
Teacher-student knowledge
distillation from BERT

Sam Suč́ık

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh
2020

i

Abstract
Since 2017, natural language processing (NLP) has seen a revolution due to new neural
language models – Transformers (Vaswani et al., 2017). Pre-trained on large text corpora
and widely applicable even for NLP tasks with little data, Transformer models like BERT
(Devlin et al., 2019) became widely used. While powerful, these large models are too
computationally expensive and slow for many practical applications. This inspired a lot
of recent effort in compressing BERT to make it smaller and faster. One particularly
promising approach is knowledge distillation, where the large BERT is used as a “teacher”
from which much smaller “student” models “learn”.

Today, there is a lot of work on understanding the linguistic skills possessed by BERT, and
on compressing the model using knowledge distillation. However, little is known about the
learning process itself and about the skills learnt by the student models. I aim to explore
both via practical means: By distilling BERT into two architecturally diverse students on
diverse NLP tasks, and by subsequently analysing what the students learnt. For analysis,
all models are probed for different linguistic capabilities (as proposed by Conneau et al.
(2018)), and the models’ behaviour is inspected in terms of concrete decisions and the
confidences with which they are made.

Both students – a down-scaled BERT and a bidirectional LSTM model – are found to
learn well, resulting in models up to 14,000x smaller and 1,100x faster than the teacher.
However, each NLP task is shown to rely on different linguistic skills and be of different
difficulty, thus requiring a different student size and embedding type (word-level embed-
dings vs sub-word embeddings). On a difficult linguistic acceptability task, both students’
learning is hindered by their inability to match the teacher’s understanding of semantics.
Even where students perform on par with their teacher, they are found to rely on easier
cues such as characteristic keywords. Analysing the models’ correctness and confidence
patterns shows how all models behave similarly on certain tasks and differ on others, with
the shallower BiLSTM student better mimicking the teacher’s behaviour. Finally, by
probing all models, I measure and localise diverse linguistic capabilities. Some possessed
language knowledge is found to be merely residual (not necessary), and I demonstrate
a novel use of probing for tracing such knowledge back to its origins.

ii

Acknowledgements

I thank Steve Renals of the University of Edinburgh for being incredibly approachable,
professional yet friendly. Having had almost 60 weekly meetings with Steve in the past
2 years, I have seen him patiently listening to my updates, providing well-rounded, encour-
aging feedback and inspiration, helping me to thoroughly enjoy this learning experience.

I am very grateful for being co-supervised by Vladimir Vlasov of Rasa. Throughout the
summer internship which inspired this work, as well as later through the academic year,
Vova’s guidance, endless curiosity and honest opinions helped me to be more ambitious
yet realistic, and to critically view the work of others and my own in the particular area.

Many thanks also to Ralph Tang whose work provided a solid starting point for this
project, and to Slávka Heželyová who constantly supported me and motivated me to
explain my work in non-technical stories and metaphors.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and contributions . 2

2 Background 3
2.1 NLP before Transformers . 3
2.2 Transformer-based NLP . 6

2.2.1 Transformers . 6
2.2.2 BERT . 9
2.2.3 Newer and larger Transformer models 12

2.3 Teacher-student knowledge distillation . 13
2.3.1 A brief introduction to knowledge distillation 13
2.3.2 Knowledge distillation in NLP . 15

2.4 Interpreting NLP models . 16
2.5 Summary . 17

3 Datasets 18
3.1 Downstream tasks . 18

3.1.1 Corpus of Linguistic Acceptability 19
3.1.2 Stanford Sentiment Treebank . 19
3.1.3 Sara . 20

3.2 Data augmentation for larger transfer datasets 22
3.3 Probing tasks . 23
3.4 Summary . 25

4 Methods and Implementation 26
4.1 Methods and objectives . 26
4.2 System overview and adapted implementations 27
4.3 Implementation details . 28

4.3.1 Teacher fine-tuning . 28
4.3.2 Augmentation with GPT-2 . 29
4.3.3 BiLSTM student model . 30
4.3.4 BERT student model . 31
4.3.5 Knowledge distillation . 31
4.3.6 Probing . 33

4.4 Computing environment and runtimes . 34
4.5 Summary . 35

iii

TABLE OF CONTENTS iv

5 Training student models 36
5.1 Hyperparameter exploration . 36
5.2 Discussion and summary . 38

6 Analysing the models 41
6.1 Probing . 41
6.2 Analysing the models’ predictions . 44
6.3 Summary . 48

7 Overall discussion, conclusions and future work 49
7.1 Distilling BERT into tiny models . 49
7.2 What can models tell us . 50
7.3 Conclusions . 51
7.4 Directions for future work . 52

Bibliography 55

A Datasets 61

B Student hyperparameter exploration 66
B.1 Initial exploration on CoLA . 66

B.1.1 Choosing learning algorithm and learning rate 66
B.1.2 Choosing learning rate scheduling and batch size 66

B.2 Optimising students for each downstream task 69
B.2.1 Choosing embedding type and mode 69
B.2.2 Choosing student size . 72

C Details of model analysis 77

Chapter 1

Introduction

1.1 Motivation

Natural language processing (NLP) is concerned with using computational techniques
to process and analyse human language: for instance, to automatically compute various
grammatical properties of a sentence or to analyse its meaning. Since the early 2010s,
this area has seen significant improvements due to powerful machine learning methods,
especially large artificial neural networks.

In 2017, a new type of neural model was proposed: the Transformer (Vaswani et al., 2017).
Since then, numerous Transformer variants were developed (Radford et al., 2018; Devlin
et al., 2019; Lan et al., 2019; Liu et al., 2019; Conneau and Lample, 2019) – many of them
improving the state-of-the-art results on various NLP tasks1. However, these successful
models are very large (with hundreds of millions of learnable parameters), which makes
them computationally expensive and slow. This limits applications of such models outside
of research, in scenarios like real-time sentence processing for human-bot conversations2.

In an effort to address this downside, a recent stream of research has focused on making
Transformers – especially the widely used BERT model (Devlin et al., 2019) – smaller
and faster (Michel et al., 2019; Cheong and Daniel, 2019). This includes my own work
(Sucik, 2019). Primarily, variations on the teacher-student knowledge distillation approach
(Bucila et al., 2006) have been used to successfully compress BERT, see Sun et al. (2019b);
Mukherjee and Awadallah (2019); Tang et al. (2019b,a); Jiao et al. (2019); Sanh et al.
(2019). In knowledge distillation, a large, trained model is used as a teacher, and a smaller
student model learns by observing and trying to mimic the teacher’s prediction patterns.

Using knowledge distillation, BERT can be made several times smaller without signifi-
cant loss of accuracy. While numerous variants of this technique have been successfully
developed, there is little understanding of the nature of knowledge distillation: How and
what kinds of the large model’s knowledge are best learned by the student, and how this

1See the leaderboard of the popular GLUE benchmark (Wang et al., 2018) at gluebenchmark.com/
leaderboard, accessed April 15, 2020.

2Take an automated customer support system – a bot. Each customer message gets processed. If
the processing model is slow, multiple model instances have to be deployed in order to handle a large
number of conversations at once, which in turn requires more resources.

1

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard

Chapter 1. Introduction 2

depends on the architecture of the teacher and student models. This gap in understand-
ing is in contrast with the lot of research in understanding the internal properties and
linguistic capabilities of BERT (Jawahar et al., 2019; Tenney et al., 2019a; Kovaleva et al.,
2019; Lin et al., 2019; Rogers et al., 2020). I argue that it is also important to have a good
understanding of knowledge distillation as a tool, and of the smaller and faster models
eventually produced by applying this tool to BERT.

1.2 Aims and contributions

In this work, I try to better understand knowledge distillation by exploring its use for
knowledge transfer from BERT into architecturally diverse students, on various NLP
tasks.

This is further broken down into three aims:

• Explore the effectiveness of knowledge distillation for very different NLP tasks.
The chosen tasks focus on identifying the sentiment, intent, and linguistic accept-
ability of single sentences.

I show that the specific knowledge distillation approach of Tang et al. (2019a) can be
used to distil BERT into extremely small students – several thousand times smaller
and faster – on two of the NLP tasks. By characterising each task in terms of
the linguistic capabilities it requires, I explain the students’ inability to match their
teacher on the linguistic acceptability task.

• Explore how distilling knowledge from BERT varies when using different student ar-
chitectures. In particular, I use a down-scaled BERT student architecturally similar
to the teacher, and a BiLSTM student used previously by Tang et al. (2019b,a),
very different from the teacher.

Both student models are shown to behave similarly. As a novel way of initialising
the student models, I use trained sub-word embeddings extracted from the teacher
model, and compare them to widely used word embeddings.

• Explore the linguistic knowledge present in the teacher and how successfully it is
learned by the students. A previously proposed probing approach (Conneau et al.,
2018) is used for measuring and localising diverse linguistic skills within the models.
Secondly, I use a mostly qualitative approach to mine insights from the models’
decisions and from the confidence with which the decisions are made.

I observe that the extent to which the teacher and student models behave similarly
depends on the task. Further, for each task, I describe examples which are easy
or difficult for the models to classify, and conclude that, in general, the most so-
phisticated semantic skills are not learnt well by the students. Finally, I show that
a model can contain residual language knowledge not needed for the NLP task, and
I demonstrate how model probing can help explain the source of such knowledge.

Chapter 2

Background

In this chapter, the Transformer models are introduced and set into the historical context;
knowledge distillation is introduced, in particular its recent applications in NLP; and
an overview of the most relevant work in model understanding is given.

2.1 NLP before Transformers

By the very nature of natural language, its processing has always meant processing se-
quences of variable length: be it written phrases or sentences, words (sequences of char-
acters), spoken utterances, sentence pairs, or entire documents. Very often, NLP tasks
boil down to making simple decisions about such sequences: classifying sentences based
on their intent or language, assigning a score to a document based on its formality, de-
ciding whether two given sentences form a meaningful question-answer pair, or predicting
the next word of an unfinished sentence.

As early as 2008, artificial neural networks started playing a key role in NLP: Collobert
and Weston (2008)1 successfully trained a deep neural model to perform a variety of tasks
from part-of-speech tagging to semantic role labelling. However, neural machine learning
models are typically suited for tasks where the dimensionality of inputs is known and
fixed. Thus, it comes as no surprise that NLP research has focused on developing better
models that encode variable-length sequences into fixed-length representations. If any
sequence (e.g. a sentence) can be embedded as a vector in a fixed-dimensionality space,
a simple classification model can be learned on top of these vectors.

One key step in the development of neural sequence encoder models has been the idea
of word embeddings: rich, dense, fixed-length numerical representations of words. When
viewed as a lookup table – one vector per each supported word – such embeddings can be
used to “translate” input words into vectors which are then processed further. Mikolov
et al. (2013) introduced an efficient and improved way of learning high-quality word
embeddings: word2vec. The embeddings are learnt as part of the parameters of a larger
neural network. The network is forced to learn two tasks: 1) given an incomplete sentence,
predicting its next word, and 2) given a word from a sentence, predicting the words

1See also Collobert et al. (2011).

3

Chapter 2. Background 4

preceding the given one in the same sentence2. Such training can easily leverage large
amounts of unlabelled text data and the embeddings learn to capture various properties
from a word’s morphology to its semantics. The released word2vec embeddings became
very popular due to their easy use and good performance (influential work using word2vec
includes Lample et al. (2016); Kiros et al. (2015); Dos Santos and Gatti (2014); Kusner
et al. (2015)).

While word embeddings were a breakthrough, they themselves do not address the issue
of encoding a sequence of words into a fixed-size representation. This is where Recurrent
neural networks (RNNs) (Rumelhart et al., 1987) come into play. Recurrent models
process one word at a time (see Fig. 2.1) while updating an internal (“hidden”) fixed-size
representation of the text seen so far. Once the entire sequence is processed, the hidden
representation (also called “hidden state”) can be output and used to make a simple
prediction.

RNN

"how"

RNN

"are"

RNN

"you"

t t+1 t+2

Figure 2.1: A recurrent neural network (RNN) consumes at each timestep one input word. Then, it
produces a single vector representation of the inputs.

A common downside of RNNs is that they “forget” over longer sequences. This issue is ad-
dressed by introducing learnable gates, an idea which soon led to a recurrent model called
the Long Short-Term Memory network (LSTM) (Hochreiter and Schmidhuber, 1997).
An LSTM unit has a memory cell and learns to selectively add parts of the input into
the memory, forget parts of the memory, and output parts of it (see Fig. 2.2). Long after
being proposed in 1997, LSTMs gained popularity in NLP – especially in text processing
(see e.g. Mikolov et al. (2010) and Graves (2013)).

As various recurrent models started dominating NLP, one particularly influential archi-
tecture emerged, addressing tasks such as machine translation, where the output is a new
sequence rather than a simple decision. This was the encoder-decoder architecture (first
described by Hinton and Zemel (1994), later re-introduced in the NLP context by Kalch-
brenner and Blunsom (2013) and Sutskever et al. (2014)), see Fig. 2.3. It uses a recurrent
encoder to turn an input sentence into a single vector, and a recurrent decoder to generate
an output sequence based on the vector.

Bahdanau et al. (2015) improved encoder-decoder models by introducing the concept of
attention. The attention module helps the decoder produce better output by selectively
focusing on the most relevant encoder hidden states at each decoder timestep. This is
depicted in Fig. 2.4, showing the decoder just about to output the second word (“estás”).
The steps (as numbered in the diagram) are:

2These are the so-called Continuous bag-of-words (CBOW) and Skip-gram (SG) tasks, respectively.

Chapter 2. Background 5

"how"

t+1

RNN
ht

ht+1

"how"

t+1

LSTM
ct

ht+1

ct+1

ht

F

U

O

Figure 2.2: Comparing the internals of a vanilla RNN and an LSTM. The latter has three gates (shown as⊗
) – the forget gate F , the update gate U , and the output gate O. c is the memory cell, h is the internal

(hidden) state which can be used as the output at any timestep. With is shown a learnable non-linear
transformation.

LSTM

"how"

LSTM

"are"

LSTM

"you"

encoder

LSTM LSTM

decoder

"cómo" "estás"

<start>

Figure 2.3: An encoder-decoder model for machine translation. Notice how the decoder initially takes as
input the special <start> token and at later time consumes the previous output word.

1. the decoder’s hidden state passed to the attention module,

2. the intermediate hidden states of the encoder also passed to the attention module,

3. the attention module, based on information from the decoder’s state, selecting rele-
vant information from the encoder’s hidden states and combining it into the atten-
tional context vector,

4. the decoder combining the last output word (“cómo”) with the context vector and
consuming this information to better decide which word to output next.

The attention can be described more formally3: First, the decoder state hD is processed
into a query q using a learnable weight matrix WQ:

q = hDWQ (2.1)

and each encoder state h(i)
E (i being the input position or encoder timestep) is used to

produce the key and value vectors, k(i) and v(i):

k(i) = h(i)
E WK , v(i) = h(i)

E WV . (2.2)
3My description does not exactly follow the original works of Bahdanau et al. (2015) and Luong et al.

(2015). Instead, I introduce concepts that will be useful in later sections of this work.

Chapter 2. Background 6

LSTM

"how"

LSTM

"are"

LSTM

"you"

encoder

LSTM LSTM

decoder

"cómo" "estás"

<start>

attention

+

1

2

3

4

Figure 2.4: An encoder-decoder model for machine translation with added attention mechanism.

Then, the selective focus of the attention is computed as an attention weight w(i) for each
input position i, by combining the query with the i-th key:

w(i) = q>k(i) . (2.3)

The weights are normalised using softmax and used to create the context vector c as
a weighted average of the values:

c=
∑

i

a(i)v(i) where a(i) = softmax(w(i)) = exp(w(i))∑
j exp(w(j))

. (2.4)

Note that WQ, WK , WV are matrices of learnable parameters, optimised in training
the model. This way, the attention’s “informed selectivity” improves over time.

For about 4 years, recurrent models with attention were the state of the art in many NLP
tasks. However, as we will see, the potential of attention reached far beyond recurrent
models.

2.2 Transformer-based NLP

2.2.1 Transformers

We saw how the attention mechanism can selectively focus on parts of a sequence to ex-
tract relevant information from it. This raises the question of whether processing the in-
puts in a sequential fashion with the recurrent encoder is still needed. In particular, RNN
models are slow as a result of this sequentiality, and are hard to parallelise. In their
influential work, Vaswani et al. (2017) proposed an encoder-decoder model based solely
on attention and fully parallelised: the Transformer. The core element of the model is
the self-attention mechanism, used to process all input words in parallel.

In particular, a Transformer model typically has multiple self-attention layers, each layer
processing separate representations of all input words. Continuing with the three-word
input example from Fig. 2.4, a high-level diagram of the workings of a self-attention layer

Chapter 2. Background 7

is shown in Fig. 2.5. Importantly, the input word representations evolve from lower to
higher layers such that they consider not just the one input word, but also all other words
– the representation becomes contextual (also referred to as a contextual embedding of
the word within the input sentence).

h
l

(0)
h
l

(1)
h
l

(2)

h
l+1

(0)
h
l+1

(1)
h
l+1

(2)

self-attention layer

Figure 2.5: A high-level diagram of the application of self-attention in Transformer models. Three hidden
states are shown for consistency with the length of the input shown in Fig. 2.4; in general, the input length
can vary.

As for the internals of self-attention, the basic principle is very similar to standard atten-
tion. Self-attention too is used to focus on and gather relevant information from a sequence
of elements, given a query. However, to produce a richer contextual embedding h(i)

l+1 of
the i-th input word in layer l+ 1, self-attention uses the incoming representation h(i)

l for
the query, and considers focusing on all representations in layer l, including h(i)

l itself.
Fig. 2.6 shows this in detail for input position i= 1. Query q(1) is produced and matched
with every key in layer l (i.e. k(0), . . . , k(2)) to produce the attention weights. These
weights quantify how relevant each representation h(i)

l is with respect to position i = 1.
Then, the new contextual embedding h(i)

l+1 is constructed as a weighted sum of the values
v(0), . . . , v(2) (same as constructing the context vector in standard attention).

Notice that, even though each contextual embedding considers all input positions, the next-
layer contextual embeddings h(0)

l+1, . . . , h
(2)
l+1 can be computed all at the same time, in

parallel: First, the keys, queries and values for all input positions are computed; then,
the attention weights with respect to each position are produced; finally, all the new rep-
resentations are produced. It is this parallelism that allows Transformer models to run
faster. As a result, they can be much bigger (and hence create richer input representa-
tions) than recurrent models while taking the same time to train.

Due to their parallel nature, self-attentional layers have no notion of an element’s position
within the input sequence. This means no sensitivity to word order. (Recurrent models
sense this order quite naturally because they process input text word by word.) To
alleviate this downside of self-attention, Transformers use positional embeddings. These
are artificially created numerical vectors added to each input word, different across input
positions, thus enabling the model’s layers to learn to be position- and order-sensitive.

As an additional improvement of the self-attentional mechanism, Vaswani et al. intro-

Chapter 2. Background 8

WK WVWQ

k
(1)

q
(1)

v
(1)

a
(1)

a
(2)
v
(2)

a
(1)
v
(1)

a
(0)
v
(0)

h
l

(1)

h
l+1

(1)

query q
(1)

to be

matched

with k
(2)

query q
(1)

to be

matched

with k
(0)

Figure 2.6: The internals of self-attention, illustrated on creating the next-layer hidden representation of
the input position i = 1, given all representations in the current layer (previous, current, and following).
Note that ⊗ stands for multiplication (where the multiplication involves a learnable matrix like WK , this is
written next to the ⊗), and ⊕ denotes summation.

duce the concept of multiple self-attention heads. This is very similar to having multiple
instances of the self-attention module in Fig. 2.6, each instance being one head and com-
puting its own queries, keys and values. The motivation behind multiple self-attention
heads is to enable each head a to learn different “focusing skills” by learning its own WQ,a,
WK,a, WV,a. Each head produces its own output4:

Oatt,a = softmax(qk√
dk

)v = softmax((h>l WQ,a)(h>l WK,a)√
dk

)(h>l WV,a) (2.5)

which matches Fig. 2.6 (but notice the detail of the additional scaling by 1√
dk

, introduced
by Vaswani et al., where dk is the dimensionality of the key). The outputs of the A individ-
ual attentional heads are then concatenated and dimensionality-reduced with a trainable
linear transformation WAO, to produce the final output, which replaces hl+1 in Fig. 2.6:

Oatt = [Oatt,1, . . . , Oatt,A]WAO . (2.6)

Besides the self-attention-based architecture, there is one more important property that
makes today’s Transformer models perform so well on a wide variety of NLP tasks: the way
these models are trained. First used for Transformers by Radford et al. (2018)5, the gen-
eral procedure is:

4Here, q, k, v, h are column vectors.
5The idea was previously used with recurrent models by Dai and Le (2015).

