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Abstract
Graph embedding is one of the natural problems faced when dealing with networks
- if and how it is possible to represent the same information conveyed by the graph
structure as points in Euclidean n-dimensional space. It is an active research area, with
different methodologies proposed to improve both embedding quality and the accuracy
of tasks performed on the data post embedding, like clustering and prediction.

To improve the representations obtained by embedding methods, we incorporate infor-
mation provided by graph curvature, in particular the discrete Ollivier-Ricci curvature.
It provides a way to describe the intrinsic shape of a network, at least locally, drawing
on analogies to differential manifolds.

In this work we first explore and establish the positive impact on post-embedding clus-
tering of applying Ricci flow to the original graph. It is an iterative process which
makes the curvature of the graph closer to that of Euclidean space, suggesting a closer
match for embedding. However, the computational cost of applying Ricci flow is very
high. Noting this, we propose a novel way to regularize random walk based embedding
algorithms - using weights derived from the Ollivier-Ricci curvature values, in a way
similar to the flow procedure. We show that the addition of this regularization term
improves the performance of the original models in clustering tasks. In addition, the
benefit observed exceeds that of adding a related simpler regularization term. In addi-
tion to these, we provide analysis of the impact Ricci curvature has on clustering via
non-negative matrix factorization. This serves an example of a more direct application
in clustering, while maintaining behavior similar to other methods described.
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Chapter 1

Introduction

1.1 Motivation

The start of the 21st century is often referred to as the “Age of Data”. More sources and
different datasets are available than ever before. However, not all information is limited
to the structure of neat multidimensional features. In fact, many types of data are
best represented as networks when their salient features are related to the interaction
between entities. Examples of such data include people and their connections in a
social network, roads and the layout of cities, interactions of different drugs, biological
structures. While this is a very diverse set of examples, they have a rather glaring
similarity - the relation of different items to each other carries crucial information,
sometimes more important than the specifics of the objects themselves.

This data can be quite naturally phrased as a set of nodes - items - and a set of edges -
the connections between pairs of the items. In other words, a graph1, G = (V,E).

This poses a challenge. Modern machine learning methods allow us to analyze data
with an unparalleled level of efficiency and obtain results in tasks like classification
and clustering with more accuracy than ever seen before. But there is a caveat -
most conventional methods are created to analyze data represented as points in high-
dimensional vector spaces, not graphs and their edges. However, losing the informa-
tion provided by these relations could reduce the usefulness of a dataset represented
by a network greatly and is undesirable.

A possible solution is to create brand new methods (an example of this is graph neu-
ral networks [40]). This is not only a task as difficult as the initial development of
known methods, but also takes a step back from the expertise and extensive studies
available when using more conventional methods. A different point of view suggests
adapting the data instead. Finding a representation compatible with the established
framework for it. In particular, we must find a good mapping from a network to a
vector space - often the familiar d-dimensional Euclidean space, Rd . This is known as
graph embedding - another challenging problem related to networks. The main chal-
lenge stems from the need for this to be a good representation - i.e. preserve as much

1the words “graph” and “network” are used interchangeably throughout this report
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Chapter 1. Introduction 2

of the information inherent to the connections as possible. Solving it requires, beyond
just implementation and design, both clarifying what the important properties are, and
finding ways to measure how accurate the representation is.

A property shared between both graphs and objects in vector spaces is a notion of
“shape”. Recent research has shown that the concept of curvature - deviation from
flatness, which inherently represents the shape of an object in some sense - can be
transferred to the discrete context. Ricci curvature and its discretization [29, 23] are
our focus in this report, translating a general notion of curvature from the context of
differential manifolds to that of networks. While this has been used to perform tasks
like community identification [28, 9] or analysis of network robustness [39], many of
its applications are still not explored extensively.

We seek to utilize the information provided by the the discrete Ricci curvature, as de-
fined by Ollivier [29] - something that inherently depends on the edges in the network -
and explore if and how it can be used in a solution to the network embedding problem.
We hope that using this piece of extra knowledge about the shape and flatness (or lack
thereof) of the graph we are working with will allow us to improve the representations
in the (flat by definition) target Euclidean space.

Part of the complexity of embedding graphs comes from the fact that obtaining this
representation is usually an intermediate step. Afterwards we may seek to visualise
the data, classify nodes, identify communities, just to mention a few of the applica-
tions. Ideally, it would be best if these tasks could be performed efficiently, and thus a
representation in a low-dimensional space is preferable. However, the lower the num-
ber of dimensions, the more difficult it is to, for example, preserve distances between
nodes, or maintain a complex, potentially overlapping, cluster structure. Clustering can
be used to evaluate embeddings - it is expected that a good embedding makes existing
clusters more distinct and easier to detect, something we focus on in this report.

(a) Embedded using DeepWalk (b) Embedded using DeepWalk-Ricci, a Ricci
curvature regularized version of the embed-
ding

Figure 1.1: Zachary’s karate club graph [51], colored according to club membership
and embedded with different methods - DeepWalk [31], an established random walk
based method, and a version of it using Ricci curvature based regularization. A clear
distinction of the clusters can be seen when the regularization is used.
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One natural way to utilize Ricci curvature to improve graph embeddings in Euclidean
space it to use the discrete Ricci flow. It is an iterative process, transforming the graph
so as to make the curvature everywhere in it close to zero. As Euclidean space is “flat”
- has curvature equal to 0 at every point - it is reasonable to expect that a graph trans-
formed by Ricci flow will be easier to represent than the potentially “non-flat” original.
However, the Ricci flow computation is a very demanding process, taking several min-
utes even on small examples (graphs with 100 nodes). This makes the technique hardly
feasible on real-world networks, which can easily have tens of thousands of nodes.

A more direct incorporation of Ricci curvature is also non-trivial. A lot of contem-
porary graph embedding methods are based on minimizing a cost function, thus the
inclusion of curvature values, which can be strongly negative, can create imbalance
within the optimization procedure.

1.2 Contributions

Summarizing the work completed, we highlight the following contributions as partic-
ularly significant:

• We propose a novel way to incorporate Ricci curvature in embeddings, as a
regularization term, requiring only a fraction of the computational cost needed
for Ricci flow. We note that curvature on edges in dense, well connected parts
of the graph tends to be positive. Such areas could be likened to a sphere in
the usual sense of curvature - all points can be seen as dense and geodesic lines
tend to drift towards each other. The opposite holds for so called “bridge” edges,
ones connecting clusters of tighter-knit nodes. This can similarly be likened to a
hyperbolic plane, where geodesic lines would drift apart from a common starting
point. Thus, if we encourage the endpoints of strongly positively curved edges
to be embedded close to each other via regularization, we could expect a cluster
structure to become more pronounced, as demonstrated in figure 1.1.

• We show that when Ricci curvature is combined with standard, gradient descent
based graph embedding techniques in this way, the performance in clustering of
the embedded networks improves significantly. This is shown using the specific
examples of the algorithms we propose, DeepWalk-Ricci and GEMSEC-Ricci.

• We demonstrate that applying Ricci flow before performing an embedding im-
proves the clustering performance, showing the initial intuition to have been
correct.

• We show Ricci curvature can be used in clustering more directly via non-negative
matrix factorization (NMF), improving the performance by up to 30% when
compared to factorizing the adjacency matrix.

• We explore different ways to transform and compute Ricci curvature, showing
that applying a parametrized sigmoidal transformation to the values to ensure
non-negativity leads to the most significant improvement, both when curvature
values are used as regularization weights and in NMF.
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1.3 Report Overview

In this report we seek to provide a comprehensive summary of the work done, as well
as the relevant background and context. It is structured as follows:

• In chapter 2 we provide a brief overview of the different notions of curvature in
geometry, as well as the discretization of Ricci curvature and the method used
for computing its values.

• Chapter 3 consists of a literature overview for the application of graph Ricci
curvature in network analysis as well as an overview of different embedding
methods.

• Chapter 4 describes the initial exploratory work, using the discrete Ricci flow
(a method of transforming a graph so as to obtain near-zero curvature for ev-
ery edge), synthetic graphs and simple embedding methods - multi dimensional
scaling and spectral embedding. Here we perform comparison of clustering per-
formance on the graph embeddings before Ricci flow is applied, and after.

• In chapter 5 we propose a way to incorporate graph Ricci curvature values in
the loss function of a skipgram-based embedding algorithm as well as the results
in clustering obtained post-embedding. Here we also provide a summary of
the impact on the runtimes of the algorithms and analysis of performance when
different strategies to compute the regularization weights are used.

• Chapter 6 presents a way to use Ricci curvature in conjunction with non-negative
matrix factorization to improve clustering results, in comparison to the baseline
of using the adjacency matrix.

• Lastly, in chapter 7 we provide some concluding remarks and discussion, as well
as pointing out possible extensions to follow this work.



Chapter 2

The Theoretical Background on Ricci
Curvature

One of the fundamental concepts underlying the work presented in this report is graph
curvature, specifically a discretized version of Ricci curvature. In this chapter we
present a summary of the theoretical background required to understand the signifi-
cance of this concept as well as its relevance in relation to graph embeddings.

2.1 The Geometric Notion of Curvature

In geometry, and, by extension, differential geometry, several different notions of cur-
vature can be found. Varying in the complexity and sophistication of the description,
as well as restrictions on the domain where they can be applied, all of these measures
are referred to as “curvature” as they seek to represent and quantify the same basic
concept - the deviation from flatness. Typically the values are defined so as to be large
when the object examined deviates strongly from its flat equivalent, and to be close to
zero when it is nearly flat.

Figure 2.1: Osculating circle to a 2-dimensional curve C [50]

To illustrate this, we first consider the simplest notion of curvature - one for curves in
two dimensions. The deviation from flatness here can be understood as the deviation
from the curve being a straight line at any particular point. This is defined via an
osculating circle (see figure 2.1) - the circle which provides the best approximation

5
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of the curve at a given point. Intuitively it can be seen as the trajectory traced by
an imaginary car driving along the path traced by the curve, which had its steering
wheel become stuck at the point in question. Naturally, the smaller the radius of the
osculating circle, r, the less “flat” the curve is (“turns” more sharply at the point). It
is desirable for this to be reflected by higher curvature values. To achieve this, the
curvature is defined to be the inverse of the radius, κ = 1

r .

Taking a step-up in complexity, we have the notion of Gaussian curvature, defined for
surfaces in three dimensional space. It is a signed value, defined as the product of
the two principal curvature values at the given point - the maximum and minimum
curvatures of the curves obtained at the intersection of the surface with a normal plane.

More rigorously, consider a point p on a surface M. Let n be the normal vector and
t be a tangent vector to the surface at p. A normal plane is then one which contains
both n and t. The intersection of this plane with M will produce a curve through p.
We can then compute the curvature of this curve at p. Varying the direction of t will
yield different curves. We are interested in the highest and lowest curvature values
obtainable this way. Examples of surfaces with positive, negative and zero curvature
can be found in figures 2.4a, 2.2a and 2.3a respectively.

(a) Surface with Negative Curvature (b) Graph with negative Curvature

Figure 2.2: Parallel Between Surfaces and Graphs - Negative

It is worth noting this measure is intrinsic to the surface and does not depend on the
way it is embedded in Euclidean space. Even before taking a closer look at graph
specific notions, we can see that defining a similar, intrinsic measure on networks has
the potential to give us information on what the representations of these networks in
Euclidean space could be.

