
Mechanizing Hyperdual Numbers
in Isabelle/HOL

Filip Smola

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2020

iii

Abstract
Second-order hyperdual numbers, a number system based on the dual numbers [8],
have been proposed as method of computing accurate second derivatives [10]. How-
ever, the properties of hyperdual numbers on which this is based have not been formally
proven.

In this project we investigate the properties of hyperdual numbers in detail, formal-
ize them and mechanize the definitions and proofs in the interactive theorem prover
Isabelle. We do this to provide theoretical support for investigation of their uses, in-
cluding among others differentiation.

iv

Acknowledgements

I would like to thank Dr. Jacques Fleuriot who is supervising this project. His support
throughout all parts of this project was invaluable. The recommendations and feedback
he provided kept me on course and are much appreciated.

I would also like to thank all members of the AI Modelling Lab1 for their support
through the challenges of this project and all their feedback.

1https://aiml.inf.ed.ac.uk/

https://aiml.inf.ed.ac.uk/

Table of Contents

1 Introduction 1
1.1 Motivation and Goals . 1
1.2 Report Organisation . 2

2 Context 3
2.1 Mechanization in Isabelle/HOL . 3
2.2 Similar Number Systems . 6
2.3 Summary . 8

3 Properties of Hyperdual Numbers 9
3.1 Hyperdual Number . 9

3.1.1 Mechanization . 10
3.2 Addition . 10

3.2.1 Mechanization . 11
3.3 Multiplication . 11

3.3.1 Zero Divisors . 11
3.3.2 Multiplication Cancellation 13
3.3.3 Mechanization . 14

3.4 Scalar Multiplication and Real Algebra 14
3.4.1 Mechanization . 15

3.5 Multiplicative Inverse and Division 15
3.5.1 Mechanization . 16

3.6 Real Normed Vector Space . 17
3.6.1 Alternative Considered Norm 17
3.6.2 Real Normed Algebra . 18
3.6.3 Mechanization . 18

3.7 Hypercomplex Numbers . 19
3.8 Bounded Linearity of Projections . 19
3.9 Filters . 20
3.10 Limits . 22

3.10.1 Mechanization . 22
3.11 Derivatives . 23

3.11.1 Mechanization . 24
3.12 Summary . 25

4 Hyperdual Extension of Real Functions 27

v

vi TABLE OF CONTENTS

4.1 Automatic Differentiation . 27
4.2 Basic Desired Properties . 28
4.3 Derivation . 29
4.4 Mechanization . 30

4.4.1 Field Version of the Extension Locale 31
4.4.2 General Version of the Extension Locale 33
4.4.3 Case Studies . 34

4.5 Summary . 45

5 Conclusion 47
5.1 Future Work . 47

5.1.1 Improving the Hyperdual Extension 48
5.1.2 General Second Derivative 49
5.1.3 Hyperdual Taylor’s Expansion 49
5.1.4 Verification of Algorithms 49
5.1.5 Further Properties . 50
5.1.6 Code Extraction . 50
5.1.7 Higher-Order Hyperduals 50

5.2 Final Remarks . 50

Bibliography 51

6 Appendix - Proofs 55
6.1 ab-group-add Instantiation . 55
6.2 comm-ring-1 Instantiation . 56
6.3 Non-Trivial Zero Divisors Proof . 56
6.4 Multiplication Cancellation Proof 58
6.5 real-algebra-1 Instantiation . 61
6.6 inverse Instantiation . 61
6.7 division-hyperdual Interpretation . 62
6.8 Vector Space Preliminaries . 63
6.9 real-normed-vector Instantiation . 64
6.10 real-normed-algebra Counter-Example 67
6.11 Bounded Linearity of Projections . 67
6.12 Limits . 69
6.13 banach Instantiation . 70
6.14 Derivatives . 70
6.15 Second Field Derivative . 74
6.16 Hyperdual Extension - Field Version 74
6.17 Hyperdual Extension - Examples . 76

6.17.1 Constant Function . 76
6.17.2 Identity Function . 77
6.17.3 Addition . 77
6.17.4 Addition of Constant . 78
6.17.5 Scalar Multiplication . 78
6.17.6 Linear Function . 79
6.17.7 Exponential Function . 79

TABLE OF CONTENTS vii

6.17.8 Sine . 80
6.17.9 Cosine . 80
6.17.10 Square Root . 81
6.17.11 Multiplicative Inverse . 82
6.17.12 Multiplication . 82
6.17.13 Natural Power . 84
6.17.14 Finite Polynomial . 85

Chapter 1

Introduction

Hyperdual numbers consist of a real part and a number of infinitesimal parts. These
infinitesimal components have the useful property of having zero squares while being
non-zero themselves. This leads to an interesting behaviour with uses such as auto-
matic differentiation, representation of rigid body dynamics or skinning of models.

In this project, we investigate properties of hyperdual numbers, formalize them and
mechanize the definitions and proofs in the interactive theorem prover Isabelle. With
this we build formal theory allowing investigation of the uses of hyperdual numbers.
We only look at their mathematical properties and ignore details of representation and
implementation. The main application we focus on in this work is the use of hyperdual
numbers for differentiation.

1.1 Motivation and Goals

The original inspiration for this project is the work of Fike and Alonso [10], where
the authors describe basic properties of hyperdual numbers and their use for second
derivative computation. This work only briefly establishes the mathematical properties
of hyperdual numbers and quickly moves on to the application and benchmarks. To
provide a more solid formal basis for the properties and their use, we decided to mech-
anize the properties of hyperdual numbers used in that work as well as any further
properties that we deem useful for other applications.

Our aim is to mechanize a well-rounded theory of hyperdual numbers in which their
practical applications can eventually be verified. This includes proving hyperdual num-
bers to be an instance of multiple algebraic structures, which allows us to inherit all the
already proven properties of those structures. When the behaviour of hyperdual num-
bers does not fall into some known algebraic structure (e.g. their division not forming
a division algebra – see Section 3.5), we prove as many properties as possible of the
closest known structure and find counter-examples to the properties they violate. In
this way we hope to clearly delineate how hyperdual numbers “lack” the structure in
question.

1

2 Chapter 1. Introduction

In our mechanization we also hope to uncover any hidden assumptions in the work
of Fike and Alonso [10]. This is especially true with the hyperdual extension (see
Chapter 4), which forms the basis of the authors’ approach to automatic differentiation.

The mechanization concerns only second-order hyperdual numbers, that is ones with
two distinct infinitesimals (ε1, ε2) and their product (ε1ε2). Second-order hyperduals
were selected because the expressions involved are simple enough to be mechanized
within the scope of this project, while still yielding the properties we are interested in
(see for example the hyperdual extension in Chapter 4). Despite this limitation, most
of the mechanized definitions and properties should be generalizable to higher-order
hyperdual numbers.

1.2 Report Organisation

In Chapter 2 we provide context on Isabelle, the interactive theorem prover used for
this project, and also mention the mechanisation of other number systems that bear
some relation to the hyperduals. In Chapter 3, we define second-order hyperdual num-
bers and a number of operations on them. We also show them to be an instance of
multiple algebraic structures. In Chapter 4, we describe the hyperdual extension of
real functions, motivations for its definition and show its properties. In Chapter 5,
we summarize conclusions about hyperdual numbers and outline future work. In the
Appendix (Chapter 6), we provide the full definitions and proofs mentioned in the
document.

Chapter 2

Context

2.1 Mechanization in Isabelle/HOL

To ensure correctness of our reasoning, we decided to mechanize our definitions and
claims in a theorem prover. This validates all our proofs and makes sure there are no
hidden assumptions, lending further credence to our conclusions.

There are two main types of theorem provers, automatic and interactive. Automatic
theorem provers usually take a first-order logic statement and attempt to prove it fully
automatically, without any input from the user [31] [32]. Interactive theorem provers
function more as a dialogue between the user and the theorem prover [2]. The user
instructs the theorem prover which rules to apply and the theorem prover computes the
result and verifies the correctness of that step. Despite the recent rapid improvement
of automated theorem provers, they are not suitable to projects such as this one. The
reasoning required for some of the proofs is not necessarily straightforward for a com-
puter and the rule search space is vast, which means that automatic methods without
human guidance often struggle to find a proof. For example, using induction is still
intractable for fully automated theorem provers [7]. Furthermore, most automatic the-
orem provers are limited to first-order logic, while we require a more expressive formal
system.

Another reason why interactive theorem provers are well suited to this project is the
exploration aspect. We are not mechanizing already developed proofs of known prop-
erties, but instead exploring what properties hyperdual numbers have and then proving
those. This is where the dialogue aspect of an interactive theorem prover shines. When
attempting to prove a claim, we can use trial and error to explore different approaches
to the proof with the theorem prover making sure we never make an incorrect step,
never miss a case. If the claim is false, this process can help highlight which of its
aspects is the problem. This for example led us to realizing that hyperduals have non-
trivial zero divisors (see Section 3.3.1).

We chose to use the Isabelle interactive theorem prover for this project. Isabelle is a
generic interactive theorem prover supporting many object logics: various first-order
logics, ZF set theory and higher-order logic to name a few [27]. We use the higher-

3

4 Chapter 2. Context

order logic (HOL) and base our work on the Analysis formal theory (HOL-Analysis).
Thanks to years of work by Isabelle’s community, there is a sizeable library of already
proven theorems to work from. On top of that, Isabelle also offers a more readable
proof language caller Isar [40]. This language is close to the style of mathematical pen
and paper proofs and makes proof development much more convenient and intuitive.

Another invaluable feature of Isabelle is the proof search tool sledgehammer [6]. This
tool takes the current goal and some selected theorems, found via machine learning,
and invokes a number of first-order automatic provers on those. If the automated
provers are able to prove the goal, Isabelle uses the information they produce to re-
construct its proof. Even when such reconstruction is not fully successful, the result
can sometimes be enough to show a possible path forward to the user. This saves a lot
of time that would otherwise be spent meticulously proving “trivial” things.

In Isabelle, we begin claims to be proven with the keyword lemma, often followed with
a name for the claim. This may be followed by a number of variables that the proof
fixes (along with their type), and a number of statements that it assumes to be true.
Then follows the keyword shows and the conclusion being proven. If no variables are
fixed and no statements assumed, the conclusion can directly follow the lemma name.
For example:

lemma divisors-re-zero:
fixes a b :: hyperdual
assumes Re (a ∗ b) = 0
shows Re a = 0 ∨ Re b = 0

is equivalent to the higher-order logic statement:∧
a b :: hyperdual . Re (a ∗ b) = 0 =⇒ Re a = 0 ∨ Re b = 0

There are two kinds of proofs in Isar, application of automatic methods and proof
blocks. An automatic method can be applied to a statement by following it with:

using [facts/rules] by [method]

This takes all the facts stated after using and invokes the stated method with those facts
on the statement. Note that the method can also use other facts that are not stated at
the same point, if they are globally added to its consideration.

Proof blocks are a way for the user to split the proof of the statement into smaller
steps. They start with proof and conclude with qed. Within this block are usually
multiple statements, preceded with have, with their own proof (automatic or block).
They can be chained with then, which adds the prior statement to be considered by
the automatic method applied to the following statement. We also often use moreover
and ultimately, where moreover keywords collect multiple statements and then the
ultimately keyword adds them all to the be considered by the automatic method ap-
plied to the following statement. This represents the confluence of multiple lines of
reasoning into one step. Facts containing meta-variables can be instantiated with spe-
cific terms using rule[of x y z]. This is often helpful in constraining the search space
for the method applying the rules.

2.1. Mechanization in Isabelle/HOL 5

Sometimes we have a number of lemmas that share some fixed values and assumptions.
We can collect these in what is called a locale. In simple terms, if an object satisfies
the assumptions of a locale (i.e. it is an instance of the locale) then all of the lemmas
within that locale apply to it. This is very useful for keeping statements concise and
organising lemmas. For example, we do this when describing division of hyperdual
numbers to collect the assumptions of our division (see Section 3.5 for details):

locale division-hyperdual =
assumes left-inverse: Re a 6= 0 =⇒ inverse a ∗ a = 1
assumes right-inverse: Re a 6= 0 =⇒ a ∗ inverse a = 1
assumes divide-inverse: a / b = a ∗ inverse b
assumes inverse-zero: Re a = 0 =⇒ Re (inverse a) = 0

Isabelle also supports Haskell-style type classes [12] to achieve a form of overload-
ing. These type classes are essentially locales with a single type variable. They are
used to establish that a type together with some set of parameters (usually functions)
satisfy some specification. However, the type class’s parameters are publicly available
constants, which means that they can then be used polymorphically with any instance
of the respective type class. In this project we do not introduce any new type classes,
but we make extensive use of existing ones when proving hyperdual numbers to be an
instance of certain algebraic structures. For example, consider the following definition
of the type class for a commutative (abelian) group under addition:

class ab-group-add = minus + uminus + comm-monoid-add +
assumes ab-left-minus: − a + a = 0
assumes ab-diff-conv-add-uminus: a − b = a + (− b)

begin

subclass group-add
by standard (simp-all add: ab-left-minus ab-diff-conv-add-uminus)

subclass cancel-comm-monoid-add
proof . . .

lemma uminus-add-conv-diff [simp]: − a + b = b − a
by (simp add: add.commute)

lemma minus-add-distrib [simp]: − (a + b) = − a + − b
by (simp add: algebra-simps)

lemma diff-add-eq [algebra-simps, field-simps]: (a − b) + c = (a + c) − b
by (simp add: algebra-simps)
end

This class assumes that the type in question is an instance of all minus, uminus and
comm-monoid-add type classes, establishing it as a commutative monoid under ad-
dition with a notion of (unary) minus. It then extends that with the assumption that
minus is an additive inverse and that subtracting is adding the minus. Within its body,
it is proven to be a subclass of two further type classes and a couple new theorems are
introduced and proven.

6 Chapter 2. Context

To instantiate a type class with a type, we need to supply definitions of the parame-
ters and prove any assumptions. Consider for example the instantiation of hyperdual
numbers as the above class (see Appendix 6.1 for details):

instantiation hyperdual :: ab-group-add
begin
primcorec zero-hyperdual

where . . .
primcorec plus-hyperdual

where . . .
primcorec uminus-hyperdual

where . . .
primcorec minus-hyperdual

where . . .
instance
by standard simp-all
end

Isabelle also allows us to use corecursion [5]. We define most of the functions dis-
cussed as primitive corecursive. These definitions start with the keyword primcorec,
followed by the name of the function, type and defining expressions. We mostly use
destructor view notation, that is expressing the function result in terms of the output
of destructors applied to it. In our case the destructors are the component projections,
leading to essentially a componentwise definition. This suits our definitions well and
keeps them readable. For this reason, we define hyperdual numbers as a coinductive
datatype (see Section 3.1).

2.2 Similar Number Systems

As the name suggests, hyperdual numbers came about from dual numbers, which (in
contrast) only have one infinitesimal part. Along with complex numbers [37] and
higher-order versions of those, such as quarternions [38], all these number systems
are tightly intertwined. These are all instances of hypercomplex number systems as
described by Kantor and Solodovnikov [19] (see Section 3.7 for the hyperdual case).
Here we give a quick summary of the most important of these and their uses.

Perhaps most familiar of these are complex numbers. These can be expressed as a+bi
where a,b are real coefficients and i is the solution to x2 = −1 – the imaginary unit.
This yields the following multiplication behaviour:

(a+bi) · (c+di) = ac+adi+bci+bdi2 = (ac−bd)+(ad +bc)i

Complex number have been heavily studied and thus have a great number of known
uses. Highlights include Fourier analysis [29] and complex-step derivative approxima-
tion [24]. They also play a fundamental role in quantum mechanics [39].

Complex numbers were mechanized in Isabelle in early 2000s by Fleuriot, with some
additions by Paulson1. This mechanization is now included as part of standard Isabelle

1https://isabelle.in.tum.de/dist/library/HOL/HOL/Complex.html

https://isabelle.in.tum.de/dist/library/HOL/HOL/Complex.html

2.2. Similar Number Systems 7

distributions. Due to the similarity of the number systems, we use this mechanization
to inspire our approach to hyperdual numbers (see Chapter 3). We note in passing
that there are also mechanizations of complex numbers in the HOL Light [15] theorem
prover and in Coq2.

By taking pairs of complex numbers and applying a similar multiplication to them
one can construct quarternions (this is known as the Cayley-Dickson construction [1]).
Quaternions can be expressed as a+ bi+ c j+ dk where a,b,c,d are real coefficients
and i, j,k are the non-real units. In this case, the multiplication is given by the distribu-
tive law and the following basis multiplication table:

× 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

The most notable use of quaternions is representing rotations in 3D space [36] [22].
They are more compact compared to a matrix representation, but most importantly
they avoid gimbal lock, which can occur in some other rotation systems and leads to
loss of one degree of freedom.

Quaternions were mechanized in Isabelle in 2018 by Paulson [28], in a similar way to
how complex numbers are mechanized there. This mechanization is not included as
part of standard Isabelle distributions, but is available on the Archive of Formal Proofs.
There is also a mechanization of quaternions in the HOL Light theorem prover [11].

Dual numbers [8] are defined similarly to complex numbers. They can be expressed
as a+bε where a,b are real coefficients but the non-real unit ε is in this case nilpotent
(i.e. ε2 = 0). This yields the following multiplication behaviour:

(a+bε) · (c+dε) = ac+adε+bcε+bdε
2 = ac+(ad +bc)ε

Dual numbers themselves can be used to perform first-order differentiation [30]. Dual-
complex numbers (either dual numbers with complex parts or complex numbers with
dual parts, both are equivalent) are used to represent combinations of rotation and dis-
placement in 2D space [25]. Dual quaternions (dual number whose parts are quater-
nions) are used to represent rigid transformations in 3D space, for example in computer
graphics [20] and robotics [26].

Due to dual numbers’ use in automatic differentiation, there exists a number of imple-
mentations in various languages. For example, there are C++ and Matlab implemen-
tations by Fike and Alonso, and a Fortran implementation by Edwin van der Weide3.
There is also a Julia implementation as part of the Julia ForwardDiff package [30].

2https://www.cs.umd.edu/∼rrand/vqc/Complex.html
3http://adl.stanford.edu/hyperdual/

https://www.cs.umd.edu/~rrand/vqc/Complex.html
http://adl.stanford.edu/hyperdual/

8 Chapter 2. Context

2.3 Summary

We described our motivations for mechanizing this theory and the choice of the in-
teractive theorem prover Isabelle. We summarized the key features of Isabelle and
described the relevant syntax that we use. We also summarized three other number
systems with similar features: complex numbers, quaternions and dual numbers.

In the next chapter, we will describe in detail the properties of hyperdual numbers. We
will provide both a mathematical characterization and a description of the mechaniza-
tion in Isabelle.

Chapter 3

Properties of Hyperdual Numbers

We now proceed to define hyperdual numbers and their properties. When indicated,
the described definition follows Fike and Alonso [10], but is usually further formalized.
Otherwise it is an original definition.

3.1 Hyperdual Number

We define a hyperdual number as:

a = a1 +a2 · ε1 +a3 · ε2 +a4 · ε1ε2

where all ai ∈ R, and ε1 and ε2 are non-zero but nilpotent infinitesimals (i.e. ε1 6= 0,
ε2 6= 0, ε1ε2 6= 0 but ε2

1 = ε2
2 = (ε1ε2)

2 = 0) [10]. We denote the set of all hyperdual
numbers with H.

We call the first term a1 the real component, the second a2 and third terms a3 the
first-order hyperdual components, and the fourth term a4 the second-order hyperdual
component. We also define the projections Re(a) = a1, E ps1(a) = a2, E ps2(a) = a3
and E ps12(a) = a4.

We define two hyperdual numbers to be equal when all their components are equal.
That is for any a,b ∈ H:

a = b↔ a1 = b1∧a2 = b2∧a3 = b3∧a4 = b4 (3.1)

Any real number can be expressed as a hyperdual number with zero hyperdual compo-
nents. That is, for any x ∈ R, we have:

x = x+0 · ε1 +0 · ε2 +0 · ε1ε2 (3.2)

9

10 Chapter 3. Properties of Hyperdual Numbers

3.1.1 Mechanization

In Isabelle, we define the hyperdual numbers as a coinductive data type with four real-
valued components:

codatatype hyperdual = Hyperdual (Re: real) (Eps1: real) (Eps2: real) (Eps12: real)

This definition gives us among other properties the four projections. Note that we
could have defined hyperdual numbers as an inductive datatype, but using a coinduc-
tive one allows us to define functions corecursively, which greatly improves the read-
ability of the definitions (this approach is also used for defining the complex numbers
in Isabelle).

We then prove statement (3.1) i.e. that two hyperdual numbers are equal if and only if
their respective components are equal as follows:

lemma hyperdual-eq-iff :
x = y←→ ((Re x = Re y) ∧ (Eps1 x = Eps1 y) ∧ (Eps2 x = Eps2 y) ∧ (Eps12 x = Eps12 y))

using hyperdual.expand by auto

3.2 Addition

As is done by Fike and Alonso [10], we define the addition of two hyperdual numbers
a and b as the sum of the expanded expressions, resulting in a componentwise sum.
That is for any a,b ∈ H:

a+b = (a1 +b1)+(a2 +b2)ε1 +(a3 +b3)ε2 +(a4 +b4)ε1ε2

We then define the additive inverse of a as:

−a =−a1−a2ε1−a3ε2−a4ε1ε2

and the hyperdual zero 0 ∈ H such that:

0 = 0+0 · ε1 +0 · ε2 +0 · ε1ε2

Then hyperdual numbers form a commutative group under addition with identity 0. In
particular, this means that:

• Hyperduals are closed under addition

• Addition is associative and commutative

• Zero is identity for addition

• Each hyperdual has an inverse with which it adds to zero

3.3. Multiplication 11

3.2.1 Mechanization

We proved that hyperdual numbers are an instance of Isabelle’s commutative (or abelian)
group under addition type class ab-group-add. For this, we defined addition corecur-
sively as follows:

primcorec plus-hyperdual
where

Re (x + y) = Re x + Re y
| Eps1 (x + y) = Eps1 x + Eps1 y
| Eps2 (x + y) = Eps2 x + Eps2 y
| Eps12 (x + y) = Eps12 x + Eps12 y

with the remaining operations (inverse and subtraction) and unit constant (zero) defined
similarly (see Appendix 6.1). The proof of the instantiation is quickly performed by
automatic methods, because the operation behaves as real addition on each component.

3.3 Multiplication

We define the product of two hyperdual numbers a and b as the product of the expanded
expressions [10], keeping in mind the properties of the infinitesimals ε1 and ε2. That
is for any a,b ∈ H:

a ·b = (a1b1)+(a1b2 +a2b1)ε1 +(a1b3 +a3b1)ε2 +(a1b4 +a2b3 +a3b2 +a4b1)ε1ε2
(3.3)

We then define the hyperdual one 1 ∈ H such that:

1 = 1+0 · ε1 +0 · ε2 +0 · ε1ε2

Then hyperdual numbers form a commutative ring with identity 1. This means that:

• Hyperduals are a commutative group under addition

• Multiplication is associative and commutative

• One is identity for multiplication

• Multiplication distributes over addition

After formalizing multiplication, we investigated its inverse and the related division
operation. During that investigation, we identified the several notable properties for
which multiplication over the hyperduals differs from that over the reals. These differ-
ences are discussed next.

3.3.1 Zero Divisors

Unlike with real numbers, there exist non-zero hyperdual numbers that multiply to zero
(i.e. a,b ∈ H such that a ·b = 0 while a 6= 0 and b 6= 0). Intuitively, this is because the
non-real parts of a hyperdual number express infinitesimal components which have a
tendency to vanish under multiplication.

12 Chapter 3. Properties of Hyperdual Numbers

As we will see in Section 3.4, hyperduals form an associative algebra. Because associa-
tive division algebras have no non-trivial zero divisors, we can deduce that hyperduals
are not a division algebra [19]. This agrees with our conclusions in Section 3.5.

The precise conditions for a pair of hyperdual numbers to multiply to zero are as fol-
lows:

a ·b = 0↔ a = 0∨b = 0∨ (a1 = 0∧b1 = 0∧a2b3 =−a3b2) (3.4)

It is trivial to see that when either of the factors is zero then their product is zero,
because all terms of the multiplication involve zero and are therefore themselves zero.
What is more interesting is the third disjunct. By the definition of multiplication (3.3),
if either of the factors’ real components is zero, the real component of the product is
zero. If both are zero, the first-order hyperdual components of the product are zero.
Moreover, then the second-order hyperdual component of the product is a2b3 + a3b2
which leads to the last part of the condition for it to be zero.

Thus, if the real components of both factors are zero, the conditions on the rest of their
components are somewhat relaxed.