Chapter 2. Background 9

1. Unsupervised pre-training: The model is trained on one or more tasks, typically
language modelling, using huge training corpora. For example, Radford et al. pre-
train their model to do next word prediction (the standard language modelling task)
on a huge corpus of over 7,000 books.

2. Supervised fine-tuning: The pre-trained model is trained on a concrete dataset to
perform a desired downstream task, such as predicting the sentiment of a sentence,
translating between languages, etc.

This two-step procedure is conceptually similar to using pre-trained word embeddings. In
both cases, the aim is to learn general language knowledge and then use this as a starting
point for focusing on a particular task. However, in this newer case, the word representa-
tions learned in pre-training are better tailored to the specific architecture, and they are
inherently contextual – compared to pre-trained word embeddings like word2vec which
are typically context-insensitive.

Importantly, pre-trained knowledge makes models more suitable for downstream tasks
with limited amounts of labelled data. The model no longer needs to acquire all the de-
sired knowledge just from the small dataset; it contains pre-trained high-quality general
language knowledge which can be reused in various downstream tasks. This means that
large, powerful Transformer models become more accessible: They are successfully appli-
cable to a wider array of smaller tasks than large models that have to be trained from
scratch.

2.2.2 BERT

Perhaps the most popular Transformer model today is BERT (Bidirectional Encoder
Representations from Transformers), proposed by Devlin et al. (2019). Architecturally, it
is a sequence encoder, hence suited for sequence classification tasks. While being heavily
based on the original Transformer (Vaswani et al., 2017), BERT also utilises a number of
further ideas:

1. The model learns bidirectional representations: It can be trained on language mod-
elling that is not next-word prediction (prediction given left context), but word
prediction given both the left and the right context.

2. It uses two very different pre-training classification tasks:

(a) The masked language modelling (MLM) task encourages BERT to learn good
contextual word embeddings. The task itself is to correctly predict the token at
a given position in a sentence, given that the model can see the entire sentence
with the target token(s) masked out6, replaced with a different token, or left
unchanged.

(b) The next-sentence prediction (NSP) task encourages BERT to learn good sentence-
level representations. Given two sentences, the task is to predict whether they
formed a consecutive sentence pair in the text they came from, or not.

6I.e. replaced with the special [MASK] token.

Chapter 2. Background 10

The pre-training was carried out on text from books and from the English Wikipedia,
totalling to 3,400 million words (for details see Devlin et al. (2019)). The MLM and
NSP tasks were both used throughout the pre-training, forcing the model to learn
both at the same time.

3. The inputs are processed not word by word, but are broken down using a fixed
vocabulary of sub-word units called wordpieces (conceptually introduced by Sennrich
et al. (2016), this particular variant created by Wu et al. (2016)). This way, BERT
can better deal with rare words – by assembling them from pieces7. The tokeniser
module of BERT uses the wordpiece vocabulary of Wu et al. to tokenise (segment)
the input text before it is further processed. Fig. 2.7 shows an example; notice
how my surname (“Sucik”) gets split into three wordpieces whereas the other, much
more common words are found in the wordpiece vocabulary.

4. To enable the different pre-training tasks as well as two-sentence inputs, BERT uses
a special input sequence format, illustrated in Fig. 2.7. Given the two input sen-
tences SA, SB, they are concatenated and separated by the special [SEP] token.
The overall sequence is prepended with the [CLS] (classification) token. To explic-
itly capture that certain tokens belong to SA and others to SB, simple token type
embeddings (which only take on two different values) are added to the token embed-
ding at each position. Then, for tasks like NSP, only the output representation of
the [CLS] token (i.e. o0) is used, whereas for token-level tasks like MLM the output
vector from the desired position is used (in Fig. 2.7, the MLM task would use o3 to
predict the correct token at this position).

BERT's layers

[CLS] how are [MASK] , sam su ##ci ##k ? [SEP] good , you ?

 o0 o1 o2 o3 o4 o6 o7 o8 o10 o11 o12 o13 o14 o15 o16

for

sentence-level

classification

for

token-level

classification

Figure 2.7: BERT’s handling of input for sentence-level and token-level tasks. The input sentences
(SA =How are you, Sam Sucik? and SB =Good, you?) are shown as split by BERT’s tokeniser, with
the first instance of “you” masked out for MLM.

The overall architecture of BERT is shown in Fig. 2.8. The tokeniser also adds the special
tokens like [CLS] and [SEP] to the input, while the trainable token embedding layer also
adds the positional embedding and the token type embedding to the wordpiece embedding
of each individual token. The pooler takes the appropriate model output (for sequence
level classification the first output o0 as discussed above) and applies a fully-connected
layer with the tanh activation function. The external classifier is often another fully-

7In word-level models, words that are not found in the model’s vocabulary are replaced with a special
UNKNOWN token, which means disregarding any information carried by the words.

Chapter 2. Background 11

connected layer with the tanh activation, producing the logits8. These get normalised
using softmax to produce a probability distribution over all classes. The most probable
class gets output as the model’s prediction.

classifier

wordpiece tokeniser

encoder layers

token embedding layer

pooler

prediction

inputs

BERT

Figure 2.8: High-level overview of the modules that make up the architecture of BERT as used for
sequence-level classification.

To complete the picture of BERT, Fig. 2.9 shows the internals of an encoder layer. Besides
the multi-headed self-attention submodule, it also contains the fully-connected submod-
ule. This uses a very wide intermediate fully-connected transformation with parame-
ters WI , inflating the representations up to the dimensionality dI , and the layer output
fully-connected transformation with parameters WO, which reduces the dimensionality.
Each submodule is also by-passed by a residual connection (shown with dashed lines).
The residual information is summed with the submodule’s output, and layer normalisa-
tion is applied to the sum. Note that this structure is not new in BERT; it was used
already by the original Transformer of Vaswani et al. (2017). Conveniently, Transform-
ers are designed such that all of the intermediate representations (especially the encoder
inputs and outputs, and the self-attention layer inputs and outputs) have the same di-
mensionality dh – this makes any residual by-passing and summing easy.

When training BERT, artificial, intentional corruption of internal representations is done
using dropout, which acts as a regulariser, making the training more robust. In particular,
dropout is applied to the outputs of the embedding layer, to the computed attention
weights, just before residual summation both to the self-attention layer output and to
the fully connected layer output (see Fig. 2.9 for the summation points), and to the output

8For a classifier, the logits are the (unnormalised) predicted class probabilities.

Chapter 2. Background 12

encoder layer

multi-headed self-attention

layer

fully

connected

layer

layer inputs

WI

WO

layer outputs

Figure 2.9: The modules making up one encoder layer in BERT; residual connections highlighted by
using dashed lines.

⊗
marks learnable neural layers,

⊕
marks summation (in this case used to combine

residual information with layer outputs).

of the pooler module (before applying the external classifier, see Fig. 2.8). The typical
dropout rate used is 0.1.

For updating the learnable parameters during training, BERT uses the popular Adam
learning algorithm (Kingma and Ba, 2015), which combines two main ideas:

1. Adaptive learning rates, meaning that each learnable model parameter can have its
own “pace of learning”. In Adam, this individual pace is based on the observed
recent gradients of the overall model error with respect to the single parameter.

2. Momentum, a mechanism used to deal with complex, stochastic error surfaces, by
preferring only that direction in the parameter space, which leads to stable im-
provements (and dispreferring directions which only result in short-term, stochastic
improvements). Two decay rates β1 and β2 realise the momentum – they control
how quickly and noisily or slowly and smoothly the adaptation of the learning rate
happens. In practice, the high values β1 = 0.9 and β2 = 0.999 are often used (as
recommended by Kingma and Ba), meaning relatively slow and smooth adaptation.

Originally, pre-trained BERT was released in two sizes: BERTBase with 110 million pa-
rameters, 12 encoder layers and 12-head self-attention, and BERTLarge with 340 million
parameters, 24 encoder layers and 16-head self-attention. The models quickly became pop-
ular, successfully applied to various tasks from document classification (Adhikari et al.,
2019) to video captioning (Sun et al., 2019a). Further pre-trained versions were released
too, covering, for example, the specific domain of biomedical text (Lee et al., 2019) or
multilingual text (Pires et al., 2019).

2.2.3 Newer and larger Transformer models

Following the success of the early Transformers and BERT (Vaswani et al., 2017; Radford
et al., 2018; Devlin et al., 2019), many further model variants started emerging, including:

Chapter 2. Background 13

• The OpenAI team releasing GPT-2 (Radford et al., 2019), a larger and improved
version of their original, simple Transformer model GPT (Radford et al., 2018).

• Conneau and Lample (2019) introducing XLM, which uses cross-lingual pre-training
and is thus better suited for downstream tasks in different languages.

• Transformer-XL (Dai et al., 2019), which features an improved self-attention that
can handle very long contexts (across multiple sentences/documents).

All these open-sourced, powerful pre-trained models were a significant step towards more
accessible high-quality NLP (in the context of downstream tasks with limited data). How-
ever, the model size – often in 100s of million trainable parameters – meant these models
could not be applied easily in practice (outside of research): They were memory-hungry
and slow.

Naturally, this inspired another stream of research: Compressing large, well-performing
Transformer models (very often BERT) to make them faster and resource-efficient. I turn
my focus to one compression method that worked particularly well so far: the teacher-
student knowledge distillation.

2.3 Teacher-student knowledge distillation

2.3.1 A brief introduction to knowledge distillation

Knowledge distillation was introduced by Bucila et al. (2006) as a way of knowledge
transfer from large models into small ones. The aim is to end up with a smaller – and
hence faster – yet well-performing model. The steps are 1) to train a big neural classifier
model (also called the teacher), 2) to let a smaller neural classifier model (the student)
learn from it – by learning to mimic the teacher’s behaviour. Hence also the name teacher-
student knowledge distillation, often simply knowledge distillation.

There are different ways of defining the teacher’s “behaviour” which the student learns
to mimic. Originally, this was realised as learning to mimic the teacher’s predictions:
A dataset would be labelled by the teacher, and the student would be trained on these
labels (which are in this context referred to as the hard labels). The dataset used for train-
ing the student (together with the teacher-generated labels) is referred to as the transfer
dataset.

Later, Ba and Caruana (2014) introduced the idea of learning from the teacher-generated
soft labels, which are the teacher’s logits. The idea is to provide the student with richer
information about the teacher’s decisions: While hard labels only express which class had
the highest predicted probability, soft labels also describe how confident the prediction
was and which other classes (and to what extent) the teacher was considering for a given
example.

When soft labels were first used, the student’s training loss function was the mean squared

Chapter 2. Background 14

distance between the student’s and the teacher’s logits:

EMSE =
C∑

c=1
(z(c)

t − z(c)
s)2 (2.7)

where C is the number of classes and zt, zs are the teacher’s and student’s logits. Hinton
et al. (2015) proposed a more general approach, addressing the issue of overconfident
teachers with very sharp logit distributions. The issue with such distributions is that
they carry little additional information beyond the hard label (since the winning class
has a huge probability and all others have negligibly small probabilities). To “soften”
such sharp distributions, Hinton et al. proposed using the cross-entropy loss (2.8) in
combination with softmax with temperature (2.9) (instead of the standard softmax) in
training both the teacher and the student.

ECE =
C∑

c=1
z

(c)
t logz(c)

s (2.8)

pc = exp(z(c)/T)∑C
c′=1 exp(z(c′)/T)

(2.9)

The temperature parameter T determines the extent to which the distribution will be
“unsharpened” – two extremes being the completely flat, uniform distribution (for T →∞)
and the maximally sharp distribution9 (for T → 0). When T > 1, the distribution gets
softened and the student can extract richer information from it. Today, using soft labels
with the cross-entropy loss with temperature is what many refer to simply as knowledge
distillation.

Since 2015, further knowledge distillation variants have been proposed, enhancing the vanilla
technique in various ways, for example:

• Papamakarios (2015, p. 13) points out that mimicking teacher outputs can be
extended to mimicking the derivatives of the teacher’s loss with respect to the inputs.
This is realised by including in the student’s loss function also the term: ∂os

∂x −
∂ot
∂x

(x being an input, e.g. a sentence, and o being the output, e.g. the predicted class).

• Romero et al. (2015) proposed to additionally match the teacher’s internal, interme-
diate representations of the input. Huang and Wang (2017) achieved this by learning
to align the distributions of neuron selectivity patterns between the teacher’s and
the student’s hidden layers. Unlike standard knowledge distillation, this approach
is no longer limited only to classifier models with softmax outputs (see the approach
of Hinton et al. (2015) discussed above).

• Sau and Balasubramanian (2016) showed that learning can be more effective when
noise is added to the teacher logits.

• Mirzadeh et al. (2019) showed that when the teacher is much larger than the stu-
dent, knowledge distillation performs poorly, and improved on this by “multi-stage”
distillation: First, knowledge is distilled from the teacher into an intermediate-size
“teacher assistant” model, then from the assistant into the final student.

9I.e. having the preferred class’s probability 1 and the other classes’ probabilities 0.

Chapter 2. Background 15

2.3.2 Knowledge distillation in NLP

The knowledge distillation research discussed so far was tied to the image processing
domain. This is not surprising: Image processing was the first area to start taking ad-
vantage of deep learning, and bigger and bigger models had been researched ever since
the revolutional AlexNet (Krizhevsky et al., 2012).

In NLP and in text processing in particular, the (recurrent) models were moderately sized
for a long time, not attracting much research in model compression. Still, one early notable
work was on adapting knowledge distillation for sequence-to-sequence models (Kim and
Rush, 2016), while another pioneering study (Yu et al., 2018) distilled a recurrent model
into an even smaller one – to make it suitable for running on mobile devices.

Understandably, the real need for model compression started very recently, when the large
pre-trained Transformer models became popular. Large size and low speed seemed to be
the only downside of these – otherwise very successful and accessible – models.

Perhaps the first decision to make when distilling large pre-trained models is at which
point to distil. In particular, one can distil the general knowledge from a pre-trained
teacher and use such a general student by fine-tuning it on downstream tasks, or one can
fine-tune the pre-trained teacher on a task and then distil this specialised knowledge into
a student model meant for the one task only. Each of these approaches has its advantages
and disadvantages.

In the first scenario (distilling pre-trained knowledge), a major advantage is that the dis-
tillation happens once and the small student can be fine-tuned quickly for various down-
stream tasks. Since the distillation can be done on the same data that the teacher was
pre-trained on – large unlabelled text corpora –, lack of transfer data is not a concern.
A possible risk is that the large amount of general pre-trained language knowledge will
not “fit” into the small student, requiring the student itself to be relatively large. Sanh
et al. (2019) took this approach and, while their student can be successfully fine-tuned
for a wide range of tasks, it is only 40% smaller than the BERTBase teacher.

In the second scenario, only the task-specific knowledge needs to be transferred to the stu-
dent – potentially allowing smaller students. However, teacher fine-tuning and distillation
have to be done anew for each task and this is resource-hungry. Additionally, there may
be a lack of transfer data if the downstream task dataset is small. Various ways of ad-
dressing this issue by augmenting small datasets have been proposed, with mixed success.
Mukherjee and Awadallah (2019) use additional unlabelled in-domain sentences with la-
bels generated by the teacher – this is limited to cases where such in-domain data are
available. Tang et al. (2019b) create additional sentences using simple, rule-based pertur-
bation of existing sentences from the downstream dataset. Finally, Jiao et al. (2019) and
Tang et al. (2019a) use large Transformer models generatively to create new sentences.
In the first case, BERT is applied repeatedly to an existing sentence, changing words into
different ones one by one and thus generating a new sentence. In the second case, new
sentences are sampled token-by-token from a GPT-2 model fine-tuned on the downstream
dataset with the next-token-prediction objective.

Clearly, each approach is preferred in a different situation: If the requirement is to com-
press the model as much as possible, and there is enough transfer data, distilling the fine-

Chapter 2. Background 16

tuned teacher is more promising. If, on the other hand, one wants to make available
a re-usable, small model, then distilling the broader, pre-trained knowledge is preferred.

2.4 Interpreting NLP models

Neural models are by their very nature opaque or even black boxes, and not properly
understanding them is a serious concern. Despite the typical preference of performance
over transparency, recently, the demand for explainable artificial intelligence (XAI) has
been increasing, as neural models become widely used. (Besides the DARPA XAI pro-
gram10, conferences like the International Joint Conference on Artificial Intelligence (IJ-
CAI), the SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), and
the Conference on Computer Vision and Pattern Recognition (CVPR) now feature dedi-
cated XAI workshops11.)

The area of image processing has seen the most attempts at interpreting neural models
and their behaviour. One reason being that visiual tasks are often doable and easy to
reason about for researchers and for humans in general. Various techniques shed light
into the behaviour of image classifiers; for instance, techniques for creating images that
maximally excite certain neurons (Simonyan et al., 2014), or highlighting those parts of
an image that a particular neuron “focuses” on (Zeiler and Fergus, 2014).

In NLP, interpretation is more difficult. Additionally, most research in interpreting NLP
models started only relatively recently, after large neural models became widely used.
In their review, Belinkov and Glass (2019) note that many methods for analysing and
interpreting models are simply adapted from image processing, especially the approach
of visualising a single neuron’s focus, given an input. In attentional sequence-to-sequence
models, the attention maps can be visualised to explore the soft alignments between input
and output words (see, e.g., Strobelt et al. (2019)). However, these methods are mostly
qualitative and suitable for exploring individual input examples, thus not well suited for
drawing statistically backed conclusions or for quantitative model comparison.

More quantitative and NLP-specific are the approaches that explore the linguistic knowl-
edge present in a model’s internal representations. Most often, this is realised by probing
the representations for specific linguistic knowledge: trying to automatically recover from
them specific properties of the input. When such recovery works well, the representations
must have contained the linguistic knowledge tied to the input property in question. First
used by Shi et al. (2016) for exploring syntactic knowledge captured by machine trans-
lation models, this general approach was quickly adopted more widely. Adi et al. (2017)
explored sentence encodings from recurrent models by probing for simple properties like
sentence length, word content and word order. More recently, Conneau et al. (2018) cu-
rated a set of 10 probing tasks ranging from easy surface properties (e.g. sentence length)
through syntactic (e.g. the depth of the syntactic parse tree) to semantic ones (e.g. identi-
fying semantically disrupted sentences). Focusing on Transformers, Tenney et al. (2019b)
proposed a set of edge probing tasks, examining how much contextual knowledge about
an entire input sentence is captured within the contextual representation of one of its

10www.darpa.mil/program/explainable-artificial-intelligence
11See sites.google.com/view/xai2019/home, xai.kdd2019.a.intuit.com/, explainai.net/.

https://www.darpa.mil/program/explainable-artificial-intelligence
https://sites.google.com/view/xai2019/home
https://xai.kdd2019.a.intuit.com/
https://explainai.net/

Chapter 2. Background 17

words. Their tasks correspond to the typical steps of a text processing pipeline – from
part-of-speech (POS) tagging to identifying dependencies and entities to semantic role
labelling. Tenney et al. (2019a) managed to localise the layers of BERT most important
for each of these “skills”. They showed that the ordering of these “centres of expertise”
within BERT’s encoder matches the usual low- to high-level order: from simple POS
tagging in the earlier layers to more complex semantic tasks in the last layers.

While the discussed approaches provide valuable insights, they merely help us intuitively
describe or quantify the kinds of internal knowledge/expertise present in the models.
Gilpin et al. (2018) call this level of model understanding interpretability – comprehend-
ing what a model does. However, they argue that what we should strive to achieve is
explainability: the ability to “summarize the reasons for neural network behavior, gain
the trust of users, or produce insights about the causes of their decisions”. In this sense,
today’s methods achieve only interpretability because they enable researchers to describe
but not explain – especially in terms of causality – the internals and decisions of the mod-
els. Still, interpreting models is an important step not only towards explaining them,
but also towards understanding the properties of different architectures and methods and
improving them.

2.5 Summary

Since around 2013, the area of NLP has been taking advantage of deep neural models.
With the introduction of Transformers, the models became even deeper and more power-
ful. Today’s pre-trained Transformer-based models like BERT make state-of-the-art NLP
relatively accessible, but the models are often too large and slow for practical applications.
Compressing such models has become an active research area, with knowledge distilla-
tion being a particularly successful compression technique. However, the self-attentional,
Transformer-based models, as well as compressing them, are still relatively young con-
cepts. More research is needed to better interpret the behaviour of models like BERT,
and to better understand the nature of the knowledge transfer from large Transformers
into smaller, compressed ones.