Furthermore, regions with highly positive curvature tend to be more densely packed
than ones with negative curvature. A metric which behaves similarly on graphs could
be expected to have a correlation with the community and cluster structure. Indeed,
in figures 2.1, 2.1 and 2.11 we can see a comparison between graphs and surfaces of

1Graph visualisations generated with the graph Ricci curvature calculator [9]
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(a) Surface with Zero Curvature (b) Graph with Zero Curvature

Figure 2.3: Parallel Between Surfaces and Graphs - Zero

(a) Surface with Positive Curvature (b) Graph with Positive Curvature

Figure 2.4: Parallel Between Surfaces and Graphs - Positive

similar curvature, reflecting this density hypothesis. In particular, we see a regular
grid graph has zero curvature, a clique yields a positive value, and a sparser, tree-like
structure has negative curvature.

Ricci curvature can be seen as a generalisation of the more basic notions described
above, translating the idea of measuring the deviation from flatness into the context of
differential manifolds. It represents the amount by which the volume of a geodesic2

ball on the manifold deviates from the volume of a standard ball in Euclidean space.
With the latter being the baseline of flatness, we can see how this is an extension of the
common idea referenced before. This particular notion has proven to be extendable to
the context of graphs, which is discussed in the following section.

2a generalized notion of a straight line, representing an interpretation of “shortest path” on the surface
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2.2 Discretization of Ricci Curvature

There have been several approaches proposed to generalize the notion of curvature,
and specifically Ricci curvature, to be applied in discrete settings. Several explorations
of this curvature on general metric spaces have been conducted by Bakry and Emery
[2], as well as Lott and Villani [24]. The first definition of Ricci curvature on graphs
was given by Chung and Yau in 1996 [8], a definition on Markov chains was developed
by Ollivier [29]. Another notion of the discretization is presented in Forman’s work
[11].

In this report we focus on the discretization of Ricci Curvature proposed by Ollivier
[29] as coarse Ricci curvature. This formalisation was further explored in the context
of graphs by Lin, Lu and Yau in 2011 [23] and the explanation here draws heavily on
their work. This approach translates the idea behind Ricci curvature quite directly, by
comparing the distance between two balls to the distance between their centers.

In order to present the mathematical interpretation of this notion of Ricci curvature on
graphs, we first define Wasserstein distance (also known as the earth-mover distance).
Given two probability measures on a metric space M, µ and ν, a coupling is a proba-
bility measure on M, γ(µ,ν) such that the respective marginal distributions correspond
to µ and ν. Let Γ(µ,ν) = {γ|γ(µ,ν) is a coupling}. Then, given the distance measure
d, the Wasserstein distance is defined as

W (µ,ν) = inf{
∫

M×M
d(x,y)dγ(x,y)|γ ∈ Γ(µ,ν)} (2.1)

In the particular case of graphs, we define a parametrized probability measure on the
neighbourhood of a vertex. First, given an undirected graph G = (V,E), for a vertex
v ∈ V let C(v) = {u|(v,u) ∈ E}, and let N(v) =C(v)∪{v} be the neighbourhood of v
and dv = |C(v)| be the degree of v. We then define a probability measure on the graph,
parametrized by α ∈ [0,1] as stated in the following equation.

mα
v (u) =


α if u = v
(1−α)/dv if u ∈C(v)
0 otherwise

(2.2)

Wasserstein distance is fundamentally related and, in discrete cases, equivalent to the
optimal transport problem, originally posed by G. Monge in 1781 as seeking the op-
timal way to move iron ore from mines to factories, which can then use it for pro-
duction, while minimizing the cost of this transportation. In a discrete case, we can
see the probability measure in equation 2.2 as a mass distribution, which needs to be
transported to another specific arrangement. We thus produce a transport plan, A such
that ∑y∈M A(x,y) = µ(x) and ∑x∈M A(x,y) = ν(y), equivalent to the couplings defined
before (here M refers to the discrete space of places which can hold mass or probability
values, such as nodes in a graph).

Now given two nodes x,y ∈ V , and some value α ∈ [0,1], we can define mα
x and mα

y ,
and compute W (mα

x ,m
α
y ). The discrete version of the computation is presented in the

following equation.
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W (mα
x ,m

α
y ) = inf

A
{ ∑

xi,y j∈V
d(xi,y j)A(xi,y j)|A is a transportation plan} (2.3)

We use the length of the shortest path between x and y as the distance metric d(x,y).
The α-Ricci curvature for the pair of nodes, κα(x,y) is then obtained by a comparison
of the Wasserstein distance to the distance between the nodes:

κα(x,y) = 1−
W (mα

x ,m
α
Y )

d(x,y)
(2.4)

Even though this value can be computed for any arbitrary pair of vertices, it is usually
restricted to adjacent pairs (with the Ricci curvature being computed for each edge).
A visualisation for this case, with x,y being adjacent nodes, can be seen in figure 2.5.
The transportation problem pictured here requires moving the mass from N(x) (green)
to N(y) (blue), with the lowest possible amount of work (computed as amount of mass
multiplied by the distance it is to be transported over).

Figure 2.5: Optimal transportation problem - the mass distribution is moved from the
neighbourhood of x (green) to the negbourhood of y (blue)

Note that in this case the optimal transportation distance calculation can be expressed
as a linear programming optimization problem, presented in equation (2.5). Here we
denote the proportion of mass originally at xi transported to y j by ρi j. The first con-
straint ensures that exactly the amount of mass available at each node in the neigh-
bourhood of x is moved, and is moved in its entirety. The second one ensures the
distribution mα

y is emulated correctly by the transportation result. These constraints
together ensure ρ values will comprise a valid transporatation plan.

Min : ∑
j

∑
i

d
(
xi,y j

)
ρi jmα

x (xi)

S.t. ∑
j

ρi j = 1 ∀i

∑
i

ρi jmα
x (xi) = mα

y
(
y j
)
∀ j

0≤ ρi j ≤ 1 ∀i, j

(2.5)

This optimization is a computationally expensive task, impacting the performance of
any algorithm which uses Ricci curvature on larger real-world networks. This is es-
pecially prevalent on large and densely connected networks, where there are many
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possible paths which need to be considered when computing the optimal transport dis-
tance. To reduce the complexity of the calculations, we can also compute the average
transportation distance, A(mα

x ,m
α
y ). Here we consider sending the same amount of

mass from xi ∈C(x) to every yi ∈C(y), repeating this for all xi ∈C(x), and transferring
the mass form x to y. This can be computed directly (only requires computing shortest
paths, which can be done efficiently with algorithms like Dijkstra and Floyd-Warshall).
Due to the transportation plan (represented by the ρi j values, computed as described
above) being fixed, this method does not require solving a linear programming opti-
mization problem.

In this report we consider a version of the discrete Ricci curvature with a fixed value
of the parameter, α = 0.5, a decision consistent with [26, 27] and other works. This
choice allows us to focus on the impact the addition of curvature-specific information
has on other algorithms, rather than tuning curvature specific hyperparameters. As it
has been shown to provide good results in past work, it is safe to presume this decision
will not have a large detrimental impact on our results. Noting this convention, for
simplicity and readability we use κ(x,y) to refer to κ0.5(x,y).



Chapter 3

Network Embeddings and Discrete
Ricci Curvature in Network Analysis

There has been a considerable amount of research on the potential application of Ricci
curvature on graphs over the past few year, since the initial papers defining it were
published. In this section we briefly review the current results of using it in complex
networks as well as the reasoning behind the choices made. In addition to this, we
cover the background on the other area relevant to this report - network embeddings.

3.1 Ricci Curvature in Network Analysis

The most fundamental application of the discrete Ricci curvature is providing an inter-
pretation for the shape and structure of networks. An example of a study carried out
in this context is the 2015 paper analyzing the Ricci curvature of the internet topology
[27]. Here the authors show that the internet network predominantly negatively curved,
as measured by Ricci curvature. This is presented as consistent with pre-existing work,
which used various other ways to examine graph curvature. Different robustness in-
dications which can be derived from this information are also studied, as well as their
relation to known geographical distances. The latter provides an indication that posi-
tively curved edges tend to be geographically short - the nodes connected by them are
quite close together.

In the aforementioned paper the authors also suggest graph curvature could be used in
connection with network embeddings. The proposed application is slightly different
than the one explored by us - the suggestion here is to consider embeddings to non-
euclidean spaces, as they could provide a closer fit for the inherent structure of the
graph. This deviates slightly from the traditional approach to graph embedding, char-
acterised by seeking a representation in n-dimensional Euclidean space. The approach
we take is partly motivated by the connection proposed here, however we have chosen
to maintain the convention of fitting to Euclidean spaces.

Expanding on the observation above, with respect to the endpoints of positively curved
edges being “close” in some sense, naturally leads to a different application in network
analysis - finding dense clusters. Ricci curvature on graphs provides information on

11



Chapter 3. Network Embeddings and Discrete Ricci Curvature in Network Analysis 12

the local structure of the graph, and is connected to how densely it is connected. This
can be seen both from the mathematical definition presented in section 2.2, as well as
the examples provided in figures 2.2, 2.4 and 2.3. As in real world networks the more
densely connected regions tend to bear some similarity to each other, the problem of
identifying them arises. Usually, this is phrased as the problem of community detec-
tion, although the precise definition of a community varies. It is also closely related to,
and sometimes treated as interchangeable with, graph clustering.

The problem is addressed via graph curvature in two recent scientific reports by Ni et
al. [28] and Sia et al. [42]. The authors take quite different approaches. The former
proposes simply using the Ollivier-Ricci curvature as an indicator for edges which
should lie between communities rather than within them. The latter suggests using
the information less directly, via Ricci flow (explained in more detail in section 4.1).
Both approaches are shown to yield considerable results, and encouraged the further
exploration related to clustering presented in our work.

Other applications can be found in a variety of fields. Due to its relation to the ro-
bustness of complex networks, also pointed out in previous paragraphs, it has been
applied in economics for pre-crisis market fragility study [39], as well as for differen-
tiating cancer networks [38]. In addition to this, uses for discrete Ricci curvature on
graphs have been found in the research of wireless networking [45, 46] and quantum
computation [47, 48].

3.2 Network Embeddings

Embeddings are nearly inseparable from our understanding of graphs. Most of the time
we think of one, we are visualising a two or three dimensional representation, with the
nodes positioned in specific locations and edges stretching in between. However there
are numerous such representations available, as shown in figure 3.1. Even at a glance,
we can tell that they provide us with different amounts of information about the graph,
thus finding a good, informative embedding is an important but complex task.

(a) Kamada-Kawai layout (b) Spiral layout (c) Random layout

Figure 3.1: Different embeddings of the same graph (two 5-cliques connected by a
single edge) into two dimensions. It can be difficult to determine all pictures represent
the same underlying structure at a glance.

More formally, a network embedding is defined as a mapping from the initial struc-
ture to a vector space - usually, the familiar Euclidean space. Typically the goal is
to preserve the inherent properties of the network as well as possible. This is often
done in order to create a representation which can then be used with the standard data
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science methods for tasks like clustering and classification. The desire to keep those
methods working efficiently has encouraged the study of embeddings into relatively
low-dimensional spaces. Such representations are also used for visualisation and link
prediction (a more detailed summary of applications can be found in the paper by
Goyal and Ferrara [12]).

