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Abstract
In this report, the design, implementation and testing of a visual Sudoku solver app
for android written in Kotlin is discussed. The produced app is capable of recog-
nising a Sudoku puzzle using the phone’s camera and finding its solution(s) using a
backtracking algorithm. To recognise the puzzle, multiple vision and machine learn-
ing techniques were employed, using the OpenCV library. Techniques used include
grayscaling, adaptive thresholding, Gaussian blur, contour edge detection and tem-
plate matching. Digits are recognised using AutoML, giving promising results. The
chosen methods are explained and compared to possible alternatives. Each component
of the app is then evaluated separately, with a variety of methods. A very brief user
evaluation was also conducted. Finally, the limitations of the implemented app are
discussed and future improvements are proposed.
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Chapter 1

Introduction

Peter Gordon and Frank Longo [26] refer to Sudoku as n2× n2 grid that is initially
filled in with a certain number of cells (referred to as clues hereafter). The objective
is to fill every cell with numbers 1 to n2, without using any number more than once
in the same row, column, or n×n block. In this report, only the most popular type of
Sudoku is considered, for which n = 3. A famous Sudoku example is shown in figure
1.1. Nicknamed Al Escargot, it is considered the hardest Sudoku for human solvers.
Various advanced solving techniques are necessary to solve this puzzle.

The initial goal of this project was ”to recognize a Sudoku puzzle in an image and
then solve it”. More specifically, the project required that ”the phone user should be
able to point the phone camera at a printed puzzle and see the image overlaid with the
solution”. The description of the project suggested that the app was developed for IOS
devices. After careful consideration, the goal was changed to the implementation of
an android app. Instead of the puzzle being overlaid with the solution, a picture of the
puzzle must be taken and the solution is presented separately. The rationale behind
these decisions and the resulting advantages are discussed in Chapter 3.

The capabilities of the developed app include detecting and isolating a Sudoku puzzle
using the phone’s rear camera. If necessary, the orientation of the detected puzzle can
then be corrected. Afterwards, the clues can be extracted from the puzzle. Incorrect
clues can also be corrected. The Sudoku with the corresponding clues can then be
solved instantaneously. If the Sudoku has multiple solutions, navigation between so-
lutions is also available. The app can be used as a companion when solving printed
Sudoku, or to attempt to solve custom puzzles entered by the user. The app can also
be used to verify whether the solution found is the only solution to the puzzle. Some
printed puzzles might have more than one solution even though the puzzle was thought
to have a single solution As this is a two-year project, the accuracy of detection is ex-
pected to improve next year. Capability to manually solve puzzles in the app will also
be added.

In chapter 2, a review of existing literature is presented. The chapter begins with some
general information about Sudoku puzzles. A review of existing solving algorithms is
followed by a summary of literature involving Sudoku recognition. The chapter con-
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8 Chapter 1. Introduction

cludes with a description of some common image processing techniques. In the next
chapter, various decisions that were made before the beginning of the implementation
of the app are discussed, including possible alternatives and the requirements that the
app must fulfil. The design of the solving algorithm used by the app is also presented.
In chapter 4, the implementation of the app is explained, including various obstacles
that were encountered. The process that was followed in order to create the app and
connect the various capabilities is presented. In chapter 5, methods used to evaluate
the various aspects of the app are discussed, followed by some user evaluation. In the
final chapter, the goals achieved during the project are summarised and then followed
by some possible improvements.

Figure 1.1: Al Escargot.



Chapter 2

Background

2.1 Sudoku Background

There are 6,670,903,752,021,072,936,960 valid Sudoku grids. The number was first
calculated by user QSCGZ on a google groups thread [3]. In 2006, Felgenhauer and
Javris [22] confirmed this number and calculated the number of essentially different
grids to be 5472730538 [23]. Most printed Sudoku have a single valid solution, how-
ever there exist examples of puzzles with more than one solution as show by figure 2.1

Figure 2.1: A Sudoku puzzle with two solutions

In 2010, Lin and Wu [40] used a checker created by McGuire and proposed an algo-
rithm called Disjoint Minimal Unavoidable Set (DMUS) to conclude that the minimum
number of clues required for a Sudoku to have a unique solution is 17. McGuire [48]
confirmed this number in 2012.

According to some publications, the difficulty of the Sudoku is determined by the

9



10 Chapter 2. Background

number of cells that are initially filled, the fewer the cells, the harder the puzzle. Lee
[38] separates Sudoku on 5 difficulty levels ranging extremely easy to evil, depending
on the total number of clues, as shown by table 2.1 or the lower bound of number of
clues in each row or column, as show by table 2.2.

Difficulty level Number of clues
1 (Extremely easy) > 46

2 (Easy) 36-46
3 (Medium) 32-35
4 (Difficult) 28-31

5 (Evil) 17-27

Table 2.1: Difficulty of puzzles based on number of given clues.

Difficulty level Lower bound on number of clues in row or column.
1 (Extremely easy) 5

2 (Easy) 4
3 (Medium) 3
4 (Difficult) 2

5 (Evil) 0

Table 2.2: Difficulty of puzzles based on lower bound of clues in any row or column

However, this approach ignores the position of the clues in the puzzle. A more accurate
method of determining the difficulty of a puzzle, is based on the complexity of the
techniques that must be used for the puzzle to be solved by a human. Maji and Pal
[31] made use of this system. This method has a significant drawback. The puzzle in
question must be solved by a human for its difficulty to be determined. Ravasz and
Toloczkai [21] proposed a system to quantify the difficulty of a puzzle. The proposed
scale ranges from 1 to 4. Under this scale, the hardest puzzle, nicknamed ”platinum
blond” was found to have a difficulty of 3.5789.

2.2 Solving the Sudoku

A plethora of different approaches were developed to solve the puzzle. In 2003, Yato
and Seta [73] proved Sudoku to be ASP-complete and hence NP complete. Because of
this, any know approach has a complexity which increases exponentially with the size
of the grid. The most popular algorithm for solving Sudoku is backtracking, which
is widely used in computer science [29]. Backtracking is a brute force algorithm that
uses depth first search paradigm, completely exploring one branch before expanding
another branch. Due to the finite number of valid grids, backtracking can be practical
and is guaranteed to find all solutions to the puzzle, if they exist, given enough time. In
its simplest form, the algorithm visits empty cells in an orderly fashion, filling in one
number at a time and checking if all constraints are satisfied, in which case it moves
to the next empty cell. If any of the row, column or box constraints is violated, then
the value is incremented. If none of the 9 numbers (1-9) are allowed in the specific
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cell, the algorithm backtracks and changes the value of the previously set cell. If
one solution is sufficient, the algorithm terminates when the first solution is found,
otherwise continues to search the entire search space. There are many ways to improve
the algorithm. The simplest example would be only assigning numbers that will not
violate any rule, instead of ranging from 1-9. A variety of different techniques have
been proposed [30] [31] . Lee [38] proposed an approached based on elimination,
that incorporates forward checking while picking the most constrained value first.In
2000, Knuth [37] implemented Dancing links algorithm which solves the puzzle in
very short time. The methods mentioned above include frequent guessing which leads
to redundant computation. Schottlender [59] explained how guesses can influence the
efficiency of a backtracking algorithm. In 2014, Maji and Pal [42] proposed a guess-
free solver that considers individual 3x3 grids.According to a survey hosted on a 2011
blog post by user attractivechaos [9], which was later referenced by Iyer et al. [30],
The fastest known Sudoku solvers use a version of backtracking or dancing links.