We can derive these conditions by solving a · b = 0 for a,b ∈ H. We split that into
equations for components ai,bi ∈ R using the hyperdual equality (3.1) and multiplica-
tion (3.3) definitions:

0 = a1b1

0 = a1b2 +a2b1

0 = a1b3 +a3b1

0 = a1b4 +a2b3 +a3b2 +a4b1

The first equation means that a1 = 0 or b1 = 0, because there are no non-trivial real
zero divisors.

We use this to split the second equation into three cases. When both a1,b1 are zero,
then that equation is satisfied without any further requirements. When only one of
a1,b1 is zero, then that number’s second component also has to be zero for the equation
to be satisfied. Same reasoning applies to the third equation.

The same case split is used for the last equation. When both a1,b1 are zero, we know
nothing further about a2,a3,b2,b3 and thus we can only simplify the equation by re-
moving the first and last terms. When only one of a1,b1 is zero, then that number’s
second and third component also have to be zero and after simplification this means
that number’s last component is also zero or the other number’s first component is also
zero. By the case assumption we know that the other number’s first component cannot
also be zero, therefore the number with zero first component must be the hyperdual
zero (all components zero).

3.3. Multiplication 13

All of this yields the following equivalence:

a ·b = 0↔(a1 = 0∨b1 = 0)∧ (a1 = 0∧b1 = 0→ a2b3 =−a3b2)∧
(a1 6= 0∧b1 = 0→ b2 = 0∧b3 = 0∧b4 = 0)∧
(a1 = 0∧b1 6= 0→ a2 = 0∧a3 = 0∧a4 = 0)

As a result of how the derivation proceeds, this equivalence has some redundancy. By
the first conjunct, the precondition of one of the remaining conjuncts has to be true.
Therefore:

a ·b = 0↔(a1 = 0∧b1 = 0∧a2b3 =−a3b2)∨
(a1 6= 0∧b1 = 0∧b2 = 0∧b3 = 0∧b4 = 0)∨
(a1 = 0∧b1 6= 0∧a2 = 0∧a3 = 0∧a4 = 0)

Simplifying with the definition of hyperdual zero we get the following:

a ·b = 0↔(a1 = 0∧b1 = 0∧a2b3 =−a3b2)∨
(a1 6= 0∧b = 0)∨ (b1 6= 0∧a = 0)

Next, note that the first disjunct contains the cases a1 = 0∧b= 0 and b1 = 0∧a= 0. We
can use this to “fill out” the second and third disjunct, removing their first conjuncts:

a ·b = 0↔ (a1 = 0∧b1 = 0∧a2b3 =−a3b2)∨b = 0∨a = 0

Finally, this equivalence can be reordered as (3.4).

3.3.2 Multiplication Cancellation

There are rules for multiplication cancellation in real numbers, taking the general form
a = b · a↔ (a = 0∨b = 1). Similar rules can be derived for hyperduals. These turn
out to have an added option compared to the real version in a similar vein to the zero
divisors described above. The derivation of these rules mirrors that of the zero divisor
condition.

The precise conditions for this cancellation are:

a = b ·a↔ a = 0∨b = 1∨ (a1 = 0∧b1 = 1∧a2b3 =−a3b2) (3.5)

It is again trivial to see that when a = 0 or b = 1 then their product is a, by substitution
into the definition of hyperdual multiplication (3.3). What is again more interesting is
the third disjunct. If either a1 = 0 or b1 = 1, the real component of the product is equal
to that of a. If both a1 = 0 and b1 = 1, the first-order hyperdual components of the
product are equal to those of a. Moreover, then the second-order hyperdual component
of the equation is a4 = a4 + a2b3 + a3b2, or after simplifying 0 = a2b3 + a3b2, which
again leads to the third part of that disjunct.

Thus, if the real components of a and b are 0 and 1 respectively, the conditions on the
rest of their components are again somewhat relaxed.

14 Chapter 3. Properties of Hyperdual Numbers

3.3.3 Mechanization

We proved that hyperdual numbers are an instance of the commutative ring under mul-
tiplication type class comm-ring-1. For this, we defined multiplication corecursively
as follows:

primcorec times-hyperdual
where
Re (x ∗ y) = Re x ∗ Re y
| Eps1 (x ∗ y) = (Re x ∗ Eps1 y) + (Eps1 x ∗ Re y)
| Eps2 (x ∗ y) = (Re x ∗ Eps2 y) + (Eps2 x ∗ Re y)
| Eps12 (x ∗ y) = (Re x ∗ Eps12 y) + (Eps1 x ∗ Eps2 y) + (Eps2 x ∗ Eps1 y) + (Eps12 x ∗

Re y)

with the unit constant (one) defined similarly to the addition unit (see Appendix 6.2).
The proof of the instantiation is quickly performed by automatic methods with addition
of the set of algebraic simplifications that is available in Isabelle.

We mechanized both the zero divisor (3.4) equivalence:

lemma divisiors-hyperdual-zero:
fixes a b :: hyperdual
shows a ∗ b = 0←→ (a = 0 ∨ b = 0 ∨ (Re a = 0 ∧ Re b = 0 ∧ Eps1 a ∗ Eps2 b = − Eps2

a ∗ Eps1 b))

and the multiplication cancellation (3.5) equivalence:

lemma hyperdual-mult-cancel-right1:
fixes a b :: hyperdual
shows a = b ∗ a←→ a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b
∗ Eps1 a)

For the zero divisors, the proof that hyperdual numbers satisfying the conditions do
multiply to zero (right-to-left implication) is easily dispatched by automatic methods.
To prove the converse we consider each of the four combinations of truth values for
statements Re(a) = 0 and Re(b) = 0. We then verify in each case, that either one
of the numbers is zero, both their real components are zero with the correct relation
of the first-order hyperdual components, or the case leads to a contradiction. We then
prove one of the multiplication cancellation rules in the same way and use symmetry of
equality and commutativity of multiplication to extend that to the three other possible
reorderings of the statement. See Appendix 6.3 and 6.4 for full proofs.

3.4 Scalar Multiplication and Real Algebra

We define the scalar product of a hyperdual number with a real factor as the compo-
nentwise scalar product. That is for any h ∈ H and f ∈ R:

f ·a = f a1 + f a2ε1 + f a3ε2 + f a4ε1ε2

With hyperdual addition and multiplication, hyperdual numbers form an algebra over
the real numbers with unit 1. This means that:

3.5. Multiplicative Inverse and Division 15

• Hyperduals are a commutative ring under multiplication and addition

• Scalar multiplication by two real numbers is scalar multiplication by their prod-
uct (for a,b ∈ R and h ∈ H have a(bh) = (ab)h)

• Real one is the identity for scalar multiplication

• Scalar multiplication distributes over hyperdual and real addition (for a,b ∈ R
and h,g ∈ H have a(h+g) = ah+ag and (a+b)h = ah+bh)

• Scalar multiplication is compatible with hyperdual multiplication (for a,b ∈ R
and h,g ∈ H have (ah) · (bg) = (ab)(h ·g))

3.4.1 Mechanization

We proved that hyperdual numbers are an instance of Isabelle’s type class of algebras
with unit 1 over real numbers – real-algebra-1. Given the previous two instantiations,
this only requires the definition of scalar multiplication:

primcorec scaleR-hyperdual
where

Re (scaleR f x) = f ∗ Re x
| Eps1 (scaleR f x) = f ∗ Eps1 x
| Eps2 (scaleR f x) = f ∗ Eps2 x
| Eps12 (scaleR f x) = f ∗ Eps12 x

The proof of the instantiation is again performed by automatic methods with the help of
Isabelle’s set of algebraic simplification rules (see Appendix 6.5). Note that in Isabelle
this operation is usually denoted by the infix operator ∗R.

With this instantiation we also get the of-real function, defined in Isabelle as follows:

definition of-real :: real⇒ ′a::real-algebra-1
where of-real r = scaleR r 1

This function defines an embedding from of any real number r into the instantiated
type, which corresponds to the conversion (3.2) we defined when introducing the type.
Now we can prove this as a theorem, which is then added to the simplifier to allow it
to be automatically used from this point on:

lemma [simp]: of-real a = Hyperdual a 0 0 0
by (simp add: of-real-def one-hyperdual.code)

3.5 Multiplicative Inverse and Division

First we define the inverse of a hyperdual number. We want the inverse of any a ∈ H
to be some 1

a ∈ H such that a · 1
a = 1. Solving this equation for 1

a we get:

1
a
=

1
a1
− a2

a2
1

ε1−
a3

a2
1

ε2 +

(
2

a2a3

a3
1
− a4

a2
1

)
ε1ε2

16 Chapter 3. Properties of Hyperdual Numbers

From this, we can see that the inverse of a hyperdual number is only defined when
its real component is non-zero. All other components can have any value, the only
constraint is on the real part. This means that while hyperdual numbers have a notion
of division, they do not form a division algebra, because their division is not defined for
all a 6= 0. This agrees with the Frobenius theorem [19] for real division algebras, which
states that any finite-dimensional associative division algebra over the real numbers is
isomorphic to the real numbers, complex numbers or quaternions.

Then we can define division of two hyperdual numbers a
b when b1 6= 0 as follows:

a
b
=

a1

b1
+

a2b1−a1b2

b2
1

ε1 +
a3b1−a1b3

b2
1

ε2 +

2a1b2b3−a1b1b4−a2b1b3−a3b1b2 +a4b2
1

b3
1

ε1ε2

3.5.1 Mechanization

First, we proved hyperdual numbers are an instance of the type class inverse by sup-
plying the definition of inverse (see Appending 6.6 for the full instantiation):
primcorec inverse-hyperdual

where
Re (inverse a) = 1 / Re a
| Eps1 (inverse a) = − Eps1 a / (Re a)ˆ2
| Eps2 (inverse a) = − Eps2 a / (Re a)ˆ2
| Eps12 (inverse a) = 2 ∗ (Eps1 a ∗ Eps2 a / (Re a)ˆ3) − Eps12 a / (Re a)ˆ2

Note that in Isabelle/HOL all functions have to be total. In our case the inverse be-
comes zero when not well defined, which is inherited from Isabelle’s real inverse being
defined to be zero for zero arguments.

Most of the division properties in Isabelle are proven as part of the division-ring type
class. Because hyperdual numbers do not satisfy its assumptions, we cannot take ad-
vantage of this type class to inherit these properties. We instead chose to build a new
locale specialised to hyperduals which mirrors division-ring. In this locale we attempt
the same lemmas, proving those that are true and providing counter-examples to those
that are false. We use a locale instead of a type class because we intend to use it with
only one specific type, hyperduals. Thus this is more of a collection of theorems than
polymorphic specification, and falls more withing the purview of a locale.

The locale definition is as follows:
locale division-hyperdual =

assumes left-inverse: Re a 6= 0 =⇒ inverse a ∗ a = 1
assumes right-inverse: Re a 6= 0 =⇒ a ∗ inverse a = 1
assumes divide-inverse: a / b = a ∗ inverse b
assumes inverse-zero: Re a = 0 =⇒ Re (inverse a) = 0

The assumptions are the same as for division-ring, but the a 6= 0 conditions are replaced
with Re(a) 6= 0 instead. Similar adjustments are made to the lemmas considered, oth-
erwise their definitions are kept as close to original as possible to make the reuse of
proofs easier.

3.6. Real Normed Vector Space 17

While some lemmas are easily proven to still hold, there are a few properties of the
original class that do not translate to this locale. These differences mainly show up
when we talk about intervals where the inverse is not well-defined. Due to the fact
that multiple hyperdual numbers have inverse equal to 0 (that is any h ∈ H such that
Re(h) = 0), inverse is not an involution nor a bijection in the general case. However, it
is both an involution and a bijection when it is well-defined.

Proving hyperduals to be an instance of this locale was mostly done by automatic
methods when supplied with some algebraic simplification rules. The one difficult
part was proving that division is exactly multiplication by inverse. This required a
series of handwritten expression transformations to break down the proof into parts
manageable by the automatic methods (see Appendix 6.7).

3.6 Real Normed Vector Space

With the above properties of addition and scalar multiplication, the hyperduals form
a vector space. A basis of this vector space is formed by {1,ε1,ε2,ε1ε2} and each
hyperdual number can be expressed as a four-dimensional real vector:

a1 +a2ε1 +a3ε2 +a4ε1ε2 =

a1
a2
a3
a4

We extend this into a real normed vector space by defining a norm on hyperduals as
the Euclidian distance:

‖a‖=
√

a2
1 +a2

2 +a2
3 +a2

4

This being a norm [35] means that:

• Only hyperdual zero has zero norm, all other hyperduals have positive norm

• Scalar multiplication scales the norm by the absolute value of the real factor

• Triangle inequality holds (the norm of a sum is at most the sum of norms of the
summands)

3.6.1 Alternative Considered Norm

We also considered the alternative norm defined only on the real component, that is:

‖a‖= ‖a1‖

The motivation was that this would be closer to the interpretation that the infinitesimal
components should not have as much impact as the real component. It is also the
absolute value function used by Fike and Alonso [10]. However, this definition does
not satisfy one of the assumptions of a norm – that only the zero element should have
zero norm. It is trivial to see that any hyperdual number with a zero real component

18 Chapter 3. Properties of Hyperdual Numbers

would have zero norm, not just the hyperdual zero. Thus this is not a valid norm,
although it is a seminorm [35].

3.6.2 Real Normed Algebra

As part of our investigation, we also examined whether the hyperduals form a real
normed algebra. This structure adds an additional assumption over the real normed
vector space which describes a triangle inequality for a product, that is for any x,y∈H:

‖x · y‖ ≤ ‖x‖ · ‖y‖

Hyperduals do not have this property though. For example, x = y = 1+ 1ε1 + 1ε2 +
1ε1ε2 gives ‖x · y‖= ‖1+2ε1 +2ε2 +4ε1ε2‖= 5 whereas ‖x‖ · ‖y‖= 2 ·2 = 4.

3.6.3 Mechanization

As part of the mechanization to show that the hyperduals form a real normed vector
space, we first defined four constants corresponding to the four basis vectors:

definition re where re = Hyperdual 1 0 0 0
definition e1 where e1 = Hyperdual 0 1 0 0
definition e2 where e2 = Hyperdual 0 0 1 0
definition e12 where e12 = Hyperdual 0 0 0 1

We then proved the following theorems:

• fixes x :: hyperdual
shows ∃a-1 a-2 a-3 a-4 :: real . x = a-1 ∗R re + a-2 ∗R e1 + a-3 ∗R e2 + a-4 ∗R e12
• shows Hyperdual a-1 a-2 a-3 a-4 = a-1 ∗R re + a-2 ∗R e1 + a-3 ∗R e2 + a-4 ∗R e12
• fixes x :: hyperdual

shows x = Re x ∗R re + Eps1 x ∗R e1 + Eps2 x ∗R e2 + Eps12 x ∗R e12

We also proved the following theorems about the infinitesimal basis elements, estab-
lishing the desired behaviour:
• shows e1 ∗ e1 = 0
• shows e1 6= 0
• shows e2 ∗ e2 = 0
• shows e2 6= 0
• shows e12 ∗ e12 = 0
• shows e12 6= 0

See Appendix 6.8 for the full proofs.

We then proved hyperdual numbers to be an instance of the real normed vector type
class real-normed-vector (see Appendix 6.9 for the full instantiation). All definitions
required by this instantiation (e.g. uniformity filter) except for the norm were left as
they are defined in other instantiations (e.g. the complex numbers). That is either in
terms of the norm or of each other. The norm itself was defined as the Euclidian
distance.

The proof of the instantiation consisted for the most part of short sub-proofs, except for
the triangle inequality. Probably due to the complexity of the expression involved, this

3.7. Hypercomplex Numbers 19

part required significant number of handwritten expression transformations to break
down the proof into parts manageable by the automatic methods. This was a very slow
process, as at one point the expression in question grew to over 600 characters, but
thanks to the theorem prover all errors were immediately caught and resolved.

We also mechanized our counter-example to hyperduals being a real normed algebra
(see Appendix 6.10).

3.7 Hypercomplex Numbers

The similarity of the hyperdual numbers to the complex numbers is not just coinciden-
tal. They are both instances of what are called hypercomplex numbers, as described
by Kantor and Solodovnikov [19]. In the context of that book, second-order hyperdual
numbers would be defined as a hypercomplex number system with n = 3 “imaginary
units” ε1, ε2, ε1ε2 whose multiplication is defined by the following multiplication table:

ε1 ε2 ε1ε2

ε1 0 ε1ε2 0
ε2 ε1ε2 0 0

ε1ε2 0 0 0

With this, the addition, subtraction and multiplication we define here follow from the
definitions in the book. This was expected, because Fike and Alonso (who we took
those definitions from) cite this book and so probably made sure to match the defini-
tions from there.

Chapter 7 of the book talks about how hypercomplex numbers can be viewed as an
algebra. This validates our view of hyperdual numbers as an algebra over the reals
with basis {1,ε1,ε2,ε1ε2} (see Section 3.6).

Chapter 9 of the book contains a proof that a hypercomplex system with non-trivial
zero divisors does not form a division algebra (i.e. does not admit division on all non-
zero elements). This is consistent with our finding that hyperduals have non-trivial
zero divisors and do not form a division algebra (see Section 3.3.1).

Chapter 12 of the book talks about introducing a scalar (dot) product to the hypercom-
plex space and about the norm of hypercomplex numbers. The norm defined there is
the same as the the one we use, which further validates our choice.

3.8 Bounded Linearity of Projections

Due to hyperdual addition and scalar multiplication being defined component-wise,
and the hyperdual norm being a Euclidian distance, we can prove that the projections
Re, E ps1, E ps2 and E ps12 are bounded linear maps [21].

20 Chapter 3. Properties of Hyperdual Numbers

More specifically, the linear part requires that they commute with addition and scalar
multiplication, that is for any x,y ∈ H and r ∈ R:

Re(x+ y) = Re(x)+Re(y)
Re(r · x) = r ·Re(x)

and similarly for all the other projections. This can be easily seen to be true from the
definition of those two operations.

The bounded part requires that for any hyperdual the ratio of the norm of its projection
to its norm is bounded from above. That is, there exists some M ∈ R with M ≥ 0 such
that for any h ∈ H:

‖Re(h)‖ ≤M‖h‖

and similarly for all the other projections. In this case, we will see that M = 1. Recall
the definition of the norm with projections instead of indices:

‖a‖=
√
(Re(a))2 +(E ps1(a))2 +(E ps2(a))2 +(E ps12(a))2

The squared norm of each projection result is part of the argument of the square root on
the right hand side. Moreover the argument of the square root is a sum of non-negative
terms and square root is strictly increasing. Thus we have for any h ∈ H:

‖Re(h)‖2 ≤ (Re(h))2 +(E ps1(h))2 +(E ps2(h))2 +(E ps12(h))2

⇒‖Re(h)‖ ≤
√

(Re(h))2 +(E ps1(h))2 +(E ps2(h))2 +(E ps12(h))2

⇒‖Re(h)‖ ≤ ‖h‖

and similarly for all the other projections. See Appendix 6.11 for the full proofs.

Bounded linearity of the projection is useful, because there are already proven theo-
rems about bounded linear functions in Isabelle. We are in particular interested in the
following properties:

Consider a bounded linear function f . Given another function g such that g tends to
some value a, the composition f ◦ g tends to the value f (a). This fact is useful when
deriving behaviour of limits of hyperdual-valued functions (see Section 3.10).

Moreover, given a function g which has derivative g′, the composition f ◦g has deriva-
tive f ◦ g′. This fact is useful when deriving behaviour of derivative of hyperdual-
valued functions (see Section 3.11).

3.9 Filters

In order to introduce our remaining definitions related to limits (see Section 3.10) and
derivatives (see Section 3.11), we need a momentary diversion to briefly introduce
mathematical filters [34]. These are used to abstractly define these notions in Isabelle.
While filters are not the only way of formalizing these concepts [14], Isabelle takes
this as a general approach [17].

3.9. Filters 21

We spent quite a lot of time reading various introductions to the subject as well as
investigating how filters are used in Isabelle, before we were comfortable working on
the limits and derivatives of hyperdual functions. The most useful resource was the
description by Hölzl et al. [17] which accompanied the introduction of these filter-
based formalizations to Isabelle.

A filter generalizes the notion of the set of tails of a sequence. Given some set X , a
filter F on X is a non-empty subset of the powerset P (X) of X such that:

• If A and B are in F then so is A∩B (F is closed under finite intersection)

• If A is in F and A⊆ B for some B⊆ X then B is in F (F is upward-closed)

In Isabelle, filters are defined as predicates on predicates:

locale is-filter =
fixes F :: (′a⇒ bool)⇒ bool
assumes True: F (λx. True)
assumes conj: F (λx. P x) =⇒ F (λx. Q x) =⇒ F (λx. P x ∧ Q x)
assumes mono: ∀x. P x −→ Q x =⇒ F (λx. P x) =⇒ F (λx. Q x)

typedef ′a filter = {F :: (′a⇒ bool)⇒ bool. is-filter F}

The assumption conj corresponds to closure under finite intersection, while the as-
sumption mono corresponds to being upward-closed. The assumption True corre-
sponds to the set itself always being in the filter, which is subsumed by the filter
being non-empty and upward-closed. Because Isabelle does not require filters to be
non-empty (proper), the True assumption has to be stated explicitly. Otherwise this
definition is equivalent to the one based on sets.

For our use, the most important filters are those based around neighbourhoods of a
point. The neighbourhoods filter for a point a is defined in Isabelle as follows:

definition (in topological-space) nhds :: ′a⇒ ′a filter
where nhds a = (INF S∈{S. open S ∧ a ∈ S}. principal S)

In this definition, open is a predicate that is true if and only if the set is open, and
principal refers to the principal filter of a set which is the smallest filter that contains
the set – the set of all of its supersets.

This filter holds for all open sets in the space that contain a. It corresponds to the pred-
icate “for all y in some open neighbourhood of a”. Then the punctured neighbourhood
filter for a point a within some set S is defined as follows:

definition (in topological-space) at-within :: ′a⇒ ′a set⇒ ′a filter
(at (-)/ within (-) [1000, 60] 60)

where at a within S = inf (nhds a) (principal (S − {a}))

This filter corresponds to the predicate “for all y ∈ S and y 6= a in some neighbourhood
of x” [17].

22 Chapter 3. Properties of Hyperdual Numbers

There is also a special case of the punctured neighbourhood filter at a within S for
when S is the universal open set (i.e. the whole type):

abbreviation (in topological-space) at :: ′a⇒ ′a filter (at)
where at x ≡ at x within (CONST UNIV)

Next we describe the convergence relation tendsto (−−→). Consider any function f :
α→ β where α is an arbitrary type and β is a topological space. Then f converging to
l ∈ β on a filter F on α is expressed in Isabelle as (f −−→ l) F This can express many
kinds of limits by using different filters, for example:

• (f −−→ L) (at a) expresses limx→a f (x) = L

• (f −−→ L) (at-right a) expresses limx→a+ f (x) = L

• (f −−→ L) (at-bot) expresses limx→−∞ f (x) = L

3.10 Limits

Consider any function j : α→H from any arbitrary type α to the hyperduals. Let it be
corecursively defined via real-valued functions f ,g,h, i : α→ R:

j(x) = f (x)+g(x) · ε1 +h(x) · ε2 + i(x) · ε1ε2

Then if f ,g,h, i converge to a,b,c,d ∈ R respectively, j converges to e ∈ H such that:

e = a+b · ε1 + c · ε2 +d · ε1ε2

On the other hand, if j converges to some e ∈ H, then Re ◦ j converges to Re(e) and
similarly for all the other projections. This is because the projections only project onto
the relevant axis.

From these two implications, for any hyperdual-valued function j : α→ H we have:

(j −→ e)←→ (Re◦ j −→ Re(e) ∧
E ps1 ◦ j −→ E ps1(e) ∧
E ps2 ◦ j −→ E ps2(e) ∧
E ps12 ◦ j −→ E ps12(e))

(3.6)

3.10.1 Mechanization

The equivalence (3.6) was mechanized in Isabelle using the tendsto (−−→) convergence
relation for an arbitrary filter (see Section 3.9):

lemma tendsto-hyperdual-iff :
((f :: ′a⇒ hyperdual) −−→ x) F
←→ (((λx. Re (f x)) −−→ Re x) F
∧ ((λx. Eps1 (f x)) −−→ Eps1 x) F
∧ ((λx. Eps2 (f x)) −−→ Eps2 x) F
∧ ((λx. Eps12 (f x)) −−→ Eps12 x) F)

3.11. Derivatives 23

The proof first separately establishes the right to left implication. This is then extended
to the full equivalence using bounded linearity of projections (see Section 3.8). The
skeleton of this proof was inspired by how this property is proven for complex numbers
in Isabelle. See Appendix 6.12 for the full proof.

With the notion of hyperdual limits we can also prove that hyperduals are an instance
of Isabelle’s Banach space [33] (complete normed vector space) type class banach.
For this instantiation we only need to prove completeness, which is that every Cauchy
sequence [33] converges to a hyperdual number. We prove this similarly to how it is
proven for complex numbers in Isabelle. See Appendix 6.13 for full instantiation.

