

Which can be differentiated (via chain rule) with respect to t to obtain:

γ
′
i(t) =

d
ti

d−1
∑
j=0

b j,d−1(
t
ti
)(x(i)j+1−x(i)j ), t ∈ [0,ti] (3.18)

This expression can be differentiated again to obtain a function returning the accelera-

tion vector of γi:

ai(t) ∶= γ
′′
i (t) =

d(d−1)
ti2

d−2
∑
j=0

b j,d−2(
t
ti
)(x(i)j+2−2x(i)j+1+x(i)j ), t ∈ [0,ti]. (3.19)

As next the norm of the above vector function will be taken, it will be useful to have

the above vector function in element-wise form. Recall that the number of dimensions

is n. Denote the acceleration in the ith curve in the rth direction as ar
i (t), and further

let x(i)j,r denote the jth control point, of the ith curve in the rth dimension. Now the

acceleration in the rth dimension of the ith curve can be expressed as:

1To verify the above sub-claim, note that:

(
1
2

xT Ax+bT x+c)+(
1
2

yT Py+qT y+ r) =
1
2

x̃T diag(A,P)x̃+ x̃T
[bT ,qT

]
T
+c+ r, where x̃ = [xT ,yT

]
T

and further note that this result can be shown in general by induction.
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ar
i (t) ∶=

d(d−1)
ti2

d−2
∑
j=0

b j,d−2(
t
ti
)(x(i)j+2,r −2x(i)j+1,r +x(i)j,r), t ∈ [0,ti]. (3.20)

Note that now we can express ∣∣ai(t)∣∣2 as:

∣∣ai(t)∣∣2 =
n
∑
r=1

ar
i (t)2 (3.21)

As to make progress in obtaining an Ci in quadratic form, an expanded expression

describing ar
i (t)2 must be found. By definition:

ar
i (t)2 =

⎛
⎝

d(d−1)
ti2

d−2
∑
j=0

b j,d−2(
t
ti
)(x(i)j+2,r −2x(i)j+1,r +x(i)j,r)

⎞
⎠

2

,t ∈ [0,ti]. (3.22)

= d2(d−1)2

ti4
⎛
⎝

d−2
∑
j=0

b j,d−2(
t
ti
)(x(i)j+2,r −2x(i)j+1,r +x(i)j,r)

⎞
⎠

2

,t ∈ [0,ti] (3.23)

Recall the standard result for real numbers zi that:

(
N
∑
i=0

zi)
2

= (
N
∑
i=0

z2
i )+2

⎛
⎝

N
∑
i< j

ziz j
⎞
⎠

(3.24)

This can be directly applied to Equation 3.23 to give that:

ar
i (t)2 = d2(d−1)2

ti4
⎛
⎝
⎛
⎝

d−2
∑
j=0

b j,d−2(
t
ti
)

2

(x(i)j+2,r −2x(i)j+1,r +x(i)j,r)
2⎞
⎠
+

2
⎛
⎝

d−2
∑
j<l

b j,d−2(
t
ti
)bl,d−2(

t
ti
)(x(i)j+2,r −2x(i)j+1,r +x(i)j,r)(x(i)l+2,r −2x(i)l+1,r +x(i)l,r )

⎞
⎠
⎞
⎠

(3.25)

Recalling that the real quantity of interest is the term,

Ci(x(i),ti) = ∫
ti

0
∣∣ai(t)∣∣2dt = ∫

ti

0

n
∑
r=1

ar
i (t)2dt =

n
∑
r=1
∫

ti

0
ar

i (t)2dt, (3.26)

one should attempt to find an expression for:

∫
ti

0
ar

i (t)2dt (3.27)
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Given the above expansion for ar
i (t)2 in Equation 3.25, an expression for this integral

can be obtained:

∫
ti

0
ar

i (t)2dt = d2(d−1)2

ti4
⎛
⎝
⎛
⎝

d−2
∑
j=0

⎡⎢⎢⎢⎢⎣
∫

ti

0
b j,d−2(

t
ti
)

2

dt
⎤⎥⎥⎥⎥⎦
(x(i)j+2,r −2x(i)j+1,r +x(i)j,r)

2⎞
⎠
+

2
⎛
⎝

d−2
∑
j<l

⎡⎢⎢⎢⎢⎣
∫

ti

0
b j,d−2(

t
ti
)bl,d−2(

t
ti
)dt

⎤⎥⎥⎥⎥⎦
(x(i)j+2,r −2x(i)j+1,r +x(i)j,r)(x(i)l+2,r −2x(i)l+1,r +x(i)l,r )

⎞
⎠
⎞
⎠

(3.28)

Note that the above equation, only bi-linear in x(i) will occur. Given that Equation

3.26 describes that Ci is the finite sum over r of the above equation, the cost function

Ci is quadratic in x(i) as required.

In order to complete the proof, it must be shown that A,b and c can be attained in

closed form. To show this, all that is required is to find a closed form solution to the

integrals in the above equation. The general form of these integrals are:

∫
ti

0
b j,d−2(

t
ti
)bl,d−2(

t
ti
)dt, j, l ∈ {0, ..,d−2} (3.29)

A closed form solution to the above integral can easily be obtained in closed form.

To this end, note that substituting the Bernstein polynomials for their definition and

removing constants with respect to the variable of integration derives the following

equivalence:

∫
ti

0
b j,d−2(

t
ti
)bl,d−2(

t
ti
)dt (3.30)

=∫
ti

0
(d−2

j
)( t

ti
)

j
(1− t

ti
)

d−2− j
(d−2

l
)( t

ti
)

l
(1− t

ti
)

d−2−l
dt (3.31)

=(d−2
j

)(d−2
l

)∫
ti

0
( t

ti
)

j+l
(1− t

ti
)
(2d−4)−( j+l)

dt (3.32)

Note that the integrand in the final equation is very nearly a Bernstein polynomial of

degree 2d −4, with only a constant scaling being the difference. This constant can be

introduced into the integral in the following way:

(d−2
j

)(d−2
l

)∫
ti

0
( t

ti
)

j+l
(1− t

ti
)
(2d−4)−( j+l)

dt (3.33)

=
(d−2

j )(d−2
l )

((2d−4)−( j+l)
j+l ) ∫

ti

0
((2d−4)−( j+ l)

j+ l
)( t

ti
)

j+l
(1− t

ti
)
(2d−4)−( j+l)

dt (3.34)

=
(d−2

j )(d−2
l )

((2d−4)−( j+l)
j+l ) ∫

ti

0
b j+l,2d−4(

t
ti
)dt (3.35)
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To compute the above integral consider a u-substitution with u = t
ti

where the relevant

derivative of u can be calculated to be du
dt = 1

ti
. Thus,

(d−2
j )(d−2

l )

(2d−4−( j+l)
j+l ) ∫

ti

0
b j+l,2d−4(

t
ti
)dt (3.36)

=
(d−2

j )(d−2
l )

(2d−4−( j+l)
j+l )

ti∫
1

0
b j+l,2d−4 (u)du (3.37)

By standard theory for Bernstein Polynomials, the value for the above integral on the

unit interval is:

1
(2d−4)+1

= 1
2d−3

(3.38)

Given that it has been justified that C is quadratic in x and that such a quadratic form

is obtainable in closed form, this proof is complete.
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3.2 Dynamic constraints

As previously mentioned, for any motion planner to be considered to be practical for

use in real applications, it must be able to on request, ensure that the resulting plans

satisfy certain conditions, which make them compatible with the dynamic constraints

of the robot utilizing the planner. For example, a maximum velocity and acceleration

at all time points on the curve, may be requested due to limitations of the control algo-

rithms realizing the solution trajectories. Similarly, it may be requested that the motion

plans produced from a planning algorithm are nth order continuous (i.e. the function

is continuous along with it’s the first n derivatives). The rationale for requesting such

continuity constraints is again that the controller may be unable to execute the planned

trajectory, and hence the trajectory executed by the robot may then be dangerously

different form the solution trajectory produced by the planner. Below, a definition to

refer to such constraints will be given and thereafter, a description of the formulation

of the maximum velocity and acceleration constraints will be given, followed by a

description of how nth order continuity will be enforced between two Bézier curves.