In this report we focus on vertex embeddings, where the nodes of a network are mapped
to coordinates in Euclidean space. Given a graph G = (V,E), they can be seen as a
function f : V → Rd , where d is the dimension of the target space.

The approaches to graph embedding are quite diverse. One method is factorization
- where the similarity between every pair of nodes is defined via a chosen metric, a
matrix of these values is constructed and an embedding is sought via a factorization of
it. An example of a matrix factorization based embedding is Graph Factorization [1],
which seeks a factorization of the adjacency matrix1. Multidimensional scaling (MDS)
and the spectral embedding, both more extensively explained in chapter 4 also fall into
this category. Further examples include HOPE [30], which depends on a similarity
measure used to construct the matrix to factorize, and others [35, 5].

Some embedding methods rely on deep learning exclusively. Techniques like deep
autoencoders, previously used for informative dimensionality reduction, have been
adapted to be used on graphs and generate representations of the nodes [6, 49, 18].

Another category of embedding methods utilize random walks on the graph. They fol-
low a similar pattern - sample random walks on the graph (even though the sampling
strategies may vary) and then use the SkipGram model to compute the embedding rep-
resentations. This model is also used in language processing, in algorithms such as
Word2Vec [25]. It maximizes the probability that words co-occur when they appear
within a specific window in a sentence. The adaptation of this model to graph embed-
ding algorithms treats the sampled random walks as these sentence windows, implying
that the nodes appear in close relation to each other.

An early example of random walk based embedding algorithms is DeepWalk [31], pro-
posed in 2014. The random walks here are sampled by uniformly choosing a start node,
and then progress to a neighbour, again, uniformly at random. This is contrast to later
algorithms, such as Node2Vec [13], which can utilise biased random walks. Multiple
random walks of a given length are sampled and then used to train the aforementioned
SkipGram model to obtain an embedding.

A variation of DeepWalk we base some work on is GEMSEC (Graph Embedding with
Self-Clustering) [36]. This method uses the same random walk sampling approach as
before, however the difference lies in the loss function optimized afterwards. GEM-
SEC uses a clustering cost term, somewhat similar to k-means, to encourage nodes
belonging to the same clusters to be embedded close to each other. It also proposes an
addition of a social network cost, based on the overlap of the neighbourhoods for ev-
ery pair of neighbouring nodes, again as an aid in community detection and clustering.
This part is what we propose to reinterpret with curvature values in chapter 5. This part
of the report also presents more detailed descriptions of DeepWalk and GEMSEC.

1A matrix A such that Ai, j = w(i, j) where if (i, j) ∈ E, then w(i, j) is the weight of that edge;
w(i, j) = 0 otherwise
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One of the challenges arising alongside the graph embedding task is performance eval-
uation, as well as the lack of a strict definition of what a good embedding ought to be
like. Typically, the tasks mentioned above as applications are performed on the em-
bedded network and the results are then used to compare different methods. Naturally,
this makes comparing different approaches a non-trivial task itself. For example, some
embedding methods might be better suited to a specific application, rather than seeking
to optimise all at once. In this report we have chosen to focus most evaluation efforts
on clustering performance.



Chapter 4

Exploration of Embedding After Ricci
Flow

This part of our work is focused on developing an understanding of how Ricci flow
affects simple embeddings, by studying the clustering performance on the embedded
graphs when compared against a ground truth valuation. The main goal here was to
produce a feasibility study of the basic method, with the motivation being that applying
the flow procedure, which fundamentally attempts to flatten the graph structure, could
allow it to be more easily represented via embeddings in Euclidean (and as such, non-
curved) space.

We examine the effects on two different embedding methods, multi dimensional scal-
ing (MDS) and spectral embedding (described in section 4.2.4). A positive result, in
line with the hypothesis above, is observed when MDS is used. Here post embedding
clustering results improve when evaluated with respect to a known ground truth assign-
ment quite consistently. A similar effect is seen when using the Spectral embedding
(specifically, the Laplacian Eigenmaps algorithm), although slightly less consistently.
For this algorithm the weights on the edges assigned by Ricci flow have to be trans-
formed to reflect closeness rather than distance. Overall, these results imply that Ricci
flow can consistently improve some embeddings in terms of clustering performance.

4.1 Ricci Flow and its Discretization

Ricci flow, in its original formulation, is a process of deforming manifolds, formally
analogous to the diffusion of heat. Via this process, introduced by Hamilton in 1982
[14]. The space is modified in proportion to the Gaussian curvature so as to make it as
uniform as possible. The Ricci flow process smooths out irregularities - regions with
positive curvature shrink, while ones with negative curvature tend to expand [28].

Formally, given a Riemannian metric gi j, surface Ricci flow is defined by the differ-
ential equation 4.1 which characterizes the evolution of the metric. Here t is the time
parameter and K(t) is the Gaussian curvature induced by the metric.

dgi j(t)
dt

=−2K(t)gi j(t) (4.1)

15
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The discrete Ricci flow on surfaces was analyzed by Chow and Luo [7] and an opti-
mization based algorithm for its computation was given in a later paper [15].

In this project we have focused on the discrete Ollivier-Ricci curvature, and the corre-
sponding version of Ricci flow. This procedure was described in the work by Ni et al.
studying network alignment [26] as the discrete Ollivier-Ricci flow. Here the curva-
tures are amended using an iterative process on the edge weights in the graph, aiming
to modify them so as to make the curvature uniformly zero. For any edge (x,y), we use
the edge weights at step i (denoted by w(i)

xy ), shortest path distances at step i induced by
the relevant weights (denoted by d(i)) and the Ricci curvature values κ (as defined in
section 2.2) to compute the weights at step i+1 as follows:

w(i+1)
xy = d(i)(x,y)−κ

(i)
xy ·d(i)(x,y) (4.2)

In order to compute any weights for step i+2 we thus must update all others up to step
i+ 1. Similarly as on manifolds, this process transforms the graph via edge weights
so as to achieve as close to uniformly zero curvature everywhere as possible. An
illustration of the discrete Ricci flow being applied can be seen in figure 4.1.

(a) The original graph (b) Graph after Ricci flow has been applied

Figure 4.1: Zachary’s karate club graph before and after Ricci flow has been applied.
The nodes are colored according to community membership, the edge colors represent
the corresponding curvature values, edge thickness corresponds to the edge weight.
The layout used is the spring layout for the original unweighted graph.

The research on applications of Ricci flow, alongside the discrete version of curvature
in graphs is quite recent, started with the aforementioned work on network alignment in
2018 [26]. Here the weights computed with Ricci flow were used to define a distance
measure on the graph (the length of the shortest path in the appropriately weighted
version of the graph), which is then used to align graphs via distances from landmark
nodes, for which the correspondence is determined from prior knowledge.

This paper was soon followed by another work by the same authors, examining the
uses of discrete Ricci flow in community identification [28]. Here the communities are
determined by removing the edges for which the weights assigned by Ricci flow exceed
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a chosen threshold value. Due to the tendency of the process to contract high-curvature
edges (often inner ones in clusters) and lengthen the ones with negative curvature (often
bridges between highly connected groups of nodes), this is expected to recover the
community structure reasonably well. The authors provide a theoretical proof of this
for a specific family of graphs, as well as experimental results, showing performance
comparable to or better than other community identification methods on both synthetic
and real-world networks.

An important takeaway from both papers for us is the general behaviour of Ricci flow
- via the iterative process, it contracts areas of high curvature, assigning low weights to
originally positively curved edges, and expand areas of negative curvature (assigning
large weights to negatively curved edges). As edges within more densely connected
clusters are often positively curved, and ones between clusters tend to have negative
curvature, this means Ricci flow could move clusters further away from each other,
while making them tighter by assigning low weights to inner edges.

The work described in this chapter builds on this notion and aims to explore the impact
Ricci flow has on graph embedding and how it can be used to construct meaningful
representations.

4.2 Preliminary Experiments

As an initial exploration of the impact of Ricci flow on the quality of embedding and
clustering, a series of simple experiments were carried out. The results of these are
not entirely conclusive, due to the high variance obtained, however an improvement is
typically observed. It can be seen both qualitatively, when visualising 2-dimensional
embeddings, and via numerical evaluation, measuring correspondence to a

4.2.1 Impact of Ricci Flow on Simple Graphs

(a) The original graph (b) After 2 iterations of Ricci
flow

(c) After 100 iterations of Ricci
flow

Figure 4.2: Effects on a barbell graph embedded via MDS - the nodes belonging to
the cliques are embedded very close together after the graph has been transformed by
Ricci flow.
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Initial trials were focused on providing a visualisation of the effects Ricci flow has
on the 2-dimensional representations of some simple graphs. The visualisations were
produced using the embeddings described in 4.2.4.

Figure 4.2 shows a typical example of what is the expected and desired behaviour
under Ricci flow: the barbell graph, consisting of two cliques joined by a single edge is
gradually contracted into two distinct points, making the clusters very well separated.
As mentioned before, in general the positively curved edges are contracted by Ricci
flow, and the negatively curved ones are extended. This allows us to expect edges
inside tight communities to be contracted and bridge edges - ones between two more
connected clusters - to be extended, as per their original curvatures.

(a) The original graph (b) After 2 iterations of Ricci
flow

(c) After 100 iterations of Ricci
flow

Figure 4.3: Effects on a Barbell graph embedded with spectral embedding - the nodes
belonging to cliques are initially embedded close by, effect of Ricci flow does not af-
ter the second iteration and does not move the bridge edge endpoints towards their
clusters.

Similar, although not identical behaviour is observed when the spectral embedding is
used, as shown in figure 4.3. Here the effects of Ricci flow appear limited, not changing
whether 2 or 100 iterations have been applied. This could be due to the simple structure
of the graph, as well as the initial performance of spectral embedding - the clusters are
embedded to single points from the very start. A similar trend - results when using the
spectral embedding being slightly less consistent than when embedding using MDS -
persists in other graphs, as well as the numerically evaluated experiments described in
the following sections and summarised in 4.2.6.

The observations suggest that Ricci flow and the information provided by curvature
values is useful and relatively smoothly incorporated into at least some embeddings.
However, the results obtained can have quite a high variance and not be entirely con-
sistent when using different methods.

4.2.2 Experiment Design

Each of the experiments carried out for numerical evaluation of clustering performance
on the embedded graphs followed the same general steps:
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• Generate a graph with a known clustering assignment (with the types of graphs
used described in 4.2.4).

• Embed the graph, using MDS or the spectral method (as described in later in
section 4.2.4), into n-dimensional Euclidean space.

• Apply K-means clustering for a chosen value of K and evaluate its correspon-
dence to the ground truth (the method of evaluation is described in 4.2.5).

• Apply Ricci flow, for a set number of iterations, to the original graph.

• Perform the same kind of embedding on the newly transformed graph.

• Apply K-means clustering with the same value of K as before and evaluate its
correspondence to the ground truth.

• Evaluate the performance difference between the two clustering attempts.