3.11 Derivatives

We use the Fréchet derivative [9] as the notion of derivative for hyperdual-valued
functions. This choice is motivated by Isabelle’s mechanization of derivative for real
normed vector spaces being defined that way. Also, because hyperdual numbers do not
form a real normed field (see 3.5) we cannot use the simpler notion of field derivative,
which is also defined in Isabelle.

Let β ⊆ α be an open subset of a real normed vector space α. The Fréchet derivative
of j : β→ H at some x ∈ β is a bounded linear map A : α→ H such that:

lim
‖h‖α→0

‖ j(x+h)− j(x)−A(h)‖H

‖h‖α

= 0 (3.7)

If such an A exists, we write D j(x) = A. Note that the type of this function is:

D j : β→ L(α,H)

where L(α,H) is the space of all bounded linear maps from α to H.

From this point on, when referring to a derivative for hyperdual-valued functions we
mean the Fréchet derivative.

One notable property of this notion of derivative is that the chain rule is subsumed
in the composition of derivatives. That is, if j : β→ γ has derivative D j(x) at some
x ∈ β and k : γ→ δ has derivative Dk(j(x)) at y = j(x), then the composition k ◦ j has
derivative Dk(j(x))◦D j(x).

Using the limit equivalence (3.6), we can decompose definition (3.7) in terms of limits
on the component functions. This then gives us an equivalence between the derivative
relation of the overall functions and those of the component functions. That is, any
hyperdual-valued function j : β→ H has derivative D j(x) : α→ H if and only if:

• Re◦ j has derivative Re◦D j(x), and

• E ps1 ◦ j has derivative E ps1 ◦D j(x), and

• E ps2 ◦ j has derivative E ps2 ◦D j(x), and

• E ps12 ◦ j has derivative E ps12 ◦D j(x)

24 Chapter 3. Properties of Hyperdual Numbers

3.11.1 Mechanization

The difficulty with the mechanization of this property was our initial lack of familiarity
with Fréchet derivatives. These are quite different from the usual notion of derivative
of real functions in both their statement and behaviour. We spent multiple weeks read-
ing theory, working through examples and investigating how they are used in Isabelle.
Once again, the description by Hölzl et al. [17] was very useful here. The different
nature of this notion of derivative also shows later in one mechanization of the hyper-
dual extension (see Section 4.4.2), where it complicates our ability to express second
derivatives.

The general derivative is defined in Isabelle by the following relation:

definition has-derivative ::
(′a::real-normed-vector⇒ ′b::real-normed-vector)⇒ (′a⇒ ′b)⇒ ′a filter⇒ bool

where (f has-derivative f ′) F←→ bounded-linear f ′∧
((λy. ((f y − f (Lim F (λx. x))) − f ′ (y − Lim F (λx. x))) /R norm (y − Lim F (λx. x)))

−−→ 0) F

This relates the function f to the bounded linear function f ′ if f ′ is a derivative of f
on the filter F . Usually this filter is some form of at a within S, where a is the point of
differentiation (see Section 3.9). Then f ′ is the Fréchet derivative of f at a in the sense
of equation (3.7) where β represents S.

There is also a notion of field derivative defined in Isabelle, which is simpler to use in
some aspects but assumes the functions are operators on a real normed field:

definition has-field-derivative :: (′a::real-normed-field⇒ ′a)⇒ ′a⇒ ′a filter⇒ bool
where (f has-field-derivative D) F←→ (f has-derivative (∗) D) F

Due to hyperduals not forming a real normed field, the derivative relation we have to
use for general hyperdual-valued functions is has-derivative.

We mechanize the derivative equivalence as follows:

lemma has-derivative-hyperdual-iff : (f has-derivative f ′) F←→
((λx. Re (f x)) has-derivative (λx. Re (f ′ x))) F ∧
((λx. Eps1 (f x)) has-derivative (λx. Eps1 (f ′ x))) F ∧
((λx. Eps2 (f x)) has-derivative (λx. Eps2 (f ′ x))) F ∧
((λx. Eps12 (f x)) has-derivative (λx. Eps12 (f ′ x))) F

The proof of the equivalence first establishes the left to right implication, decomposing
the relation onto the component functions. This uses the fact that the projections are
bounded linear (see Section 3.8).

Going from the relations of the component functions to the relation of the hyperdual-
valued functions is more difficult and has two parts. First, the equivalence for limits
(see Section 3.10.1) is used with the definition of the relation to transfer the conver-
gence part from the component functions to the hyperdual functions. Second, the
bounded linearity of the component derivatives is used to establish the bounded linear-
ity of the overall derivative. This second step is quite complicated, mainly because of
the chain of complex expression rewriting it requires. See Appendix 6.14 for the full
proof.

3.12. Summary 25

3.12 Summary

In this chapter we described the main operations on hyperdual numbers and their prop-
erties. To maximize reuse of known facts, we showed that hyperdual numbers are
an instance of known algebraic structures where possible. We then derived rules about
limits and derivatives of hyperdual-valued functions. We also described how we mech-
anized these definitions and proofs in Isabelle.

In the next chapter, we describe hyperdual extensions of real functions. These appear to
be a natural way of translating properties of real operations to the realm of hyperduals.

Chapter 4

Hyperdual Extension of Real
Functions

We define a useful class of hyperdual functions, each based on a real function, which
we call the hyperdual extensions of those real functions. These extensions have prop-
erties which are useful for automatic differentiation of the underlying real function.

The interesting aspect is that for a lot of operations, the operation on hyperduals is a
hyperdual extension of the same operation performed on the reals. For example this
holds for addition, multiplication and multiplicative inverse. This suggests that this is
not as much a structure built on hyperdual numbers as their inherent property.

First, we describe the general context of automatic differentiation and two other pop-
ular approaches to the problem. Second, we motivate the desired properties of the
hyperdual extension. Third, we derive the definition of the hyperdual extension that
obeys those properties. Fourth, we discuss some further properties of the hyperdual
extension. Last, we describe the mechanization.

The definition discussed here is due to Fike and Alonso [10], but we go beyond this
and further formalize its derivation and formally prove its the properties.

4.1 Automatic Differentiation

In a number of applications, we desire highly-accurate first and second derivatives. Us-
ing symbolic differentiation is not always desirable, for example due to complex con-
trol flow or changing data structures [4]. Numerical methods like finite-difference [23]
and complex-step [24] approximations, which we review briefly further down, are sub-
ject to truncation [23] and subtraction-cancellation [16] errors.

Automatic differentiation [3] instead follows the execution of the program, using known
derivatives of the elementary operations performed and the chain rule to compute the
derivative of the function computed by the program. This is inherently compatible
with complicated control flow and changing data, because only the path truly executed
is differentiatied. Using hyperdual numbers for this task in the way we describe also

27

28 Chapter 4. Hyperdual Extension of Real Functions

introduces no truncation or subtraction-cancellation errors.

Finite-difference method finds the first derivative of a function by evaluating it at two
sufficiently close points and computing the gradient between them. This can be derived
from the Taylor series. For example the central-difference approximation is given by
subtracting the expansions of f (x+d) for real steps d =±h:

f ′(x) =
f (x+h)− f (x−h)

2h
+O(h2)

Complex-step method takes instead a complex step d = ih. The Taylor series derivation
then yields the following expression:

f (x+ ih) =
(

f (x)− 1
2!

h2 f ′′(x)+ ...

)
+ ih

(
f ′(x)− 1

3!
h3 f ′′′(x)+ ...

)
The complex-step approximation of first derivative is then:

f ′(x) =
Imag[f (x+ ih)]

h
+O(h2)

and for the second derivative it is:

f ′′(x) =
2(f (x)−Real[f (x+ ih)])

h2 +O(h2)

All the above approximations involve truncation error, because of the infinite nature of
the Taylor series. All the higher-order terms (than the derivative we are approximating)
are neglected yielding the truncation error, in all these cases of the order O(h2).

Finite-step first derivative approximation and complex-step second derivative approx-
imation also involve subtraction-cancellation error. As we make the step smaller (de-
creasing h), the subtracted values get closer. Because of finite precision of the real
number representation in computers, for a sufficiently low h two distinct value will
yield zero difference. This puts a limit on how accurate this approximation can be.

We will show that using hyperdual numbers we can avoid both of these errors. This
makes them well suited to high-precision automatic differentiation.

4.2 Basic Desired Properties

The properties we desire of the resulting function are rooted in the target use, automatic
differentiation. They are meant to:

• Ensure the extension preserves the behaviour of the original function (allowing
safe substitution for the real function in computations)

• Provide access to accurate derivatives after evaluation

• Preserve the properties on composition, allowing construction for arbitrary com-
binations

4.3. Derivation 29

First, we want the real component to behave exactly as it would under the original func-
tion, i.e. Re(g(x)) = f (Re(x)). This means that if we replace f by g in a computation
(and appropriately change relevant types) and then only look at the real component
of the result, nothing changes. Thus the same computation still happens on the real
component of the hyperdual variable as on the original real variable.

Second, we want to be able to extract exact values of the first and second derivatives
from the result of evaluating the extension. This means that there should be no error
terms or infinite sums which would introduce truncation error. The derivatives should
also be the leading terms in their components, otherwise they would be subject to
subtraction cancellation error.

Last, these properties should be preserved under function composition. This is im-
portant because we wish to compose simple functions to construct arbitrarily complex
functions, and we wish the result to have the above properties as well. This is at the
core of how automatic differentiation works.

4.3 Derivation

The derivation of the extension definition is based on that described by Fike and
Alonso [10] which is quite informal. We try to make it as formal as possible in or-
der to get closer to mechanizing it. Although our improvements are still not sufficient
to fully formalize the derivation, some gaps in the original derivation have been fixed.
We assume the existence of the two functions and proceed to verify under what condi-
tions g has the desired properties relative to f .

Let f : R→ R and g : H → H. By the hyperdual Taylor’s expansion1we have for all
y,b ∈ H:

g(y+b) = g(y)+
b
1!

g′(y)+
b2

2!
g′′(y)+

b3

3!
g′′′(y)+ . . .

Next, note that for all x ∈ H and n ∈ N such that x1 = 0 and n ≥ 3 we have xn = 0,
because all components of the product involve a square of some infinitesimal.

Also, label the components of y and b as done previously for other hyperduals:

y = y1 + y2ε1 + y3ε2 + y4ε1ε2

b = b1 +b2ε1 +b3ε2 +b4ε1ε2

Thus if we constrain b1 = 0, we get the finite expansion:

g(y+b) = g(y)+
b
1!

g′(y)+
b2

2!
g′′(y)

1Here we assume a certain form of the Taylor’s expansion for hyperduals, as well as skip any condi-
tions it might have (e.g. radius of convergence). This is also glossed over by Fike and Alonso. We note
this for future investigation in Section 5.1.3.

30 Chapter 4. Hyperdual Extension of Real Functions

Then expanding b and b2, simplifying the expression and factoring it in terms of the
components, we get:

g(y+b) = g(y)+b2g′(y) · ε1 +b3g′(y) · ε2 +(b4g′(y)+b2b3g′′(y)) · ε1ε2 (4.1)

Next we constrain y2 = y3 = y4 = 0, then assume that:

g(y) = f (y1)+0ε1 +0ε2 +0ε1ε2

g′(y) = f ′(y1)+0ε1 +0ε2 +0ε1ε2

g′′(y) = f ′′(y1)+0ε1 +0ε2 +0ε1ε2

and note that multiplying a hyperdual number by a+0ε1+0ε2+0ε1ε2 for some a ∈R
is the same as scaling that number by a.

Then we get the following by substituting into equation (4.1) and simplifying:

g(y+b) = f (y1)+b2 f ′(y1) · ε1 +b3 f ′(y1) · ε2 +(b4 f ′(y1)+b2b3 f ′′(y1)) · ε1ε2 (4.2)

Next we reinterpret the argument of g in this equation as a single number instead of
the addition of two numbers. Consider an arbitrary hyperdual number x ∈ H with
components labeled as usual:

x = x1 + x2ε1 + x3ε2 + x4ε1ε2

Then we can get x = y+b by setting the remaining unconstrained components of y and
b as follows:

y1 = x1 b2 = x2 b3 = x3 b4 = x4

Note that this decomposition satisfies the constraints we put on y and b throughout this
derivation for any x. Then substituting into equation (4.2) we get:

g(x) = f (x1)+ x2 f ′(x1) · ε1 + x3 f ′(x1) · ε2 +(x4 f ′(x1)+ x2x3 f ′′(x1)) · ε1ε2 (4.3)

Now if we evaluate g at a+1ε1 +1ε2 +0ε1ε2 for some a ∈ R we get:

g(a+1 · ε1 +1 · ε2 +0 · ε1ε2) = f (a)+ f ′(a) · ε1 + f ′(a) · ε2 + f ′′(a) · ε1ε2 (4.4)

Note that in the above expression, each derivative (f , f ′, f ′′) is the leading term in at
least one component and the overall expression is finite. Moreover, the real component
of g is equal to f and it is just a matter of substitution to see that this form is preserved
under composition. Thus g satisfies the desired properties relative to f .

4.4 Mechanization

After working through the derivation above, we mechanized the resulting definition as
a locale in Isabelle. This locale relates a real function f and its first and second deriva-
tives, f ′ and f ′′, with a hyperdual function g, when g is a valid hyperdual extension

4.4. Mechanization 31

f . Within this locale we prove general properties of hyperdual extensions, for example
how the values of derivatives can be extracted and that it is preserved by composition.
Then we prove a number of concrete cases of extensions. For the operations we ex-
amined in Chapter 3 (e.g. addition) we prove that they are hyperdual extensions of
the corresponding operations on the real numbers. When considering additional func-
tions over the hyperduals (e.g. sine), we define new functions based on the hyperdual
extension definition.

We have two versions of the locale representing the hyperdual extension. One uses the
has-field-derivative relation (see Section 3.11.1) and thus assumes that the components
of hyperdual numbers are from a real normed field. This version is much more com-
plete, because this assumption allows us to more easily express the second derivative.
Therefore we use this version for our case studies in Section 4.4.3.

The other version uses the more general has-derivative relation (see Section 3.11.1)
which only assumes the components of hyperdual numbers are from a real normed
vector space. This version is more general, allowing some future experimentation with
component types. The drawback is that because this is the pure Fréchet derivative,
the second derivative is taken on the space of bounded linear functions. This makes
it difficult to work with in Isabelle, because it requires we wrap the function type
with the bounded linearity assumption for it to form a real normed vector space and
be compatible with the relation. For that reason, this version is still very much in
development. We will come back to this when we discuss future work in Section
5.1.1.3.

Next we describe how the field derivative version of the locale is mechanized, including
the theorems proven within it. We then give an overview of the general version of the
locale, the known challenges and outline our plan for it. Last we describe the concrete
cases of extensions we have proven, going into detail on a selected few of those proofs.

4.4.1 Field Version of the Extension Locale

This version of the locale uses the has-field-derivative relation (see Section 3.11.1)
which requires the function to be within one real normed field, in this case the reals.
This allows us to express the second derivative more intuitively than with the more gen-
eral has-derivative relation (as mentioned at the end of the previous section), because
the first derivative function has the same type as the original function.

First we set up a locale for the second derivative of a function:

locale has-snd-field-derivative =
fixes f :: (′a :: real-normed-field)⇒ ′a

and f ′ :: ′a⇒ ′a
and f ′′ :: ′a⇒ ′a
and S :: ′a set
and a :: ′a

assumes deriv-f : (f has-field-derivative f ′ a) (at a within S)
and deriv-f ′: (f ′ has-field-derivative f ′′ a) (at a within S)

32 Chapter 4. Hyperdual Extension of Real Functions

This locale simply establishes that the functions f ′, f ′′ are successive derivatives of f .
It does this given the point of differentiation a and a set S. These are used in the filters
(see Section 3.9) on which the derivative is assumed. Exposing these as parameters
allows us to control the filter when instantiating this locale. This is for example used in
the preservation on composition theorem later in this section, which assumes the outer
function extension is valid (at least) on the range of the inner function.

We then prove that this locale is preserved on taking a subset for the filter set (see
Appendix 6.15 for proof):

lemma has-snd-field-derivative-subset:
assumes T ⊆ S

and has-snd-field-derivative f f ′ f ′′ S a
shows has-snd-field-derivative f f ′ f ′′ T a

Next we extend that locale to tie in the hyperdual extension, as defined in (4.3):

locale hyperdual-ext =
has-snd-field-derivative f f ′ f ′′ S a
for f and f ′ and f ′′ and S and a +

fixes g :: hyperdual⇒ hyperdual
assumes re-g: Re (g x) = f (Re x)

and eps1-g: Eps1 (g x) = Eps1 x ∗ f ′ (Re x)
and eps2-g: Eps2 (g x) = Eps2 x ∗ f ′ (Re x)
and eps12-g: Eps12 (g x) = Eps12 x ∗ f ′ (Re x) + Eps1 x ∗ Eps2 x ∗ f ′′ (Re x)

This extension establishes componentwise that the proposed extension function is equal
to the definition (4.3) we derived. We then proceed to prove its properties within that
locale (see Appendix 6.16 for full proofs).

First, we prove three lemmas about how each derivative can be extracted from the
result of evaluating the extension on the argument indicated in the derivation (4.4):

lemma extract-f :
shows Re (g (Hyperdual x 1 1 0)) = f x

lemma extract-f ′:
shows Eps1 (g (Hyperdual x 1 1 0)) = f ′ x
and Eps2 (g (Hyperdual x 1 1 0)) = f ′ x

lemma extract-f ′′:
shows Eps12 (g (Hyperdual x 1 1 0)) = f ′′ x

These ensure that the values of the derivatives can be extracted in the expected way.

Next, we prove that an extension stays an extension if we use the subset of the original
set for the filter:

lemma subset:
assumes T ⊆ S
shows hyperdual-ext f f ′ f ′′ T a g

4.4. Mechanization 33

The proof uses the same fact we showed earlier in this section for the second field
derivative locale and the fact that we are not changing anything about the functions
involved. This theorem is vital when we need the sets used by different extensions to
be the same (see for example case study in Section 4.4.3.4).

Next, we prove that the composition with another hyperdual extension is the hyperdual
extension of the composition of the underlying functions:

lemma compose:
assumes hyperdual-ext m m ′m ′′ (f‘S) (f a) n
shows hyperdual-ext (λx. m(f x)) (λx. m ′(f x) ∗ f ′ x) (λx. m ′(f x) ∗ f ′′ x + m ′′(f x) ∗ f ′ x ∗ f ′

x) S a (λx. n(g x))

This allows us to take two proven hyperdual extensions, compose them and easily
prove that the result is also a hyperdual extension (see case study in Section 4.4.3.4).

Last, we prove the uniqueness of an extension given the function with its derivatives:

lemma unique:
assumes hyperdual-ext f f ′ f ′′ S a h
shows g = h

The proof uses the fact that both g and h have to be equal to the same componentwise
definition, and thus are equal. However, so far we have been unable to prove the
uniqueness of the derivative functions of f , therefore we are not able prove a stronger
claim than this. We do however note this for future investigation (see Section 5.1.1.2).

4.4.2 General Version of the Extension Locale

As mentioned, the version of the locale using the more general has-derivative relation
is still in development. It is planned to follow the same lines as the field version,
proving variants of the same lemmas. Its validation will be all the examples proven
for the field version, thus checking that it is at least as good. This will also provide a
demonstration of whether this version leads to simpler proofs.

The advantage of using the has-derivative relation is that the chain rule is subsumed
in function composition, while for has-field-derivative it has to be explicitly applied.
We have found that the chain rule considerably complicates expressions within proofs
using the field locale. For example, the preservation under composition proof for (the
current version of) the general locale is less than half the length of the field locale proof
(17 lines instead of 39 lines).

The difficulty with this approach is expressing the second derivative. The derivative of
a function f : U →W with U ⊂V is D f : U → L(V,W) where L(V,W) is the space of
all bounded linear maps from V to W . To be able to talk about second derivatives of
f , we first need to be able to talk about the functions we get as the first derivative as
elements of L(V,W) with L(V,W) proven to be a real normed vector space. Fortunately,
Isabelle includes the theory Bounded Linear Function that allows us to talk about such
functions. This theory is for example used in the mechanization of ordinary differential
equations by Immler and Hölzl [18].

We go over our plans for future work on this implementation in Section 5.1.1.3.

34 Chapter 4. Hyperdual Extension of Real Functions

4.4.3 Case Studies

We have mechanized hyperdual extensions for a number of functions using the field
derivative version of the extension locale. We first give a brief overview of all the
proven cases, then we describe details of a few select proofs. At the end of this sec-
tion, we outline our effort to mechanize the analytical test function used by Fike and
Alonso [10].

The following hyperdual operations were proven to be extensions of their real counter-
parts (see Appendix 6.17 for the proofs):

• Constant function

• Identity function

• Scalar multiplication

• Addition

• Linear function

• Natural power

• Multiplication

• Multiplicative inverse

• Finite polynomial

The fact that the functions were defined independently of the hyperdual extension still
satisfy it strongly suggests that it is a property of the number system rather than struc-
ture built on them. We intend to investigate this relationship further in future, because
it might lead to some interesting results (see Section 5.1.1.4.

Moreover, we defined new functions to form the extensions of the following real func-
tions (see Appendix 6.17 for definitions and proof):

• Square root

• Exponential function

• Sine and cosine

We tried to perform any proofs where it is possible using the preservation under com-
position and prior extensions, in order to better demonstrate the viability of this ap-
proach. This ensured that we have proven all the theorems required to easily perform
such proofs.

We will now give detailed descriptions of proofs of some of the extensions.

4.4.3.1 Identity Function

First we look at the proof that the hyperdual identity function is an extension of the
real identity function:

4.4. Mechanization 35

lemma hyperdual-ext-identity:
hyperdual-ext (λx. x) (λx. 1) (λx. 0) UNIV x (λx. x)

proof

This proof is a great example of proving an extension directly, that is by the assump-
tions of the locale(s) (see Section 4.4.1 for definitions). First, we need to show that the
real functions f ′ and f ′′ are first and second derivatives of f . In this case, these facts
are already proven in Isabelle as part of the derivative mechanization, so we only need
to refer to those:

show ((λx. x) has-field-derivative 1) (at x)
using has-derivative-ident by simp

show ((λx. 1) has-field-derivative 0) (at x)
by simp

Then we need to show that the hyperdual function is equal to what the locale assumes
it to be. In this case, these are simplifications that the automatic simplifier can perform
without assistance:

show
∧

x. Re x = Re x
and

∧
x. Eps1 x = Eps1 x ∗ 1

and
∧

x. Eps2 x = Eps2 x ∗ 1
and

∧
x. Eps12 x = Eps12 x ∗ 1 + Eps1 x ∗ Eps2 x ∗ 0

by simp-all
qed

This proof is one of the easiest among the extensions. It does not require any compli-
cated reasoning, because all the assumptions of the locales are already proven by other
theorems. We only need to bring those together.

4.4.3.2 Addition

Next we look at the proof that hyperdual addition of extensions is an extension of real
addition. This is a good example of how to approach binary functions. For unary
functions we do not need to assume that the function we are working with is being
composed with another one, because we have the preservation on composition theorem
to then derive a rule for that case. This is however required for binary functions.
Intuitively, we approach binary functions as combining two extensions into one. In this
we take inspiration from how derivatives of such functions are already mechanized in
Isabelle.

The claim is then as follows:

lemma hyperdual-ext-add:
assumes hyperdual-ext f f ′ f ′′ S a fE

and hyperdual-ext g g ′ g ′′ S a gE
shows hyperdual-ext (λx. f x + g x) (λx. f ′ x + g ′ x) (λx. f ′′ x + g ′′ x) S a (λx. fE x + gE x)

proof

This proof again proceeds directly by verifying the assumptions of the locales, starting
with the real functions f ′ and f ′′ being first and second derivatives of f . In this case,
the relevant facts are already proven theorems in Isabelle. We do however instantiate

36 Chapter 4. Hyperdual Extension of Real Functions

them with the relevant terms before applying the automated method to make the proof
tractable for the simplifier:

show ((λx. f x + g x) has-field-derivative f ′ a + g ′ a) (at a within S)
using assms hyperdual-ext-def

Deriv.field-differentiable-add[of f f ′ a at a within S g g ′ a]
by (simp add: has-snd-field-derivative-def)

show ((λx. f ′ x + g ′ x) has-field-derivative f ′′ a + g ′′ a) (at a within S)
using hyperdual-ext-def assms

Deriv.field-differentiable-add[of f ′ f ′′ a at a within S g ′ g ′′ a]
by (simp add: has-snd-field-derivative-def)

Finally, we again need to show that the hyperdual function is equal to what the locale
assumes it to be. We first fix the variable, otherwise we would have to reason under
a binder which complicates the reasoning required. With the use of properly instanti-
ated facts about the extensions we are adding, this proof can then be handled by the
automatic methods:

fix x :: hyperdual
show Re (fE x + gE x) = f (Re x) + g (Re x)
using assms hyperdual-ext.re-g by auto

show Eps1 (fE x + gE x) = Eps1 x ∗ (f ′ (Re x) + g ′ (Re x))
using assms

hyperdual-ext.eps1-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps1-g[of g g ′ g ′′ S a gE x]

by (simp add: distrib-left)
show Eps2 (fE x + gE x) = Eps2 x ∗ (f ′ (Re x) + g ′ (Re x))
using assms

hyperdual-ext.eps2-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps2-g[of g g ′ g ′′ S a gE x]

by (simp add: distrib-left)
show Eps12 (fE x + gE x) = Eps12 x ∗ (f ′ (Re x) + g ′ (Re x)) + Eps1 x ∗ Eps2 x ∗ (f ′′ (Re

x) + g ′′ (Re x))
using assms

hyperdual-ext.eps12-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps12-g[of g g ′ g ′′ S a gE x]

by (simp add: distrib-left)
qed

This proof is still relatively simple, because the differentiation rule for addition itself
is quite simple. The complicated steps are already proven as theorems in Isabelle and
the only complication is properly instantiating them so that the automatic methods can
handle the rest.

