Measuring the Cookie-Setting
Behaviour of Web Pages
Showing Privacy Warnings

Barnabas Molnar

4th Year Project Report
Computer Science and Management Science
School of Informatics
University of Edinburgh

2020

Abstract

Since the introduction of the GDPR within the European Union, the general web
browsing experience for millions of people has changed substantially. A consider-
able portion of websites have been prompting users to agree to the use of technologies,
predominantly cookies, which are aimed to track online behaviour and collect per-
sonal data [8]]. These prompts are most commonly in the form of privacy dialogs, also
known as cookie dialogs. The aim of this study was to develop a research platform,
which enables researchers to conduct measurements related to these cookie dialogs.
The developed platform, called Cookie Dialog Analysier (CDA), facilitates such mea-
surements to provide an understanding on what effects interactions with these dialogs
have in terms of newly placed or removed cookies along with many more useful in-
sights. CDA is intrinsically a web scraper, which was built using Selenium to interact
with web browsers [23]]. CDA was used to collect cookie dialog related web privacy
data from the 500 most popular websites. The findings derived from the gathered data
have shown that around 50% of the analysed webpages display privacy notices, and
interaction with them generally results in minor shifts in the number of installed cook-
ies. The data analysis generally sheds light on cookie setting behaviour in relation
to cookie dialogs and the common wordings and options offered to users through the
interface of the notices. The developed system supports the advancement of research
around cookie dialogs, which may potentially allow the development and the better
enforcement of regulations such as the GDPR.

Acknowledgements

First and foremost, I would like to thank my supervisor, Kami Vaniea, for her relentless
support and guidance over the course of my project. Furthermore, I would like to thank
my family, my partner and my friends for all their love and encouragement throughout
these challenging yet rewarding times.

Table of Contents

1 Intr 1

2 Background|

[2.3.1 Web-Tracking-Measurement Studies|.

[2.3.2 Cookie Warning Notices|

3 Cookie Dialog Analyser Design and Implementation|

[3.1 Measurement Platform Design| .

[3.1.1 Basic Requirements and Assumptions|

[3.1.2 Cookie Dialog Analyser Design: Scraping in Three Rounds| .

[3.2 Cookie Dialog Analyser Implementation|

[3.2.2 Analysed Websites| . . .
[3.2.3 Loading Webpages| . . .

(3.2.5 Round 1: Finding the Cookie Dialogs|

[3.2.6 Round 2: Preliminary Data and Clickable Element Collection|

(3.2.7 Round 3: Cookie Dialog Interactions|

[3.3 Issues Experienced With Retrieving Cookies|.

Evaluation

4.2 Loading Web Pages|
4.3 Locating Privacy Notices|
4.4 Locating Clickable Elements| . .

[S Data Analysis and Results|
[5.1 Inmitial Cookie Setting Behaviour
[5.2 Cookie Dialogs|
[5.2.1 Cookie Dialog Attributes|
[3.2.2 Cookie Dialog Behaviour

6 Conclusion|

O N 3 3 U

11

12
13
13
14
14
15
15
16

23
25

27
27
27
28
28

29
29
33
33
35

39

vi TABLE OF CONTENTS

Bibliograp 41

A Example Cookie Dialogs| 45

Chapter 1

Introduction

Web cookies are indispensable parts of the internet allowing for the implementation of
countless crucial and useful functionalities such as logging into an online account or
keeping track of a virtual shopping cart. Nevertheless, since cookies also enable the
tracking of users’ online behaviour, they are capable of completely eradicating online
privacy [9]. Web user tracking is facilitated by third-party cookies, usually set by or-
ganisations providing ad and web analytics services. Furthermore, these organisations
set cookies on the devices of clients who are loading websites or other web-based ap-
plications that either belong to them or that have embedded elements originating from
them. This hence allows the unique identification of users and the tracking of their
online activity and behaviour along with the collection of other sensitive information
[16]. It has been shown that a relatively small number of monolithic companies, ubiq-
uitous over an extensive range of websites, have been controlling the collection of
personal data [[16, |25].

Ever since online privacy has become an issue, policy makers have been trying to reg-
ulate the collection of personal data throughout the internet. One of these regulations
was designed by the European Union known as the General Data Protection Regulation
(GDPR), which became effective on 25 May 2018 [13]. The main aim of the GDPR,
regarded as the strictest legal data protection framework to date, is to give control to
internet users of the EU over what personal data is being collected about them [39].
Preceding the GDPR, the 2009 revision of the EU ePrivacy Directive has already re-
quired websites to request informed consent prior to using tracking technologies [41].
The GDPR extends the ePrivacy Directive by making it stricter through modifications
such as demanding more transparent data processing and broadening the definition of
personal data. Furthermore, it requires consent to be in the form of an affirmative ac-
tion, for instance by clicking accept on a consent dialog [20]. After the amendment
of the ePrivacy Directive in 2009, websites have started displaying privacy notices,
also known as cookie dialogs [41]]. These dialogs serve as an attempt to comply with
regulations; at the very best asking for consent before using any form of profiling tech-
nologies such as tracking cookies.

It has been found that despite the GDPR requiring an affirmative action before the
use of profiling cookies many websites were still not acting in compliance. Studies

1

2 Chapter 1. Introduction

conducted after the GDPR was effectuated have shown that around 50% of websites
were placing tracking cookies before user consent [[14, 41]]. Various other studies have
analysed the effect of the GDPR and the ePrivacy Directive through examining the
usefulness of different forms of cookie consent dialogs and how they affect users [42,
26]. To date, however, there have only been a small number of studies that have in-
vestigated the implementation and behaviour of cookie dialogs. Some research has
analysed a smaller number of cookie notices manually, while others have selectively
focused on groups of dialogs from well-known cookie consent libraries [28, |15, 42,
26|]. There has been no in-depth research conducted in this area, however, most likely
due to the lack of automated methods for collecting privacy notice data.

The aim of this study was to develop a research platform, allowing the automated and
systematic collection of cookie dialogs and related web privacy data with the intention
to unravel some of the mysteries surrounding cookie consent dialogs. The goals set out
for the platform were for it to be able to locate cookie notices with optional and limited
manual assistance. Furthermore, the system was required to interact with the dialogs
while scraping essential data that provide insights to the functioning of the dialogs.

In a recent study, Englehardt and Narayanan [16] collected and reviewed a range of
web privacy measurement platforms. According to the information provided in the
review, these platforms offer different means for collecting website data about online
privacy practices measurable from the client side. They allow the detection and the
recording of different tracking and profiling techniques, including the collection of
cookies. Nevertheless, they are not designed for and hence are not apt to detect and
easily interact with specific web page elements such as cookie notices. Due to this
shortage, I have designed and built a new platform that allows the automated detec-
tion and scraping of cookie dialogs and their features along with other relevant in-
formation. Given the great variety of cookie notices, on top of the automated dialog
detection tool, I have supplied the platform with a manual annotation tool, which ad-
ditionally supports the accurate and robust location of dialogs. This platform, called
Cookie Dialog Analyser (CDA), uses Selenium, a web browser automation framework
to iterate through and analyse 500 of the most popular websites [23]]. These websites
are retrieved from Tranco, “a research-oriented top sites ranking hardened against ma-
nipulation” [27].

I have run CDA on the top-500 webpages from the Tranco list, then analysed the
collected dataset with the intention of shedding light on

1. whether cookies are set before cookie dialog interactions,

2. what options are offered by the dialogs, and how prevalent it is for an opt-out
choice to be presented by them,

3. what number of cookies, if any, are set as a result of clicking offered options on
the dialogs,

4. what portion of cookie dialogs are overlaying websites to the extent that may
disrupt or prohibit use

5. and are common wordings used on cookie notices short and concise while also

easily comprehensible.

As websites consists of many highly diverse implementations, the construction of the
platform required extensive experimentation and testing to create a system which is
fault tolerant and capable of scraping a wide range of webpages. When running CDA
on the top-500 webpage list, it was able to locate 71.4% of all cookie dialogs automat-
ically with 92.1% precision. The collected data has been able to adequately answer
the aforementioned questions. It has shown that 49.6% of the successfully analysed
webpages contained cookie dialogs. CDA has additionally collected a set of primarily
first-party cookies before and after dialog interactions. Based on this gathered data
91.4% of the scraped pages contained some type of cookies, and about 20% contained
user ID-like cookies.

The collected cookie dialogs contained text with a median length of 57. By ranking the
dialog’s wordings and their offered options based on their prevalence and significance
it was found that the word “cookie” was ubiquitously used, with many of them referring
users to privacy policies and settings. The emphasized one-click options offered on the
dialogs were often opt-in buttons, with several ambiguous choices for instance for
closing the notices themselves. It was further uncovered that clicking any of provided
options induced the addition of around 1 or less cookies.

To summarise, the three main contributions of this research are as follows:

1. The design and implementation of Cookie Dialog Analyser, a research platform
that simplifies the systematic collection of cookie notice and web privacy data.

2. A dataset on cookie dialogs and related web privacy information constructed
from a subsection of the most popular webpages globally.

3. Insights on the general implementation and behaviour of a wide variety of cookie
dialogs.

The overall structure of the study takes the form of six chapters. Chapter 2 introduces
the background necessary to understand several relevant concepts around web privacy
and the built cookie-dialog analysis platform. Furthermore, it explores relevant liter-
ature by highlighting what pertinent areas of tracking and cookie dialog related web
privacy have been studied in the past. The chapter briefly evaluates the methods used
to conduct the examined researches and presents their findings. How the platform was
built and justifications behind its design choices are presented in Chapter 3. Chapter
4 evaluates the implementation of CDA. The results answering the research questions
and their analysis is addressed in Chapter 5. Finally, Chapter 6 gives some final re-
marks on the outcome of the study, and potential future work is discussed.

Chapter 2

Background

This chapter introduces the background essential for the understanding of this research.
The first section familiarises web cookies with the reader. Then, the GDPR and is
expanded upon in the context of cookie dialogs and consent. Lastly, literature relevant
to the current study are presented and briefly evaluated.

2.1 Web Cookies

Bujlow et al. [[7] organized a survey that encompasses various techniques employed for
user tracking. They have classified these techniques into five principal groups, namely,
session-only, cache-based, storage-based, fingerprinting and other mechanisms. As the
list of tracking and user profiling methods is vast, this paper exclusively focuses on the
most commonly used method of tracking: cookies. Cookies fall under the category of
storage-based tracking mechanisms, which are commonly supported by web browsers
and the detection of their use is more straightforward they are explicitly stored on
users’ machines. Cookies can be installed in a browser in two different ways: they can
be set through the HTTP response’s “Set-Cookie” header or through making an API
call to the server with JavaScript.

Web cookies, invented in 1994, are small files installed on a client’s machine by a
webserver usually when the client first navigate to it. Cookies are essentially key-
value pairs with a small number of attributes. The most relevant attributes for the
understanding of this paper are the domain of the website that has set the cookie and
the expiration date (specified with the Expires and/or Max-Age attributes), the time
after which the cookie is deleted. Once a cookie, associated with a particular domain d,
has been set on a user’s machine, the browser may send the cookie at every following
request that is made to the server that is linked to d (see Figure [2.1). This allows for
numerous key functionalities of the web, allowing websites to have “memory” about
V1S1tors.