A variety of soft-computing algorithms were also proposed, all of which use either
bee colony or genetic algorithm. The Artificial Bee Colony (ABC) algorithm was first
introduced by Karaboga [35] in 2005. An improved version [53] was presented in
2008 and was used by Pacurib et al. [52] in 2009. Yusiong and Pacurib [74] in 2010
and Mantere [44] in 2013. Genetic Annealing (GA) was first used to solve Sudoku by
Mantere and Koljonen [45] [46] in 2006-7. Genetic algorithms are inspired by natural
evolution to generate solutions, such as crossover, selection, mutation and inheritance.
Those algorithms are exhaustive and hence tend to be extremely time consuming. In
2010, two algorithms were proposed to solve Sudoku using genetic annealing [56]
[58]. In 2015, Wang et al. [70] proposed using GA with filtered mutations, yielding
higher success rates as the algorithm was able to solve all test instances. In 2016, Chel
et al. [15] proposed a multistage GA algorithm that is solving Sudoku puzzles with
more than one solution.

Malakonakis et al. [43] made use of simulated annealing to solve a large Sudoku of
size 15x15x15x15 on FPGA.

Kamal et al. [33] compared the results obtained when using backtracking, simulated
annealing and genetic algorithms to solve the puzzle. Results indicated backtracking
to be the best algorithm to solve Sudoku puzzles in a short time frame. Other solutions
on FPGAs include Bok et al. [68], Gonzalez et al. [25], Dittrich et al. [19] and [34]
that used brute-force. Brute-force was also used by Wicht and Hennebert [71] as well
as Job and Paul [32].

Chowdhury and Akhter [16] proposed a solver using Boolean algebra.

Boolean satisfiability and Constrained Programming (CP) [11] were first used by Si-
monis [62] in 2005 and then by Rossi et al. [54] in 2006 and Crawford et al. [17] in
2008 but the efficiency of this approach was heavily influenced by the complexity of
the problem. An advantage of CP, similar to backtracking, is that it will always find a
solution if there is one.

In 2006, Moraglio et al. [51] suggested a method using metaheuristics and came to
some encouraging results, followed by simillar succes of Lewis [39] a year later. Dur-
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ing 2013-2015, Soto et al. [63] [64] [65] suggested Hybrids combining metaheuristics
and CP filtering.

Herzberg [28] described Sudoku puzzles as a graph colouring problem. This is possible
because each cell interacts with other cells as described by Bartlett [12].

Other techniques used include rewriting rules [57], Sinkhorn balancing [50], entropy
minimization [27], Hall’s marriage theorem [66], integer programming [12], harmony
search [24], membrane computing [18] and Hybrid Ant Colony Optimization (ACO)
[55].

2.3 Sudoku recognition

Literature for recognising a Sudoku puzzle from a picture, appropriately processing the
picture and extracting the puzzle in a solvable format is very limited and much more
recent compared to that of solving it.

In 2012, Simha et al. [61] proposed a model based on MATLAB that uses template
matching [49] [14] to recognize the puzzle and the clues enclosed in it. While this
method is very straightforward it tends to be laborious and struggles to adapt to new
problems. The supplied image is cropped for efficiency and then converted into a
binary image using block processing [36]. By applying a median filter to the produced
blocks, most of the noise including grid lines is removed. The filter is used with an
adaptive threshold [69] to tackle uneven illumination of the image. Any components
that are connected to the border are then removed then removed for additional noise
removal. The puzzle is then recognized to be the largest box in the processed image.
The advantage of this approach for detecting the puzzle instead of finding extreme
distance points from the origin of the image is that no extra steps are required for
different angles of the image. A visual grid is then created. Anything on the grid is
then removed using blob analysis [67]. Most of the errors occur in this stage, so it must
be handled with extreme caution. The width/height ratio of each digit is then matched
to that of the template and then compare to identify the digit. Overall, the model was
relatively successful with a success rate of 90%.

In 2014-15 Wicht et al. [71] [72] used a model based on convolutional deep belief
networks. Image processing includes Hough transformations and contour detection.
The extracted features are then extracted using a support vector machine. reported
results show an accuracy of 92%

In 2015, Ly and Vo [41] created a model based on Neural networks. While this requires
massive quantities of training data and training can be computationally expensive, it
can be very fast and reliable once it’s trained. After the image is binarized, the angle is
detected and the image is rotated accordingly. The study reports an accuracy of 95% ,
which can be improved even further with a larger training set.

In the same year,Kamal et al.[34] [33] used adapting thresholding, Hough and geomet-
ric transformations to process the image. The digits were then extracted using Optical
character recognition (OCR). This approach led to excellent results, close to 100%
accuracy.
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In 2016, Dutta and Ghosh [20] suggested a character recognition in MATLAB using k-
Nearest Neighbor algorithm. This algorithm does not require training, however it can
be computationally expensive for large sets of data. This method also uses appropriate
pre-processing techniques and template matching for extracting the digits.

2.4 Image processing

In this section the most popular techniques used to process an image of the puzzle in
order to extract the clues are discussed.

2.4.1 Grayscale

Any colour present in the image to be processed does not contribute any useful infor-
mation, it can be discarded by converting the image to grayscale. To store a grayscale
image, only one channel of 8 bits is used for each pixel, compared to three chan-
nels(Red, Green, Blue) used in RGB, cutting the file size to a third of the original.
As a result, processing of the image is simpler and faster. There are multiple algo-
rithms available for converting an image to grayscale. The simplest algorithm takes
the average of the three values for each pixel:

Gray =
R+G+B

3
(2.1)

As show by figure 2.3 the resulting image looks unnatural. This happens because the
human eye is much more sensitive to green compared to the other two colours. An
alternative algorithm for, taking this into account is:

Gray = 0.299∗R+0.587∗G+0.114∗B (2.2)

This algorithm produces images that reflect luminosity as perceived by the human eye,
as seen in figure 2.4 and is used by major image processing libraries such as openCV
[6] and MATLAB. Ahmed at al. [10] compared different algorithms for converting
images to grayscale and found that the algorithm chosen can have significant effect on
the efficiency of edge detection, which is used on recognising Sudoku.

d

2.4.2 Thresholding

Thresholding is a process used to transform the grayscale image, so that only two
colours exist in the image, black and white. The process is commonly used when
recognising Sudoku as it is an effective tool to distinguish an object from the back-
ground. A variety of methods exist [60]. The most commonly used ones are discussed
in this section.
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2.4.2.1 Global Thresholding

Global thresholding is the simplest form of thresholding. A threshold value T is cho-
sen, ranging from 0 to 255. Every pixel value of the image is compared with the
threshold. If it smaller, it is set to 0 (black), otherwise it is set to 1(white).

dst(x) =
{

0 src(x)≤ T
1 otherwise

2.4.2.2 Adaptive Thresholding

Global thresholding is not very effective in cases where different lighting conditions
are present in the image, such as glare. Adaptive thresholding is a similar process
to global thresholding that tackles differences in spatial illumination across the image
[13]. This is achieved by partitioning the image to various ”neighbourhoods” and
calculating a different threshold value for each. This method is the most effective
when recognising Sudoku and is hence used widely in existing literature. The two
most common ways of calculating the threshold for each region is either by taking
the mean of all the pixels in the region or by using a weighted sum of all the pixels.
Usually, the latter method works better for Sudoku as show by figure 2.2

2.4.3 Gaussian blur

Gaussian blur is a technique used to smooth out any noise that could be introduced
during the camera’s capturing process. It is based on the Gaussian function:

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

(2.3)
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Figure 2.2: thresholding. Credit [5]





Chapter 3

Design

3.1 Design decisions

In this section, decisions made before the start of implementation are explained.