Chapter 3

Datasets

In this chapter, I introduce the different datasets used throughout the work:

1. To later experiment with models in the context of a wide range of NLP tasks, I use
different small downstream task datasets on which I train large Transformer
models.

2. For knowledge distillation from the large into smaller models, large transfer datasets
are used, created from the downstream datasets using data augmentation.

3. Finally, probing datasets are used for analysing the linguistic capabilities of
the large and the small models.

3.1 Downstream tasks

The downstream task datasets I use to fine-tune the teacher model. The tasks are chosen
to be diverse so that the knowledge distillation analysis later in this work is set in a wide
NLP context. At the same time, all the datasets are rather small and therefore well
representing the type of use case where pre-trained models like BERT are desirable due
to the lack of labelled fine-tuning data.

Today, perhaps the most widely used collection of challenging NLP tasks1 is the GLUE
benchmarking collection (Wang et al., 2018). This collection comprises 11 tasks which
enable model benchmarking on a wide range of NLP problems from sentiment analysis to
detecting textual similarity, all framed as single-sentence or sentence-pair classification.
Each task comes with an official scoring metric (such as accuracy or F1), labelled training
and evaluation datasets, and a testing dataset with labels not released publicly. The test-
set score accumulated over all 11 tasks forms the basis for the popular GLUE leaderboard2.

In this work, I use single-sentence classification tasks (i.e. not sentence-pair tasks). There-
fore, only two GLUE tasks are suitable for my purposes – the Corpus of Linguistic Accept-
ability (CoLA) and the Stanford Sentiment Treebank in its binary classification variant

1Challenging by the nature of the tasks and by the small dataset size.
2gluebenchmark.com/leaderboard

18

https://gluebenchmark.com/leaderboard

Chapter 3. Datasets 19

(SST-2). Additionally, I choose a third task to make my work cover the area of con-
versational language. This way, I build on my previous research in compressing BERT
for conversational tasks (Sucik, 2019), undertaken as part of an internship with Rasa3,
a company building open-source tools for conversational AI. The third dataset, called
Sara, focuses on classifying human messages (from human-bot conversations) according
to their intent.

3.1.1 Corpus of Linguistic Acceptability

The CoLA dataset (Warstadt et al., 2019) comprises roughly 8,500 training sentences,
1,000 evaluation and 1,000 testing sentences. The task is to predict whether a given
sentence represents acceptable English or not (binary classification). All the sentences are
collected from linguistic literature where they were originally hand-crafted to demonstrate
various linguistic principles and their violations.

The enormous variety of principles, together with many hand-crafted sentences that com-
ply with or violate a principle in a niche way, make this dataset very challenging even for
the state-of-the-art Transformer models. As a non-native speaker, I myself struggle with
some of the sentences, for instance:

• *The car honked down the road. (unacceptable4)

• Us, we’ll go together. (acceptable)

There are many examples which are easy for humans to classify but may be challenging
for models which have imperfect understanding of the real world. Sentences like “Mary
revealed himself to John.” require the model to understand that “Mary”, being a typical
female name, disagrees with the masculine “himself”.

The scoring metric is Matthew’s Correlation Coefficient (MCC) (Matthews, 1975), a cor-
relation measure between two binary classifications. The coefficient is also designed to
be robust against class imbalance, which is important because the dataset contains many
more acceptable examples than unacceptable ones5.

3.1.2 Stanford Sentiment Treebank

The SST-2 dataset (Socher et al., 2013) is considerably bigger than CoLA, with roughly
67,000 training examples, 900 evaluation and 1,800 testing examples. It contains sen-
tences and phrases from movie reviews collected on rottentomatoes.com. The main
SST dataset comes with human-created sentiment annotations on the continuous scale
from very negative to very positive. SST-2 is a simplified version with neutral-sentiment
phrases removed, only containing binary sentiment labels (positive and negative).

Unlike the hand-crafted examples in CoLA, many examples in SST-2 are not the best-
quality examples. In particular, sentences are sometimes split into somewhat arbitrary

3rasa.com
4The “*” is a standard way to mark ungrammatical sentences in linguistic literature.
5For details on the class imbalance, see Fig. A.1 in Appendix A.

https://rottentomatoes.com
https://rasa.com

Chapter 3. Datasets 20

segments6, such as:

• should have been someone else - (negative)

• but it could have been worse. (negative)

The labels are also sometimes unclear, see:

• american chai encourages rueful laughter at stereotypes only an indian-american
would recognize. (negative)

• you won’t like roger, but you will quickly recognize him. (negative)

Despite the problematic examples, most are straightforward (e.g. “delightfully cheeky” or
“with little logic or continuity”), making this task a relatively easy one. With accuracy
being the official metric, best models in the GLUE leaderboard score over 97%, very close
to the official human baseline of 97.8%7.

3.1.3 Sara

As the third task, I use an intent classification dataset created by Rasa, a start-up building
open-source tools for conversational AI8.

The dataset is named Sara after the chatbot deployed on the company’s website9. The Sara
chatbot is aimed for holding conversations with the website visitors on various topics, pri-
marily answering common questions about Rasa and the tools that it develops (the same
tools were used to build Sara). Simultaneously, the Sara dataset is used for most of re-
search at Rasa. To support diverse topics, Sara internally classifies each human message
as one of 57 intents and then generates an appropriate response. The Sara dataset is
a collection of human-generated message examples, each manually labelled with one of
the 57 intents, e.g.:

• what’s the weather like where you are? (ask weather)

• what is rasa actually (ask whatisrasa)

• yes please! (affirm)

• i need help setting up (install rasa)

• where is mexico? (out of scope)

For a list of all intents, explained and accompanied with real examples from the dataset,
see Tab. A.1 in Appendix A.

In the early days of the chatbot, it supported fewer intents, and several artificial examples
per intent were first hand-crafted by Rasa employees to train the initial version of Sara’s
intent classifier. After Sara was deployed, more examples were collected and annotated

6This is due to the use of an automated parser in creating the dataset.
7See the GLUE leaderboard at gluebenchmark.com/leaderboard
8For transparency: My co-supervisor for this work – Vladimir Vlasov – is a Rasa employee, and he

also supervised me during my Machine learning research internship with Rasa in the summer of 2019.
9See the bot in action at rasa.com/docs/getting-started/.

https://gluebenchmark.com/leaderboard
https://rasa.com/docs/getting-started/

Chapter 3. Datasets 21

from conversations with the website’s visitors10. Inspired by the topics that people tended
to ask about, new intent categories were added. Today, the dataset still evolves and can be
found – together with the implementation of Sara – at github.com/RasaHQ/rasa-demo.
It contains both the original hand-crafted examples as well as the (much more abundant)
examples from real conversations.

The Sara dataset version I use dates back to October 2019, when I obtained it from
Rasa and pseudonymised the data11. In particular, I removed any names of persons
and e-mail addresses in any of the examples, replacing them with the special tokens
__PERSON_NAME__ and __EMAIL_ADDRESS__, respectively. The dataset comprises roughly
4,800 examples overall, and was originally split into 1,000 testing examples and 3,800
training examples. I further split the training partition into training and evaluation, with
roughly 2,800 and 1,000 examples, respectively. All three partitions have the same class
distribution.

In line with how the dataset is used for research at Rasa, I use as the main scoring metric
the multi-class micro-averaged F1 score (F1micro), even though other reasonable metrics
exist. First of all, in the binary classification case, the F1 score balances two desirable
properties of any classifier: precision P and recall R: F1 = 2P R

P +R . P quantifies the purity of
reported positives: P = TP/(TP +FP), R quantifies the reported portion of all positives:
R=TP/(TP+FN) (where TP are true positives, FP are false positives, and FN are false
negatives). In classification with more than 2 classes, one can still compute the F1 score
with respect to each individual class (treating the multi-class classification as a collection
of binary classification decisions). Taking the average of such class-specific F1 scores leads
to the macro-averaged F1 metric:

F1macro = 1
C

∑
c

F1c = 1
C

∑
c

2PcRc

Pc +Rc
, C being the number of classes (3.1)

While this metric quantifies the F1 score on an “average” class, it does not account for
different class sizes. In particular, if there are many small classes with little data to learn
from and hence with low F1 scores, then the average F1 will be pulled down – even if
the classifier succeeds on most data, which belongs to several big classes. One way to deal
with these undesirable effects of class imbalance is to use the micro-averaged F1 score. As
its name suggests, it can be thought of as F1 averaged not on the macro level (classes),
but on the micro level (individual examples), where the F1 score for a single example is
1 for a correct prediction (this follows from the standard formula F1 = 2P R

P +R) and 0 for
an incorrect prediction (by definition):

F1micro = 1
N

∑
n

F1n = 1
N

∑
n

if correct 1
else 0

, N being the number of examples (3.2)

This score does take into account class imbalance because each example has “one vote”
in the averaging process. Therefore, it is well suited for situations where the classifier

10To get consent for such use of the conversations, each visitor was shown the following before starting
a conversation with Sara: “Hi, I’m Sara! By chatting to me you agree to our privacy policy.”, with a link
to rasa.com/privacy-policy/

11As a former employee of Rasa, I got access to the data under the NDA I had signed with the company.
I had permission from Rasa to use the pseudonymised data for this project; the use complied with
the ethical approval process of Rasa.

https://github.com/RasaHQ/rasa-demo
https://rasa.com/privacy-policy/

Chapter 3. Datasets 22

should perform well on many examples, not necessarily on many classes (as there can be
many classes that are insignificant). Additionally, the F1micro score has the same value
as accuracy.

3.2 Data augmentation for larger transfer datasets

As discussed in Sec. 2.3.2, knowledge distillation works best with large amounts of data
used as the transfer datasets. When the transfer dataset is small, it does not provide
enough opportunity for the teacher to “demonstrate its knowledge” to the student, and
the student learns little. Therefore, for each downstream task, I create a large transfer
dataset by “inflating” the small training portion of the corresponding downstream dataset
– by augmenting it with additional sentences. I then add teacher logits to such augmented
dataset, and use it to train the student models.

Tang et al. (2019a) demonstrated on several GLUE tasks that using an augmented train-
ing portion for distillation leads to much better student performance than using just
the original small training portion. For CoLA in particular, using just the small original
training set led to very poor student performance (see Table 1 in Tang et al.).

I take the augmentation approach that Tang et al. found to work the best: Generating
additional sentences using a GPT-2 model (Radford et al., 2019) fine-tuned on the training
set12. The steps for creating the transfer dataset from the training portion are:

1. Fine-tune the pre-trained GPT-2 model (the 345-million-parameter version) on
the training portion for 1 epoch (where an epoch is one complete pass through all
training examples) with the language-modelling objective (i.e. predicting the next
subword token given the sequence of tokens so far).

2. Sample from the model a large number of tokens to be used as the beginnings
(prefixes) of the augmentation sentences. This sampling can be done as one-step
next-token prediction given the special SOS (start-of-sentence) token.

3. Starting from each sampled prefix, generate an entire sentence token by token by
repeatedly predicting the next token using the GPT-2 model. The generation of
a sentence stops when the special EOS (end-of-sentence) token is generated or when
the desired maximum sequence length is reached – in this case 128 tokens.

4. Add the generated augmentation sentences to the original training data, and gen-
erate the teacher logits for each sentence.

For consistency with Tang et al. (2019a), I added 800,000 augmentation sentences to
the training data of each of the three downstream tasks, resulting in the transfer datasets
comprising roughly 808,500, 867,000, and 802,800 sentences for CoLA, SST-2, and Sara,
respectively.

12I used the code for Tang et al. (2019a) which is available at github.com/castorini/d-bert.

https://github.com/castorini/d-bert

Chapter 3. Datasets 23

3.3 Probing tasks

The probing tasks (discussed in Sec. 2.4) I use after knowledge distillation to analyse
the linguistic capabilities of the students and the teacher. In particular, I use the probing
suite curated by Conneau et al. (2018), consisting of 10 tasks13.

fine-tuned model

(e.g. BERT)

probing task

sentences

sentence

embeddings

probing

classifier

probing

scores

Figure 3.1: A high-level diagram of the probing process.

Each probing task is a collection of 120,000 labelled sentences, split into training (100,000),
evaluation (10,000) and test (10,000) set. The label refers to a property of the sentence,
such as the sentence’s length. The aim is to recover the property from an encoding of
the sentence, produced by the model being probed. Fig. 3.1 shows the basic workflow.
First, the model is used to produce an encoding of each sentence. Then, a light-weight
classifier is trained, taking the training sentences’ encodings as inputs and learning to
produce the labels. The evaluation sentence encodings are used to optimise the hyper-
parameters of the classifier. Finally, a probing score (accuracy) is produced on the test
encodings. The score quantifies how well the sentence property in question is recoverable
(and thus present) in the encodings. This serves as a proxy measure of the linguistic
knowledge tied to the property. If, for instance, the property to be recovered is the depth
of a sentence’s syntactic parse tree, the score hints at the model’s (un)capability to under-
stand (and parse) the syntax of input sentences. By extracting probing encodings from
different parts of a model (e.g. from different layers), the probing scores can additionally
serve as cues for localising the linguistic knowledge in question – one can observe how
the amount of this knowledge varies across different model parts and where it is most
concentrated.

Regarding the linguistic capabilities explored by the probing suite, each task falls into
one of three broad categories – surface properties, syntax, and semantics:

1. Surface information:

• Length is about recovering the length of the sentence. The labels are some-
what simplified: The actual sentence lengths grouped into 6 equal-width bins
– making this task a 6-way classification.

• WordContent is about identifying which words are present in the sentence.
A collection of 1000 mid-frequency words was curated, and sentences were

13The data, along with code for probing neural models, are publicly available as part of the Sen-
tEval toolkit for evaluating sentence representations (Conneau and Kiela, 2018) at github.com/
facebookresearch/SentEval.

https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval

Chapter 3. Datasets 24

chosen such that each contains exactly one of these words. The task is to
identify which one (1000-way classification).

2. Syntactic information:

• Depth is about classifying sentences by their syntactic parse tree depth, with
depths ranging from 5 to 12 (hence 8-way classification).

• BigramShift is about sensitivity to (un)natural word order – identifying sen-
tences in which the order of two randomly chosen adjacent words has been
swapped (binary classification). While syntactic cues may be sufficient to
identify an unnatural word order, intuitively, broken semantics can be another
useful signal – thus making this task both syntactic and semantic.

• TopConstituents is about recognising the top syntactic constituents – the nodes
found in the syntactic parse tree just below the S (sentence) node. This is
framed as 20-way classification, choosing from 19 most common top-constituent
groups + the option of “other”.

3. Semantic information:

• Tense is a binary classification task, identifying the tense (present or past) of
the sentence’s main verb (the verb in the main clause). At the first sight, this is
mainly a morphological task (in English, most verbs have the past tense marked
by the “-d/ed” suffix). However, the model first has to identify the main verb
within a sentence, which makes this task also syntactic and semantic.

• SubjNumber is about determining the number (singular or plural) of the sen-
tence’s subject (binary classification). Similar to the previous task, this one
(and the next one too) is arguably about both morphology and syntax/seman-
tics.

• ObjNumber is the same as SubjNumber, applied to the direct object of a sen-
tence.

• OddManOut is binary classification, identifying sentences in which a ran-
domly chosen verb or noun has been replaced with a different random verb or
noun. Presumably, the random replacement in most cases makes the sentence
semantically unusual or invalid (e.g. in “He reached inside his persona and
pulled out a slim, rectangular black case.” the word “persona” is clearly odd).
To make this task more difficult, the replacement word is chosen such that
the frequency of the bigrams in the sentence stays roughly the same. (Oth-
erwise, in many cases, the random replacement would create easy hints for
the probing classifier, in the form of bigrams that are very unusual.)

• CoordinationInversion works with sentences that contain two coordinate
clauses (typically joined by a conjunction), e.g. “I ran to my dad, but he was gone.”
In half of the sentences, the order of the two clauses was swapped, producing
sentences like: “He was gone, but I ran to my dad.” The task is to identify
the changed sentences (which are often semantically broken).

When choosing from the existing probing suites, I considered that of Tenney et al. (2019a)
as well. As the authors showed, their tasks and methods can effectively localise different

Chapter 3. Datasets 25

types of linguistic knowledge in a Transformer model like BERT. However, the task data
are not freely available, the tasks have a relatively narrow coverage with a heavy focus
on the most complex NLP tasks like entity recognition and natural language inference,
and the probing is done on single-token representations. The suite of Conneau et al., on
the other hand, is publicly available, better covers the easier tasks (surface and syntactic
information), and examines whole-sentence representations. One interesting direction
for future work is to use both of these probing suites, compare the results they lead to
(in particular their agreement), and explore the extent to which the different probing
approaches complement each other.

3.4 Summary

I have introduced the three different types of data used in this work. These types also
define the skeleton of my experiments and analyses:

1. First, I train one teacher model for each of the three downstream datasets.

2. Then, each teacher teaches two students, using the transfer dataset as the “carrier”
of the teacher knowledge.

3. Finally, the linguistic skills of the students as well as the teachers are measured and
analysed using the probing tasks.

4. Additionally, the downstream task sentences are used for analysing the prediction
characteristics of each model.

While using the GLUE benchmark tasks is the usual way of comparing and analysing
sentence encoder models, none of the tasks focuses on the conversational domain. I use
an additional downstream task – Sara – to make this work more relevant for the area
of conversational AI. My prior familiarity with the Sara dataset can be an advantage
when later analysing the individual predictions of the teacher and student models on
the downstream datasets.

Chapter 4

Methods and Implementation

This chapter elaborates on the main objectives of this work, the knowledge distillation
and model analysis approaches I took, and goes into detail in describing the design and
implementation work underlying my experiments.

4.1 Methods and objectives

The main aim is to explore the use of knowledge distillation. In particular, it is used
on three different NLP tasks (CoLA, SST-2, Sara) and with two different student archi-
tectures: a bidirectional LSTM student and a BERT student. An analysis stage follows,
where I look at and compare the teacher and students on each task. Note that the focus is
not on improving scores reported by previous works, or on finding the best hyperparameter
configurations; I aim to learn more about knowledge distillation.

Being inspired by my internship at Rasa on compressing BERT1, this work aims to produce
student models as small as possible. Therefore, I take the approach of first fine-tuning
a teacher model and then distilling the fine-tuned knowledge into small students (for
the other option, refer back to the discussion in Sec. 2.3.2).

Creating small yet well-performing students requires not just setting up an implementa-
tion of knowledge distillation, but also optimising the student models’ hyperparameters.
Even if extensive optimisation is not the main goal, the models used for further anal-
ysis should reach reasonable performance levels in order for the analysis to be of real
value. However, in order to constrain the amount of optimisation, I carry out a relatively
thorough hyperparameter exploration only on the CoLA task. Subsequently, the best
parameters are applied on the other two tasks, with only the most essential decisions –
like the student model size – made on each task separately.

The analysis stage of this work inspects what the two students learnt well and what they
did not, how they differ from their teacher and from each other. Where possible, I try to
produce conclusions that generalise across the three downstream datasets.

1See blog.rasa.com/compressing-bert-for-faster-prediction-2/ and blog.rasa.com/
pruning-bert-to-accelerate-inference/.

26

https://blog.rasa.com/compressing-bert-for-faster-prediction-2/
https://blog.rasa.com/pruning-bert-to-accelerate-inference/
https://blog.rasa.com/pruning-bert-to-accelerate-inference/

Chapter 4. Methods and Implementation 27

As the first analysis approach, all models are probed for various types of linguistic knowl-
edge. This produces simple, quantitative results, which, however, are not necessarily easy
to interpret.

As the second approach, I carry out a – mostly qualitative – analysis of the models’
predictions on concrete sentences. This approach is not widely reported, despite being
simple in nature – manually inspecting a model’s predictions on a case-by-case basis
follows from the natural curiosity of an empirical scientist. While it involves a lot of
human labour and does not guarantee easy-to-interpret, quantitative results, I still make
use of this approach and try to gain qualitative insights. In particular, the predictions
are inspected both in terms of correctness – e.g. manually analysing sentences which were
classified correctly by one model but not by another – and through confidence – which
models are more confident, on what sentences are they (un)confident, and how this relates
to their (in)correctness.

Finally, the results of probing and prediction analysis are juxtaposed. I ask whether
the two approaches agree or disagree, and whether they shed light on the same or different
aspects of the models and of knowledge distillation.

Because of the unavailability of test-set labels in CoLA and SST-2, the prediction analysis
is carried out on the evaluation set for each downstream task. This can be understood as
inspecting the model qualities being optimised when one tunes a model’s hyperparameters
on the evaluation data. Another option would be to carry out the analysis on a held-out
set not used in training.