Definition 9. A parametric curve f ∶ [0,T ]→ Rn is said to respect the dynamic con-

straints of a robot and its controller if it is sufficently smooth and has sufficiently

bounded derivatives as dictated by the robot and its controller’s limitations.

3.2.1 Formulating continuity constraints

I was able to formulate continuity constraints for this problem, simply by appealing to

the definition of duration parameterised Bézier Curves.

Let γ0,γ1 be a sequence of two dth degree duration parameterized Bézier curves,

with control points x(0)0 , ...,x(0)m and x(1)0 , ...,x(1)m , and time allocations t0 and t1 respec-

tively. Further define γ to be the concatination of the curve γ0 and γ1. It will now be

shown how to formulate constraints, to ensure that γ is nth order continuous. Note

the formulation described below is naturally generalizable to trajectories γ constructed

from a sequence of M duration parameterized Bézier curves.

Firstly note that since the curves γ0 and γ1 are simply polynomial splines, they

are infinitely smooth. Hence the curve γ will be smooth at almost all points, with the

exception points being the positions where the curves γ0 and γ1 start and terminate.

To ensure that γ is nth order continuous, constraints representing nth order continuity

of the curve at these points can be explicitly added to the set of constraints in the
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optimization problem.

To see the formulation, firstly recall the explicit definition of the curves γ0 and γ1:

γ0(t) =
d
∑
i=0

bi,d (
t
t0
)x(0)i ,t ∈ [0,t0], (3.39)

γ1(t) =
d
∑
i=0

bi,d (
t
t1
)x(1)i ,t ∈ [0,t1]. (3.40)

It can be verified from the definition of the Bernstein Basis Polynomials the following

identities follow,

γ0(0) = x(0)0 , γ0(t0) = x(0)d , (3.41)

γ1(0) = x(1)0 , γ1(t1) = x(1)d (3.42)

Ensuring (0th order) continuity at the ‘hand-over’ point of γ0 and γ1 is precisely to have

γ0(t0) = γ1(0). Hence, by the above identities, this can be enforced simply by having

the constraint that:

x(0)d = x(1)0 . (3.43)

Further to this, given that the problems of interest in this paper are defined to have

start point x0 and endpoint x1, these constraints can be satisfied by ensuring that:

x(0)0 = x0 and x(1)d = x1. (3.44)

In addition to zeroth order continuity, it may be a requirement of the robot and its

controller to be continuous to the first order. Recall that the expression for the velocity

of a duration parameterized Bézier curves γ0 and γ1 are given by:

γ
′
0(t) =

d
t0

d−1
∑
i=0

bi,d−1(
t
t0
)(x(0)i+1 −x(0)i ),t ∈ [0,t0], (3.45)

γ
′
1(t) =

d
t1

d−1
∑
i=0

bi,d−1(
t
t1
)(x(1)i+1 −x(1)i ),t ∈ [0,t1]. (3.46)

Again from the definition of the Bernstein Basis Polynomials the following identities

follow,

γ
′
0(0) = d

t0
(x(0)1 −x(0)0 ), γ

′
0(t0) =

d
t0
(x(0)d −x(0)d−1), (3.47)

γ
′
1(0) = d

t1
(x(1)1 −x(1)0 ), γ

′
1(t1) =

d
t1
(x(1)d −x(1)d−1). (3.48)

Analogously to the zeroth order case above, ensuring first order continuity at the ‘hand-

over’ point of γ0 and γ1 is precisely to have γ′0(t0) = γ′1(0). Hence given the identities

21



3.47 and 3.48 first order continuity at this point can be enforced by ensuring that the

following holds:

d
t0
(x(0)d −x(0)d−1) =

d
t1
(x(1)1 −x(1)0 ). (3.49)

Furthermore, analogous to the zeroth order constraint that the curve γ must start at

the defined start and end point of the problem, it may also be desired that the curve γ

has zero velocity at its endpoints. That is to say, γ′0(0) = 0 and γ′1(t!) = 0 and hence it is

therefore required that:

d
t0
(x(0)1 −x(0)0 ) = 0 and

d
t1
(x(1)d −x(1)d−1) = 0. (3.50)

At this stage, a general formula for obtaining nth order continuity constraints can

be observed, and so the derivation will be shown to no further degree, however, the

second order constraints will be be stated below, given that they will be utilized in this

paper. That is, ensuring continuity in the second order at the ‘hand-over’ point of γ0

and γ1, can be formulated as the following constraint:

d(d−1)
t2
0

(x(0)d −2x(0)d−1+x(0)d−2) =
d(d−1)

t2
1

(x(1)2 −2x(1)1 +x(1)0 ). (3.51)

Further to this, it can be ensured that γ has an acceleration of zero at its endpoints by

ensuring that

d(d−1)
t2
0

(x(0)2 −2x(0)1 +x(0)0 ) = 0 and
d(d−1)

t2
1

(x(1)d −2x(1)d−1+2x(1)d−2) = 0. (3.52)

3.2.2 Formulating maximum velocity and acceleration constraints

I was able to formulate constraints on the maximum velocity and acceleration of the

solution curve in each of the dimensions after firstly, trying to formulate exact con-

straints, but then after a discussion with my supervisor, I was guided to use the results

of Theorem 2 and Theorem 3, in order to formulate a conservative bound, i.e. a suf-

ficient but not necessary condition for the derivatives to be bounded in magnitude as

required. The formulation and its justification will be given below. Note that the below

methodoloty is easily generalizable to a sequence of M, duration parameterized Bézier

curves.
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Let γ0 be a duration parameterized Bézier curve with control points x(0)0 , ...,x(0)m

and duration t0. Recall from Equation 3.45 that the velocity of this curve at timepoint

t is given by:

γ
′
0(t) =

d
t0

d−1
∑
i=0

bi,d−1(
t
t0
)(x(0)i+1 −x(0)i ),t ∈ [0,t0] (3.53)

Now suppose that a maximum value for the velocity of the solution curve is given

as vmax ∈ R+, and further note that Equation 3.53 is simply a duration parameterized

Bézier curve. To see this note that γ′0 can be written in the following form:

γ
′
0(t) =

d−1
∑
i=0

bi,d−1(
t
t0
)ai, t ∈ [0,t0], (3.54)

where ai =
d
t0
(x(0)i+1 −x(0)i ), i ∈ {0, ...,d−1}. (3.55)

Recall from Theorem 2, that to bound a duration parameterized Bézier curve inside a

polytope is sufficient to select the control points of the curve inside the desired bound-

ing polytope. In particular, in order to bound the velocity of γ0 by vmax, the control

points of its derivative curve, e.g. the ai’s should be selected within the nth dimen-

sional hyper-cube centered at the origin of Rn, with side lengths 2 ⋅vmax.

Following analogous reasoning, acceleration of the curve γ0 can be bounded by the

value amax that the control points of the curve describing its second derivative, e.g. the

curve:

γ
′′
0 (t) =

d−2
∑
i=0

bi,d−2(
t
t0
)ai, t ∈ [0,t0], (3.56)

where ai =
d(d−1)

t2
0

(x(0)i+2 −2x(0)i+1 +x(0)i ), i ∈ {0, ...,d−2}. (3.57)

are selected within the nth dimensional hyper-cube centered at the origin of Rn, with

side lengths 2 ⋅amax.

After formulating the constraints in this section, I added code to generate these

constraints to my Python implementation.
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Chapter 4

Heuristically Allocated time Methods

Detailed previously in this paper was a method for constructing a sequence of poly-

topes with the property that there exists a continuous curve contained wholly within

this sequence connecting the start point of a search with the end point. Recall such a

sequence was denoted as Q0, ...,QM−1. Recall further that the intersection of two adja-

cent polytopes say Qi and Qi+1 was defined as Q∆i+1. At this stage the only question

which is left to answer is that of how to utilise this sequence in order to produce an

optimal trajectory, which respects any set of the dynamic constraints outlined in the

previous chapter.