Cookies have endless possibilities of applications, nonetheless, they can usually be
placed into three main categories based on their functions: session management, per-
sonalisation and tracking cookies. As the HTTP protocol — primarily used to request

5

6 Chapter 2. Background

Webserver User-Agent

1. HTTP GET request
E=XXIA 1
> [& |

m 2. Response
m with cookie A

3. Next HTTP request A
with received cookie A

4. Response with |20
personalised web content ===

Figure 2.1: An example of a general use case of cookies.

web content from servers, is stateless, session cookies were introduced allowing web-
servers to provide stateful and more personalised functionalities to users . Session
management cookies may, for example, enable clients to login to their account or have
a shopping cart as they browse. Personalisation cookies permit users to set certain set-
tings according to their preferences such as themes, which can be remembered beyond
the end of a browser’s session. Finally, tracking cookies, which is a principal focus
of privacy research, allow websites to collect and analyse personal information, like
browsing patterns and interests of clients [22]].

Due to the distinct uses of cookies, different cookies may need to be stored for different
periods of time. Session cookie are deleted shortly after a user session ends. However,
according to RFC6265, a session is defined by the user agent, that is, the web browser
in use [4]. Thus, the meaning of a session cookie is ambiguous across different user
agent implementations. Alternatively, persistent cookies may be used which are kept
after the end of a session until the expiration date specified in their attributes.

Third-party web elements embedded across a wide range of websites may originate
from the same domain, like ads originating from the same ad network. This allows
the third parties to install so-called third-party cookies on the user’s machine as they
browse. When a website requests for a third-party element, the Referer header of the
HTTP request is set as the address of the webpage that initiated the request. In this
case, the third-party may use the same tracking cookie across all such websites, and
from the Referer header it is able to record the user’s browsing pattern.

Even if a website requests the loading of a third-party web element, the website cannot
read the cookies set by such an element. This is due to an indispensable security
mechanism called same-origin policy. This security measure is employed in order to
prevent attacks such as Cross-Site Request Forgeries [35].

2.2. GDPR and Cookie Dialogs 7

2.2 GDPR and Cookie Dialogs

The GDPR requires websites to ask for user consent prior to collecting and processing
any personal data that is not necessary for the basic functioning of the pag This
user consent must be in the form of a freely given, unambiguous, affirmative action in
response to a clear, concise description of what purposes the data is collected for [[13]].

In response to the legal requirements of the GDPR, websites have started using cookie
dialogs to gain the consent from a user [41]]. Nevertheless, it can be argued that nu-
merous cookie dialogs do not live up to the expectations of the GDPR. For example,
some dialogs use technical language that is not easily understood by its general audi-
ence while others may assume the implicit consent of users visiting their webpage. For
examples of cookie dialogs see Appendix[Al

2.3 Related Work

There has been extensive research completed in the field of web privacy and web pro-
filing techniques. The subject has been approached from several different perspectives
— from a technical perspective, which is crucial to be able to monitor and control the
online tracking technologies like cookie use, and form a legal perspective, which is
essential for policy makers and regulators. In this section studies in the field of web
privacy concerning cookies and cookie notices is reviewed. Most of the examined
literatures have a technical stance, however, a limited number of legal papers are con-
sidered which are crucial to understand a website’s and its cookie dialog’s compliance
to the GDPR and the ePrivacy Directive.

2.3.1 Web-Tracking-Measurement Studies

A number of studies have been conducted on measuring cookie setting and the use of
other profiling techniques around the internet. Most of such studies have conducted
such measurements on the most popular websites retrieved from Amazon’s Alexa Top
Sites ranking, such as [14} 16, 41} [15]. This list could serve as a good representative
sample of the typically visited websites of the internet by the general public. This is
crucial as most of these researches are interested in user tracking and personal data
collection, which largely take place on the sites where majority of users spend their
time on the most.

Dabrowski et al. [[14] investigated the effect of the GDPR on cookie setting behaviour
on the 100,000 most popular websites according to Alexa soon after the GDPR became
effective. It explored the differences in cookie setting when the websites were accessed
from within the EU, where the GDPR holds, and from outside of the EU, namely from
the US. It was found that merely 12.4% of websites accessed restricted its cookie
placement in the EU compared to when accessed from the US. Furthermore, the study
also examined the changes in cookie setting between pre- and post-GDPR times, i.e.

I'Several exceptions apply, such as when personal data is collected on the basis of a contract, legal
obligations, etc. [[13].

8 Chapter 2. Background

between 2016 and 2018. According to the findings, after the enforcement of the GDPR
between 30.88% and 46.7% of the top webpages pulled back from installing non-
consensual persistent fist-party cookies.

A limitation of this study is that it employs a Google Chrome headless browser to crawl
and collect cookies. Such cookies were extracted from the HTTP response headers for
both the 2016 and the 2018 scraping. Cookies set by JavaScript, on the other hand,
were captured only in the 2018 crawl. As Englehardt and Narayanan [16] observed,
crawling with a headless browser (PhantomJS in their case) may result in less accurate
measurements as websites may treat a headless browser differently. Webservers may
not load sites identically in response to a headless browser as they would in response
to a headful browser.

In another study, Trevisan et al. [41]] analysed more than 35,000 websites shortly after
the of the enforcement of GDPR. The main goal of the research was to discover what
proportion of them do not comply with the GDPR and the ePrivacy Directive based on
the studied websites’ tracking cookie setting behaviours. It was found that 49% of the
studied websites are noncompliant with the legislations. A tool called CookieChec
was used to determine whether a website is compliant or not. The tool uses tracker
blocking extension lists, in particular, GhosteryE] and Disconnecﬂ to analyse whether
a cookie being set is tracking or not. Trevisan et al. [41] also did a manual study on
cookie notices and cookie loading after user consent. They uncovered that 28% of
websites did not provide a cookie notice at all, and furthermore, of those that do, only
7% retain from setting cookies before consent is given.

Although this gave valuable insight into how prevalent cookie notices are, the study
was conducted only few months after the GDPR became effective, which might mean
that many websites have not been able to fully implement compliant systems in such
short period of time. Furthermore, the paper did not state what options were offered on
the studied dialogs and which of those were selected to give consent to personal data
processing. In the present study this gap is filled, by associating cookie setting changes
with the options that are selected.

Englehardt and Narayanan [16] conducted a comprehensive study in January 2016,
before the GDPR was adopted, measuring online tracking on the top-one-million web-
sites, retrieved from Alexa. Their study encompassed not only simple cookie setting
behaviour, but also other profiling techniques, such as fingerprinting and cookie sync-
ing. This measurement took a different approach to Dabrowski et al. [14]], Degeling
et al. [15] and Trevisan et al. [41]] since it did not look at tracking mechanisms in a
legal context, that is in relation to the GDPR. Instead, it examined different aspects of
tracking, such as which third-party trackers are the most pervasive across the studied
websites. Englehardt and Narayanan [[16]] found that throughout the 90 million re-
quests made, 81,000 trackers appeared on a minimum of two websites. However, only
123 of these third parties were present on greater than 1% of the websites analysed.
Moreover, many of such third-party domains belong to the same organisation. This

2CookieCheck: |http://cookiecheck.polito.it/
3Ghostery: https://www.ghostery.com/
4Disconnect: https://disconnect .me/

http://cookiecheck.polito.it/
https://www.ghostery.com/
https://disconnect.me/

2.3. Related Work 9

justified the observations made in 2009 by Krishnamurthy and Wills [25]] that a small
number of large companies are controlling personal data collection.

2.3.2 Cookie Warning Notices

Cookie notices have become more and more prevalent after the introduction of the ePri-
vacy Directive followed by the GDPR. In his article, published not long after GDPR
became enforceable, Burgess wrote that 1,051 US based news websites were blocked
in the EU. Many websites have started redirecting users, notifying them that their site
is unavailable from the EU due to legal reasons. Furthermore, Burgess states that due
to the specifications of the GDPR websites have started disrupting the flow of internet
use by showing cookie notice pop-ups. According to Brent Mittelstadt, a researcher in
Oxford Internet Institute, pop-ups’ effectivity will rely on how they are implemented
(8.

In another study, Degeling et al. monitored the period when GDPR went effective on
25 May 2018 by scanning on a regular basis the top 500 websites of each EU member
country recording any changes relating to privacy policies and cookie consent dialogs.
A 16% increase in such dialogs is observed on the studied websites, resulting in 62.1%
of websites containing a form of a cookie dialog. Additionally, the research explains
through the analysis of consent dialogs of individual websites and consent management
libraries that the implementation of the consent requirements outlined by the GDPR is
troublesome. The main complications presented include the fact that already installed
cookies need to be removed, however, due to the same-origin policy implemented by
web browsers, third-party, HttpOnly and Secure cookies cannot be directly controlled
by the website itself. In the presence of third-party cookies, a website must rely on
APIs for cookie removal provided by the hosts of the third parties that have previously
set cookies. Overall, it was concluded that GDPR had a positive influence, creating a
more transparent internet, however, it was still missing usable means of opting in and
out of personal-data processing [15]].

The survey by Degeling et al. was conducted on the impact of the GDPR, which
included the analysis of a range of cookie consent libraries. The study nonetheless has
not touched upon the technical details of cookie dialogs which do not belong to such
libraries, thus leaving it unclear how such notices function other than their ostensible
behaviour.

Kulyk et al. [26] conducted a user study on a 150 people measuring the effect of a range
of different cookie dialogs on their behaviour. They have concluded that users overall
perceive cookie notices negatively. Furthermore, their results have shown that while
the text of the dialogs have insignificant impact on whether users leave the webpage,
the credibility of the website played a greater role. They have observed that users have
little knowledge on what cookies are and what consequences their usage has.

Chapter 3

Cookie Dialog Analyser Design and
Implementation

The main objectives of this research was building a web privacy measurement plat-
form, which I named Cookie Dialog Analyser (CDA). CDA is a web scraper at its
core which is able to scan through a wide range of websites and interact with privacy
notices while extracting relevant information. Building such a tool gives rise to several
challenges imposed by the disorderliness of the web and its constantly evolving pool
of technologies. To implement CDA, I required a system that is capable of finding
privacy notices with adequate precision. The system, furthermore, needed to provide
an interface for the manual correction of the located dialogs and the annotation of the
dialogs which were not found. Once the dialogs have been accurately located, CDA
was required to proceed with the scraping of general privacy and privacy notice related
information. CDA had to capture features of privacy dialogs, in addition to pertinent
attributes regarding the states of the scraped websites before and after dialog interac-
tions. With such prerequisites, CDA was set to allow the construction of a novel dataset
capturing the underlying effects of interactions with generic privacy notices, which are
not necessarily tied to cookie consent libraries.

This chapter will describe the realisation of the privacy notice measurement tool, CDA.
First, the basic requirements and expectations I had laid out for the system is presented.
Second, the design choices with regard to the structure of the system and the chosen
technologies for implementation are delineated. Finally, the implementation specifics
of the measurement tool are conveyed.

3.1 Measurement Platform Design

Building a platform suitable for the successful extraction and analysis of cookie dialogs
is a nontrivial problem. Websites have implementations of such dialogs that use a
diverse mix of technologies, such as AJAX, React or Angular, and they may often
be constructed in an ad hoc manner, not seldom including broken or obsolete hidden
components. To overcome these impediments, I had to make careful design choices.

11

12 Chapter 3. Cookie Dialog Analyser Design and Implementation

3.1.1 Basic Requirements and Assumptions

Setting realistic requirements and keeping certain assumptions in mind regarding the
measurement platform was vital in order to create a functional and reliable tool that ex-
tracts the correct information with minimal human assistance. The basic requirements
and assumptions I have formulated with regard to the platform are presented below.