4.2 System overview and adapted implementations

Because a lot of research around Transformers is open-sourced, my work makes use of
multiple existing codebases. Fig. 4.1 shows the high-level pipeline of this project. It is
inspired by the best pipeline of Tang et al. (2019a), although they only used the BiLSTM
student and did not carry out probing or prediction analysis.

logits
teacher

(BERT)

training

data

GPT-2

augmented

training

data

student

(BERT)

student

(BiLSTM)

probing

classifier
encodings

probing

tasks

predictions

probing

scores

transfer

data

evaluation

data

1

2

3

4

5

6

7

8

Figure 4.1: The main pipeline of this work: 1 teacher fine-tuning, 2 GPT-2 fine-tuning, 3 generating
augmentation sentences, 4 adding teacher logits to the augmented training dataset, 5 knowledge
distillation into students, 6 producing probing sentence encodings, 7 training the probing classifier and
producing probing scores, 8 producing predictions on evaluation sentences.

Chapter 4. Methods and Implementation 28

For most of the implementation, the transformers open-source PyTorch library (Wolf
et al., 2019)2, is used, which provides tools for working with pre-trained Transformers
like BERT. For knowledge distillation, I adapt the code of Sanh et al. (2019), which is
today also part of transformers3. (Note that the authors apply knowledge distillation
before downstream fine-tuning.) For augmenting the training data using GPT-2 and
for knowledge distillation with the BiLSTM student, I adapt the code of Tang et al.4,
which uses an early version of transformers. For probing the two students, the SentEval
framework (Conneau and Kiela, 2018)5 is used.

My own contributions to the implementation lie primarily in adapting and integrating
the different codebases into one, and in adding the possibility for optimising a range of
student hyperparameters. I also make the code more flexible, relative to the original code-
bases which encode numerous fixed design decisions made by Sanh et al. and Tang et al..
The core of my implementation is open-sourced as a fork of the transformers library
at github.com/samsucik/pytorch-transformers/, while the implementation needed
for individual experiments, analyses, and reporting, resides at github.com/samsucik/
knowledge-distil-bert.

4.3 Implementation details

4.3.1 Teacher fine-tuning

Following Tang et al. (2019a), the case-insensitive pre-trained BERTLarge is used as
the teacher model (from now, referred to as BERTT). With L= 24 encoder layers, A= 16
self-attention heads, the hidden dimension dh = 1024 and the intermediate dimension
dI = 4096, the model has 340 million trainable parameters (as discussed in more detail
previously in Sec. 2.2.2). The large BERT variant generally performs better than the 110-
million-parameter BERTBase variant (both variants published by Devlin et al. (2019)) and
is therefore more attractive, but also slower, with a greater incentive for compression.

loss function cross-entropy
learning algorithm Adam (η = 5×10−5, β1 = 0.9, β2 = 0.999)
training budget 3 epochs

η scheduling linear warm-up (first 10% of training),
then linear decay (see Fig. 4.2)

batch size 36
dropout rate 0.1

Table 4.1: The fine-tuning configuration of the teacher BERT model.

For teacher fine-tuning on each downstream task, the procedure of Tang et al. is used,
summarised in Tab. 4.1. While the performance of BERTT converges (flattens) within

2github.com/huggingface/transformers
3github.com/huggingface/transformers/tree/master/examples/distillation
4github.com/castorini/d-bert
5github.com/facebookresearch/SentEval

https://github.com/samsucik/pytorch-transformers/
https://github.com/samsucik/knowledge-distil-bert
https://github.com/samsucik/knowledge-distil-bert
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/castorini/d-bert
https://github.com/facebookresearch/SentEval

Chapter 4. Methods and Implementation 29

the 3-epoch training budget on CoLA and SST-2, the convergence is much slower for Sara.
Hence, I empirically found a more suitable number of epochs within which the teacher
converges on Sara: 10. See Fig. 4.2 for the evaluation-set performance of the teacher
models and how they converge during fine-tuning.

0 1 2 3
epoch

0

25

50

75

100

M
C

C

CoLA

0 1 2 3
epoch

0

25

50

75

100

ac
cu

ra
cy

SST-2

0 1 2 3 4 5 6 7 8 9 10
epoch

0

25

50

75

100

m
ic

ro
-a

v
g

F
1

Sara

0

2.5× 10−5

5× 10−5

7.5× 10−5

1× 10−4

η

η

Figure 4.2: The evaluation-set performance of teacher models across fine-tuning, together with an il-
lustration of the learning rate scheduling for BERTT on Sara. Unintentionally, I used different logging
frequencies in fine-tuning the teachers, hence the SST-2 plot is dense (and appears more noisy) while
the CoLA plot is sparse.

4.3.2 Augmentation with GPT-2

In fine-tuning the GPT-2 model, again the procedure of Tang et al. is used (summarised
in Tab. 4.2). This is very similar to the fine-tuning configuration used for BERTT, with
small differences. The AdamW learning algorithm is used (Loshchilov and Hutter, 2019),
which is a variant of Adam with weight decay imposed on all learnable parameters, making
the values slowly decay towards 0 in the absence of learning. The decay rate λ determines
the fraction by which each weight decays at each training step. The only parameter
I choose differently from Tang et al. is the batch size B: While they use batches of
48 examples, I only process examples in batches of 16, in order to make the fine-tuning
possible with the limited memory resources.

loss function cross-entropy

learning algorithm AdamW (η = 5× 10−5, β1 = 0.9,
β2 = 0.999, λ= 1×10−3)

training budget 1 epoch

η scheduling linear warm-up (first 10% of train-
ing), then linear decay

batch size 16
dropout rate 0.1

Table 4.2: The fine-tuning configuration of the GPT-2 model.

Chapter 4. Methods and Implementation 30

4.3.3 BiLSTM student model

As the first student, I use the bidirectional LSTM (BiLSTM) from Tang et al. (see
Fig. 4.3). The model comprises in particular one hidden BiLSTM layer with 300 units,
which is composed of two LSTM layers processing the inputs in opposite directions.
The last hidden states for either of the two processing directions are concatenated and
passed to a fully connected layer with 400 output units6, which uses the rectified linear
unit (ReLU) activation function (Nair and Hinton, 2010), and dropout. A final (lin-
ear) layer follows, projecting to the number of target classes, i.e. producing the logits.
The model is topped with a softmax classifier for normalising the logits and producing
class probabilities.

"how" "are" "you"

BiLSTM

layer

embedding layer

LSTM LSTM

LSTM LSTM LSTM

LSTM

fully connected layer with ReLU

linear layer + softmax

class

probabilities

Figure 4.3: The bidirectional LSTM student. Diagram adapted from Figure 1 of Tang et al. (2019b).

The original model was built to process sentences word by word, encoding each word using
the pre-trained word2vec embeddings7 before passing it to the LSTM layer. Words for
which there is no embedding (out-of-vocabulary words, or just OOV) are embedded using
a vector initialised with random numbers drawn uniformly from [-0.25, 0.25]. The em-
bedding layer supports three embedding modes, based on Kim (2014):

1. Static: the embedding parameters are frozen and do not change during training.

2. Non-static: the embedding parameters are allowed to change (fine-tune) during
training.

3. Multichannel: two embedding instances are used in parallel, one is frozen, the other
one is allowed to change. For each input word, the two embeddings produced are

6Even though Tang et al. tried also other, slightly different layer dimensions, these are the ones that
worked the best on CoLA.

7The 300-dimensional version trained on Google News, see code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/

Chapter 4. Methods and Implementation 31

concatenated together for further processing. The multichannel mode is the one
used by Tang et al..

One significant change I made to this model is enabling the use of wordpiece embed-
dings instead of word-level ones. This way, the fine-tuned embedding parameters from
BERTT can be used to initialise the student’s embedding layer, providing some of the teacher’s
“knowledge” even before the student training (knowledge distillation) begins.

When the word2vec embeddings are used, the embedding matrix of the LSTM is con-
structed in the following way:

1. A vocabulary of all distinct words present in the transfer dataset is made.

2. Only the word2vec vectors corresponding to these words are taken and put together
to create the embedding matrix.

This way, even though the full word2vec collection covers 3,000,000 words, the word-level
embedding matrix (whether used by the LSTM student or the BERT student) has fewer
entries. For the particular transfer datasets I use, the vocabulary has 243,120 words for
CoLA, 284,273 words for SST-2, and 172,183 words for Sara.

In total, this model – from now referred to as LSTMS – has 2.41 million trainable param-
eters (excluding the embedding layer – this is how model sizes are reported everywhere
further in this work8), making it 140x smaller than BERTT.

4.3.4 BERT student model

For the second student, a down-scaled version of BERTLarge is used, matched for size with
LSTMS. In particular, I scale all the dimensions of BERTLarge down by a factor of ∼5,
leading to a smaller BERT with L = 5 encoder layers, the hidden dimension dh = 204,
the intermediate dimension dI = 750, and A = 3 self-attentional heads – amounting to
2.42 million trainable parameters (embedding parameters excluded). This model is from
now referred to as BERTS.

4.3.5 Knowledge distillation

While Tab. 4.3 summarises the initial configuration of both student models, I elaborate
more on these parameters in the rest of this section.

During knowledge distillation, BERTS is trained using the cross-entropy loss. The softmax
temperature is fixed at T = 3.9

8In line with how the number of model parameters is reported by others, for instance in Tang et al.
(2019a,b), but also in the GLUE benchmark leaderbord. One reason for this is that the number of
embedding parameters is not directly related to the model size and mostly depends on the type of
embeddings used – the embedding vocabulary size and the dimensionality of each embedding.

9Usual values are from 1 (no effect) to 3. For instance, Sanh et al. (2019) use T = 2. In a work
that is much closer to my situation, Tsai et al. (2019) apply knowledge distillation from BERTBase into
a 18-million-parameter smaller BERT, observing that from T = {1,2,3} the best one was T = 3.

Chapter 4. Methods and Implementation 32

Originally, both students were implemented to use random initialisation from scratch
before training, with the exception of the embedding layer of LSTMS, which was initalised
from word2vec. Later, I explore different ways of initialising the embedding layers.

LSTMS uses the mean squared error (MSE) loss, following Tang et al. who report that
MSE led to slightly better performance (compared to cross-entropy loss with T = 3).
Following preliminary experiments on CoLA, I set the training budget to 30 epochs for
LSTMS (same as Tang et al.). BERTS converges slower and therefore uses a 60-epoch
training budget in all following experiments. In student training, the evaluation-set per-
formance reported is always for the best model checkpoint as observed during training; in
particular, it may not be the final model version. Using this approach, even if a student’s
performance eventually starts to decrease during training, the best-performing version is
retained for further analysis and comparison.

Following Tang et al., the Adadelta learning algorithm (Zeiler, 2012) with η = 1.0 and
ρ = 0.95 is used for training LSTMS, while Adam is used for BERTS. Note that Adam
is an improved successor of Adadelta10 and is much more widely used; later in this work,
I explore the use of Adam for LSTMS. No η scheduling is used with LSTMS, while
BERTS uses scheduling similar to BERTT. To prevent “gradient explosion” in LSTMS,
the total magnitude of all gradients is clipped to 30.0 before every parameter update (as
used by Tang et al.); however, throughout all experiments, I never observe the gradient
norm to reach this limit. For more robust training, the standard dropout rate of 0.1 is
used during training of both students, following Devlin et al. (2019) and Tang et al.. Tang
et al. report the small batch size B = 50 to work well with the BiLSTM student. For
BERTS, I initially use a larger batch size B = 256.

While LSTMs can process sequences of any lengths, Transformer models like BERT im-
pose a maximum sequence length for practical reasons, with all sequences within a batch
padded to the maximum length. Although BERTT allows sequences of up to 512 word-
pieces in length, extremely few sentences reach this length – especially in this work, where
all inputs are single sentences, not sentence pairs. Therefore, to accelerate training, I use
the maximum sentence length of 128 tokens for BERTS.

LSTMS BERTS

loss function mean square error cross-entropy, T = 3

learning algorithm Adadelta (η = 1.0, ρ= 0.95) Adam (η = 5× 10−4, β1 = 0.9,
β2 = 0.98)

training budget 30 epochs 60 epochs

η scheduling none linear warm-up (10 epochs),
then linear decay

batch size 50 256
embedding layer
initialisation

word2vec wordpiece, from BERTT

Table 4.3: The initial parameters of both student models.

10In particular, the adaptive mechanism of Adadelta considers only the recent squared gradient mag-
nitudes, whereas Adam also considers the simple (not squared) gradients.

Chapter 4. Methods and Implementation 33

4.3.6 Probing

For the light-weight probing classifier, Conneau et al. (2018) use a small neural network
comprising one hidden layer with the sigmoid activation function and dropout, followed
by a linear layer projecting to the desired number of classes. In training the classifier,
early stopping is used, i.e. training stops when the evaluation-set accuracy does not
improve over 5 consecutive iterations. For consistency with the exact method of Conneau
et al., I tune the dropout rate (choosing from [0.0, 0.1, 0.2]) and the hidden layer width
(choosing from [50, 100, 200]) using the evaluation set. Each probing score is reported as
the one for the best dropout and layer width values. Tab. 4.4 summarises all important
training parameters.

loss function cross-entropy
learning algorithm Adam (η = 1×10−3, β1 = 0.9, β2 = 0.999)
training budget 4 epochs (early stopping)
batch size 64
dropout rate [0.0, 0.1, 0.2]

Table 4.4: The training configuration of the probing classifier.

When probing a model, an important design decision is how to extract sentence repre-
sentations from the model’s layers. The BiLSTM layer of LSTMS can produce at each
timestep two hidden states (one for each processing direction). Conneau et al. experiment
with:

1. Creating a BiLSTM-max encoding such that each of its elements is the maximum
over the values for each timestep. (The encoding has the same dimensionality as
the BiLSTM layer output.)

2. Creating a BiLSTM-last encoding by simply taking the last hidden state in each
direction – the encoding is the same as the BiLSTM layer output.

Conneau et al. report mixed results, with BiLSTM-max encodings leading to better
probing scores on some of the probing tasks. I am constrained to using BiLSTM-last
since the PyTorch implementation of LSTMs does not give access to intermediate hidden
states, only to the last one in each direction.

In BERT, all hidden representations produced by each encoder layer can be accessed. I try
three different ways of combining a sequence of hidden representations from a particular
layer into a single encoding:

1. Maximum pooling, equivalent to BiLSTM-max: Taking the maximum value for each
element over all hidden representations.

2. Single-position encoding (the equivalent of BiLSTM-last): Taking the hidden rep-
resentation that is used for the final classification. While in LSTMS, this would
mean taking the last hidden state in each direction, in BERT, it is the hidden
representation of the first token (the special [CLS] token).

3. Average pooling (not explored by Conneau et al.): Similarly to maximum pooling,
this uses the average of each element across all representations.

Chapter 4. Methods and Implementation 34

After conducting simple preliminary probing experiments with BERTT on each down-
stream task, I observed that the differences between the three approaches are mostly in-
consistent and small. However, in many cases, maximum pooling produced worse probing
scores than the other two techniques, and average pooling slightly outperformed single-
position representations. In all further probing experiments with BERTT and BERTS,
the average pooling approach is used.

Inspired by the localisation experiments of Tenney et al. (2019a), I probe various encoder
layers across the BERT models in order to also localise each type of language knowledge
within the model’s architecture.

4.4 Computing environment and runtimes

All major parts of my experiments – teacher and GPT-2 fine-tuning, augmentation data
sampling, teacher logits generation, knowledge distillation and probing – are run in the en-
vironment of the University’s Teaching cluster11.

Each job uses its own one Nvidia GPU – either GeForce GTX TITAN X or GeForce RTX
2080 Ti – with 12-13GB of memory, and additional 30GB of RAM for use with CPU
processes.

CoLA SST-2 Sara

teacher fine-tuning ∼30min ∼4h ∼55min
GPT-2 fine-tuning 3min 31min 1min
augmentation data sampling 17h 15h 4h
teacher logits generation ∼1h ∼8h ∼2h
LSTMS training ∼5h ∼8h ∼6h
BERTS training ∼15h ∼26h ∼22h

Table 4.5: The runtimes for all steps of knowledge distillation with augmented transfer datasets.

All important runtimes are reported in Tab. 4.512. The reason why most steps take
the longest on SST-2 is 1) the amount of training data (almost 10x more than for CoLA),
and 2) the fact that sentences in SST-2 are longer than those in CoLA and Sara. Interest-
ingly, even though LSTMS and BERTS are of similar size, the BERT model takes much
longer to train – likely because it is much deeper.

Because of the role restrictions in the cluster, I cannot run more than 20 jobs at the same
time. This has a significant impact especially on the time it takes to run the hyperparam-
eter exploration experiments (see the next chapter). It is also the main reason why I do
not – with a few exceptions – repeat experiments with varying random seeds for more
robust results.

11computing.help.inf.ed.ac.uk/teaching-cluster.
12Note that the only processes that are parallelised are the augmentation data sampling and the teacher

logits generation – both use 4 parallel threads, each with its own GPU with 6GB of memory. In logits
generation, examples are processed in batches of 2048 in each thread.

https://computing.help.inf.ed.ac.uk/teaching-cluster

Chapter 4. Methods and Implementation 35

4.5 Summary

In this chapter, I presented the high-level set up as well as the implementation details of
all experiments. Importantly, the main outcomes of this exploratory work are intended to
be insights, not improved performance scores. With most of the programming efforts go-
ing into adapting and integrating existing codebases, my original contributions are mostly
intellectual: Using two architecturally different students side by side; using the probing
suite of Conneau et al. (2018) for localisation of linguistic knowledge; using a new tech-
nique for extracting probing encodings; and later manually analysing the predictions made
by the teacher and student models.

Chapter 5

Training student models

In this chapter, knowledge distillation is used to teach (train) student models BERTS and
LSTMS from the fine-tuned teacher BERTT. This is done separately on each of the three
downstream tasks – CoLA, SST-2, and Sara. The objective is to obtain students which
are small but perform well – relative to the teacher. Where possible, the student size is
not increased above the initial dimensions outlined in Sec. 4.3.3 (LSTMS) and Sec. 4.3.4
(BERTS), which corresponds to keeping the number of trainable parameters at ∼2.4 mil-
lion.

As discussed in Sec. 4.1, my aim is not to find all the best possible student hyperparame-
ters, but I still briefly explore some of them to gain an intuition for the reasonable ranges
of values and for their behaviour in knowledge distillation. In particular, I find a well-
performing training configuration of each student on CoLA, choosing based on the model’s
evaluation-set score. Then, on the remaining tasks, I use the same configuration, only
tailoring a small number of parameters to the need of the concrete dataset at hand. (Most
importantly, the student size is adjusted separately for each task because more difficult
tasks may require larger (more complex) models for decent accuracy levels.)

After obtaining well-performing students for each task, these are briefly compared with
the respective teacher in terms of model size, inference speed, as well as evaluation- and
test-set scores.

5.1 Hyperparameter exploration

The initial exploration conducted on CoLA is restricted to these following essential hy-
perparameters in both students:

1. η – the learning rate. For LSTMS, also the choice of a learning algorithm (the orig-
inally used Adadelta vs the more general Adam).

2. Learning rate scheduling: the warmup duration (in epochs) Ew of gradual warmup
of η (Goyal et al., 2017), and the optional use of linear decay of η following after
the warmup period (for an example, refer back to Fig. 4.2).

3. B – the minibatch size.

36

Chapter 5. Training student models 37

4. Embedding type and mode – word-level (initialised from word2vec) vs wordpiece
(initialised from the respective BERTT

1), non-static vs multichannel2.

The parameters are optimised one at a time, in the order they are enumerated above.
At each step, the best value of one parameter is found and kept in all further steps.
The explored values as well as the initial values (see Sec. 4.3) and the discovered best
values are shown in Tab. 5.1. Note that the embedding type and mode is explored also
later, separately for each task. For more details on how the individual parameters were
chosen, see Sec. B.1 in Appendix B.

Most importantly, the LSTM student is found to outperform BERTS and converge much
faster. Additionally, the LSTM prefers small batches (in line with the findings of Tang
et al. (2019b)) and does not benefit from learning rate warmup (unlike BERTS). Other-
wise, the optimal training configuration seems to be similar in both students.

explored values

parameter LSTMS BERTS

η Adadelta (η= 1.0), Adam with
η ∈ [5×10−3, 1.5×10−3, 5×10−4,
1.5×10−4, 5×10−5, 1.5×10−5,
5×10−6]

Adam with η ∈ [5×10−3,
1.5×10−3, 5×10−4, 1.5×10−4,
5×10−5, 1.5×10−5, 5×10−6]

η scheduling Ew ∈ [0, 5, 10, 15] + decay/no
decay

Ew ∈ [0, 5, 10, 15, 20] + decay/no
decay

B [32, 50, 128, 256, 512] [32, 50, 128, 256, 512]
embeddings word-level/wordpiece +

non-static/multichannel
word-level/wordpiece +
non-static/multichannel

Table 5.1: The hyperparameter values explored on CoLA, one at a time, from top to bottom. In bold
are shown the initial values. Underlined are the best values (for embedding mode and type, the best
configuration is chosen separately for each task and is summarised elsewhere).