4.2.3 Types of Graphs Examined

For interpretability of the experiments, a ground truth clustering allocation is desirable.
Due to this, as well as runtime considerations, we chose to run the initial exploration
on artificial graphs.

Types of graphs tested on and the relevant parameters used to specify them are sum-
marized below:

• Gaussian partition graph. These graphs are specified by the number of nodes
(n), the mean size of the clusters (cavg) within the graph, a shape parameter (s),
effectively controlling the variance of the cluster sizes, and probabilities for an
edge (u,v) existing if the nodes u,v both belong to the same cluster (pin) and if
u,v are in different clusters (pout) respectively. Generating these graphs with the
NetworkX tool provides us with a ground truth clustering allocation.

• Lancichinetti–Fortunato–Radicchi (LFR) Benchmark Graph. Introduced by the
titular authors in 2008 [20], this is another synthetic graph with a predetermined
ground truth cluster (or community) structure. Here both the node degrees and
the community sizes follow a power law distribution, with the respective expo-
nents taken as parameters (τ1 and τ2 respectively) by the algorithm generating
the graph. Other defining parameters are the number of nodes (n), the average
degree of a node in the graph (davg), minimal size of a community (cmin), and a
“mixing” parameter (µ), reflecting the average fraction of the nodes in a neigh-
bourhood for a given node which do not belong to the same community as the
one under consideration. When working with a specific framework, other pa-
rameters are available, however these are the main one which will be referred to.
These graphs mimic a real-world network structure and account for the hetero-
geneous distribution of node degrees and community sizes.

4.2.4 Embeddings Used

The embeddings used in these experiments were multi-dimensional scaling (MDS)
and spectral embedding. Both approaches are well studied and established, and as
such were chosen as interpretable baseline methods.
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MDS is applicable to any general kind of data with a measure of distance. We choose
the length of the shortest path between the pair of nodes, weighted with the Ricci
flow weights if present, to represent this measure. The method requires a dissimilarity
matrix and attempts to optimize the placement of objects in euclidean space so as to
preserve the pairwise dissimilarities, interpreted as the euclidean distances between
embedded points.

More formally, this method minimizes the stress, which, given a dissimilarity matrix
D is expressed as follows:

stress =

√√√√∑i< j(di j− d̂i j)2

∑i< j d2
i j

(4.3)

Here di j denotes the (i, j)’th element of D and d̂i j - the distance between the repre-
sentations of i and j in the embedding. This is done by first converting the matrix D
to an equivalent positive semi-definite one and performing PCA (principal component
analysis) on the result.

The spectral method rests more on graph-specific properties, positioning the nodes
according to the directions of the eigenvectors of the corresponding Laplacian matrix
[3].

To perform a spectral embedding, first we compute the adjacency matrix A, corre-
sponding to the input graph. Then we obtain its Laplacian, L = D−A (where D is now
the diagonal matrix holding the degree for each node) and calculate the partial eigen-
value decomposition for it. Finally, to embed into d dimensional space the eigenvectors
corresponding to the d smallest (but non-zero) eigenvalues are used.

An important thing to note is that when using the spectral embedding the weights of
the edges are interpreted as a measure of similarity, rather than distance. Thus edges
with high weights will, generally, have their endpoints embedded close to each other
and the ones with low weights will have endpoints placed further apart. However, the
Ricci flow iteration weights are most naturally interpreted as distance. Due to this we
need to transform the post-flow edge weights in order to apply the spectral embedding.
Given the adjacency matrix A ∈ Rn×n, we compute the transformed matrix A′ ∈ Rn×n

as follows:

wmax = max{Ai, j|1≤ i, j ≤ n} (4.4)

A′i, j =
{

0 if Ai, j = 0
wmax + ε−Ai, j otherwise (4.5)

Here ε is a small value, ensuring the minimal similarity measure is still greater than
zero. A linear transformation was chosen to preserve the scaling due to Ricci flow as
well as possible
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4.2.5 Clustering Evaluation Method

The method chosen for the evaluation of clustering correspondence to the ground truth
cluster or community assignments is adjusted mutual information. It is a measure
derived from mutual information, which, on a high level, describes the amount of in-
formation shared between the two cluster assignments. Adjusted mutual information
not only normalizes the score, but also accounts for the similarity which would be ob-
tained given a random clustering. In general, the score for mutual information tends
to be higher as the number of clusters increases [44], thus the adjustment for chance
allows for a more independent comparison than simply using the normalised measure
would. A similar adjustment for chance is also present in another commonly used mea-
sure for performance of clustering compared to the ground truth assignment, Adjusted
Rand Index. An AMI score of 1 indicates a perfect correspondence while the expected
value of the AMI score for randomly assigned partitions is 0 (although the score itself
can be negative).

4.2.6 Results

The results reflect a very similar trend to the barbell graph example presented in sec-
tion 4.2.1. When the MDS embedding is used, Ricci flow consistently improves the
performance in k-means clustering on the embedded graph, in terms of similarity to the
ground truth (as measured by AMI). This is true both in Gaussian partition graphs and
LFR networks. The spectral embedding results follow a similar pattern, although here
an improvement is seen less consistently, with one experiment displaying an overall
deterioration in performance instead.

Table 4.1: Setup of the experiments on Gaussian partition graphs

No. Trials n cavg pin pout dim nit
1 30 50 10 0.6 0.2 2 30
2 30 50 10 0.6 0.3 2 30
3 30 80 10 0.6 0.2 2 30

Several experiments were conducted on both types of graphs, varying the parameters
slightly. The setup for each experiment on Gaussian partition graphs is described in
Table 4.1. Note that throughout these experiments the shape parameter s was held fixed
at 10, encouraging a low variance on the cluster sizes. The embedding dimension is
referred to as dim and the number of Ricci flow iterations as nit , both in this table and
in the subsequent ones.

Table 4.2 presents the results of the respective Gaussian partition graph experiments.
We can see here that, when using both the MDS and spectral embeddings, an improve-
ment in the mean AMI score can be seen consistently. However, the magnitude of the
improvement is quite small and the variance is relatively high, leading to values of the
standard error of the mean being significant as well.

An example of the actual differences under the MDS embedding, obtained over the
runs of experiment 3 can be seen in figure 4.4a. In fact, this particular experiment is
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Table 4.2: Results of the experiments on Gaussian partition graphs. A consistent im-
provement in clustering performance after both of the embeddings is observed when
graphs are embedded after Ricci flow.

No. Embedding Mean AMI
pre-flow

Mean AMI
post-flow

Mean
Change

Std. Error
on the Mean
Change

1
MDS 0.4819 0.5069 0.0250 0.0240
Spectral 0.4453 0.5304 0.0850 0.0115

2
MDS 0.2067 0.2527 0.0460 0.0164
Spectral 0.2368 0.2676 0.0309 0.0094

3
MDS 0.2733 0.3408 0.0675 0.0139
Spectral 0.2674 0.3162 0.0488 0.0089

one where the improvement was the most consistent, as can be seen in the plot and the
lower standard error value. This is likely due to the graphs being slightly larger than
the other ones tested, allowing the effects to become more pronounced.

(a) Gaussian Partition Graph Experiment 3, MDS
Embedding

(b) LFR Graph Experiment 2, Spectral Embed-
ding

Figure 4.4: Scatter plots showing, as points, the differences for each generated graph of
the AMI value achieved after embedding the graph post Ricci flow and after embedding
the original graph. It can be seen a positive effect is quite consistent and high positive
values are much more common than negative ones.

Similarly as before, table 4.3 describes the setup of the experiments run on LFR net-
works, and table 4.4 summarises the results obtained in each of the experiments, with
a sample scatter plot of the differences under the spectral embedding in experiment 2
shown in figure 4.4b. The overall trend here is very similar as before - a slight, but con-
sistent improvement in the AMI score can be seen when the MDS embedding is used
and Ricci flow applied, however the clustering performed on the spectral embedding
of the network does not see a consistent improvement, with experiment 1 indicating
deterioration in performance. The other two experiments, however, indicate that under
appropriate conditions a consistent improvement can be seen.

In these experiments we make a conscious choice to embed into two dimensions - we
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Table 4.3: Setup of the experiments on LFR networks

No. Trials n τ1 τ2 µ davg cmin dim nit
1 30 100 2 1.2 0.3 13 10 2 30
2 30 100 3 2 0.3 10 15 2 30
3 30 150 3 2 0.3 15 20 2 30

Table 4.4: Results of the experiments on LFR networks. A consistent improvement in
clustering performance after MDS embedding is observed when graphs are embed-
ded after Ricci flow. When the spectral embedding is used the improvements are also
present, but less consistent.

No. Embedding Mean AMI
pre-flow

Mean AMI
post-flow

Mean
Change

Std. Error
on the Mean
Change

1
MDS 0.1715 0.1978 0.0262 0.0071
Spectral 0.2305 0.2139 -0.0167 0.0082

2
MDS 0.3802 0.4903 0.1101 0.0170
Spectral 0.4030 0.4394 0.0364 0.0088

3
MDS 0.2832 0.3581 0.0749 0.0177
Spectral 0.3665 0.3797 0.0132 0.0068

explore relatively small graphs, to examine a feasibility of such a method. Embedding
into two dimensions has the advantage of both being easy to visualise and presenting
a challenging task even for smaller graphs. Furthermore, relatively small graphs were
chosen as benchmarks here in order to keep the computational cost of the experiments
manageable - Ricci flow requires the recomputation of curvatures nit times, which can
be very time consuming on larger networks.

Overall, the results support the statement made when discussing the effects on a barbell
graph in section 4.2.1 - Ricci flow can be useful when dealing with some embeddings,
such as MDS or the spectral method, but we should not assume it would improve
an arbitrary method consistently. This is evidenced by the slight inconsistency in the
results when considering the spectral embedding of the graphs in question.



Chapter 5

Ricci Curvature in Random Walk
Based Embedding

The initial explorations have shown that while Ricci flow can be useful for embed-
dings, it is not guaranteed to consistently improve any arbitrary method’s performance,
at least in clustering tasks. This information encourages us to seek further, more spe-
cific applications of both Ricci curvature and Ricci flow, moving to more complex
embedding techniques which have the potential to use the information with more flex-
ibility. In this chapter we focus on using Ricci curvature more directly. We propose a
way to incorporate its values as part of the loss function in DeepWalk [31] and another
method based on it, and evaluate the performance of clustering on graphs embedded
using these methods.

5.1 Motivation and Hypothesis

We have see that using Ricci curvature and Ricci flow has the potential to improve em-
beddings for some tasks (with clustering correspondence to a ground truth assignment
being used as the reference point in the initial explorations). Even though the results
are not entirely conclusive, we can expect the extra information gained from comput-
ing curvature to be beneficial in some embedding methods, like MDS and the spectral
embedding in the previous chapter.

One of the concerns when using Ricci flow directly is the computational efficiency
- it requires repeated re-calculation of Ricci curvature and thus the repeated solving
of many small optimization problems in order to compute the optimal transportation
distances. This can significantly extend the time required for an embedding to be per-
formed. For example, a single trial for the experiments described in the previous chap-
ter would take several minutes to run, even though the graphs used are significantly
smaller than most real world networks and the embeddings themselves take seconds.