Simulating Real Browsing

A preliminary decision that I had to make was what automation tool to use to allow
the simulation of a regular web user’s browsing. I prioritised this tool to be suitable to
deceive webservers into believing that a human is accessing their website as much as
possible. This prerequisite is not rudimentary, as one may assume, since many browser
automation tools compromise browser fidelity for speed [[16]]. As a result, when cer-
tain automated browsers make web requests, a non-negligible portion of webservers
respond to them with alternative content than they would to a regular browser ses-
sion’s request. Englehardt and Narayanan [16] have conducted a study comparing
PhantomJS [37]], a headless browser for automated webpage interaction, with Open-
WPM, a tool automating a complete browser intended for regular use. According to the
results, PhantomJS was observed to load around 30% less HTML. More importantly,
they have also found that numerous websites do not provide ads to Phantom]JS, likely
affecting cookie setting behaviours. Based on these findings, using tools like Phan-
tomJS would thus result in inaccurate measurements leading to conclusions different
from what general users would experience.

Fault Tolerance and Robustness

While implementing and testing the system, I have found that because of the wide
range of technologies used in webpages, errors are hard to prevent. Thus, I priori-
tised the fault tolerance and robustness of the system. Possible errors may originate
from many sources such unexpected website behaviour due to the websites being A/B
tested or using technologies and implementations that were unaccounted for. Conse-
quently, catching runtime errors while ensuring consistency in the output data was an
aspect of the program that I needed to keep in mind. Furthermore, to prevent data
loss in case the system did fail, regular saves to disk were required. Finally, in case of
crashes, I deemed it crucial to implement functionalities that allow the scraping tool to
be restarted from the point of the failure.

Extensibility

Another requirement was to make the software easily extensible. This is valuable as it
would allow the system to be extended for the use of different experiments in the area
of privacy measurements related to cookie dialogs. For example, if a study wanted to
measure cookie syncing across domains or whether websites remember past choices
regarding tracking, then the system should preferably allow an easy use of the existing
infrastructure to embed this new measurement.

3.2. Cookie Dialog Analyser Implementation 13

Manual Correction of the Detected Privacy Notices

One of the key stages of the scraping procedure is the detection of the privacy warning
dialogs. However, the perfect detection of such dialogs is extremely challenging. Thus,
a further requirement for CDA is that it provides an interface for the manual correction
of the located dialogs and the manual annotation of the dialogs not found during the
automated search. Moreover, the use of this tool should be optional subject to what
threshold of precision and recall that is required for the dialog detection.

3.1.2 Cookie Dialog Analyser Design: Scraping in Three Rounds

The design of the CDA system, although retaining the base elements, evolved through-
out the course of the implementation. The preliminary design envisioned the system
to step through a list of websites preforming all tasks on each as one complete and
confined process. Its initial design included locating the privacy dialogs, extracting in-
formation about the primary state of each website and finally finding and clicking each
button on the notices while recording website changes. However, while implementing
the system, its complexity increased, and challenges, such as needing to reload after
clicking buttons, made it apparent that the process had to be broken down into separate
parts. I decided to break the process into three distinct rounds, each of which depend on
the output of the round that preceded it. Each round was intended to preform distinct
actions and to collect different data:

Round 1 has the aim of locating cookie dialogs on each of the scraped webpages
and outputting these. The identified dialogs can then be reviewed and corrected man-
ually before they are used by Round 2. (See Section [3.2.5|for details.)

Round 2 registers the preliminary state of each webpage while also capturing the
CSS selectors of the clickable elements within the dialogs and passing them to the next
round. (See Section for details.)

Round 3 iterates through the webpages containing dialogs, clicking each of the
links or buttons found in the notices. After each click it collects post-click information
about website changes. (See Section for details.)

As CDA is run, some initial setups are done before any of the scraping rounds are
started, including the setup of the automated browser. The implementation and further
details of the system are presented in the following section.

3.2 Cookie Dialog Analyser Implementation

CDA consists of three main parts as described in Section These are three rounds,
each of which have a specific purpose and collect different data. This section will dis-
cuss the implementation of CDA, detailing how each of the rounds and their supporting
functions operate.

14 Chapter 3. Cookie Dialog Analyser Design and Implementation

3.2.1 Web Browser Automation

As explained in the requirements of CDA in Section 3.1.1} a web browser automation
tool is needed that can simulate “natural” web browsing. I used a popular browser au-
tomation tool called Selenium, which is a self-contained system, allowing the automa-
tion of popular browsers, such as Chrome and Firefox. Selenium uses WebDriver,
which controls standard user agents natively as a web user would. To achieve this,
WebDriver offers a set of APIs with which it is possible to fully control web browsers,
for example by loading webpages and clicking and manipulating DOM elements in
them [43]]. It thus became apparent that Selenium meets the requirements as opposed
to other user agent automation software, like PhanotmJS. Such automation software
are headless, consequently servers may easily detect that a bot is trying to access their
web content, even when the user-agent request header is spoofed, as in the experiment
conducted by Englehardt and Narayanan [16].

Although numerous web privacy measurement platforms exist such as OpenWPM and
FPDetective, as outlined in [16], they do not intrinsically allow easy interaction with
webpages. This is because they are specialised for measurements regarding cookies,
browser fingerprinting and other specific tracking technologies. On the contrary, the
main the goal of this study is to locate and interact with cookie dialogs, thus such
technologies are not used for the current purposes. The software however may be
extended in the future to collect information about usage of a wide range of tracking
technologies, which would make the additional use of such a platform convenient.

Selenium supports the automation of many user agents; however, I came to the conclu-
sion that CDA should use Chrome, the desktop browser that is most widely used as of
today [38]]. This would allow CDA to generate results that better represent the state of
internet privacy. On the other hand, as user agents are not guaranteed to be identical,
focusing on Chrome limits CDA from interacting with other web browsers. Neverthe-
less, a future extension to other user agents is straightforward using Selenium’s API.

In terms of implementation, Selenium’s WebDriver is set up before the start of each
round of scraping. At each start-up, WebDriver starts a Chrome browser instance. This
instance is started maximised with disabled browser notifications, which would block
any clicks on the main body of a webpage. Furthermore, the browser is started “clean”,
meaning that it does not contain any information, such as cookies, from previous ses-
sions. The Chrome browser need not only be “clean” at start-up, but also after loading
and scraping of each webpage. This is necessary as cookies set at a previous page loads
may potentially interfere with new measurements. It might be necessary in future ex-
tensions of CDA to preserve previous browser sessions, thus, the restarts can be easily
modified by switching a Boolean flag to allow for “dirty” profile browser start-ups.

3.2.2 Analysed Websites

When choosing websites to analyse, it was important to select a subset of the internet
that is popular among web users. This allows CDA to construct a dataset that well rep-
resents what internet users face on a daily basis. Numerous studies have used Alexa’s
list of most popular websites [24, 14, 16,41, 15]. This study deviates from such trends

3.2. Cookie Dialog Analyser Implementation 15

due to two reasons. First, the Alexa top-sites rank only provides a list of the top-50
most popular websites for free, beyond this a payment is required [24]]. Secondly,
Pochat et al. [32] have shown that Alexa and other popular top-sites rankings may
be unreliable as they are easy to manipulate thus possibly altering the outcome of re-
searches. They propose an improved and reliable ranking of websites for the research
community based on revised and improved versions of the four most popular website
rankings (Alexa, Cisco Umbrella, Majestic and Quantcast). This new ranking is called
Tranco, which is used by the CDA system, scanning through the top-500 websites from
the Tranco list. I deemed 500 websites to be sufficient for the current study to give a
comprehensive insight on cookie notices with the given the computational constraints
of my personal computer.

3.2.3 Loading Webpages

Throughout the implementation and testing of CDA many errors occurred because
webpages did not load correctly before the system tried interacting with them. These
issues occurred for two main reasons. First, in some cases Selenium did not wait
for long enough for a webpage to load. CDA handles this by introducing a context
manager method, which blocks the program from continuing until the webpage has
loaded fully. This wait method uses a heuristic: it employs Selenium’s support function
WebDriverWait, which blocks until the web document’s state is ready. Furthermore,
it waits an additional 1.5 seconds in case any web elements are loaded asynchronously,
such as with AJAX. It is important that a page fully loaded, because cookie dialogs can
also be loaded via AJAX.

The second issue arose due to a slight shortcoming of Tranco, which is that their lists do
not include the protocol by which the website can be reached together with the domain
names they provide (e.g. yahoo.com would appear instead of https://yahoo.com).
This was not an issue for most websites, as their webservers handled protocol changes
from http to https well, however, in some cases the website would not load at all.
The webpage loader method detects such errors through looking at both the HTTP
status codes and Chrome’s error pages (located at chrome-error://). If a webpage
did not load, then CDA recorded this together with which Round this problem occurred
in.

3.2.4 Fault Tolerance

To allow for easy and predominantly supervision-free data collection, it was important
that CDA was stable. The internet consists of an extensive range of web technolo-
gies, which may cause issues as described in Section [3.1.1|[Basic Requirements and)|
Moreover, an unstable internet connection may cause CDA to be in-
terrupted intermittently. Thus, throughout the implementation of the platform several
fault tolerance measures were needed. To achieve this, the system has numerous pro-
cesses wrapped with exception handling blocks to handle faults, such as rare edge cases
which were unaccounted for. A large part of implementation consisted of a rigorous
experimentation, testing, and error fixing.

16 Chapter 3. Cookie Dialog Analyser Design and Implementation

Although I have included exception handling in parts of the code that interacted with
webpages, program faults may still occur due to various factors, such as bugs in CDA
and Selenium or internet connection problems. Thus, I have implemented regular saves
after the collection of each batch of data for a website. This allows CDA to be restarted
from the point of failure, without the need to rerun any scraping.

3.2.5 Round 1: Finding the Cookie Dialogs

The main purpose of Round 1 is to locate privacy notices on webpages. To achieve
this, I had to keep in mind that the perfect automated detection of dialogs may not be
feasible because dialogs are generally implemented in very different ways and their
structures are often complicated. Recognising this constraint, I had to make a trade-
off between recall and precision. I realised that in order to create a tool that could
potentially be used to analyse dialogs without the need of manual correction, higher
precision would be preferred. If recall was higher, then the results might contain nu-
merous located web elements which are not truly cookie notices. This would then
require the manual correction of dialogs even in cases when purely a subset of pages
that do contain dialogs is needed.

In light of these decisions, I had to make a choice between three main ideas to detect
cookie dialogs:

1. One of the first ideas was to look for common wordings that often occur in cookie
dialogs (e.g. “privacy” or “cookie”). On second thought, however, this would
have been an unreliable approach, as websites may often contain privacy related
phrases elsewhere on the page. Furthermore, due to the potentially complex
structure of the dialogs, it would have been difficult to define which ancestor
HTML tag corresponds to the whole dialog. This would make the collection of
clickable dialog elements imprecise.

2. After the inspection of the source code of different browser extensions that hide
cookie banners, such as Global Consent Manage and I Don’t Care About
Cookiesﬂ I have found that they use static lists which itemise CSS selectors
pointing to cookie dialogs. Although these extensions were popular, trying them
out lead me to the conclusion that the fact that these lists were static made them
become obsolete relatively fast as websites are updated frequently.