The pipeline for the motion planner presented in this paper will ‘branch’ at this

point of the algorithm, and the interest of this chapter will be to outline 3 different

methods for generating the final optimal solution. The quality characterising the meth-

ods in this chapter will be that the duration of each of the sub-curves used for construct-

ing the final curve, i.e. the γi’s, will be heuristically allocated before any numerical

optimization takes place. In the next chapter, the duration of each of the sub-curves,

γi will enter into the numerical optimization. Herein, let t̃ ∈ RM be a positive vector

containing the heuristically allocated duration value for each of the sub-curves.

An example of how one could calculate such a t̃ will be given, after the following

definition.

Definition 10. A knot-point sequence is a sequence of points, q∆0, ...q∆M satisfying the

properties that q∆0 = x0 the start point of the search, q∆M = x1 is the end point of the

search and q∆i ∈Q∆i, for all i ∈ {1, ..,M−1}.

Given the above definition, an example calculation of t̃ would be to take the knot-

point sequence defined such that all of the free variables are at the center of the poly-

tope which they are defined to be inside, i.e. at the average value of the vertices. Then
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one could compute the distance between each of the adjacent points in the sequence

and define a vector t̃ based on an average velocity assumption.

The motivation for allocating the variable t to a fixed value is that is the cost func-

tion and the constraints derived in the previous chapter take on a much easier form

to work with in conjunction with numerical optimization. In particular, the problem

which this thesis is trying to address can be formulated as various types of Quadratic

Programs [22]. Note that the form of a Quadratic Program is as follows:

min
y

1
2

yT Qy+ rT y+ s (4.1)

s.t. Ay = b, (4.2)

Dy ≤ f , (4.3)

y ∈Rq. (4.4)

In the above formulation, Q ∈Rq×q, r ∈Rq, s ∈R, A ∈Rp×q, b ∈Rp, D ∈Rw×q, f ∈Rw.

There are two particularly useful properties of optimization problems which can be

formulated in this was. Firstly, if there is one vector y ∈Rq satisfying the both of the

linear constraints 2.4 and 4.3, then there exists and optimal solution in Rq to the prob-

lem. Moreover, the second useful property of problems which can be formulated in

this structure is that, if there is an optimal solution, then it can be solved for efficiently,

by means of the Interior Points Method (IMP) [24].

The next three subsections will present three different formulations of the quadratic

optimization problem. The first is an naive formulation which under utilizes the alge-

braic form of the cost function and constraints described above. The second formula-

tion drops these over constraining assumptions and the third implicitly solves for the

sub-curves, γ0, ...,γM−1 via a beautifully geometric argument.

4.1 Naive Quadratic Programming inside each polytope

This section will detail the first formulation of the problem which I constructed. To

this end, the method presented in this section will generate the curves γ0, ...,γM−1 using

M distinct quadratic optimizations, which will be concatenated to produce the solution

curve γ. Assume that the time allocation vector t̃ ∈ RM is given as a result of some

heuristic calculation (e.g. time to complete section assuming constant velocity). Recall

further that the duration parameterized Bézier curve γi is to start at q∆i and end at the

point q∆i+1 for some knot-point sequence q∆0 , ...,q∆M . However note that by definition
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of a knot-point sequence, q∆0, ...,q∆M only the first value and last value in this sequence

are defined to be fixed values. That is, the values q∆1, ...,q∆M−1 are only defined thus

far such that q∆i ∈ Q∆i. At this point, the strong assumption will be made that shorter

curves will in turn incur lower costs.

4.1.1 Fixing the Knot-point sequence to minimize length of solu-

tion

A method must be established to solve for q∆1, ...,q∆M−1 such that the minimize the

length of the polyline through the sequence of points q∆0, ...,q∆M, where length is

defined via the d2 distance metric. That is the cost function of the optimization problem

is:

Cost(q∆1, ...,q∆M−1) =
M−1
∑
i=0

d2(q∆i,q∆i+1) (4.5)

Note that the above function is convex since the d2 metric is convex and the sum of

convex functions is always convex. Note further that all of the variables of optimization

q∆1, ...,q∆M−1 q∆i are constrained such that q∆i ∈ Q∆i. Such Q∆i’s are polytopes, and

so hence convex so the feasable set of this optimization problem is convex. Thus,

given that the cost function and feasible set of this optimization problem is convex,

this problem can be solved for the global optimal solution, e.g. via iterative gradient

descent methods.

4.1.2 Solving quadratic program in each polytope to solve globally

Recall that it is required that the solution curve γ is both respects the physical and

dynamic constraints of the problem. The physical constraints are that the image of the

solution curve γ is a subset of X , and the dynamic constraints are that curve γ is smooth

to the second degree, and respects the maximum velocity and acceleration constraints

placed on it. Such constraints can be satisfied by considering each γi independently.

Consider and arbitrary γi. In order to ensure that the solution curve γ satisfies the

physical constraints of the problem, it is sufficient to select all of the control points of

the curve γi to be contained within the polytope, Qi. Note that such a requirements can

be formulated as linear inequality constraints.

Furthermore, the solution curve must also be dynamically feasible. Firstly, this

requires that the solution curve, γ, is smooth to the second degree. One way in which
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this can be ensured is to make the curve γi starts at the point q∆i, and ends at q∆i+1, and

furthermore have zero velocity and acceleration at its endpoints. Recall from Equations

3.44, 3.50 and 3.52 that this requirement can be formulated as:

x(i)0 = q∆i and x(i)d = q∆i+1, (4.6)
d
ti
(x(i)1 −x(i)0 ) = 0 and

d
ti
(x(i)d −x(i)d−1) = 0, (4.7)

d(d−1)
t2
i

(x(i)2 −2x(i)1 +x(i)0 ) = 0 and
d(d−1)

t2
i

(x(i)d −2x(i)d−1+2x(i)d−2) = 0. (4.8)

Given the above equations, the curve γi can be constrained to satisfy the required end-

point conditions by means of linear equality constraints, given that d,ti are assumed as

fixed.

Finally, it can be verified from the justification in Section 3.2.2 that the curve γi

can be constrained to satisfy the maximum velocity and acceleration constraints of the

problem via linear inequalities, given that the degree of the γi and ti are assumed to be

fixed. Given that each of the all curves γi satisfy the maximum velocity and accelera-

tion constraints, it follows that γ, the solution trajectory, will satisfy these constraints.

Recall from Equation 3.10-3.12 that the cost of the curve γi can be expressed in the

following form:

Ci(x(i),ti) =
1
2

xT Ai(ti)x+xT bi(ti)+ci(ti), Ai ∶R→R(n⋅d)×(n⋅d) (4.9)

bi ∶R→R(n⋅d) (4.10)

ci ∶R→R. (4.11)

Given that the value ti is fixed the above cost is quadratic in x(i) and hence the opti-

mization problem can be considered a quadratic program. Each of the curves γi can be

solved for and the solution curve γ can be produced. After construction this formula-

tion, I implemented it in Python, by utilizing the library CVXPY [7] and the computer

algebra software SymPy [20]. An example problem can be solved via this method and

visualized by running the running the following command in the root directory of the

supplementary material:

python3 example.py -s naive_solver
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4.2 Sophisticated Quadratic Programming inside each

polytope

In the problem formulation given in the previous subsection, there was an assumption

which is extremely strong, and perhaps could even be described as simply false. That

assumption being that shorter curves map to lower costs. To this end, the allocation

of the knot-points in the previous algorithm is completely decoupled from the cost

function which the optimization is being performed with respect to, however it turns

out that a simple fix to this problem is at hand. This formulation will propose a fix to

this problem by considering the problem as one large quadratic program, in contrast

to the M sub-quadratic programs utilized in the previous method. As it turns out,

from such a reformulation, the ability to remove the requirement that the velocity and

acceleration of the solution curve at the knot-points drops out.