3.1.1 Development environment

The project proposal required an app to be running on IOS however, I decided to de-
velop an android app to take advantage of prior experience I had in the domain, which
allowed faster development. Furthermore, android is the most popular OS for smart-
phones, meaning that the resulting app would be suitable for more people, making
finding test subjects easier.

3.1.2 Programming language

The programming languages available for android development are Java, Kotlin and
C++. Since I only had experience with the first two, C++ was ruled out. Between
Java and Kotlin, I chose to use the latter as it is the official programming language for
android as of 2019 [2]. Furthermore, Kotlin and Java compile to very similar bytecode,
resulting to similar performance. Translation from Java to Kotlin code can happen very
easily as there are tools available. Files for both languages can co-exist within the same
project without any extra cost, as a result, this decision is not binding and can be revised
at any point. Last but not least, due to the fact that Kotlin is relatively new, no major
similar projects exist on Kotlin. The comparison of the performance of the two is of
personal interest and could happen during the project.

3.1.3 Solving algorithm

It was decided to solve the puzzles using a backtracking algorithm due to the signifi-
cant performance advantage discussed in section 2.2. To reiterate, the fastest available
algorithms all use some version of backtracking, as shown by the review conducted
by blog post user attractiveChaos [9]. Speed is one of the most important factors for
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18 Chapter 3. Design

commercial apps. Furthermore, some of the algorithms found in literature are not guar-
anteed to find a solution, while most of these algorithms assume that a Sudoku only
has one valid solution. A well designed backtracking algorithm is guaranteed to find
all solutions to any given puzzle, given enough time.

3.1.3.1 Algorithm design

Even though countless solvers are available online, implementing an algorithm from
scratch was of personal interest. An outline of the simplest possible backtracking
algorithm is shown below:

Algorithm 1 SolveSudoku(grid)
1: if FindEmptyCell(grid) == NULL then
2: return true {Solving successful}
3: else
4: for digit 1 to 9 do
5: if digit is legal for cell then
6: Assign digit to cell
7: if SolveSudoku(grid) then
8: return true
9: else

10: Undo Assignment
11: return false {backtrack}
12: end if
13: end if
14: end for
15: end if

Algorithm 2 FindEmptyCell(Grid)
1: for Cell in grid do
2: if cell is empty then
3: return cell
4: end if
5: end for
6: return NULL

This algorithm blindly assigns all possible numbers to a random cell, until a solution
is found. It can be further improved by using various heuristics when choosing a cell.
The most widely used heuristics are:

1. Minimum remaining values: Choose the cell with the least legal values. In the
case that there is a cell with only one remaining legal value, the heuristic imple-
ments the hidden singles technique.

2. Most constraining: Choose the cell that maximises constraints on other cells.
Using this heuristic minimises branching.
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When selecting a value for a cell, selecting the least constraining value maximises the
probability that the branch to be explored will lead to a solution.

The algorithm was improved by keeping track of the illegal values for each empty cell
using a set. The sets are initialised before the execution of the algorithm. Every time
the sets are updated, they are ordered depending on their size. The cell with the most
illegal values is selected and assigned a number. The sets corresponding to cells of the
same row, column or grid are updated and the process is repeated. When a cell is filled,
the corresponding set is removed. The revised algorithm is shown below:

Algorithm 3 SolveSudokuRevised(grid,setsArray)
Require: a set of illegal values for each empty cell. Sets are ordered by descending

size and stored in an array.
1: largestSet ∈ setsArray s.t.size(largestSet) == max{size(A)|A ∈ setsArray}
2: if largestSet == NULL then
3: return true {Solving successful}
4: else
5: for digit ∈ {1..9}− largestSet do
6: Assign digit to cell corresponding to largestSet.
7: UpdatedSets= UpdateSets(grid,sets,cell)
8: if UpdatedSets == NULL then
9: return false {Branch cannot lead to solution, backtrack}

10: end if
11: if SolveSudokuRevised(grid,UpdatedSets) then
12: return true {further explore branch}
13: else
14: Undo Assignment
15: return false {backtrack}
16: end if
17: end for
18: end if

Algorithm 4 UpdateSets(grid,sets,cell)
1: for each set in row,column, grid do
2: add content of updated cell to set
3: if set.size == 9 then
4: return NULL {Empty cell has no more legal values}
5: end if
6: end for
7: sort sets
8: return sets

It is worth noting that the revised algorithm uses much more space compared to the
previous one. This is a small price to pay for modern smartphones and should not be
noticeable at run-time due to the small depth of each explored branch.
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The algorithm stops when the first solution is found. To allow for multiple solutions,
the algorithm was tweaked to store a solution when found and continue the search. The
final version of the algorithm is shown below:

Algorithm 5 SolveSudokuMultiple(grid,setsArray)
Require: a set of illegal values for each empty cell. Sets are ordered by descending

size and stored in an array.
1: largestSet ∈ setsArray s.t.size(largestSet) == max{size(A)|A ∈ setsArray}
2: if largestSet == NULL then
3: return true {Solving successful}
4: else
5: for digit ∈ {1..9}− largestSet do
6: Assign digit to cell corresponding to largestSet.
7: UpdatedSets= UpdateSets(grid,sets,cell)
8: if UpdatedSets == NULL then
9: return false {Branch cannot lead to solution, backtrack}

10: end if
11: if SolveSudokuMultiple(grid,UpdatedSets) then
12: if grid full then
13: print solution
14: Undo assignment
15: return false {backtrack to try and find more solutions}
16: end if
17: return true {further explore branch}
18: else
19: Undo Assignment
20: return false {backtrack}
21: end if
22: end for
23: end if

Naturally, this version of the algorithm takes more time to terminate, as every branch
of the search tree is explored. This was taken into account during the evaluation of the
algorithm, discussed in section 5.2.

3.1.4 Vision Library

The most common vision library for android is OpenCV [1]. OpenCV is a cross plat-
form open source library with a large user community, exceeding 18 million downloads
at the time of writing. Multiple projects can be found online that make use of OpenCV.
One popular alternative is Google vision API. This option is mostly suitable for stan-
dardised tasks such as face recognition or scanning barcodes and is not so flexible.
Also, the community is much smaller compared to OpenCV. Another alternative is
OpenIMAJ. This option was rejected because of the very small community. Further-
more, no specific advantages were found over OpenCV. As far as speed is concerned,
no benchmarks specific to android were found. As a result, the deciding factors were
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community size and existing projects. As there were no apparent disadvantages of
using OpenCV, it was believed to be the most suitable for this project.

3.1.5 Real-time vs static recognition

Two different approaches were considered regarding the way that the app completes
its goal of recognising a puzzle and displaying the solution(s) to the user. The first
approach was to solve the puzzle in real time using the phone’s camera and overlay the
camera feed with a solution. This approach requires efficient use of vision techniques
as any additional delay would be easily noticed by the user. This task can be difficult
to implement without prior experience in vision.

The second approach considered was to prompt the user to take a picture of a Sudoku
and then use the static picture to display the solution(s) to the puzzle. Even though the
results of this approach would not be as visually attractive, there are numerous advan-
tages. Firstly, this approach allows the user to ensure that the puzzle detected is correct,
perhaps allowing editing of clues before solving. Secondly, the first approach can only
display one solution for any puzzle, where multiple solutions can be displayed with a
static approach. Thirdly, better performance is likely when the camera is positioned at
an angle towards the puzzle. Fourthly, static image processing is much easier to test,
as the same image can be reused without having to worry about difference in lighting.
Last but not least, this approach would allow the user to try and solve the puzzle on
the phone. The only throwback of this solution is the need to design a responsive user
interface to cover the extra functionality.