Following the initial hyperparameter exploration, the best embedding mode and type
configuration is identified for each task. Observing the performance gap between the two
students, I hypothesise that this may be due to the word-level embeddings in LSTMS being
more suitable than the wordpiece embeddings in BERTS.

The results of trying each embedding type combined with each embedding mode show
that the multichannel mode is generally preferred3, and that the best embedding type

1Initially, I experimented with LSTMS using word2vec embeddings (as in Tang et al. (2019a,b))
while the embedding layer of BERTS was randomly initialised. However, this poses a disadvantage for
BERTS – it starts with no initial knowledge, unlike the BiLSTM student. To eliminate this disparity,
BERTS’s wordpiece embeddings were initialised with the teacher’s wordpiece embedding parameters, and
a trainable linear layer was added in the student to project these (high-dimensional) teacher embeddings
to the smaller hidden dimensionality of the student dh = 204. (Note that the token type embeddings and
positional embeddings are not initialised from the teacher and hence do not require the linear transform
for dimensionality reduction. Instead, these embeddings are added to the wordpiece embeddings inside
BERTS after the wordpiece embeddings are dimensionality-reduced.) Even though the idea of initialising
one model with another one’s parameters is not new, to the best of my knowledge, I am the first one to
initialise a BERT student in knowledge distillation in this way.

2The static mode (frozen embeddings, not allowed to be trained) was not tried, following preliminary
experiments where freezing the parameters led to very poor performance.

3I.e. it is helpful to use an additional embedding matrix which is frozen during student training.

Chapter 5. Training student models 38

depends on the task (more details in Sec. B.2.1 in Appendix B). In particular, word2vec
embeddings work slightly better for CoLA and SST-2, but are not preferred for Sara.
This is likely due to Sara examples containing many mistyped words like “yesyesyes”,
which are treated as the general UNKNOWN word in word2vec, but are successfully broken
down into smaller, meaningful units when using wordpieces. Thus, it may be preferable
to use word2vec (or similar word-level embeddings) where the language is expected to be
mostly clean, free of unusual or mistyped words (formal and semi-formal domains), while
wordpieces provide a fallback alternative for informal domains.

While both of the 2.4-million parameter students perform very well on SST-2 and Sara
(on par with the teacher), there continues to be a gap on CoLA: the teacher being far
ahead, and LSTMS outperforming BERTS. To reduce this gap and to explore the effect of
different student dimensions in general, I systematically vary the width and depth of each
student – that is, the dimensionality of the hidden layers and internal representations, and
the number of layers (encoder layers in BERTS, BiLSTM layers in LSTMS). On CoLA,
the BERTS is made up to 4x wider and 3x deeper, and LSTMS is made up to 5x wider
and deeper. On SST-2 and Sara, to explore how small the students can be to still achieve
over 90% of their teachers’ score, BERTS is made up to 16x slimmer and 4x shallower,
and LSTMS is made up to 32x slimmer (originally with just one BiLSTM layer, it cannot
be more shallow). (For details of the explored dimensions, see Tab. B.1 and Tab. B.2 in
Appendix B; in particular, note that I had to manually reduce the learning rate for large
BERTS models to prevent gradient explosion.)

The results of the student size exploration (details in Sec. B.2.2) show that model width
is, on these three tasks, more important than model depth. In particular, the performance
gap between LSTMS and BERTS on CoLA is closed by increasing the width of the lat-
ter student (to roughly match the LSTMS’s layer width). On SST-2 and Sara, making
the models slimmer affects their performance more than making them shallower. How-
ever, the results on CoLA suggest that LSTMS may be too shallow for this difficult task
and that using 2 and more hidden BiLSTM layers is beneficial (compare with BERTS,
which uses 5 hidden layers by default, and further increasing this does not help).

5.2 Discussion and summary

Tab. 5.2 summarises the hyperparameters chosen for each student on each task, and
compares all models in terms of their size, prediction speed4 and score. Clearly, CoLA
is more difficult of a task than SST-2 and Sara: In the student size exploration, even
models with over 100 million parameters achieve only below 75% of the teacher’s score.
As a compromise between accuracy and model size, I choose for analysis students that are
4.5x (BERTS) and 22x (LSTMS) smaller than the teacher and both achieve similar scores.
On SST-2 and Sara, on the other hand, the ∼2.4-million-parameter students, being ∼140x
smaller than BERTT, reach comparable accuracy. The students can be even smaller while
staying above 95% of the teacher’s score: E.g. LSTMS on SST-2 can be 14,000x smaller
(64x slimmer than the 2.4-million-parameter version), and BERTS can be 2000x smaller
(3x slimmer and 2x shallower than the 2.4-million-parameter version). The students are

4Timed on a laptop with an Intel Core i7-6600U CPU, i.e. not using a GPU.

Chapter 5. Training student models 39

model dimensions training embed. size RPE eval test

BERTT
L= 24, dh = 1024,
dI = 4096, A= 16

B = 36, η = 5×10−5,
Ew = 0.3, decay piece 340M 750ms 59.9 54.6

BERTS
L= 5, dh = 816,
dI = 3000, A= 12

B = 128, η = 7×10−5,
Ew = 15, decay

word,
multi 76.4M 100ms 45.0 29.8

C
oL

A

LSTMS
L= 2, dLST M = 600,
dF C = 800

B = 32, η = 5×10−4,
Ew = 0, decay

word,
multi 15.4M 2.3ms 44.2 27.9

BERTT
L= 24, dh = 1024,
dI = 4096, A= 16

B = 36, η = 5×10−5,
Ew = 0.3, decay piece 340M 750ms 91.5 93.1

BERTS
L= 5, dh = 204,
dI = 750, A= 3

B = 128, η = 5×10−4,
Ew = 15, decay

word,
multi 2.42M 12ms 89.3 87.8

SS
T

-2

LSTMS
L= 1, dLST M = 300,
dF C = 400

B = 32, η = 5×10−4,
Ew = 0, decay

word,
multi 2.41M 1.0ms 91.2 92.2

BERTT
L= 24, dh = 1024,
dI = 4096, A= 16

B = 36, η = 5×10−5,
Ew = 1, decay piece 340M 750ms 87.5 88.3

BERTS
L= 5, dh = 204,
dI = 750, A= 3

B = 128, η = 5×10−4,
Ew = 15, decay piece 2.43M 11ms 87.1 86.4

Sa
ra

LSTMS
L= 1, dLST M = 300,
dF C = 400

B = 32, η = 5×10−4,
Ew = 0, decay

piece,
multi 5.90M 0.68ms 86.5 86.4

Table 5.2: Essential information about the students and teachers on each downstream task. The model
size is in millions of trainable non-embedding parameters. The embedding type (“embed.”) is “word”
(word2vec) or “piece” (wordpiece), the mode is either “multi” (multichannel), or the default non-static mode
where not explicitly stated. The inference runtime per example (RPE) is calculated by measuring the time
for processing the entire evaluation set in batches of 256 (previously transformed from text into numerical
form), then turned into time per single example and reported. Evaluation-set (“eval”) and test-set (“test”)
scores are reported using the appropriate metric (accuracy, MCC, F1micro). The student size differs
between SST-2 and Sara due to the higher dimensionality of wordpiece embeddings (1024) compared to
word2vec (300).

also much faster than the teacher models, with LSTMS being particularly fast5 – up to
1100x faster than BERTT.

There is evidence of model width being the key dimension, with small model depths being
sufficient for decent performance levels. Possibly, models like the 12- and 24-layer BERTs
released by Devlin et al. (2019) are unnecessarily deep for tasks like intent classification
or even grammatical acceptability. Thus, making the models shallower is one way of
compressing and accelerating them (in line with Sanh et al. (2019) who created well-
performing BERT student shallower but not slimmer than BERTBase).

There are several differences between BERTS and LSTMS. Notably, the LSTM student
converges much faster, but works best with smaller minibatches, which makes training
slower compared to large batches. The BERT student is more sensitive to the learning
rate values and these need to be significantly reduced for larger BERTS sizes. Otherwise,
the models are not too sensitive to hyperparameter choices, and the configuration chosen
on CoLA works well when used in students trained on SST-2 and Sara.

5LSTMS may be faster than BERTS partly due to different input feeding strategies; while for
BERTS all input examples are padded to the model’s maximum sequence length of 128, for LSTMS,
I only pad all examples within a batch to the length of the longest example, which leads to more compact
batches.

Chapter 5. Training student models 40

In knowledge distillation, the teacher’s knowledge enters the student in the top layer
(where feedback is received during training, with error gradients “trickling down” into
the lower student layers). The provision of trained embeddings to a student creates
the opposite (and complementary) flow of knowledge: from the bottom up, as the knowl-
edge captured in the embeddings propagates into the rest of the model. I showed that
while both word-level and wordpiece embeddings work well with both student architec-
tures, certain downstream tasks (here CoLA and SST-2) benefit from the higher-quality
word-level representations while others like Sara need the flexibility of wordpiece embed-
dings. It would be interesting to see how well word-level embeddings fine-tuned as part
of the teacher model would perform.

Besides leaving the embedding layer to be further trained during knowledge distillation,
I observe the usefulness of keeping another – frozen – copy of the embeddings6. In other
words, the student benefits from having access both to the original embeddings and to
the embeddings trained as the student learns.

The 9 models described in Tab. 5.2 – one teacher and two students for each task – are
further analysed in the remainder of this work.

6This corresponds to the multichannel embedding mode.

Chapter 6

Analysing the models

In this chapter, probing and prediction analysis are used to analyse, interpret and compare
the teacher and the student models for each downstream task. The aim is to produce
insights into the nature of the downstream tasks, the models, and knowledge distillation.

6.1 Probing

By probing, in this section, I find that model initialisation plays a key role in student
learning; localise different linguistic skills in the models; and point out possible limitations
of the probing suite.

Tenney et al. (2019a) recently showed that a typical text processing pipeline can be iden-
tified in BERT. In the probing suite used here (Conneau et al., 2018), the pipeline steps
are represented from the simplest ones to the most complex ones; from extracting surface
properties of input such as sentence length (probing task Length) to detecting broken
semantics (tasks OddManOut and CoordinationInversion); re-visit Sec. 3.3 for more de-
tails on each probing task. Here, probing is used to trace language knowledge which
enters models in various ways – as pre-trained knowledge (in the teacher BERT before
fine-tuning), via trained embedding parameters (in both students), or the knowledge flow
from BERTT into students during knowledge distillation. While Conneau et al. apply
probing only to the last layers of their models, I probe different layers1 in order to also
localise the language knowledge within models (similar to Tenney et al.).

Probing results are shown in Fig. 6.1 (teacher models) and in Fig. 6.2 (students). In
general, students achieve lower probing scores than their teachers, especially on the diffi-
cult, semantical tasks (OddManOut, CoordinationInversion, partly BigramShift), which
require good sentence-level understanding, not just word-level knowledge found in embed-
ding parameters.

Several architectural differences between the models are reflected in probing results. In
the deep teacher models, only the last layers change in fine-tuning (compare fine-tuned

1As discussed in Sec. 4.3.6, in the case of LSTMS, I am only able to probe the final representations
due to the way LSTMs are implemented in PyTorch.

41

Chapter 6. Analysing the models 42

teachers with the pre-trained BERTLarge), while the earlier layers act like downstream-
task-agnostic general feature extractors2. In the shallow LSTMS, the BiLSTM layer
also likely serves as a general feature extractor – its probing score is comparable across
the downstream tasks, and is often better than that of the downstream-task-specific last
layer of BERTS. The performance gap between the students on WordContent may be
linked to the lack of residual connections in LSTMS – in the BERT student, these con-
nections enable easy copying of input into higher layers. Lastly, the recurrent LSTM
student architecture may be more suited for order- and length-sensitive tasks (Length,
BigramShift, CoordinationInversion), as the results on SST-2 and Sara show.

Where the downstream task does not require sophisticated linguistic skills (SST-2, partly
also Sara), the language knowledge is mostly lost or not acquired in both teachers and
students3. On CoLA, on the other hand, the linguistic skills are mostly retained/acquired
or even slightly improved in the later layers of both teachers and students

Additionally, Fig. 6.1 confirms that surface skills (Length, WordContent) are found in
the early teacher layers, syntactic skills (Depth, TopConstituents) are in the middle
layers, and semantic skills (OddManOut, CoordinationInversion) concentrate in the final
layers.

2Perhaps these layers could be frozen in order to make fine-tuning faster.
3Only on WordContent, the CoLA teacher is outperformed by the Sara teacher; I attribute this to

many Sara intents being recognisable by characteristic keywords (e.g., examples of the intent affirm
typically contain “yes” or “okay”), which motivates the Sara teacher to learn to “remember” exact input
words.

0

20

40

60

80

100
Length WordContent Depth TopConstituents BigramShift

E1 6 12 18 24
0

20

40

60

80

100
Tense

E1 6 12 18 24

SubjNumber

E1 6 12 18 24

ObjNumber

E1 6 12 18 24

OddManOut

E1 6 12 18 24

CoordinationInversion

pre-trained CoLA SST-2 Sara majority baseline human baseline Conneau

0.0 0.2 0.4 0.6 0.8 1.0

model layer

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

[%
]

Figure 6.1: Probing results for the pre-trained BERT and the teacher BERT models. Probing was applied
to encoder layers 1, 6, 12, 18, and 24, and to the embeddings (layer “E”) extracted just before the first
encoder layer. The two baselines, reasonably bounding the expected model performance from below and
from above, are the majority-class baseline and the human performance baseline; additionally, the best
model scores are shown (“Conneau”) – all baselines as reported by Conneau et al. (2018).

Chapter 6. Analysing the models 43

0

20

40

60

80

100
Length WordContent Depth TopConstituents BigramShift

em
b
ed

.
L

S
T

M
S E 1 2 3 4 5

0

20

40

60

80

100

BERTSBERTSBERTS

Tense

em
b
ed

.
L

S
T

M
S E 1 2 3 4 5

BERTSBERTSBERTS

SubjNumber

em
b
ed

.
L

S
T

M
S E 1 2 3 4 5

BERTSBERTSBERTS

ObjNumber

em
b
ed

.
L

S
T

M
S E 1 2 3 4 5

BERTSBERTSBERTS

OddManOut

em
b
ed

.
L

S
T

M
S E 1 2 3 4 5

BERTSBERTSBERTS

CoordinationInversion

CoLA SST-2 Sara majority baseline human baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

[%
]

Figure 6.2: Probing results for the best student models. For comparison, results achieved just by using
the embeddings (taken before student training) are shown as well (“embed.”) (the average pooling strat-
egy was used to construct probing sentence encodings from the individual embeddings of a sentence’s
words/wordpieces). For LSTMS, the probing encodings were extracted only after the last LSTM layer; for
BERTS, they were extracted after each encoder layer (1-5) and before the first layer (“E”). The majority-
class baseline and the human performance baseline are shown, same as in Fig. 6.1.

The results show important effects of initial “provision of knowledge” to students via
trained embedding parameters. In BERTS, often only the bottom layers achieve good
scores (see TopConstituents, Tense, SubjNumber and ObjNumber in Fig. 6.2)4, which
reflects the knowledge “leaking” from the embeddings up through the model. This knowl-
edge captured solely by the embeddings is significant (see the “embed.” results in Fig. 6.2),
and Fig. 6.3 shows that when it is not given to students before training5, the embedding-
reliant skills (Tense, SubjNumber, and ObjNumber) worsen, with the bottom layers of
BERTS no longer achieving good scores. In light of these results, and by showing that
a very simple rule-based morphology-guessing model6 can achieve decent scores (“morph.
guess” in Fig. 6.3), I argue that these tasks should be used carefully as indicators of
semantic skills.

All in all, probing can provide useful insights but it is important to interpret the results
correctly: A high score might not mean that the model layer learnt the skill. Perhaps,

4This could be verified for the LSTM student if it had more layers and if it was possible to probe all
of them separately.

5I.e. when all student parameters are initialised randomly from scratch.
6This model is based on the observation that, in English, just knowing if any of the words in a sen-

tence are in the plural form (dominantly marked by the suffix “-s/-es”) is a decent proxy of whether
the subject/object is in the plural form, and similarly with verb tense (present/past) marked by the suffix
“-d/-ed”. Note that such morphological information can be captured in word2vec, as observed by Gieske
(2017).

Chapter 6. Analysing the models 44

T
en

se

CoLA

0

20

40

60

80

100
SST-2

S
u

b
jN

u
m

b
er

0

20

40

60

80

100
L

S
T

M
S E 1 2 3 4 5

O
b

jN
u

m
b

er

BERTS

L
S
T

M
S E 1 2 3 4 5

0

20

40

60

80

100

BERTS

standard initialisation
from scratch
majority baseline

human baseline
morph. guess.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

[%
]

Figure 6.3: Probing results for selected downstream and probing tasks, comparing students initialised in
the standard way (with embeddings from word2vec) with students initialised randomly and trained from
scratch. Bounding the expected model performance from below and from above are again the majority-
class baseline and the human performance baseline, same as in Fig. 6.1. Additionally, the performance
of a simple “morphology-guessing” model is shown, which transforms any input sentence into “0” or “1”
depending on whether any of the sentence’s words end in “d” or not (for Tense) or in “s” (for SubjNumber
and ObjNumber).

knowledge was present before training either in that layer or in a neighbouring model
component. Last model layers are also misleading because they focus on task-specific
knowledge, and only show linguistic skills if the downstream task explicitly needs them
(such as CoLA).

6.2 Analysing the models’ predictions

In this section, by inspecting the models’ evaluation-set predictions, I observe that the most
sophisticated skills are not transferred well into the students; that both students make
similar mistakes; and that the LSTM student can better mimic the teacher.

In inspecting the predictions, both correctness and cofidence is considered7. Here, I define
7Certainly, a confident incorrect prediction is not the same as a very unconfident decision which also

happens to be incorrect.

Chapter 6. Analysing the models 45

the confidence of a prediction as the probability assigned to the predicted class8. While
the analysis comprises mostly qualitative, manual inspection of sentences accompanied
by predicted labels and prediction confidences (see Fig. 6.4), where possible, quantitative,
aggregated results are also presented.

Figure 6.4: Example of the interface used for inspecting the predictions, in this case the predictions of
LSTMS on the Sara task.

To give the analysis a logical structure, I propose these three objectives, each realised as
a number of analysis tasks (see Tab. 6.1): 1) characterising the teacher and student models
individually; 2) characterising the differences between the models; and 3) characterising
knowledge distillation through its limitations.

When choosing examples for inspection, I select the most extreme cases, i.e. taking
the most/least confident hits in P1 or the examples with largest confidence gap between
the relevant models (P5, P8). Where such sorting is not possible, examples are selected
randomly from all suitable ones (P4, P7). In all cases, 10 examples are selected for
inspection in order to reasonably constrain the task9. In P4, examples are selected such
that they are classified correctly by BERTT

10.

Tab. 6.2 summarises the observations from each analysis task. In general, examples
referred to as “easy” are mostly simple sentences on CoLA (the witch poisoned the chil-
dren.), sentences with clear sentiment on SST-2 (a gorgeous, witty, seductive movie.), and

8For binary classification, the minimum confidence is 0.5 and the maximum is 1.0. A possible limitation
of this definition is that confidence may be generally lower on tasks with many classes, because softmax-
produced probabilities are always above-zero for every single class.

9This still means inspecting 360 sentences for P1: For each downstream task and each model, the 10
most confident hits and mistakes, as well as the 10 most unconfident hits and mistakes.

10This is used as an indicator of the particular example being not too difficult to classify correctly,
meaning that both students have a reasonable chance of being correct, even though one of them still
makes an incorrect prediction.

Chapter 6. Analysing the models 46

point of focus rationale

individual
models

P1: individual examples predicted correctly (hits) and incorrectly
(mistakes); separately the most confident and unconfident cases

understanding
individual students’
strengths/weaknessesP2: average confidence: overall, separately on mistakes and hits

model
differences

P3: comparing average confidence levels of models
understanding
differences between
students in terms of
their skills and
confidence patterns

P4: individual examples predicted correctly by only one student
(incorrectly by the other one)
P5: individual examples predicted confidently by only one student
(unconfidently by the other one)
P6: average overlap of the mistakes and hits of different models

knowledge
distillation

P7: individual examples predicted correctly by the teacher and
incorrectly by both students understanding

the skills not learned
via distillationP8: individual examples predicted confidently by the teacher and

unconfidently by both students

Table 6.1: The structure of the prediction analysis: The points of focus for each of the three main areas
in which insights are mined from the model predictions.

sentences with clear keywords on Sara (the bot speaks spanish11). Difficult examples
may require detailed understanding, e.g. recognising the broken semantics in my heart is
pounding me. (CoLA).