However, we can emulate behaviour, intuitively similar to that of Ricci flow via an un-
constrained minimization problem in the context of embeddings. We make a couple of
assumptions, which can be considered consistent with the background on embeddings
provided in section 3.2:

24
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1. Given a graph G = (V,E), for u,v ∈ V and an embedding function f : V → Rd ,
the embedding is good if the distance ‖ f (u)− f (v)‖2, corresponds to a measure
of closeness or similarity of the nodes in the graph.

2. Nodes connected by positively curved edges are likely to belong to the same
cluster or communities (backed up by the results in community detection using
Ricci curvature [28, 42]).

Thus if we add a term corresponding to the post-embedding distance of nodes con-
nected by positively curved edges to the cost function of a gradient based minimiser,
we will encourage those nodes to be embedded close to each other. This effectively
emulates the effect of the distance between the nodes in the graph being very low -
something that Ricci flow would produce, due to the tendency to contract positively
curved edges. As there is a correlation between positive curvature and nodes belong-
ing to the same cluster, this would then tend to embed clusters compactly, while dis-
couraging shortening distances between different clusters, an idea compatible with the
clustering quality measures defined by Ackerman and Ben-David in their 2009 paper
[4].

We hypothesise that such an amendment to an embedding should lead to an improve-
ment in clustering performance.

5.2 Setup and Incorporation into the Loss Function

We take an approach to incorporating the Ricci curvature values inspired by the social
network cost regularization term, proposed in the paper describing GEMSEC [36],
which used normalised node neighbourhood overlap values. In order to see the rea-
soning behind the formulation, we first cover the algorithms the method is based on,
as well as the loss functions used in them.

5.2.1 DeepWalk Loss Function

The embedding methods we ultimately consider are based on the DeepWalk algorithm
[31], and use its loss function as a component of the final loss guiding the embedding
procedure. This part is thus the first one we examine.

The defining property of DeepWalk is the random walk based sampling. To begin
the embedding procedure, some fixed number of random walks of a given length are
performed for each node (using a uniform distribution to choose which connection to
use at each point). This creates a sample of sequences, S.

Again, let f : V → Rd represent the embedding function. Note that given a sequence
of nodes, we can find the window w in which a node v occurs - the set of nodes that
appear within a number of steps of the random walk from v (either before it, or after).
Then, given a sample of random walks, S, for any node v we can define NS(v) as the
collection of such windows in the samples in S which contain v.

The goal of the embedding is to find the representation which most closely corresponds
to the observed random walks. Equivalently, to achieve this, we wish to minimize the
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negative log likelihood of the observed neighbourhoods NS(v) given the relevant em-
bedding representations, f (v). This objective is also given in the following equation:

min
f

∑
v∈V
− logP(NS(v)| f (v)) (5.1)

The probability function is then considered to follow two properties, analogously as in
the language processing applications [25] the method is adapted from. The first one
is conditional independence with respect to the embeddings. With this property, we
are able to factor the probability P(NS(v)| f (v)) as a product of the probabilities for
individual nodes, observed within the relevant windows.

P(NS(v)| f (v)) = ∏
ni∈NS(v)

P(ni ∈ NS(v)| f (v), f (ni)) (5.2)

The second property is symmetry - a pair of nodes should always have a symmetric
effect on each others locations. To satisfy this, a specific function which exhibits the
required property (softmax on dot products) for P(ni ∈ NS(v)| f (v), f (ni)) is chosen.

P(ni ∈ NS(v)| f (v), f (ni)) =
exp( f (ni) · f (v))

∑u∈V exp( f (u) · f (v))
(5.3)

Thus the final expression for the loss function, obtained by substituting the equations
above into the objective specified in equation 5.1, is the following:

LD( f ) = ∑
v∈V

[
log

(
∑
u∈V

exp( f (u) · f (v))

)
− ∑

ni∈NS(v)
exp( f (ni) · f (v))

]
(5.4)

As mentioned before, the embedding objective is then to find representations for the
nodes, which minimize this loss function, and can be done using standard minimization
techniques, like gradient descent on neural networks.

5.2.2 GEMSEC Loss Function

The second paper our method draws from and later compares the results with is Graph
embedding with self Clustering [36]. Here the embedding method, based on DeepWalk
itself, focuses on the applications in clustering, incorporating a clustering cost in the
loss function as a parametrized additive term. The proposed clustering cost is similar
to the one optimized by the well known k-means algorithm. We seek, with a set of
clusters denoted as C, to minimize the sum of the Euclidean distances between the
nodes and the cluster center (µc) closest to them. To do this, the algorithm keeps track
not only of the assigned coordinates for the nodes, but also those of the current cluster
centers.

LC = ∑
v∈V

min
c∈C
‖µc− f (v)‖2 (5.5)



Chapter 5. Ricci Curvature in Random Walk Based Embedding 27

Thus the full loss function used by GEMSEC is

LG = LD + γ ·LC

= ∑
v∈V

[
log

(
∑
u∈V

exp( f (u) · f (v))

)
− ∑

ni∈NS(v)
exp( f (ni) · f (v))

]
+ γ ·∑

v∈V
min
c∈C
‖µc− f (v)‖2

(5.6)

This paper also proposes the use of a regularization term, representing the social net-
work cost, as another additive term in the loss function. This is done to further en-
courage the embedding to preserve any community structure which may be present in
the graph. In the paper, this cost is computed by iterating over the edges and com-
puting the normalised neighbourhood overlap values. These are later used to scale the
embedding distances for the relevant node pairs in the loss function, encouraging the
edge endpoints with high neighbourhood overlap to be embedded close to each other.

5.2.3 Ricci Curvature Based Regularization

We suggest incorporating Ricci curvature values as a regularization term in the cost
function of algorithms based on DeepWalk and GEMSEC.

Let re denote the Ricci curvature value for the edge e (equivalently, r(u,v) on the edge
(u,v)). To incorporate these values into the cost function of a gradient based embed-
ding algorithm, we also consider a transformation on the curvature values, tα : R→
[0,1], defined as tα(x) = eαx

eαx+1 . This is done to both keep the weights non-negative and
restrict their values to a bounded interval.

We seek to achieve a regularization effect, similar to that used for GEMSEC [36]. In
order to do this, we define a regularization cost to be added to the embedding cost
function:

Λ = λ · ∑
(u,v)∈E

tα(r(u,v)) · ‖ f (v)− f (u)‖2

Here both λ and α are adjustable hyperparameters which let us configure the level
of impact the curvature based cost has on the overall loss and the steepness of the
sigmoidal function respectively.

This regularization term encourages behaviour empirically resembling Ricci flow. For
edges of high curvature (r(u,v) close to 1), we will obtain a high value of t(r(u,v)), and
thus the distance between the embedding locations of the endpoints, ‖ f (u)− f (v)‖2 is
penalised, and encouraged to shrink.

We examine the effect of using this form of regularization with both the DeepWalk
and the non-regularised GEMSEC cost functions. The former will be referred to as the
DeepWalk-Ricci embedding, using the loss function specified in equation 5.7.
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LR = LD +Λ

= ∑
v∈V

[
log

(
∑
u∈V

exp( f (u) · f (v))

)
− ∑

ni∈NS(v)
exp( f (ni) · f (v))

]
+λ · ∑

(u,v)∈E
tα(r(u,v)) · ‖ f (v)− f (u)‖2

(5.7)

The algorithm based on GEMSEC will be referred to as GEMSEC-Ricci and use the
cost function specified in equation 5.8.

LR = LD + γ ·LCΛ

= ∑
v∈V

[
log

(
∑
u∈V

exp( f (u) · f (v))

)
− ∑

ni∈NS(v)
exp( f (ni) · f (v))

]
+ γ ·∑

v∈V
min
c∈C
‖µc− f (v)‖2 +λ · ∑

(u,v)∈E
tα(r(u,v)) · ‖ f (v)− f (u)‖2

(5.8)

A comparison of the embeddings achieved with and without the use of this regulariza-
tion term for DeepWalk can be seen in in figure 5.1. The most notable thing here is
that the network cluster structure is much more defined when curvature based regular-
ization is used, in line with the assumptions this term would encourage the inner edges
of clusters to become short.

(a) Kamada-Kawai layout (b) Embedded using DeepWalk (c) Embedded using
DeepWalk-Ricci

Figure 5.1: A Gaussian partition graph, as described in section 4.2.3, with 50 nodes,
pin = 0.7 and pout = 0.05 embedded into two dimensions using different methods.
Nodes are colored according to the ground truth cluster assignment.

5.3 Datasets Used for Evaluation

To evaluate the performance of the algorithms we used the datasets made available
along with the GEMSEC paper. This decision was made due to both the accessibil-
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ity of the data and the ease of comparison with the preexisting results, providing a
way to validate the baseline performance as well as ensuring the correctness of the
implementations.

The networks chosen are Facebook page networks - the nodes are different pages and
the connections represent mutual likes among their pairs. The networks are distin-
guished by types and purpose of the pages. The types present are politicians, govern-
ment entities, TV shows, athletes, companies and public figures.

The datasets have somewhat sparse edges, and represent a real world example of a
social network, a structure where we could expect to find communities, clusters of
more densely interconnected nodes. A brief summary of their properties is provided in
the table below.

Table 5.1: Summary information for the datasets used for clustering evaluation.

Dataset |V | |E| Edge
Density

Average
Degree

Athletes 13866 86858 0.00090 12.53
Company 14113 52310 0.00053 7.41
Government 7057 89455 0.00359 25.35
Politician 5908 41729 0.00239 14.13
Public Figure 11565 67114 0.00100 11.61
TV Show 3892 17262 0.00228 8.87

5.4 Evaluation of Clustering on Embedded Networks

We chose to evaluate the embedding obtained using our methods via the quality of
the clustering obtained from the representation. However, in contrast to the clustering
results presented in chapter 4, where the evaluation was based on a known ground truth
partition, the datasets we are examining do not have pre-existing cluster assignments.
Due to this, we require different means to evaluate them, since AMI is not usable. We
have chosen to replace these values with the modularity of the clustering obtained.

The overall observations are as follows:

• Methods using Ricci curvature based regularization (DeepWalk-Ricci and GEMSEC-
Ricci) consistently outperform their unregularized counterparts,

• Ricci curvature based regularization is more effective in improving clustering
performance than regularization using normalised neighbourhood overlap, im-
plying the local information provided by Ricci curvature has a stronger relation
to the underlying cluster structure.

5.4.1 Modularity

Modularity values provide a way to evaluate a clustering without referring to a known
ground truth partition of the nodes. High modularity values mean the network has
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dense edges within the assigned clusters and the edges between clusters are sparse in
comparison. It is computed by subtracting the expected number of edges within a given
group, if the edges were distributed randomly, from the actual inner edge count of the
group. In particular, if we allocate k clusters, Ci ⊆V for i ∈ {1, . . . ,k}, we define

eii =
|{(u,v)|u,v ∈Ci and (u,v) ∈ E}|

|E|
(5.9)

ai =
|{(u,v)|u ∈Ci and (u,v) ∈ E}|

|E|
(5.10)

Then eii represent the percentage of edges within the cluster i and ai represents the per-
centage of edges with at least one endpoint in the cluster. Modularity is then computed
as

M =
k

∑
i=1

eii−a2
i (5.11)

5.4.2 Implementation

When implementing the algorithms and our regularization method, we have used the
code made available alongside the GEMSEC [36] paper as a starting point. This deci-
sion ensures that we are not introducing any inconsistencies in terms of the variations
of DeepWalk and GEMSEC we refer to, and could immediately shift the focus to the
novel parts of the algorithms proposed. The implementation expanded on the code
available, adding the two algorithms we suggest, DeepWalk-Ricci and GEMSEC-
Ricci, as well as various implementations relating to chapters 4 and 6, methods for
testing and visualisations. Throughout we have also made use of the Python package
GraphRicciCurvature, created and made available by the authors of some of the papers
we cite [26, 28, 27].