Due to the above factors, the use of a static picture was preferred instead of real-time
solving.

3.1.6 Grid Detection

For the detection of the grid, it was decided to use a closed feedback loop, highlighting
the grid before the picture is taken. This approach allows the user to adjust the position
of the camera to increase the efficiency of the recognition of the puzzle. The puzzle
can be highlighted and extracted using contour edge detection. The biggest rectangle
in the camera feed can be assumed to be the Sudoku.

3.1.7 Image processing

Any information except the highlighted puzzle is unnecessary, and is therefore cropped
and discarded. Color is another factor that provides no useful information, and can be
removed by converting the image to grayscale, using equation 2.2 for reasons outlined
in section 2.4.1. The grayscale image can then be converted into a black and white
image, using adaptive thresholding, using a weighted sum of neighbouring pixels, as
described in section 2.4.2.2. Gaussian blur can also be added to the image to smooth
out any noise.



22 Chapter 3. Design

3.1.8 Clue extraction

For the detection of the clues from an image, two possible approaches were considered.
One option was to train a custom machine learning model, such a neural network. This
approach required training data. The most commonly used database for such tasks is
the MNIST database. This database consists of handwritten digits and is not ideal in
this use case, as the digits in question will always be printed. Another option consid-
ered was to use a preexisting library. An example of such library is Firebase AutoML,
acquired by google in 2014. This library was preferred over possible alternatives due to
prior experience with Firebase for possible alternatives. AutoML includes a database
of mixed printed and handwritten digits. This database is more suitable for this appli-
cation, compared to MNIST. A template matching feature was also offered, that could
simplify the clue extraction process. As the latter approach was not as widely used in
existing literature and had some advantages over the former, it was prioritised.

Cropping images to only contain the puzzle allows for division of the puzzle to 81
smaller images, in case template matching does not work as expected.

3.2 Requirements

In this section, the requirements that each individual component of the app must ful-
fill to be considered successful are specified. When applicable, an additional set of
requirements is also specified, which are not essential but are nice to have.

3.2.1 Solver

• Capability: Given any Sudoku, the solver must be able to find all the solutions
of the puzzle, subject to time and space constraints for edge cases, such as an
empty grid.

• Determinism: The solver must always provide the same results for the same
puzzle. If there is more than one solution, the order of the solutions returned
must be fixed for the same puzzle.

• Correctness: The solver must only return a solution if the puzzle provided is
solvable, and return an error otherwise.

• Speed: The solver must take no more than 1 second for each solution found
to ensure that the app remains responsive and no downtime is noticed by the
user. small loading time is tolerable for nearly empty grids that may have many
solutions.

• Flexibility: The maximum number of solutions returned by the solver must be
flexible.

3.2.2 User Interface

• Intuitiveness: The implemented interface must be easy to understand and must
be usable without any prior training.
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• Responsiveness: The interface must be responsive to the user’s actions without
any noticeable delay. Loading icons must be displayed when a delay is antici-
pated.

• Robustness The app must not crash under normal circumstances.

• Functionality Given an internal representation of a puzzle and its solutions, the
interface must be capable of displaying the unsolved puzzle and its solution(s).

• Speed: The interface must take no longer than 0.5 seconds to update after a state
change, such as displaying the solution of a puzzle.

3.2.3 Grid detector

• Responsiveness: The detector must respond to the camera moving and adjust
without the user noticing any delay and provide feedback to the user.

• Capability Given a clear view of a Sudoku puzzle, the detector must detect and
highlight the puzzle. The detector must extract the highlighted puzzle when the
user confirms that the required puzzle is indeed highlighted.

• Stability: The detector must be stable to ensure that the highlighted portion does
not change while the user attempts to capture it

• Time required: During evaluation, up to 8 seconds were required to detect a
puzzle, with an average time of 5 seconds.

3.2.4 Clue extractor

• Responsiveness: The extractor must show some indication that the extraction is
happening, perhaps with a loading icon.

• Capability: For pictures that are well lit and of high resolution, the extractor
must recognise at least 90% of the clues correctly.

• Additional Capability For pictures that are of variable lighting and of medium
resolution, the extractor should recognise some of the clues correctly.

• Correctness: The extractor must only place a clue in cells that contain one.

• Speed: The detector must take no more than 10 seconds to extract the clues from
any given puzzle.

3.3 Split between two years

Because this is a two year project, different goals were set for each year. For the first
year, the main objectives were the implementation of an app that can recognise and
solve Sudoku, along with a suitable test suite to evaluate the performance of the app.
The main objectives for next year are user evaluation as well as improvement of the
performance of the app. A more detailed outline of directions the project could take
next year can be found in section 6.3





Chapter 4

Implementation

In this chapter, the implementation of the different components of the app is discussed,
in implementation order.

4.1 App Overview

The sequence of steps that are followed in order to scan a puzzle and find its solution(s)
using the app are listed below.

1. The first time the app is launched, camera permission is requested

2. The camera feed is displayed on screen

3. When the phone is pointed at a Sudoku puzzle, it is detected using contour edge
detection. For feedback purposes, the detected Sudoku is highlighted.

4. Once the user is confident that the Sudoku is highlighted correctly, it is captured
with the click of a button.

5. The Sudoku is cropped off the camera feed and is then displayed.

6. If necessary, the orientation of the cropped puzzle can be corrected.

7. Clues can be extracted with the click of a button. For the extraction of clues, the
image is divided to 81 equally sized images, one for each cell. The content of
the divided images is then recognized using AutoML.

8. Once clue extraction is completed, the detected puzzle is presented.

9. If necessary, errors in the puzzle can be corrected.

10. The puzzle can then be solved with the click of a button.

11. If multiple solutions exist for the puzzle, navigation between solutions is possi-
ble.

25
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4.2 User Interface

Implementing the User Interface(UI) was the first step to ensuring the results produced
by the app are useful for the user. the UI was developed first to allow for easier inte-
gration of the other parts.

4.2.1 Board

Visualising the board was a much more complicated task than one would expect. To
the best of my knowledge, there was no recommended way to create a board in an-
droid. The most common way is using a GridView [4], which ”shows items in two-
dimensional scrolling grid”. Because of the way GridView is updated to accommodate
changes in the sizes of the grid and enable scrolling when necessary, there is an addi-
tional performance cost. Since the puzzle to be represented is of constant size, alter-
natives were considered. A grid with constant size could be implemented as a Table
[7], however, the documentation of the table component suggested ” For better per-
formance and tooling support, you should instead build your layout with Constraint-
Layout”. After carefully examining the documentation of each of the three options,
the use of a ConstraintLayout was preferred, as the board is quite simple. By using
this component, the layout was kept lightweight, improving performance and making
changes easier. Instead of a hard-coded XML layout, it was decided to create the grid
programmatically. This decision allowed for better encapsulation of the board, as only
one file would need to be changed when changes to the layout were necessary. Fur-
thermore, producing a layout through algorithms instead of using XML, removes the
temptation of hard-coding values, improving compatibility across devices. From my
experience, the only disadvantage of this approach is a delay during the creation of the
layout. This delay was negligible compared to the time taken to recognise or solve a
puzzle and was ignored.

For the creation of the board, 81 TextView objects are created using a loop, which are
positioned in a constraint layout according to their position. The id of each TextView
is stored in an array to allow changes to the object, such as contents and colours, at
run-time.