11Names of several languages appear extremely often in the enter data intent examples.

P1

Confident hits: Easy examples from dominant classes (acceptable for CoLA, enter data for Sara;
see Fig. A.1 for detailed class distribution in each dataset). Unconfident hits/mistakes: Difficult
examples; with mixed positive and negative words (SST-2); without characteristic keywords (Sara).
Confident mistakes: Examples with questionable labels, strong words opposing the overall senti-
ment (SST-2); misleading keywords characteristic of an incorrect intent (Sara); examples where
recognising unacceptability requires semantic understanding (CoLA).

P2 On average, models are more confident on hits than on mistakes (see Fig. 6.6).

P3 On average, BERTT is slightly more confident than either student (may be due to scoring more of
the [confident] hits, especially on CoLA) (see Fig. 6.6).

P4
All examples are long and difficult, BERTT is unconfident as well as one or both students (not nec-
essarily the incorrect one). On Sara, several examples where BERTT better understands meaning
and is not mislead by keywords, but one student is.

P5

All the examples are difficult, with all models often unconfident or even mistaken. On SST-
2, the LSTMS is unconfident often when the teacher is unconfident (the same correlation is not
observed for BERTS). Fig. 6.5 quantitatively confirms this and shows moderate correlation between
all model pairs’ confidences on Sara (and mostly weak correlation on other downstream tasks).

P6

Students are relatively unique in their mistakes: On CoLA and SST-2, ∼60-70% of their mistakes
are shared by both students. On Sara, this sharing is above 80%. The architecturally different
LSTMS learns to copy BERTT’s behaviour more closely than the BERT student (mostly in terms
of copying the teacher’s mistakes). [For detailed quantitative results, see Fig. C.2 in Appendix C.]

P7

Very difficult examples; classified unconfidently (and mostly incorrectly) by both students, and
mostly correctly by BERTT. Overall, they demonstrate the teacher’s superiority on challenging
sentences, e.g. recognising bill’s story about sue and max’s about kathy both amazed me. as
acceptable (CoLA) or you live around here? as ask wherefrom (Sara).

P8
Similar to P7; complicated examples that require understanding of semantics (CoLA, Sara) and
of mild sentiment possibly expressed in metaphors (SST-2), e.g. my heart is pounding me (CoLA,
unacceptable), fuck yeah! (Sara, affirm; misclassified by both students as handleinsult).

Table 6.2: Main observations from prediction analysis, individually for each analysis task from Tab. 6.1.

Chapter 6. Analysing the models 47

0.50 0.86 0.96 0.99
0.50

0.86

0.96

0.99

L
S

T
M

S

R =0.24*

CoLA

0.51 0.87 0.96 0.99
0.51

0.87

0.96

0.99
R =0.54*

SST-2

0.12 0.80 0.96 0.99
0.12

0.80

0.96

0.99
R =0.63*

Sara

0.50 0.86 0.96 0.99
0.50

0.86

0.96

0.99

B
E

R
T

S

R =0.28*

0.50 0.86 0.96 0.99
0.50

0.86

0.96

0.99
R =0.35*

0.16 0.81 0.96 0.99
0.16

0.81

0.96

0.99
R =0.66*

0.50 0.86 0.96 0.99
LSTMS

0.50

0.86

0.96

0.99

B
E

R
T

S

R =0.38*

0.50 0.86 0.96 0.99
LSTMS

0.50

0.86

0.96

0.99
R =0.43*

0.12 0.80 0.96 0.99
LSTMS

0.12

0.80

0.96

0.99
R =0.70*

Figure 6.5: Correlation between the prediction confidences of different models, measured as the Pearson
correlation coefficient R. The “*” marks statistically significant correlation (for p < 0.05).

CoLA SST-2 Sara
0.00

0.25

0.50

0.75

1.00

av
er

ag
e

co
n

fi
d

en
ce

of
p

re
d

ic
ti

on

BERTT
BERTS
LSTMS

all
hits
mistakes

Figure 6.6: The average confidence of evaluation-set predictions. Standard deviation errorbars are
shown.

To further aid my understanding of predictions on CoLA, lastly, I employ an experimental
approach: I let all models classify numerous perturbed variants of 21 interesting CoLA
sentences which were originally predicted correctly by BERTT but incorrectly by one
or both students12. This produces further evidence of students not being sensitive to
valid/broken sentence semantics, see Tab. 6.3. In addition to “allowing” John to be

12The complete list of the sentences and their perturbed versions is in Tab. C.1 in Appendix C.

Chapter 6. Analysing the models 48

a tree, the students are also found to be sensitive to concrete word choices where these
should not matter, e.g. most of the fruit is ripened. is classified differently from most of
the fruit is spoiled.

label BERTT BERTS LSTMS

my heart is pounding me. 7 7 0.89 3 0.96 3 0.88
my heart is pounding. 3 3 0.98 3 0.97 3 0.98
my heart is beating me. 7 7 0.92 3 0.93 3 0.98
my heart is beating. 3 3 0.98 3 0.93 3 0.98
we believed john to be a fountain in the park. 7 7 0.92 3 0.97 3 0.98
we believed john to be a bench in the park. 7 7 0.93 3 0.96 3 0.98
we believed john to be a musician in the park. 3 3 0.98 3 0.98 3 0.98

Table 6.3: Two example CoLA sentences, each followed by my own perturbed variants. 3 = acceptable,
7 = unacceptable. Confidences are shown next to model predictions.

6.3 Summary

Probing and prediction analyses were applied to the teacher and student models, each
shedding light on a different aspect.

While probing results show student models being less linguistically competent than their
teachers, this does not automatically imply that the students failed to properly learn what
they should. Instead, I point out that the teachers (and, more generally, models initialised
from trained parameters) can contain linguistic knowledge not needed for the downstream
task at hand. Additionally, observations from probing quantitatively confirm that CoLA
as a task requires many different linguistic capabilities, whereas SST-2 and Sara do not. As
for differences between the different student architectures, LSTMS may be more sensitive
to the notions of length and order in input sentences. As a limitation of the probing suite
of Conneau et al. (2018), I point out that three of the tasks are handled relatively well
even by simple bag-of-embedding models, as well as by trivial rule-based morphological
models.

The mostly qualitative prediction analysis helped to characterise sentences that are easy
or difficult for the models. The LSTM student was shown to better copy the teacher’s
behaviour. Still, both students fail to acquire the most sophisticated skills of their teachers
– notably, the students exploit easy cues such as keywords, but have limited sense of
sentence semantics.

Chapter 7

Overall discussion, conclusions and
future work

In this chapter, findings from all of this work are broadly discussed, before overall con-
clusions and ideas for future research are presented. In the discussion, I focus on knowl-
edge distillation in an applied context where model size and speed is to be optimised.
The model analysis approaches are viewed as tools for understanding and subsequently
improving knowledge distillation in practice.

7.1 Distilling BERT into tiny models

With a lot of recent research on knowledge distillation for compressing BERT, one should
carefully recognise that different works have different objectives. One stream of work aims
to retain all of BERT’s accuracy (Sanh et al., 2019; Sun et al., 2019b; Jiao et al., 2019),
but the size compression ratio is 2-10x, which may still produce models too large and
slow for many applications. Another stream (Tang et al., 2019b,a) explores the limits
of model compression using knowledge distillation at the cost of losing some of BERT’s
accuracy. My work is closer to the second stream, originating from previous attempts
at heavily accelerating BERT (Sucik, 2019). Adopting an applied mindset, I also focus
on how the distillation process can be tailored for individual tasks, instead of proposing
a universally well-performing student. While I observe that one student configuration can
work well across several tasks, several decisions are best made on a case-by-case basis, as
discussed in what follows.

The student model dimensions should reflect the task at hand. In particular, in research
and applications aiming to compress models as much as possible, it may be preferred to
tailor the student size individually to each task, as opposed to benchmarking a fixed-
size architecture on a diverse suite like GLUE. I showed that on easy tasks like SST-2
or Sara, a student can be several thousand times smaller than the BERTLarge teacher
and still retain over 95% of the teacher’s score. However, CoLA, as a complex linguistic
task, requires students to be both wider and deeper, and still they only achieve ∼75% of
the teacher’s score. Moreover, I observe that it is the student width, not depth, that plays
a key role: Increasing the number of BiLSTM or Transformer layers beyond 1-3 generally

49

Chapter 7. Overall discussion, conclusions and future work 50

does not improve scores, but accuracy degrades when the layer width is below 200-300
(with CoLA requiring ∼2-3x wider representations).

Besides the student size, model initialisation from trained parameters is important – as
a way of giving students language knowledge to start with. Such initialisation makes
sense especially in the lower layers, which 1) tend to learn task-agnostic features (thus,
general trained parameters can be re-used across tasks), and 2) are located far from
the top layer through which the teacher’s knowledge “enters” (which makes learning in
these lower layers more difficult). I observe that the choice of embeddings (word-level
vs wordpiece) can improve performance and is also possible to reason about, given some
knowledge of the data1. While initialisation from trained parameters is most easily done
in the embedding layer, ideally, this would be extended to multiple early layers2. In
the future, probing could be used to explore the flow of teacher’s knowledge in distillation
variants that force students to mimic internal teacher layers (e.g. Jiao et al. (2019); Sun
et al. (2019b)). When possible, copying the teacher’s encoder layer parameters directly
into the student is also an attractive option (Sanh et al., 2019); however, this requires
the student to be as wide as the teacher, which can be undesirable.

Last but not least, the choice of student architecture is important. While most studies on
distilling BERT work towards smaller BERT versions, there is no reason to believe that
other student architectures should be inferior. While in my experiments both students
tend to perform comparably well, I observe the BiLSTM student to be more sensitive
to order and length phenomena. Recently, Huang et al. (2020) showed that the two
architectures can complement each other – by combining them into one, they improved
on BERT’s accuracy. In practical applications, inference speed can make one architecture
preferred, perhaps because its concrete implementation is more optimised. For instance,
LSTMs can process variable-size batches whereas BERT requires all inputs to be padded
to a fixed maximum sequence length; this way, LSTMs can process shorter inputs faster,
but BERT can not.

7.2 What can models tell us

Coming up with an idea for improvement; building a new model; evaluating it on a bench-
mark like GLUE – these are the typical steps shared by many works on improving language
models. I am of the opinion that trained models can reveal a lot about themselves and
make suggestions for further iterative improvements. In this work, I demonstrate the use
of two complementary analysis approaches with this aim.

Probing tasks can be used beyond the purposes they were originally meant for. Conneau
et al. (2018) propose tasks for quantifying the language knowledge present in the last layer
of a sentence encoder model. Tenney et al. (2019b,a) inspect individual model layers and
localise different linguistic capabilities within BERT. I combine the above approaches
and, additionally, use probing to “track” language knowledge as it enters and propagates

1Word-level embeddings being more suitable for domains with decent language, wordpieces more useful
where many unknown words (slang, mistyped and similar) are expected.

2This is not commonly done, as these parameters are specific to each architecture, unlike the token-
level embeddings, which are highly re-usable.

Chapter 7. Overall discussion, conclusions and future work 51

through the models before and during training. This way, I characterise the impact of
initialising the students’ embedding layer from trained parameters, and the loss of general
language knowledge in the top layers of the pre-trained BERT when this is fine-tuned on
concrete downstream tasks.

Both probing and inspecting the models’ predictions helps to describe the teacher’s skills
not learnt well by students. In particular, I observe that semantic skills are diminished in
the students even when the downstream task clearly requires them (CoLA). As a remedy,
distilling this complex knowledge from the teacher’s intermediate layers (Jiao et al., 2019;
Sun et al., 2019b) could be tried, with the effects monitored by student probing.

Probing can motivate task-specific model adjustments. On CoLA, which is found to lever-
age complex linguistic skills from later model layer, the students can be made deeper to fa-
cilitate the learning of complex, semantic representations. On Sara, inspecting the model’s
predictions reveals tendency for learning characteristic keywords. Depending on whether
this behaviour is desirable or not, residual connections in students can be added/removed
to make internal input-copying easier or harder.

Considering the confidence of predictions provides richer insights into model behaviour.
I observe that unconfident predictions correspond to challenging examples, whereas confi-
dent predictions are made on easy examples (classified correctly) and on “tricky” misclassi-
fied examples where models are misled often by a single word. Calculating the correlation
between two models’ prediction confidences can quantify the extent to which models be-
have similarly in their perception of examples as easy or difficult. This way, I observe
that the teacher and student models diverge the most on CoLA and SST-2, but behave
similarly on Sara examples.

Both probing and prediction analysis have their limitations. Correct interpretation of
probing results is difficult: A high probing score does not imply that the model actively
learnt the skill in question. Instead, the knowledge may have been present in trained
embeddings, or acquired from the transfer dataset which reflects the teacher’s knowledge
but not necessarily the task’s needs. Furthermore, just because a probing task is aimed
for measuring a specific skill, it may not measure this well – for instance, a semantic task
may still heavily rely on easy lexical cues, or may represent only a very narrow part of
general semantic knowledge. Inspecting a model’s predictions has its own caveats – in
particular, it is difficult to grasp why exactly a model misclassifies a given sentence. While
I show that this can be sometimes clarified by testing the model on numerous hand-crafted
perturbations of the original sentence, this approach is extremely laborious.

7.3 Conclusions

In this work, I have explored the use of teacher-student knowledge distillation for com-
pressing the large BERT language model into architecturally different, smaller models,
separately on different sentence-classification tasks. With the aim of extreme model com-
pression, I adopt the approach of first fine-tuning BERT on a specific task and subse-
quently distilling it into student models.

My findings show that easier tasks like SST-2 (binary sentiment classification from movie

Chapter 7. Overall discussion, conclusions and future work 52

reviews) and Sara (57-way intent classification of human messages from human-bot con-
versations) can be successfully handled by student models several thousand times smaller
and faster than the BERTLarge teacher model. However, these tasks are very easy to start
with, and applying BERT to them may be questioned. On the very challenging task of
linguistic acceptability judgement (CoLA), standard knowledge distillation cannot bridge
the gap between the teacher and the students, and a more sophisticated way of knowledge
transfer may be needed, especially to help the students acquire semantic skills.

Working with different student architectures and on different downstream tasks is rela-
tively easy. In particular, roughly the same hyperparameter configuration can be re-used.
However, the students’ depth is best adjusted on each task (the more complex the task,
the deeper the students), as is the choice of pre-trained embeddings (word-level vs word-
piece). Both a bidirectional LSTM student and a down-scaled BERT student are found
to work similarly well, with the former one learning to copy the teacher’s behaviour more
closely, despite the architectural disparity.

I show that probing the models for specific linguistic knowledge as well as inspecting
the models’ predictions can be used to mine various insights about the models, the tasks,
and about knowledge distillation. While the first approach quantitatively measures differ-
ent linguistic skills possessed by a model, the latter approach can provide useful concrete
examples for further analysis. In general, both students are found to lack especially
the complex semantic understanding possessed by the teacher, and challenging sentences
are presented on which the teacher succeeds but the students fail. Further, probing is
shown to usefully trace the different sources of knowledge in models, producing insights
which can be used to adjust the student architecture and initialisation.

Overall, I have produced useful insights both by using knowledge distillation in different
settings and by analysing the trained teacher and student models.

7.4 Directions for future work

While the approach of applying knowledge distillation to large Transformers is new and
many things are yet to be properly researched, my focus is primarily on analysing the tech-
nique and the models it produces, the main aim being better understanding.

As the biggest downside of prediction analysis, I identify my uncertainty in identifying why
a model misclassified a given sentence. While I show that this can be partly addressed by
perturbing the sentence and effectively testing different hypotheses, the approach is very
laborious. Naturally, being able to easily and quickly interpret a model’s predictions is
desirable. In future work, inspecting predictions could hugely benefit from automatically
generated “saliency maps”, i.e. highlighting the input tokens which are most responsible
for the particular prediction outcome. In practice, such saliency highlighting can be
achieved either by using attentional weights like in the original self-attention (Lin et al.,
2017), or, where the student doesn’t use attention, by more general methods (several of
them recently built into an NLP model interpretation toolkit by Wallace et al. (2019)).
Additional automated approaches include masking out one or more words at a time and
scoring such incomplete sentences, or, with sequential models such as LSTMs, scoring

Chapter 7. Overall discussion, conclusions and future work 53

progressively larger parts of the input to observe how the model’s beliefs evolve while
“reading” the sentence.

Observing that probing can be used for effectively “tracking” the flow of language knowl-
edge, one promising research direction is making such tracking more systematic. Impor-
tantly, creating a proper methodology around the use of probing tasks is desirable. Such
methodology should facilitate more careful interpretation of probing scores, in particular
by controlling for language knowledge which is present in the model for reasons other than
the hypothesised one (e.g. as residual knowledge from pre-trained parameters). It is de-
sirable to know how and why certain knowledge was acquired by a model, not just where
and how much of this knowledge is possessed by the model. As another improvement of
the probing approach, it could be applied not just to layer outputs, but also to the self-
attention heads’ outputs in Transformer models. This could either use existing general
probing suites like that of Conneau et al. (2018), or adopt a more bespoke approach
similar to Clark et al. (2019) who probe the heads for relational language knowledge.

While the probing tasks used today rely on classification tasks3, a different approach to
probing may be to quantify the general sensitivity of a model to a particular concept (such
as the concept grammatical tense). For this purpose, the recently proposed approach of
Kim et al. (2018) could be used, which enables measuring any neural model’s sensitivity
to any concept representable by a collection of input examples. In the NLP domain, sev-
eral concepts are especially easy to gather examples for: the concept of sentence length
(exemplified perhaps by a collection of long sentences), the concept of sentence type (e.g.
a collection of interrogative sentences, identified automatically by the final “?”), the con-
cept of tense (curated with the help of an automatic lexical parser), the concept of formal
or informal language (as warranted by a particular text source), etc. Ideally, this would
enable probing tasks to be more easily extended beyond linguistic skills. Additionally,
it is interesting to know a model’s general sensitivity to, say, the concept of tense, and
compare this with the model’s score on a binary tense-classification task.

Naturally, further exploration could focus more directly on improving knowledge distilla-
tion as such. In particular, since student training takes long on the large transfer datasets,
it would be interesting to try varying the amount of augmentation data while observing
not just the students’ scores on downstream tasks, but also the various language knowl-
edge acquired. Additionally, I observe that the GPT-2-generated augmentation sentences
(especially on SST-2 and Sara) are often non-sensical (e.g. what management nyy or done
str prevents them). Generating more credible input examples – by fine-tuning GPT-2
for longer, or by scoring the generated sentences for grammaticality by another model
– could improve knowledge distillation. The importance of the presence of the original
training data in the transfer dataset is also unclear; this could be reduced or, on the other
hand, amplified (by including the data multiple times), while observing the effects of such
manipulation.

Finally, other model compression techniques can be explored, similarly to knowledge
distillation. One attractive approach is model pruning which removes individual weight
connections or neurons (Han et al., 2016; Sajjad et al., 2020), or even entire attentional
heads (Michel et al., 2019) or model layers (Mao et al., 2020), often without significantly

3For instance, a model is tested on its ability to distinguish between the past and present tense of
a sentence’s main verb.

Chapter 7. Overall discussion, conclusions and future work 54

affecting the model’s accuracy. The question is if and what linguistic skills are lost in
this process, and whether these were useful at all in the given context, or were correctly
identified as spurious during the pruning procedure.

Bibliography

Adhikari, A., Ram, A., Tang, R., and Lin, J. (2019). DocBERT: BERT for document
classification. arXiv, abs/1904.08398.

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., and Goldberg, Y. (2017). Fine-grained
analysis of sentence embeddings using auxiliary prediction tasks. In ICLR.

Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In NeurIPS, pages
2654–2662.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In ICLR.

Belinkov, Y. and Glass, J. R. (2019). Analysis methods in neural language processing:
A survey. In Burstein, J., Doran, C., and Solorio, T., editors, NAACL-HLT, pages
3348–3354. ACL.

Bucila, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 535–541. ACM.

Cheong, R. and Daniel, R. (2019). transformers.zip: Compressing transformers with prun-
ing and quantization. http://web.stanford.edu/class/cs224n/reports/custom/
15763707.pdf.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D. (2019). What does BERT look
at? an analysis of BERT’s attention. In ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 276–286.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language process-
ing: Deep neural networks with multitask learning. In ICML, pages 160–167. ACM.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P.
(2011). Natural language processing (almost) from scratch. J. Mach. Learn. Res.,
12:2493–2537.