3. The idea of using a predefined CSS selector list provides a good path towards
locating cookie notices assuming that it is kept updated. Consequently, the solu-
tion I discovered and ended up using was parsing a community-maintained filter
list called EasyList Cookie List [18]], which is used as an extension for popular
ad blockers. This filter list is used with ad blockers to hide cookie dialogs; thus,
it contains an extensive list of CSS selectors. Since it is community maintained,

'Global Consent Manager:
https://addons.mozilla.org/en-US/firefox/addon/global-consent-manager/

I Don’t Care About Cookies:
https://chrome.google.com/webstore/detail/i-dont-care-about-cookies/
fihnjjcciajhdojfnbdddfaoknhalnija

https://addons.mozilla.org/en-US/firefox/addon/global-consent-manager/
https://chrome.google.com/webstore/detail/i-dont-care-about-cookies/fihnjjcciajhdojfnbdddfaoknhalnja
https://chrome.google.com/webstore/detail/i-dont-care-about-cookies/fihnjjcciajhdojfnbdddfaoknhalnja

3.2. Cookie Dialog Analyser Implementation

Get top websites

""""""" ’[Load Website List]

CDA Setup Process

--------------- Parse Filter List

Get dialog filter list

> v
. . For each
& Dialog Detection website

N

[eXe)e]

\7

Round 1
Data

2.S

Locate Dialog >
Match CSS selectors

SeG

1.
creenshot
Save screenshots l I

selectors L

For each

Dialog Checking website

Screenshot

potenital dialogs

(——[Extract CSS Selector]
Save

[Dialog Selector Checking

Y

dialog selectors
]

] 5 ‘.
J Manually correg S e

17

\ 4

CDA Shutdown Process

Save corrections

Figure 3.1: Round 1 system diagram.

it is updated daily making it more reliable than the lists within the extensions’
source code. Section will detail the form of the list and how it is used to
locate the cookie notices. The choice of using a filter list made the precise loca-
tion of cookie dialogs possible. This is because the list is specifically crafted for
locating cookie dialogs, while other heuristic methods may result in numerous
true negative errors, which is undesirable.

The architecture of Round 1 is presented in Figure 3.1} After the setup of CDA, one
of the data collection Rounds start. CDA is a single self-contained program, which
has to be started with a command line argument (--round = [round number]) that
specifies which Round to start. When Round 1 is started, the dialog filter list and the
website list are obtained from their corresponding servers.

18 Chapter 3. Cookie Dialog Analyser Design and Implementation

Locating Cookie Dialogs

Detecting cookie dialogs required meticulous testing through experimentation in order
to discover and solve problems imposed by the wide range of websites scraped. In
advance of locating the privacy notices, the filter list is parsed. This list contains not
only CSS selectors, but also different patterns that are used in ad blockers to prevent
some requests and scripts from loading cookie notices. The system disregards these
instances. The two types of patterns in the list which are used have the following
forms:

1. ##[CSS selector]
(e.g. ##.notification--GDPR)

2. [domain_1,domain_2,...]##[CSS selector]
(e.g. jaguar.co.uk, landrover.co.uk##.NotificationBar)

In pattern (I}), CSS selector is a general CSS selector of any form. If this is matched
on any website then it is most likely a cookie dialog. In pattern (2]), CSS selector is
a website-specific CSS selector, where [domain_1,domain_2, ...] specifies the list
of website domains on which the selector points to privacy notices. The system parses
each line of the list using pattern matching with regular expressions defined by the
following Python code in order to find the patterns referencing dialog CSS selectors:

Listing 3.1: Patterns for matching wanted filter instances.

domain_name_pattern = "([a-2z0-9][a-2z0-9-]1*[a-z0-9]*)"

base_url_pattern = domain_name_pattern + "+ (\." +
domain_name_pattern + "+)+"

list_url_pattern = " ((" + base_url_pattern + "),?2" + ")+"

The relevant lines extracted from the lists are then deconstructed and saved for use in
the next step. The general selectors are placed into a set while the website-specific
selectors are stored in a hash map for efficient lookup.

The following phase consists of the collection of cookie dialogs. The system loads each
webpage and obtains all the CSS classes and IDs from them. These are then matched
to the selectors derived from the filter list. Initially, if a match was found among the
website-specific selectors, then the algorithm did not look at the generic selectors for
computational efficiency. In some cases this caused an issue, however, as some of
the located dialogs were obsolete and hidden. Thus, to locate the correct dialogs both
general and website specific lists are consulted. For each match the filter list’s selector
is used to query the dialog’s Tag object. This was done using BeautifulSoup4, a library
for extracting data from HTML files, which allows for faster and better parsing of
potentially broken HTML [34]. Through an API call, WebDriver creates a screenshot
of each match. Following the screenshots, CDA saves the corresponding selectors to
disk.

3.2. Cookie Dialog Analyser Implementation 19

DialogChecker

After the process of locating each potential dialog, the custom-made DialogChecker
is used to manually select which screenshot corresponds to the correct dialog (Figure
3.2). The DialogChecker then marks the CSS selector matching with the screenshot
as the unique and accurate selector for the dialog. In short, the DialogChecker is a
support tool that makes it easier for a researcher to review the output of Round 1 to
ensure that real cookie dialogs have been found and manually mark any dialogs that
were not correctly located.

On webpages where no dialog was detected, the user can manually check if there
are indeed no dialogs. Furthermore, the selection of the correct dialog is also possible
when none of the detected objects are actually cookie dialogs. If a dialog exists despite
CDA not having detected it or not having detected the correct object, then this can be
rectified through the interface as shown in Figure [3.3a] This is assisted by Selenium,
which opens the website with no correctly detected dialogs. This website is opened
in Chrome, where an additional extension called Get Unique CSS Selector is installed
(Figure [3.3b) [1]l. The extension allows the user to right-click the cookie dialog and
copy its shortest and most exact CSS selector. This selector then can be pasted in the
DialogChecker’s interface, resulting in DialogChecker updating the website entry’s
selector.

Cookie Dialog Checker - o X

Figure 3.2: DialogChecker allowing users to select the most accurate representation of
a cookie dialog for a webpage, where two potential dialogs were found. It also allows
the user to decide that none of them are correct, in which case an input is provided (see
Figure [3.3a)

A Academiaedu - Share research X+

< C' @ academia.edu

Chrome is being controlled by automated test software.

gaalize content, tailor ads and improvd

Back Alt+Left Arrow

Forward Alt+Right Arrow

T
Reload Ctrl+R

¢ AIA

Save as... Ctrl+5

Print... Ctrl+P
Cast...

Input selector for zoom.us.

Translate to English

Copy Unique Selector to Clipboard

View page source Cirl+U
oK | Inspect Ctrl+Shift+1 121,319,67]

(a) DialogChecker asking the user to input the (b) Copying the unique CSS selector of a cookie
selector that points to the correct cookie dialog dialog is facilitated by Get Unique CSS Selector
DOM element. 1.

Figure 3.3: DialogChecker — manual cookie dialog selection.

20 Chapter 3. Cookie Dialog Analyser Design and Implementation

3.2.6 Round 2: Preliminary Data and Clickable Element Collection

CDA Setup Process

Round 2) webeie
Load (Setup)
selectors
Match CSS selectors
Query Dialog
Round 1 ¢
Data
. \ 4
Data Collection 000
. -~ c <«
<« [Prlmary Cookies | Get cookies Se ()
Extract dialog
Round 2 (Dialog Related Data) data
Data

. . (Query IP geolocation)
Website Geolocation [-------f----
I . Lo
Save collected data ¢Pass dialog data

(Clickable Detection)

Save dlickables' LCoIIect Clickables & Their Data J

data

Test if a Tag has click listener

Y
CDA Shutdown Process

Figure 3.4: Round 2 system diagram.
(abc) — Optional process; depends on circumstances described in Section m

Once the cookie dialogs have been identified on the webpages, the collection of the
preliminary data related to the webpages’ states and the cookie notice is possible. To
initiate this process CDA Round 2 is run with the command line argument -round=2.
This starts the setup of CDA, including the setup of a Chrome browser instance with
the help of WebDriver. Then, the websites are loaded sequentially for each of which
the steps described in this section are performed. These steps are visualised in Figure

First, given that the loaded page contains a cookie dialog, CDA obtains the required
CSS selector from the output created by Round 1 and uses this to query the dialog’s
Tag. If a dialog exists on the scraped page then as in Round 1, the system uses Beau-

3.2. Cookie Dialog Analyser Implementation 21

tifulSoup4 to attain the dialog. Finally, CDA collects general information about the
website, consisting of the set cookies and the “location” of the website (further details
below).

Preliminary Data Collection

The system collects the cookies visible in the browser session of a loaded webpage
using WebDriver’s API [31]. Although, the documentation’s wording is imprecise,
based on my experience these cookies include mostly first-party cookies, and a limited
number of third-party cookies (see Section [3.3). Because this API call queries all
cookies that have been set throughout the session, the user agent is restarted, setting
up a clean browser between the loading of each webpage. This data sheds light on the
number and the type of cookies (e.g. persistent, ID-like) that are set by this specific
web page before any potential cookie notice interactions.

Subsequently, the system acquires the “location” of the website, which was primarily
meant to identify whether the organisation behind the website is EU based or not. I
assumed that this data would give insight on whether EU based websites follow GDPR
regulations more. One might believe that a WHOIS request would be suitable for
these purposes, which is expected to return the contact details of the organisation or
person owning a domain [[10]. Nevertheless, as shown by Clayton and Mansfield [10]
and Block [6]], a significant portion of registrants provide uncomplete information or
use privacy services, often provided by registrars to hide personal information from
WOHIS records. Thus, WHOIS records are unreliable for identifying the “location” of
a website. Hence, I applied a simple approach, where first CDA matches the top-level
domain (TLD) of a loaded website to a list of EU based country code TLD@ To do
this, the system extracts the TLD of a domain using the Python package #/d [3]. Sec-
ondly, if there was no match, then through an API call to ip-api.com, which provides
the geolocation of an IP address [2]], the continent of the domain’s IP is obtained. This
is not a perfect approach as a website may have numerous servers in different conti-
nents and may use CDNs as well. However, drawing on the previous findings, WHOIS
appears to be less reliable than the current method. As WHOIS potentially provides
the domain registrar’s address, it is likely to be more loosely coupled with a website’s
organisation’s location than its server location is. The websites where their “locations”
were identified by only looking at their TLDs are differentiated in the dataset by as-
signing them the value EU, while the other instances have full continent names spelled
out as Europe or Asia. Overall, this approach gives a good insight on whether an or-
ganisation has a target audience in Europe, as only then would they establish domains
and servers there.

CDA furthermore collects several attributes of cookie dialogs given that the loaded
webpage contains one. These attributes are as follows:

— The text of the dialog, which I believed could be used to give an insight on
dialogs’ common wordings and complexity. The text was extracted directly from
the dialog’s Tag object returned by BeautifulSoup4.

3European Union based country code TLDs: at, be, bg, cy, de, dk, ee, es, eu, fi, fr, gr, hr, hu, it, 1t, lu, 1v,
mt, nl, pl, pt, ro, se, si, sk, uk

22 Chapter 3. Cookie Dialog Analyser Design and Implementation

— The HTML of the dialog, for future reference and additional analysis. The
HTML was obtained by casting the dialog’s Tag object to a string.

— Whether the dialog is in the way, blocking users from interacting with the web-
page. This was implemented by calculating whether the centre of the dialog is
within a 100 pixels of the centre of the window.