The source code used is available together with this report, including the testing meth-
ods and the raw results obtained.

5.4.3 Experimental Results

Over the initial trials, most hyperparameters have been kept constant. Referring to the
values mentioned in equations 5.8, 5.7, we use the following: λ = 0.0625, γ = 0.1,
α = 4.0. For training the embedding network we use the Adam optimizer [17], as a
standard optimization method for gradient descent. The learning rate is initially set to
0.01 and allowed to decrease down to 0.001.

Table 5.2 provides a summary of the results obtained in terms of modularity values.
The values represent the mean results over 10 runs of the given algorithms on each
graph. Each graph has been embedded into 16 dimensions and the partitioned into
20 clusters - either by performing k-means clustering on the embedded data, or using
the cluster centers found by GEMSEC based algorithms. DeepWalk and GEMSEC are
used as baselines. The former due to the wide availability and application, the latter due
to the fact it has been shown to outperform other common methods on these datasets



Chapter 5. Ricci Curvature in Random Walk Based Embedding 31

Table 5.2: Comparison of clustering modularity after different embeddings. Table con-
tains mean values over 10 experiments on each graph, the numbers in parentheses
correspond to standard deviation.

Algorithm
Graph

Athletes Company Govt. Politician Public
Figure

TV
Show

DeepWalk 0.395
(±0.0135)

0.493
(±0.0121)

0.525
(±0.0260)

0.761
(±0.0347)

0.341
(±0.0180)

0.813
(±0.0145)

Regularized Deep-
Walk

0.489
(±0.0044)

0.555
(±0.0089)

0.669
(±0.0078)

0.827
(±0.0052)

0.455
(±0.0306)

0.841
(±0.0020)

DeepWalk-Ricci 0.584
(±0.0044)

0.606
(±0.0065)

0.682
(±0.0046)

0.841
(±0.0062)

0.585
(±0.0121)

0.837
(±0.0138)

GEMSEC 0.524
(±0.0113)

0.552
(±0.0092)

0.623
(±0.0253)

0.827
(±0.0152)

0.499
(±0.0136)

0.819
(±0.0055)

Regularized
GEMSEC

0.586
(±0.0106)

0.606
(±0.0057)

0.673
(±0.0092)

0.847
(±0.0053)

0.588
(±0.0262)

0.839
(±0.0028)

GEMSEC-Ricci 0.639
(±0.0100)

0.644
(±0.0026)

0.690
(±0.0063)

0.855
(±0.0046)

0.623
(±0.0063)

0.842
(±0.0049)

as per the original paper [36]. We also include regularized DeepWalk and regularized
GEMSEC. These algorithms use the neighbourhood overlap based regularization term
described at the end of section 5.2.2. They are included to provide a comparison with
a less computationally expensive regularization method.

In the table we can see that the GEMSEC-Ricci algorithm consistently outperforms
the other methods, often by a reasonably large margin. The most significant part here
is, however, the fact that GEMSEC-Ricci consistently outperforms the basic version of
GEMSEC, and, similarly DeepWalk-Ricci outperforms the baseline version of Deep-
Walk. This implies that the Ricci regularization term has a positive impact on the
clustering performance of real-world network embeddings.

The performance of Ricci curvature regularized methods also consistently exceeds that
of the versions using neighbourhood overlap regularizers. This motivates the use of ad-
ditional time taken for computation, and shows the information provided by curvature
values has a substantial relative impact.

5.4.4 Regularization Coefficient Weighting Strategies

The results presented earlier have been obtained using the Ricci curvature computa-
tions based on Optimal Transport Distance (OTD), the problem outlined in 2.2. As
pointed out before, this computation is responsible for most of the added runtime re-
quired.

An alternative could be using Average Transport Distance (ATD), as done in some pre-
vious work [26]. This would replace the optimisation problems with the simpler task
of counting the neighbours and computing shortest paths between their pairs, greatly
reducing the computational cost.
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Another notable detail is that we only used the curvature values transformed via the
stretched sigmoid function to lie in the interval [0,1]. However, we emphasised the
parallel of this procedure to Ricci flow, which is somewhat incomplete. With the trans-
formation applied, our cost function only encourages the endpoints of positively curved
edges to be embedded close to each other, while having little to no effect on the end-
points of negatively curved edges.

We could consider using the raw edge curvature values as regularization weights. This
would encourage the endpoints of negatively curved edges to be embedded further
away from each other, by effectively rewarding this distance because of the negative
contribution to the cost function. However, since we are using a regular cost function
minimisation algorithm, this could lead to instability and require very careful tuning
of the λ hyperparameter. In this case it would be difficult to ensure that these negative
contributions do not dominate the cost function, allowing it to disregard the other costs
(such as clustering cost and the observation log likelihood optimization).

Table 5.3 presents the mean modularity values obtained over 10 experiments for each
of the graphs, this time using different ways to compute the weights in the regulariza-
tion term. We compare three weighting alternatives - OTD values, transformed via t
with α = 4.0 as before, ATD values under the same transformation, and raw OTD val-
ues. The rest of the hyperparameters are kept the same as in the previously described
experiments.

Table 5.3: Comparison of clustering modularity after embedding when using different
curvature weighting strategies. The table contains mean values over 10 experiments,
numbers in parentheses correspond to standard deviation.

Algorithm
Graph

Athletes Company Govt. Politician Public
Figure

TV
Show

Transformed ATD
DeepWalk-Ricci

0.517
(±0.0123)

0.575
(±0.0103)

0.672
(±0.0148)

0.834
(±0.0112)

0.526
(±0.0263)

0.839
(±0.0044)

Raw OTD
DeepWalk-Ricci

0.040
(±0.0078)

0.154
(±0.0127)

0.436
(±0.0275)

0.766
(±0.0340)

0.068
(±0.0048)

0.819
(±0.0083)

Transformed OTD
DeepWalk-Ricci

0.584
(±0.0044)

0.606
(±0.0065)

0.682
(±0.0046)

0.841
(±0.0062)

0.585 (±
0.0121)

0.837
(±0.0138)

Transformed ATD
GEMSEC-Ricci

0.601
(±0.0092)

0.627
(±0.0089)

0.679
(±0.0087)

0.851
(±0.0025)

0.616
(±0.0088)

0.843
(±0.0029)

Raw OTD
GEMSEC-Ricci

0.108
(±0.0127)

0.243
(±0.0165)

0.586
(±0.0253)

0.809
(±0.0065)

0.189
(±0.0166)

0.820
(±0.0043)

Transformed OTD
GEMSEC-Ricci

0.639
(±0.0100)

0.644
(±0.0026)

0.690
(±0.0063)

0.855
(±0.0046)

0.623
(±0.0063)

0.842
(±0.0049)

The results here suggest that using the OTD measure of curvature can provide sig-
nificantly better results on the clustering task. Even though the outcomes are still
reasonably good, this trade-off could mean any advantage over the performance of
non-regularised algorithms, or, more importantly, the algorithms regularized via the
neighbourhood overlap values, is lost. As such the change from OTD to ATD could
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not be made lightly and further proof it can remain beneficial would be needed. Due
to this, we continue using the OTD values in this report.

The use of raw curvature values, including negative ones, as weights often has a strong
negative effect on the modularity of the clustered graph. As this could be caused
by an under-tuned λ hyperparameter (as per equations 5.7 and 5.8, the scaling factor
for the contribution of Ricci curvature weights to the loss function), we present the
results under different choices of λ in table 5.4 using DeepWalk-Ricci as the examined
algorithm.

Table 5.4: Comparison of clustering modularity after embedding when using raw cur-
vature values as weights for DeepWalk-Ricci. The table contains mean values over 10
experiments, numbers in parentheses correspond to standard deviation.

Value
Graph

Athletes Company Govt. Politician Public
Figure

TV
Show

λ = 0 (DeepWalk) 0.395
(±0.0135)

0.493
(±0.0121)

0.525
(±0.0260)

0.761
(±0.0347)

0.341
(±0.0180)

0.813
(±0.0145)

λ = 0.03125 0.166
(±0.0097)

0.313
(±0.0164)

0.517
(±0.0234)

0.768
(±0.0276)

0.195
(±0.0093)

0.822
(±0.0067)

λ = 0.0625 0.040
(±0.0078)

0.154
(±0.0127)

0.436
(±0.0275)

0.766
(±0.0340)

0.068
(±0.0048)

0.819
(±0.0083)

λ = 0.125 -0.018
(±0.0023)

0.050
(±0.0099)

0.379
(±0.0232)

0.706
(±0.0493)

0.017
(±0.0052)

0.823
(±0.00343)

λ = 0.25 -0.031
(±0.0016)

0.019
(±0.0068)

0.259
(±0.0215)

0.603
(±0.0229)

0.005
(±0.0030)

0.814
(±0.0078)

The results show that there is almost no observable consistent improvement over the
use of DeepWalk alone when we choose to use raw Ricci curvature values as weights,
no matter what λ value is chosen. In fact, in 4 out of the 6 networks we tested on, only a
deterioration in modularity has been observed. This suggests using transformed values
is much more suitable in the context of random walk based algorithms like DeepWalk
and GEMSEC.

5.4.5 Computational Cost

Although the results presented suggest an improvement in performance on post-embedding
clustering tasks, the Ricci curvature regularization weights are somewhat expensive to
compute. The main cost comes from the initial computation of curvature values for
each edge in the graph. This, in its original form, requires solving an optimization
problem, typically phrased in terms of linear programming, for each edge. While this
is a polynomial-time task, it is still non-trivial and can require quite a lot of resources.
It does, however, greatly improve on the computation time which would be required
if we wished to apply Ricci flow to achieve the similar improvement in clustering we
described in chapter 4, as this requires many repeated calculations of curvature.

In this case, for each embedding, curvature computation is a one-time cost. The design
of the regularizing term only requires the values to be computed once, thus the impact
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of the computational cost is spread out if many iterations of the embedding procedure
are performed.

(a) Ricci curvature computed with OTD (b) Ricci curvature computed with ATD

Figure 5.2: Running time comparison for the embedding algorithms examined, on
Erdos-Renyi graphs with p = 0.1. Both x and y axes use logarithmic scaling.

The graph in figure 5.2 shows the running time of the proposed embedding procedure
on progressively larger Erdos-Renyi graphs. The Erdos-Renyi model refers to random
graphs with a specified number of nodes, n, and a probability p of an edge existing
between any given pair of nodes. For these experiments the value of p = 0.1 was kept
constant, while connected graphs with progressively larger numbers of nodes were
generated. The set-up was chosen so that the expected edge density remains constant.