Firstly, recall from the Section 3.1 that the evaluation of the cost function C at the

sequence of duration parameterized Bézier curves γ0, ...,γM−1 can be expressed in the

form:

C(x,t) = 1
2

xT A(t)x+xT b(t)+c(t), A ∶RM →R(n⋅d⋅M)×(n⋅d⋅M) (4.12)

b ∶RM →R(n⋅d⋅M) (4.13)

c ∶RM →R. (4.14)

Given that the time allocation for each γi is fixed, the above cost function is quadratic

in all of its free variables, in particular x. Given that the cost function has been shown

to be quadratic, in order to show that the problem conforms to the specification of a

Quadratic Program, all that is to show is that the constraints of the problem are linear

in x.

Firstly note that all of the control points of the problem are to be constraints either

in a polytope Qi or they are to be constrained within some intersection of two polytopes

Q∆i. Clearly given that the intersection of two polytopes is itself a polytope, constrain-

ing the control points of the solution so that they are located in a valid position can be

formulated via linear inequality constraints on x.

In terms of dynamic constraints, as in the previous section the maximum velocity

and acceleration constraints for each γi can be formulated as linear inequality con-

straints on x. All that is to do now is enforce that there is continuity between the curves

γi and γi+1. Unlike in the previous problem formulation where Equations 4.6 to 4.8
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constrained each sub-curve to have fixed endpoints, with zero velocity and accelera-

tion, the constraints detailed in Equation 3.43, 3.49 and 3.51 can be generalized, such

that the following condition defines that there is second order continuity between each

adjacent subcurve.

x(i)d = x(i+i)
0 , (4.15)

d
ti
(x(i)d −x(i)d−1) =

d
ti+1

(x(i+1)
1 −x(i+1)

0 ), (4.16)

d(d−1)
t2
i

(x(i)d −2x(i)d−1+x(i)d−2) =
d(d−1)

t2
i+1

(x(i+1)
2 −2x(i+1)

1 +x(i+1)
0 ), (4.17)

∀i ∈ {0, ...,M−1}. (4.18)

Clearly the above constraints can be formulated as linear equality constraints on x,

given that the vector t and the Bézier curve degree are assumed as fixed. Hence this

problem which has been formulated is of the form of a Quadratic program which can

be solved efficiently to global optimally.

After formulating the problem in this way I created a Python implementation of

the a, by utilizing again the optimization library CVXPY [7] and the computer alge-

bra software SymPy [20]. An example problem can be solved via this method and

visualized by running the running the following command in the root directory of the

supplementary material:

python3 example.py -s sophisticated_solver

4.3 Quadratic Programming De Casteljau Optimization

In this section the problem of solving for an optimal trajectory, γ, within the sequence

of polytopes Q0, ...,QM−1 will be solved via De Casteljau’s Algorithm [4] coupled

with Quadratic Programming. The advantage of this formulation over the formulation

directly previous is that the solution curve is smooth, i.e. all of the solution curve’s

derivatives are continuous. In this chapter, De Casteljau’s Algorithm will be outlined

initially, and thereafter it will be shown how residuals of this algorithm can be used to

solve for the optimal curve using Quadratic Programming.
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x0 x1 x2 ... xd−2 xd−1 xd

= = = = = = =

x(0)0 x(0)1 x(0)2 ... x(0)d−2 x(0)d−1 x(0)d

x(1)0 P(1)1 ⋱ ⋰ x(1)0 x(1)d−1

x(2)0 ⋱ ... ⋰ x(2)d−2

⋱ ⋱ ⋰ ⋰
⋱ ... ⋰

x(d−1)
0 x(d−1)

1

x(d)0

Figure 4.1: In the above diagram, the first two rows symbolize Equation 4.19. The

remaining rows symbolize Equation 4.20. To this end, for an arbitrary symbol in this

section of the diagram, its value is value is given by the weighted sum of the variables

in the above row on the left and right side of the variable, with weights (1− t0/T) and

t0/T respectively.

4.3.1 De Casteljau’s Algorithm

Consider a duration parameterized Bézier curve, BT of degree d with control points

x0, ...,xd ∈Rn and duration T . De Casteljau’s Algorithm is a numerically stable algo-

rithm which is used for evaluating the duration parameterized Bézier curve BT at the

point t0 ∈ [0,T ]. The algorithm is defined on the variables in the following recurrence

relation:

x(0)i ∶= xi, i = 1, ...,d (4.19)

x( j)
i ∶= x( j−1)

i (1− t0
T
)+x( j−1)

i+1 (t0
T
) , i = 1, ...,n− j, j = 1, ...,d (4.20)

The double indexing involved in the previous recurrence relation is somewhat difficult

to understand, and the relationships between the variables can be made significantly

clearer by considering the variables in a diagramatic form, as given in Figure 4.1.

The claim of De Casteljau’s Algorithm is that the value of the duration parameterized

Bézier curve BT at the point t0 is given by B(t0) = x(d)0 . This result can be shown

by induction on d, however the proof is relatively simple, and the result is completely

irrelevant to the optimization algorithm to be outlined in this section, so therefore it will

be omitted. To this, the values of interest of the De Casteljau algorithm for a Bézier

curve B and the timepoint t0, for the sake of the optimization problem reformulation,
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is not in fact the final forward-propagated final result, but a subset of the intermediate

results of the calculation.

The interest of the above algorithm in the context of the optimization algorithm is

the following theorem.

Theorem 5. ([2]) Consider a duration parameterized Bézier curve, BT of degree d

with control points x0, ...,xd ∈Rn and duration T . If some value t0 ∈ [0,T ] is selected,

then residuals of the calculation in De Casteljau’s Algorithm can be used to obtain the

control points for dth degree duration parameterized Bézier curves B1
t0 and B2

T−t0
such

that:

BT (t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B1
t0(t) t ∈ [0,t0]

B2
T−t0(t − t0) t ∈ [t0,T ]

(4.21)

More specifically, it is claimed that, the appropriate control points are x(0)0 ,x(1)0 , ...,x(n)0

and x(n)0 ,x(n−1)
1 , ...,x(0)n for B1

t0 and B2
T−t0

respectively.

Proof. This result for a duration variable Bézier curve can be shown via a simple

reparameterization of the argument for a standard Bézier curve as given in [2].

A visualization of the above result is given in Figure 4.2 below.

Figure 4.2: Let the dashed line in the above diagram represent a degree 3 duration

parameterized Bézier curve, BT (t) with control points x0,x1,x2,x3. The above diagram

shows the splitting of this curve at the point t0 = 0.5 ⋅T , with B1
0.5⋅T and its control points

shown in red and B2
0.5⋅T and its control points shown in blue.

The next theorem notes a critical property of this curve splitting algorithm, which

will be seen to be essential for formulating the optimization problem, in the next sub-

section.

Theorem 6. Consider a duration parameterized Bézier curve, BT of degree d with

control points x0, ...,xd ∈Rn and duration T . If some value t0 ∈ [0,T ] is selected, and
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the subdivision algorithm, as seen in Theorem 5 is applied to BT at the point t0 to

produce B1
t0 and B2

T−t0
, then the control points of B1

t0 and B2
T−t0

are linear combinations

of the control points of BT .

Proof. Note from Theorem 5 that the control points of B1
t0 and B1

t0 are x(0)0 ,x(1)0 , ...,x(n)0

and x(n)0 ,x(n−1)
1 , ...,x(0)n for B1

t0 and B2
T−t0

respectively. However, by definition of these

terms, as given in Equations 4.19 and 4.20, there terms are linear combinations of

xi’s.

Note that the theory included above for splitting duration parameterized Bézier

curves BT into two curves B1
t0 and B2

T−t0
at the point t0 ∈ [0,T ] can be applied iterative

define a method of splitting the curve BT , into M segments of duration ti where t ∈
RM and ∑ti = T and t ≥ 0, B0

t0 ,B
1
t1 , ..., BM−1

tM−1
. Note that each of these subcurves will

have control points which are linear combinations of the control points of BT , given

Theorem 6.

4.3.2 Using the De Casteljau Algorithm to formulate Quadratic Pro-

gram

In this section it will be outlined how the method of splitting Bézier curve via the

De Casteljau Algorithm can be used to formulate the optimal trajectory generation

problem.