— The clickables of the dialog, which aims to include the CSS selectors of all
clickable HTML tags within the dialog. The implementation is described below.

Locating Clickable Cookie Dialog Elements

Another crucial step is identifying buttons, links and other web elements with attached
click listeners within the cookie dialogs. I refer to these elements as clickables. The
collection of clickables for each dialog is essential to enable interaction with them in
the next round. One of the main difficulties of implementing this step is the fact that
essentially any DOM element may be a clickable, and this may not always be obvious
from the HTML of a dialog. This is because click listeners may be set with JavaScript
on any tag element. Nevertheless, to gain a better understanding on how clickables are
most commonly implemented, I inspected a variety of dialogs. I found four prevalent
clickable implementations which can be derived from a notice’s HTML source code:

1. <button> tags,

2. <a> tags,

3. <input type="submit"> tags,

4. and any tag which has the attribute role="button".

When identifying clickables, first, CDA classifies any descendant Tag object of a
cookie dialog that falls into one of the categories above. My next goal was to iden-
tify other DOM elements which have attached click listeners, however, there appeared
to be no native JavaScript methods or other predominant approaches to do so. One
option was to only get clickables with listeners where the listener is attached through
the HTML attribute onclick. This, however, would only find a small subset of such
clickables. By digging deeper, I have found that the listeners of a DOM element
can be retrieved using the Chrome DevTools console by using the command line
API getEventListeners. This API, however, cannot be called from an injected
JavaScript script using WebDriver. WebDriver fortunately contains an API gateway to
Chrome DevTools Protocol, which is primarily used to profile and debug Chrome and
Chromium browsers. Thus, the WebDriver method execute_cdp_cmd (cmd, cmd_args)
provides access to the CDP method DOMDebugger.getEventListeners, analogous
to the previously mentioned command line API. Finally, the detected clickables are
saved for use in Round 3, where they are clicked, and their properties are scraped. The
clickables are saved by recording their class, ID and tag name.

3.2. Cookie Dialog Analyser Implementation 23

3.2.7 Round 3: Cookie Dialog Interactions

Round 3 has the aim to collect data that could shed light on how cookie dialogs re-
spond to different user interactions. It is run by executing CDA with the command line
argument —-round=3. This phase relies on the previous two rounds, where the cookie
dialogs and clickables have been gathered. Using this information, CDA can easily
locate these privacy notices and interact with them. The process is presented in Figure
[3.5] CDA loads each website containing cookie dialogs for each previously collected
clickable elements. Once a website is loaded, CDA retrieves the dialog and subsequent
clickable object. After CDA obtains these, it collects properties of the clickable and
clicks it, recoding site changes. The system restarts the browser between each click,
to dispose of any session data, which might interfere with consequent measurements.
The following sections explain the implementation of the cookie dialog interactions
and the data collection of the clickable properties and the prospective website changes.

CDA Setup Process

For each website
Round 3 J with cookie dialogs O
For each

Dialog Interactions clickable
Load

selectors Query Dialog and Next] Match CSS selectors

Clickable J
Y
Round 1 and 2 000
Data [Gather Clickable Properties]
O
Click Clickable and | 1 Se c
4—‘ Record Changes | Click
clickable
|
Round 3 Save collected data

Data

Y

CDA Shutdown Process
Figure 3.5: Round 3 activity diagram.
Clickables

Before interacting with the privacy notices, their clickable elements are located again
using the clickable properties recorded in the previous rounds (the dialog CSS selector
and the clickable’s IDs, classes and tag name). WebDriver is used to locate them with
a constructed CSS selector of the form:

[dialog selector] [tag name] [#ID_1#ID_2...][.class_l.class_2...]

24 Chapter 3. Cookie Dialog Analyser Design and Implementation

The dialog selector followed by a space, which is called a descendant selector, imposes
the restriction that only clickables within the dialog are selected [11]]. This ensures that
WebDriver does not select other clickables with the same properties that fall outside the
scope of the dialog. Once a clickable is found, CDA records some of its attributes and
then clicks it using WebDriver’s API if possible. These attributes are the clickable’s
hyper reference (href), text and background colour. Moreover, it is noted whether the
clickable is visible or disabled, and they are only clicked if both of these properties are
true. Furthermore, in the rare case when another element happens to overlay the click-
able then WebDriver throws the exception ElementClick-InterceptedException.
This behaviour is acceptable as a user would similarly be unable to click the overlaid
element.

In general, the text can be easily extracted from a Tag element, however, in some
cases clickables contain images representing non-textual symbols. In the context of
cookie notices, I believed that it would be useful to understand changes when a dialog
is closed, without a user explicitly giving consent to or opting out from being tracked.
It is common for such clickables to contain an X symbol in the form of an image. To
be able to capture these cases, I have used pytesseract, an optical character recogni-
tion (OCR) tool [21]. I expected this tool to translate an input image representing a X
to the character x. An issue that I incurred, however, was that the clickable’s images
were in some cases sprite sheets (see Figure[3.6) [[12]]. Thus, WebDriver’s API to cre-
ate screenshots of web elements was used to obtain an image of the clickables, which
would be input to the OCR tool. A downside of this, however, was that WebDriver cre-
ates rather low-resolution screenshots, which impacted OCR’s capability to recognise
the x symbol. In instances when pytesseract could not recognise the symbol correctly,
I observed that the output string often contained one of the following characters: <, >,
4, /, \, and its length was less than 4. Consequently, CDA checks if this is the case,
and if so, the clickable’s text is recorded as an x.

""‘++A>x"' ¢ [Ib e)(ooo
1k e ik S OXe v
Figure 3.6: A sprite sheet used by one of the clickables, which allows users to close the

cookie notice on|facebook.com. Sprite sheets are used to reduce the number HTTP
requests made when loading a webpage [12].

facebook.com

3.3. Issues Experienced With Retrieving Cookies 25

Post-Click Data Scraping

After each successful automated click, CDA aims to record three types of website
changes. Primarily, the system registers the session’s cookies, which may be used to
see if the click has resulted in any new cookies being set. Secondly, CDA records
the URL of the webpage after a click, a change in which may suggest that a privacy
policy for example was opened. The click may result in a new tab opening, which is
managed, by closing the tab navigating back to the original page with its associated
window handle. On the original page, CDA records if the click closed the cookie
dialog by querying the dialog using its CSS selector.

3.3 Issues Experienced With Retrieving Cookies

Over the course of the year I believed that WebDriver’s API, used by CDA, registers all
cookies, including all third-party cookies. However, shortly before the project deadline
I noticed this was not the case. Surprisingly, the results obtained during the data anal-
ysis have shown that a lot smaller portion of the cookies were third party than many
related studies have found [15, 16, (14]].

A range of factors have misled me to believe that all cookies were captured. These
factors include that a selection of third-party cookies were indeed recorded. Moreover,
the main focus of this project was the collection of dialog related data. In addition,
WebDriver has a vague documentation on what cookies are captured by it [31]. Upon
further investigation, however, I have found that mostly first-party cookies were cap-
tured in reality. WebDriver collects a small subset of third-party cookies as well, which,
based on my observations, were set by domains related to the website being Visite
however, after rigours research no further information was found on what subset this is.

Overall, cookie dialogs have limited control over what cookies third parties install or
remove as cross-domain cookie setting is not possible [4]. Thus, I believe that the
data obtained by this version of CDA, using WebDriver’s API to collect cookies, still
gives a valuable insight on cookie setting behaviour in relation to cookie dialog inter-
actions. Changes in the number of recorded cookies in response to a dialog interaction
should still describe the behaviour a dialog well. On the other hand, the collection of
cookies can be improved upon in a future study where the focus is shifted from the
implementation of the dialog scraper.

I have implemented a potential algorithm which is able to collect all cookies, how-
ever, it is still a work-in-progress. The method requires CDA to access the SQLite
Cookies database located under Chrome’s User Data directory. There were two main
complications, one of which is yet to be resolved.

First, since the release of Chrome 80, the database encrypts all cookie values using
a new method. This method first creates an encryption key, which is also encrypted
using the Data Protection API (DPAPI) on a Windows system. Furthermore, the cookie
values are encrypted with the encryption key with AES-256 in GCM mode. To decrypt

4e.g.: Onhttp://sharepoint.com//some third-party cookies were captured, which were set by
http://microsoft.com/.

http://sharepoint.com/
http://microsoft.com/

26 Chapter 3. Cookie Dialog Analyser Design and Implementation

the cookies, the newer version of CDA first obtains the encrypted key and then decrypts
itusing win32crypt.CryptUnprotectData DPAPI [29]. Subsequently, following the
method described in [40], using the decrypted key, CDA decrypts the cookie values.

Second, when CDA tries to access the Cookies database it is intermittently empty,
even though cookies have been installed and are visible through Chrome’s DevTools
panel. CDA closes WebDriver to make sure that Chrome writes the required data to
disk, however, the database still remains empty. I have found that others have been
experiencing the same problem [19], but no solution has been documented to this date
as far as I am concerned. This issue is yet to be resolved in a future work as the time
constraints have not permitted me to find a solution. Nevertheless, using this technique
CDA manages to capture all cookies on a subset of the webpages it iterated through
allowing me to capture a sample dataset for evaluation.

Chapter 4

Evaluation

This chapter evaluates the performance of the Cookie Dialog Analyser (CDA) platform
in terms of how well it has fulfilled the research requirements. The chapter consists
of four sections, the first of which will assess the overall stability of the platform.
The remaining three sections will evaluate three aspects of CDA — webpage loading,
cookie dialog detection and clickable identification — which are vital for accurate and
effortless cookie dialog and web privacy related data collection.

4.1 Fault Tolerance

As described in section [3.2.4] CDA creates regular writes to disk so that it in case of a
crash it can be restarted from the point of failure. In general, all data scraping Rounds
of CDA run smoothly, however, in some cases bugs or other connection problems may
cause interruptions, causing CDA to halt with an error message. All Rounds of CDA
were run fully at least once, with multiple experiment runs on different smaller subsets
of the top-500 websites. These runs were executed with an unreliable Wi-Fi connec-
tion, which implied that in some cases CDA had to be restarted. On average restarting
CDA was necessary once for every 375 webpage scrapings in the final full runs among
all three Rounds. In case of larger scale scrapes this would be troublesome, however,
with a more reliable Ethernet connection the error rate is likely to be considerably
lower.

4.2 Loading Web Pages

Across all three Rounds, CDA has been able to fully analyse 88%, that is 444 of the 500
webpages loaded. Round 1 had the greatest number of webpages not loading properly,
where 7.4% of the scraped websites did not load during the scraping phase, and 0.2%
of websites were unable to load during the dialog checking phase. Furthermore, 3.9%
of the webpages successfully scraped in Round 1 were not loaded in Round 2. All
remaining websites were successfully analysed in Round 3.

A portion of the webpages not loading were due to HTTP server or client errors, such

27

28 Chapter 4. Evaluation

as timeouts. Some of these issues were due to unresponsive servers or brief network
outages. Other websites in the Tranco list which did not load were not meant to be
browsed manually by end users, such as http://cdninstagram.com/, which is used
to deliver image and video contents geographically close to end users. Overall CDA’s
website loading performed well, however, in the future one improvement that could
be made is the detection of short network outages, while CDA would wait until the
connection is re-established.

4.3 Locating Privacy Notices

When building CDA, as described in Section [3.1.1|[Basic Requirements and Assump-|
the main goal was to locate cookie dialogs with high precision and a low false
positive rate. By using a filter list, I have made a trade-off between precision and recall
in favour of a higher precision.