In these experiments the use of Ricci curvature, especially with OTD computations,
represents a significant increase in runtime. However, a 10% edge density is consider-
ably higher than the density observed in many real world networks.

Figure 5.3: Running time comparison for the embedding algorithms examined on LFR
networks with constant parameters and varied number of nodes. Only the x-axis uses
logarithmic scaling.
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For comparison, we also evaluate the running time on LFR networks (as described in
4.2.3, here we set the average degree to 4, maximum degree to 10, τ1 = 2, τ2 = 1.5,
µ = 0.3 and ensure the graph is connected). While this creates rather sparse graphs,
they serve as a slightly more accurate representation of networks in real datasets. These
runtimes are visualised in graph 5.3. Note we no longer need to use logarithmic scaling
on the vertical axis, as even when the computation time for Ricci curvature using OTD
is included, DeepWalk-Ricci and GEMSEC-Ricci are only slightly slower than their
counterpart regularized via community overlap.

The runtime analysis on LFR networks suggests that on some types of sparser net-
works the embedding methods which utilize Ricci curvature do not result in extensive
computational overhead. Thus these methods remain feasible, even when using opti-
mal transportation distance values. However, in denser networks it may be necessary
to use average transportation distance to keep the running time reasonably efficient.



Chapter 6

Ricci Curvature in Embedding and
Clustering via Matrix Factorization

The results obtained in chapter 4 showed that Ricci flow (and by extension the informa-
tion provided by Ricci curvature) had a positive impact when clustering graphs embed-
ded using MDS or spectral embedding. One notable thing about both of the methods,
is that they based on finding a matrix factorization, whether for a transformed distance
matrix or the Laplacian of the graph. In addition to this, the skipgram network based
models like DeepWalk, which we examined and adapted in chapter 5, have also been
shown to be equivalent to implicit matrix factorization [22, 33].

These similarities motivate further exploration of using Ricci curvature in combina-
tion with matrix factorization methods. This chapter presents the investigation of us-
ing Ricci curvature values in non-negative matrix factorization and its applications to
clustering. A consistent and significant improvement in clustering performance, as
measured by modularity, is seen when compared to simply factorising the adjacency
matrix for this purpose.

6.1 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [21] refers to a matrix factorization method
which, given a matrix M ∈ Rn×m with non-negative elements, finds an approximate
factorization into two matrices, W ∈ Rn×k and H ∈ Rk×m, while maintaining the non-
negativity constraint. As with other similar methods, k is usually chosen to be signif-
icantly smaller than n or m, thus producing a representation for the input matrix in a
space with comparatively low dimensionality.

The algorithm minimizes the Froebenius norm between the original matrix and its
reconstruction WH. Thus the optimization problem solved is the following:

min
W,H≥0

‖M−WH‖2
F = ∑

i, j
(M−WH)2

i j (6.1)

Several variations of NMF exist [19, 16], most imposing additional constraints, such
as sparsity on the factorization matrix H [16], however in this report we focus on

36
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the basic variation, seeking to determine whether the use of Ricci curvature yields an
improvement, rather than create new cutting-edge approaches.

6.2 Relation to Clustering

Although such factorisation can be seen as an embedding of the original matrix in the
k-dimensional space, there is an established explicit relation of NMF to clustering the
columns of the original matrix [16, 43].

NMF, given a matrix M, computes M ≈WH. To determine the clustering assignment
we can interpret the columns of W ∈ Rn×k as the cluster centers, with the assignment
for node i determined by taking the i’th column of H, finding the largest element and
assigning the node to the cluster which has the center (column in W ) corresponding to
the position of this value in its column. An intuitive way this can be seen is presented
by thinking about the approximation of M via WH - each column of M will be a linear
combination of the columns of W , scaled by the coefficients in the relevant column of
H. The highest relevant value in H will then indicate the most signifficant contribution
to the reconstruction.

The symmetric version of this method has been shown to be equivalent to a relaxation
of k-means clustering (kernel k-means) [10]. Other parallels between NMF and k-
means have also been shown, for example Kim and Park show in their report [16] that
imposing certain restrictions on NFM can lead it to behave like k-means clustering.
However, overall experimental results imply NMF is a more flexible method, less prone
to getting stuck in local minima.

6.3 Experimental Evaluation

The goal of this exploration was to establish whether Ricci curvature alone would
provide enough information to obtain considerable results in clustering via NMF. In
order to test this we have chosen to compare the results obtained when factorizing a
matrix of Ricci curvature values to the one observed when only the adjacency matrix is
supplied - the most basic matrix representation of a graph. A significant and consistent
improvement in the clustering modularity can be seen, differing from the baseline by
up to 35%. A further comparison of these values to the ones obtained in chapter 5
shows that the restriction to the use of Ricci curvature information exclusively allows
us to achieve results comparable to ones obtained via well established methods, such
as DeepWalk.

6.3.1 Setup and Matrix Construction

To construct a non-negative matrix M using Ricci curvature values we employ a strat-
egy equivalent to the computation of curvature based weights, described earlier in sec-
tion 5.2.3. Given a value α > 0 and an undirected graph G = (V,E), we compute the
following (again referring to the raw Ricci curvature value for an edge (u,v) as r(u,v)):
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tα(x) =
eαx

eαx +1
(6.2)

Mu,v =

{
0 if (u,v) /∈ E
tα(r(u,v)) otherwise (6.3)

The transformation hyperparameter α regulates how much we exaggerate the differ-
ences between curvature values - they is effectively scaled by this factor when the
values are passed to the sigmoidal t function. A higher value of α will effectively lead
to more extreme values (closer to 0 or 1 than 0.5) being used in the matrix.

6.3.2 Results

The results obtained when testing clustering via non-negative matrix factorization are
presented in table 6.1. We have chosen to use the same datasets that the random walk
based methods were evaluated on, with the description found in section 5.3 - a decision
allowing us to compare the results obtained directly. Again, experiments on each graph
were repeated 10 times, with mean modularity values presented in the table, alongside
their standard deviations.

Table 6.1: Comparison of clustering modularity after when using non-negative matrix
factorization. Table contains mean values over 10 experiments on each graph, the
numbers in parentheses correspond to standard deviation.

Matrix
Graph

Athletes Company Govt. Politician Public
Figure

TV
Show

Adjacency 0.537
(±0.0006)

0.416
(±0.0015)

0.531
(±0.0032)

0.693
(±0.0026)

0.278
(±0.0142)

0.666
(±0.0048)

Ricci curvature 0.540
(±0.0006)

0.533
(±0.0003)

0.613
(±0.0007)

0.727
(±0.0001)

0.372
(±0.0017)

0.754
(±0.0000)

The first thing to note here is the consistency in improvement - considering more exten-
sive local information than just the presence of an edge, provided by the Ricci curvature
values, improves the clustering performance on every graph tested. However, the mag-
nitude of this effect varies significantly. Another notable thing is that using the Ricci
curvature matrix results in much lower standard deviation of the clustering modularity
values. This implies that the factorization obtained is quite consistent throughout dif-
ferent trials, or at least the clustering assignment quality does not vary greatly. This
could be a desirable property for certain applications, increasing the certainty we have
about the algorithm’s behaviour.

Although these results are still slightly inferior to those obtained with DeepWalk-Ricci
and GEMSEC-Ricci, they are similar to and sometimes exceed the baseline DeepWalk
and GEMSEC version performance. There are two main differentiating factors here:
NMF is not treated as an intermediate embedding, but rather a direct clustering meth-
ods, and the method using Ricci curvature directly, as the only information available
(alongside the edge structure, implicitly represented by the placement of zero elements
in the matrix).
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6.3.3 Impact of Different α Values

The main curvature related hyperparameter in this method is α. The initial experiments
were performed with α = 4, however changing this value could have an impact on the
clustering performance, as it directly affects how the original matrix is constructed. To
examine this, we perform further experiments, evaluating the results when different
values of α > 0 are used. The values are maintained positive, as we want to maintain
the effect of large curvature values resulting in matrix elements close to 1 and negative
values being mapped to numbers close to zero. The results of these experiments are
presented in table 6.2.

Table 6.2: Comparison of clustering modularity after when using non-negative matrix
factorization with varied α values in tα. Table contains mean values over 10 experiments
on each graph, the numbers in parentheses correspond to standard deviation.

Value
Graph

Athletes Company Govt. Politician Public
Figure

TV
Show

α = 1 0.506
(±0.0029)

0.493
(±0.0002)

0.603
(±0.0007)

0.770
(±0.0000)

0.310
(±0.0017)

0.752
(±0.0000)

α = 4 0.540
(±0.0006)

0.533
(±0.0003)

0.613
(±0.0007)

0.727
(±0.0001)

0.372
(±0.0017)

0.754
(±0.0000)

α = 16 0.545
(±0.0013)

0.562
(±0.0024)

0.656
(±0.0015)

0.720
(±0.0133)

0.378
(±0.0032)

0.772
(±0.0032)

α = 64 0.567
(±0.0183)

0.591
(±0.0063)

0.658
(±0.0015)

0.716
(±0.0099)

0.409
(±0.0041)

0.786
(±0.0081)

α = 256 0.546
(±0.0265)

0.576
(±0.0237)

0.667
(±0.0021)

0.673
(±0.0064)

0.419
(±0.0161)

0.793
(±0.0070)

Here we observe that higher values of α often lead to a slight increase in performance,
with the majority of the graphs having the best recorded performance when tested
with α ≥ 16. A potentially detrimental effect of using large values is an increase in
the variability of performance. This can be seen especially clearly in the standard
deviation values for the clustering modularity of the Athletes graph. This is likely due
to an exaggeration of the differences in close but not equal curvature values, as noted
in section 6.3.1, causing overall distortion. In addition to this, we can also note that
extremely high values of α can lead to a drop in performance, which can be explaine
by the same argument.



Chapter 7

Conclusions and Future Work

In this chapter we discuss potential further work and options to build on the progress
made so far. One of the main areas we propose to explore is the impact of Ricci
curvature based regularization on classification performance - there has been some,
although limited, progress made already and a promising direction for future inquiry
has been identified.

We also summarise the overall contributions and observations presented in this report,
providing some concluding remarks.

7.1 Proposed Extensions

Given the limited time and the open-ended nature of the project, there are quite a
few natural extensions which could be added to the work presented here. Part of the
progress made so far is also briefly summarised here, so as to motivate one of the exten-
sions which was partially implemented and explored alongside the other experiments
described in earlier chapters.

7.1.1 Impact of Ricci Curvature Based Regularization on Classifi-
cation Tasks

Prediction tasks are one of the key applications of network embeddings. We have
carried out partial examination of the impact Ricci curvature based regularization has
on classification, with limited improvements observed. The testing so far has been
limited to a single dataset, due to unforeseen impact of timing constraints. However,
we have identified classification in datasets with few known labels as a promising area
where the inclusion of curvature values do make a difference.

7.1.1.1 Initial Progress and Results

For embedding evaluation based on classification we use the CORA dataset1 [41].
The nodes here are different machine learning research papers, with the connections

1Obtained from the network repository [34]
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representing citations. Each node is assigned one of 7 categories, specifying which
sub-field of machine learning it focuses on. The dataset represents a connected graph
which has 2708 nodes and 5429 edges, with an average degree of 4.