Consider some heuristically calculated time allocation, t̃ to be given. Further let T

be the sum of this vector. Let γ be a duration parameterized Bézier curve of degree d

with control points x0, ...,xd ∈Rn and duration T . Note that the curve γ will represent

the solution curve. Further to this, consider γ0, ...,γM−1 to be sub-curves of γ obtained

via the method detailed in the previous section, where the times of splitting γ is defined

as in t̃. Additionally, note by the observation at the end of the previous chapter that the

control points of each of the curves γi can be expressed as linear combinations of the

xi’s.

The curve γ is sure to be smooth since it is a duration parameterized Bézier curve,

which is simply a polynomial. As described in the constraints section of this project,

linear inequality constraints can be placed on the control points of γ in order to ensure

that the curve respects maximum velocity and acceleration constraints. Finally each

of the γi’s can be constrained to remain inside the relevant polytopes, by constraining

their control points with linear inequality constraints. Given that these control points
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are linear in the xi’s, the constraints of constraining each of the γi’s inside the correct

polytope can be formulated via linear inequality constraints on the xi’s. With these

constraints formulated, the solution curve γ can be guaranteed to reside within the

polytope sequence, Q0, ...,QM−1.

Finally via the result Theorem 4, the sequence of Bézier curves consisting simply

of just γ with time allocation T is quadratic in x0, ...,xd . Hence given that it has been

previously detailed how to formulate the constraints of this problem as linear equations

and inequations in the xi’s, a Quadratic Program formulation of the problem has been

obtained.

After formulating the problem in this way, I added an implementation of this solver

to my Python codebase. This used CVXPY [7] for the Quadratic Programming and the

computer algebra component SymPy [20] was again used. An example problem can be

solved via this method and visualized by running the running the following command

in the root directory of the supplementary material:

python3 example.py -s de_casteljau
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Chapter 5

Time Optimized Methods

The objectives of the three methods to be outlined in this chapter are identical to the

objectives of the methods in the previous chapter, i.e. generate the optimal trajectory

with respect to with respect to the cost function C while respecting the physical dy-

namic constraints of the problem, however, the methods in this chapter will attempt

to outperform previous methods, by introducing the time allocation vector t into the

cost function. That is, unlike in the previous chapter, where the vector t was heuristi-

cally allocated, before an optimization in the state variables x took place the numerical

optimization will now take place over the object (x,t).

Each of the three methods to be detailed in this section, will unitize the sequence of

polytopes Q0, ...,QM−1 to construct the solution curve, γ, by concatenating sub-Bézier

curves inside each of the polytopes, where continuity constraints and maximum deriv-

itive constraints are formulated explicitly. Note that this is an identical formulation to

that of the one seen in the chapter ‘Sophisticated Quadratic Programming inside each

polytope’, apart from in the previous chapter, the constraint that t = t̃ was included

where t̃ was the result of some time allocation heuristic.

In optimization theory, it is easy to define any problem which we wish, however,

what the interest of this field is, is solving for the value of the problem defined. The

next subsection will outline that the problem defined above can be easily solved op-

timally, however with the solution being of a degenerate variety. A further constraint

will then be added to the problem and the next subsection thereafter will outline why

the problem to be considered in this section is more ‘difficult’ than when t was fixed.
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5.0.1 Trivial solution to the time variable optimization

Note that now a new variable, namely t, has been entered into the optimization prob-

lem, some high-level reasoning about trivial solutions is required, as to not over-

complicate the problem. Recall that the optimization problem which the methods in

this paper are to solve is to:

min C(x,t)

s.t. (x,t) ∈ {(x,t) ∶ respects−max−vel−constraint(x,t) ∧

respects−max−acc−constraint(x,t) ∧

respects−0th−order−continuity−constraint(x,t) ∧ (Problem 5.0.1.1)

respects−1st −order−continuity−constraint(x,t) ∧

respects−2nd−order−continuity−constraint(x,t)∧

respects− polytope−containment −constraints(x))}}

x ∈Rn,t ∈Rm

t > 0.

Definition 11 (ε-optimality). An minimization optimization problem with cost function

f and valid set X can be solved to ε optimally iff for all ε> 0 a point xε can be generated

such that ∣ f (xε)− f ∗∣ < ε, f ∗ ∶= in f{ f (x) ∶ x ∈ X}.

Theorem 7 (Trivial Solution to time variable optimization). Problem 5.0.1.1 can be

solved to globally ε-optimally.

Proof of Theorem 7. This claim will be shown by construction of an ε optimal pair

(x∗,t∗). Firstly, note that as the cost function C is defined to be the finite sum of in-

tegrals of non-negative functions therefore the cost function C is non-negative. There-

fore, ε-optimality can be shown if, for any ε > 0 an (x∗,t∗) can be constructed such that

C(x∗,t∗) < ε.

Let ε>0 be given. Let Q0, ...,QM−1 denote the sequence of polytopes and γ0, ...,γM−1

denote the sequence of duration parameterized Bézier curves. Further, denote the in-

tersection of Qi and Qi+1 in this sequence as, Q∆(i+1). As a first step for constructing

the desired (x∗,t∗) pair, inside each Q∆(i+1) select an arbitrary point, q∆(i+1). Further

define q∆0 as the problem start point and q∆(M+1) as the problem end point. Let each

sub-Bézier curve, i.e. γi, be of degree 5 (i.e. 6 control points). Let the curve γi have

its first three control points fixed at q∆i and the remaining three control points fixed at
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q∆(i+1). At this stage the vector x∗ is now fixed, and the continuity constraints, along

with the start and end point constraints and the polytope containment constraints are

satisfied. All that is left is for the vector t∗ to be fixed such that the maximum velocity

and acceleration constraints are satisfied as well as the cost of the solution curve being

strictly less than ε. Given that the cost C is the sum of the cost for each of the M

γi’s, namely sum of the Ci, it is sufficient to show that there exists a time allocation,

ti for the Bézier curve γi such that γi respects the maximum velocity and acceleration

constraints, while having Ci <
ε

M
. This can be shown to be true by firstly by noting

that given that the shape of the polynomial spline, γi is fixed, there will exist a time

tvel
i ∈N such that the spline γi is traversed slowly enough to respect the maximum ve-

locity constraint. Similarly tacc
i ∈N will exist, such that it defines a traversal time large

enough for the maximum acceleration constraint to be respected on γi. Finally, note

from Equation 3.26 and 3.28 and that given that all of the x( ), are fixed (since x∗ is

fixed), the limit of Ci is zero as ti →∞. Therefore, there exists an t(cost)
i ∈N such that

traversing Bézier curve with fixed shape from x and time tcost
i will result in Ci <

ε

M
.

As to ensure that all of the requirements are satisfied, define t∗i = min{tvel
i ,tacc

i ,tcost
i }

Naturally construct the vector t∗ from the t∗i ’s and the construction of the ε-optimal

(x∗,t∗) is complete.

Given that this solution is clearly not valid, in terms of real life application of the

algorithm (e.g. If this solver was to be applied to path planning for drones, the drone

would likely run out of battery, before the solution trajectory gets fully realized). Given

this, for this projects work on time variable optimization, a further constraint will be

introduced, in particular, a maximum duration constraint on the solution curve γ, which

is heuristically calculated.

5.0.2 Non-convexity of the problem, with optimization over state

and time variables

With this modification in the formulation of the problem introduced in this chapter of

letting the time allocation vector t be variable, the cost function of interest, C, is no

longer quadratic in the variables of optimization, e.g. x and t. Recall that C can be

expressed in the form:

C(x,t) = 1
2

xT A(t)x+xT b(t)+c(t). (5.1)

36



Although the cost function, C, is non-quadratic in the variables of optimization, the

problem of optimization may still be easy, if it can be shown that the constraints and the

cost function form a convex optimization problem. However, this is not the case, and

this can be verified by showing that there is a constraint in the problem formulation

which is non-convex. Consider the second order continuity constraint, between two

curves in one dimension. Let t0 denote the duration of the first curve, and let t1 denote

the duration of the second curve. Further let a,b,c denote the final 3 control points of

the first curve, in the given dimension and let c,d,e denote the first 3 control points of

the second curve in a given dimension. Then, the constraint can be formulated as:

1
t2
0
(a−2b+c) = 1

t2
1
(c−2d+e) (5.2)

Denote the set of valid points of this constraint as the set as V , i.e.