Conneau, A. and Kiela, D. (2018). SentEval: An evaluation toolkit for universal sentence
representations. In Calzolari, N., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Hasida,
K., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis,
S., and Tokunaga, T., editors, LREC. European Language Resources Association.

Conneau, A., Kruszewski, G., Lample, G., Barrault, L., and Baroni, M. (2018). What

55

http://web.stanford.edu/class/cs224n/reports/custom/15763707.pdf
http://web.stanford.edu/class/cs224n/reports/custom/15763707.pdf

Bibliography 56

you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic
properties. In ACL, pages 2126–2136. ACL.

Conneau, A. and Lample, G. (2019). Cross-lingual language model pretraining. In
NeurIPS, pages 7057–7067.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. In NeurIPS, pages
3079–3087.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019).
Transformer-XL: Attentive language models beyond a fixed-length context. In ACL,
pages 2978–2988. ACL.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pages 4171–
4186. ACL.

Dos Santos, C. and Gatti, M. (2014). Deep convolutional neural networks for sentiment
analysis of short texts. In COLING, pages 69–78.

Gieske, S. A. (2017). Inflecting verbs with word embeddings: A systematic investigation of
morphological information captured by German verb embeddings (MSc thesis). https:
//esc.fnwi.uva.nl/thesis/centraal/files/f1156967543.pdf.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018).
Explaining explanations: An overview of interpretability of machine learning. arXiv,
abs/1806.00069.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch,
A., Jia, Y., and He, K. (2017). Accurate, large minibatch SGD: Training ImageNet in
1 hour. arXiv, abs/1706.02677.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv,
abs/1308.0850.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural
network with pruning, trained quantization and Huffman coding. In ICLR.

Hinton, G. E., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv, abs/1503.02531.

Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length and
Helmholtz free energy. In NeurIPS, pages 3–10.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput.,
9(8):1735–1780.

Huang, Z. and Wang, N. (2017). Like what you like: Knowledge distill via neuron selec-
tivity transfer. arXiv, abs/1707.01219.

Huang, Z., Xu, P., Liang, D., Mishra, A., and Xiang, B. (2020). TRANS-BLSTM: trans-
former with bidirectional LSTM for language understanding. arXiv, abs/2003.07000.

Jawahar, G., Sagot, B., and Seddah, D. (2019). What does BERT learn about the
structure of language? In ACL, pages 3651–3657. ACL.

https://esc.fnwi.uva.nl/thesis/centraal/files/f1156967543.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1156967543.pdf

Bibliography 57

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., and Liu, Q.
(2019). TinyBERT: Distilling BERT for natural language understanding. arXiv,
abs/1909.10351.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation models. In
EMNLP, pages 1700–1709. ACL.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C. J., Wexler, J., Viégas, F. B., and Sayres, R.
(2018). Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In ICML, volume 80 of PMLR, pages 2668–2677. PMLR.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In EMNLP,
pages 1746–1751. ACL.

Kim, Y. and Rush, A. M. (2016). Sequence-level knowledge distillation. In EMNLP, pages
1317–1327. ACL.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In ICLR.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and Fidler,
S. (2015). Skip-thought vectors. In NeurIPS, pages 3294–3302.

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing the dark
secrets of BERT. In EMNLP-IJCNLP, pages 4364–4373. ACL.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In NeurIPS, pages 1106–1114.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015). From word embeddings to
document distances. In ICML, volume 37 of PMLR, pages 957–966.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016). Neural
architectures for named entity recognition. In NAACL-HLT, pages 260–270. ACL.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). AL-
BERT: A lite BERT for self-supervised learning of language representations. arXiv,
abs/1909.11942.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C., and Kang, J. (2019). BioBERT:
a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Lin, Y., Tan, Y. C., and Frank, R. (2019). Open sesame: Getting inside BERT’s lin-
guistic knowledge. In ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 241–253. ACL.

Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B., Zhou, B., and Bengio, Y. (2017).
A structured self-attentive sentence embedding. In ICLR.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining
approach. arXiv, abs/1907.11692.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In ICLR.

Bibliography 58

Luong, T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. In EMNLP, pages 1412–1421. ACL.

Mao, Y., Wang, Y., Wu, C., Zhang, C., Wang, Y., Yang, Y., Zhang, Q., Tong, Y., and
Bai, J. (2020). LadaBERT: Lightweight adaptation of BERT through hybrid model
compression. arXiv, abs/2004.04124.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary struc-
ture of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451.

Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better than one?
In NeurIPS, pages 14014–14024.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. In ICLR.

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent
neural network based language model. In INTERSPEECH, pages 1045–1048. ISCA.

Mirzadeh, S., Farajtabar, M., Li, A., and Ghasemzadeh, H. (2019). Improved knowledge
distillation via teacher assistant: Bridging the gap between student and teacher. arXiv,
abs/1902.03393.

Mukherjee, S. and Awadallah, A. H. (2019). Distilling transformers into simple neural
networks with unlabeled transfer data. arXiv, abs/1910.01769.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Fürnkranz, J. and Joachims, T., editors, ICML, pages 807–814. Omni-
press.

Papamakarios, G. (2015). Distilling model knowledge (MSc thesis). arXiv,
abs/1510.02437v1.

Pires, T., Schlinger, E., and Garrette, D. (2019). How multilingual is multilingual BERT?
In Korhonen, A., Traum, D. R., and Màrquez, L., editors, ACL, pages 4996–5001. ACL.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language
understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI Blog.

Rogers, A., Kovaleva, O., and Rumshisky, A. (2020). A primer in BERTology: What we
know about how BERT works. arXiv, abs/2002.12327.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2015).
FitNets: Hints for thin deep nets. In ICLR.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1987). Learning internal represen-
tations by error propagation. In Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, pages 318–362. MIT Press, Cambridge, MA, USA.

Sajjad, H., Dalvi, F., Durrani, N., and Nakov, P. (2020). Poor man’s BERT: smaller and
faster transformer models. arXiv, abs/2004.03844.

Bibliography 59

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In NeurIPS EMC2̂ Workshop.

Sau, B. B. and Balasubramanian, V. N. (2016). Deep model compression: Distilling
knowledge from noisy teachers. arXiv, abs/1610.09650.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words
with subword units. In ACL, pages 1715–1725. ACL.

Shi, X., Padhi, I., and Knight, K. (2016). Does string-based neural MT learn source
syntax? In EMNLP, pages 1526–1534. ACL.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolutional networks:
Visualising image classification models and saliency maps. In ICLR.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C.
(2013). Recursive deep models for semantic compositionality over a sentiment treebank.
In EMNLP, pages 1631–1642. ACL.

Strobelt, H., Gehrmann, S., Behrisch, M., Perer, A., Pfister, H., and Rush, A. M. (2019).
Seq2seq-Vis: A visual debugging tool for sequence-to-sequence models. IEEE Trans.
Vis. Comput. Graph., 25(1):353–363.

Sucik, S. (2019). Pruning BERT to accelerate inference. https://blog.rasa.com/
pruning-bert-to-accelerate-inference/.

Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid, C. (2019a). VideoBERT:
A joint model for video and language representation learning. In IEEE-ICCV, pages
7463–7472. IEEE.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. (2019b). Patient knowledge distillation for BERT
model compression. In EMNLP-IJCNLP, pages 4322–4331. ACL.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In NeurIPS, pages 3104–3112.

Tang, R., Lu, Y., and Lin, J. (2019a). Natural language generation for effective knowledge
distillation. In EMNLP-IJCNLP Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo), pages 202–208.

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. (2019b). Distilling task-
specific knowledge from BERT into simple neural networks. arXiv, abs/1903.12136.

Tenney, I., Das, D., and Pavlick, E. (2019a). BERT rediscovers the classical NLP pipeline.
In ACL, pages 4593–4601. ACL.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Van Durme,
B., Bowman, S., Das, D., et al. (2019b). What do you learn from context? probing for
sentence structure in contextualized word representations. In ICLR.

Tsai, H., Riesa, J., Johnson, M., Arivazhagan, N., Li, X., and Archer, A. (2019). Small and
practical BERT models for sequence labeling. In EMNLP-IJCNLP, pages 3630–3634.
ACL.

https://blog.rasa.com/pruning-bert-to-accelerate-inference/
https://blog.rasa.com/pruning-bert-to-accelerate-inference/

Bibliography 60

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In NeurIPS, pages 5998–6008.

Wallace, E., Tuyls, J., Wang, J., Subramanian, S., Gardner, M., and Singh, S. (2019). Al-
lenNLP Interpret: A framework for explaining predictions of NLP models. In EMNLP-
IJCNLP, pages 7–12. ACL.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. (2018). GLUE:
A multi-task benchmark and analysis platform for natural language understanding.
In EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pages 353–355. ACL.

Warstadt, A., Singh, A., and Bowman, S. R. (2019). Neural network acceptability judg-
ments. Transactions of ACL, 7:625–641.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., and Brew, J. (2019). HuggingFace’s Transformers: State-
of-the-art natural language processing. ArXiv, abs/1910.03771.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao,
Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., ÅĄukasz
Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil,
N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,
Hughes, M., and Dean, J. (2016). Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv, abs/1609.08144.

Yu, S., Kulkarni, N., Lee, H., and Kim, J. (2018). On-device neural language model based
word prediction. In COLING, pages 128–131. ACL.

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv, 1212.5701.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional net-
works. In ECCV, volume 8689, pages 818–833. Springer.

Appendix A

Datasets

intent name description example

affirm
affirmative response

yes please!

ask_builder
asking Sara who built her

who developed you

ask_faq_channels
asking Sara about the messaging
channels that Rasa tools support what chat channels

does rasa uses

ask_faq_community_size
asking Sara about the size of
the Rasa contributor community Is the˜community

large?

ask_faq_
differencecorenlu

asking Sara about the difference
between two major components of
the Rasa tools: Rasa NLU and Rasa
Core

what is the˜difference
between core and nlu?

ask_faq_languages
asking Sara about the languages
supported by Rasa tools do you support french

?

ask_faq_opensource
asking Sara if Rasa products are
open source are you full open

source

ask_faq_platform
asking Sara about the Rasa Plat-
form product tell me what is

platform

ask_faq_python_version
asking Sara about the version of
Python supported by Rasa tools which python version

ask_faq_slots
asking Sara about slots, a con-
cept in Rasa tools for holding
human-provided contextual infor-
mation during conversations

what do you mean by
slots?

Continued on next page

61

Appendix A. Datasets 62

Table A.1 – Continued from previous page

ask_faq_tutorials
asking Sara about tutorials on using
Rasa tools is there a˜tutorial

for this?

ask_faq_voice
asking Sara about the possibility to
create a voice assistant using Rasa you have speech

recognition?

ask_faq_what_is_forum
asking Sara about the online Rasa
community forum what can I˜post in

the˜forum?

ask_how_contribute
asking Sara how one can contribute
to the Rasa open-source project How can I˜add code to

Rasa

ask_howbuilt
asking Sara how she was built

so how were you made?

ask_howdoing
asking Sara how she is doing

Hows it going

ask_howold
asking Sara about her age

do you know how old
you are?

ask_isbot
asking Sara if she is a bot

are you really a˜bot

ask_languagesbot
asking Sara about the languages she
can speak how many languages are

you fluent in?

ask_question_in_forum
asking Sara a question about
the Rasa community forum how can I˜leave

a˜query in the˜forum?

ask_restaurant
asking Sara to recommend a restau-
rant Where should I˜eat?

ask_time
asking Sara about the time

tell me the˜time it
is.

ask_weather
asking Sara about the weather

excellent - is it hot
in Berlin?

ask_whatismyname
asking Sara to tell the person’s
name can you tell me my

name?

ask_whatisrasa
asking Sara what Rasa is

OK can u brief me Abt
rasa

ask_whatspossible
asking Sara about the things she
can do/help with how u can help me

Continued on next page

Appendix A. Datasets 63

Table A.1 – Continued from previous page

ask_when_next_event
asking Sara about the next sched-
uled Rasa community event what date is the˜next

community event?

ask_wherefrom
asking Sara where she is from

where did you grow up?

ask_which_events
asking Sara about the current Rasa
community events what sort of social

events are we
throwing?

ask_whoami
asking Sara who the human person
is tell me who I˜am?

ask_whoisit
asking who is it (like on the phone)

who am i talking to

ask_why_contribute
asking Sara about the reasons to
contribute to Rasa Why should

I˜contribute to your
code?

bye
ending a conversation with Sara by
saying bye take care

canthelp
telling Sara she cannot help with
what is needed i guess you can’t help

me then

contact_sales
asking Sara about ways to contact
the Rasa sales team i want to talk to

sales

deny
provide a negative, denying re-
sponse to Sara no sorry

enter_data
providing information asked for by
Sara the˜assistant is in

dutch, or
my name is
__PERSON_NAME__

greet
saying hi to Sara

hey let’s talk

handleinsult
telling an insult to Sara

i hate your dumb face

how_to_get_started
asking Sara how one can get started
with Rasa tools how to build a˜chatbot

human_handoff
asking to be put through to a hu-
man instead of the Sara bot let me speak with

a˜real person please

install_rasa
asking Sara about installing Rasa

i need help setting up
Continued on next page

Appendix A. Datasets 64

Table A.1 – Continued from previous page

next_step
asking Sara to proceed to the next
step next step please

nicetomeeyou
saying to Sara it is nice to meet her

Good to meet you!

nlu_generation_tool_
recommendation

asking Sara about tools that can be
used to generate more NLU training
data (intent examples like these)

i need more nlu data

nlu_info
asking Sara about the Rasa NLU
tool what is a˜intent?

out_of_scope
an out-of-scope message not falling
into any of the other intent cate-
gories

how to climb the˜tree?

pipeline_recommendation
asking Sara about the pipeline con-
figuration used when building bots
using Rasa tools

what pipeline should i
use?

rasa_cost
asking Sara about the price of Rasa
products is rasa core paid?

react_negative
negative reaction (typically in re-
sponse to Sara asking how the per-
son is feeling)

so sad :(

react_positive
positive reaction (typically in re-
sponse to Sara asking how the per-
son is feeling)

you are cool man

signup_newsletter
asking Sara about signing up for
a newsletter i want on that dope

newsletter

source_code
asking Sara about her source code

your code please

switch
asking Sara about switching from
a competitor tool to Rasa How to migrate from

DialogFlow to Rasa?

technical_question
asking Sara an assorted technical
questions do you have docker

image for rasa?

telljoke
asking Sara to tell a jok

say a˜funny joke

thank
thanking Sara

amazing, thanks

Table A.1: A complete list of the intents found in the Sara dataset.

Appendix A. Datasets 65

acc.
unacc.

pos.
neg.

enter data
out of scope

how to get started
affirm

contact sales
greet

signup newsletter
ask builder

ask faq languages
ask whatspossible

handleinsult
ask howdoing

install rasa
deny

ask whatisrasa
ask weather

ask faq voice
technical question

ask faq slots
ask whoisit

ask faq differencecorenlu
nlu info

ask how contribute
ask howold

ask languagesbot
ask restaurant

ask faq what is forum
nicetomeeyou

ask wherefrom
rasa cost

ask faq opensource
ask time

ask howbuilt
ask question in forum

ask which events
switch

react positive
ask faq tutorials

human handoff
ask faq channels

ask faq community size
ask when next event

thank
bye

telljoke
ask isbot

ask whatismyname
react negative

source code
canthelp

ask why contribute
ask whoami

ask faq platform
next step

pipeline recommendation
ask faq python version

nlu generation tool recommendation

class

01 5 10 15 20 30 40 50 60 70
% of all examples

C
oL

A
S

S
T

-2
S

ara

Figure A.1: Class distribution in the different downstream task datasets; not that this distribution is roughly
the same across the different portions of each dataset.

Appendix B

Student hyperparameter exploration

B.1 Initial exploration on CoLA

B.1.1 Choosing learning algorithm and learning rate

Because Tang et al. (2019a) report not tuning their BiLSTM hyperparameters, I verify
their choices. In particular, the use of the Adam learning algorithm is explored – a widely
used and improved version of the Adadelta algorithm which is used originally.

For both students, I try a wide range of η values with Adam: 5× 10−3, 1.5× 10−3, 5×
10−4, 1.5×10−4, 5×10−5, 1.5×10−5, 5×10−6.

Fig. B.1 shows that for all students the ideal η is around 5×10−4. Much larger and much
smaller values leading to poor learning, in particular the largest η = 5× 10−3 “kills” the
learning of BERTS entirely due to gradient explosion. As expected, BERTS initialised
from scratch performs worse than when initialised from the wordpiece embeddings of
BERTT. However, the differences are not large.

As discussed previously, BERTS converges much slower than LSTMS, hence the 30-epoch
and 60-epoch training budgets for LSTMS and BERTS, respectively. Additionally, it is
apparent that LSTMS performs significantly better than BERTS even though the sizes of
the models are comparable.

In the case of LSTMS, the Adadelta algorithm is outperformed by Adam. From now
onwards, I use Adam with both students, in all cases with η = 5×10−4.

B.1.2 Choosing learning rate scheduling and batch size

Tang et al. (2019b) use no learning rate scheduling, but they report small batch sizes
(B = 50) to work better than the usual, larger batches. Hence, for LSTMS I first verify
their claims and subsequently move on to η scheduling. For BERTS, inspired by Sanh
et al. (2019) who take advantage of scheduling (both in terms of warmup and decay), I
explore η scheduling first (as a continuation from exploring η values), and then look at
various B values.

66

Appendix B. Student hyperparameter exploration 67

0 5 10 15 20 25 30
0

10

20

30

40
ev

al
u

at
io

n
-s

et
M

C
C

LSTMS

0 10 20 30 40 50 60
epoch

0

10

20

30

ev
al

u
at

io
n

-s
et

M
C

C

BERTS

5× 10−3

1.5× 10−3

5× 10−4

1.5× 10−4

5× 10−5

1.5× 10−5

5× 10−6

Figure B.1: Comparing various η values on CoLA. Crosses mark the maximum scores. The lines are
smoothed using sliding average with a 2-epochs-wide window. In particular, notice that the best-score
points (crosses) are well above the smoothed lines – this is because the (unsmoothed) evaluation score
varies a lot, as illustrated in the upper plot for LSTMS with η = 5×10−3.

0 5 10 15 20 25 30
epoch

10

20

30

40

ev
alu

ati
on

-se
t M

CC

32 50 128 256 512

Figure B.2: Comparing various batch sizes for LSTMS on CoLA. Crosses mark the maximum scores.
The lines are smoothed using sliding average with a 2-epochs-wide window.

As Fig. B.2 shows, LSTMS clearly does prefer small batch sizes. However, training with
tiny minibatches takes very long – compare ∼25min for B = 512 with ∼7h for B = 32.
Hence, I restrain from trying even smaller batch sizes and use B = 32 for LSTMS in all
further experiments.

Fig. B.3 shows the results of exploring various warmup durations for both students. Note
that for LSTMS, whose training budget is only 30 epochs, I did not try the long warmup
duration of 20 epochs, only up to 15 epochs.

Appendix B. Student hyperparameter exploration 68

0 5 10 15 20 25 30
0

10

20

30

40

ev
al

u
at

io
n

-s
et

M
C

C

LSTMS

0 10 20 30 40 50 60
epoch

0

10

20

30

40

ev
al

u
at

io
n

-s
et

M
C

C

BERTS

0
0, decay
5
5, decay
10
10, decay
15
15, decay
20
20, decay

Figure B.3: Comparing warmup durations Ew on CoLA, with the optional learning rate decay to 0 over
the remaining training epochs. Crosses mark the maximum scores. The lines are smoothed using sliding
average with a 2-epochs-wide window.

In the case of LSTMS, Fig. B.3 shows that the longer the warmup duration, the slower the
model converges. This is understandable because during warmup, learning happens less
aggressively – and hence more slowly – due to the smaller learning rate. More importantly,
the graph shows that η decay does not significantly affect training, but it can help to
prevent the model from overfitting the training data. This is most visible for Ew = 0
where LSTMS’s performance starts to slowly decrease after 20 epochs in the absence of η
decay. All in all, using the full η from the beginning of training is the best option, and
η decay can only improve things. Ew = 0 with decay is used for LSTMS in all further
experiments.

In the case of BERTS, the only clear result visible from Fig. B.3 is that BERTS performs
poorly without η warmup. For non-zero warmup durations, there are no significant differ-
ences in the best-performance points (marked by crosses) or in the convergence speed. In
all further experiments with BERTS, I use Ew = 15 and η decay – the configuration which
shows the highest stable performance level in Fig. B.3 in later epochs (beyond epoch 35).