Although using a filter list the exactness the detection of cookie dialogs may vary
over time, during the final main run of CDA, it has detected 177 cookie dialogs of
the 248 present on the loaded webpages (71.4% recall). Of all the detected web ele-
ments, 7.9% were erroneously detected (92.1% precision). These erroneously located
elements were mostly descendants of its webpage’s cookie dialog’s root HTML tag.
In some other cases, however, mistakenly selected elements were sections of sign-up
pages which had opt-in checkboxes for their privacy policies or opt-out parts of digi-
tal marketing webpages. These did not qualify as cookie dialogs, so I discarded them
using the DialogChecker tool. Overall, CDA preforms reasonably well at detecting
cookie dialogs, and the produced dataset with the help of the DialogChecker has likely
located all the dialogs on the successfully loaded webpages.

4.4 Locating Clickable Elements

As manually checking and correcting the clickables located by CDA would be emi-
nently tedious, there is no extensive control set to help measure the performance of this
step. Nevertheless, I believe the discovered HTML tags and attributes together with
the ChromeDevProtocol locating elements with click listeners allows CDA to detect
most clickables with good accuracy. After conducting a small-scale measurement on
15 random websites from the top-500 Tranco list, I have found that 97.5% of clickable
elements were identified.

http://cdninstagram.com/

Chapter 5

Data Analysis and Results

This chapter presents the insights gained from the scraped data collected with the
Cookie Dialog Analyser (CDA). It further outlines some data analysis methods cru-
cial for the interpretation of the presented data. First, in Section the cookie setting
behaviour of webpages before privacy notice interactions is presented. This section
is associated with the data collected in CDA Round 2 (see Section [3.2.6). Then, in
Section[5.2] the main focus is cookie dialogs. This section predominantly analyses the
data gathered in CDA Round 3 (see Section [3.2.7).

CDA analysed the top-500 websites as of 7 March 2020, retrieved from TrancoE] [27].
Of these websites, 444 were successfully scraped; thus, all the analysis is established
on this subset of websites. Furthermore, unless otherwise stated, the presented results
and the conclusions drawn are based on the dataset in which CDA has recorded cookies
using the WebDriver API. As described in Section[3.3] these cookies are primarily first
party cookies, with some exceptions.

5.1 Initial Cookie Setting Behaviour

This section investigates the initial cookie setting behaviour of the analysed websites.
The presented data describes the number and the type of cookies set prior to any clicks
made on the cookie dialogs themselves. The term initial cookie will be used to refer to
such cookies.

Figures[5.1]and[5.2] present the main initial cookie setting statistics. The findings show
that of the 444 analysed websites 406, i.e., 91.4% of websites have installed at least one
initial cookie. On the first visit of a webpage the number of cookies set had the mean of
9.6 cookies (see Table [5.1] for further summary statistics). These cookies may belong
to any of the main cookie categories described in Chapter 2 which consist
of session management, personalisation and tracking cookies [22]. The main interests
of this study are tracking cookies, which can be linked to users and their personal data
collected by the organisations behind websites. It is hard to differentiate such cookies

I Available at https://tranco-list.eu/list/6QPX.

29

https://tranco-list.eu/list/6QPX

30 Chapter 5. Data Analysis and Results

Dataset | Cookie Type | Mean | Median | First Quartile | Third Quartile | Mode | Max
All 9.61 7 4 13 5 52
A All (European) | 9.42 7 3 13 0,5 52
First Party 9.02 6 3 13 0 52
Third Party 0.60 0 0 0 0 21

All 18.06 8 0 24 0 211

B All (European) | 19.06 8 0 26 0 211
First Party 7.66 4 0 12 0 58

Third Party 10.40 3 0 10 0 170

Table 5.1: Summary statistics of the number of cookies set at the first visit of a website,
before any cookie notice interactions. Dataset A is the primary dataset, which has used
WebDriver’'s API to collect mainly first-party cookies, and Dataset B is a sample dataset
gathered by the new version of CDA collecting all cookies (see Section 3.3).

400 A

w

ul

o
1

w
o
o

N

(O]

o
1

200 A

150 +

number of websites

100 +

50 1

all types first-party third-party ID-like persistent
type of cookies

Figure 5.1: Initial cookie setting behaviour: the number of websites that have set cook-
ies before any cookie notice interaction, which is broken down for first-party, third-party,
ID-like and persistent cookies.

from others which are necessary for the basic functioning of a website’s features. Un-
less a cookie is documented, a tracking cookie would only be distinguishable with an
insight into the backend webserver. Nevertheless, there are some heuristics for track-
ing cookie identification used across web privacy measurement studies, such as in
. Cookies which are able to track a user over time are persistent, as session cookies
are usually deleted after a browser session is closed. Figure [5.1] shows that a majority
(90.3%) of websites have set persistent cookies at their first visit.

A portion of third-party cookies are captured by CDA. The distribution of the number
of initial third- and first-party cookies set by the visited webpages is presented in more
detail in Figure[5.3] It can be observed that in both cases the distributions are skewed,
with most websites setting around 8 initial first- or third-party cookies.

To test my hypothesis that organisations hosting websites with a European target au-

5.1. Initial Cookie Setting Behaviour 31

Dataset A Dataset B
v v
¢
128 A
%]
2
Aoﬁ 64 - i R
b ¢ ¢ ¢
[v]
5 327
—
3
= 16 -
3 12
c
8 -
. i
0 T -
all all first party third party all all first party third party
(European) (European)
cookie type cookie type

Figure 5.2: A letter-value plot depicting the distribution of the number of initial cookies
before any cookie notice interaction. The black horizontal line represents the median
value. The largest boxes represent the range from 25 to 75" percentiles. Each fol-
lowing box represent half of the remaining percentiles (e.g.: the following percentile
ranges are depicted [...(12.5,25),(25,75),(75,87.5)...]. The number of initial cookies
is further broken down for websites likely targeting an European audience and first-
and third-party cookies. (N.B.: The y axis has a log, scale for values v > 16 to allow
extreme values to fit.)

First-Party Third-Party
) o
100 A 25 S0
o - fagi{e)
oo [T
z- z
S 801
[®)]
©
[oX
K
z 60
-
o
3
£ 40 1
>
C
20 A
0 T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
number of first-party cookies number of third-party cookies

Figure 5.3: A more detailed look into first- and third-party initial cookie setting: the
distribution of the number of first and third party cookies set before any cookie dialog
interactions.

32 Chapter 5. Data Analysis and Results

dience are more mindful about GDPR regulations, I have distinguished the average
number of initial cookies that have been set by such websites. As visible from Figure
[5.2] however, websites with potential European target audiences have set marginally
less initial cookies, with an average of 9.42, about 2.2% less than all studied websites.
Nevertheless, as seen in Table the number of initial cookies is multimodal, with
one of the modes being 0, which suggests that it may be more common for websites
with European target audience to not set initial cookies based on the collected dataset.

Identifying ID-like Cookies

Sénchez-Rola et al. [[36] uses a technique called zxcvbn to differentiate tracking cook-
ies, which is mainly used for password strength estimation. They classify cookies as
tracking which have values that have high zxcvbn scores. In my judgment, this mea-
sure alone, even with a high threshold, may be slightly inadequate to categorise track-
ing cookies. The reason for this is that a cookie having a unique and hardly guessable
value does not necessarily imply that it is a user ID, and thus categorising it as track-
ing may be unwarranted. Another approach taken by Englehardt et al. [17], which I
partially adopted in this paper, looks at various attributes of cookies. Based on their
technique, I have implemented an algorithm to distinguish ID-like cookies. Firstly, the
algorithm parses the cookie values because a single cookie’s value often contains a list
of “sub-values”. These are commonly of the following form:

[name_1l]=value_1]|...| [name_I]=value_I,

where | stands for any character except all base ASCII Latin letters (a-z, A-Z), all
digits (0-9), the underscore (_), the equals sign (=), and the hyphen (-). After parsing
the cookie values, the algorithm categorises a cookie as ID-like, if it has a “sub-value”
value;, that has a length 8 < len(value;) < 100 and that expires later than 90 days
from the time it is set. Such ID-like cookies are expected to be tracking cookies with
a higher probability. CDA has recorded that 20.3% of websites have set an ID-like
cookie on their first visit (Figure[5.2).

Looking at the Newly Collected Dataset

Table shows that using the new somewhat inchoate method described in Section
to collect all cookies, has resulted in Dataset B, which has a 87.5% higher average
number of initial cookies set per website. This is presumably due to the fact that a
smaller portion of the scraped of websites have set a very high number of third-party
cookies, as the maximum number of initial cookies installed has experienced more
than a fourfold increase compared to the primary dataset. This is further deducible
from the fact that there was only a small increase in the mean and the mode of the
number of initial cookies. These statistics imply, that the distribution has a positive
skew, similarly as for the primary dataset (Dataset A) (see Figure[5.2)).

5.2. Cookie Dialogs 33

5.2 Cookie Dialogs

This section analyses the 217 collected cookie dialogs’ attributes and their behaviour
in relation to interactions with them. CDA has found that 49.6% of the successfully
analysed websites contained cookie dialogs. These dialogs’ attributes are examined in
terms of the text they contain, and the main options they give users and their position
on the webpage. Furthermore, their functioning is studied in terms of the number of
cookies set or deleted in response to the interactions with them.

5.2.1 Cookie Dialog Attributes

CDA has collected data on the number of clickables/options cookie dialogs provide
users. The data analysis has shown that majority (77.4%) of websites offer less than
three options, some of which may occur to be hidden or disabled (see Figure [5.4).
Additional analysis has found, however, that no correlation is present between the
number of buttons and the number of initial cookies set by websites. Moreover, it was
found that of the analysed dialogs 8.1% are covering a great portion of the webpage,
some of which may be blocking users from interacting with the main content of the
webpage (see Figure in Appendix A).

CDA has recorded all the text contained in the collected cookie dialogs. The term
dialog text will be used to refer to these texts. Table shows the relevant sum-
mary statistics of the dialog texts” wordcount. It can be observed that the mean value
(493.47) of the wordcounts is substantially higher than the median (57). This is due to

All
80 4 Enabled
Visible
3
= 60
1]
QO
()
2
-
o
@ 40 4
Q
€
>
c
20 A
0 T T T T T T T T T T T
0 1 2 3 4 5 6 13 14 17 18

number of clickables

Figure 5.4: The number of websites implementing a cookie dialog with n (enabled/visi-
ble) clickables.

Mean | Median | Max | Standard Deviation | First Quartile | Third Quartile
Word Count | 493.47 57 36346 2623.08 23 110

Table 5.2: Summary statistics of the number of words in the cookie dialogs’.

34 Chapter 5. Data Analysis and Results

the fact that the distribution is skewed by a small number of long dialog textsE], thus,
the median (57) together with the first and third quartiles (23 and 110 respectively)
best describe the dialog text lengths. It can be argued that reading around 57 words
before accessing the main content of a webpage may be excessive during day-to-day
browsing for an average user.

Cookie Dialog Text Analysis

An important aspect of cookie dialogs is the wording used by them to inform clients
about the use tracking technologies. The wording used by the notices is essential
as the GDPR requires websites to use “concise, transparent, intelligible and easily
accessible [wording]... using clear and plain language” [13]. My aim was to analyse
what unigrams and bigrams are the most important for the dialog texts, thus, gaining
insight into common wordings of dialogs.