To carry out classification itself we use logistic regression. In particular, the labels are
encoded as one-hot vectors, a softmax activation and a cross-entropy loss functions are
used. The training is performed with a gradient descent optimizer. To compute testing
accuracy we compare the argmax of the softmax output for a query node embedding
coordinates with the one-hot ground truth encoding, considering the prediction to be
correct if and only if the label assigned the highest probability by the softmax function
matches the location of the non-zero entry in the target encoding,

Logistic regression was chosen as a simple and well-studied classification model. The
goal of this investigation is not to obtain the highest possible prediction accuracy, but
rather to investigate the effect of using the Ricci curvature based normalization term.
We wish to focus on the relative performance on, for example, embeddings obtained
with DeepWalk and DeepWalk-Ricci or GEMSEC and GEMSEC-Ricci.

The initial experiments used the majority of the dataset available (80%) for training,
with the rest comprising the testing set. No validation set was used as we did not per-
form extensive hyperparameter tuning. The results obtained were mostly uniform for
all the embedding methods used in chapter 5. In particular, the mean classification ac-
curacy values over 10 independent trials, obtained when using DeepWalk, regularized
DeepWalk and DeepWalk-Ricci respectively, are 67.84%, 67.56% and 67.38%. Simi-
lar results were observed for the GEMSEC variations. These results do not allow us to
draw any conclusions on the impact of incorporating Ricci curvature values outright,
as they provide very little distinction between any of the methods.

Figure 7.1: Classification accuracy on the CORA dataset, with the training set com-
prised of 5% of the dataset and testing performed on 20% of the available data. Each
dot represents the outcome of a single experiment using the corresponding embedding
method.

However, a slight distinction between the methods can be seen when only a small part
of the network is used for training. An example is illustrated in figure 7.1. Here only
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5% of the data was used for training (selected randomly at the start of each experiment),
and the testing was performed on a subset of the same size as previously (20% of the
dataset’s original nodes). As expected, the reduction in the size of the training sets
causes some deterioration in overall accuracy, however in addition to this we can also
observe that the Ricci curvature regularized versions of the algorithms perform better
than their baseline counterparts. In particular, the mean results for DeepWalk and
DeepWalk-Ricci here are 58.56% and 62.87% respectively.

7.1.1.2 Node Classification in Networks with Few Known Labels

The results obtained so far suggest that methods which incorporate Ricci curvature
could aid in classification tasks where the labels of only a small subset of nodes are
known. Thus we propose this area as one of the main parts of further work.

Ricci curvature provides insight into not only the overall shape of the network, but also
on the neighbourhood a specific edge lies in. Thus, given a network with a small set of
labelled nodes, and the task of predicting the unknown labels, we wish to find the best
way to utilize this information. An idea which could be expanded upon is changing
the edge weights in the graph which will be used for the curvature computation so as
to highlight the connections to the known labelled nodes. Intuitively, if, for example,
the graph has an overall cluster structure correlated to the label assignments, we would
like to put extra emphasis on the edges near a labelled node which are also in the same
cluster. In connection to Ricci curvature, we would like to make the curvatures near
the known label assignments more extreme - if there is a positively curved edge we
would like the value to grow, and become even lower for negatively curved edges.

The challenge, which should be tackled in future work, is creating an efficient weight
adjustment strategy which would allow us to achieve this, as well as examining how it
impacts the classification performance in methods incorporating Ricci curvature.

7.1.2 Other Potential Extensions

In chapter 5 we show that adding the Ricci curvature regularization term to the loss
function of the original algorithms improves the clustering performance of both Deep-
Walk and GEMSEC. This strongly suggests similar results could be seen with other
random walk based embedding methods (such as Node2Vec [13] or Walklets [32]),
as well as ones based on deep learning. A further investigation into the magnitude of
the improvement achievable with methods not explored in this report, as well as the
trade-off in computational cost faced after including this term could be investigated.

Another potential direction of future work could be investigating similar embeddings
into non-Euclidean spaces, as suggested in some earlier research [27]. This could
eliminate the need for Ricci flow-like transformations by matching the topology of the
target vector space to that of the network in question. It would, however, raise new
questions - for example, how to determine the overall topology and shape of the graph,
since the discrete Ricci curvature is a highly localised measure.

Lastly, while we have chosen to focus on the definition of discrete Ricci curvature as
presented by Ollivier [29], in line with most pre-existing work, this is not the only
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known way to compute curvature on graphs. The concepts and methods presented in
this report could be redefined to use, for example, the notion of discrete Ricci curva-
ture proposed by Forman [11]. Examining this has the potential to provide insight on
whether the results observed so far are tied to the use of Ollivier-Ricci curvature specif-
ically, or inherent to using a reasonable interpretation of the local shape of the graph.
The use of Forman-Ricci curvature could also aid in countering some of the computa-
tional overhead caused by the use of curvature in embeddings and clustering, as it is
more efficient to compute on large real world networks than Ollivier-Ricci curvature,
as noted in a paper by Samal et al. comparing the two methods [37].

7.2 Critical Discussion

In this report we have shown that the use of Ricci flow and Ricci curvature in network
embeddings (as well as more direct methods, like NMF) can improve the performance
in clustering tasks.

Although the results are encouraging, it is worth noting that we only present empirical
evidence. The methods we apply are based on mathematical insights into what a neigh-
bourhood around a positively or negatively curved edge is likely to look like and how
it fits in to the broader cluster structure of the graph. However, these do not constitute
a proof, and the project explored the applicability of these insights. Thus we are un-
able to provide specific guarantees or theoretical bounds on the effects observed when
Ricci curvature is included in embedding cost. A similar point can be made about the
initial method we used, applying Ricci flow before performing an embedding. This is
further complicated by the variety of embedding techniques we choose to apply, as any
theoretical proof would have to depend on the specifics of the methods.

However, the reliance on empirical evidence does not make our work stand out among
the pre-existing work on the applications of Ricci curvature in complex networks. A
similar pattern can be observed in various papers [26, 27, 42]. The notable exception
here is the work by Ni et al. [28] exploring community detection via Ricci flow, where
the authors provide mathematical proof the community detection method is successful
on a specific type of graphs. This result encourages further exploration of the the-
oretical implications of Ricci curvature and suggests it could be possible to provide
guarantees for some of our methods. In particular, given more time we could look into
a possibility of a similar proof regarding the initial method of applying Ricci flow to
improve the embeddings and clustering after.

In terms of evaluation, we have chosen to focus on two measures of clustering perfor-
mance. In chapter 4 we used AMI to compare the clustering generated with a ground
truth assignment. In chapters 5 and 6, to evaluate clustering without knowing a ground
truth assignment, we employed modularity. The measures were chosen due to being
commonly used and providing inter-comparability with other work. However, it should
be noted that other measures for clustering exist (such as Adjusted Rand Index for com-
parison with known values, clustering purity and entropy). Evaluating the clustering
performance using a larger variety of methods could lead to further insights on the na-
ture of the improvements observed. It would also make the argument for claiming the
improvements are observed consistently more robust. In addition to this, as pointed



Chapter 7. Conclusions and Future Work 44

out in section 7.1, there are other ways to evaluate embeddings, such as classification
or link prediction performance. Focusing on these methods for evaluation could lead
to slightly different results and conclusions, although some improvement could be ex-
pected due to the relation of these tasks to clustering. If additional exploration of these
applications (as per the proposed work on classification in section 7.1) yielded positive
results, we could claim embedding quality is improved in a well-rounded way, not only
in the perspective of clustering.

The Ricci curvature based regularization term, proposed in chapter 5 can be added
to any embedding algorithm which relies on the minimization of some specified loss
function. We might expect this to be a relatively universal term, as the effects of its
addition, when scaled appropriately, should be similar. However this cannot be con-
cluded solely from the results we have obtained, as we only explored a few select
embedding methods. This could be further tested with a wider variety of embedding
methods, beyond DeepWalk and GEMSEC, which have been our focus in this report.
In addition to this, the computational cost of computing Ricci curvature values, even
without performing the iterations of Ricci flow, is still often orders of magnitude higher
than that of standard embeddings, rendering the method to be of limited use for dense
or large graphs. Use of ATD (the average transport distance) instead of OTD (the opti-
mal transport distance) in calculations could mitigate this effect. However, as pointed
out in section 5.4.4, the benefit observed when the former is used is lower than with
OTD, and thus further exploration is required in order to ensure the proposed methods
are efficient and beneficial in practice.

Lastly, although we have explored several ways to compute and incorporate Ricci cur-
vature, we may not have found the best transformation to use for either the regulariza-
tion term weights or NMF matrix entries. The sigmoidal function used in chapters 5
and 6 will encourage the endpoints of strongly positively curved edges to be embedded
near each other. A closer emulation of the behaviour of Ricci flow might be desirable
here, requiring endpoints of negatively curved edges to be pushed further away. We
have shown that the direct use of curvature values (with the identity function in place
of the transformation) does not improve the performance, however a different function
yielding better results might still be found.

7.3 Conclusion

The overall results and findings presented in this report have shown that the discrete
Ollivier-Ricci curvature can be a useful tool when considering graph embedding and
clustering. It provides insights into the shape and cluster structure of the graph, al-
though the improvements often come with a high computational cost.

The explorations of the impact Ricci flow has on embeddings and clustering performed
afterwards provide new insight as to how the procedure affects the graph structure. We
have shown that the changes observed under simple matrix factorization based embed-
ding methods are consistent with the established understanding that Ricci flow con-
tracts positively curved edges which tend to lie inside clusters, and extends negatively
curved bridge edges. It was also shown that this has a consistent positive effect on
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clustering results, when comparing to ground truth assignments on various synthetic
graphs.

Although Ricci flow was shown to be effective in improving post-embedding cluster-
ing performance, the computational cost and time required to perform this procedure
is often very high. This is due to the need to recompute Ricci curvature values in every
iteration, solving many LP problems each time. With this in mind, we have shown
how to achieve similar improvements in embedding algorithms based on random walk
sampling and general loss function minimization, while avoiding the direct use of Ricci
flow. We proposed a novel way to regularize the loss functions of these algorithms, in-
corporating Ricci curvature values directly. The addition of this regularization term to
the DeepWalk and GEMSEC algorithms has proven to consistently increase the quality
of the clustering on the embedded graphs, as measured by modularity. This allows us to
improve well established algorithms while requiring less computational overhead than
applying Ricci flow would. Although we now need to modify the internal cost function
of the embedding at hand, rather than keeping the curvature use and embedding sepa-
rate. The addition of this regularization term encourages behaviour somewhat similar
to Ricci flow - endpoints of positively curved edges are encouraged to be embedded
close to each other, with endpoints of negatively curved ones allowed to remain far
without penalty.

Lastly, we have noted that most of the methods where improvements were observed
can be seen as variations of matrix factorization. This encouraged further exploration
of methods based on this framework and their applications. While investigating these
we have shown that when Ricci curvature is used in clustering based on non-negative
matrix factorization, the performance consistently improves by a significant margin.

Even though this work is not an exhaustive summary of the relation Ricci curvature has
to embeddings and clustering, with a lot of potential extensions and questions open for
future work, we have shown that incorporating the discrete Ricci curvature or Ricci
flow when performing these tasks can lead to noticeable and consistent improvements.
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