4.4.3.3 Multiplication

Next we will look at the proof that hyperdual multiplication of extensions is an exten-
sion of real multiplication. We will contrast this proof to the previous one for addition,
as they are both similar in structure. However, multiplication has a considerably more
complicated differentiation rule than addition, which will be reflected in considerably
more complicated expressions.

4.4. Mechanization 37

The claim is as follows:

lemma hyperdual-ext-times:
assumes hyperdual-ext f f ′ f ′′ S a fE

and hyperdual-ext g g ′ g ′′ S a gE
shows hyperdual-ext (λx. f x ∗ g x) (λx. f ′ x ∗ g x + f x ∗ g ′ x) (λx. f ′′ x ∗ g x + f ′ x ∗ g ′ x +

f ′ x ∗ g ′ x + f x ∗ g ′′ x) S a (λx. fE x ∗ gE x)
proof

As with addition. we proceed directly by verifying the assumptions of the locales. The
first derivative assumption only requires the instantiation of the general multiplication
derivative rule already mechanized in Isabelle and facts about the assumed extensions
being multiplied. The second derivative is more complicated, because it now involves
addition of two multiplications. However, with careful instantiations of the relevant
addition and multiplication differentiation rules and facts about the extensions being
multiplied, this can also be solved by automatic methods:

show ((λx. f x ∗ g x) has-field-derivative f ′ a ∗ g a + f a ∗ g ′ a) (at a within S)
using assms has-snd-field-derivative.deriv-f add.commute

DERIV-mult ′[of f f ′ a a S g g ′ a]
by (metis (full-types) hyperdual-ext-def)

show ((λx. f ′ x ∗ g x + f x ∗ g ′ x) has-real-derivative f ′′ a ∗ g a + f ′ a ∗ g ′ a + f ′ a ∗ g ′ a + f
a ∗ g ′′ a) (at a within S)

using assms has-snd-field-derivative.deriv-f hyperdual-ext-def
DERIV-add[of λx. f ′ x ∗ g x f ′′ a ∗ g a + f ′ a ∗ g ′ a a S λx. f x ∗ g ′ x f ′ a ∗ g ′ a + f a ∗

g ′′ a]
DERIV-mult ′[of f ′ f ′′ a a S g g ′ a]
DERIV-mult ′[of f f ′ a a S g ′ g ′′ a]
add.assoc
has-snd-field-derivative-def

by smt

For the extension function equality proofs, we once again fix the variable to avoid rea-
soning under a binder. We then carefully instantiate relevant facts about the multiplied
extensions for each equation. With the addition of the set of algebraic simplifications
available in Isabelle, each of these equations can then be proven by the automatic sim-
plifier:

fix x :: hyperdual
show Re (fE x ∗ gE x) = f (Re x) ∗ g (Re x)
using hyperdual-ext.re-g assms
by simp

show Eps1 (fE x ∗ gE x) = Eps1 x ∗ (f ′ (Re x) ∗ g (Re x) + f (Re x) ∗ g ′ (Re x))
using add-mult-distrib mult.commute add.commute

hyperdual-ext.eps1-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.re-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps1-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.re-g[of g g ′ g ′′ S a gE x]
assms

by (simp add: algebra-simps)

38 Chapter 4. Hyperdual Extension of Real Functions

show Eps2 (fE x ∗ gE x) = Eps2 x ∗ (f ′ (Re x) ∗ g (Re x) + f (Re x) ∗ g ′ (Re x))
using add-mult-distrib mult.commute add.commute

hyperdual-ext.eps2-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.re-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps2-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.re-g[of g g ′ g ′′ S a gE x]
assms

by (simp add: algebra-simps)
show Eps12 (fE x ∗ gE x) = Eps12 x ∗ (f ′ (Re x) ∗ g (Re x) + f (Re x) ∗ g ′ (Re x)) +

Eps1 x ∗ Eps2 x ∗ (f ′′ (Re x) ∗ g (Re x) + f ′ (Re x) ∗ g ′ (Re x) + f ′ (Re x) ∗ g ′ (Re x) +
f (Re x) ∗ g ′′ (Re x))

using hyperdual-ext.eps12-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps2-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps1-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.re-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps12-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.eps2-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.eps1-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.re-g[of g g ′ g ′′ S a gE x]
assms

by (simp add: algebra-simps)
qed

While this proof proceeds in the same way as the addition proof, it is almost double the
length. This gives an indication of how the complexity of the proof quickly increases
once more complicated expressions are involved. This can be felt even more keenly
when the considered function is a composition of multiple functions, which can lead
to very large second derivative expressions. We plan to investigate ways to alleviate
this problem in the future (see Section 5.1.1.1).

4.4.3.4 Linear Function

Next we will look at the proof that a hyperdual linear function is an extension of a real
linear function:

lemma hyperdual-ext-linear:
hyperdual-ext (λx. k ∗R x + a) (λx. k) (λx. 0) UNIV x (λx. k ∗R x + of-real a)

proof −

This proof is a simple example of how the compose and subset theorems from the
hyperdual extension locale can be used to construct hyperdual extensions by compo-
sition. We will therefore not be directly proving the locale’s assumption, but deriving
the claim itself. We consider a linear function as a composition of identity, scalar
multiplication, addition and constant.

First, we show the extension of the addition of a constant with the filter set being the
range of multiplication by a scalar and the filter variable being the overall filter variable
multiplied by that scalar:

4.4. Mechanization 39

have hyperdual-ext (λx. x + a) (λx. 1) (λx. 0) (range ((∗R) k)) (k ∗R x) (λx. x + of-real a)
using hyperdual-ext-add-const[of a k ∗R x]

hyperdual-ext.subset[of λx. x + a λx. 1 λx. 0 UNIV k ∗R x λx. x + of-real a range ((∗R)
k)]

subset-UNIV[of range ((∗) k)]
by simp

This peculiar form of the statement is required to work with the composition theorem.
It is derived from the addition of constant extension (proved separately) by the subset
theorem, keeping in mind that any set is a subset of the universal set.

Then we use the composition theorem to combine the scalar multiplication extension
with the one we just derived, proving the claim:

then show ?thesis
using hyperdual-ext-scaleR[of k x]

hyperdual-ext.compose[of (∗) k λx. k λx. 0 UNIV x (∗R) k λx. x + a λx. 1 λx. 0 λx. x +
of-real a]

by simp
qed

This shows that using composition to prove extensions can simplify the proofs in-
volved. The one complication is that the domain of the outer function needs to match
the codomain of the inner function, which introduces the condition on the filter set and
variable. This is where the subset theorem is vital, it allows us to adjust the filter set in
a consistent way in order to match the requirement of the composition theorem.

4.4.3.5 Sine

Next we look at the hyperdual extension of sine. We first need to define a new function
to serve as the extension. To do this, we simply follow the definition (4.3) of the
hyperdual extension and use the known derivatives of sine:

primcorec hyperdual-sin :: hyperdual⇒ hyperdual
where
Re (hyperdual-sin x) = sin (Re x)
| Eps1 (hyperdual-sin x) = (Eps1 x) ∗ (cos (Re x))
| Eps2 (hyperdual-sin x) = (Eps2 x) ∗ (cos (Re x))
| Eps12 (hyperdual-sin x) = (Eps12 x) ∗ (cos (Re x)) + (Eps1 x) ∗ (Eps2 x) ∗ (− sin (Re x))

Then we need to prove that this function we defined is indeed the extension of real
sine:

lemma hyperdual-ext-sin:
hyperdual-ext sin cos (− sin) UNIV x hyperdual-sin

proof

Because we directly defined this function, we cannot take advantage of composition
and instead need to use the direct approach starting with the derivative relation. How-
ever, this is made simpler by the required facts once again being already-proven theo-
rems in Isabelle and thus the proof can be handled by automatic methods:

40 Chapter 4. Hyperdual Extension of Real Functions

show (sin has-field-derivative cos x) (at x)
by simp

show (cos has-field-derivative (− sin) x) (at x)
by simp

Finally, the proof of the extension function being equal to what is assumed by the
locale is made simple by the fact that we defined it to be exactly that:

fix x :: hyperdual
show Re (hyperdual-sin x) = sin (Re x)
by simp

show Eps1 (hyperdual-sin x) = Eps1 x ∗ cos (Re x)
by simp

show Eps2 (hyperdual-sin x) = Eps2 x ∗ cos (Re x)
by simp

show Eps12 (hyperdual-sin x) = Eps12 x ∗ cos (Re x) + Eps1 x ∗ Eps2 x ∗ (− sin) (Re x)
by simp

qed

This proof shows that if care is taken when defining a new function to serve as the
hyperdual extension of some real function, the proof can be quite simple. It is even
simpler when the relevant derivative statements are already proven theorems. How-
ever, this does not necessarily mean that the function we defined behaves as hyperdual
analogue of sine, only that it fits as an extension of the real one.

4.4.3.6 Finite Polynomial

Last we look at the proof that finite hyperdual polynomials are extensions of real finite
polynomials. This proof uses composition of scalar multiplication, natural power and
addition. Moreover, we prove it by induction on the number of terms. However, be-
cause the expressions involved initially included subtraction of up to two from natural
numbers, we had to split this into three cases: zero terms, one term, two or more terms.
This is because subtraction of two is not well defined for natural numbers below two.

First, we prove the case with zero terms:

lemma hyperdual-ext-polyn0:
fixes coef :: nat⇒ real
shows hyperdual-ext (λx. (∑ i<0. coef i ∗ xˆi)) (λx. (∑ j<(0−1). coef (j+1) ∗ (j+1) ∗ xˆj))

(λx. (∑k<(0−2). coef (k+2) ∗ (k+2) ∗ (k+1) ∗ xˆk)) UNIV a (λx. (∑ i<0. coef i ∗R

xˆi))
proof −

For this proof, we first show that the extension function is equal to the constant zero
function:

have (λx::hyperdual. (∑ i<0. coef i ∗R xˆi)) = (λx. of-real 0)
proof
fix x::hyperdual
show (∑ i<0. coef i ∗R x ˆ i) = of-real 0
by simp

qed

4.4. Mechanization 41

Then we can use the extension of a constant zero function to prove the claim:

then show ?thesis
using hyperdual-ext-const[of 0 a]
by simp

qed

Next, we prove the case with one term:

lemma hyperdual-ext-polyn1:
fixes coef :: nat⇒ real
shows hyperdual-ext (λx. (∑ i<1. coef i ∗ xˆi)) (λx. (∑ j<(1−1). coef (j+1) ∗ (j+1) ∗ xˆj))

(λx. (∑k<(1−2). coef (k+2) ∗ (k+2) ∗ (k+1) ∗ xˆk)) UNIV a (λx. (∑ i<1. coef i ∗R

xˆi))
proof −

For this proof, we first show that the extension function is equal to the constant function
of the first coefficient:

have (λx::hyperdual. (∑ i<1. coef i ∗R xˆi)) = (λx. of-real (coef 0))
proof

fix x::hyperdual
show (∑ i<1. coef i ∗R x ˆ i) = of-real (coef 0)
by simp

qed

Then we can use the extension of a constant function of the first coefficient to prove
the claim:

then show ?thesis
using hyperdual-ext-const[of coef 0 a]
by simp

qed

Finally, we prove the remaining cases with two or more terms. We induct on the
number of terms of the second derivative, thus avoiding subtraction of natural numbers:

lemma hyperdual-ext-polyn-ge2:
fixes coef :: nat⇒ real

and n :: nat
shows hyperdual-ext (λx. (∑ i<(n+2). coef i ∗ xˆi)) (λx. (∑ j<(n+1). coef (j+1) ∗ (j+1) ∗

xˆj))
(λx. (∑k<n. coef (k+2) ∗ (k+2) ∗ (k+1) ∗ xˆk)) UNIV a (λx. (∑ i<(n+2). coef i ∗R

xˆi))
proof (induct n)

For the base case, we first show that the real function is equal to a linear function:

case 0
have (λx::real. (∑ i<0+2. coef i ∗ xˆi)) = (λx. coef 1 ∗ x + coef 0)
proof

fix x::real
have (∑ i<1+1. coef i ∗ x ˆ i) = coef 1 ∗ x + coef 0
by simp

42 Chapter 4. Hyperdual Extension of Real Functions

then show (∑ i<0+2. coef i ∗ x ˆ i) = coef 1 ∗ x + coef 0
using nat-1-add-1
by simp

qed

We then show the same for the extension function:

moreover have (λx::hyperdual. (∑ i<0+2. coef i ∗R xˆi)) = (λx. coef 1 ∗R x + of-real (coef
0))

proof
fix x::hyperdual
have (∑ i<1+1. coef i ∗R x ˆ i) = coef 1 ∗R x + of-real (coef 0)
by simp

then show (∑ i<0+2. coef i ∗R x ˆ i) = coef 1 ∗R x + of-real (coef 0)
using nat-1-add-1
by simp

qed

Then we can use automatic methods to prove the base case using the extension of a
linear function:

ultimately show ?case
using hyperdual-ext-linear[of coef 1 coef 0 a]
by simp

next

For the inductive step, we assume an extension for a polynomial with n+ 2 terms.
We then want to add to it the coe fn+2 · xn+2 term using the extension of addition.
First, we use the composition theorem, subset theorem, and the extensions of scalar
multiplication and natural power to derive the extension of the term we intend to add:

case hyp: (Suc n)

have hyperdual-ext (λx. coef (n + 2) ∗R x ˆ (n + 2)) (λx. coef (n + 2) ∗ ((n + 2) ∗ x ˆ (n +
1)))

(λx. coef (n + 2) ∗ ((n + 2) ∗ (n + 1) ∗ x ˆ n) + 0 ∗ ((n + 2) ∗ x ˆ (n + 1)) ∗ ((n +
2) ∗ x ˆ (n + 1)))

UNIV a (λx. coef (n + 2) ∗R x ˆ (n + 2))
using hyperdual-ext-power-ge2[of n a]

hyperdual-ext.compose[of λx. x ˆ (n + 2) λx. (n + 2) ∗ x ˆ (n + 1) λx. (n + 2) ∗ (n +
1) ∗ x ˆ n UNIV a λx. x ˆ (n + 2)

(∗R) (coef (n + 2)) λx. coef (n + 2) λx. 0 (∗R) (coef (n + 2))]
hyperdual-ext-scaleR[of coef (n + 2) a ˆ (n + 2)]
hyperdual-ext.subset

by blast

Then we use the set of algebraic simplifications available in Isabelle to simplify the
involved expressions:

then have hyperdual-ext (λx. coef (n + 2) ∗R x ˆ (n + 2)) (λx. coef (n + 2) ∗ (n + 2) ∗ x ˆ
(n + 1)) (λx. coef (n + 2) ∗ (n + 2) ∗ (n + 1) ∗ x ˆ n) UNIV a (λx. coef (n + 2) ∗R x ˆ (n +
2))

by (simp add: algebra-simps)

4.4. Mechanization 43

Then we show that adding this intended term to the real function is equal to the target
polynomial:

moreover have (λx. ∑ i<Suc n + 2. coef i ∗ x ˆ i) =
(λx. (∑ i<n + 2. coef i ∗ x ˆ i) + coef (n+2) ∗R x ˆ (n+2))

by simp

Next we show that adding the first derivative of the intended term to the first derivative
function is equal to the first derivative of the target polynomial:

moreover have (λx. ∑ j<Suc n + 1. coef (j + 1) ∗ real (j + 1) ∗ x ˆ j) =
(λx. (∑ j<n + 1. coef (j + 1) ∗ real (j + 1) ∗ x ˆ j) + coef (n + 1 + 1) ∗ real (n +

1 + 1) ∗ x ˆ (n+1))
by simp

Next we show that adding the second derivative of the intended term to the second
derivative function is equal to the second derivative of the target polynomial:

moreover have (λx. ∑k<Suc n. coef (k + 2) ∗ real (k + 2) ∗ real (k + 1) ∗ x ˆ k) =
(λx. (∑k<n. coef (k + 2) ∗ real (k + 2) ∗ real (k + 1) ∗ x ˆ k) + coef (n + 2) ∗

real (n + 2) ∗ real (n + 1) ∗ x ˆ n)
by simp

Next we show that adding the intended hyperdual term to the extension function is
equal to the target hyperdual polynomial:

moreover have (λx. ∑ i<Suc n + 2. coef i ∗R x ˆ i) =
(λx. (∑ i<n + 2. coef i ∗R x ˆ i) + coef (n+2) ∗R x ˆ (n+2))

by simp

Finally, we combine all the previous steps with the relevant instantiation of the addition
extension and the inductive hypothesis, which allows the automatic simplifier with
the addition of the set of algebraic simplifications available in Isabelle to prove the
inductive step:

ultimately show ?case
using hyp

hyperdual-ext-add[of λx. ∑ i<n + 2. coef i ∗ x ˆ i λx. ∑ j<n + 1. coef (j + 1) ∗ (j + 1)
∗ x ˆ j

λx. ∑k<n. coef (k + 2) ∗ (k + 2) ∗ (k + 1) ∗ x ˆ k UNIV a λx. ∑ i<n + 2. coef i ∗R x ˆ i
λx. coef (n + 2) ∗R x ˆ (n + 2) λx. coef (n + 2) ∗ (n + 2) ∗ x ˆ (n + 1)
λx. coef (n + 2) ∗ (n + 2) ∗ (n + 1) ∗ x ˆ n λx. coef (n + 2) ∗R x ˆ (n + 2)]

by (simp add: algebra-simps)
qed

This proof combines the composition and subset theorems with a number of proven ex-
tensions within an induction proof. We consider this a great demonstration of proving
an extension of a composite function without having to directly work with its deriva-
tives. On the other hand, it also demonstrates well how the expressions involved can
quickly get complicated (see Section 5.1.1.1 on our plans regarding this).

44 Chapter 4. Hyperdual Extension of Real Functions

4.4.3.7 Analytic Test Function

To evaluate expressivity and usability of the formal system we set up, we have started
on the mechanization of the analytic test function used by Fike and Alonso [10], given
as follows:

f (x) =
ex√

sin(x)3 + cos(x)3
(4.5)

To this end, we define a hyperdual function using the same composition of hyperdual
extensions of the respective functions:

definition fa2011-test :: hyperdual⇒ hyperdual
where fa2011-test x = (hyperdual-exp x) / (hyperdual-sqrt ((hyperdual-sin x)ˆ3 +

(hyperdual-cos x)ˆ3))

Our hope is that this function is a hyperdual extension of the real function (4.5). Then
evaluating this hyperdual function would in essence perform automatic differentiation
of that real function. We would also like it to replicate exactly the results mentioned
by Fike and Alonso [10] in that same section. There are two possible approaches to
this:

• Prove this function we define to be a hyperdual extension of the real function
(4.5) with the derivatives as specified by Fike and Alonso

• Evaluate this function and compare the results to those given by Fike and Alonso

We have started work on both these approaches, but neither is complete yet. See Sec-
tion 5.1.1.5 where we go over future work.

The second approach may seem easy at first glance because it does not involve a proof,
but there is a hidden problem. All of sine, cosine, exponential and square root are
defined in Isabelle in uncomputable terms. In particular, sine, cosine and exponential
are defined as power series i.e. “infinite sums”, and square root is defined using the
choice function. This means that Isabelle is not able to directly evaluate the function
we defined.

We plan to define hyperdual extensions of computable approximations of these uncom-
putable functions. By composing these approximation extensions in the same manner
as the original analytic test function extension, we should get an extension that is com-
putable and approximates the results.

Not even the first approach is without problems. While we can use the composition
theorem and previous extensions to prove that the function we define is a hyperdual
extension of the real function (4.5), we are not yet able to do so with the same deriva-
tives that Fike and Alonso specify. This problem lies in establishing equality of two
very large expressions. It is also compounded by these expressions involving square
root, which is not well defined on all numbers and thus we require further lemmas to
perform the required simplifications. We plan to keep working on this problem, more
so because it could potentially lead to a set of further useful theorems for hyperdual
extensions.

4.5. Summary 45

4.5 Summary

In this chapter we introduced and motivated the hyperdual extensions of real functions.
We derived definition for these extensions based on the properties we want them to
have. We then described how we mechanized this concept in Isabelle.

There we described details about the current mechanization based on the field deriva-
tive, as well as outlined the difficulties with implementing a mechanization based on
the general derivative. We then briefly summarized concrete cases of hyperdual exten-
sions we have proven, followed by detailed description of a chosen few of those proofs.
We finished by describing the analytic test function used by Fike and Alonso [10] and
the challenges that need to be tackled when it comes to mechanizing it.

Next we summarize our results and lay out future work.

Chapter 5

Conclusion

We mechanized the following definitions due to Fike and Alonso [10]:

• Hyperdual number

• Addition

• Multiplication

• Multiplicative inverse

On top of this we proved hyperduals to be an instance of the following algebraic struc-
tures, defining further operations as required:

• Commutative group under addition

• Commutative ring under multiplication

• Algebra over the reals

• Real-normed vector space

Furthermore we proved important facts about:

• Hyperdual zero divisors

• Multiplication cancellation

• Hyperdual division

• Limits and derivatives of hyperdual-valued functions

We also defined a notion of a hyperdual extension of a real function, exploring some
of its properties and providing examples of extensions of basic functions.

5.1 Future Work

This was the first year of our two-year project. For the next year, we want to focus
on both improving the theory already mentioned as well as finding further potentially

47

48 Chapter 5. Conclusion

useful properties. There are also some things outside the scope of this project that
could nevertheless be interesting avenues of further research.

5.1.1 Improving the Hyperdual Extension

Foremost is the improvement of the current theory around the hyperdual extension of a
real function. This is both improving the field version of the locale as well as working
on the general version. It also includes forming a better understanding of how it arises.

5.1.1.1 Choice Function for Derivatives

One big drawback of the extension locales as they are currently implemented is the
need to specify the first and second derivatives. The expressions involved in these tend
to quickly grow in complexity as functions are composed.

Currently, we find the derivatives to use in a claim by substituting the relevant terms
into the theorem we intend to use and then copying the derivatives out of its conclusion.
Given this process, it should be possible to automate this step. Isabelle allows choosing
some arbitrary derivative (given that the function is differentiable) using the choice
function. If successful, this would lead to much simpler claim statements, and cleaner
and faster proofs.

5.1.1.2 Stronger Uniqueness Theorem

The current uniqueness theorem mentioned in Section 4.4.1 assumes the two exten-
sions are proven with same derivatives. It would be much more useful if we could
prove a stronger version of this theorem that only assumes the real function, and the
filter variable and set are the same. This would for example allow us to skip the long
proofs of equality of different expressions for the same function often seen in proofs
using composition of multiple extensions (see Section 4.4.3). We plan to investigate
this further, as successfully proving this stronger variant would considerably simplify
future proofs.

5.1.1.3 General Version Implementation

Currently we are still in process of implementing the more general has-derivative ver-
sion of the hyperdual extension locale. We will now outline our plan for this imple-
mentation.

The first step in building this locale is building a second derivative locale, similar to the
one Immler and Hölzl use [18]. This includes building familiarity with the bounded
linear function representation, and working through our examples to see how best to
implement the locale to fit our needs.

The next step then is to build a hyperdual extension locale on top of that second deriva-
tive locale similarly to how it is done for the field version (see Section 4.4.1). We will
do this alongside proving extensions already proven for the field version using this
more general locale. This should ensure we are converging on the most useable ver-
sion of the locale as well as catching any inadequacies early.

5.1. Future Work 49

5.1.1.4 Connection to Real Function

As mentioned in Chapter 4, there seems to be some underlying relationship between
real and hyperdual versions of various operations. This points to the hyperdual exten-
sion being a property of the number system. We would like to further investigate this
property and any underlying basis it might have.