V =
⎧⎪⎪⎨⎪⎪⎩
(t0,t1,a,b,c,d,e) ∶

1
t2
0
(a−2b+c) = 1

t2
1
(c−2d+e),t0,t1a,b,c,d,e ∈R

⎫⎪⎪⎬⎪⎪⎭
. (5.3)

For this set to be convex, it must be the case that for all v1,v2 ∈V and λ ∈ [0,1],
(1−λ)v1+λv2 ∈V . However this is clearly not the case, e.g. take λ = 0.5,

v1 = (1,3,1,1,1,2,3), and (5.4)

v2 = (1,4,2,1,1,1,17). (5.5)

Hence given that one of the constraints of this problem is non-convex, the feasible

set of the optimization problem is non-convex, in general. Given that the feasible set

of the optimization cannot be assumed to be convex, the problem now falls outwith

the scope of convex optimization, and alternative methods must be appealed to. At

this stage, one should note that non-convex optimization is at least NP-hard, so it is

mathematically impossible for there to be a stand alone algorithm to solve this problem

to global optimally, with the current level of investigation on the characteristics of the

optimization problem. Recall, that the reason why non-convex optimization is harder

than convex optimization is that in non-convex optimization, local optima, are not

guaranteed to be globally optimal. An illustrative example of these local optima on

account of a non-convex feasable set, would be to optimize the the function f (x) = x2

such that x ∈N. There is a local optima at each x ∈N.

Thus, there are currently two options, firstly one could investigate the problem def-

inition (e.g. algebraic properties, Lipschitz Continuity) in order to reason about when
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a local optimal is a global optimum (e.g. obtaining a closed form solution). A trivial

yet illustrative example of this methodology would be to observe that the non-convex

optimization problem; f ∶ R→ R, f (x) = 2+ sin(x),x ≠ 44 and f (x) = a,x = 44,a ∈R,

can be globally optimized using hard coded i f − then− else reasoning. Alternatively,

one could simply accept that the solution obtained from an non-convex solver has no

theoretical guarantees, and use quantities results to justify utilizing the algorithm.

The first two methods to be described in this chapter will take the form of the later

methodology. That is in Section 5.1 and Section 5.2, solvers will be tasked with solving

for local optima of the problem definition. These methods will appeal to the method

of Trust-Region optimization [3] and Bi-level optimization [29]. In Section 5.3, an

attempted method to solve the problem defined globally is outlined. This method at-

tempts to utilize Semi-Definite programming [25].

5.1 Constrained Trust Region Optimization

The Constrained Trust Region Optimizaiton algorithm [3] is one of the standard algo-

rithms which attempts to solve for local minima in large scale optimization problems,

however, the utilization of this solver comes at a cost. This penalty comes in the form

of not allowing for hard constraints and only allowing for soft constraints to be added

into the cost function. More explicitly, suppose that the optimization problem which

we are working with in this paper is written in the form:

min
x,t

C(x,t) (5.6)

s.t. f (x,t) ≤ 0, (5.7)

g(x,t) = 0, (5.8)

x ∈Rn,t ∈Rm. (5.9)

Note that in the above formulation, x and t still represent the state variables and the

timing variables. Furthermore, note that the constraint f (x,t) ≤ 0, represents all of the

inequality constraints of the problem, e.g. maximum acceleration constraints. Note

that the output of the function f is a vector with each row representing corresponding

to the value of one inequality constraint in the problem definition. Similarly, g(x,t) = 0

represents the equality constraints of the problem. For example, this could be the first

order continuity constraints endowed on two sequential sub-Bézier curves.
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Now a further two functions will be defined, for utilization in the new problem

formulation. Introduce variables u,v ∈N to represent the number of linear constraints

in equations 5.7 and 5.8 respectively. Firstly d f≤ ∶Rn×Rm→R such that:

d f≤(x,t) =
¿
ÁÁÀ

u
∑
i=1

f (x,t)2
i ⋅δ( f (x,t)i > 0) (5.10)

Secondly, define the function dg= ∶Rn×Rm→R such that:

dg=(x,t) =
¿
ÁÁÀ

v
∑
i=1

g(x,t)2
i (5.11)

Note that one can simply consider the functions d f≤ and dg= as functions which

punish violations of the constraints of the problem using the classic d2 metric.

The required definitions are now in place to define the optimization problem which

the trust region algorithm will consider. The problem has the form:

min
x,t

m(x,t) ∶=C(x,t)+λ[{d f≤(x,t)}2+{dg=(x,t)}2] (5.12)

s.t. x ∈Rn,t ∈Rm. (5.13)

Note that in the above optimization problem λ ∈ R, λ > 0 is a parameter which

defines the the trade-off between minimizing the cost function C, and minimizing the

violation of the constraints. Note that the function m is commonly referred to as the

‘merit-function’ of the initial problem [1].

In order to detail the solving method of this algorithm, one further concept must be

introduced, namely the Taylor expansion of the function at a point. In particular, at the

point (x0,t0) the function m can be approximated by the Taylor quadratic model [10].

For ease of notation let x̃ = [xT ,tT ]T and x̃0 = [xT
0 ,t

T
0 ]T .

m(x̃) ≈m(x̃0)+∇m(x̃0) ⋅(x̃− x̃0)+
1
2
(x̃− x̃0)T ⋅∇2m(x̃0) ⋅(x̃− x̃0) (5.14)

Note that the Jacobian, ∇m(x̃), and the Hessian, ∇2m(x̃), of the function m are

required in the above approximation. In order to obtain these functions, the Jacobian

and Hessian matrix functions for each of the constraints as well as the cost function

C can be obtained via computer algebra. From this point the functions ∇m(x̃) and

∇2m(x̃) can be constructed, since m is constructed from the cost function C and the

constraints.
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The function quadratic approximation of an analytic function approximates the

function well for points which are ‘near’ to where the quadratic approximation is cen-

tered, and is expected to approximate the function less well, as the distance increases

from the center and the query point [10]. This fact will be taken into account by the

trust region algorithm, which will be outlined in the next paragraph.

Now, the trust region algorithm for solving such an unconstrained optimization

will be outlined. This is an optimization algorithm which is initialized at some staring

tuple (x,t). Then a quadratic model of the function is formed at the current point

(i.e. compute the second order Taylor Polynomial of the function at this point). The

minimum point of the quadratic approximation is calculated. Note that this exists in

closed form solution the minimization of the quadratic approximation [10], since the

derivative of the right hand side of Equation 5.14 with respect to x̃ is:

∇m(x̃0)+∇2m(x̃0) ⋅ x̃ (5.15)

The above formula can be set equal to zero and the critical value of x̃ can be solved

for. A step in the direction of this minimum is taken by the optimization algorithm,

only to the extent in which the the algorithm believes the quadratic model agrees with

the error function. This step size is known to be the ‘Trust-Region’ and the algorithm

to calculate this value is given in [3]. The algorithm then iterates by making a new

quadratic model and step at each new point, until convergence. Given that this method

has no optimally guarantees, its performance will need to be evaluated quantitatively.

Such analysis is given in the next chapter.

After formulating the problem in the above form, I added an implementation of

this solver to my Python codebase. This used the SciPy [32] implementation of the

trust-region algorithm and SymPy [20] was again used for the computer algebra. An

example problem can be solved via this method and visualized by running the running

the following command in the root directory of the supplementary material:

python3 example.py -s non_convex_solver

Note that due to the formulation of the problem, constraint violation, may be observed.
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5.2 Bilevel Optimization

The next method to be considered in this analysis is that of Bilevel-optimization. This

is a method which aims to recover some of the nice properties of the optimization

problem when the time allocation is fixed, while not actually enforcing that the time

allocation of the problem is fixed. This is achieved by firstly partitioning the variables

of optimization (x,t) into two sets; one for state variables and one for timing variables,

i.e. simply the variables in the vector x and the variables in the vector t. As prefaced in

the name of the algorithm, the solving of the problem is defined to have two levels of

optimization, namely, the upper− level optimization and the lower− level optimiza-

tion. To this end, in this particular example, the upper-level optimization is over the

vector t while the lower-level optimization is over x assuming t is fixed, and therefore

unlocking the nice optimization properties outlined in the previous chapter. Such a

methodology will now be outlined. This formulation of the problem has been seen in

[29].