In order to visually differentiate the different blocks, the use of alternating colours
between cells of neighbouring blocks was decided. Finding the indexes of cells that
must have the same color was not trivial. A Karnaugh map was used and a formula was
derived. Taking the row number of the cell as x and the column number as y (starting
for 1) the color of the cell is decided according to the following Boolean expression:

Colour(x,y) = ((x mod 7)<= 3)⊕ ((y mod 7)<= 3) (4.1)

The resulting board is shown in figure 4.1

The cell borders were not implemented as adding partial borders to a TextView object
was not trivial. For this to happen, implementation of a custom layout for each vari-
ation of borders would be required. Such implementation would be time consuming
without any significant benefit and was postponed for next year.
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Figure 4.1: Board implementation
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4.2.2 Puzzle Representation

For the internal representation and storage of the puzzle, a 9X9 array was preferred to
allow for one-to-one correspondence with the UI. char would seem like the obvious
choice of data type, however int was preferred as it is often used by vision libraries as
a hint when scanning characters. The only drawback of this approach is that int used
4 bytes of memory, compared to 1 Byte used by char. The difference is insignificant,
as the size of the array is constant. The array was encapsulated inside a class called
”Board”. The class also contains methods to validate the board against the constraints
of the puzzle. To check whether repeated clues appear in any row, the rows are tra-
versed one by one, adding numbers already seen to a set. If an element already exists in
the set prior to addition, the row violates the constraints of the puzzle. Without using
a Set, all elements would need to be compared pairwise, leading to a complexity of
O(n2). Checking whether an element is contained and adding elements takes constant
time, hence the cost of the operations is O(1). Hence, by introducing a set structure,
the complexity of checking for duplicates was reduces from O(n2) to O(n).

4.2.3 Puzzle Editing

Giving the user the option to edit the recognised clues before solving it is a feature that
was not initially planned. The use of a ConstraintLayout as described above simplified
the process, as any additional components required could be added to the layout with-
out altering the board. One way to get user input would be using the phone’s keyboard.
This approach requires thorough validation of the input as well as scaling of the rest
of the screen when the keyboard appears or disappears. The fact that the number of
possible inputs is limited to 10 meant that each input could be mapped to a button on
screen, eliminating all the disadvantages of the aforementioned approach. The edited
puzzle is saved in a separate puzzle to allow discarding of any unwanted changes.

The resulting implementation is shown in figure 4.2. Edit mode can be entered by
clicking ”edit” shown in figure 4.1. A cell is selected when clicked. The selected cell
is highlighted. The content of the cell can then be changed by clicking the button with
the desired input. Changes can then be saved by clicking ”DONE” or discarded by
clicking ”X”

4.2.4 Displaying multiple solutions

Navigating between solutions for a solved puzzle is a key functionality of the UI.
Buttons were added below the board to display the next or previous solution. When the
first solution is displayed, the previous button is grayed out and becomes unclickable.
Similar care was taken for displaying the last solution A TextView displaying the index
of the solution displayed was also added.However, this functionality is only necessary
when multiple solutions are found. If there is only one solution, the objects described
above are hidden. This functionality is shown in figures 4.3 and 4.4. The puzzle was
then edited so that it only has one solution. The result is shown in figure 4.5
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Figure 4.2: Editing a puzzle
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Figure 4.3: First solution Figure 4.4: Second solution
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Figure 4.5: Puzzle with one solution
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4.3 Solving Algorithm

An outline of the developed algorithm was described in section 3.1.3.1. Out of the
requirements set in section 3.2.1, the speed requirement is the most challenging. As a
result, care was taken where possible to make the algorithm faster.

4.3.1 Kotlin Implementation

Many implementation details were not clear from the design of the algorithm. One
such example is the data type that was used for the internal representation of the con-
tents of the puzzle. In order to be consistent with the UI, as outlined in section 4.2.2,
a 9x9 array of integers was used. This decision also allowed for easier testing, as
the benchmark that the algorithm would be compared to, also used integers. This is
discussed in section. 5.2.

The set of illegal values for each empty cell was implemented using a HashSet. As
the insertion order is not important, HashSet will give better performance compared to
LinkedHashSet. TreeSet has the worst performance of the three options as the order
of the elements has to be maintained after insertion or deletion of an element, which is
not necessary.

To order the sets based on their size, a custom class named ”CellHashSet” was created
to couple each HashSet with the id of its corresponding cell. The id of the cell is
calculated as:

id(row,col) = col + row∗9 (4.2)

and ranges from 0 to 80. Hashsets are also stored in an array based on the id of their
corresponding cell to allow faster retrieval. As objects in Kotlin are stored by reference,
no duplicate storage is produced. A method that returns the size of the HashSet and
a comparator method was also implemented in the class to allow direct comparison
between instances. An instance of CellHashSet is initialised for each cell, and then
stored in an array. Once initialisation is completed, the array is sorted in descending
order, resulting in the instance corresponding to the most constrained cell being placed
first. Kotlin sort method uses a version of MergeSort, that has a time complexity of
O(nlogn) When a cell is filled, the HashSets of cells that are in the same row, column
or block are updated. When a HashSet is updated, order is maintained by swapping
the updated HashSet with the one that is ordered before it, until the updated HashSet
is ordered correctly. Maintaining order has a time complexity of O(n).

When a solution is found, a Board object is initialised and added to an arrayList. The
solution must be cloned before being added to the board. Cloning takes time and will
impact the performance of the algorithm for puzzles with a large number of solutions.
Unfortunately, there is no way around the issue, as Kotlin does not allow passing argu-
ments by value, something that is common in languages such C or C++.

To handle extreme cases such as the empty grid, the algorithm was programmed to halt
the search once a predefined number of solutions was found. This value was fixed to
10.
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4.3.2 Multithreading

Utilising multiple threads for the execution of tasks that require a lot of processing
power is common practice. In android, updating the UI is often handled by the main
thread, to ensure that the UI is prioritised and remains responsive. Tasks that can be
run independently with the UI are run on separate threads. However, it was decided
that no multithreading would be used. The reason for this decision was to ensure that
the solving time was consistent. Prior experience showed that secondary threads can
be slightly delayed. Only using a single thread ensured that the results reported during
evaluation were as accurate as possible.

4.4 Recognition

For reasons discussed in section 3.1.4, OpenCV library was used to implement all
vision related tasks. All implementation tasks related to the detection of a puzzle and
extraction of clues, including processing of the puzzle are discussed in this section.
When applicable, alternatives considered are also discussed.

4.4.1 Library Setup

Setting up OpenCV for my android project was not as trivial as expected. A significant
amount of troubleshooting was necessary to ensure that OpenCV was compatible with
all the android dependencies used by the UI. Surprisingly, all libraries of OpenCV are
installed together and a separate library manager is required to isolate libraries that
end up being used by the project. As the required libraries could change in the future,
the library manager was ignored. Consequently, the size of the app and the build time
increased. This could be easily fixed once the set of libraries used by the project is
finalised.

4.4.2 Camera Use

The first step towards detecting a puzzle was enabling the phone’s camera. For this
to happen, the app must be granted camera permission. Recent versions of android
require that permissions are granted at run-time. A popup dialogue was implemented,
prompting the user to give permission when the app is loaded, as shown in figure 4.6.
If no permission is given, the app is terminated.