One thing we noticed is that it may be possible to define most of the properties of hy-
perdual numbers as extensions of the real properties. Mechanizing an independent the-
ory of hyperdual numbers based entirely on hyperdual extensions may give us further
insight into this. It may even be possible to define other interesting number systems
using variations of the hyperdual extension.

5.1.1.5 Analytic Test Function

As discussed in Section 4.4.3.7, our mechanization of the analytic test function used
by Fike and Alonso [10] is incomplete. This function serves as a good test of the
usability of our theory and therefore we intend to work further on completing this
mechanization.

5.1.2 General Second Derivative

As part of our above mentioned plans for the general hyperdual extension locale we
will be creating tools to work with general second order Fréchet derivatives. These
tools are not specific to this project and thus they could be useful for other projects
in the Isabelle community. It should be possible to extract a small library of useful
locales and theorems from our work for general use.

5.1.3 Hyperdual Taylor’s Expansion

When deriving the hyperdual extension in Section 4.3, we assume a certain form of the
Taylor’s expansion for hyperduals. We have not proven that this form is valid which
represents a potential gap in the derivation. We plan to investigate and potentially
prove the form of the hyperdual Taylor’s expansion.

5.1.4 Verification of Algorithms

The hyperdual extension is intended to be used in computing derivatives of functions
specified by programmes. It would be good to include formal verification of the exten-
sion’s use in some simpler algorithm. This would both serve as an example for future
efforts, and an opportunity to test the usability of the theory for such endeavours.

Related to this is also the representation of hyperduals. Currently the proofs assume
the components are real numbers. It would be interesting to see how much of the
behaviour persists when they are instead represented with floating point representations
that computers use.

50 Chapter 5. Conclusion

5.1.5 Further Properties

Currently the only use case we explore is automatic differentiation. Investigating alter-
native use cases and developing the theory around the properties they use could lead to
a more well rounded theory. It might also uncover some underlying connections about
why the approaches work or are better than alternatives.

Another possible source of further properties is Kantor and Solodovnikov’s description
of hypercomplex numbers [19]. As hyperduals are an instance of these, the properties
should hold for them. It should be interesting to mechanize these properties for the
particular case of hyperduals and see if they have any immediate use.

5.1.6 Code Extraction

An interesting possibility is posed by the ability of Isabelle/HOL to generate code from
definitions [13]. Most of the corecursive definitions of properties of hyperdual numbers
should require little adjustment for code generation. However we also define a number
of uncomputable functions (e.g. hyperdual extension of sine). We would have to use
appropriate approximations instead of these to be able to generate working code.

Once generated, this code could then be compared to existing implementations of hy-
perduals in various languages. This comparison could be enlightening, potentially even
suggesting some enhancements to the implementations in question.

5.1.7 Higher-Order Hyperduals

As eluded to in the introduction, we only concern ourselves with second-order hyper-
dual numbers. If a similar theory was developed for arbitrary higher-order hyperdual
numbers, it could uncover some further uses for the numbers.

One possible approach could be through hypercomplex numbers. While investigating
the hypercomplex point of view on second-order hyperduals, we noticed that arbitrary
order hyperduals seem to form a hypercomplex system with basis the set resulting from
mapping a product over the power set of the set of infinitesimals. That is, products of
all combinations of infinitesimals (including the empty product – multiplicative unit).
The multiplication table is then constructed so that each infinitesimal is nilpotent (i.e.
every term involving a square of some infinitesimal is 0).

5.2 Final Remarks

We have mechanized properties of hyperdual numbers from addition up to derivatives.
Then we mechanized a notion of a hyperdual extension, its properties and some cases.
Finally we outlined several future extensions to this project.

We believe that this work sets the scene for a comprehensive framework in which to
investigate hyperdual numbers and their applications.

Bibliography

[1] John Baez. The Cayley–Dickson construction, in The Octonions. Bull. Amer.
Math. Soc. 39, 2002.

[2] Henk Barendregt and Herman Geuvers. Chapter 18 - proof-assistants using de-
pendent type systems. In Alan Robinson and Andrei Voronkov, editors, Hand-
book of Automated Reasoning, Handbook of Automated Reasoning, pages 1149
– 1238. North-Holland, Amsterdam, 2001.

[3] Michael Bartholomew-Biggs, Steven Brown, Bruce Christianson, and Laurence
Dixon. Automatic differentiation of algorithms. Journal of Computational and
Applied Mathematics, 124(1):171 – 190, 2000. Numerical Analysis 2000. Vol.
IV: Optimization and Nonlinear Equations.

[4] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.
Journal of Machine Learning Research, 18(153):1–43, 2018.

[5] Julian Biendarra, Jasmin Blanchette, Martin Desharnais, Lorenz Panny, An-
drei Popescu, and Dmitriy Traytel. Defining (co)datatypes and primi-
tively (co)recursive functions in isabelle/hol. https://isabelle.in.tum.de/dist/
Isabelle2020/doc/datatypes.pdf, 2020. Accessed: 2020-04-17.

[6] Jasmin Blanchette and Lawrence Paulson. Hammering away: A user’s guide to
sledgehammer for isabelle/hol. https://isabelle.in.tum.de/dist/Isabelle2020/doc/
sledgehammer.pdf, 2020. Accessed: 2020-04-17.

[7] Alan Bundy. Chapter 13 - the automation of proof by mathematical induction. In
Handbook of Automated Reasoning, pages 845–911. Elsevier B.V, 2001.

[8] Clifford. Preliminary sketch of biquaternions. Proceedings of the London Math-
ematical Society, s1-4(1):381–395, 1871.

[9] Rodney Coleman. Differentiation, pages 35–60. Springer New York, New York,
NY, 2012.

[10] J. A. Fike and J. J. Alonso. The development of hyper-dual numbers for exact
second-derivative calculations. In AIAA paper 2011-886, 49th AIAA Aerospace
Sciences Meeting, 2011.

51

https://isabelle.in.tum.de/dist/Isabelle2020/doc/datatypes.pdf
https://isabelle.in.tum.de/dist/Isabelle2020/doc/datatypes.pdf
https://isabelle.in.tum.de/dist/Isabelle2020/doc/sledgehammer.pdf
https://isabelle.in.tum.de/dist/Isabelle2020/doc/sledgehammer.pdf

52 Bibliography

[11] Andrea Gabrielli and Marco Maggesi. Formalizing basic quaternionic analy-
sis. In International Conference on Interactive Theorem Proving, pages 225–240.
Springer, 2017.

[12] Florian Haftmann. Haskell-style type classes with Isabelle/Isar. https://isabelle.
in.tum.de/dist/Isabelle2020/doc/classes.pdf, 2020. Accessed: 2020-04-17.

[13] Florian Haftmann and Lukas Bulwahn. Code generation from Isabelle/HOL the-
ories. https://isabelle.in.tum.de/dist/Isabelle2020/doc/codegen.pdf, 2020. Ac-
cessed: 2020-04-21.

[14] John Harrison. A HOL theory of euclidean space. In In Hurd and Melham [7,
pages 114–129. Springer, 2005.

[15] John Harrison. Formalizing basic complex analysis. In R. Matuszewski and
A. Zalewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej
Trybulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 151–
165. University of Białystok, 2007.

[16] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,
2002.

[17] Johannes Hölzl, Fabian Immler, and Brian Huffman. Type classes and filters
for mathematical analysis in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie, editors, Interactive Theorem Proving, pages 279–
294, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[18] Fabian Immler and Johannes Hölzl. Ordinary differential equations. Archive
of Formal Proofs, April 2012. http://isa-afp.org/entries/Ordinary Differential
Equations.html, Formal proof development.

[19] I. L. Kantor and A. S. Solodovnikov. Hypercomplex numbers: an elementary
introduction to algebras, Translated by A. Shenitzer. Springer, 1989.

[20] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol O’Sullivan. Geometric skin-
ning with approximate dual quaternion blending. ACM Trans. Graph., 27(4),
November 2008.

[21] Anthony W. Knapp. Lebesgue Measure and Abstract Measure Theory, pages
231–295. Birkhäuser Boston, Boston, MA, 2005.

[22] Jack B Kuipers. Quaternions and Rotation Sequences: A Primer with Applica-
tions to Orbits, Aerospace and Virtual Reality. Princeton University Press, 1999.

[23] Randall J LeVeque. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems, volume 98. Siam, 2007.

[24] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The complex-step
derivative approximation. ACM Trans. Math. Softw., 29(3):245–262, September
2003.

https://isabelle.in.tum.de/dist/Isabelle2020/doc/classes.pdf
https://isabelle.in.tum.de/dist/Isabelle2020/doc/classes.pdf
https://isabelle.in.tum.de/dist/Isabelle2020/doc/codegen.pdf
http://isa-afp.org/entries/Ordinary_Differential_Equations.html
http://isa-afp.org/entries/Ordinary_Differential_Equations.html

Bibliography 53

[25] Genki Matsuda, Shizuo Kaji, and Hiroyuki Ochiai. Anti-commutative Dual Com-
plex Numbers and 2D Rigid Transformation, pages 131–138. Springer Japan,
Tokyo, 2014.

[26] J.M. McCarthy. An Introduction to Theoretical Kinematics. MIT Press, 1990.

[27] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. CoRR,
cs.LO/9301106, 1993.

[28] Lawrence C. Paulson. Quaternions. Archive of Formal Proofs, September 2018.
http://isa-afp.org/entries/Quaternions.html, Formal proof development.

[29] L. R. Rabiner and B. Gold. Theory and application of digital signal processing.
1975.

[30] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic differentiation
in Julia. arXiv:1607.07892 [cs.MS], 2016.

[31] Alan J.A. Robinson and Andrei Voronkov. Handbook of Automated Reasoning,
volume 1 and 2. Elsevier B.V, 2001.

[32] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126,
August 2002.

[33] Mı́cheál Ó Searcóid. Completeness, pages 245–268. Springer London, London,
2002.

[34] Mı́cheál Ó Searcóid. Convergence, pages 215–230. Springer London, London,
2002.

[35] Mı́cheál Ó Searcóid. Geometric Structure, pages 133–158. Springer London,
London, 2002.

[36] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of
the 12th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’85, page 245–254, New York, NY, USA, 1985. Association for
Computing Machinery.

[37] John Vince. Complex Numbers, pages 5–16. Springer London, London, 2011.

[38] John Vince. Quaternions, pages 59–65. Springer London, London, 2011.

[39] John Von Neumann. Mathematical foundations of quantum mechanics: New
edition. Princeton university press, 2018.

[40] M Wenzel and L Paulson. Isabelle/Isar. Seventeen Provers Of The World,
3600:41–49, 2006.

http://isa-afp.org/entries/Quaternions.html

Chapter 6

Appendix - Proofs

In this appendix we give full versions of some proofs from our theory which are men-
tioned in this report.

6.1 ab-group-add Instantiation

In the following, we define the required operations and unit to prove that hyperduals
form an instance of the commutative group under addition (see Section 3.2) type class
ab-group-add:

instantiation hyperdual :: ab-group-add
begin

primcorec zero-hyperdual
where

Re 0 = 0
| Eps1 0 = 0
| Eps2 0 = 0
| Eps12 0 = 0

primcorec plus-hyperdual
where

Re (x + y) = Re x + Re y
| Eps1 (x + y) = Eps1 x + Eps1 y
| Eps2 (x + y) = Eps2 x + Eps2 y
| Eps12 (x + y) = Eps12 x + Eps12 y

primcorec uminus-hyperdual
where

Re (−x) = − Re x
| Eps1 (−x) = − Eps1 x
| Eps2 (−x) = − Eps2 x
| Eps12 (−x) = − Eps12 x

primcorec minus-hyperdual

55

56 Chapter 6. Appendix - Proofs

where
Re (x − y) = Re x − Re y
| Eps1 (x − y) = Eps1 x − Eps1 y
| Eps2 (x − y) = Eps2 x − Eps2 y
| Eps12 (x − y) = Eps12 x − Eps12 y

instance
by standard simp-all
end

6.2 comm-ring-1 Instantiation

In the following, we define the required operations and unit to prove that hyperduals
form an instance of the commutative ring under multiplication (see Section 3.3) type
class comm-ring-1:

instantiation hyperdual :: comm-ring-1
begin

primcorec one-hyperdual
where
Re 1 = 1
| Eps1 1 = 0
| Eps2 1 = 0
| Eps12 1 = 0

primcorec times-hyperdual
where
Re (x ∗ y) = Re x ∗ Re y
| Eps1 (x ∗ y) = (Re x ∗ Eps1 y) + (Eps1 x ∗ Re y)
| Eps2 (x ∗ y) = (Re x ∗ Eps2 y) + (Eps2 x ∗ Re y)
| Eps12 (x ∗ y) = (Re x ∗ Eps12 y) + (Eps1 x ∗ Eps2 y) + (Eps2 x ∗ Eps1 y) + (Eps12 x ∗

Re y)

instance
by standard (simp-all add: algebra-simps)
end

6.3 Non-Trivial Zero Divisors Proof

First, we use automatic methods to establish the behaviour on the real component is as
with real numbers:

lemma divisors-re-zero:
fixes a b :: hyperdual
assumes Re (a ∗ b) = 0
shows Re a = 0 ∨ Re b = 0

using assms by auto

6.3. Non-Trivial Zero Divisors Proof 57

lemma mult-eq-0-iff :
fixes a b :: hyperdual
shows Re (a ∗ b) = 0←→ Re a = 0 ∨ Re b = 0

by simp

We then use these theorems to prove the condition (3.4):

lemma divisiors-hyperdual-zero [simp]:
fixes a b :: hyperdual
shows a ∗ b = 0←→ (a = 0 ∨ b = 0 ∨ (Re a = 0 ∧ Re b = 0 ∧ Eps1 a ∗ Eps2 b = − Eps2

a ∗ Eps1 b))
proof
assume mult: a ∗ b = 0
then have split: Re a = 0 ∨ Re b = 0
by (simp add: divisors-re-zero)

show a = 0 ∨ b = 0 ∨ Re a = 0 ∧ Re b = 0 ∧ Eps1 a ∗ Eps2 b = − Eps2 a ∗ Eps1 b
proof (cases Re a = 0)

case aT: True
then show ?thesis
proof (cases Re b = 0)
case bT: True
then have Eps12 (a ∗ b) = Eps1 a ∗ Eps2 b + Eps2 a ∗ Eps1 b

by (simp add: aT)
then show ?thesis

by (simp add: aT bT mult)
next
case bF: False
then have e1: Eps1 a = 0
proof −

have Eps1 (a ∗ b) = Eps1 a ∗ Re b
by (simp add: aT)

then show ?thesis
by (simp add: bF mult)

qed
moreover have e2: Eps2 a = 0
proof −

have Eps2 (a ∗ b) = Eps2 a ∗ Re b
by (simp add: aT)

then show ?thesis
by (simp add: bF mult)

qed
moreover have Eps12 a = 0
proof −
have Eps12 (a ∗ b) = Eps1 a ∗ Eps2 b + Eps2 a ∗ Eps1 b
by (simp add: e1 e2 mult)

then show ?thesis
by (simp add: aT bF)

qed
ultimately show ?thesis

58 Chapter 6. Appendix - Proofs

by (simp add: aT)
qed

next case aF: False
then show ?thesis
proof (cases Re b = 0)
case bT: True
then have e1: Eps1 b = 0
proof −
have Eps1 (a ∗ b) = Re a ∗ Eps1 b

by (simp add: bT)
then show ?thesis

by (simp add: aF mult)
qed
moreover have e2: Eps2 b = 0
proof −
have Eps2 (a ∗ b) = Re a ∗ Eps2 b

by (simp add: bT)
then show ?thesis

by (simp add: aF mult)
qed
moreover have Eps12 b = 0
proof −
have Eps12 (a ∗ b) = Eps1 a ∗ Eps2 b + Eps2 a ∗ Eps1 b

by (simp add: e1 e2 mult)
then show ?thesis
by (simp add: bT aF)

qed
ultimately show ?thesis
by (simp add: bT)

next
case bF: False
then have False
using split aF by blast

then show ?thesis
by simp

qed
qed

next
show a = 0 ∨ b = 0 ∨ Re a = 0 ∧ Re b = 0 ∧ Eps1 a ∗ Eps2 b = − Eps2 a ∗ Eps1 b =⇒ a ∗

b = 0
by auto

qed

6.4 Multiplication Cancellation Proof

First, we prove the multiplication cancellation rule (3.5) for one configuration:

lemma hyperdual-mult-cancel-right1 [simp]:
fixes a b :: hyperdual

6.4. Multiplication Cancellation Proof 59

shows a = b ∗ a←→ a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b
∗ Eps1 a)
proof
assume mult: a = b ∗ a
then have Re a = Re b ∗ Re a

by (metis times-hyperdual.simps(1))
then have split: Re a = 0 ∨ Re b = 1

using mult-cancel-right1 by blast
show a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b ∗ Eps1 a)
proof (cases Re a = 0)

case aT: True
then show ?thesis
proof (cases Re b = 1)
case bT: True
then show ?thesis

by (smt aT mult mult-cancel-right1 mult-minus-left times-hyperdual.simps(4))
next
case bF: False
then have e1: Eps1 a = 0
by (metis aT add.left-neutral mult mult.commute mult-cancel-left1 times-hyperdual.simps(2))
moreover have e2: Eps2 a = 0
by (metis aT add.left-neutral bF mult mult.commute mult-cancel-left1 times-hyperdual.simps(3))
moreover have Eps12 a = 0
by (metis aT add.left-neutral bF e1 e2 mult mult.commute mult-cancel-left1 times-hyperdual.simps(4))
ultimately show ?thesis
by (simp add: aT)

qed
next

case aF: False
then show ?thesis
proof (cases Re b = 1)
case bT: True
then have e1: Eps1 b = 0
proof −
have Eps1 a = Re b ∗ Eps1 a + Eps1 b ∗ Re a
using mult by (metis times-hyperdual.simps(2))

then have 0 = Eps1 b ∗ Re a
by (simp add: bT)

then show ?thesis
using aF by auto

qed
moreover have e2: Eps2 b = 0
proof −

have Eps2 a = Re b ∗ Eps2 a + Eps2 b ∗ Re a
using mult by (metis times-hyperdual.simps(3))

then have 0 = Eps2 b ∗ Re a
by (simp add: bT)

then show ?thesis
using aF by auto

60 Chapter 6. Appendix - Proofs

qed
moreover have Eps12 b = 0
proof −
have Eps12 a = Re b ∗ Eps12 a + Eps1 b ∗ Eps2 a + Eps2 b ∗ Eps1 a + Eps12 b ∗ Re a

by (metis mult times-hyperdual.simps(4))
then show ?thesis
using aF bT e1 e2 by auto

qed
ultimately show ?thesis
by (simp add: bT)

next
case bF: False
then have False
using split aF by blast

then show ?thesis
by simp

qed
qed

next
have a = 0 =⇒ a = b ∗ a
by simp

moreover have b = 1 =⇒ a = b ∗ a
by simp

moreover have Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b ∗ Eps1 a =⇒ a = b ∗ a
by simp

ultimately show a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b ∗
Eps1 a) =⇒ a = b ∗ a

by blast
qed

We then extend this to the remaining three configurations:

lemma hyperdual-mult-cancel-right2 [simp]:
fixes a b :: hyperdual
shows b ∗ a = a←→ a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b
∗ Eps1 a)
using hyperdual-mult-cancel-right1 by metis

lemma hyperdual-mult-cancel-left1 [simp]:
fixes a b :: hyperdual
shows a = a ∗ b←→ a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b
∗ Eps1 a)
by (metis hyperdual-mult-cancel-right1 mult.commute)

lemma hyperdual-mult-cancel-left2 [simp]:
fixes a b :: hyperdual
shows a ∗ b = a←→ a = 0 ∨ b = 1 ∨ (Re a = 0 ∧ Re b = 1 ∧ Eps1 b ∗ Eps2 a = − Eps2 b
∗ Eps1 a)
using hyperdual-mult-cancel-left1 by metis

6.5. real-algebra-1 Instantiation 61

6.5 real-algebra-1 Instantiation

In the following we define the last operation required to prove that hyperdual numbers
are an instance of the algebra over real numbers (see Section 3.4) type class real-
algebra-1:

instantiation hyperdual :: real-algebra-1
begin

primcorec scaleR-hyperdual
where

Re (scaleR f x) = f ∗ Re x
| Eps1 (scaleR f x) = f ∗ Eps1 x
| Eps2 (scaleR f x) = f ∗ Eps2 x
| Eps12 (scaleR f x) = f ∗ Eps12 x

instance
by standard (simp-all add: algebra-simps)
end

6.6 inverse Instantiation

In the following we define hyperdual multiplicative inverse and division (see Sec-
tion 3.5) and prove hyperdual numbers to be an instance of the type class inverse:

instantiation hyperdual :: inverse
begin

primcorec inverse-hyperdual
where

Re (inverse a) = 1 / Re a
| Eps1 (inverse a) = − Eps1 a / (Re a)ˆ2
| Eps2 (inverse a) = − Eps2 a / (Re a)ˆ2
| Eps12 (inverse a) = 2 ∗ (Eps1 a ∗ Eps2 a / (Re a)ˆ3) − Eps12 a / (Re a)ˆ2

primcorec divide-hyperdual
where

Re (divide a b) = Re a / Re b
| Eps1 (divide a b) = (Eps1 a ∗ Re b − Re a ∗ Eps1 b) / ((Re b)ˆ2)
| Eps2 (divide a b) = (Eps2 a ∗ Re b − Re a ∗ Eps2 b) / ((Re b)ˆ2)
| Eps12 (divide a b) = (2 ∗ Re a ∗ Eps1 b ∗ Eps2 b −

Re a ∗ Re b ∗ Eps12 b −
Eps1 a ∗ Re b ∗ Eps2 b −
Eps2 a ∗ Re b ∗ Eps1 b +
Eps12 a ∗ ((Re b)ˆ2)) / ((Re b)ˆ3)

instance
by standard
end

62 Chapter 6. Appendix - Proofs

6.7 division-hyperdual Interpretation

The hyperdual division locale is defined as follows:

locale division-hyperdual =
assumes left-inverse [simp]: Re a 6= 0 =⇒ inverse a ∗ a = 1
assumes right-inverse [simp]: Re a 6= 0 =⇒ a ∗ inverse a = 1
assumes divide-inverse: a / b = a ∗ inverse b
assumes inverse-zero [simp]: Re a = 0 =⇒ Re (inverse a) = 0

We then prove hyperduals to satisfy this locale:

interpretation hyperdual: division-hyperdual
proof

fix a b :: hyperdual
show Re a 6= 0 =⇒ inverse a ∗ a = 1

by (simp add: inverse-hyperdual-def times-hyperdual-def algebra-simps power2-eq-square
power3-eq-cube)

show Re a 6= 0 =⇒ a ∗ inverse a = 1
by (simp add: inverse-hyperdual-def times-hyperdual-def algebra-simps power2-eq-square

power3-eq-cube)
show a / b = a ∗ inverse b
proof (rule hyperdual-eqI, simp-all add: inverse-hyperdual-def times-hyperdual-def power2-eq-square

power3-eq-cube)
show (Eps1 a ∗ Re b − Re a ∗ Eps1 b) / (Re b ∗ Re b) = Eps1 a / Re b − Re a ∗ Eps1 b /

(Re b ∗ Re b)
by (simp add: diff-divide-distrib)

show (Eps2 a ∗ Re b − Re a ∗ Eps2 b) / (Re b ∗ Re b) = Eps2 a / Re b − Re a ∗ Eps2 b /
(Re b ∗ Re b)

by (simp add: diff-divide-distrib)
have Re a ∗ (2 ∗ (Eps1 b ∗ Eps2 b) / (Re b ∗ Re b ∗ Re b) −

Eps12 b / (Re b ∗ Re b)) −
Eps1 a ∗ Eps2 b / (Re b ∗ Re b) −
Eps2 a ∗ Eps1 b / (Re b ∗ Re b) +
Eps12 a / Re b =
Re a ∗ 2 ∗ (Eps1 b ∗ Eps2 b) / (Re b ∗ Re b ∗ Re b) −
Re a ∗ Eps12 b / (Re b ∗ Re b) −
Eps1 a ∗ Eps2 b / (Re b ∗ Re b) −
Eps2 a ∗ Eps1 b / (Re b ∗ Re b) +
Eps12 a / Re b

by (simp add: right-diff-distrib ′)
moreover have ... = Re a ∗ 2 ∗ (Eps1 b ∗ Eps2 b) / (Re b ∗ Re b ∗ Re b) −

Re a ∗ Eps12 b ∗ Re b / (Re b ∗ Re b ∗ Re b) −
Eps1 a ∗ Eps2 b ∗ Re b / (Re b ∗ Re b ∗ Re b) −
Eps2 a ∗ Eps1 b ∗ Re b / (Re b ∗ Re b ∗ Re b) +
Eps12 a ∗ Re b ∗ Re b / (Re b ∗ Re b ∗ Re b)

by simp
moreover have ... = (Re a ∗ 2 ∗ (Eps1 b ∗ Eps2 b) − Re a ∗ Eps12 b ∗ Re b − Eps1 a ∗