The batch size exploration in Fig. B.4 shows that BERTS performs best with mid-sized
batches of 128-256 examples. Too large batch size (B = 512) as well as very small batches
of 32-64 make BERTS underperform (with tiny batches of 32 being particularly detrimen-
tal). In all further experiments, B = 128 is used with BERTS.

Appendix B. Student hyperparameter exploration 69

0 10 20 30 40 50 60
epoch

0

10

20

30
ev

alu
ati

on
-se

t M
CC

32 64 128 256 512

Figure B.4: Comparing various batch sizes for BERTS on CoLA. Crosses mark the maximum scores.
The lines are smoothed using sliding average with a 2-epochs-wide window.

B.2 Optimising students for each downstream task

In this section, I provide details of explore different ways of initialising student models
with language knowledge, and the effect of model size, separately for each downstream
task.

B.2.1 Choosing embedding type and mode

0 5 10 15 20 25 30
10

20

30

40

ev
al

u
at

io
n

-s
et

M
C

C

LSTMS

word, multichannel
word, non-static

wordpiece, multichannel
wordpiece, non-static

0 10 20 30 40 50 60
epoch

10

20

30

40

ev
al

u
at

io
n

-s
et

M
C

C

BERTS

word, multichannel
word, non-static

wordpiece, multichannel
wordpiece, non-static

Figure B.5: Comparing embedding types and modes on CoLA. Crosses mark the maximum scores.
The lines are smoothed using sliding average with a 2-epochs-wide window.

Appendix B. Student hyperparameter exploration 70

Fig. B.5 shows how different type and mode combinations affect knowledge distillation on
CoLA. With LSTMS, the multichannel mode is preferred to non-static and word2vec em-
beddings are preferred to wordpieces; hence, I use the multichannel mode with word2vec in
further experiments (same as Tang et al. (2019a)). For BERTS, the differences are smaller,
yet it is clear that word-level embeddings benefit from using the frozen and unfrozen ver-
sions provided by the multichannel mode. In further experiments, the multichannel mode
combined with word-level word2vec embeddings is used.

For SST-2, I only compare the best word-level and the best wordpiece-level combination
for each model as observed from Fig. B.5. The results are shown in Fig. B.6. Notice the
scale of the y axis: In particular, the students perform roughly the same (unlike on CoLA)
and any relative differences observed in Fig. B.6 are much smaller than the differences
observed on CoLA in Fig. B.5. Hence, I refrain from making conclusions about which
embedding type and mode works better; I merely choose to use the word-level embeddings
with the multichannel mode in all further experiments on SST-2 (my decision is based on
the best evaluation scores marked by crosses in Fig. B.6).

0 5 10 15 20 25 30

84

86

88

90

92

ev
al

u
at

io
n

-s
et

ac
cu

ra
cy

LSTMS

word, multichannel wordpiece, multichannel

0 10 20 30 40 50 60
epoch

84

86

88

90

92

ev
al

u
at

io
n

-s
et

ac
cu

ra
cy

BERTS

word, multichannel wordpiece, non-static

Figure B.6: Comparing embedding types and modes on SST-2. Crosses mark the maximum scores.
The lines are smoothed using sliding average with a 2-epochs-wide window.

Results on Sara are shown in Fig. B.7. Here again, the relative differences in performance
are small, but using wordpieces helps both students converge faster and reach slightly
better performance levels. This can be a result of the word2vec vocabulary not capturing
well the conversational language in Sara examples, for instance the utterance “yesyesyes”
would be treated simply as one out-of-vocabulary word, whereas wordpieces have the
potential to encode it as the word “yes” repeated 3x. In all further experiments on Sara I
use the wordpiece embeddings, using the multichannel mode in LSTMS and the non-static

Appendix B. Student hyperparameter exploration 71

mode in BERTS.

0 5 10 15 20 25 30
80

82

84

86

88
ev

al
u

at
io

n
-s

et
m

ic
ro

-a
v
g

F
1 LSTMS

word, multichannel wordpiece, multichannel

0 10 20 30 40 50 60
epoch

80

82

84

86

88

ev
al

u
at

io
n

-s
et

m
ic

ro
-a

v
g

F
1 BERTS

word, multichannel wordpiece, non-static

Figure B.7: Comparing embedding types and modes on Sara. Crosses mark the maximum scores.
The lines are smoothed using sliding average with a 2-epochs-wide window.

All in all, the multichannel mode seems to be generally superior to the non-static mode
which lacks the frozen version of embeddings. Initialisation from the word-level word2vec
embeddings also works better than wordpieces where examples tend to contain legitimate
English (CoLA and SST-2). As for the performance gap between LSTMS and BERTS, I
conclude that it cannot be explained by differences in embedding type/mode, and is most
likely a consequence of different student architectures.

While wordpiece embeddings have the advantage of being fine-tuned on the particular
downstream task (as part of teacher fine-tuning), word2vec contains more general knowl-
edge stored at the word level. Importantly, the wordpiece vocabulary contains the most
frequent words in their entirety; only the less frequent ones are split into pieces. Thus,
for frequent words, their word2vec and wordpiece embeddings will differ only in the way
they are trained. Naturally, since the wordpiece vocabulary has only 30,522 tokens while
word2vec has 3,000,000, there are many words covered by word2vec for which the word-
piece embeddings have to be assembled from multiple pieces. On these words – frequent
enough to be in the word2vec vocabulary, but not the most frequent ones – word2vec
could have an advantage. Once we move beyond the words covered by word2vec to rare
tokens like “yesyesyes”, wordpieces become the preferred approach. Clearly, no one ap-
proach is generally the best, and the decision should ideally be made individually for each
downstream task.

Appendix B. Student hyperparameter exploration 72

B.2.2 Choosing student size

As the last parameter, I explore the size of each student. In particular, I try to reduce the
performance gap on CoLA between BERTT and both students by making the students
larger. On SST-2 and Sara, the 2.4-million-parameter students already achieve scores
very close to those of the teacher, and I refrain from exploring larger students – instead,
I explore smaller student sizes.

There are two main ways of increasing the student size: By increasing the model “width”
and the “depth”. By width, I mean the dimensionality of the model’s layers and internal
representations. Depth means adding more layers. While larger width allows the models
to extract and maintain richer token representations, adding layers adds more steps to the
models’ processing pipelines, allowing for more abstract and task-specific representations
to be extracted in the end.

In BERTS, I manipulate width by increasing by a set factor W the hidden dimensionality
dh, the intermediate dimensionality dI , and the number of self-attentional heads A. Depth
is manipulated by changing the number of encoder layers L by the factor D. In LSTMS,
I change model width by scaling by W the LSTM layer width dLST M and the fully-
connected layer width dF C , which are originally set to 300 and 400, respectively. Depth
is changed by increasing the number of LSTM layers (originally just one) by the factor D.
The concrete dimensions of up- and down-scaled students are shown in Tab. B.1 (BERTS)
and in Tab. B.2 (LSTMS).

W dh dI A

1/16 13 47 1
1/8 26 94 1
1/4 51 188 1
1/3 68 250 1
1/2 102 375 2
1 204 750 3
2 408 1500 6
3 612 2250 9
4 816 3000 12

D L

1/4 1
1/3 2
1/2 3
1 5
2 10
3 15

Table B.1: BERTS dimensions for different width scalings (left) and depth scalings (right). The default
size with 2.4 million parameters corresponds to W = 1, D = 1.

B.2.2.1 CoLA

With the teacher’s evaluation-set MCC of 59.9 being much higher than the student per-
formance observed so far (around 40), I up-scale both students, aiming for 90% of the
teacher performance while keeping the student size smaller than the 340-million-parameter
teacher.

As observed in preliminary experiments with large BERTS versions, their learning suffers
from gradient explosion due to the learning rate being too large for the models. For an

Appendix B. Student hyperparameter exploration 73

W dLST M dF C

1/32 9 13
1/16 19 25
1/8 37 50
1/4 75 100
1/2 150 200
1 300 400
2 600 800
3 900 1200
4 1200 1600
5 1500 2000

D L

1 1
2 2
3 3
4 4
5 5

Table B.2: LSTMS dimensions for different width scalings (left) and depth scalings (right). The default
size with 2.4 million parameters corresponds to W = 1, D = 1.

example, see Fig. B.8 where the gradient explosion happens around epoch 7 and the model
score (MCC) then falls to 0 and stays there.

0 2 4 6 8
epoch

0

20

40

60

gr
ad

ien
t n

or
m

gradient norm

0

10

20

ev
alu

ati
on

-se
t M

CC

MCC

Figure B.8: Gradient explosion in BERTS with W = 2 and D = 2. The MCC values have been smoothed
with a 0.1-epoch-wide sliding average window.

Without further extensive exploration of optimal learning rate values for each BERTS size1,
I choose better learning rate values manually. Because of the use of η warmup, I can mon-
itor the learning progress for varying η values in the early training epochs, as shown in
Fig. B.9. I approximately identify the point in training beyond which the learning slows
down (and later degrades altogether) due to large gradients. This way, I approximately
identify the largest learning rate that still leads to learning, not to gradient explosion. In
the concrete example in Fig. B.9, I choose the point in training after 2.5 epochs, where the
learning rate is approximately η = 8× 10−5, and use this value with the concrete model
size.

With the new learning rates manually estimated individually for each student size, none
of the larger versions of BERTS experiences gradient explosion. The LSTM students all
use the same learning rate as this does not lead to any issues. Fig. B.10 presents the

1This would be extremely time-consuming because the larger versions take over 3 days to train.

Appendix B. Student hyperparameter exploration 74

0 2 4 6 8
epoch

0.0000

0.0002

0.0004

0.0006

η η

0

10

20

30

ev
alu

ati
on

-se
t M

CC

MCC

Figure B.9: Learning progress (MCC over time) vs η for BERTS with W = 2 and D = 2 – the model ex-
periencing gradient explosion in Fig. B.8. The dashed lines show the position I identify as the approximate
latest point of training before the learning starts to slow down, and the learning rate at that position. The
MCC values have been smoothed with a 0.1-epoch-wide sliding average window.

1 2 3 4 5
W

1
2

3
4

5
D

41

42

43

44

45

ev
al

u
at

io
n

-s
et

M
C

C

(a) Different sizes of LSTMS.

1 2 3 4
W

1
2

3
D 40

45

ev
alu

ati
on

-se
t

M
CC

(b) Different sizes of BERTS.

Figure B.10: Best evaluation-set performance for the different student sizes on CoLA.

results. While some larger students outperform the original, 2.4-million-parameter ones,
the trends are not consistent. For LSTMS in particular, there is no clear correlation
between student width or depth and the performance. For BERTS, which starts as a
relatively deep model with 5 layers, making it wider rather than deeper is helpful. For
LSTMS which originally has only 1 hidden LSTM layer, increasing both the width and
the depth can lead to better-performing models. Overall, both student architectures reach
the best evaluation score of ∼45, far below the teacher performance level of 59.9.

I refrain from exploring students even larger as the biggest students are already approching
the teacher size: LSTMS with W = 5, D = 5 has ∼247 million parameters and takes over
60h to train, and BERTS with W = 4, D = 3 has ∼114 million parameters and takes over
6 days to train. As the best-performing students, I establish BERTS with W = 4, D = 1,
and LSTMS with W = 2, D = 2.

Appendix B. Student hyperparameter exploration 75

1 1/2 1/4 1/8 1/16 1/32 1/64
W

1D 91.9 91.6 91.6 91.2 90.8 90.1 89.1

(a) Different sizes of LSTMS.

1 1/2 1/3 1/4 1/8 1/16
W

1
1/

2
1/

3
1/

4
D

84

86

88

90

ev
al

u
at

io
n

-s
et

ac
cu

ra
cy

(b) Different sizes of BERTS.

Figure B.11: Best evaluation-set performance for the different student sizes on SST-2.

B.2.2.2 SST-2

As previously observed, on SST-2, even the default 2.4-million-parameter students per-
form on par with the teacher. With no reason to try larger student sizes, I limit myself to
exploring smaller student architectures, with the aim of keeping student accuracy above
90% of the teacher’s score. With BERTT achieving 91.5% accuracy, the 90% lower bound
is at ∼82% accuracy.

Fig. B.11 shows that accuracy stays high even for very small students. The smallest tried
LSTM student (W = 1/64, 24,360 non-embedding parameters, ∼14,000x smaller than
BERTT) still achieves 89.1% accuracy (∼97% of the teacher’s performance). The smallest
tried BERT student (W = 1/16, D = 1/4, 2272 non-embedding parameters, ∼150,000x
smaller than BERTT) achieves 83.5% accuracy (∼91% of BERTT’s performance). What
these results mean is that the SST-2 task is relatively easy. For good accuracy levels,
a very minimalistic classifier is sufficient on top of the pre-trained embeddings – the
representations obtained simply by encoding each word using word2vec already contain
most of the knowledge needed to make good sentiment predictions.

Another insight from Fig. B.11b is that making BERTS shallower affects the performance
much less than making it slimmer. In other words, the 2.4-million-parameter BERTS may
be unnecessarily deep for the task, but it is not unnecessarily wide.

B.2.2.3 Sara

Similar to SST-2, Sara is an easy task. With BERTT achieving F1micro = 87.5, the 2.4-
million-parameter BERTS and LSTMS already achieve 87.1 and 86.5, respectively. I
further down-scale the students, see Fig. B.12. Similar to the results on SST-2, both
students can be made much smaller while achieving over 90% of BERTT’s performance.
The second smallest tried LSTMS (W = 1/4) is 262x smaller than the teacher while
retaining almost 95% of its performance. The BERTS with W = 1/2 and D = 1/4, being
2500x smaller than BERTT, retains ∼93% of its performance.

Also similarly to SST-2, making BERTS shallower has much weaker effect on the perfor-
mance than making it thinner. In other words, the Sara task does not require very deep

Appendix B. Student hyperparameter exploration 76

1 1/2 1/4 1/8
W

1D 86.5 85.9 82.8 77.7

(a) Different sizes of LSTMS.

1 1/2 1/3
W

1
1/

2
1/

3
1/

4
D

80

85

ev
alu

ati
on

-se
t

m
icr

o-
av

g
F1

(b) Different sizes of BERTS.

Figure B.12: Best evaluation-set performance for the different student sizes on Sara.

models, and keeping the representation dimensionality above certain level (in this case
around 128 or above, corresponding to W ≥ 1/2) is more important.

Appendix C

Details of model analysis

77

Appendix C. Details of model analysis 78

Length

CoLA SST-2

0
20
40
60
80
100

Sara

WordContent

0
20
40
60
80
100

Depth

0
20
40
60
80
100

TopConstituents

0
20
40
60
80
100

BigramShift

0
20
40
60
80
100

Tense

0
20
40
60
80
100

SubjNumber

0
20
40
60
80
100

ObjNumber

0
20
40
60
80
100

OddManOut

0
20
40
60
80
100

L
S
T

M
S E 1 2 3 4 5

CoordinationInversion

BERTS

L
S
T

M
S E 1 2 3 4 5

BERTS

L
S
T

M
S E 1 2 3 4 5

0
20
40
60
80
100

BERTS

standard initialisation from scratch majority baseline human baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

[%
]

Figure C.1: Probing results comparing students initialised in the standard way (with embeddings from
word2vec) with students initialised randomly and trained from scratch. Bounding the expected model per-
formance from below and from above are again the majority-class baseline and the human performance
baseline, as reported by Conneau et al. (2018).

Appendix C. Details of model analysis 79

teacher BERT LSTM
M2

teacher

BERT

LSTM

M
1

100 86 86

93 100 90

94 92 100

Hits (CoLA)
teacher BERT LSTM

M2

teacher

BERT

LSTM
M

1

100 64 71

47 100 70

50 67 100

Mistakes (CoLA)

teacher BERT LSTM
M2

teacher

BERT

LSTM

M
1

100 95 97

97 100 97

97 95 100

Hits (SST-2)
teacher BERT LSTM

M2

teacher

BERT

LSTM

M
1

100 68 72

54 100 58

69 70 100

Mistakes (SST-2)

teacher BERT LSTM
M2

teacher

BERT

LSTM

M
1

100 97 97

98 100 97

98 98 100

Hits (Sara)
teacher BERT LSTM

M2

teacher

BERT

LSTM

M
1

100 83 88

81 100 86

81 82 100

Mistakes (Sara)

Figure C.2: Overlap of models’ evaluation-set mistakes and hits. Each cell shows the fraction of hits or
mistakes shared by models M1 and M2, as a percentage of the total hits or mistakes made by model M1.

Appendix C. Details of model analysis 80

L O sentence
0 o i gave pete the book to impress.
1 i gave pete the book to impress him.
1 o most of the fruit is rotten.
1 most of the fruit is ripened.
1 most of the fruit is spoiled.
1 o the administration has issued a statement that it is willing to meet a student group,

but i’m not sure which one.
1 the administration has issued a statement that it is willing to meet a student group.
1 o the correspondence school sent bill a good typist.
1 the school sent bill a good typist.
1 the correspondence school sent bill a good baker.
1 o the report that crime was declining surprised many people.
1 the report that crime was declining surprised many.
1 the report surprised many people.
0 o the storm arrived while the picnic.
0 the storm arrived while the performance.
0 the storm arrived while the picnic was.
1 the storm arrived while the picnic was starting.
1 the storm arrived during the picnic.
1 o they chased the man with the car.
1 they chased the man with a car.
1 o they were going to meet sometime on sunday, but the faculty didn’t know when.
1 they were going to meet sometime on sunday, but the faculty didn’t know.
1 they were going to meet sometime on sunday.
0 o we talked to them about there.
1 we talked to them about it.
1 o bill’s wine from france and ted’s from california cannot be compared.
1 bill’s wine from france and ted’s wine from california cannot be compared.
1 bill’s wine from france and ted’s wine cannot be compared.
1 bill’s wine and ted’s wine cannot be compared.
0 o brian threw the fence with the stick.
1 brian hit the fence with the stick.
1 brian attacked the fence with the stick.
1 brian poked the fence with the stick.
1 brian struck the fence with the stick.
0 o chris was handed sandy a note.
1 chris handed sandy a note.
1 chris was handed a note.
0 o dana walking and leslie ran.
1 dana walked and leslie ran.
0 o john was struck as sick.

Appendix C. Details of model analysis 81

1 john was treated as sick.
1 john was seen as sick.
0 o john whispered mary left.
1 john whispered that mary left.
1 john thought mary left.
1 john knew mary left.
0 o leslie told us about us.
1 leslie told us about them.
1 leslie told them about us.
0 o my heart is pounding me.
1 my heart is pounding.
0 my heart is beating me.
1 my heart is beating.
0 o the children are fond that they have ice cream.
0 the children are eager that they have ice cream.
1 the children are fond of having ice cream.
1 the children are glad that they have ice cream.
1 the children are happy that they have ice cream.
0 o the magazines were sent to herself by mary.
1 the magazines were sent by mary to herself.
1 the magazines were sent to her by mary.
0 o the table was wiped by john clean.
1 the table was wiped clean by john.
1 the table was wiped by john.
0 o we believed john to be a fountain in the park.
1 we believed there to be a fountain in the park.
0 we believed john to be a fountain.
0 we believed john to be a bench in the park.
0 we believed john to be a tree in the park.
1 we believed john to be a musician in the park.

Table C.1: Selected CoLA evaluation-set sentences classified correctly by the teacher model but incor-
rectly by one or both students. L = label (0 = unacceptable, 1 = acceptable), O = original sentence or a
manually perturbed (and labelled) variant.

	Introduction
	Motivation
	Aims and contributions

	Background
	NLP before Transformers
	Transformer-based NLP
	Transformers
	BERT
	Newer and larger Transformer models

	Teacher-student knowledge distillation
	A brief introduction to knowledge distillation
	Knowledge distillation in NLP

	Interpreting NLP models
	Summary

	Datasets
	Downstream tasks
	Corpus of Linguistic Acceptability
	Stanford Sentiment Treebank
	Sara

	Data augmentation for larger transfer datasets
	Probing tasks
	Summary

	Methods and Implementation
	Methods and objectives
	System overview and adapted implementations
	Implementation details
	Teacher fine-tuning
	Augmentation with GPT-2
	BiLSTM student model
	BERT student model
	Knowledge distillation
	Probing

	Computing environment and runtimes
	Summary

	Training student models
	Hyperparameter exploration
	Discussion and summary

	Analysing the models
	Probing
	Analysing the models' predictions
	Summary

	Overall discussion, conclusions and future work
	Distilling BERT into tiny models
	What can models tell us
	Conclusions
	Directions for future work

	Bibliography
	Datasets
	Student hyperparameter exploration
	Initial exploration on CoLA
	Choosing learning algorithm and learning rate
	Choosing learning rate scheduling and batch size

	Optimising students for each downstream task
	Choosing embedding type and mode
	Choosing student size

	Details of model analysis