The displayed camera feed was not oriented correctly, but rotated 90 degrees anti-
clockwise. Investigation showed that this is a common issue for OpenCV projects on
android. The reason this problem occurred was because OpenCV ignores the configu-
ration of the phone’s camera. The app was tested on mobile phones of 4 major phone
companies (Samsung, Google, Oneplus and Xiaomi) and the same behavior was ob-
served. The most common solution found was rotating the camera feed by 90 degrees
clockwise. However, there was no confirmation that this solution would work on every
android phone. To improve this solution, the configuration of the phone’s camera is
checked at run-time to ensure that a rotation is indeed necessary. One example where
the feed displayed was correct without any additional rotation is my laptop’s webcam.
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Figure 4.6: Camera permission request

Using the implemented solution, it is deduced that no rotation rotation is required and
the step is skipped.

Rotating the camera feed 90 degrees clockwise when necessary was also complicated.
Most solutions found online resulted in rotation of the feed displayed without rotat-
ing the feed itself. To ensure that the feed is indeed corrected, functionality allowing
picture capturing was added. Different solutions were tested until the captured picture
was oriented correctly.

4.4.3 Puzzle Detection

Before detecting the puzzle, copies of frames from the camera feed are converted to
grayscale, using the OpenCV method ”RGB2GRAY”. This method uses equation 2.2
so no additional implementation was required for this step. It is worth noting that color
in OpenCV is stored as BGR instead of traditional RGB format. Implementation was
not influenced by this detail, as all color manipulation was done by preexisting method
of OpenCV.

Gaussian adaptive thresholding was then applied to the image. Even though global
thresholding is often used in literature for the detection of the puzzle, its use would
heavily degrade the performance of the detection algorithm in cases with insufficient
lighting.

Canny edge detection is applied to the image to detect the edges. After experimenta-
tion with pictures of Sudoku taken at different lighting, a minimum threshold value of
155 was determined to be the most efficient for canny edge detection. Use of lower
values resulted in unnecessary detection of irrelevant edges. On the contrary, higher
values resulted in failure to detect the edges of some puzzles. Similar apps use a lower
threshold between 145 and 180.

Gaussian blur is added to the resulting image to smooth out noise.
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Contour edge detection is applied in order to find the rectangles in the image. Contours
are then sorted based on area. The largest contour is assumed to be the Sudoku. The
above steps are for internal purposes only and do not affect the image displayed by the
app, the original feed from the camera is displayed instead.

The largest contour must be displayed to create a closed feedback loop. For this to
happen, the camera feed is cloned and the largest contour is drawn on top of the cloned
image. To draw the contour, lines connecting edges of the that share the same x or y
coordinate are drawn. The result is shown in figure 4.7

Once the puzzle is correctly highlighted, the user can click the scan button to isolate
the puzzle. To crop the puzzle, the vertices of the rectangle are used. The result is
show in figure 4.8.

4.4.4 Orientation Correction

For unknown reasons, the orientation of the cropped puzzle is not always correct.
Sometimes the cropped puzzle is displayed rotated by 90 degrees clockwise, or anti-
clockwise, even when the exact same process is followed for the capture of the image.
The orientation problem explained in section 4.4.2 was ruled out as a suspect, as the
orientation error is no longer consistent. Examining the vertices of the cropped rect-
angle did not lead to a solution. One way to tackle the issue was to add functionality
that allows manual correction of orientation. Addition of this functionality would en-
able approaching puzzles from various angles. The image of the puzzle can be rotated
clockwise or anticlockwise, using buttons 1 and 2 in figure 4.8. Once the orientation
is correct, the clues can be extracted using button 4. If the picture taken is not satisfac-
tory, a new picture can be captured by clicking button 3. The rotated image is shown
in figure 4.9

4.4.5 Clue detection

To detect the clues, a firebase AutoML model was used for reasons outlined in section
3.1.8.

Initially, detection of clues using preexisting methods of AutoML was attempted. Put
simply, the character recognition engine started from the top left of an image, moved
to the desired cell and scans the cell’s content. A hint was given to the engine regard-
ing the type of the scanned values (integer). Experimentation showed that an integer
hint did not eliminate other characters. The only benefit of using such hints was that
sometimes, if the engine could not make a decision regarding the scanned content, a
question mark was returned. This functionality could be beneficial, as cells marked
with a question mark could easily be corrected by the user. If the content of a cell was
matched to a character between ’1’ and ’9’. the clue for the corresponding cell was
set to that character, otherwise the cell was assumed to be empty. To scan the contents
of all the cells, a nested for loop was used, fully scanning one row before moving on
to the next. To communicate with the UI, the scanned values were stored in an array.
A value of 1-9 represented a valid clue, a value of 0 represented an empty cell and a
value of -1 represented the question mark.
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Figure 4.7: Detection and highlighting of Sudoku
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Figure 4.8: Incorrectly oriented grid
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Figure 4.9: Correctly oriented puzzle.
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Even though this method showed some very positive results and clues were correctly
identified, they were not always placed in the correct cell. Experimentation showed
that the error could occur in any cell adjacent to the target cell. This error could be
attributed to the way that the puzzle was passed to the recognition engine. Further
experimentation did not resolve the issue, and no patterns were observed during testing.
After some time, this attempt was deemed a failure and was abandoned.

As the above approach gave encouraging results regarding the accuracy of digit recog-
nition, an alternative use of AutoML was attempted next. The fact that the puzzles are
isolated allowed segmentation of the puzzle to 81 smaller images, one for each cell.

For an image of height h and width w the x and y coordinates of a cell are calculated
by:

(w/9)∗ (column−1)<= x <= (w/9)∗ column (4.3)

(h/9)∗ (row−1)<= y <= (h/9)∗ row (4.4)

AutoML was used in the same way described for the previous approach, giving positive
results





Chapter 5

Evaluation

The various components of the app were tested independently and the results are pre-
sented in this chapter. When applicable, the limitations of the test are also discussed
and possible alternatives are suggested. The chapter concludes with some user evalua-
tion.

Due to the COVID-19 pandemic, evaluation did not go ahead as planned. Reasons
include lack of test subjects and limited printed puzzles due to social distancing mea-
sures.

The app was tested using a OnePlus 3t smartphone, running android 9. The phone uses
a snapdragon 821 processor, 6GB of RAM and a rear camera of 16MP. Use of emula-
tors was not preferred as prior experience showed that they can be significantly slower
than physical phones. Furthermore, existing literature does not provide quantitative
results for tests ran on emulated devices. As a result, benchmarking would not benefit
from the use of emulators.

5.1 User interface

5.1.1 Response time

The time taken for the board to be updated when a puzzle is solved or a different solu-
tion is displayed was measured. As all the cells are updated sequentially, the process
takes constant time for every solution. Measurements showed an update time between
14 and 32 milliseconds. This delay is unnoticeable and no further improvement is
required.

5.1.2 Error handling

Even though the app does not crash under normal circumstances, extra care was taken
to ensure that detailed error messages are displayed in cases that no clues were found
or the puzzle detected. Suggestions regarding steps to resolve the issue were also
included in the messages. Further improvement is possible with the addition of popup
dialogue boxes, explaining the possible options.

41
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5.2 Solving

As expected from a backtracking algorithm, the solver gave correct results for all the
puzzles that were tested. Up to 10 solutions were found for puzzles that have as many,
while no solutions were found for unsolvable puzzles.

5.2.1 Time taken

To evaluate the speed of the algorithm, multiple puzzles of different difficulty were
tested. Mantere, Timo and Janne Koljonen [47] used various puzzles of different dif-
ficulties to test three different algorithms. The puzzles and the results were later pub-
lished on the web [8].

The test instances appearing in the second column (a) were used to evaluate the algo-
rithm. The solutions found were compared to the solutions provided and were correct.
As the algorithmic is deterministic, the same solutions were provided every time the
algorithm was used.