Eps2 b ∗ Re b − Eps2 a ∗ Eps1 b ∗ Re b + Eps12 a ∗ Re b ∗ Re b) /
(Re b ∗ Re b ∗ Re b)

by (simp add: add-divide-distrib diff-divide-distrib)

6.8. Vector Space Preliminaries 63

ultimately show (2 ∗ Re a ∗ Eps1 b ∗ Eps2 b − Re a ∗ Re b ∗ Eps12 b − Eps1 a ∗ Re b ∗
Eps2 b − Eps2 a ∗ Re b ∗ Eps1 b + Eps12 a ∗ (Re b ∗ Re b)) /

(Re b ∗ Re b ∗ Re b) =
Re a ∗ (2 ∗ (Eps1 b ∗ Eps2 b) / (Re b ∗ Re b ∗ Re b) − Eps12 b / (Re b ∗ Re b))

−
Eps1 a ∗ Eps2 b / (Re b ∗ Re b) −
Eps2 a ∗ Eps1 b / (Re b ∗ Re b) +
Eps12 a / Re b

by auto
qed
show Re a = 0 =⇒ Re (inverse a) = 0

by simp
qed

6.8 Vector Space Preliminaries

We first define the four basis elements:

definition re where re = Hyperdual 1 0 0 0
definition e1 where e1 = Hyperdual 0 1 0 0
definition e2 where e2 = Hyperdual 0 0 1 0
definition e12 where e12 = Hyperdual 0 0 0 1

We then prove that any hyperdual number is a linear combination of these four ele-
ments:

lemma hyperdual-linear-comb:
fixes x :: hyperdual
shows ∃a-1 a-2 a-3 a-4 :: real . x = a-1 ∗R re + a-2 ∗R e1 + a-3 ∗R e2 + a-4 ∗R e12

by (simp add: e12-def e1-def e2-def re-def)

Next, we prove that the hyperdual constructor is equivalent to using these four elements
and that the projections give exactly the linear combination coefficients:

lemma Hyperdual-eq:
shows Hyperdual a-1 a-2 a-3 a-4 = a-1 ∗R re + a-2 ∗R e1 + a-3 ∗R e2 + a-4 ∗R e12

by (simp add: e12-def e1-def e2-def plus-hyperdual.code re-def)

lemma hyperdual-eq:
fixes x :: hyperdual
shows x = Re x ∗R re + Eps1 x ∗R e1 + Eps2 x ∗R e2 + Eps12 x ∗R e12

using Hyperdual-eq hyperdual.collapse by auto

Last we show that the non-real basis elements are nilpotent and non-zero:

lemma e1-square:
shows e1 ∗ e1 = 0

by (simp add: e1-def)
lemma e2-square:
shows e2 ∗ e2 = 0

by (simp add: e2-def)
lemma e12-square:

64 Chapter 6. Appendix - Proofs

shows e12 ∗ e12 = 0
by (simp add: e12-def)

lemma e1-nonzero:
shows e1 6= 0

by (simp add: e1-def)
lemma e2-nonzero:

shows e2 6= 0
by (simp add: e2-def)
lemma e12-nonzero:
shows e12 6= 0

by (simp add: e12-def)

6.9 real-normed-vector Instantiation

In the following we define the operations required and prove that hyperduals are an
instance of the real normed vector (see Section 3.6) type class real-normed-vector:

instantiation hyperdual :: real-normed-vector
begin

definition norm-hyperdual :: hyperdual⇒ real
where norm-hyperdual x = sqrt((Re x)ˆ2 + (Eps1 x)ˆ2 + (Eps2 x)ˆ2 + (Eps12 x)ˆ2)

definition sgn-hyperdual :: hyperdual⇒ hyperdual
where sgn-hyperdual x = x /R norm x

definition dist-hyperdual :: hyperdual⇒ hyperdual⇒ real
where dist-hyperdual a b = norm(a − b)

definition uniformity-hyperdual :: (hyperdual × hyperdual) filter
where uniformity-hyperdual = (INF e∈{0 <..}. principal {(x, y). dist x y < e})

definition open-hyperdual :: hyperdual set⇒ bool
where open-hyperdual U←→ (∀x∈U. eventually (λ(x ′, y). x ′= x −→ y ∈ U) uniformity)

instance
proof
fix x y :: hyperdual
fix a :: real
show dist x y = norm (x − y)
by (simp add: dist-hyperdual-def)

show sgn x = x /R norm x
by (simp add: sgn-hyperdual-def)

fix U :: hyperdual set
show open U = (∀x∈U. ∀F (x ′, y) in uniformity. x ′= x −→ y ∈ U)

using open-hyperdual-def by blast
show (norm x = 0) = (x = 0)
proof

6.9. real-normed-vector Instantiation 65

assume norm x = 0
then have (Re x)ˆ2 + (Eps1 x)ˆ2 + (Eps2 x)ˆ2 + (Eps12 x)ˆ2 = 0
by (simp add: norm-hyperdual-def)

then have Re x = 0 ∧ Eps1 x = 0 ∧ Eps2 x = 0 ∧ Eps12 x = 0
using power2-less-eq-zero-iff sum-power2-ge-zero

by (metis add.commute add.left-neutral add-nonneg-nonneg le-add-same-cancel1 zero-eq-power2)
then show x = 0
by simp

next
assume x = 0
then show norm x = 0
by (simp add: norm-hyperdual-def)

qed
show norm (x + y) ≤ norm x + norm y
proof −
have norm-ge-zero: ∀h :: hyperdual . norm h ≥ 0
by (simp add: norm-hyperdual-def)

have (norm (x + y))ˆ2 = (norm x)ˆ2 + (norm y)ˆ2 + 2∗(Re x ∗ Re y + Eps1 x ∗ Eps1 y +
Eps2 x ∗ Eps2 y + Eps12 x ∗ Eps12 y)

proof −
have (norm (x + y))ˆ2 = (Re x + Re y)ˆ2 + (Eps1 x + Eps1 y)ˆ2 + (Eps2 x + Eps2 y)ˆ2

+ (Eps12 x + Eps12 y)ˆ2
by (simp add: norm-hyperdual-def)
moreover have ... = (Re x)ˆ2 + (Eps1 x)ˆ2 + (Eps2 x)ˆ2 + (Eps12 x)ˆ2 + (Re y)ˆ2 +

(Eps1 y)ˆ2 + (Eps2 y)ˆ2 + (Eps12 y)ˆ2 + 2∗(Re x ∗ Re y + Eps1 x ∗ Eps1 y + Eps2 x ∗ Eps2
y + Eps12 x ∗ Eps12 y)

by (simp add: power2-sum algebra-simps)
moreover have ... = (norm x)ˆ2 + (norm y)ˆ2 + 2∗(Re x ∗ Re y + Eps1 x ∗ Eps1 y +

Eps2 x ∗ Eps2 y + Eps12 x ∗ Eps12 y)
by (simp add: norm-hyperdual-def)

ultimately show ?thesis
by simp

qed
moreover have (norm x + norm y)ˆ2 = (norm x)ˆ2 + (norm y)ˆ2 + 2∗(norm x)∗(norm y)
using power2-sum by blast

moreover have Re x ∗ Re y + Eps1 x ∗ Eps1 y + Eps2 x ∗ Eps2 y + Eps12 x ∗ Eps12 y ≤
(norm x)∗(norm y)

proof −
have ((norm x)∗(norm y))ˆ2− (Re x ∗ Re y + Eps1 x ∗ Eps1 y + Eps2 x ∗ Eps2 y + Eps12

x ∗ Eps12 y)ˆ2 ≥ 0
proof −
have (Re x ∗ Re y + Eps1 x ∗ Eps1 y + Eps2 x ∗ Eps2 y + Eps12 x ∗ Eps12 y)ˆ2 = (Re x

∗ Re y + Eps1 x ∗ Eps1 y)ˆ2 + 2∗(Re x ∗ Re y + Eps1 x ∗ Eps1 y)∗(Eps2 x ∗ Eps2 y + Eps12
x ∗ Eps12 y) + (Eps2 x ∗ Eps2 y + Eps12 x ∗ Eps12 y)ˆ2

by (smt power2-sum)
moreover have ... = (Re x)ˆ2 ∗ (Re y)ˆ2 + 2 ∗ Re x ∗ Re y ∗ Eps1 x ∗ Eps1 y + (Eps1

x)ˆ2 ∗ (Eps1 y)ˆ2 + 2∗(Re x ∗ Re y ∗ Eps2 x ∗ Eps2 y + Re x ∗ Re y ∗ Eps12 x ∗ Eps12 y +
Eps1 x ∗ Eps1 y ∗ Eps2 x ∗ Eps2 y + Eps1 x ∗ Eps1 y ∗ Eps12 x ∗ Eps12 y) + (Eps2 x)ˆ2 ∗
(Eps2 y)ˆ2 + 2 ∗ Eps2 x ∗ Eps2 y ∗ Eps12 x ∗ Eps12 y + (Eps12 x)ˆ2 ∗ (Eps12 y)ˆ2

66 Chapter 6. Appendix - Proofs

by (simp add: distrib-left mult.commute mult.left-commute power2-sum power-mult-distrib
right-diff-distrib ′ scaleR-add-left scaleR-add-right)

moreover have ((norm x)∗(norm y))ˆ2 = ((Re x)ˆ2 + (Eps1 x)ˆ2 + (Eps2 x)ˆ2 + (Eps12
x)ˆ2)∗((Re y)ˆ2 + (Eps1 y)ˆ2 + (Eps2 y)ˆ2 + (Eps12 y)ˆ2)

by (smt add.left-commute hyperdual.sel(1) mult-numeral-1 mult-zero-left real-sqrt-pow2
sum-power2-ge-zero norm-hyperdual-def power-mult-distrib)

moreover have ...= (Re x)ˆ2 ∗ (Re y)ˆ2 + (Re x)ˆ2 ∗ (Eps1 y)ˆ2 + (Re x)ˆ2 ∗ (Eps2 y)ˆ2
+ (Re x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps1 x)ˆ2 ∗ (Re y)ˆ2 + (Eps1 x)ˆ2 ∗ (Eps1 y)ˆ2 + (Eps1 x)ˆ2 ∗
(Eps2 y)ˆ2 + (Eps1 x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps2 x)ˆ2 ∗ (Re y)ˆ2 + (Eps2 x)ˆ2 ∗ (Eps1 y)ˆ2 +
(Eps2 x)ˆ2 ∗ (Eps2 y)ˆ2 + (Eps2 x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Re y)ˆ2 + (Eps12 x)ˆ2
∗ (Eps1 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Eps2 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Eps12 y)ˆ2

by (simp add: add.left-commute distrib-left mult.commute)
ultimately have ((norm x)∗(norm y))ˆ2 − (Re x ∗ Re y + Eps1 x ∗ Eps1 y + Eps2 x ∗

Eps2 y + Eps12 x ∗ Eps12 y)ˆ2 = (Re x)ˆ2 ∗ (Eps1 y)ˆ2 + (Re x)ˆ2 ∗ (Eps2 y)ˆ2 + (Re x)ˆ2 ∗
(Eps12 y)ˆ2 + (Eps1 x)ˆ2 ∗ (Re y)ˆ2 + (Eps1 x)ˆ2 ∗ (Eps2 y)ˆ2 + (Eps1 x)ˆ2 ∗ (Eps12 y)ˆ2 +
(Eps2 x)ˆ2 ∗ (Re y)ˆ2 + (Eps2 x)ˆ2 ∗ (Eps1 y)ˆ2 + (Eps2 x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps12 x)ˆ2 ∗
(Re y)ˆ2 + (Eps12 x)ˆ2 ∗ (Eps1 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Eps2 y)ˆ2 − 2∗(Re x ∗ Re y ∗ Eps1 x ∗
Eps1 y + Re x ∗ Re y ∗ Eps2 x ∗ Eps2 y + Re x ∗ Re y ∗ Eps12 x ∗ Eps12 y + Eps1 x ∗ Eps1
y ∗ Eps2 x ∗ Eps2 y + Eps1 x ∗ Eps1 y ∗ Eps12 x ∗ Eps12 y + Eps2 x ∗ Eps2 y ∗ Eps12 x ∗
Eps12 y)

by (simp add: field-simps)
moreover have ... = (Re x ∗ Eps1 y − Eps1 x ∗ Re y)ˆ2 + (Re x ∗ Eps2 y − Eps2 x ∗

Re y)ˆ2 + (Re x ∗ Eps12 y − Eps12 x ∗ Re y)ˆ2 + (Eps1 x ∗ Eps2 y − Eps2 x ∗ Eps1 y)ˆ2 +
(Eps1 x ∗ Eps12 y − Eps12 x ∗ Eps1 y)ˆ2 + (Eps2 x ∗ Eps12 y − Eps12 x ∗ Eps2 y)ˆ2

proof −
have (Re x)ˆ2 ∗ (Eps1 y)ˆ2 + (Eps1 x)ˆ2 ∗ (Re y)ˆ2 − 2 ∗ Re x ∗ Eps1 y ∗ Eps1 x ∗ Re y

= (Re x ∗ Eps1 y − Eps1 x ∗ Re y)ˆ2
by (simp add: power2-diff power-mult-distrib)
moreover have (Re x)ˆ2 ∗ (Eps2 y)ˆ2 + (Eps2 x)ˆ2 ∗ (Re y)ˆ2 − 2 ∗ Re x ∗ Eps2 y ∗

Eps2 x ∗ Re y = (Re x ∗ Eps2 y − Eps2 x ∗ Re y)ˆ2
by (simp add: power2-diff power-mult-distrib)

moreover have (Re x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Re y)ˆ2 − 2 ∗ Re x ∗ Eps12 y
∗ Eps12 x ∗ Re y = (Re x ∗ Eps12 y − Eps12 x ∗ Re y)ˆ2

by (simp add: power2-diff power-mult-distrib)
moreover have (Eps1 x)ˆ2 ∗ (Eps2 y)ˆ2 + (Eps2 x)ˆ2 ∗ (Eps1 y)ˆ2 − 2 ∗ Eps1 x ∗ Eps2

y ∗ Eps2 x ∗ Eps1 y = (Eps1 x ∗ Eps2 y − Eps2 x ∗ Eps1 y)ˆ2
by (simp add: power2-diff power-mult-distrib)
moreover have (Eps1 x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Eps1 y)ˆ2 − 2 ∗ Eps1 x ∗

Eps12 y ∗ Eps12 x ∗ Eps1 y = (Eps1 x ∗ Eps12 y − Eps12 x ∗ Eps1 y)ˆ2
by (simp add: power2-diff power-mult-distrib)
moreover have (Eps2 x)ˆ2 ∗ (Eps12 y)ˆ2 + (Eps12 x)ˆ2 ∗ (Eps2 y)ˆ2 − 2 ∗ Eps2 x ∗

Eps12 y ∗ Eps12 x ∗ Eps2 y = (Eps2 x ∗ Eps12 y − Eps12 x ∗ Eps2 y)ˆ2
by (simp add: power2-diff power-mult-distrib)

ultimately show ?thesis
by (simp add: field-simps)

qed
moreover have ... ≥ 0
by simp

ultimately show ?thesis

6.10. real-normed-algebra Counter-Example 67

by simp
qed
then show ?thesis

by (smt norm-ge-zero mult-nonneg-nonneg power2-le-imp-le)
qed
ultimately have (norm (x + y))ˆ2 ≤ (norm x + norm y)ˆ2
by auto

then show ?thesis
using power2-le-imp-le norm-ge-zero by (metis add-nonneg-nonneg)

qed
show norm (a ∗R x) = |a| ∗ norm x
proof −
have norm (a ∗R x) = sqrt(aˆ2 ∗ ((Re x)ˆ2 + (Eps1 x)ˆ2 + (Eps2 x)ˆ2 + (Eps12 x)ˆ2))
by (simp add: norm-hyperdual-def power-mult-distrib distrib-left)

then show ?thesis
by (simp add: norm-hyperdual-def real-sqrt-mult)

qed
show uniformity = (INF e∈{0<..}. principal {(x :: hyperdual, y). dist x y < e})
using uniformity-hyperdual-def by blast

qed
end

6.10 real-normed-algebra Counter-Example

In the following we mechanize the counter-example to hyperduals forming a real
normed algebra (see Section 3.6.2):

lemma not-normed-algebra:
shows ¬(∀x y :: hyperdual . norm (x ∗ y) ≤ norm x ∗ norm y)

proof −
have norm (Hyperdual 1 1 1 1) = 2
by (simp add: norm-hyperdual-def)

moreover have (Hyperdual 1 1 1 1) ∗ (Hyperdual 1 1 1 1) = Hyperdual 1 2 2 4
by (simp add: hyperdual.expand)

moreover have norm (Hyperdual 1 2 2 4) = 5
by (simp add: norm-hyperdual-def)

ultimately have ∃x y :: hyperdual . norm (x ∗ y) > norm x ∗ norm y
by (smt power2-eq-square real-sqrt-four real-sqrt-pow2)

then show ?thesis
by (simp add: not-le)

qed

6.11 Bounded Linearity of Projections

In the following we prove all four projections to be bounded linear maps (see Section
3.8):

lemma bounded-linear-Re: bounded-linear Re

68 Chapter 6. Appendix - Proofs

proof
show

∧
b1 b2. Re (b1 + b2) = Re b1 + Re b2

by simp
show

∧
r b. Re (r ∗R b) = r ∗R Re b

by simp
have ∀x. norm (Re x) ≤ norm x
proof (simp add: norm-hyperdual-def)
show ∀x. |Re x| ≤ sqrt ((Re x)2 + (Eps1 x)2 + (Eps2 x)2 + (Eps12 x)2)
by (metis add.assoc real-sqrt-ge-abs1 real-sqrt-pow2 sum-power2-ge-zero)

qed
then show ∃K. ∀x. norm (Re x) ≤ norm x ∗ K
by (metis linordered-field-class.sign-simps(24) mult-1s(1))

qed

lemma bounded-linear-Eps1: bounded-linear Eps1
proof

show
∧

b1 b2. Eps1 (b1 + b2) = Eps1 b1 + Eps1 b2
by simp

show
∧

r b. Eps1 (r ∗R b) = r ∗R Eps1 b
by simp

have ∀x. norm (Eps1 x) ≤ norm x
proof (simp add: norm-hyperdual-def)
show ∀x. |Eps1 x| ≤ sqrt ((Re x)2 + (Eps1 x)2 + (Eps2 x)2 + (Eps12 x)2)
using add.assoc real-sqrt-ge-abs1 real-sqrt-pow2 sum-power2-ge-zero Groups.add-ac(2)
by (metis (no-types, hide-lams))

qed
then show ∃K. ∀x. norm (Eps1 x) ≤ norm x ∗ K
by (metis linordered-field-class.sign-simps(24) mult-1s(1))

qed

lemma bounded-linear-Eps2: bounded-linear Eps2
proof
show

∧
b1 b2. Eps2 (b1 + b2) = Eps2 b1 + Eps2 b2

by simp
show

∧
r b. Eps2 (r ∗R b) = r ∗R Eps2 b

by simp
have ∀x. norm (Eps2 x) ≤ norm x
proof (simp add: norm-hyperdual-def)

show ∀x. |Eps2 x| ≤ sqrt ((Re x)2 + (Eps1 x)2 + (Eps2 x)2 + (Eps12 x)2)
using add.assoc real-sqrt-ge-abs1 real-sqrt-pow2 sum-power2-ge-zero Groups.add-ac(3)
by metis

qed
then show ∃K. ∀x. norm (Eps2 x) ≤ norm x ∗ K

by (metis linordered-field-class.sign-simps(24) mult-1s(1))
qed

lemma bounded-linear-Eps12: bounded-linear Eps12
proof
show

∧
b1 b2. Eps12 (b1 + b2) = Eps12 b1 + Eps12 b2

6.12. Limits 69

by simp
show

∧
r b. Eps12 (r ∗R b) = r ∗R Eps12 b

by simp
have ∀x. norm (Eps12 x) ≤ norm x
proof (simp add: norm-hyperdual-def)
show ∀x. |Eps12 x| ≤ sqrt ((Re x)2 + (Eps1 x)2 + (Eps2 x)2 + (Eps12 x)2)
using add.commute real-sqrt-ge-abs1 real-sqrt-pow2 sum-power2-ge-zero
by metis

qed
then show ∃K. ∀x. norm (Eps12 x) ≤ norm x ∗ K
by (metis linordered-field-class.sign-simps(24) mult-1s(1))

qed

6.12 Limits

First, we prove the tendsto relation of a hyperdual function given those of its compo-
nent functions:

lemma tendsto-Hyperdual:
assumes (f −−→ a) F

and (g −−→ b) F
and (h −−→ c) F
and (i −−→ d) F

shows ((λx. Hyperdual (f x) (g x) (h x) (i x)) −−→ Hyperdual a b c d) F
proof −
have ((λx. (i x) ∗R e12) −−→ d ∗R e12) F

using tendsto-scaleR[of i d F (λy. e12) e12] tendsto-const[of e12 F] assms(4) by simp
then have ((λx. (h x) ∗R e2 + (i x) ∗R e12) −−→ c ∗R e2 + d ∗R e12) F

using tendsto-scaleR[of h c F (λy. e2) e2] tendsto-const[of e2 F] assms(3) add.assoc
tendsto-add by simp

then have ((λx. (g x) ∗R e1 + ((h x) ∗R e2 + (i x) ∗R e12)) −−→ b ∗R e1 + (c ∗R e2 + d ∗R

e12)) F
using tendsto-scaleR[of g b F (λy. e1) e1] tendsto-const[of e1 F] assms(2) tendsto-add by

simp
then have ((λx. (f x) ∗R re + ((g x) ∗R e1 + ((h x) ∗R e2 + (i x) ∗R e12))) −−→ a ∗R re + (b
∗R e1 + (c ∗R e2 + d ∗R e12))) F

using tendsto-scaleR[of f a F (λy. re) re] tendsto-const[of re F] assms(1) add.assoc tendsto-add
by simp
then show ?thesis

unfolding Hyperdual-eq by (simp add: add.assoc)

Then we prove the full equivalence for limits of hyperdual-valued functions (see Sec-
tion 3.10):

lemma tendsto-hyperdual-iff :
((f :: ′a⇒ hyperdual) −−→ x) F
←→ (((λx. Re (f x)) −−→ Re x) F
∧ ((λx. Eps1 (f x)) −−→ Eps1 x) F
∧ ((λx. Eps2 (f x)) −−→ Eps2 x) F
∧ ((λx. Eps12 (f x)) −−→ Eps12 x) F)

70 Chapter 6. Appendix - Proofs

proof safe
assume (f −−→ x) F
then show ((λx. Re (f x)) −−→ Re x) F

and ((λx. Eps1 (f x)) −−→ Eps1 x) F
and ((λx. Eps2 (f x)) −−→ Eps2 x) F
and ((λx. Eps12 (f x)) −−→ Eps12 x) F

by (simp-all add: tendsto-Re tendsto-Eps1 tendsto-Eps2 tendsto-Eps12)
next

assume ((λx. Re (f x)) −−→ Re x) F
and ((λx. Eps1 (f x)) −−→ Eps1 x) F
and ((λx. Eps2 (f x)) −−→ Eps2 x) F
and ((λx. Eps12 (f x)) −−→ Eps12 x) F

moreover have (λx. Hyperdual (Re (f x)) (Eps1 (f x)) (Eps2 (f x)) (Eps12 (f x))) = f
by simp

ultimately show (f −−→ x) F
using tendsto-Hyperdual[of λx. Re (f x) Re x F λx. Eps1 (f x) Eps1 x λx. Eps2 (f x) Eps2 x

λx. Eps12 (f x) Eps12 x]
by simp

qed

6.13 banach Instantiation

We prove hyperdual numbers to be an instance of the Banach space type class banach
by proving that every Cauchy sequence converges:

instance hyperdual :: banach
proof
fix X :: nat⇒ hyperdual
assume Cauchy X
then have (λn. Hyperdual (Re (X n)) (Eps1 (X n)) (Eps2 (X n)) (Eps12 (X n))) −−−→

Hyperdual (lim (λn. Re (X n))) (lim (λn. Eps1 (X n))) (lim (λn. Eps2 (X n))) (lim (λn.
Eps12 (X n)))

using Cauchy-Re[of X] Cauchy-Eps1[of X] Cauchy-Eps2[of X] Cauchy-Eps12[of X]
Cauchy-convergent-iff convergent-LIMSEQ-iff
tendsto-Hyperdual[of λn. Re (X n) lim (λn. Re (X n)) sequentially λn. Eps1 (X n) lim