Rank Term Weight | Rank Term Weight
1 cookie 0.369 7 information | 0.125
2 use 0.300 8 policy 0.125
3 privacy 0.198 9 ad 0.123
4 site 0.192 10 content 0.118
5 use cookie | 0.173 11 accept 0.113
6 agree 0.132 12 experience | 0.098

Table 5.3: The tf-idf ranking derived from the full dialog texts.

I have used the statistical measure called #f-idf (Term Frequency Inverse Document
Frequency) to determine which are the most common and relevant words used by di-
alogs [33]]. Before completing the measurement, however, I had to clean the cluttered
dialog texts extracted from the dialog HTMLs. The cleaning process required the to-
kenisation of words, meaning that all words had to be separated from all punctuations
and other non-alphanumeric characters and converted to lower case. In some cases
the extracted text contained words from different parts of a dialog merged together
(e.g. “...privacy policyAccept...”). I have found that these merged words were often
camelCase, thus I have separated such instances as well. Following the cleaning pro-
cess, stop words (e.g. “and”, “so”’) were removed and the dialog text was lemmatised,
meaning that its words had to be converted to a general base form (e.g. vendors’=> ven-
dor). Lemmatisation allows tf-idf to group words with the same base form together.
This stage used Python’s Natural Language Toolkit (nltk) for both the lemmatisation
and the stop word removal [5]]. Finally the dialog texts were analysed with #f-idf, using
the scikit-learn library [30], resulting in a ranking of single words and bigrams a subset
of which is shown in Table [5.3] The ranking shows that the most common and impor-
tant words consist of mainly plain language words, which is adherent to the GDPR.
Nevertheless, as shown by Kulyk et al. [26], the highest ranked word “cookie” is not
well understood in this context by the web users.

211 dialogs contain more than 500 words, which are likely to be privacy policies, extensive vendor lists
or the combination of the two.

5.2. Cookie Dialogs 35

Besides analysing the full dialog texts, I have further done a similar investigation on the
clickables’ text contents. To attain a ranking of the clickables, I have followed a similar
methodology as just described. The two adjustments made included not removing the
stop words from the texts and converting all x symbols to the word “close”. The first
modification allowed the #f-idf algorithm to include bigrams such as “(do) not accept”
to the rankings, which are shown in Table (left). It can be observed that terms used
to refer to opting in (e.g. accept, agree), closing the dialog, and referring to privacy
policies are within the top-10 ranks.

Furthermore, the #f-idf ranking was also performed on clickables which are not <a>
tags, to filter out links, which usually point to settings and privacy policies. This re-
sulted in the ranking presented in Table [5.4] (right), which better characterizes click-
ables’, like button tags, texts which are often used for actions such as opting in to and
opting out from being tracked and closing cookie dialogs. In this ranking, clickables
for opting in remain on top of the rank, while the first term, “reject” related to opt-
ing out appears at the 37" position. This indicates that refusing to accept tracking
technologies may be rarely provided as an easy option for users.

Rank Term Weight Rank Term Weight
1 accept 0.091 1 accept 0.142
2 close/x 0.090 2 close/x 0.108
3 learn 0.084 3 review 0.098
4 cookie 0.069 4 agree 0.086
5 review 0.057 5 ok 0.064
6 policy 0.055 6 remind 0.061
7 ok 0.055 7 later 0.061
8 agree 0.051 8 remind later | 0.061
9 cookie policy | 0.037 000 e e

10 remind later | 0.035 37 reject 0.004

Table 5.4: The tf-idf ranking derived from the all clickables’ texts (/eft) and for clickables’
texts whose HTML tags are not <a> (right).

5.2.2 Cookie Dialog Behaviour

One of my further objectives was to gain an understanding about changes in the num-
ber of set cookies resulting from clicking cookie dialog buttons and links. To conduct
an analysis on this subject I had to cluster the clickables based on their ostensible func-
tions. For this, I have used the pre-processed clickable texts from the #f-idf analysis.
Moreover, the examination required the collected initial cookies and the cookies set
after individual clicks, referred to as post-click cookies.

Obtaining a clustering for such short texts is nontrivial as clustering algorithms have
very little to no context to work with. As explained by Yan et al. [44], popular topic
modelling algorithms such as LDA do not work well with short texts. Thus, I have
experimented with Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture
model (GSDMM) [45]], which is specifically designed for short text clustering. Yin
and Wang [45]] propose that GSDMM is able to infer cluster numbers automatically,
which is a great advantage compared to several other well-known clustering algorithms

36 Chapter 5. Data Analysis and Results
Opt In Opt Out Close Dialog | Learn More | Settings
A A close policy manage
—(don’t A not) agree no X learn setting
ok reject exit review show
get it opt A out remind mehr vendor
—(don’t A not) accept decline read brand
—(don’t A not) allow refuse term marken
—(don’t A not) consent don’t V not | accept cookie partner
—(don’t A not) | continue deny change preference
opt A in erfahren
akzeptieren privacy
statement
more

Table 5.5: Words often appearing in clickables, grouped based on the expected function
of the clickable they are contained in. The Opt In and Opt Out columns contain logical
operators to define which bigrams should or should not appear together (e.g. the Opt
In column defines that not and consent should not occur together).

Settings § number cookies before click

number cookies after click

Settings - number cookies before click

number cookies after click
Opt Out Opt Out °

Other Opt In+

clickable cluster

Learn More - Other -

clickable cluster

Opt In 4 Learn More - L]

Close Dialog Close Dialog

g T T T T T T T T T T T T
9 10 11 12 13 14 15 16 17 6 8 10 12 14 16
number of cookies number of cookies

(a) Mean (b) Median

Figure 5.5: Cookie setting behaviour following cookie dialog interactions: shifts in the
mean and median of the number of cookies set for websites offering clickables belong-
ing to one of the clusters shown in Tabl

such as K-means. Nevertheless, the clusters of the clickable texts obtained with it have
turned out to be poor and inconsistent, having numerous overlappings between them.

Hence, given the limited vocabulary of cookie dialogs, I have implemented a manual
clustering algorithm which uses the grouped terms presented in Table [5.5] to cluster
clickables into one of the five specified categories: Opt In, Opt Out, Close Dialog,
Learn More and Settings. These groupings are based on the collected clickable texts.
The algorithm collects the buttons and links into one of the categories by checking
whether a term or a pair of words is contained in their text. All other buttons were put
in the category named Other.

After the clustering of the clickables, I have computed the changes in the number of
cookies in response to the clicks automated by CDA. Figure [5.5] shows the mean and
median changes in the number of cookies set. For both measures it is visible that the

5.2. Cookie Dialogs 37

click on a button or link in the Opt In category resulted in a substantial increase in the
number of cookies installed. Furthermore, also clicking on any other option on cookie
dialogs triggered new cookie placements. Figure 5.6 shows the distribution of the
changes in the form of a violin plot. The diagram points out that, while the distribution
of cookie changes after clicking on Opt In choices is centred around the highest median
value of about 1.9, other choices have distributions centred around 0, with several
outliers. The insights from the two figures show that the cookie dialogs induce small
amounts of changes in the number of cookies, usually in positive direction.

24 - e -

23 - T

22_

number of cookies
o
L
|
|
|
|

) 2 —
) 3
—24 4 o
\O o . \09 N o© e
oe oo o O e \’ea«\"\ o
C

clickable cluster

Figure 5.6: The distribution of the change in the number of cookies resulting from the
interactions with the dialogs. The central horizontal lines indicate the median of the
distributions. (N.B.: The y axis has a log, scale for values | v |> 22 to allow extreme
values to fit.)

Chapter 6

Conclusion

Overall, the main goal of this study — developing and implementing a methodology
for a research platform which allows the automated scraping of cookie dialogs and
related web privacy data, has been successfully met. The implemented system, the
Cookie Dialog Analyser (CDA), effectively overcomes the main challenges set out by
the research objective. On a high level, these challenges consisted of the automatized
detection of cookie dialogs on a wide variety of websites and the interaction with
them. The platform has been able to analyse 444 web pages, of which 49.6% contained
cookie dialogs. CDA uses Selenium, a web browser automation tool, to automate the
process which was able to locate cookie dialogs with the assistance of a community-
maintained filter list. Furthermore, a manual verification and correction tool has been
provided to optionally fix any errors of the dialog detector. This method yielded a
precision of 92.1% and a recall of 71.4% at detecting cookie dialogs. As visible from
these results, the mentioned filter list has the benefit of finding cookie notices with
high precision while also ensuring that the system stays up to date over time given the
regular updates to the list.

The system has permitted the collection of a dataset which has been able to give in-
sights into a segment of cookie setting behaviour before and in result of cookie notice
interactions. Based on the collected cookie assemblage it has been deduced that around
20% of websites set ID-like cookies on their first visit. Furthermore, it has shown that
in general all dialog interactions only marginally shift the number of cookies usually
in the positive direction. The dataset further gave an overview on the options offered to
users by the studied cookie dialogs. It was found that these dialogs tend to impel users
to accept tracking technologies by limiting their choices, only rarely allowing them to
opt out with a simple click of a button.

The built research platform intrinsically enables an easier way to conduct empirical
measurements on how much control users have over their online privacy. In future
work the system may be extended to capture a more comprehensive image of tracking
technologies usage in response to privacy dialog interactions. The development to
include all third-party cookies has been initiated, which may be taken further, while
the detection of new tracking technologies, such as fingerprinting, may be additionally
included. Additionally, more sophisticated methods for tracking cookie detection may

39

40 Chapter 6. Conclusion

also be implemented. Ultimately, such future studies may allow organisations to better
enforce regulations such as the GDPR.

In conclusion, the implemented platform, the dataset collected with it and the insights
from the data analysis have contributed to the area of web privacy research, as only a
limited number of studies have been conducted on cookie dialogs and their behaviour.
Previous research studying cookie dialogs either collected data through user studies,
manually, or through an automated process targeting only well-known cookie consent
libraries [28, |15} |42], [26]]. The current work has contributed with a novel research
platform, which automates the gathering of data, encompassing a much broader set
of cookie dialogs, thus giving insight on the state of consent management of tracking
technologies at a more general level.

Bibliography

[1] antvallap. Get Unique CSS Selector. Sept. 2018. URL: https : / / chrome .
google . com/webstore /detaill /get —unique-css—-selector%5C%5C/
lkfaghhbdebclkklgijhhonadomejckai.

[2] TIP-API. IP-API.com - Geolocation API. URL: |https://ip—api.com/.

[3] Artur Barseghyan. barseghyanartur/tld: Extracts the top level domain (TLD)
from the URL given. Feb. 2020. URL: https://github.com/barseghyanartur/
tld.

[4] A. Barth. HTTP State Management Mechanism. RFC 6265. RFC Editor, Apr.
2011. URL: https://tools.ietf.org/html/rfc6265.

[5] Steven Bird, Edward Loper, and Ewan Klein. Apr. 2020. URL: https: / /
github.com/nltk/nltk.

[6] Ian J Block. “Hidden Whois and Infringing Domain Names: Making the Case
for Registrar Liability”. In: U. Chi. Legal F. (2008), p. 431.

[7] Tomasz Bujlow et al. “A survey on web tracking: Mechanisms, implications,
and defenses”. In: Proceedings of the IEEE 105.8 (2017), pp. 1476-1510.

[8] Matt Burgess. The tyranny of GDPR popups and the websites failing to adapt.
Aug. 2018. URL: https://www.wired.co.uk/article/gdpr-cookies-
eprivacy-regulation-popups.