The average solving time for each puzzle is shown in table 5.1. To make a fair com-
parison, the algorithm was tweaked to terminate when the first solution is found. The
experiment was repeated 5 times for each puzzle.

Difficulty level Average time taken (milliseconds)
1 62
2 84
3 147
4 259
5 518

Easy 55
Medium 587

Hard 1074
AI Escargot 958

Table 5.1: Average solving time for puzzles of varying difficulty

The above results can be summarised to the following key points:

• Naturally, solving time is proportional to the difficulty of the puzzle. Puzzles
with less empty cells are solved faster.

• A puzzle that is harder to solve for humans is not necessarily harder to solve for
a backtracking algorithm. This is evident by the last two rows of the above table.
A possible explanation would be because more branches need to be explored
before a solution is reached.

• Initialisation overhead makes up for a big portion of the solving process. This is
evident by the time taken to solve easy puzzles. The results reported by Mantere,
Timo and Janne Koljonen for the easy puzzles are better for the easy puzzles.
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5.3 Recognition

5.3.1 Grid detection

For the detection of the grid, multiple aspects were evaluated. The time taken before a
user can detect and isolate a grid is of prime importance. The probability with which
the puzzle is oriented correctly is also important, but can be corrected easily using the
rotation functionality. Finally, The performance of the detector was evaluated under
extreme lighting conditions

To test the orientation of the puzzle, the puzzle shown in figure 7.1 was scanned 10
times, in constant lighting. The results are tabulated below:

Test Instance Time taken (nearest second) Orientation offset (degrees)
1 4 90
2 6 0
3 3 0
4 7 0
5 2 270
6 8 270
7 3 90
8 5 0
9 6 0

10 6 0

Table 5.2: results from 10 detection of puzzle 7.1

An average detection time of 5.1 seconds was required for this puzzle. Detection time
varied between 2 and 8 seconds. Even though the time required could be improved,
the results are encouraging.

It is worth noting that holding the phone at approximately 45 degrees angle towards the
page greatly increased the detection success rate. This can be attributed to the camera
configuration of the phone used, or to the fact that lighting was not blocked by the
phone’s shadow. Once the puzzle was correctly highlighted, it remained highlighted
until its capture, despite minor camera movements.

Regarding the orientation, the puzzle was oriented correctly 60% of the time, while the
remaining 4 times could be corrected with the click of a button.

The detector was also tested against the image shown in figure 7.2 to evaluate its perfor-
mance when multiple puzzles appear on the same page, something common in newspa-
pers. The results were also positive. If all four puzzles are visible in the camera frame,
one of them is consistently highlighted (usually the top left). Moving the camera to-
wards the desired puzzle, making it the only puzzle visible in the frame, resulted in the
detection of the puzzle. This behavior is intended and is considered a big success.
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Figure 5.1: Left puzzle detected Figure 5.2: Right puzzle detected

5.3.1.1 Detection issues

Even though the implementation of the detector is considered a success. Multiple
scenarios where the observed behavior is not ideal exist. For example, if the camera
feed is centered between two puzzles, the detected puzzle will alternate, even with
slight camera movements as shown roughly by figures 5.1 and 5.2. This behavior
makes capturing of either puzzles almost impossible without moving the camera, as
the same puzzle does not remain highlighted for sufficient time to allow capture.

Another issue has to do with the behavior of the detector when the whole page con-
taining the Sudoku is part of the frame. In this case, the whole, or sometimes part of
the page is detected as the contour, as shown in figure 5.3. This behavior is natural as
the whole page is indeed a rectangle and is interpreted as a contour due to the contrast
with the background. This problem can be easily solved by moving the camera closed
to the puzzle.

Finally, the detector does not work well in dark settings. This can be attributed to the
use of thresholding before detecting the contours. In low lighting, the grayscale value
of the whole image is below the minimum threshold set. As a result, the whole image
is considered black and no contours can be detected. An example is shown in figure
5.4

5.3.2 Extracting clues

In this section, the position of the clues detected is evaluated. This evaluation is crucial
to determine whether the partition of the image to 81 smaller grids was a reasonable
decision. Once again, image shown in figure 7.1 was used. This puzzle contains 27
clues, of which 9 are positioned at the edge of the grid (first and last row or column).
These clues are particularly important to evaluate the efficiency of the Sudoku cropping
performed after detection.

Out of 10 trials, all recognised clues were placed correctly. All errors occurred were
due to incorrect recognition of a number, including the case where no clue was returned
at all. This result confirmed that cropping the puzzle and dividing the resulting picture
to 81 partitions was implemented correctly.

Out of 270 total clues, 21 were recognised as empty and only 4 were recognised as a
different number. The reason the majority of errors are reported as empty cell could
be attributed to the fact that the extraction process is too strict. Inspecting the project
logs showed that sometimes numeral 2 is recognised as an upper or lower case ’z’.
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Figure 5.3: Page detected instead of Sudoku
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Figure 5.4: Undetectable puzzle due to low lighting
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Similar behavior was observed with ’5’ and ’S’ and ’T’ and ’7’. These cases were
then discarded by the extraction process, and the content of the cell was assumed to
be empty. Out of the 21 cells that were incorrectly reported as empty, 9 of these were
on clues based on the edge of the grid. This can be attributed to the fact that the page
was slightly creased, resulting in the specific cell being imperfectly cropped. The 4
cells incorrectly recognised were all due to a 1 being recognised as a 7 (3 times) and
vice-versa (1 time). It is worth noting that, for the grid selected, 7 appears as a clue 5
times, while 1 only appears three times.

The extraction process was also timed. Reported times varied between 4 and 12 sec-
onds. 9 out of 10 trials required less than 10 seconds. Since the same puzzle was
used, the large variance in extraction time is most likely observed because of the way
AutoML works internally.

Even though there is plenty of room for improvement, the extractor is considered a
success and could be further improvement by making the extraction criteria less strict.

5.4 Requirements evaluation

In this section, the performance of the app is evaluated against the requirements set in
section 3.2.

5.4.1 Solver

The solver fulfils all the requirements set during the design stage. A correct solution
will be found to any puzzle if it exists. If the puzzle has more than one solution, a
total of 10 solutions will be found before the solver terminates. The order of solutions
found remains constant if the same puzzle is solved multiple times.

The only requirement that was only partially fulfilled was the one regarding solving
speed, which was set to 1 second per solution. The harder puzzles require slightly
more time to be solved. In hindsight, the requirement set was too optimistic. However,
the algorithm could be further improved for the second part of the project to meet the
requirement.

• Capability: Given any Sudoku, the solver is able to find up to 10 solutions to
any puzzle.

• Determinism: The solver always provides the same results for the same puzzle.
If there is more than one solution, the order of the solutions returned is the same
for the same puzzle. This happens because the order branches are explored is the
same.

• Correctness: The solver provides solution(s) to any puzzle, given their exis-
tence. No solutions are provided for puzzles that are unsolvable.

• Speed: The speed requirement of up to one second per solution is fulfilled for
most puzzles. Nearly empty grids take slightly longer than one second for the
first solution.
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• Flexibility: The maximum number of solutions returned by the solver is flexible,
as it is dictated by a constant.

5.4.2 User Interface

• Intuitiveness: The implemented interface is easy to understand and is usable
without any prior training. This could be further improved with a tutorial feature
and use of better icons.

• Responsiveness: The interface is responsive to the user’s actions without any
noticeable delay. Feedback is generated during the puzzle recognition phase and
a loading circle is displayed when the clue extraction process is initiated. The
only scenario where the app does not respond for a few seconds is during the
solving process of puzzles with many solutions.