(λn. Eps1 (X n)) λn. Eps2 (X n) lim (λn. Eps2 (X n)) λn. Eps12 (X n) lim (λn. Eps12 (X n))]
by blast

then show convergent X
using convergentI by simp

qed

6.14 Derivatives

We prove the derivative equivalence for hyperdual-valued functions (see Section 3.11):

lemma has-derivative-hyperdual-iff : (f has-derivative f ′) F←→
((λx. Re (f x)) has-derivative (λx. Re (f ′ x))) F ∧

6.14. Derivatives 71

((λx. Eps1 (f x)) has-derivative (λx. Eps1 (f ′ x))) F ∧
((λx. Eps2 (f x)) has-derivative (λx. Eps2 (f ′ x))) F ∧
((λx. Eps12 (f x)) has-derivative (λx. Eps12 (f ′ x))) F

proof safe
assume assm: (f has-derivative f ′) F
show ((λx. Re (f x)) has-derivative (λx. Re (f ′ x))) F
using assm has-derivative-Re by blast

show ((λx. Eps1 (f x)) has-derivative (λx. Eps1 (f ′ x))) F
using assm has-derivative-Eps1 by blast

show ((λx. Eps2 (f x)) has-derivative (λx. Eps2 (f ′ x))) F
using assm has-derivative-Eps2 by blast

show ((λx. Eps12 (f x)) has-derivative (λx. Eps12 (f ′ x))) F
using assm has-derivative-Eps12 by blast

next
assume assmRe: ((λx. Re (f x)) has-derivative (λx. Re (f ′ x))) F

and assmEps1: ((λx. Eps1 (f x)) has-derivative (λx. Eps1 (f ′ x))) F
and assmEps2: ((λx. Eps2 (f x)) has-derivative (λx. Eps2 (f ′ x))) F
and assmEps12: ((λx. Eps12 (f x)) has-derivative (λx. Eps12 (f ′ x))) F

have ((λy. ((Re (f y) − Re (f (Lim F (λx. x)))) − Re (f ′ (y − Lim F (λx. x)))) /R norm (y −
Lim F (λx. x))) −−→ 0) F

using assmRe has-derivative-def [of (λx. Re (f x)) (λx. Re (f ′ x)) F] by blast
then have re: ((λy. Re (((f y − f (Lim F (λx. x))) − f ′ (y − Lim F (λx. x))) /R norm (y −

Lim F (λx. x)))) −−→ Re 0) F
by simp

have ((λy. ((Eps1 (f y) − Eps1 (f (Lim F (λx. x)))) − Eps1 (f ′ (y − Lim F (λx. x)))) /R

norm (y − Lim F (λx. x))) −−→ 0) F
using assmEps1 has-derivative-def [of (λx. Eps1 (f x)) (λx. Eps1 (f ′ x)) F] by blast

then have eps1: ((λy. Eps1 (((f y − f (Lim F (λx. x))) − f ′ (y − Lim F (λx. x))) /R norm (y
− Lim F (λx. x)))) −−→ Re 0) F

by simp

have ((λy. ((Eps2 (f y) − Eps2 (f (Lim F (λx. x)))) − Eps2 (f ′ (y − Lim F (λx. x)))) /R

norm (y − Lim F (λx. x))) −−→ 0) F
using assmEps2 has-derivative-def [of (λx. Eps2 (f x)) (λx. Eps2 (f ′ x)) F] by blast

then have eps2: ((λy. Eps2 (((f y − f (Lim F (λx. x))) − f ′ (y − Lim F (λx. x))) /R norm (y
− Lim F (λx. x)))) −−→ Re 0) F

by simp

have ((λy. ((Eps12 (f y) − Eps12 (f (Lim F (λx. x)))) − Eps12 (f ′ (y − Lim F (λx. x)))) /R

norm (y − Lim F (λx. x))) −−→ 0) F
using assmEps12 has-derivative-def [of (λx. Eps12 (f x)) (λx. Eps12 (f ′ x)) F] by blast

then have eps12: ((λy. Eps12 (((f y − f (Lim F (λx. x))) − f ′ (y − Lim F (λx. x))) /R norm
(y − Lim F (λx. x)))) −−→ Re 0) F

by simp

have ((λy. ((f y − f (Lim F (λx. x))) − f ′ (y − Lim F (λx. x))) /R norm (y − Lim F (λx. x)))
−−→ 0) F

using re eps1 eps2 eps12 by (simp add: tendsto-hyperdual-iff)

72 Chapter 6. Appendix - Proofs

moreover have bounded-linear f ′

proof
have bl-ref ′: bounded-linear (λx. Re (f ′ x))
using assmRe has-derivative-def by blast

have bl-eps1f ′: bounded-linear (λx. Eps1 (f ′ x))
using assmEps1 has-derivative-def by blast

have bl-eps2f ′: bounded-linear (λx. Eps2 (f ′ x))
using assmEps2 has-derivative-def by blast

have bl-eps12f ′: bounded-linear (λx. Eps12 (f ′ x))
using assmEps12 has-derivative-def by blast

have l-ref ′: linear (λx. Re (f ′ x))
using bl-ref ′ bounded-linear.linear by blast

have l-eps1f ′: linear (λx. Eps1 (f ′ x))
using bl-eps1f ′ bounded-linear.linear by blast

have l-eps2f ′: linear (λx. Eps2 (f ′ x))
using bl-eps2f ′ bounded-linear.linear by blast

have l-eps12f ′: linear (λx. Eps12 (f ′ x))
using bl-eps12f ′ bounded-linear.linear by blast

show
∧

x y. f ′ (x + y) = f ′ x + f ′ y
proof −

fix x y :: ′a
have f ′ (x + y) = Hyperdual (Re (f ′ (x + y))) (Eps1 (f ′ (x + y))) (Eps2 (f ′ (x + y)))

(Eps12 (f ′ (x + y)))
by simp

moreover have Re (f ′ (x + y)) = Re (f ′ x) + Re (f ′ y)
using l-ref ′ by (simp add: linear-iff)

moreover have Eps1 (f ′ (x + y)) = Eps1 (f ′ x) + Eps1 (f ′ y)
using l-eps1f ′ by (simp add: linear-iff)

moreover have Eps2 (f ′ (x + y)) = Eps2 (f ′ x) + Eps2 (f ′ y)
using l-eps2f ′ by (simp add: linear-iff)

moreover have Eps12 (f ′ (x + y)) = Eps12 (f ′ x) + Eps12 (f ′ y)
using l-eps12f ′ by (simp add: linear-iff)

ultimately have f ′ (x + y) = Hyperdual (Re (f ′ x) + Re (f ′ y)) (Eps1 (f ′ x) + Eps1 (f ′ y))
(Eps2 (f ′ x) + Eps2 (f ′ y)) (Eps12 (f ′ x) + Eps12 (f ′ y))

by simp
then have f ′ (x + y) = Hyperdual (Re (f ′ x)) (Eps1 (f ′ x)) (Eps2 (f ′ x)) (Eps12 (f ′ x)) +

Hyperdual (Re (f ′ y)) (Eps1 (f ′ y)) (Eps2 (f ′ y)) (Eps12 (f ′ y))
by (simp add: plus-hyperdual.code)

then show f ′ (x + y) = f ′ x + f ′ y
by simp

qed

show
∧

x y. f ′ (x ∗R y) = x ∗R f ′ y
proof −

fix x :: real
fix y
have f ′ (x ∗R y) = Hyperdual (Re (f ′ (x ∗R y))) (Eps1 (f ′ (x ∗R y))) (Eps2 (f ′ (x ∗R y)))

6.14. Derivatives 73

(Eps12 (f ′ (x ∗R y)))
by simp

moreover have Re (f ′ (x ∗R y)) = x ∗R Re (f ′ y)
using l-ref ′ by (simp add: linear-iff)

moreover have Eps1 (f ′ (x ∗R y)) = x ∗R Eps1 (f ′ y)
using l-eps1f ′ by (simp add: linear-iff)

moreover have Eps2 (f ′ (x ∗R y)) = x ∗R Eps2 (f ′ y)
using l-eps2f ′ by (simp add: linear-iff)

moreover have Eps12 (f ′ (x ∗R y)) = x ∗R Eps12 (f ′ y)
using l-eps12f ′ by (simp add: linear-iff)

ultimately have f ′ (x ∗R y) = Hyperdual (x ∗R Re (f ′ y)) (x ∗R Eps1 (f ′ y)) (x ∗R Eps2 (f ′

y)) (x ∗R Eps12 (f ′ y))
by simp

then have f ′ (x ∗R y) = x ∗R Hyperdual (Re (f ′ y)) (Eps1 (f ′ y)) (Eps2 (f ′ y)) (Eps12 (f ′

y))
by (simp add: scaleR-hyperdual.code)

then show f ′ (x ∗R y) = x ∗R f ′ y
by simp

qed

show ∃K. ∀x. norm (f ′ x) ≤ norm x ∗ K
proof −
obtain k-re where ∀x. (norm (Re (f ′ x)))ˆ2 ≤ (norm x ∗ k-re)ˆ2

using bl-ref ′ bounded-linear.bounded norm-ge-zero power-mono by metis
moreover obtain k-eps1 where ∀x. (norm (Eps1 (f ′ x)))ˆ2 ≤ (norm x ∗ k-eps1)ˆ2

using bl-eps1f ′ bounded-linear.bounded norm-ge-zero power-mono by metis
moreover obtain k-eps2 where ∀x. (norm (Eps2 (f ′ x)))ˆ2 ≤ (norm x ∗ k-eps2)ˆ2

using bl-eps2f ′ bounded-linear.bounded norm-ge-zero power-mono by metis
moreover obtain k-eps12 where ∀x. (norm (Eps12 (f ′ x)))ˆ2 ≤ (norm x ∗ k-eps12)ˆ2
using bl-eps12f ′ bounded-linear.bounded norm-ge-zero power-mono by metis
moreover have ∀x. (norm (f ′ x))ˆ2 = (norm (Re (f ′ x)))ˆ2 + (norm (Eps1 (f ′ x)))ˆ2 +

(norm (Eps2 (f ′ x)))ˆ2 + (norm (Eps12 (f ′ x)))ˆ2
using norm-hyperdual-def by (simp add: norm-hyperdual-def)

ultimately have ∀x. (norm (f ′ x))ˆ2 ≤ (norm x ∗ k-re)ˆ2 + (norm x ∗ k-eps1)ˆ2 + (norm
x ∗ k-eps2)ˆ2 + (norm x ∗ k-eps12)ˆ2

by smt
then have ∀x. (norm (f ′ x))ˆ2≤ (norm x)ˆ2 ∗ (k-reˆ2 + k-eps1ˆ2 + k-eps2ˆ2 + k-eps12ˆ2)

by (simp add: distrib-left power-mult-distrib)
then have final: ∀x. norm (f ′ x)≤ norm x ∗ sqrt(k-reˆ2 + k-eps1ˆ2 + k-eps2ˆ2 + k-eps12ˆ2)

using real-le-rsqrt real-sqrt-mult real-sqrt-pow2 by fastforce
then show ∃K. ∀x. norm (f ′ x) ≤ norm x ∗ K

by blast
qed

qed
ultimately show (f has-derivative f ′) F

by (simp add: has-derivative-def)
qed

74 Chapter 6. Appendix - Proofs

6.15 Second Field Derivative

We define the second field derivative locale as follows:

locale has-snd-field-derivative =
fixes f :: (′a :: real-normed-field)⇒ ′a
and f ′ :: ′a⇒ ′a
and f ′′ :: ′a⇒ ′a
and S :: ′a set
and a :: ′a

assumes deriv-f : (f has-field-derivative f ′ a) (at a within S)
and deriv-f ′: (f ′ has-field-derivative f ′′ a) (at a within S)

Then we prove that this relation is preserved on taking a subset of the given set:

lemma has-snd-field-derivative-subset:
assumes T ⊆ S

and has-snd-field-derivative f f ′ f ′′ S a
shows has-snd-field-derivative f f ′ f ′′ T a

proof
show (f has-field-derivative f ′ a) (at a within T)
using assms has-snd-field-derivative.deriv-f has-field-derivative-subset by blast

show (f ′ has-field-derivative f ′′ a) (at a within T)
using assms has-snd-field-derivative.deriv-f ′ has-field-derivative-subset by blast

qed

6.16 Hyperdual Extension - Field Version

We define the field derivative version of the hyperdual extension locale as follows:

locale hyperdual-ext =
has-snd-field-derivative f f ′ f ′′ S a
for f and f ′ and f ′′ and S and a +

fixes g :: hyperdual⇒ hyperdual
assumes re-g: Re (g x) = f (Re x)

and eps1-g: Eps1 (g x) = Eps1 x ∗ f ′ (Re x)
and eps2-g: Eps2 (g x) = Eps2 x ∗ f ′ (Re x)
and eps12-g: Eps12 (g x) = Eps12 x ∗ f ′ (Re x) + Eps1 x ∗ Eps2 x ∗ f ′′ (Re x)

Next, we prove the derivative extraction theorems:

lemma extract-f :
shows Re (g (Hyperdual x 1 1 0)) = f x

by (simp add: re-g)

lemma extract-f ′:
shows Eps1 (g (Hyperdual x 1 1 0)) = f ′ x
and Eps2 (g (Hyperdual x 1 1 0)) = f ′ x

by (simp-all add: eps1-g eps2-g)

lemma extract-f ′′:
shows Eps12 (g (Hyperdual x 1 1 0)) = f ′′ x

6.16. Hyperdual Extension - Field Version 75

by (simp add: eps12-g)

Next, we prove that this locale is preserved on taking subset of the given set:

lemma subset:
assumes T ⊆ S
shows hyperdual-ext f f ′ f ′′ T a g

proof
show (f has-real-derivative f ′ a) (at a within T)
using assms deriv-f has-field-derivative-subset by blast

show (f ′ has-real-derivative f ′′ a) (at a within T)
using assms deriv-f ′ has-field-derivative-subset by blast

fix x :: hyperdual
show Re (g x) = f (Re x)

and Eps1 (g x) = Eps1 x ∗ f ′ (Re x)
and Eps2 (g x) = Eps2 x ∗ f ′ (Re x)
and Eps12 (g x) = Eps12 x ∗ f ′ (Re x) + Eps1 x ∗ Eps2 x ∗ f ′′ (Re x)
using re-g eps1-g eps2-g eps12-g by simp-all

qed

Next, we prove that this locale is preserved on composition with another instance:

lemma compose:
assumes hyperdual-ext m m ′m ′′ (f‘S) (f a) n
shows hyperdual-ext (λx. m(f x)) (λx. m ′(f x) ∗ f ′ x) (λx. m ′(f x) ∗ f ′′ x + m ′′(f x) ∗ f ′ x ∗ f ′

x) S a (λx. n(g x))
proof
show ((λx. m (f x)) has-real-derivative m ′ (f a) ∗ f ′ a) (at a within S)
using deriv-f assms

has-field-derivative-imp-has-derivative[of f f ′ a at a within S]
has-snd-field-derivative.deriv-f [of m m ′m ′′ f‘S f a]
has-field-derivative-imp-has-derivative[of m m ′ (f a) at (f a) within f‘S]
has-derivative-in-compose[of f (∗) (f ′ a) a S m (∗) (m ′ (f a))]

by (simp add: has-derivative-imp-has-field-derivative hyperdual-ext-def)
show ((λx. m ′ (f x) ∗ f ′ x) has-real-derivative m ′ (f a) ∗ f ′′ a + m ′′ (f a) ∗ f ′ a ∗ f ′ a) (at a

within S)
using deriv-f deriv-f ′ assms

has-field-derivative-imp-has-derivative[of f f ′ a at a within S]
has-snd-field-derivative.deriv-f ′[of m m ′m ′′ f‘S f a]
has-field-derivative-imp-has-derivative[of m ′m ′′ (f a) at (f a) within f‘S]
has-derivative-in-compose[of f (∗) (f ′ a) a S m ′ (∗) (m ′′ (f a))]
has-field-derivative-imp-has-derivative[of f ′ f ′′ a at a within S]
has-derivative-mult[of λx. m ′ (f x) λx. m ′′ (f a) ∗ (f ′ a ∗ x) a S f ′ (∗) (f ′′ a)]
has-derivative-imp-has-field-derivative[of λx. m ′ (f x) ∗ f ′ x
λh. m ′ (f a) ∗ (f ′′ a ∗ h) + m ′′ (f a) ∗ (f ′ a ∗ h) ∗ f ′ a at a within S m ′ (f a) ∗ f ′′ a + m ′′

(f a) ∗ f ′ a ∗ f ′ a]
by (simp add: distrib-left hyperdual-ext-def)

fix x :: hyperdual
show Re (n (g x)) = m (f (Re x))
using assms hyperdual-ext.re-g re-g by auto

show Eps1 (n (g x)) = Eps1 x ∗ (m ′ (f (Re x)) ∗ f ′ (Re x))

76 Chapter 6. Appendix - Proofs

using assms eps1-g hyperdual-ext.eps1-g re-g by auto
show Eps2 (n (g x)) = Eps2 x ∗ (m ′ (f (Re x)) ∗ f ′ (Re x))
using assms eps2-g hyperdual-ext.eps2-g re-g by auto

have Eps12 (n (g x)) = (Eps12 x ∗ f ′ (Re x) + Eps1 x ∗ Eps2 x ∗ f ′′ (Re x)) ∗ m ′ (f (Re x)) +
Eps1 x ∗ f ′ (Re x) ∗ Eps2 x ∗ f ′ (Re x) ∗ m ′′ (f (Re x))

using assms re-g[of x] eps1-g[of x] eps2-g[of x] eps12-g[of x]
hyperdual-ext.eps1-g[of m m ′m ′′ f‘S f a n g x]
hyperdual-ext.eps2-g[of m m ′m ′′ f‘S f a n g x]
hyperdual-ext.eps12-g[of m m ′m ′′ f‘S f a n g x]

by simp
moreover have ... = Eps12 x ∗ f ′ (Re x) ∗ m ′ (f (Re x)) +

Eps1 x ∗ Eps2 x ∗ f ′′ (Re x) ∗ m ′ (f (Re x)) +
Eps1 x ∗ Eps2 x ∗ m ′′ (f (Re x)) ∗ f ′ (Re x) ∗ f ′ (Re x)

by (simp add: distrib-right mult.assoc)
ultimately show Eps12 (n (g x)) = Eps12 x ∗ (m ′ (f (Re x)) ∗ f ′ (Re x)) +

Eps1 x ∗ Eps2 x ∗ (m ′ (f (Re x)) ∗ f ′′ (Re x) + m ′′ (f (Re x)) ∗ f ′ (Re x) ∗ f ′ (Re x))
by (simp add: distrib-left)

qed

Last, we prove uniqueness of the extension given the real functions, variable and set:

lemma unique:
assumes hyperdual-ext f f ′ f ′′ S a h
shows g = h

proof
fix x :: hyperdual
have Re (g x) = Re (h x)

using assms hyperdual-ext.re-g re-g by simp
moreover have Eps1 (g x) = Eps1 (h x)
using assms hyperdual-ext.eps1-g eps1-g by simp

moreover have Eps2 (g x) = Eps2 (h x)
using assms hyperdual-ext.eps2-g eps2-g by simp

moreover have Eps12 (g x) = Eps12 (h x)
using assms hyperdual-ext.eps12-g eps12-g by simp

ultimately show g x = h x
by simp

qed

6.17 Hyperdual Extension - Examples

We prove a number of concrete extensions of real functions.

6.17.1 Constant Function

We prove the of-real function to be the hyperdual extension of a real constant:

lemma hyperdual-ext-const:
hyperdual-ext (λx. a) (λx. 0) (λx. 0) UNIV x (λx. of-real a)

proof
show ((λx. a) has-field-derivative 0) (at x)

6.17. Hyperdual Extension - Examples 77

by simp
show ((λx. 0) has-field-derivative 0) (at x)

by simp
show

∧
x. Re (of-real a) = a

and
∧

x. Eps1 (of-real a) = Eps1 x ∗ 0
and

∧
x. Eps2 (of-real a) = Eps2 x ∗ 0

and
∧

x. Eps12 (of-real a) = Eps12 x ∗ 0 + Eps1 x ∗ Eps2 x ∗ 0
by simp-all

qed

6.17.2 Identity Function

We prove the hyperdual identity to be the extension of the real identity:

lemma hyperdual-ext-identity:
hyperdual-ext (λx. x) (λx. 1) (λx. 0) UNIV x (λx. x)

proof
show ((λx. x) has-field-derivative 1) (at x)
using has-derivative-ident by simp

show ((λx. 1) has-field-derivative 0) (at x)
by simp

show
∧

x. Re x = Re x
and

∧
x. Eps1 x = Eps1 x ∗ 1

and
∧

x. Eps2 x = Eps2 x ∗ 1
and

∧
x. Eps12 x = Eps12 x ∗ 1 + Eps1 x ∗ Eps2 x ∗ 0

by simp-all
qed

6.17.3 Addition

We prove addition of hyperdual extensions to be the hyperdual extension of real addi-
tion:

lemma hyperdual-ext-add:
assumes hyperdual-ext f f ′ f ′′ S a fE

and hyperdual-ext g g ′ g ′′ S a gE
shows hyperdual-ext (λx. f x + g x) (λx. f ′ x + g ′ x) (λx. f ′′ x + g ′′ x) S a (λx. fE x + gE x)

proof
show ((λx. f x + g x) has-field-derivative f ′ a + g ′ a) (at a within S)
using assms hyperdual-ext-def

Deriv.field-differentiable-add[of f f ′ a at a within S g g ′ a]
by (simp add: has-snd-field-derivative-def)

show ((λx. f ′ x + g ′ x) has-field-derivative f ′′ a + g ′′ a) (at a within S)
using hyperdual-ext-def assms

Deriv.field-differentiable-add[of f ′ f ′′ a at a within S g ′ g ′′ a]
by (simp add: has-snd-field-derivative-def)

fix x :: hyperdual
show Re (fE x + gE x) = f (Re x) + g (Re x)
using assms hyperdual-ext.re-g by auto

show Eps1 (fE x + gE x) = Eps1 x ∗ (f ′ (Re x) + g ′ (Re x))

78 Chapter 6. Appendix - Proofs

using assms
hyperdual-ext.eps1-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps1-g[of g g ′ g ′′ S a gE x]

by (simp add: distrib-left)
show Eps2 (fE x + gE x) = Eps2 x ∗ (f ′ (Re x) + g ′ (Re x))
using assms

hyperdual-ext.eps2-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps2-g[of g g ′ g ′′ S a gE x]

by (simp add: distrib-left)
show Eps12 (fE x + gE x) = Eps12 x ∗ (f ′ (Re x) + g ′ (Re x)) + Eps1 x ∗ Eps2 x ∗ (f ′′ (Re

x) + g ′′ (Re x))
using assms

hyperdual-ext.eps12-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps12-g[of g g ′ g ′′ S a gE x]

by (simp add: distrib-left)
qed

6.17.4 Addition of Constant

We prove by preservation under composition the hyperdual extension of the special
case where a constant is one of the summands:

lemma hyperdual-ext-add-const:
hyperdual-ext (λx. x + a) (λx. 1) (λx. 0) UNIV x (λx. x + of-real a)

using hyperdual-ext-add[of λx. x λx. 1 λx. 0 UNIV x λx. x λx. a λx. 0 λx. 0 λx. of-real a]
hyperdual-ext-const[of a x]
hyperdual-ext-identity

by simp

6.17.5 Scalar Multiplication

We prove hyperdual scalar multiplication to be the hyperdual extension of real multi-
plication by a constant:

lemma hyperdual-ext-scaleR:
hyperdual-ext (λx. k ∗R x) (λx. k) (λx. 0) UNIV x ((∗R) k)

proof
show ((λx. k ∗R x) has-field-derivative k) (at x)
by simp

show ((λx. k) has-field-derivative 0) (at x)
by simp

show
∧

x. Re (k ∗R x) = k ∗R Re x
and

∧
x. Eps1 (k ∗R x) = Eps1 x ∗ k

and
∧

x. Eps2 (k ∗R x) = Eps2 x ∗ k
and

∧
x. Eps12 (k ∗R x) = Eps12 x ∗ k + Eps1 x ∗ Eps2 x ∗ 0

by simp-all
qed

6.17. Hyperdual Extension - Examples 79

6.17.6 Linear Function

We prove the hyperdual linear function to be the hyperdual extension of the real lin-
ear function by composing the identity, scalar multiplication and addition of constant
extensions:

lemma hyperdual-ext-linear:
hyperdual-ext (λx. k ∗R x + a) (λx. k) (λx. 0) UNIV x (λx. k ∗R x + of-real a)

proof −
have hyperdual-ext (λx. x + a) (λx. 1) (λx. 0) (range ((∗R) k)) (k ∗R x) (λx. x + of-real a)

using hyperdual-ext-add-const[of a k ∗R x]
hyperdual-ext.subset[of λx. x + a λx. 1 λx. 0 UNIV k ∗R x λx. x + of-real a range ((∗R)

k)]
subset-UNIV[of range ((∗) k)]

by simp
then show ?thesis
using hyperdual-ext-scaleR[of k x]

hyperdual-ext.compose[of (∗) k λx. k λx. 0 UNIV x (∗R) k λx. x + a λx. 1 λx. 0 λx. x +
of-real a]

by simp
qed

6.17.7 Exponential Function

First we define the hyperdual extension of the exponential function:

primcorec hyperdual-exp :: hyperdual⇒ hyperdual
where

Re (hyperdual-exp x) = exp (Re x)
| Eps1 (hyperdual-exp x) = Eps1 x ∗ exp (Re x)
| Eps2 (hyperdual-exp x) = Eps2 x ∗ exp (Re x)
| Eps12 (hyperdual-exp x) = Eps12 x ∗ exp (Re x) + Eps1 x ∗ Eps2 x ∗ exp (Re x)