Note firstly in the problem which is being attacked in this paper, there may be

linear constraints placed on the timing vector t. For example, an inequality constraint

restricting the total time of the solution curve, γ, may be included. Furthermore, it is

feasible that one may wish to also include equality constraints on the timing variable t,

and the framework supports such a constraint, so the math will be worked through with

such a constraint. Let the equality and inequality constraints on t, be denoted as At = b

and Et ≤ f . Further to this, note that there may also be constraints on the control points

x and t. Assume that these can be written in the form G(t)x = h(t) and I(t)x ≤ j(t).

Such equality constraints may represent the continuity constraints between adjacent

sub-Bézier curves, whereas the inequality constraints may represent the control point

polytope containment constraints. The optimization problem can now be written out

in full as:

min
x,t

C(x,t) (5.16)

s.t. At = b, Et ≤ f , (5.17)

G(t)x = h(t), I(t)x ≤ j(t), (5.18)

x ∈Rn,t ∈Rm. (5.19)

An identical re-expression of the above optimization problem would be [29]:
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min
t

σ(t) =C(x∗,t) (5.20)

s.t. At = b, Et ≤ f , (5.21)

t ∈Rm, (5.22)

x∗ = argmin
x

C(x,t) (5.23)

s.t.G(t)x = h(t), I(t)x ≤ j(t), (5.24)

x ∈Rn. (5.25)

The above equivalence between the two optimization problems is simply by definition.

Simply note that the objective of the first optimization problem is to find the (x∗,t∗)
pair which minimizes the cost function C while respecting all of the constraints. In the

second optimization problem, the upper-level optimization, over t, is defined to find t∗

which minimizes the cost C firstly respects the timing constraints and secondly such

that x∗ is chosen optimally, while respecting the constraints parameters by t. Therefore,

by definition, the value of the problems, must be the same. For the remainder of this

subsection, the second formulation will be used. Note further, the optimization over x

will be referred to herein as the lower-level optimization.

To start off the analysis of the optimization problem, note that the lower-level op-

timization has already been seen in this paper, in the Section 4.1.2, namely, ‘Sophis-

ticated Quadratic Programming inside each polytope’. In this section, it was justified

that when the time allocation of the problem is fixed, as it is in this case, the prob-

lem constitutes a Quadratic-Program which can be solved efficiently via the interior

points method. Note that as an intermediate result for solving this optimization prob-

lem, Lagrange Multipliers [22] are produced. Suppose that the equality constraint

associated with the quadratic program, i.e. Equation 5.24, is written in the following

form g(x,t) = 0 and f (x,t) ≤ 0 has l rows. Further suppose g(x,t) = 0 has k rows, and

f (x,t) ≤ 0 has l rows. Then the Lagrange multiplier associated with the equality con-

straint will be some vector λ ∈Rk and similarly the Lagrange multiplier associated with

the inequality constraint will be some µ ∈Rl .

The ability to solve the lower-level-optimization efficiently alone, thus far, does

not help in solving the upper-level-optimization. To this end, in the upper level op-

timization, a valid vector t can be generated and the value of the problem with this

time allocation can be calculated. however as is, there is no information as to tell the

upper level optimization how to adjust it’s value of t. This is what is desired in opti-
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mization theory - an intelligent method for selecting the next point of the search, with

genuine evidence that the next point should be better than the previous. The method

of finite-differences could be utilized in order to approximate the gradient as detailed

in [17], however, this method only provides an approximation of the gradient. Recent

work detailed in [29] provides a method for calculating the gradient of the function σ

with respect to t, from the Karush–Kuhn–Tucker conditions for optimally. The desired

result is calculated from the Lagrange Multilpiers associated with the solving of the

the as well as the gradients of relevant constraints. The explicit formula for ∇tσ(t) is:

∇tσ(t) = λ
T∇tg(x∗,t)+µT∇t f (x∗,t)+∇tC(x∗,t) (5.26)

Given that zeroth and first order information for σ is available, a Line Search [22] as

was done in [29] will be appealed to in order to search over candidate time allocations

in order to search for the best value of t.

After learning from [29] about this formulation of the problem, I added an imple-

mentation of this solver to my Python codebase. This used the SciPy [32] implemen-

tation of the line-search algorithm and SymPy [20] was again used for the computer

algebra. An example problem can be solved via this method and visualized by run-

ning the running the following command in the root directory of the supplementary

material:

python3 example.py -s bilevel_opt
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5.3 Semi-Definite Programming

In this section, a failed, yet new research thread of this project will be detailed. In par-

ticular, the content of this research thread was an attempt to formulate the optimization

problem being considered in this chapter as a Semi-Definite Program (SDP) [25]. In

this section, initially, the form of a Semi-Definite program will be outlined, followed

by a detailed description of two attempted formulations.

Firstly, two definitions will be given which are required to define the form of a

Semi-definite program will be given.

Definition 12. ([33]) A matrix A ∈ Rn×n is said to be positive semi-definite if, for all

vectors x ∈Rn, xT Ax ≥ 0. Further if a matrix A ∈Rn×n is positive semi-definite, then this

is denoted as A ⪰ 0.

Given the above definition, let the set Sn+ denote the of matrices in Rn which are

symmetric and positive semi-definite. Additionally, let Sn denote the set of matrices in

Rn which are symmetric.

Definition 13. ([33]) The inner product ● on the set Rn is defined as A●B= trace(AT B).

Given the above definitions, the form of a Semi-definite programm (SDP) can be

given. Note that an SDP is an optimization problem of the form:

min
X

C ●X , (5.27)

s.t. Ai ●X = bi, i ∈ {1, ...,m}, (5.28)

X ⪰ 0, (5.29)

where C,Ai ∈ Sn,b ∈Rm,X ∈ Sn+. (5.30)

Note, that optimization problems with the above structure can be solved systemati-

cally to global optimally using the Interior Points Method [24], hence formulating the

time variable problem in this way is an extremely attractive prospect. My attempts to

formulate the problem in such a way failed, however, my attempted formulations will

now be outlined.

To outline the first formulation, let t−1 ∈ RM denote the vector of the reciprocals

of each of the ti’s, i.e. t−1 = [t−1
0 , ...,t−1

m−1]T . Then consider the starting point of the

formulation where, the variable X is considered to represent the state and time variables
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(x,t) in the following way:

X ∶= [xT ,(t−1)T ]T [xT ,(t−1)T ]. (5.31)

That is, take X as the outer product of the vector [xT ,(t−1)T ]T . Taking X as such allows

for bilinear terms from the set of variables {x0, ...,xM×d×n,t−1
0 , ...,t−1

M−1} to appear in the

cost function and the constraints and the constraints of the problem. This form of X has

the potential to allow for first order continuity constraints to be formulated, as detailed

in Equation 3.49 and Equation 3.50. However, given that it can be verified from the

proof of Theorem 4, that the cost function C is constructed form a linear combination

of terms of the form:

xix j

t3
k

(5.32)

and noting the definition of the inner product ●, it will not be possible to formulate the

cost function C given this definition for X .

However, an alternative representation of the variables (x,t) can be considered

inside the matrix X , which allow for the formulation of the cost function, C. Note that

it can be verified from the proof of Theorem 4 that the terms detailed in Equation 5.32

will only appear for state and time variables in the same subcurve, γi. Hence define the

matrix Xi as:

Xi =
x(i)x(i)T

t3
i

. (5.33)

Further to this, consider X to be the matrix with variable representation:

X = diag{X0, ...,XM−1}. (5.34)

Such a matrix X now gives scope for representing the cost function C, however, note

that all constraints of the problem must now depend on time. However, this is clearly

not the case, e.g. consider the constraint of ensuring that all of the control points

remain inside the correct polytope of the polytope sequence.