• Robustness The app was tested thoroughly and did not crash.

• Functionality Given an internal representation of a puzzle and its solutions,
the interface is capable of displaying the unsolved puzzle and its solution(s).
Navigation between solutions is also possible.

• Speed: The interface only takes a few milliseconds to update the grid.

5.4.3 Grid detector

• Responsiveness: The detector responds to the camera moving and adjusts with-
out any noticeable delay, while providing feedback.

• Capability Given a clear view of a Sudoku puzzle, the detector detects and high-
lights the puzzle. The detector extracts the highlighted puzzle when the user
confirms that the required puzzle is correctly highlighted.

• Stability: The detector tolerates small movements of the camera, making cap-
turing of detected puzzles easy. This excludes the edge case where the frame is
centered between two puzzles.

• Time required: During evaluation, less than 10 seconds were required to detect
a puzzle, with an average time of 5 seconds.

5.4.4 Clue extractor

• Responsiveness: The extractor displays a loading circle while the extraction
takes place.

• Capability: For pictures that are well lit and of high resolution, the extractor
recognises 91% of the clues correctly.

• Additional Capability For reasons mentioned at the start of the chapter, this
requirement cannot be evaluated.
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• Correctness: For the puzzles used, clues are only found for cells that contain a
clue.

• Speed: The speed requirement of 10 seconds is met the majority of the time.
Only one of the 10 extraction trials that were timed took more than 10 seconds,

5.5 User Evaluation

Even though user evaluation was originally planned for the second part of the project,
a very basic attempt was made during the year in order to detect any fundamental flaws
and ensure that app would appeal to potential users. Due to the COVID-19 pandemic,
finding test subjects became impossible towards the end of the project, in which period
the app would have the greater benefit. A total of 7 students were asked to use to the
app to recognise and solve a puzzle. To ensure that the survey complied with GDPR
regulations, no data that could be used to identify the participants was stored. The app
received positive feedback from all the participants.

A summary of the problems encountered by the users and suggestions for improve-
ments is outlined below. Unless explicitly stated, the implantation of the suggested
improvement was postponed for next year.

• Addition of a tutorial feature that explains the features available to the app.

• Addition of title screen instead of the camera feed being displayed when the app
is loaded.

• Use of more intuitive icons for actions such as confirm or discard editing.

• Use of more instructive error messages. Most common example raised was the
occasion that no solution were found to the given puzzle, or if the puzzle violated
the necessary constraints. The error messages produced were updated to prompt
the user to make sure that the scanned puzzle is correct and edit it in case it was
not.

• Editing feature currently gives the impression of a necessary step while it is
optional. This is deliberately the case, to ensure that the functionality is visible.
Once a tutorial is added, editing would not need as much advertising.

• When editing, legal values for a cell could be highlighted to improve user expe-
rience. It is worth noting that allowed values should not be constrained during
editing. Editing should not require a particular order of changes to achieve the
desired result.

• Addition of a ”cancel” button, to halt the solver in case solving takes too long, or
the puzzle entered is incorrect. A maximum running time allowed for the solver
was also suggested.





Chapter 6

Conclusions

6.1 Project Achievements

The achievements of the project can be summarised as follows:

• Extensive literature review covering solving and recognition techniques.

• Creation of a responsive and intuitive user interface with functionality to edit
puzzles and display multiple solutions.

• Implementation of a fast Sudoku solving algorithm from scratch that can find
all solutions to a puzzle given enough time. This includes various decisions
regarding internal representation of puzzles and optimisation steps.

• Setup of and familiarisation with OpenCV library and usage of phone cameras.

• Implementation of a simple yet efficient algorithm for detection of puzzles using
contour edge detection, providing feedback to the user.

• Implementation of functionality for cropping and displaying a puzzle, allowing
correction of orientation.

• Use of AutoML vision library for the detection and recognition of clues from a
cropped image.

• Design of various methods to test each component of the app.

All of the goals set at the start of the project were reached, As the developed app can
indeed detect a puzzle using the phone’s camera, extract its clues with relatively high
accuracy and find its solution(s).

6.2 Project limitations

Despite the overall success of the project, various limitations exist. Some of these
limitations are summarised below:
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• As the detected puzzle is divided to 81 smaller images for the recognition of the
clues, the success rate is highly dependent on the quality of the picture taken.
Blurry or out of focus images will result in poor results. This is offset by the
recognition mechanic used, as holding the phone stable is encouraged for the
detection of a puzzle. The quality of the camera used also influences the effi-
ciency of recognition. Fortunately, cameras used on smartphones have improved
drastically over the past decade. Use of the app on any modern android phone
should produce excellent results.

• Due to the relatively small size of the training data, the recognition performance
is likely to be impacted if the app is used on a puzzle that uses an uncommon
font. However, most published Sudoku use very similar fonts.

• Naturally, the app will not perform well if used in extreme lighting conditions or
if the puzzle is not clearly separated from other objects. The app is still useful in
these circumstances as the clues can be entered manually to produce a solution.

6.3 Future Work

Some possible extensions to the project are discussed in this section. Most of the
proposed ideas are expected to be realised next year, for the second part of the project.

• User testing/evaluation: User evaluation is a core part of any software engi-
neering project. Some user evaluation took place during this year, as discussed
in chapter 5.5. A more thorough evaluation will be possible with a working app
and looser time constraints.

• Accuracy improvement: Investigating ways to improve the accuracy of de-
tection is the goal of the project. Many alternatives exist for each recognition
component. The most promising alternatives can be implemented and compared
with this year’s implementation. One such example would be the recognition
of the grid lines using Hough transformations and training a machine learning
model for the recognition of the digits.

• Detection and correction of errors: Some of the puzzles recognised will vi-
olate the constraints of a Sudoku. Developing an algorithm that corrects some
of these puzzles will further increase the success rate of recognition. No such
algorithms were found during the literature review. Only a small number of
recognised instances will benefit from such an algorithm. Another approach
with greater benefit would be to highlight parts of the puzzle that violate the
constraints to make user correction faster.

• Speed improvement: Changing the implemented solving algorithm could im-
prove the solving speed. Possible changes include use of different data structures
or converting the algorithm to Java.

• Comparison of solving algorithms: Implementing different solving algorithms
would be a good way to benchmark the efficiency of the implemented algorithm.
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An example of an algorithm that could prove faster than the one implemented is
the dancing links algorithm.

• Manual solving: Functionality that allows the user to solve the puzzle manually
and confirm steps by comparing with the solution found by the solver could be
added.

• Hint functionality: Functionality to display hints when the user solves the puz-
zle manually could be added to improve the solving experience.

• Tutorial: As discussed in section 5.5, it was suggested that the app would benefit
greatly from the inclusion of a tutorial explaining its capabilities.

• Grid visualisation improvement: The appearance of the grid could be im-
proved. Grid lines to separate lines, columns and blocks are present in all printed
Sudoku puzzles and would improve user experience.

6.4 General remarks

In this report, the implementation of an android app that can recognise and solve Su-
doku was discussed. All the goals of the project were achieved to a satisfactory degree.
The main areas that could be improved are the speed of the solving algorithm and the
extraction of clues from a puzzle. Improvement in both areas is possible with further
experimentation on solving algorithms and vision techniques used. Some parts of the
project led to very encouraging results and very few changes will be necessary next
year. Overall, the first part of the project is considered successful, considering the lack
of prior experience with vision libraries and OpenCV in particular.





Chapter 7

Appendix

Figure 7.1: A single printed Sudoku
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Figure 7.2: Multiple Sudoku on same page.
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