[9] Aaron Cahn et al. “An empirical study of web cookies”. In: Proceedings of the
25th International Conference on World Wide Web. 2016, pp. 891-901.

[10] Richard Clayton and Tony Mansfield. “A study of Whois privacy and proxy
service abuse”. In: 13th Workshop on the Economics of Information Security.
2014.

[11] MDN contributors. Descendant combinator. Oct. 2019. URL: https://developer.
mozilla.org/en-US/docs/Web/CSS/Descendant_combinatorl

[12] MDN contributors. Implementing image sprites in CSS. May 2019. URL: https:
/ / developer . mozilla . org/en-US/docs/Web/CSS/CSS_Images /
Implementing image_sprites_in_CSS.

[13] Council of European Union. Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation).
https://eur-lex.europa.eu/eli/reg/2016/679/07. Apr. 2016.

[14] Adrian Dabrowski et al. “Measuring Cookies and Web Privacy in a Post-GDPR
World”. In: International Conference on Passive and Active Network Measure-
ment. Springer. 2019, pp. 258-270.

41

https://chrome.google.com/webstore/detail/get-unique-css-selector%5C%5C/lkfaghhbdebclkklgjhhonadomejckai
https://chrome.google.com/webstore/detail/get-unique-css-selector%5C%5C/lkfaghhbdebclkklgjhhonadomejckai
https://chrome.google.com/webstore/detail/get-unique-css-selector%5C%5C/lkfaghhbdebclkklgjhhonadomejckai
https://ip-api.com/
https://github.com/barseghyanartur/tld
https://github.com/barseghyanartur/tld
https://tools.ietf.org/html/rfc6265
https://github.com/nltk/nltk
https://github.com/nltk/nltk
https://www.wired.co.uk/article/gdpr-cookies-eprivacy-regulation-popups
https://www.wired.co.uk/article/gdpr-cookies-eprivacy-regulation-popups
https://developer.mozilla.org/en-US/docs/Web/CSS/Descendant_combinator
https://developer.mozilla.org/en-US/docs/Web/CSS/Descendant_combinator
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Images/Implementing_image_sprites_in_CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Images/Implementing_image_sprites_in_CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Images/Implementing_image_sprites_in_CSS
https://eur-lex.europa.eu/eli/reg/2016/679/oj

42

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

BIBLIOGRAPHY

Martin Degeling et al. “We value your privacy... now take some cookies: Mea-
suring the GDPR’s impact on web privacy”. In: arXiv preprint arXiv:1808.05096
(2018).

Steven Englehardt and Arvind Narayanan. “Online tracking: A 1-million-site
measurement and analysis”. In: Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security. 2016, pp. 1388-1401.

Steven Englehardt et al. “Cookies that give you away: The surveillance implica-
tions of web tracking”. In: Proceedings of the 24th International Conference on
World Wide Web. 2015, pp. 289-299.

fanboy et al. EasyList. URL: https://easylist.to/.

Basti G. python selenium chrome cookie database is empty. Aug. 2019. URL:
https://stackoverflow.com/questions/57494122/python-selenium-
chrome-cookie-database-is-empty.

Michelle Goddard. “The EU General Data Protection Regulation (GDPR): Eu-
ropean regulation that has a global impact”. In: International Journal of Market
Research 59.6 (2017), pp. 703-705.

Samuel Hoffstaetter. Python Tesseract. Jan. 2020. URL: https://github.
com/madmaze/pytesseract.

HTTP cookies. Dec. 2019. URL: https://developer .mozilla.org/en-
US/docs/Web/HTTP/Cookies.

Jason Huggins. Selenium. http://selenium.dev/. 2004.

Keyword Research, Competitor Analysis, & Website Ranking: Alexa. May 2019.
URL: https://www.alexa.com/.

Balachander Krishnamurthy and Craig Wills. “Privacy diffusion on the web: a
longitudinal perspective”. In: Proceedings of the 18th international conference
on World wide web. 2009, pp. 541-550.

Oksana Kulyk et al. “’This website uses cookies™: Users’ perceptions and re-
actions to the cookie disclaimer”. In: European Workshop on Usable Security
(EuroUSEC). 2018.

Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Ranking Hard-
ened Against Manipulation”. In: Proceedings of the 26th Annual Network and
Distributed System Security Symposium. NDSS 2019. Feb. 2019. DO1: 10.14722/
ndss.2019.23386.

Célestin Matte, Nataliia Bielova, and Cristiana Santos. “Do Cookie Banners Re-
spect my Choice? Measuring Legal Compliance of Banners from IAB Europe’s
Transparency and Consent Framework™. In: arXiv preprint arXiv:1911.09964
(2019).

mhammond and rupole. Python for Windows (pywin32). Nov. 2019. URL: https:
//github.com/mhammond/pywin32.

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825-2830.

plightbo et al. Selenium Client Driver — Selenium 3.14 documentation. URL:
https://www.selenium.dev/selenium/docs/api/py/index.html.

Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Ranking Hard-
ened Against Manipulation”. In: NDSS. 2019.

https://easylist.to/
https://stackoverflow.com/questions/57494122/python-selenium-chrome-cookie-database-is-empty
https://stackoverflow.com/questions/57494122/python-selenium-chrome-cookie-database-is-empty
https://github.com/madmaze/pytesseract
https://github.com/madmaze/pytesseract
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
http://selenium.dev/
https://www.alexa.com/
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://github.com/mhammond/pywin32
https://github.com/mhammond/pywin32
https://www.selenium.dev/selenium/docs/api/py/index.html

BIBLIOGRAPHY 43

[33]

[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

[43]
[44]

[45]

Juan Ramos et al. “Using tf-idf to determine word relevance in document queries”.
In: Proceedings of the first instructional conference on machine learning. Vol. 242.
Piscataway, NJ. 2003, pp. 133-142.

Leonard Richardson. BeautifulSoup. Oct. 2019. URL: https://www.crumny .
com/software/BeautifulSoup/.

Same-origin policy. Nov. 2019. URL: https://developer.mozilla.org/en-
US/docs/Web/Security/Same-origin_policy.

Iskander Sdnchez-Rola et al. “Can I Opt Out Yet?: GDPR and the Global Illusion
of Cookie Control”. In: Asia CCS ’19. 2019.

Scriptable Headless Browser. URL: https://phantomjs.org/.

StatCounter. Global market share held by the leading web browser versions as
of February 2020. Mar. 2020. URL: https://www.statista.com/statistics/
268299/most-popular-internet-browsers/.

Nitasha Tiku. How Europe’s New Privacy Law Will Change the Web, and More.
Mar. 2018. URL: https://www.wired.com/story/europes—new-privacy-
law-will-change-the-web-and-more/.

Topaco. Chrome 80 how to decode cookies. Feb. 2020. URL: https://stackoverflow.
com/questions/60416350/chrome-80-how-to-decode-cookies.

Martino Trevisan et al. “4 years of EU cookie law: Results and lessons learned”.
In: Proceedings on Privacy Enhancing Technologies 2019.2 (2019), pp. 126—
145.

Christine Utz et al. “(Un)informed Consent: Studying GDPR Consent Notices in
the Field”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019, pp. 973-990.

WebDriver. June 2018. URL: |https://www.w3.0rg/TR/webdriverl/.

Xiaohui Yan et al. “A biterm topic model for short texts”. In: Proceedings of the
22nd international conference on World Wide Web. 2013, pp. 1445—-1456.
Jianhua Yin and Jianyong Wang. “A dirichlet multinomial mixture model-based
approach for short text clustering”. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2014, pp. 233—

242.

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://phantomjs.org/
https://www.statista.com/statistics/268299/most-popular-internet-browsers/
https://www.statista.com/statistics/268299/most-popular-internet-browsers/
https://www.wired.com/story/europes-new-privacy-law-will-change-the-web-and-more/
https://www.wired.com/story/europes-new-privacy-law-will-change-the-web-and-more/
https://stackoverflow.com/questions/60416350/chrome-80-how-to-decode-cookies
https://stackoverflow.com/questions/60416350/chrome-80-how-to-decode-cookies
https://www.w3.org/TR/webdriver1/

Appendix A

Example Cookie Dialogs

,,3 Cookies help us deliver our Services. By using our Services or clicking [agree, m
*
h you agree to our use of cookies. Learn More,

Figure A.1: An example of a cookie dialog from|reddit . com which implies that tracking
technologies are used by default.

ARIETY

We value your privacy

We and our partners use technologies, such as cookies, and process personal data, such as IP
addresses and cookie identifiers, to personalise ads and content based on your interests,

measure the performance of ads and content, and derive insights about the audiences who saw
ads and content. Click below to consent to the use of this technology and the processing of your

personal data for these purposes. You can change your mind and change your consent choices
atany time by retuming to this site

DENY ALL ACCEPT AND MOVE ON

Figure A.2: An example of a cookie dialog from variety.com allowing users to opt out
from having tracking technologies installed on their computer. The description of what
kind of personal data is collected and for what purposes might be too complex and
technical for the understanding of a general audience. The dialog encourages users to
opt in by highlighting the corresponding button for this action.

45

reddit.com
variety.com

46 Appendix A. Example Cookie Dialogs

About Cookies On This Site
We use cookies and other technologies to collect data about your browser, device and location. We share this
data with advertising, social media and analytics partners to help us understand how the site is used and to

personalize our content and the advertising you see on this and other sites. For more information see our
Privacy Policy and Cookie Statement. or Settings. Settings x

Choose Accept to enable all data collection. You may also make specific choices about data collection by
choosing Settings.

List of Partners (vendors)

Figure A.3: An example of a cookie dialog from offering a range of options,
but not allowing the user to unambiguously opt out from having tracking technologies

installed.

Your data, your experience

Yahoo s part of Verizon Media. Click 'l agree to allow Verizon Media and our
partners to use cookies and similar technologies fo access your device and use your
data (including location) to understand your interests, and provide and measure
personalised ads. We will also provide you with personalised ads on partner
products. Learn more about how we use your data in our Privacy Centre. Once you
confirm your privacy choices here, you can make changes at any time by visiting
your Privacy dashboard

Click 'Learn more' to leam and customise how Verizon Media and our pariners
collect and use data

1 agree Learn more

Figure A.4: An example of a cookie dialog from which is blocking users
from using the page before allowing and its partners to use tracking tech-
nologies.

wired.com
yahoo.com
yahoo.com

	Introduction
	Background
	Web Cookies
	GDPR and Cookie Dialogs
	Related Work
	Web-Tracking-Measurement Studies
	Cookie Warning Notices

	Cookie Dialog Analyser Design and Implementation
	Measurement Platform Design
	Basic Requirements and Assumptions
	Cookie Dialog Analyser Design: Scraping in Three Rounds

	Cookie Dialog Analyser Implementation
	Web Browser Automation
	Analysed Websites
	Loading Webpages
	Fault Tolerance
	Round 1: Finding the Cookie Dialogs
	Round 2: Preliminary Data and Clickable Element Collection
	Round 3: Cookie Dialog Interactions

	Issues Experienced With Retrieving Cookies

	Evaluation
	Fault Tolerance
	Loading Web Pages
	Locating Privacy Notices
	Locating Clickable Elements

	Data Analysis and Results
	Initial Cookie Setting Behaviour
	Cookie Dialogs
	Cookie Dialog Attributes
	Cookie Dialog Behaviour

	Conclusion
	Bibliography
	Example Cookie Dialogs