I considered at this point to have exhausted my ideas for how to construct X and so

concluded my investigation into this potential solution.
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Chapter 6

Experiments

In this chapter three experiments will be outlined which will help to investigate the

value of methods presented in the previous chapters, where theory alone is insufficient.

To this end, there will not be experiments presented comparing the three algorithms in

Chapter 4, with each other. The first reason is that for a given problem, the ‘Sophisti-

cated Quadratic Programming’ will always outperform the other two methods due to it

being a less constrained optimization and therefore, this method will always perform

at least as well as the other methods. In addition to the quality of the solution produced

by these methods, the computation time for these methods is also not of interest given

that the computer algebra results can be cached and the solving of formulated prob-

lems will be will take only a few milliseconds, and hence any comparison would be

discussing the difference of a few milliseconds.

However, what is of interest and has not yet been covered by the theory in this

report is how the time variable methods which were successfully formulated, e.g. the

trust-region solver and the bilevel optimization, perform.

In the next subsection the domain which this thesis will use for evaluating the time

variable methods will be described, and in the subsection thereafter, the three exper-

iments will be specified in detail, and motivation for each of these three experiments

will be given.

6.0.1 Domain for experiments

The experiments to be detailed in thesis will take place in R3, in order to establish

how well the time-variable methods will perform the drone use-case, which has been

previously motivated. In order to ensure that the results produced in this report are re-
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liable, each experiment should be repeated several times. Therefore, it is essential that

random problems in this domain can be produced. The methodology for generating

random problems will now be outlined.

In order to generate a random problem in R3, firstly a Hyperrectangle is gener-

ated to be centered at the fixed point of (100,100,100) ∈R3. The length of the three

sides are sampled from independent uniform distributions with support [1,15]. This

polytope is then added to the problem definition, and next a point inside this polytope

is sampled. Another Hyperrectangle is generated centered at this point from the same

distribution as the previous, but independently. This new polytope is added to the prob-

lem definition and this process is repeated until 6 polytopes have been generated. The

start point of the problem is defined to be (100,100,100) ∈R3 and the endpoint of the

problem is a point sampled uniformly from the final polytope. A reparameterization of

this algorithm was used to generate Figure 2.4.

All of the experiments will be repeated 50 times. Further to this, the objects which

the optimization will be over is a sequence of degree 8 duration parameterized Bézier

curves. Each solver will be requested to respect the control point containment con-

strains, as well as being requested to produced solution trajectories which are smooth

to the second degree. Additionally, in all experiments, no maximum velocity or ac-

celeration constraints will be included, since including no bounds is just as arbitrary

as fixing some bounds at specific values, however, randomly sampling these bounds

is a potential avenue for future work. Finally, no maximum time to complete the tra-

jectory is given to the solvers, so that the global optima of all of the problems, i.e.

ε-optimality at zero, is known and can hence be used as a reference point for compar-

ing performance of different methods.

6.0.2 Experiment Specifications

Given the framework form, three experiments with three distinct quantities of interest

will be given, as well as motivation for these experiments.

The first experiment will be to run the Trust-Region algorithm and Bilevel Opti-

mization method on the same 50 randomly generated problems and record the com-

putation time of each of the numerical optimizations used in these algorithms. The

motivation for this work is to establish which method is better suited to ‘on-line’ use.

The second experiment will be to run the Trust-Region algorithm in the domain

specified above and for each random problem the maximum value of constraint viola-
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tion will be recorded. The motivation for this experiment is to establish the extent to

which this solver can ensure constraint satisfaction, in order to consider the safety of

trajectories produced.

The final experiment will be to compare the solution quality of the trajectory at the

initial iteration of the Bilevel-optimization algorithm vs the final trajectory produced,

i.e. simply the solution of the sophisticated quadratic program formulation with time

heuristic vs the solution quality of the trajectory generated at the completion of the

Bilevel-optimization algorithm. The reasoning for undertaking this experiment is that

the results can be analysed to investigate to what extent can optimizing over time, via

Bi-level optimization, reduce the solution cost to the global minima.

The results of these experiments will be tabulated in the next chapter, and the chap-

ter thereafter will present an analysis of the results.
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Chapter 7

Results

In this chapter, the results of the experiments defined in the previous chapter will be

given. To this end, note that Table 7.1 contains the results of the first experiment

where the computation time of the Trust-Region method and the Bilevel optimization

method were to be compared. Next, note that Table 7.2 contains the results of the

second experiment, which was an investigation into the values of maximum constraint

violation of the trust-region solver. Finally for the third experiment, comparing the

extent to which the bi-level optimization method is able to improve on the cost of the

sophisticated quadratic program formulation which uses heuristic methods to define

the time allocation, the results are given in Table 7.3.

Method Average Computation time (ms) Standard deviation (ms)

Trust-Region 33820.06 31265.64

Bilevel Optimization 15.59 13.54

Table 7.1: This table outlines the results of the first experiment. In particular, the aver-

age solve time for the Trust-Region and Bilevel optimization are given along with their

standard deviation.
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Average Maximum constraint violation Standard deviation

33820.06 31265.64

Table 7.2: This table outlines the results of the second experiment into the maximum

constraint violation of the Trust-Region solver.

Average cost fraction after refinement Standard deviation

0.4621 0.1168

Table 7.3: This table outlines the results of the third experiment. In particular, the table

details the average quotient of the solution cost of the Bi-level optimizer at the final

iteration and the first iteration.
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Chapter 8

Discussion

In this section, firstly conclusions will be drawn from the set of empirical results out-

lined in the previous chapter. In the second section of this chapter, the report will be

concluded with a critical review of this work undertaken in this project and the key

achievements of this work.

8.0.1 Experimental Conclusions

The results of the first experiment show clearly that the Trust-Region method of op-

timization is not suitable for real-time trajectory planning, while in this experimental

domain, the Bilevel optimization method was shown to produce computation time re-

sults, well inside the bounds for applicability in real time domains.

Next, the second experiment produces results which gives compelling evidence

for the non-applicability of the trust-region to problems in this domain. To this end,

the average maximum constraint violation for creating trajectories in the test domain

was in the order of 105. I had hoped that the solver would be able to use the second

order information to establish constraint satisfiability or even near constraint satisfia-

bility, however, this is not the case given the numerical results of this experiment. This

method must now be considered to generate unsafe trajectories.

From the results of the final experiment, it can be seen that appealing to the method

of Bilevel optimization to refine the time allocation for the problem is worthwhile.

To this the numerical results of this experiment illustrate that over the course of the

algorithm, the cost of the solution curve gets reduced by more than half of the way to

the global optimal value, precisely more that 53% of the way.
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8.0.2 Report Conclusions

Firstly, this section will begin with a brief point of critical review of the work under-

taken in this project. Thereafter, the main achievements of the project will be given.

A point of criticism of the work undertaken in this project is that formulating the

constraints of the problem as ‘soft’, as was done in the the non-convex Trust-Region

solver method violates key design principles which algorithms for real-time applica-

tions, e.g. drone path planning, should conform to. To this end and also ignoring the

large computation time of this method, when the robot is operating there is no the-

oretical guarantees that it will be able to generate a plan which is near to satisfying

the constraints. This is in contrast to the convex, heuristically allocated time methods,

where if the problem is feasible then the global optimal solution will be returned by

the planner. Thus with a soft constraint formulation, the robot, e.g. drone, may be left

to operate without a feasible plan and it cannot be justified to operate a robot which

may not be able to plan successfully or execute non-safe trajectories.

The main achievements of this work are enumerated below:

1. Three formulations of how the smooth trajectory problem can be solved, assum-

ing a heuristically calculated time allocation were formulated during the course

of this project.

2. Implementation produced of five different problem formulations in Python, ap-

pealing to Numerical Optimization and Computer Algebra packages when ap-

propriate. The code is well structured and fully commented for maintainability

and open-source use.

3. An argument, backed up by statistics has been produced to show the benefits of

using the Bilevel optimization method of non-convex optimization over using a

Trust-region solver on the problem definition.
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Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-

rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
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