Then we prove this to be the hyperdual extension of the real exponential function:

lemma hyperdual-ext-exp:
hyperdual-ext exp exp exp UNIV x hyperdual-exp

proof
show (exp has-field-derivative exp x) (at x)
by simp

fix x :: hyperdual
show Re (hyperdual-exp x) = exp (Re x)
by simp

show Eps1 (hyperdual-exp x) = Eps1 x ∗ exp (Re x)
by simp

show Eps2 (hyperdual-exp x) = Eps2 x ∗ exp (Re x)
by simp

show Eps12 (hyperdual-exp x) = Eps12 x ∗ exp (Re x) + Eps1 x ∗ Eps2 x ∗ exp (Re x)
by simp

qed

80 Chapter 6. Appendix - Proofs

6.17.8 Sine

First we define the hyperdual extension of sine:

primcorec hyperdual-sin :: hyperdual⇒ hyperdual
where
Re (hyperdual-sin x) = sin (Re x)
| Eps1 (hyperdual-sin x) = (Eps1 x) ∗ (cos (Re x))
| Eps2 (hyperdual-sin x) = (Eps2 x) ∗ (cos (Re x))
| Eps12 (hyperdual-sin x) = (Eps12 x) ∗ (cos (Re x)) + (Eps1 x) ∗ (Eps2 x) ∗ (− sin (Re x))

Then we prove this to be the hyperdual extension of the real sine:

lemma hyperdual-ext-sin:
hyperdual-ext sin cos (− sin) UNIV x hyperdual-sin

proof
show (sin has-field-derivative cos x) (at x)
by simp

show (cos has-field-derivative (− sin) x) (at x)
by simp

fix x :: hyperdual
show Re (hyperdual-sin x) = sin (Re x)
by simp

show Eps1 (hyperdual-sin x) = Eps1 x ∗ cos (Re x)
by simp

show Eps2 (hyperdual-sin x) = Eps2 x ∗ cos (Re x)
by simp

show Eps12 (hyperdual-sin x) = Eps12 x ∗ cos (Re x) + Eps1 x ∗ Eps2 x ∗ (− sin) (Re x)
by simp

qed

6.17.9 Cosine

First we define the hyperdual extension of cosine:

primcorec hyperdual-cos :: hyperdual⇒ hyperdual
where
Re (hyperdual-cos x) = cos (Re x)
| Eps1 (hyperdual-cos x) = (Eps1 x) ∗ (− sin (Re x))
| Eps2 (hyperdual-cos x) = (Eps2 x) ∗ (− sin (Re x))
| Eps12 (hyperdual-cos x) = (Eps12 x) ∗ (− sin (Re x)) + (Eps1 x) ∗ (Eps2 x) ∗ (− cos (Re

x))

Then we prove this to be the hyperdual extension of the real cosine:

lemma hyperdual-ext-cos:
hyperdual-ext cos (λx. − sin x) (λx. − cos x) UNIV x hyperdual-cos

proof
show (cos has-field-derivative − sin x) (at x)
by simp

show ((λx. − sin x) has-field-derivative − cos x) (at x)
using DERIV-sin[of x] has-field-derivative-scaleR-right[of sin cos x at x −1]
by simp

6.17. Hyperdual Extension - Examples 81

fix x :: hyperdual
show Re (hyperdual-cos x) = cos (Re x)

by simp
show Eps1 (hyperdual-cos x) = Eps1 x ∗ − sin (Re x)

by simp
show Eps2 (hyperdual-cos x) = Eps2 x ∗ − sin (Re x)

by simp
show Eps12 (hyperdual-cos x) = Eps12 x ∗ − sin (Re x) + Eps1 x ∗ Eps2 x ∗ − cos (Re x)

by simp
qed

6.17.10 Square Root

First we define the hyperdual extension of square root:

primcorec hyperdual-sqrt :: hyperdual⇒ hyperdual
where

Re (hyperdual-sqrt x) = sqrt (Re x)
| Eps1 (hyperdual-sqrt x) = Eps1 x ∗ inverse (2 ∗ sqrt (Re x))
| Eps2 (hyperdual-sqrt x) = Eps2 x ∗ inverse (2 ∗ sqrt (Re x))
| Eps12 (hyperdual-sqrt x) = Eps12 x ∗ inverse (2 ∗ sqrt (Re x)) + Eps1 x ∗ Eps2 x ∗ −

inverse (4 ∗ sqrt (Re x) ˆ 3)

Then we prove this to be the hyperdual extension of the real square root:

lemma hyperdual-ext-sqrt:
assumes x > 0
shows hyperdual-ext sqrt (λx. inverse (2 ∗ sqrt x)) (λx. − inverse (4 ∗ (sqrt x)ˆ3)) UNIV x

hyperdual-sqrt
proof
show (sqrt has-field-derivative inverse (2 ∗ sqrt x)) (at x)
using DERIV-real-sqrt assms by auto

then have ((λx. 2 ∗ sqrt x) has-field-derivative 2 ∗ inverse (2 ∗ sqrt x)) (at x)
using DERIV-cmult by blast

then have ((λx. 2 ∗ sqrt x) has-field-derivative inverse (sqrt x)) (at x)
using inverse-mult-distrib by simp

moreover have − (inverse (sqrt x) ∗ inverse (4 ∗ (sqrt x) ˆ 2)) = − inverse (4 ∗ (sqrt x)ˆ3)
using inverse-mult-distrib mult.commute mult.assoc
by (simp add: power2-eq-square power3-eq-cube)

ultimately show ((λx. inverse (2 ∗ sqrt x)) has-field-derivative − inverse (4 ∗ (sqrt x)ˆ3))
(at x)

using DERIV-inverse-fun[of λx. 2 ∗ sqrt x inverse (sqrt x) x UNIV] assms by simp
fix x :: hyperdual
show Re (hyperdual-sqrt x) = sqrt (Re x)
by simp

show Eps1 (hyperdual-sqrt x) = Eps1 x ∗ inverse (2 ∗ sqrt (Re x))
by simp

show Eps2 (hyperdual-sqrt x) = Eps2 x ∗ inverse (2 ∗ sqrt (Re x))
by simp

show Eps12 (hyperdual-sqrt x) = Eps12 x ∗ inverse (2 ∗ sqrt (Re x)) + Eps1 x ∗ Eps2 x ∗ −
inverse (4 ∗ sqrt (Re x) ˆ 3)

82 Chapter 6. Appendix - Proofs

by simp
qed

6.17.11 Multiplicative Inverse

We prove hyperdual inverse to be the hyperdual extension of the real inverse:

lemma hyperdual-ext-inverse:
assumes x 6= 0
shows hyperdual-ext inverse (λx. − inverse (xˆ2)) (λx. 2 ∗ inverse (xˆ3)) UNIV x inverse

proof
show (inverse has-field-derivative − inverse (xˆ2)) (at x)
using assms DERIV-inverse[of x UNIV]
by (simp add: power2-eq-square)

have ((λx. inverse (xˆ2)) has-real-derivative − (2 ∗ x ∗ inverse ((x ˆ 2) ˆ 2))) (at x)
using assms

DERIV-inverse-fun[of λx. xˆ2 2∗x x UNIV]
DERIV-pow[of 2 x UNIV]
zero-eq-power2[of x] diff-Suc-Suc[of Suc 0 0] power-Suc0-right[of x]

by simp
then have ((λx. − inverse (xˆ2)) has-real-derivative 2 ∗ x ∗ inverse ((x ˆ 2) ˆ 2)) (at x)
using Deriv.field-differentiable-minus by force

moreover have 2 ∗ x ∗ inverse ((x ˆ 2) ˆ 2) = 2 ∗ inverse (x ˆ 3)
using assms power2-eq-square[of xˆ2] power2-eq-square[of x] power3-eq-cube[of x]

times-divide-eq-right[of x 1 x ∗ x ∗ x ∗ x] inverse-eq-divide[of x ∗ x ∗ x ∗ x]
add.inverse-inverse

by (simp add: divide-inverse)
ultimately show ((λx. − inverse (xˆ2)) has-real-derivative 2 ∗ inverse (x ˆ 3)) (at x)
by metis

fix x :: hyperdual
show Re (inverse x) = inverse (Re x)
by (simp add: inverse-eq-divide)

show Eps1 (inverse x) = Eps1 x ∗ − inverse ((Re x)ˆ2)
by (simp add: inverse-eq-divide)

show Eps2 (inverse x) = Eps2 x ∗ − inverse ((Re x)ˆ2)
by (simp add: inverse-eq-divide)

show Eps12 (inverse x) = Eps12 x ∗ − inverse ((Re x)ˆ2) + Eps1 x ∗ Eps2 x ∗ (2 ∗ inverse
(Re x ˆ 3))

by (simp add: inverse-eq-divide)
qed

6.17.12 Multiplication

We prove multiplication of hyperdual extension to be the hyperdual extension of real
multiplication:

lemma hyperdual-ext-times:
assumes hyperdual-ext f f ′ f ′′ S a fE

and hyperdual-ext g g ′ g ′′ S a gE

6.17. Hyperdual Extension - Examples 83

shows hyperdual-ext (λx. f x ∗ g x) (λx. f ′ x ∗ g x + f x ∗ g ′ x) (λx. f ′′ x ∗ g x + f ′ x ∗ g ′ x +
f ′ x ∗ g ′ x + f x ∗ g ′′ x) S a (λx. fE x ∗ gE x)
proof
show ((λx. f x ∗ g x) has-field-derivative f ′ a ∗ g a + f a ∗ g ′ a) (at a within S)
using assms has-snd-field-derivative.deriv-f add.commute

DERIV-mult ′[of f f ′ a a S g g ′ a]
by (metis (full-types) hyperdual-ext-def)

show ((λx. f ′ x ∗ g x + f x ∗ g ′ x) has-real-derivative f ′′ a ∗ g a + f ′ a ∗ g ′ a + f ′ a ∗ g ′ a + f
a ∗ g ′′ a) (at a within S)

using assms has-snd-field-derivative.deriv-f hyperdual-ext-def
DERIV-add[of λx. f ′ x ∗ g x f ′′ a ∗ g a + f ′ a ∗ g ′ a a S λx. f x ∗ g ′ x f ′ a ∗ g ′ a + f a ∗

g ′′ a]
DERIV-mult ′[of f ′ f ′′ a a S g g ′ a]
DERIV-mult ′[of f f ′ a a S g ′ g ′′ a]
add.assoc
has-snd-field-derivative-def

by smt
fix x :: hyperdual
show Re (fE x ∗ gE x) = f (Re x) ∗ g (Re x)
using hyperdual-ext.re-g assms
by simp

show Eps1 (fE x ∗ gE x) = Eps1 x ∗ (f ′ (Re x) ∗ g (Re x) + f (Re x) ∗ g ′ (Re x))
using add-mult-distrib mult.commute add.commute

hyperdual-ext.eps1-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.re-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps1-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.re-g[of g g ′ g ′′ S a gE x]
assms

by (simp add: algebra-simps)
show Eps2 (fE x ∗ gE x) = Eps2 x ∗ (f ′ (Re x) ∗ g (Re x) + f (Re x) ∗ g ′ (Re x))
using add-mult-distrib mult.commute add.commute

hyperdual-ext.eps2-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.re-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps2-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.re-g[of g g ′ g ′′ S a gE x]
assms

by (simp add: algebra-simps)
show Eps12 (fE x ∗ gE x) = Eps12 x ∗ (f ′ (Re x) ∗ g (Re x) + f (Re x) ∗ g ′ (Re x)) +

Eps1 x ∗ Eps2 x ∗ (f ′′ (Re x) ∗ g (Re x) + f ′ (Re x) ∗ g ′ (Re x) + f ′ (Re x) ∗ g ′ (Re x) +
f (Re x) ∗ g ′′ (Re x))

using hyperdual-ext.eps12-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps2-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps1-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.re-g[of f f ′ f ′′ S a fE x]
hyperdual-ext.eps12-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.eps2-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.eps1-g[of g g ′ g ′′ S a gE x]
hyperdual-ext.re-g[of g g ′ g ′′ S a gE x]
assms

84 Chapter 6. Appendix - Proofs

by (simp add: algebra-simps)
qed

6.17.13 Natural Power

We prove that raising a hyperdual number to the power of some natural number is the
hyperdual extension of the same operation on real numbers. First we establish this
when the natural number is zero or one:

lemma hyperdual-ext-power0:
shows hyperdual-ext (λx. xˆ0) (λx. 0) (λx. 0) UNIV a (λx. xˆ0)

using hyperdual-ext-const[of 1 a]
by (simp add: one-hyperdual.code)

lemma hyperdual-ext-power1:
shows hyperdual-ext (λx. xˆ1) (λx. 1) (λx. 0) UNIV a (λx. xˆ1)

using hyperdual-ext-identity
by simp

Next, we prove the remaining cases (i.e. exponent being two or greater) by induction
and composition with the multiplication extension:

lemma hyperdual-ext-power-ge2:
fixes n :: nat
and f f ′ f ′′ :: real⇒ real

shows hyperdual-ext (λx. xˆ(n+2)) (λx. (n+2) ∗ xˆ(n+1)) (λx. (n+2) ∗ (n+1) ∗ xˆn) UNIV
a (λx. xˆ(n+2))
proof (induct n)

case 0
show ?case
using hyperdual-ext-identity

hyperdual-ext-times[of λx. x λx. 1 λx. 0 UNIV a λx. x λx. x λx. 1 λx. 0 λx. x]
by (simp add: algebra-simps)

next
case (Suc n)
then show ?case
using hyperdual-ext-identity

hyperdual-ext-times[of λx. x λx. 1 λx. 0 UNIV a λx. x λx. xˆ(n+2) λx. (n+2) ∗ xˆ(n+1)
λx. (n+2) ∗ (n+1) ∗ xˆn λx. x ˆ (n+2)]

by (simp add: algebra-simps)
qed

Last, we prove the particular case when the exponent is equal to three:

lemma hyperdual-ext-cube:
hyperdual-ext (λx. xˆ3) (λx. 3∗xˆ2) (λx. 6∗x) UNIV a (λx. xˆ3)

proof −
have (λx::real. x ˆ (1 + 2)) = (λx. x ˆ 3)
by (metis one-plus-numeral semiring-norm(3))

moreover have (λx::hyperdual. x ˆ (1 + 2)) = (λx. x ˆ 3)
by (metis one-plus-numeral semiring-norm(3))

moreover have
∧

x :: real. real (1 + 2) ∗ x ˆ (1 + 1) ∗ 1 = 3 ∗ x ˆ 2

6.17. Hyperdual Extension - Examples 85

proof −
fix x :: real
have (1 + 2) ∗ x ˆ (1 + 1) ∗ 1 = (1 + 2) ∗ x ˆ 2
using mult.right-neutral[of (1 + 2) ∗ x ˆ (1 + 1)] nat-1-add-1
by smt

then show real (1 + 2) ∗ x ˆ (1 + 1) ∗ 1 = 3 ∗ x ˆ 2
by simp

qed
ultimately show ?thesis
using hyperdual-ext-power-ge2[of 1 a]

hyperdual-ext-identity[of a]
by (simp add: algebra-simps)

qed

6.17.14 Finite Polynomial

We prove hyperdual finite polynomials to be the hyperdual extension of real finite
polynomials. First we establish this when the number of terms is zero or one:

lemma hyperdual-ext-polyn0:
fixes coef :: nat⇒ real
shows hyperdual-ext (λx. (∑ i<0. coef i ∗ xˆi)) (λx. (∑ j<(0−1). coef (j+1) ∗ (j+1) ∗ xˆj))

(λx. (∑k<(0−2). coef (k+2) ∗ (k+2) ∗ (k+1) ∗ xˆk)) UNIV a (λx. (∑ i<0. coef i ∗R

xˆi))
proof −
have (λx::hyperdual. (∑ i<0. coef i ∗R xˆi)) = (λx. of-real 0)
proof

fix x::hyperdual
show (∑ i<0. coef i ∗R x ˆ i) = of-real 0
by simp

qed
then show ?thesis

using hyperdual-ext-const[of 0 a]
by simp

qed

lemma hyperdual-ext-polyn1:
fixes coef :: nat⇒ real
shows hyperdual-ext (λx. (∑ i<1. coef i ∗ xˆi)) (λx. (∑ j<(1−1). coef (j+1) ∗ (j+1) ∗ xˆj))

(λx. (∑k<(1−2). coef (k+2) ∗ (k+2) ∗ (k+1) ∗ xˆk)) UNIV a (λx. (∑ i<1. coef i ∗R

xˆi))
proof −
have (λx::hyperdual. (∑ i<1. coef i ∗R xˆi)) = (λx. of-real (coef 0))
proof

fix x::hyperdual
show (∑ i<1. coef i ∗R x ˆ i) = of-real (coef 0)
by simp

qed
then show ?thesis

using hyperdual-ext-const[of coef 0 a]

86 Chapter 6. Appendix - Proofs

by simp
qed

Next, we prove the remaining cases (i.e. two or more terms) by induction and compo-
sition with addition, scalar multiplication and natural power extensions:

lemma hyperdual-ext-polyn-ge2:
fixes coef :: nat⇒ real
and n :: nat

shows hyperdual-ext (λx. (∑ i<(n+2). coef i ∗ xˆi)) (λx. (∑ j<(n+1). coef (j+1) ∗ (j+1) ∗
xˆj))

(λx. (∑k<n. coef (k+2) ∗ (k+2) ∗ (k+1) ∗ xˆk)) UNIV a (λx. (∑ i<(n+2). coef i ∗R

xˆi))
proof (induct n)

case 0
have (λx::real. (∑ i<0+2. coef i ∗ xˆi)) = (λx. coef 1 ∗ x + coef 0)
proof
fix x::real
have (∑ i<1+1. coef i ∗ x ˆ i) = coef 1 ∗ x + coef 0

by simp
then show (∑ i<0+2. coef i ∗ x ˆ i) = coef 1 ∗ x + coef 0

using nat-1-add-1
by simp

qed
moreover have (λx::hyperdual. (∑ i<0+2. coef i ∗R xˆi)) = (λx. coef 1 ∗R x + of-real (coef

0))
proof
fix x::hyperdual
have (∑ i<1+1. coef i ∗R x ˆ i) = coef 1 ∗R x + of-real (coef 0)
by simp

then show (∑ i<0+2. coef i ∗R x ˆ i) = coef 1 ∗R x + of-real (coef 0)
using nat-1-add-1
by simp

qed
ultimately show ?case
using hyperdual-ext-linear[of coef 1 coef 0 a]
by simp

next
case hyp: (Suc n)

have hyperdual-ext (λx. coef (n + 2) ∗R x ˆ (n + 2)) (λx. coef (n + 2) ∗ ((n + 2) ∗ x ˆ (n +
1)))

(λx. coef (n + 2) ∗ ((n + 2) ∗ (n + 1) ∗ x ˆ n) + 0 ∗ ((n + 2) ∗ x ˆ (n + 1)) ∗ ((n +
2) ∗ x ˆ (n + 1)))

UNIV a (λx. coef (n + 2) ∗R x ˆ (n + 2))
using hyperdual-ext-power-ge2[of n a]

hyperdual-ext.compose[of λx. x ˆ (n + 2) λx. (n + 2) ∗ x ˆ (n + 1) λx. (n + 2) ∗ (n +
1) ∗ x ˆ n UNIV a λx. x ˆ (n + 2)

(∗R) (coef (n + 2)) λx. coef (n + 2) λx. 0 (∗R) (coef (n + 2))]
hyperdual-ext-scaleR[of coef (n + 2) a ˆ (n + 2)]

6.17. Hyperdual Extension - Examples 87

hyperdual-ext.subset
by blast

then have hyperdual-ext (λx. coef (n + 2) ∗R x ˆ (n + 2)) (λx. coef (n + 2) ∗ (n + 2) ∗ x ˆ
(n + 1))

(λx. coef (n + 2) ∗ (n + 2) ∗ (n + 1) ∗ x ˆ n) UNIV a (λx. coef (n + 2) ∗R x ˆ (n +
2))

by (simp add: algebra-simps)
moreover have (λx. ∑ i<Suc n + 2. coef i ∗ x ˆ i) =

(λx. (∑ i<n + 2. coef i ∗ x ˆ i) + coef (n+2) ∗R x ˆ (n+2))
by simp

moreover have (λx. ∑ j<Suc n + 1. coef (j + 1) ∗ real (j + 1) ∗ x ˆ j) =
(λx. (∑ j<n + 1. coef (j + 1) ∗ real (j + 1) ∗ x ˆ j) + coef (n + 1 + 1) ∗ real (n +

1 + 1) ∗ x ˆ (n+1))
by simp

moreover have (λx. ∑k<Suc n. coef (k + 2) ∗ real (k + 2) ∗ real (k + 1) ∗ x ˆ k) =
(λx. (∑k<n. coef (k + 2) ∗ real (k + 2) ∗ real (k + 1) ∗ x ˆ k) + coef (n + 2) ∗

real (n + 2) ∗ real (n + 1) ∗ x ˆ n)
by simp

moreover have (λx. ∑ i<Suc n + 2. coef i ∗R x ˆ i) =
(λx. (∑ i<n + 2. coef i ∗R x ˆ i) + coef (n+2) ∗R x ˆ (n+2))

by simp
ultimately show ?case
using hyp

hyperdual-ext-add[of λx. ∑ i<n + 2. coef i ∗ x ˆ i λx. ∑ j<n + 1. coef (j + 1) ∗ (j + 1)
∗ x ˆ j

λx. ∑k<n. coef (k + 2) ∗ (k + 2) ∗ (k + 1) ∗ x ˆ k UNIV a λx. ∑ i<n + 2. coef i ∗R x ˆ i
λx. coef (n + 2) ∗R x ˆ (n + 2) λx. coef (n + 2) ∗ (n + 2) ∗ x ˆ (n + 1)
λx. coef (n + 2) ∗ (n + 2) ∗ (n + 1) ∗ x ˆ n λx. coef (n + 2) ∗R x ˆ (n + 2)]

by (simp add: algebra-simps)
qed

	Introduction
	Motivation and Goals
	Report Organisation

	Context
	Mechanization in Isabelle/HOL
	Similar Number Systems
	Summary

	Properties of Hyperdual Numbers
	Hyperdual Number
	Mechanization

	Addition
	Mechanization

	Multiplication
	Zero Divisors
	Multiplication Cancellation
	Mechanization

	Scalar Multiplication and Real Algebra
	Mechanization

	Multiplicative Inverse and Division
	Mechanization

	Real Normed Vector Space
	Alternative Considered Norm
	Real Normed Algebra
	Mechanization

	Hypercomplex Numbers
	Bounded Linearity of Projections
	Filters
	Limits
	Mechanization

	Derivatives
	Mechanization

	Summary

	Hyperdual Extension of Real Functions
	Automatic Differentiation
	Basic Desired Properties
	Derivation
	Mechanization
	Field Version of the Extension Locale
	General Version of the Extension Locale
	Case Studies

	Summary

	Conclusion
	Future Work
	Improving the Hyperdual Extension
	General Second Derivative
	Hyperdual Taylor's Expansion
	Verification of Algorithms
	Further Properties
	Code Extraction
	Higher-Order Hyperduals

	Final Remarks

	Bibliography
	Appendix - Proofs
	ab-group-add Instantiation
	comm-ring-1 Instantiation
	Non-Trivial Zero Divisors Proof
	Multiplication Cancellation Proof
	real-algebra-1 Instantiation
	inverse Instantiation
	division-hyperdual Interpretation
	Vector Space Preliminaries
	real-normed-vector Instantiation
	real-normed-algebra Counter-Example
	Bounded Linearity of Projections
	Limits
	banach Instantiation
	Derivatives
	Second Field Derivative
	Hyperdual Extension - Field Version
	Hyperdual Extension - Examples
	Constant Function
	Identity Function
	Addition
	Addition of Constant
	Scalar Multiplication
	Linear Function
	Exponential Function
	Sine
	Cosine
	Square Root
	Multiplicative Inverse
	Multiplication
	Natural Power
	Finite Polynomial

